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4.1 INTRODUCTION 

In this unit, we shall be studying trigonometry. It is convenient to use 
trigonometry to measure distances between two landmarks or width or depth of 
rivers or heights of mountain etc. It was first started in India. Elements of the 
subject can be found even in Rigveda. All the ancient Indian Mathematicians like 
Aryabhata, Bhaskara I and II and Brahamagupta got important results. 

Trigonometry means the science of measuring triangles. Given some of the sides 
and angles of a triangle, trigonometry helps us to calculate the remaining sides 
and angles. 

In this unit, we will deal with the various systems of measuring angles, then we 
will define various circular functions and develop their properties. In the end, we 
will talk about periodicity, graph of circular functions and inverse trigonometric 
functions. 

Objectives 

After studying of this unit, you should be able to 

• define an angle, 

• define trigonometric ratios, 

• derive the value of trigonometric ratios of some standard angles, 
allied and multiple angles, 

• learn the basic properties of trigonometric ratios, 

• define the inverse of trigonometric functions, and 

• have an idea of the graphs of trigonometric functions and inverse 
trigonometric functions. 
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Mathematics-I 4.2 ANGLES 

Definition 1 

Let a revolving line starting from OX, revolve about O in a plane in the 
direction of the arrow and occupy the position OP, then it is said to trace 
out an angle XOP. OP is called the final (or terminal) position and OX, 
the initial position. The point O is called the vertex. 

To be more rigorous an angle may be defined as a measure of the rotation 
of a half-ray about its origin. 

 

 

 

 

 

 

 
Figure 4.1 

An angle XOP is called positive if it is traced out by ray revolving in the  
anti-clockwise direction and negative if it is traced out by a ray revolving in 
the clockwise direction. It may be noted that an angle can have any 
magnitude. 

There are two systems of measurement of an angle which are of importance 
in  mathematics. 

Sexagesimal System 

In this system, an angle is measured in degrees, minutes and seconds. One 

degree (written as 1o ) is th
360
1  of a complete rotation, i.e. one complete 

rotation = 360o. 

Since a right angle is th
4
1  of a revolution, therefore, 1 right angle = 90o. A 

degree is further subdivided as follows : 

  1 degree  = 60 minutes, written as 60′ and 

  1 minute = 60 seconds, written as 60″. 

Circular System 

In this system, an angle is measured in radians. 

A radian is an angle subtended at the centre of a circle by an arc whose 
length is equal to the radius. 

Let AB be an arc of a circle of radius r such that length of arc AB = r, then  
∠ AOB = 1 radian (written as 1c ). 

Since the whole circle subtends an angle of 360o (= 4 right angles) at the 
centre and the angles at the centre of a circle are in the ratio of subtending 
arcs, therefore, 
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ncecircumfere

arc
angleright4

ABAOB
=

∠  

anglesright4
2

AOB ×
π

=∠⇒
r

r )2mcecircumfere( rπ=∵  

  anglesright2radian1
π

=⇒ . 

This means that a radian is a constant angle, independent of the radius of 
the circle. Also, we find that 

π radians = 2 right angles = 180o

 

 

 

 

 

 
Figure 4.2 

From here, we get 
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⎠
⎞
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Remark 

The symbol ‘π’ stands for the ratio of circumference of a circle to its 
diameter. It is an irrational number. However, for all practical 

purposes, unless otherwise mentioned, the value of π is taken as 
7
22 . 

A better approximation for π is 
113
355 . When we take this value of π, 

we find that 

547157radian1 o ′′′=  nearly. 

Definition 2 : Circular Measure of an Angle 
The circular measure of an angle is the number of radians it contains. 
Thus the circular measure of a radian is 1. 
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Circular measure of some standard angles is given in the following  
Table 4.1. 

Mathematics-I 

Angle in 
Degrees 

0o 30o 45o 60o 90o 120o 135o 150o 180o 270o 360o

Circular 
Measures 

0 

6
π

 
4
π

 
3
π

 
2
π

 
3

2π
 

4
3π

 
6

5π
 

π 

2
3π

 
2 π 

Remember 
When the unit in terms of which an angle is measured, is not 
mentioned, radian is understood. 

