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4.1 INTRODUCTION

In this unit, we shall be studying trigonometry. It is convenient to use
trigonometry to measure distances between two landmarks or width or depth of
rivers or heights of mountain etc. It was first started in India. Elements of the
subject can be found even in Rigveda. All the ancient Indian Mathematicians like
Aryabhata, Bhaskara I and II and Brahamagupta got important results.

Trigonometry means the science of measuring triangles. Given some of the sides
and angles of a triangle, trigonometry helps us to calculate the remaining sides
and angles.

In this unit, we will deal with the various systems of measuring angles, then we
will define various circular functions and develop their properties. In the end, we
will talk about periodicity, graph of circular functions and inverse trigonometric
functions.

Objectives

After studying of this unit, you should be able to
J define an angle,
. define trigonometric ratios,

J derive the value of trigonometric ratios of some standard angles,
allied and multiple angles,

o learn the basic properties of trigonometric ratios,
. define the inverse of trigonometric functions, and

o have an idea of the graphs of trigonometric functions and inverse
trigonometric functions.
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4.2 ANGLES

Definition 1

Let a revolving line starting from OX, revolve about O in a plane in the
direction of the arrow and occupy the position OP, then it is said to trace
out an angle XOP. OP is called the final (or terminal) position and OX,
the initial position. The point O is called the vertex.

To be more rigorous an angle may be defined as a measure of the rotation
of a half-ray about its origin.

Figure 4.1

An angle XOP is called positive if it is traced out by ray revolving in the
anti-clockwise direction and negative if it is traced out by a ray revolving in
the clockwise direction. It may be noted that an angle can have any
magnitude.

There are two systems of measurement of an angle which are of importance
in mathematics.

Sexagesimal System

In this system, an angle is measured in degrees, minutes and seconds. One

. .1 . .
degree (written as 1°) is ——th of a complete rotation, i.e. one complete

rotation = 360°.

Since a right angle is %th of a revolution, therefore, 1 right angle = 90°. A
degree is further subdivided as follows :
1 degree = 60 minutes, written as 60’ and

1 minute = 60 seconds, written as 60".

Circular System

In this system, an angle is measured in radians.

A radian is an angle subtended at the centre of a circle by an arc whose
length is equal to the radius.

Let 4B be an arc of a circle of radius 7 such that length of arc AB = r, then
£ AOB = 1 radian (written as 1°).

Since the whole circle subtends an angle of 360° (= 4 right angles) at the
centre and the angles at the centre of a circle are in the ratio of subtending
arcs, therefore,



Z AOB arc AB

4 right angle - circumference

= ZAOB= 2L x 4 right angles ("~ circumferemce = 27r)
17

= lradian = 2 right angles .
T

This means that a radian is a constant angle, independent of the radius of
the circle. Also, we find that

7 radians = 2 right angles = 180°

Figure 4.2

From here, we get

o
1 radian = 130 degree = 1807 = 630
T 22 11

0]
= 57+i :57°+ix60'
11 11

’

_579 4164+
11
o ! 4 14
=57" +16 +ﬁ><60

=57°16' 22" nearly.
Remark

The symbol ‘n’ stands for the ratio of circumference of a circle to its
diameter. It is an irrational number. However, for all practical

. . . 22
purposes, unless otherwise mentioned, the value of = is taken as -

A better approximation for  is ?% . When we take this value of &,
we find that
1 radian = 57° 17' 45" nearly.

Definition 2 : Circular Measure of an Angle

The circular measure of an angle is the number of radians it contains.
Thus the circular measure of a radian is 1.

Trigonometric
Functions
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Mathematics-I Circular measure of some standard angles is given in the following

Table 4.1.

Angle in 0° 30° 45° 60° 90° | 120° | 135° | 150° | 180° | 270° | 360°
Degrees

Circular 0 T T T 21 37 51 T 3n 27
Measures 6 | 4 | 3| 23| 4|6 2
Remember

When the unit in terms of which an angle is measured, is not
mentioned, radian is understood.

Theorem 1
Prove that the number of radians in an angle subtended by an arc of a

. arc
circle at the centre =

radius
Proof

Let £ AOP = 0 radians be the angle subtended by an arc AP (=/) of a
circle at the centre O. Cut off arc AB = radius (= ) and join OB, then
Z AOB = 1 radian (by definition).

Z AOP _arc AP

Now =
/ AOB arc AB

(* angles at the centre of a circle are proportional to the arcs on which
they stand.)

0 radian _ /

lradian r

= 6:1.
r

Figure 4.3
Hence number of radian in

arc AP
radius

Z AOP =

4.3 CIRCULAR FUNCTIONS OR TRIGONOMETRIC
RATIOS

Definition 3 : Definition of Circular Functions

Let a revolving line, starting from OX, trace out an angle XOP = 0 in any of

66 the four quadrants. Let M be the foot of perpendicular from P upon X'OX.




Regarding OM and MP as directed lengths (OP always +ve), the ratios of

OM, MP and OP with one another are called circular functions or
trigonometrical ratios (abbreviated as ¢-ratios) of the angle 0.

Figure 4.4

Let OM =x, MP =y and OP = r > 0, then we define the various circular
functions as follow :

(1) % is called sine of 0 and is written as sin 0, i.e. sin 0 = Y.
r
.. OM . . . . . X
(1) P is called cosine of 0 and is written as cos 6, i.e. cos 6 = —.
r
(111) oM is called tangent of 0 and is written as tan 0, i.e.
tan 0 = l, x=0.
X
. OM . . . .
(iv) P is called cotangent of 6 and is written as cot 0, i.e.
cot 0= 5, y=0.
y
OP . . . .
V) oM is called secant of 0 and is written as sec 0, i.e.
sec 0= L, Xz0.
X
. OP . . . .
(vi) MP is called cosecant of 0 and is written as cosec 0, i.e.
cosec 6=L, y=0.
y
Remarks

(1) From the above definitions, it is clear that

(1) cosecB=—
sin 6

Trigonometric
Functions
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2

3)
“4)

)

(6)

i sec 0 =

(i cos O

i) cotO =

(i) tan O

(iv) tan =519
cos O

(v) cotB= C?S 0
sin ©

sin O is one symbol, i.e. sin 0 # sin x 0. Similar is the case for
other f-ratios.