Theorem 1 
Prove that the number of radians in an angle subtended by an arc of a 

circle at the centre 
radius

arc
= . 

Proof 
Let ∠ AOP = θ radians be the angle subtended by an arc AP (= l ) of a 
circle at the centre O. Cut off arc AB = radius (= r) and join OB, then 

   ∠ AOB = 1 radian (by definition). 

Now  
AB
AP

AOB
AOP

arc
arc

=
∠
∠  

(∵ angles at the centre of a circle are proportional to the arcs on which 
they stand.) 

    
r
l

=
θ

⇒
radian1
radian  

    
r
l

=θ⇒ . 

 

 
 
 

 

 
Figure 4.3 

Hence number of radian in 

radius
arc APAOP =∠  

4.3 CIRCULAR FUNCTIONS OR TRIGONOMETRIC 
RATIOS 

Definition 3 : Definition of Circular Functions 

Let a revolving line, starting from OX, trace out an angle XOP = θ in any of 
the four quadrants. Let M be the foot of perpendicular from P upon X′OX. 
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Trigonometric 

FunctionsRegarding OM and MP as directed lengths (OP always +ve), the ratios of 
OM, MP and OP with one another are called circular functions or 
trigonometrical ratios (abbreviated as t-ratios) of the angle θ. 

 

 

 

 

 
 

 

 

 

 
 

 
Figure 4.4 

Let OM = x, MP = y and OP = r > 0, then we define the various circular 
functions as follow : 

(i) 
OP
MP  is called sine of θ and is written as sin θ, i.e. sin 

r
y

=θ . 

(ii) 
OP
OM  is called cosine of θ and is written as cos θ, i.e. cos 

r
x

=θ . 

(iii) 
OM
MP  is called tangent of θ and is written as tan θ, i.e.  

tan 0≠=θ x
x
y , . 

(iv) 
MP
OM  is called cotangent of θ and is written as cot θ, i.e.  

cot 0≠=θ y
y
x , . 

(v) 
OM
OP  is called secant of θ and is written as sec θ, i.e.  

sec 0≠=θ x
x
r , . 

(vi) 
MP
OP  is called cosecant of θ and is written as cosec θ, i.e.  

cosec 0≠=θ y
y
r , . 

Remarks 

(1) From the above definitions, it is clear that 

(i) 
θ

=θ
sin

1eccos  
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Mathematics-I 
(ii) 

θ
=θ

cos
1sec  

(iii) 
θ

=θ
tan

1cot  

(iv) 
θ
θ

=θ
cos
sintan  

(v) 
θ
θ

=θ
sin
coscot  

(2) sin θ is one symbol, i.e. sin θ ≠ sin × θ. Similar is the case for 
other t-ratios. 

(3)  is usually written as n)(sin θ
θ

=θ∈θ −
sin

1)(sinand,sin 1Nnn . 

(4) We observe that the above functions depend only on the value 
of the angle θ and not on the point P chosen on the terminal side 
of θ. For example, if we take another point  on the 
terminal line with 

),( yxP ′′′

,rPO ′=′ then considering similar triangles we 
have 

x
y

x
y

r
x

r
x

r
y

r
y

′
′

=
′
′

=
′
′

= ,,  

(5) If the terminal side coincides with one of the axes say if it 
coincides with x-axis, then cosec and cot are not defined while 
if it coincides with y-axis, then sec and tan are not defined. 

(6) The signs of trigonometric ratios depend on the quadrant in 
which the terminal line of the angle lies. They depend upon the 
sign of x and y as r is always +ve. 

Table 4.2 describes the signs of various t-ratios in different quadrants (refer 
to Figure 4.4). 

Quadrant I II III IV 

MP = y + ve + ve − ve − ve 

OM = x + ve − ve − ve + ve 

r
y

=θsin  ve
ve
ve

+=
+
+

 ve
ve
ve

+=
+
+

 ve
ve
ve

−=
+
−

 ve
ve
ve

−=
+
−

 

r
x

=θcos  ve
ve
ve

+=
+
+

 ve
ve
ve

−=
+
−

 ve
ve
ve

−=
+
−

 ve
ve
ve

+=
+
+

 

0,tan ≠=θ x
x
y

 ve
ve
ve

+=
+
+

 ve
ve
ve

−=
−
+

 ve
ve
ve

+=
−
−

 ve
ve
ve

−=
+
−

 

The signs of other t-ratios can be found by using reciprocal relations, i.e.  

θ
=θ

θ
=θ

θ
=θ

tan
1cotand

cos
1sec,

sin
1eccos . 

So, we have 
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FunctionsQuadrant : → I II III IV 

t-ratios which arc +ve All sin θ 

cosec θ 

tan θ 

cot θ 

cos θ 

sec θ 

In the first quadrant as the angle increases from 0o to 90o, sin θ increases 
from 0 to 1. In the second quadrant as θ increases from 90o to 180o, sin θ 
decreases from 1 to 0. In the third quadrant as θ increases from 180o to 
270o, sin θ decreases from 0 to – 1 and finally in the fourth quadrant sin θ 
increases from – 1 to 0 as θ increases from 270o to 360o. In fact we have the 
following table. 

I quadrant II quadrant 

Sine increases from 0 to 1 Sine decreases from 1 to 0 

Cosine decreases from 1 to 0 Cosine decreases from 0 to – 1 

Tangent increases from 0 to ∞ Tangent increases from – ∞ to 0 

Cotangent decreases from ∞ to 0 Cotangen
t 

decreases from 0 to – ∞ 

Secant increases from 1 to ∞ Secant increases from – ∞ to –1 

Cosecant decreases from ∞ to 1 Cosecant decreases from 1 to ∞ 

III quadrant IV quadrant 

Sine decreases from 0 to – 1 Sine increases from – 1 to 0 

Cosine increases from – 1 to 0 Cosine increases from 0 to 1 

Tangent increases from 0 to ∞ Tangent increases from – ∞ to 0 

Cotangent decreases from ∞ to 0 Cotangen
t 

increases from 0 to – ∞ 

Secant decreases from – 1 to – 
∞  

Secant increases from ∞ to 1 

Cosecant increases from – ∞ to –1 Cosecant decreases from – 1 to – 
∞ 

Remark 

In the above table we see the symbol ∞. Observe that ∞ is not a real 
number and is just a symbol. Statement like tan θ increases from 0 to 

∞ for ⎟
⎠
⎞

⎜
⎝
⎛ π

∈θ
2

,0  simply means that tan θ increases as θ increases in 

the interval ⎟
⎠
⎞

⎜
⎝
⎛ π

2
,0  and assumes arbitrarily large positive values as θ 

increases to 
2
π . Similarly, to say that cosec decreases from – 1 to  

– ∞ in the fourth quadrant means that cosec θ is a decreasing function 

for ⎟
⎠
⎞

⎜
⎝
⎛ π
π

∈θ 2,
2

3  and assumes arbitrarily large negative values as θ 

approaches 2π. 

Theorem 2 : Fundamental Identities 

Prove that 
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Mathematics-I (i)  1θcosθsin 22 =+

(ii)  θeccosθcot1 22 =+

(iii)  θsecθtan1 22 =+

 

 

 

 
Figure 4.5 

Proof 

(i) 1θcosθsin 2

2

2

2222
22 ==

+
=⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=+

r
r

r
yx

r
x

r
y  

(ii) 
θsin

1
θsin
θcos1 22

2
=+  (Dividing by ) θsin 2

  i.e.  θeccosθcot1 22 =+

(iii) 
θcos

11
θcos
θsin

22

2
=+  (Dividing by ) θcos2

  i.e. . θsecθtan1 22 =+

4.3.1 Trigonometric Ratios of Standard Angles 

Value of t-ratio for 45o or 
4
π  

Let a revolving line, starting from OX, trace out ∠ XOP = 45o. 

From P, draw PM ⊥ OX. 

 

 

 

 

 
Figure 4.6 

Then   MOP90OPM o ∠−=∠

      ooo 454590 =−=

      = ∠ MOP, 
         0),say(MPOM >==∴ aa  

         222 MPOMOP +=∴

                  222 2 aaa =+=
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Functions           2OP a=  

 (Taking +ve sign with the square root,  is always +ve). OP∵

   
2

1
2OP

MP45sin o ===∴
a

a ; 

        
2

1
2OP

OM45cos o ===
a

a ; 

        1
OM
MP45tan o ===

a
a ; 

          1
MP
OM45cot o ===

a
a ; 

          22
OM
OP45sec o ===

a
a ; 

    22
MP
OP45eccos o ===

a
a . 