. . . . . _ 1
(sin ©)" is usually written as sin” 6, n € N and (sin 0)~' = s
Sin
We observe that the above functions depend only on the value
of the angle 0 and not on the point P chosen on the terminal side
of 6. For example, if we take another point P'(x’, y") on the
terminal line with OP' = 7/, then considering similar triangles we

have

If the terminal side coincides with one of the axes say if it
coincides with x-axis, then cosec and cot are not defined while
if it coincides with y-axis, then sec and tan are not defined.

The signs of trigonometric ratios depend on the quadrant in
which the terminal line of the angle lies. They depend upon the
sign of x and y as r is always +ve.

Table 4.2 describes the signs of various z-ratios in different quadrants (refer

to Figure 4.4).
Quadrant | I 111 v
MP =y +ve +ve —ve - ve
OM=x +ve —ve —ve +ve
. y +ve +ve —-ve -ve
sin 0 = — — =+ve —=+ve — =—ve e
r +ve +ve +ve +ve
X +ve —ve —-ve +ve
cos 0 =— ——=+ve | —=-ve —=-ve — =+ve
r +ve +ve +ve +ve
+ve +ve - —-ve
tanGzl,x;tO — =+ve —— =-ve — = +tve T _ve
X +ve —-ve —-ve +ve

The signs of other #-ratios can be found by using reciprocal relations, i.e.

cosec 0 =

So, we have

S

,sec 0=

cos 6

and cot O =

tan 0




Trigonometric

Quadrant : - I II I v Functions
t-ratios which arc +ve All sin O tan 0 cos 0
cosec 0 cot O sec O

In the first quadrant as the angle increases from 0° to 90°, sin 0 increases
from 0 to 1. In the second quadrant as 6 increases from 90° to 180°, sin 6
decreases from 1 to 0. In the third quadrant as 0 increases from 180° to
270°, sin 0 decreases from 0 to — 1 and finally in the fourth quadrant sin 6
increases from — 1 to 0 as 0 increases from 270° to 360°. In fact we have the

following table.
I quadrant II quadrant
Sine increases from 0 to 1 Sine decreases from 1 to 0
Cosine decreases from 1 to 0 Cosine decreases from 0 to — 1
Tangent increases from 0 to oo Tangent increases from — oo to 0
Cotangent | decreases from <o to 0 Cotangen | decreases from 0 to —
t
Secant increases from 1 to oo Secant increases from — oo to —1
Cosecant decreases from oo to 1 Cosecant | decreases from 1 to o
III quadrant IV quadrant
Sine decreases from 0 to — 1 Sine increases from — 1 to 0
Cosine increases from — 1 to 0 Cosine increases from 0 to 1
Tangent increases from 0 to oo Tangent increases from — o to 0
Cotangent | decreases from <o to 0 Cotangen | increases from 0 to — oo
t
Secant decreases from — 1 to — Secant increases from oo to 1
e}
Cosecant increases from — o to —1 | Cosecant | decreases from — 1 to —
o0

Remark

In the above table we see the symbol . Observe that o is not a real
number and is just a symbol. Statement like tan 0 increases from 0 to

o for 6 (O, gj simply means that tan 6 increases as 0 increases in
the interval (O, g) and assumes arbitrarily large positive values as 0

increases to — . Similarly, to say that cosec decreases from — 1 to

— oo in the fourth quadrant means that cosec 0 is a decreasing function
3 o .

for 0 [775, 27:) and assumes arbitrarily large negative values as 0

approaches 2.

Theorem 2 : Fundamental Identities

Prove that 69
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atheraties (i) sin?0 +cos? 0 =1
.. 20 2

(1) 1+ cot”0 =cosec” 0

(iii) 1+ tan’0 =sec’ 0

Figure 4.5
Proof
2 2 2 2 2
(1) sin0 +cos?0=|2| +[X] =2 T "
r r r2 r2
2
iy 1+ %1 (Dividing by sin?6)
sin“® sin“ 0
ie. 1+ cot’0 =cosec’
... sin’9 1 g 2
ii +1=——— (Dividin cos
(ii1) —+1 -— (Dividing by 0)
cos” 0 cos” 0

ie. 1+ tan’ 0 =sec?0.

4.3.1 Trigonometric Ratios of Standard Angles
Value of t-ratio for 45° or %

Let a revolving line, starting from OX, trace out £ XOP = 45°,
From P, draw PM 1 OX.

Figure 4.6
Then Z OPM =90° — ~ MOP
=90° — 45° =45°
=/ MOP,
. OM =MP =aq (say),a >0
.. OP? = OM? + MP?
2

=a +612=2612
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OP = a\/z
(Taking +ve sign with the square root, - OP is always +ve).
MP a 1
. sin 45° = — = =—
OP 42 2
OM a 1
cos 45° = — = =—:
OP a2 2
tan 450 = MP _ 4 _ ;
OM a
cot 45° =O—M=£=1;
MP a
sec 45° ZQZ&:\E;
oM a
cosec 45° =2= ay2 =2.
MP a

Value of t-ratio for 30° or %

Let a revolving line, starting from OX, trace out £ XOP = 30°.

From P, draw PM 1 OX.
Then 2/ OPM =90° — ~ MOP

=90° - 30° =60°.

AT O, make £ P'"OM = 30° and produce PM to meet OP’ in P'.

Then As, OMP, OMP’ are congruent
(30° =30°, 7t £ =1t £ and OM = OM)

"~ MP=PM=a (say)

Figure 4.7
and Z MP'O = 2 OPM = 60° (Proved above)
. A OPP'is equilateral,
. OP=PP=2MP =2a,a>0
. OM?2 =0P2 - MP2 =44? — 4% =342

= OMza\/g,

(Taking +ve sign, with the square root, because OM being drawn to the

right of O, is +ve).