Value of t-ratio for 30o or 
6
π  

Let a revolving line, starting from OX, trace out ∠ XOP = 30o. 

From P, draw PM ⊥ OX. 

Then   MOP90OPM o ∠−=∠

     . ooo 603090 =−=

AT O, make ∠ P′OM = 30o and produce PM to meet OP′ in P′. 

Then Δs, OMP, OMP′ are congruent 

)OMOMand,3030( oo =∠=∠= rtrt  

           a=′=∴ MPMP    (say) 

 

 

 

 

 
Figure 4.7 

and   (Proved above) o60OPMOPM =∠=′∠

   is equilateral, POP ′Δ∴

   0,2MP2PPOP >==′=∴ aa  

    222222 34MPOPOM aaa =−=−=∴

   3OM a=⇒ , 

(Taking +ve sign, with the square root, because  being drawn to the 
right of O, is +ve). 

OM
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2
1

2OM
MP30sin o ===∴

a
a ; 

Mathematics-I 

       
2
3

2
3

OP
OM30cos o ===

a
a  

       
3

1
3OM

MP30tan o ===
a

a ; 

       33
MP
OM30cot o ===

a
a ; 

       
3

2
3

2
OM
OP30sec o ===

a
a  

       22
MP
OP30eccos o ===

a
a . 

Value of t-ratio for 60o or 
3
π  

Let a revolving line, starting from OX, trace out ∠ XOP  =  60o. 

From P, draw PM ⊥ OX. 

Then    MOP90OPM o ∠−=∠

     . ooo 306090 =−=

At P make  and let PP′ meet OX in P′. o30PMP =′∠

 

 

 

 

 
Figure 4.8 

Then Δs OMP, MP′P are congruent 

)MPMP,3030( andoo =∠=∠=∴ rtrt  

    and)say(PMOM a=′=∴  

    o60MOPMPP =∠=′∠

   POP ′Δ∴ is equilateral, 

    0,2OM2POOP >==′=⇒ aa  

    222222 34OMOPMP aaa =−=−=∴

    3MP a=⇒  

(Taking +ve sign, with the square root,  being drawn above OX 
 is +ve). 

MP∵
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2
3

2
3

OP
MP60sin o ===∴

a
a ; 

       
2
1

2OP
OM60cos o ===

a
a  

       33
OM
MP60tan o ===

a
a ; 

       
3

1
3MP

OM60cot o ===
a

a ; 

       22
OM
OP60sec o ===

a
a  

       
3

2
3

2
MP
OP60eccos o ===

a
a . 

Value of t-ratio for 0o

Let a revolving line, starting from OX, trace out ∠ XOP = 0o so that P lies 
on OX. 

From P, draw PM perpendicular on OX, so that M coincides with P. 

Then   0MP),say(OPOM === a

    0,OP >= aa

 
 

Figure 4.9 

  00
OM
MP0sin o ===∴

a
; 

       1
OP
OM0cos o ===

a
a  

       00
OM
MP0tan o ===

a
; 

       1
OM
OP0sec o ===

a
a  

       cot 0o and cosec 0o are not defined. 

Value of t-ratio for 90o or 
2
π  

Let a revolving line, starting from OX, trace out ∠ XOP = 90o. 

From P, draw PM ⊥ on OX, so that M coincides with O. 

 

 

 

 

 

 
Figure 4.10 



 
 

74 

 

0),say(OPMP,0OM >===∴ aa  Mathematics-I 

  1
OP
MP90sin o ===∴

a
a ; 

       00
OP
OM90cos o ===

a
 

       00
MP
OM90cot o ===

a
; 

   1
MP
OP90eccos o ===

a
a . 

  tan 90o and sec 90o are not defined. 

We summarise the values of sin θ and cos θ in Table 4.3 for ready 
reference. 

θ 0o 30o 45o 60o 90o

sin θ 

4
0

 
4
1

 
4
2

 
4
3

 
4
4

 

cos θ 

4
4

 
4
3

 
4
2

 
4
1

 
4
0

 

Example 4.1 

In a right angled triangle, the difference between two acute angles is 
9
π  in 

circular measure. Find the angles in degrees. 

Solution 

Since the triangle is right angled, so the sum of the acute angles is 90o. 

Let the two acute angles be x and y, x > y. 

Then   o90=+ yx

Also  o20radian
9

=
π

=− yx  

    ooo 11020902 =+=∴ x

i.e.          o55=x

     ooo 355590 =−=∴ y

Example 4.2 

Given θ=θ ,
5

12cot  in the IIIrd quadrant, find the value of the other 

trigonometric functions. 

Solution 

    
12
5tan =θ                . . . (4.1) 

As  
144
169

144
251tan1sec 22 =+=θ+=θ  
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FunctionsIn quadrant III, sin θ, cos θ, sec θ, cosec θ are all negative. 

  
13
12cosand

12
13sec −

=θ
−

=θ∴              . . . (4.2) 

       
13

5
13
12

12
5costansin −

=⎟
⎠
⎞

⎜
⎝
⎛ −=θθ=θ  

  
5
13eccosand

13
5sin −

=θ
−

=θ∴              . . . (4.3) 

Example 4.3 

Prove that 

θ+θθ=
θ+

θ
+

θ−
θ coteccossec

cos1
tan

cos1
sin  

  L. H. S. 
θ+

θ
+

θ−
θ

=
cos1

tan
cos1

sin  

    
θ−

θ−θ+θ+θ
= 2cos1

)cos1(tan)cos1(sin  

    
θ

θ−θ+θθ+θ
= 2sin

sintancossinsin  

    
θ

θ+θθ
= 2sin

tancossin  

    
θ

θ
+

θ

θθ
= 22 sin

tan
sin

cossin  

    θθ+θ=
θθ

+θ= eccosseccot
sincos

1cot  

SAQ 1 
(a) Find the radian measure correspondingly to the following degree 

measures 

(i) 15o, 

(ii) – 22o . 30′. 

(b) Find the degree measure correspondingly to the following radian 
measures 

(i) 
3

7 π , (ii) 
4
1 . 

(c) Find the value of the other five trigonometric functions in each of the 
following 

(i) θ−=θ ,
2
1cos  is in quadrant II 

(ii) θ=θ ,
4
3tan  is in quadrant III 
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Mathematics-I 
(iii) θ=θ ,

5
3sin  is in quadrant I. 

(d) Prove the following trigonometric identities 

(i) θ−θ=
θ+
θ− coteccos

cos1
cos1  

(ii) θ−θ=
θθ
θ−θ 22 eccossec

cossin
cottan  

(iii)  θ+θ=θ−θ 2424 tantansecsec

(iv) θ2tan2θtanθsec21
θtanθsec
θtanθsec

+−=
+
−  

 

 

 

 

4.3.2 Trigonometric Ratios of Allied Angles 
We shall now find t-ratios of – θ, 90o ± θ, 180o ± θ and 360o ± θin terms of those 
of θ. 

T-ratios of (− θ) in terms of those of θ 

Let a revolving line OP, starting from OX, trace out an ∠ XOP = θ in any 
of the four quadrants. 

Let another revolving line OP′ = OP, starting from OX, revolve in the 
opposite direction through θ (as shown in Figure 4.11), so that 

. θ−=′∠ PXO

From XXOMPPMPP onanddrawand ′⊥′′′  

Then Δs OMP, OM′P′ are congruent. 

(∵ in figure (i), POM∠  in magnitude = θ 
POOP,MOP and ′=∠∠=′′∠= rtrt ) 

OM′ = OM (∵ They have the same sign) 

M′P′ = − MP (∵ They have the opposite signs) 

and OP′ = OP 

 θ−=
−

=
′
′′

=θ−∴ sin
OP
MP

PO
PM)(sin ; 

      θ==
′
′

=θ− cos
OP
OM

PO
MO)(cos ; 

      θ−=
−

=
′
′′

=θ− tan
OM

MP
MO
PM)(tan ; 

    θ−=
−

=
′′
′

=θ− cot
MP

OM
PM

MO)(cot ; 
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′
′

=θ− sec
OM
OP

MO
PO)(sec ; and 

   θ−=
−

=
′′
′

=θ− eccos
MP

OP
PM
PO)(eccos  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.11 

T-ratios of  in terms of those of θ θ)(900 −

Let a revolving line OP, starting from OX, trace out an ∠ XOP = θ in any 
of the four quadrants. 