Trigonometric
Functions
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Mathematics-I - sin 30° — MP _ a _ l .
OM 2a 2’
cos 30° =—OM = aﬁ =£
OoP 2a 2
MP a 1
tan 30° = — = =—;
OM a\/g ﬁ
cot 30° _OM _ ay3 =3;
P a
OP 2a 2
sec 30° = —— = =—
OM a3 3
cosec 30° =£=2—a=2.
MP a

Value of t-ratio for 60° or =

Let a revolving line, starting from OX, trace out £ XOP = 60°.
From P, draw PM 1L OX.

Then Z OPM =90° — ~ MOP
=90° - 60° =30°.

At P make ~ MPP' =30° and let PP’ meet OX in P'.

Figure 4.8
Then As OMP, MP'P are congruent

(. 30° =30°, 1t £ =rt £ and MP = MP)
. OM = MP' = a (say) and
Z PP'M = £ MOP = 60°
. A OPP'is equilateral,
= OP=0P'=20M =2a,a>0
. MP2 =0P? - OM? = 44? — 4® = 34>
= MP = a\/g

(Taking +ve sign, with the square root, "= MP being drawn above OX
is +ve).
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MP a3 3

. sin 60° = — = L¥2 N2

OP 2a 2

cos 60° _OM _a 1
OP 2a 2
MP a3

tan 60° = — = =3
OM a
OM a 1

cot 60° = — = =—;
MP 4.3 3

sec 60° =2=2—a:2
OM a

cosec 60° _OP _ 2a _

5

MP 443

Value of t-ratio for 0°

Let a revolving line, starting from OX, trace out £ XOP = 0° so that P lies
on OX.

From P, draw PM perpendicular on OX, so that M coincides with P.
Then  OM =OP =a (say), MP =0

OP=a,a>0
Figure 4.9

smo°=£=9=o;

OM «a
cos0°=%=£=

OP «a
tan0°=Ezgz :

M a ’
secoozgzaz

OM «a

cot 0° and cosec 0° are not defined.

Value of t-ratio for 90° or =

Let a revolving line, starting from OX, trace out £ XOP = 90°.
From P, draw PM L on OX, so that M coincides with O.

Figure 4.10

Trigonometric
Functions
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Mathematics-I .. OM=0,MP =0P =a (say),a >0

. sino0 =MP _4_ .
OP a
cos90°=%=9=
OP a
cot90°=O—M=9=0;
MP a
cosec90°=£=£=
MP

tan 90° and sec 90° are not defined.

We summarise the values of sin 6 and cos 0 in Table 4.3 for ready

reference.
0 0° 30° 45° 60° 90°
ind | o [ 2 3 4
4 4 4 4 4
csd | fa 3 2 T 0
4 4 4 4 4
Example 4.1

In a right angled triangle, the difference between two acute angles is g in

circular measure. Find the angles in degrees.

Solution

Since the triangle is right angled, so the sum of the acute angles is 90°.

Let the two acute angles be x and y, x > .

Then x+y=90°

Also X—y =g radian = 20°

. 2x=90° +20° =110°
1.e. x =55°
"y =90° —55° =35°
Example 4.2
Given cot 6 = %, 0 in the III" quadrant, find the value of the other

trigonometric functions.

Solution
tan 0 = i
12

As sec29:1+tan29:1+£:@
74 144 144

CR)!



In quadrant 111, sin 0, cos 0, sec 0, cosec 0 are all negative.

" sec@z_—Band cose—_—12 ... (4.2
12
. 12
51n6:tan6c056——(—3j
" sin9=_—5 and cosecé)z_—13 ...(4.3)
13 5
Example 4.3
Prove that
sin 0 + tan 0 =sec O cosec O + cot O
l1—cos® 1+cosH
LHS = sin O N tan 0
l1—-cos® 1+cosH
_ sin 0 (1 + cos 0) + tan O (1 — cos 0)
1-cos” 0
_ sin 0 + sin O cos O + tan O — sin O
sin” 0
_sin 0 cos O + tan O
sin” 0
_sinOcosO tan O
sin® 0 sin® 0
1
=cot 0+ ——— =cot 6 + sec O cosec O
cos O sin O
SAQ 1
(a) Find the radian measure correspondingly to the following degree
measures
1 15°
(i) —22°.30".
(b) Find the degree measure correspondingly to the following radian
measures
. Tr .. 1
1 —, 1 —.
ORI G 5

(c) Find the value of the other five trigonometric functions in each of the
following

(i) cosb=- %, 0 is in quadrant II

(1)) tan 6= %, 6 is in quadrant II1

Trigonometric
Functions
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(iii) sin 0 = % 0 is in quadrant 1.

(d) Prove the following trigonometric identities

(1) 1=cos® cosec 0 — cot O
1+ cos©

.. tan © — cot O
(i) ————"— =sec” O — cosec’ 0
sin O cos O

(111) sec 0 —sec? 0 =tan? 0 + tan” 0

. 0 — tan 0
(iv) S T Y 1~ 2sec O tan O + 2tan? 4
sec O + tan 0

4.3.2 Trigonometric Ratios of Allied Angles

We shall now find t-ratios of — 0, 90° + 0, 180° + 0 and 360° & Oin terms of those
of 0.

T-ratios of (— 0) in terms of those of 6

Let a revolving line OP, starting from OX, trace out an £ XOP = 0 in any
of the four quadrants.

Let another revolving line OP’ = OP, starting from OX, revolve in the
opposite direction through 0 (as shown in Figure 4.11), so that
ZXOP'=-6.

From P and P’ draw PM and P'M’ L on XOX'

Then As OMP, OM'P’ are congruent.

(v in figure (i), £ POM in magnitude =0
~/ P'OM/, rt=/ rt £ and OP=0P’)

OM' = OM (v They have the same sign)
M'P'=—-MP (- They have the opposite signs)
and OP"=OP

L sin(-0) =t _ZMP g,

OP’ op
cos(—e)zo—Mzo—Mzcosﬁ;

OopP" OpP

tan(—@):ﬁ:ﬂ:—tane;
OM" OM

cot(-@):o_Mzo_M:—cote;
M'P" - MP



sec (— 6)=£=£=sec@; and
oM OM
cosec (—0) = OP” =ﬂ = —cosec 0
M'P" - MP
Figure 4.11

T-ratios of (90° — 0) in terms of those of 0

Let a revolving line OP, starting from OX, trace out an £ XOP = 0 in any
of the four quadrants.

Let another revolving line OP’ = OP, starting from OX, trace out
Z XOY =90° and then revolve back through 6 so that £ XOP' =90° - 6.
From P, P’ draw PM, P'M’' L. s on X'OX.
Then As OMP, OM'P’ are congruent.
(v in figure (i), £ POM in magnitude =0
=/YOP'=£Z0P'M',(alt. £s), rt L=rt £ and OP=0P")

OM'=OM (v They have the same sign)

M'P' = OM (- They have the same sign)
and OP’ = OP.

MP'  OM

. sin (90° —0) = ——=——=cos 0;
OP’ op

cos (90° —9)=O—M=£=sin9;
OP" OP

tan (90° —6)=£=%=00t6;
OM' MP

cot (90° —6)=O—M=£=tan 0;

MP" OM

Trigonometric
Functions
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OP'  OP

sec (90° — ) = —— = —— = cosec #; and
OM' MP
cosec (90° - 9) _OoF _OF sec 6.
MP" OM
Figure 4.12

T-ratios of (90° + 0) in terms of those of 0

Let a revolving line OP, starting from OX, trace out an £ XOP =0 in any
of the four quadrants.

Figure 4.13
Let another revolving line OP’ = OP, starting from OX, trace out

Z XOY =90° and then revolved further through 0 so that £ XOP' =90° + 0
From P, P’ draw PM, P'M’' Ls on X'OX.
Then A OM'P’ and A OMP are congruent.

[- OP'=OP, ZOM'P' = Z OMP =90° and £ OP'M’' = £ MOP = 0
(in figure(i)]



OM' = - MP (= They have opposite signs)
M'P' = OM (= They have same sign)
and OP’ = OP.
. sin (90° +9)=£=O—M=cosﬁ;
OP’ OP
cos (90° +9)=O—M=ﬂ=—sin9;
OP’ OP
tan (90° +9)=£=%=—00t6;
oM - MP
cot (90° +6)=O—M=ﬂ=—tan 0;
M'P’ OM
sec (90° +G)=O—P,=£=—cosece; and
OM" - MP
cosec (90° + 0) =O—P=£=sec 0.
M'P'" MP

T-ratios of (180° — 0) in terms of ©

Let a revolving line OP, starting from OX, trace out an £ XOP =0, in any

of the four quadrants.

Figure 4.14

Let another revolving line, OP’ = OP, starting from OX, trace out

Z XOX'=180° and then revolve back through 0 so that £ XOP' =180° — 0.

From P, P’ draw PM, P'M’' 1s on X'OX.
Then As OMP’, OM'P are congruent.

(v in figure (i), £ POM in magnitude =0
=/ZPOM,rt £L=rt £ and OP =OP")

Trigonometric
Functions
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Mathematics-1 OM’' =-OM (* They have opposite signs)
M'P’' = MP (= They have same sign)
and OP’ = OP.
. sin (180° —6)=£=E=sin 0;
OP' OP
cos (180° —6)=O—M=ﬂ=—cos 0;
OP’ OP
tan (180° —6):£:£=—tan 0;
OM' -OM
cot (180° —e)=O—M=ﬂ=—cote;
M'P’ MP
sec (180° — 0) :O—Pziz—sec 0; and
oM -OM
cosec (180° — 0) = Or _OP _ cosec 0.
M'P" MP

T-ratios of (n.360° +0),ne |

Since increasing or decreasing an angle by an integral multiple of 360°
amounts to only complete revolutions of the revolving line, therefore,
t-ratios of n.360° + 0, n € I will remain the same as those of 0, i.e. for all

nel,wehave

sin (n.360° + 0) = sin 0,

cos (n.360° + 0) = cos 0,

tan (n.360° + 0) = tan 9,

sec (n.360° + 0) =sec 0, and
cosec (n.360° + 0) = cosec 0,

cot (n.360° + 0) = cot 0,

T-ratios of (360° + 0)
Putting n =1, we get
sin (360° + 0) = sin 0,
cos (360° + 0) = cos 0,
tan (360° + 0) = tan 0,
sec (360° + 0) =sec 0, and

cosec (360° + 0) = cosec 0,
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o gonometric
cot (360~ + 0) =cot 0, Functions

T-ratios of (360° — 0)
Replacing 6 by — 6, we have
sin (360° + (= 0)) = sin (— 0) = —sin O
ie. sin (360° — 0) = —sin O,
Similarly,
cosec (360° — 0) = — cosec 0,
cos (360° — 0) = cos 0,
sec (360° — 0) =sec 0,
tan (360° — 0) = — tan 0,
cot (360° — 0) = — cot 6.
T-ratios of (180° + 0)
Now,  sin (180° + 0) = sin (180° — (- 0)) =sin (— 0) = —sin O
Similarly, we have
cos (180° + 0) = — cos 0,
tan (180° + 0) = tan 0,
cot (180° + 0) = cot 0,
sec (180° + 0) = — sec 0, and
cosec (180° + 0) = — cosec .
4.3.3 Trigonometric Ratios of Compound Angles
Theorem 3 : Addition and Subtraction Formula

Prove geometrically that :

(i)  sin (A + B) =sin A cos B + cos A sin B
(i) cos (A + B) =cos A cos B —sin A sin B

tan A + tan B

i) tan(A+B)=—— ——
(i) ( ) 1 —-tan A tan B

Proof

Let a revolving line, starting from its initial position OX, trace out
Z XOY = A. Let it further revolve through £ YOZ = B, so that