Let another revolving line , starting from OX, trace out 
 and then revolve back through θ so that . 

OPPO =′
o90XOY =∠ θ−=′∠ o90PXO

From OXXonMP,PMdrawP,P ′⊥′′′ s . 

Then  are congruent. PMO,OMP ′′Δs

(∵ in figure (i),  in magnitude = θ POM∠
POOP),(,MPOPYO and ′=∠=∠∠′′∠=′∠= rtrtsalt. ) 

∴   OM′ = OM  (∵ They have the same sign) 

      M′P′ = OM  (∵ They have the same sign) 

and OP′ = OP. 

   θ==
′
′′

=θ−∴ cos
OP
OM

PO
PM)90(sin o ; 

      θ==
′
′

=θ− sin
OP
MP

PO
MO)90(cos o ; 

      θ==
′
′′

=θ− cot
MP
OM

MO
PM)90(tan o ; 

      θ==
′′
′

=θ− tan
OM
MP

PM
MO)90(cot o ; 
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     θθ eccos
MP
OP

MO
PO)90(sec o ==
′
′

=− ; and 
Mathematics-I 

 θθ sec
OM
OP

PM
PO)90(eccos o ==
′′
′

=− . 

 

 

 

 

 

 

 

 
 

 

 
Figure 4.12 

T-ratios of (90o + θ) in terms of those of θ 

Let a revolving line OP, starting from OX, trace out an θ=∠ XOP  in any 
of the four quadrants. 

 

 

 

 

 

 

 

 
 
 
 

 
 

Figure 4.13 

Let another revolving line OPPO =′ , starting from OX, trace out 
 and then revolved further through θ so that  o90XOY =∠ θ+=′∠ o90PXO

From OXXMP,PMP,P ondraw ′⊥′′′ s . 

Then OMPPMO and Δ′′Δ  are congruent. 

[  
(in figure(i))] 

θ=∠=′′∠=∠=′′∠=′ MOPMPO90OMPPMO,OPPO o and∵
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Functions∴   OM′ = − MP (∵ They have opposite signs) 

      M′P′ = OM  (∵ They have same sign) 

and OP′ = OP. 

 θ==
′
′′

=θ+∴ cos
OP
OM

PO
PM)90(sin o ; 

      θ−=
−

=
′
′

=θ+ sin
OP
MP

PO
MO)90(cos o ; 

      θ−=
−

=
′
′′

=θ+ cot
MP

OM
MO
PM)90(tan o ; 

      θ−=
−

=
′′
′

=θ+ tan
OM

MP
PM

MO)90(cot o ; 

      θ−=
−

=
′
′

=θ+ eccos
MP

OP
MO
PO)90(sec o ; and 

  θ==
′′
′

=θ+ sec
MP
OP

PM
PO)90(eccos o . 

T-ratios of (180o − θ) in terms of θ 

Let a revolving line OP, starting from OX, trace out an θ=∠ XOP , in any 
of the four quadrants. 

 

 

 

 

 

 

 

 

 
 
 
 

 

 
Figure 4.14 

Let another revolving line, , starting from OX, trace out 
 and then revolve back through θ so that . 

OPPO =′
o180XXO =′∠ θ−=′∠ o180PXO

From OXXMP,PMP,P ondraw ′⊥′′′ s . 

Then  are congruent. PMO,POM ′′Δs

(∵ in figure (i),  in magnitude = θ POM∠
POOP,MOP ′=∠=∠′′∠= andrtrt ) 
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Mathematics-I ∴   OM′ = − OM (∵ They have opposite signs) 

      M′P′ = MP  (∵ They have same sign) 

and OP′ = OP. 