£ X0OZ=A +B.
From any point P on OZ, draw PM 1 OX, PN L OY.
From N, draw NQ L OX, NR L PM. 81
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Then  ZRPN=90° - ZPNR = ZRNO =/ NOQ =A (alt. £ s)

Figure 4.15
From right £ d A OMP,

(i) sin (A + B) =sin £ XOZ

_MP _MR+RP QN +RP
OP OP oP
QN RP QN ON RP PN
= — == X — 4+ — X —
OP OP ON OP PN OP

=sin A cos B + cos A sin B.
(i) cos (A + B) =cos £ XOZ
_OM _0Q-MQ _OQ-RN
OoP OP OP
:%_QZ%XON RNXPN

OP OP ON OP PN OP

=cos A cos B—sin A sin B.
(iil) tan (A + B) = tan £ XOZ

_ MP MR +RP QN +RP
OM 0Q-MQ OQ-RN

QN RP
= OQ—RONQ [Dividing num. and denom. By OQ]
11— 2
0Q
tan A + — tan A + —
_ 0Q _ oQ . (43)
RP ~ 0Q

Q—NztanA and ﬁ=tanA
0Q RP

But As PRN and ONQ are similar.

LA=ZLArntL=rZL

RP NP
S = —tanB
0Q ON



Putting in Eq. (4.3), we have

ta‘n(,A-FB):tanA;tanB
1-—tan A tan B
Cor. 1
T o
tan (Z+A):tan (457 + A)
_ tan 45° + tan A _1+tan A
l—tan 45° tan A 1-—tan A
Cor. 2

sin (A — B) =sin [A + (— B)]
=sin A cos (— B) + cos A sin (— B)
=sin A cos B —cos A sin B

Similarly it can be proved that
cos (A — B) =cos A cos B +sin A sin B

tan A — tan B

and tan(A-B)=————
1+ tan A tan B

Cor.3
T o
tan (Z — Aj =tan (45" — A)

_ tan45° —tan A 1-tan A
1+tan 45° tan A 1+ tan A

Cor. 4
Similarly it can be proved that
cot A cot B -1

cot(A+B)=
cot B + cot A
and cot(A—B)—COtACOtB+1
cot B—cot A
[Hint : Take cot (A + B) = M ].
sin (A + B)
Theorem 4
Prove that

(i)  2sin A cos B =sin (A + B) + sin (A — B)
(i) 2 cos A sin B =sin (A + B) —sin (A — B)
(ii1) 2 cos A cos B=cos (A + B) + cos (A — B)
(iv) 2 sin A sin B=cos (A — B) — cos (A + B)
Proof
(i)  sin (A + B) +sin (A — B) = (sin A cosB + cos A sinB)

Trigonometric
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Mathematics-I + (sin A cos B — cos A sin B)

=2sin A cos B

The others can be proved on the same lines.

Cor.
) . . (A+B A-B . (A+B A-B
sin A + sin B = sin + + sin -
2 2 2
. A+B A-B
=2 sin cos
2 2
Similarly,

sinA—sinB:2cosA;BsinA;B

cosA+cosB=2c0sA;BcosA;B

cosA—cosBz—ZsinA;BsinA;B.

4.3.4 Trigonometric Ratios of Multiple Angles

Theorem 5
Prove that
. 2 tan A
(1) sin 2A=2sinAcosA=L2
1+ tan” A

(i) cos 2A =cos® A —sin® A

—1-2sin? A=2cos® A—1

1= tan® A
1+tan? A
2 A
(111) tan 2A = ta—nZ
1+ tan” A
Proof
We have

(1)  sin 2A =sin (A + A) =sin A cos A + cos A sin A
(. sin (A + B) =sin A cos B + cos A sin B)

2 sin A cos A
1

2 sin A cos A 2 tan A

cos’ A +sin>A 1+ tan’ A

2sin A cos A =

(Dividing num. and denom. by cos” A)

(i) cos 2A =cos (A + A) = cos A cos A —sin A sin A

24 (+ cos (A + B) = cos A cos B —sin A sin B) = cos? A —sin® A



. . . Trigonometric
_{l—smzA—smzA:l—ZsmzA ¢

Functions
cos’ A — (1 —cos® A) =2 cos> A — 1
¢ cos’ A =1-sin* A and sin? A =1 — cos? A)
Also, cos 2A = cos®> A —sin” A

cos® A —sin? A
1

cos’ A —sin? A - tan® A

cos’ A +sin®A 1+ tan’ A

(Dividing num. and denom. by cos”A)
(iil) tan 2A = tan (A + A)

tan A + tan A 2 tan A

_l—tanAtanA_l—tanzA

Cor. 1

Replacing A by % and hence 2A, by A, we get

A 2tané
(i) sin A =2 sin — cos — = ZA
1+ tan? =
2
.. A A
(i) cos A = cos> = —sin? =
2 2
l—tallzé 2c0szé—1
-2 _ 2
1+tanZé 1—28in2é
2 2
2tané
(iii) tan A = 2
2 A
1+ tan” —
2
Cor. 2
cosA=2coszé—1
A
= 200s25:1+cosA
2 1+ cos A
= coS _:T

A /1+c0sA
= ¢0S— =%, ,|——m
2 2

24
2

and

cos A =1-sin
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= 2sin2%=1—cosA
.2A l-cosA
= sin —=—>-—-—
2 2
. A 1-cos A
= sin—=&+ [———
2 2
Consequently,
.2A 1-cosA
sin® — ————
tan? é = 2 - 2
2 2 A 1+cosA
cos” — ———
2 2
2 A l-cosA
= tan® —=——
2 l+cosA
= tané:i —I_COSA
2 1+ cos A
Theorem 6
Prove that

(i) sin3A =3sin A-4sin’ A.
(ii) cos3A =4cos’ A —3cosA.

3tan A — tan® A

(iil) tan 3A = >
I1-3tan” A

Proof
We have
(i)  sin 3A =sin (2A + A) = sin 2A cos A + cos 2A sin A

=ZsinAcosAcosA+(1—Zsin2 A)sin A
(s sin2A =2sin Acos A,cos 2A=1-2 sin? A)
=2sinA(l—sin2A)+sinA—2sin3A
= 3sin A — 4sin’ A
(i1))  cos 3A =cos (2A + A) = cos 2A cos A —sin 2A sin A
(. cos (A + B)=rcos A cos B —sin A sin B)

=cos A (2 coszA—l)—sinA(Z sin A cos A)
:cosA(2coszA—1)—2sin2AcosA
:cosA(20052A—1)—2(1—c0s2A)cosA
=2cos’ A —cos A — 2 cos A + 2 cos® A

=4 cos’ A —3cos A.
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(ii1) tan 3A = tan (A + 2A)

tan A + tan 2A
1 — tan A tan 2A

tanA+72tan;Ax

B 1-tan“ A
l—tanA.M
1-tan“ A

_tanA(l—tanzA)+2tanA
1 —tan® A — 2 tan® A

_3tanA—tan3A
1-3tan?A

Example 4.4

Prove that sin 75° —sin 15° = cos 105° + cos 15°

Solution
cos 15° = cos (90° — 75°) =sin 75°
and
c0s 105° = cos (90° +15°) = — sin 15°
L.H.S.=R.H.S.
Example 4.5
Prove that = s?n (x-») _tanx—tan y
sin (x + y) tanx+tan y
Solution
L H.S. zs%n(x—y)zs?nxcosy—cosxs%ny
sin (x + y) sin x cos y + cos x sin y
tan x — tan y . g
= ———— [Dividing by cos x cos y]
tan x + tan y
=R.H.S.
Example 4.6

Find the value of tan 22° .30’

Solution
(6] [0 ! e
Let 0 =45, then 22° 30 =5
) 0
sin 2 sin — coS — .
2 sin 0
tan — = = 9 = 1 0
coS — 2 cos2 — +cos

Trigonometric
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V2 1 A2-1 1 Y2

L L i

V2

=2 -1

SAQ 2

(a) Ifsina= %, cos = % , find the value of tan (o + p) .

(b) Show that sin 105° + cos 105° = cos 45°.

(c) Prove the following

. in A in 3A
(i) sin A + sin 3 ~ tan 2A
cos A + cos 3A

4 tan 0 (1 — tan? 0)
1-6tan’ 0 + tan” 0

(1) tan 46 =

(ii1)) (sin 3A + sin A) sin A + (cos 3A — cos A) cos A =0

(iv) cos® A + cos® B — 2 cos A cos B cos (A + B) =sin® (A + B)

2 cos 2A +1

\% tan (60° + A) tan (60° — A) = —"T-"—"
©) ( ) ( ) 2 cos 2A —1

20—

(vi) (cos o + cos ) + (sin a + sin B)* = 4 cos

.. 1
(vii) cos 6° cos 42° cos 66° cos 78° = %

(Hint : combine cos 6° cos 66° and cos 42° cos 78°)
(viii) tan A + tan (60° + A) + tan (120° + A) = 3 tan 3A
(ix) tan 3A tan 2A tan A = tan 3A — tan 2A — tan A

(x)  cos? A +cos® (A +120°) + cos® (A —120°) =%

4.3.5 Graphs of Trigonometric Functions

Definition 4 : A function f is said to be periodic if their exists a real number
T >0 such that f(x + T) = f(x) for all X.

Since  sin (0 + 2m) = sin 0
cos (0 + 2m) = cos 0
Thus sine and cosine are periodic functions.

If a function f'is periodic then the smallest 7> 0 if it exists such that
f(x+T)= f(x) forall x is called the period of the function. tan x is a

28 periodic function where period is 7.



The graph of any periodic function with period 7 need to be sketched only Trigonometric
in an interval of length 7 as once it is drawn in one such interval, it can
easily be drawn by repeating it over other intervals of length 7.

The graphs of all the 7. functions are given in Figure 4.16.

Figure 4.16

4.4 INVERSE TRIGONOMETRIC FUNCTIONS

Definition 5 : The Inverse of a Function

Let f: X — Y be a function. f'is said to be one-one if /' (x;) # f (xy)

whenever x; # x, and f'is said to be onto if for each y € ¥, we can find a

xe Xsuchthat f(x)=y.If f: X —>7Y is 1 -1 and onto, we can define a

unique function g:Y — X such that g(y) = x where f(x)=y. Thus the 89
domain of g is the range of f'and the range of g = domain of /. The function



Mathematies-1 g is called the inverse of fand is denoted by /~'. Let us denote domain of f

by Drand range of f by Ry
Definition 6 : Arc Sine Function
Consider the sine function f'denoted by
f(x)=sinx, Dy =R, Ry =[-11].

If we restrict the domain from —g to g both inclusive, we observe that in
this part of the domain, f'is strictly increasing and is one-one. Therefore, the
function y = f'(x) =sin x, with D, = {— g, %} and R, =[-1,1] has an

inverse function called the arc sine function or the inverse sine function,

denoted by sin”! and y = sin~!x iff x = siny and [— g, %}

Figure 4.17

It has the following properties :

(i) Domain of sin~! x is [ 1, 1] and its range is y e {— g, g}
(i) sin (sin™' x) =x for x e[~ 1, 1], ie. x| <1

(iii) sin”! (sin y)=y for y e {— % g}, re. |y| <

NN

(v) sin ':-1,1] > [— g, g} 1S one-one.

The graph of sin~! x is shown in Figure 4.17.

Remark
Besides {— g, g} , there exist other intervals where the sine function

1s one-one and, therefore, has an inverse function but for us sin”! x

shall always mean the function : sin"' [ 1L, 1] > [— g, g} defined

above (unless stated otherwise). The portion of the curve for which
90



- % <y< % is known as the principal value branch of the function

!'x and these values of y are known as the principal values

y =sin"
of the function y =sin™! x.
Definition 7 : Arc Cosine Function
Consider the cosine function f'defined by
f(x)=cosx,Dr =R and Ry =[-L1].

Obviously, fis not one-one but if we restrict the domain to [0, «t], fis

one-one and so it has an inverse function called arc cosine or inverse

cosine, denoted by cos™!.

and y= cos ! x iff x=cos y and y €[0, x].