 θ==
′
′′

=θ−∴ sin
OP
MP

PO
PM)180(sin o ; 

      θ−=
−

=
′
′

=θ− cos
OP
OM

PO
MO)180(cos o ; 

      θ−=
−

=
′
′′

=θ− tan
OM

MP
MO
PM)180(tan o ; 

      θ−=
−

=
′′
′

=θ− cot
MP
OM

PM
MO)180(cot o ; 

      θ−=
−

=
′
′

=θ− sec
OM
OP

MO
PO)180(sec o ; and 

   θ==
′′
′

=θ− eccos
MP
OP

PM
PO)180(eccos o . 

T-ratios of  Inn ∈+ θ),360.( o

Since increasing or decreasing an angle by an integral multiple of 360o 
amounts to only complete revolutions of the revolving line, therefore,  
t-ratios of  will remain the same as those of θ, i.e. for all 

, we have 
Inn ∈θ+ ,360. o

In∈

        ,sin)360.(sin o θ=θ+n

       ,cos)360.(cos o θ=θ+n

       ,tan)360.(tan o θ=θ+n

       and ,sec)360.(sec o θ=θ+n

   ,eccos)360.(eccos o θ=θ+n

       ,cot)360.(cot o θ=θ+n

T-ratios of  θ)(360o +

Putting n = 1, we get 

        ,sin)360(sin o θ=θ+

       ,cos)360(cos o θ=θ+

       ,tan)360(tan o θ=θ+

       and ,sec)360(sec o θ=θ+

   ,eccos)360(eccos o θ=θ+
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Functions       ,cot)360(cot o θ=θ+

T-ratios of  θ)(360o −

Replacing θ by − θ, we have 

   θ−=θ−=θ−+ sin)(sin))(360(sin o

i.e.   ,sin)360(sin o θ−=θ−

Similarly, 

   ,eccos)360(eccos o θ−=θ−

   ,cos)360(cos o θ=θ−

   ,sec)360(sec o θ=θ−

   ,tan)360(tan o θ−=θ−

   .cot)360(cot o θ−=θ−

T-ratios of  θ)(180o +

Now,  θ−=θ−=θ−−=θ+ sin)(sin))(180(sin)180(sin oo

Similarly, we have 

   ,cos)180(cos o θ−=θ+

   ,tan)180(tan o θ=θ+

   ,cot)180(cot o θ=θ+

   and ,sec)180(sec o θ−=θ+

   .eccos)180(eccos o θ−=θ+

4.3.3 Trigonometric Ratios of Compound Angles 
Theorem 3 : Addition and Subtraction Formula 

Prove geometrically that : 

(i)  BsinAcosBcosAsin)BA(sin +=+

(ii)  BsinAsinBcosAcos)BA(cos −=+

(iii) 
BtanAtan1

BtanAtan)BA(tan
−

+
=+  

Proof 

Let a revolving line, starting from its initial position OX, trace out 
. Let it further revolve through AXOY =∠ BYOZ =∠ , so that 

. BAXOZ +=∠

From any point P on OZ, draw PM ⊥ OX, PN ⊥ OY. 

From N, draw NQ ⊥ OX, NR ⊥ PM. 
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Mathematics-I Then  (alt. ∠ s) ANOQRNOPNR90RPN o =∠=∠=∠−=∠

 

 

 

 

 

 

 
Figure 4.15 

From right OMPΔ∠ d , 

(i) XOZsin)BA(sin ∠=+  

   
OP

RPQN
OP

RPMR
OP
MP +

=
+

==  

   
OP
PN

PN
RP

OP
ON

ON
QN

OP
RP

OP
QN

×+×=+=  

   BsinAcosBcosAsin += . 

(ii) XOZcos)BA(cos ∠=+  

   
OP

RNOQ
OP

MQOQ
OP
OM −

=
−

==  

   
OP
PN

PN
RN

OP
ON

ON
OQ

OP
RN

OP
OQ

×−×=−=  

  BsinAsinBcosAcos −= . 

(iii) XOZtan)BA(tan ∠=+  

   
RNOQ
RPQN

MQOQ
RPMR

OM
MP

−
+

=
−
+

==  

   

OQ
RN1

OQ
RP

OQ
QN

−

+
=  [Dividing num. and denom. By OQ] 

  

OQ
RP.Atan1

OQ
RPAtan

OQ
RP.