It has the following properties :

1

(i) Domain of cos™ x is [- 1, 1] and its range is [0, 7].

(i) cos (cos! x)=x for x e[~ 1,1], ie. |x]| <1
(i11) cos™! (cos y) = y forall y [0, n]

(iv) cos™':[-1,1] > [0, m]

1

is strictly decreasing and one-one. The graph of cos™ x is shown in

Figure 4.18.

Figure 4.18
The values of y satisfying 0 < y < n are known as the principal values of
the function y = cos™' x.
Definition 8 : Arc Tangent Function

Consider the tangent function of defined by f (x) = tan x, D, = R* and
Rf = R .

Obviously, fis not one-one but if we restrict the domain to {— g, g} ,f1s

one-one and so f has an inverse function called arc tangent or inverse

tangent, denoted by tan~!

Trigonometric
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and y:tan—lxiﬁ’x:tany,xeR andye[—g,g}

It has the following properties :

1

(1) Domain of tan™" x is R and its range is [— g, g}

(i) tan (tan~'x) = x for all x € R.

(ii1) tan™! (tan y) = y forall y e [— g, g}

(iv) tan':R > [— g, g} is strictly increasing and is one-one.

1

A portion of the graph of tan™" x is shown in Figure 4.19. The values

of y satisfying — g <y< g are known as the principal values of the

function y = tan ' x.

Figure 4.19

Definition 9 : Arc Cotangent Function

Consider the cotangent function f'defined by
f(x)=cotx, Dy =R** and Ry =R.

Obviously, fis not one-one but if we restrict the domain to (0, «t), /is one-

one and so it has an inverse function called arc cotangent, or inverse

cotangent, denoted by cot ™! .

and y=cot™' x iff x=coty, and y [0, n].
It has the following properties :

(i) Domain of cot™!

x is R and its range is [0, 7t].
(ii) cot(cot™' x)=x forall xe R
(111) cot”! (cot y) =y forall y [0, n]

(iv) cot™':R — [0, n]is strictly decreasing and is one-one.



1

A portion of the graph of cot™ x is shown in Figure 4.20. The values of

y satisfying 0 < y <t are known as the principal values of the function

y= cot ™! x.

Figure 4.20
Definition 10 : Arc Secant Function
Consider the secant function f defined by
f(x)=secx, Dy = R* and range = (-0, — 1] U[L, ).

Obviously, fis not one-one but if we restrict the domain to [O, g} U (g, n} ,

fis one-one and so it has an inverse function called arc secant, or inverse

secant, denoted by sec™'.

and y:sec‘l x iff x=sec y, and ye[O,ng(g,ﬁ]

It has the following properties :

(i) Domain of sec™! x is (= o0, — 1] UL, %) and its range is [0, ©t] except

T . TC T
—,1.e. |0, —|u|—,m|.
2 [ 2j (2 }

(i1)  sec (sec_1 x) =x for |x|>1
(111) sec”! (sec y)=y for y e [0, gj ) [g, n} ,le. yel0,m], y# g
(iv) sec”! x is strictly increasing (piece-wise) and is one-one.

The values of y in [0, 7] except g are known as the principal values of the

function y =sec”! x.

Definition 11 : Arc Cosecant Function
Consider the cosecant function f defined by

S (x)=cosec x, Dy = R** and range = (-0, —1] U[l, o).
Obviously, fis not one-one but if we restrict the domain to, [— g, g}

except 0, i.e. [— g, O) U (O, g} , f1s one-one and so it has an inverse

function called arc cosecant, or inverse cosecant, denoted by cos ec™!.

Trigonometric
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and y =cosec ! x iff x=cosec yand ye{—g,OJu(O,g}
It has the following properties :

(1) Domain of cosec” ! x is (= o0, —1] U[l, o) and its range is [— g, g}
except 0, i.e. | — E, 0(u]oO, I,
2 2
(i)  cosec (cosec™! x) = x for |x|>1
(ili) cosec™! (cosec y)=y for y e {— g, Oj U (0, g}
(iv) cosec™! x is strictly decreasing (piecewise) and is one-one.

The values of y in [— g, g} except 0 are known as the principal values of

the function y = cosec™! x.

Theorem 7
Prove that
1 sin”! 2x =2 tan"! x,|x| <1
1— 2
- X

|\

\9)

(i) cos”! (1 —x

=2 tan"! x, x>0
1+ x

Proof
(i) Lettan'x=0= x=tan0

Since |x| <1, therefore, — % <0 S%

= —ﬁ§26£2—n:>266 —E,E
4 4 22

Also, 2x __ 2 tan 9 = sin 20

1+x> 1+tan’ @

— sin”! 2x2 =20=2tan ! x, x| <1
I+x

(i) Lettan'x=0= x=tan 0
Since x > 0, therefore, 0 <0 <§

= 2.0£26,<27n:0£26£n

x2 _1—tan26

1 _
Also, > = 5
1+ tan” O

94 1+ x

= cos 20




5 Trigonometric

g 1=x _ .
= COS ! 3 =20 =2 tan 1 x,x20 Functions
I+x

Example 4.7

Find the principal values of

(i) cosec ! (=1)
. (-1
11 cot —_—
@ o3
Solution
(i) Let cos ec! (1) =y, then y must satisfy — g <y <0 and
cosec y =— 1. This is true only for y = —g.
~. The principal value of cosec™ (= 1) = — g .
. (-1 -1 .
ii) cot™!|==|=y (say). Then cot y =—— or tan y = — +/3. Since
(i) ( \/Ej y (say) V=5 y
i .. (-1, T 27n
tan —=+/3, th 1 value of cot™ | — -——=
an /3, the principal value of co («/5] s n-2>=
Example 4.8

Prove that cos (sin~! x) = sin (cos ™' x) = y/1 — x2, |x| <1

Solution
Let sin_1x=OSothat—gSGS§:>x=sin9
cos¢9:\/1—sin2 6’:\/1—x2 = cos (sin~! x) = 4/1 — x>
Let cos ' x=tsothat 0<t<m = x=cost
sint:\/l—cos2 t :\/l—x2
. sin (cos_1 xX) =4/1 - x2
Example 4.9
Show that
1+ x% +41-x2
tan ™! \/ il \/ al =£+—cos_1 x2
\/1+x2 —\/l—x2
Solution
Let 0=—cos ! xz, x#0
Then x2 =cos20 0<20<
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. \/1+cos 20 +\/1—cos 260

Hence L. H. S. = tan
\/1 + cos 20 — \/1 — cos 20

_1 [ cos © +sin 9]
= tan —_—

cos 6 —sin O

_1[ 1+ tan 6]
= tan E—

1—tan O

—tan"' | tan (E + E)ﬂ
i 4

1 _
+6:£+ECOS 'y2=R.H.S.

T
4
Example 4.10

Write tan ™! [ COS. al j in the simplest term.
1+sin x
Solution
Let  tan! [_]e
1+ sin x
Then ﬂ:tane
1 +sin x
coszf—sinzf
cos x 2 2
1+ sin x coszz+sin21+2sinzcos£
2 2 2 2
X . X X .oX
cos — —sin — || cos = + sin —
(g3 (eosFrand)
- 2
X . X
cos — + sin —
[cos 3 sn3)
) T X
cos — —sin —  SIn Z_E T x
= = =tan(———)
T X
COS — + SIn — cos| — — —
(4 2
tan ! COS_X —g=2_2
1+ sin x 4 2
if _rr x .z
2 4 2 2
1e. if _—n<x<3—n.
2 2
SAQ 3

(a) Find the principal values of
() sinT' (=1



(b)

(©)

SAQ 4
(@)

(i) cos! (‘le

a2
(i11) sec ( ﬁJ
(iv) cot™! (/3)

(v) cosec ! (-2)

(vi) tan”! [_T;j

Prove the following

(i) sin”! (— ﬁ) S

2 3

Prove the following

/ 2
(1) tan_l 1+x° - 1] 1 -1

=—tan x
b 2

az—

. _ x L1 X
(i) tan ! —J—sm 1—,|x|<a
x2 a

(i) cot™ (13)+cot ' 2D +cot ! (=8)=n

.3
iv) 3tan! x =tan™! 3x - x
(iv) :
1- 3x

(v) 2tan”! L sin”! 5
X x“+1

o [x[=1

(vi) tan ™! £1x il \/\/;_] =tan" x + tan~' Vx
—x/x

Write the following functions in the simplest term

. _1[ cos x —sin x
(i) tan [—]

cOS X + sin x

(i1) sec”! (2 le - IJ

Trigonometric
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... .1 X
(ii1)  sin

1+ x

(iv) sin”! (x \/1 -y 4y \/1 - %)
(v)  coslyl1-x
(b) Find xif sin™" x + sin~! 2x = g

(c) Prove that 4 tan™! %— tan~

4.5 SUMMARY

(i) Measurement of an Angle.

. English System : 1 right angle = 90°, 1° = 60 minutes = 60’, and
1" = 60 seconds = 60"

o Circular System : 2 right angles = 180°.

(i) Trigonometrical Ratios (circular functions)

sin® x + cos’ x = 1, 1+ tan” x = sec’ x, 1+ cot’? x = cosec’ x

sin x
tan x = ,SeC x =

, COSEC X = —
COS X COS X sin x
(ii1)) T Ratios of some standard angles.
t-ratio of sin A cos A tan A cot A sec A cosec A
the Angle
0° 0 1 0 1
1 ﬁ 1 2
30° o — = = 2
2 2 V3 V3 V3
1 1
45 \/5 \E 1 1 ﬁ \/5
B - 2
60 EX 2 V3 3 2 3
90° 1 0 0 1
180° 0 -1 0 -1

(iv) Formulae for ¢-ratios of Allied Angles :
98 sin (— A) = —sin A =sin (360 — A)



cos (— A) =cos A =cos (360 — A)

sin (90 — A) =cos A, sin (90 + A) =cos A

cos (90 — A)=sin A, cos (90 + A)=—sin A

sin (180 — A) =sin A, sin (180 + A) = —sin A

cos (180 — A) =—cos A, cos (180 + A) =——cos A
(v) Standard Formulae involving ¢-ratios

(sin A = B) =sin A cos B+ cos A sin B

cos (A £ B) =cos A cos B F¥sin A sin B

+
tan (A + B) = tan A + tan B
1¥ tan A tan B
sinC+sinD=2sinC+DcosC_D

2

sinC—sinD=2cosC;DsinC;D

cosC+cosD=ZCosCJ2rDcosC;D

cosC—cosD:—2sinC;DsinC;D

(vi) Formulae involving #-ratios of multiple and submultiple angles.

sin2A:2sinAcosA:£
1+ tan” A
_ 2
cos2A:#
1+ tan” A
sin2A:ﬂ,coszA:M
2
B 3
tan 2A — 2tan2A ,tan3A=3tanA tzm A
1 -tan“ A 1-3tan” A
4.6 ANSWERS TO SAQs
SAQ 1
. i
a 1 —,
@ O =
.. -
1 —
i)~
(b) () 420°,
(i)  14° 19’ (nearly)
. V3 2 -1
C 1 sinez—,tanez—\/g,cosec6=—,sec@=—2,c0t6=—
© @ : = NG
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(11) sin9=—3,cos9:—4,cosecez—s,secez—s,cotezi
5 5 3 4 3

(ii1)) cos © =i, tan O =§, cosec O = é, sec 0 =§, cot 0=—
5 4 3 4 3
SAQ 2
220
(@) EYE
SAQ 3
@ & =X G 2F
2’ 37
el T : T
i) =, i =,
(i) (v *
— T . — T
—_— 1 JE—
w E e =
SAQ 4
(@) (i) g— x, (i) 2cos!x,
(i) tan'x, (iv) sin' x+sin!y,
(v) sin!x
3
b ==
(b «x >3
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