RP
RN1

OQ
RPAtan

−

+
=

−

+
=              . . . (4.3) 

  ⎥
⎦

⎤
⎢
⎣

⎡
== Atan

RP
RNandAtan

OQ
QN∵  

But Δs PRN and ONQ are similar. 
  ∠=∠∠=∠ rtrt,AA∵  

  Btan
ON
NP

OQ
RP

==  
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Trigonometric 

FunctionsPutting in Eq. (4.3), we have 

   
BtanAtan1

BtanAtan)BA(tan
−

+
=+  

Cor. 1 

  )A45(tanA
4

tan o +=⎟
⎠
⎞

⎜
⎝
⎛ +
π  

            
Atan1
Atan1

Atan45tan1
Atan45tan

o

o

−
+

=
−

+
=  

Cor. 2 
  )]B(A[sin)BA(sin −+=−  

          )B(sinAcos)B(cosAsin −+−=  

          BsinAcosBcosAsin −=  

Similarly it can be proved that 
  BsinAsinBcosAcos)BA(cos +=−  

and 
BtanAtan1

BtanAtan)BA(tan
+

−
=−  

Cor. 3 

  )A45(tanA
4

tan o −=⎟
⎠
⎞

⎜
⎝
⎛ −
π  

           
Atan1
Atan1

Atan45tan1
Atan45tan

o

o

+
−

=
+

−
=  

Cor. 4 

Similarly it can be proved that 

  
AcotBcot

1BcotAcot)BA(cot
+

−
=+  

and 
AcotBcot

1BcotAcot)BA(cot
−

+
=−  

[Hint : Take 
)BA(sin
)BA(cos)BA(cot

+
+

=+ ]. 

Theorem 4 

Prove that 

(i) )BA(sin)BA(sinBcosAsin2 −++=  

(ii) )BA(sin)BA(sinBsinAcos2 −−+=  

(iii) )BA(cos)BA(cosBcosAcos2 −++=  

(iv) )BA(cos)BA(cosBsinAsin2 +−−=  

Proof 

(i) )BsinAcosBcosA(sin)BA(sin)BA(sin +=−++  
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    )BsinAcosBcosA(sin −+  Mathematics-I 

               BcosAsin2=  

  The others can be proved on the same lines. 

Cor. 

 ⎟
⎠
⎞

⎜
⎝
⎛ −

−
+

+⎟
⎠
⎞

⎜
⎝
⎛ −

+
+

=+
2

BA
2

BAsin
2

BA
2

BAsinBsinAsin  

            
2

BAcos
2

BAsin2 −+
=  

Similarly, 

 
2

BAsin
2

BAcos2BsinAsin −+
=−  

 
2

BAcos
2

BAcos2BcosAcos −+
=+  

 
2

BAsin
2

BAsin2BcosAcos −+
−=− . 

4.3.4 Trigonometric Ratios of Multiple Angles 
Theorem 5 

Prove that 

(i) 
Atan1

Atan2AcosAsin2A2sin 2+
==  

(ii)  AsinAcosA2cos 22 −=

               1Acos2Asin21 22 −=−=

              
Atan1
Atan1

2

2

+

−
=  

(iii) 
Atan1

Atan2A2tan 2+
=  

Proof 

We have 

(i) AsinAcosAcosAsin)AA(sinA2sin +=+=  

  )BsinAcosBcosAsin)BA(sin( +=+∵  

   
1

AcosAsin2AcosAsin2 ==  

   
Atan1

Atan2
AsinAcos

AcosAsin2
222 +

=
+

=  

  (Dividing num. and denom. by cos2 A) 

(ii) AsinAsinAcosAcos)AA(cosA2cos −=+=  

   AsinAcos)BsinAsinBcosAcos)BA(cos( 22 −=−=+∵
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Functions   
⎪⎩

⎪
⎨
⎧

−=−−
−=−−=

1Acos2)Acos1(Acos
Asin21AsinAsin1

222

222

   )Acos1AsinandAsin1Acos( 2222 −=−=∵

  Also,  AsinAcosA2cos 22 −=

         
1

AsinAcos 22 −
=  

            
Atan1
Atan1

AsinAcos
AsinAcos

2

2

22

22

+

−
=

+

−
=  

  (Dividing num. and denom. by cos2A) 

(iii) )AA(tanA2tan +=  

          
Atan1

Atan2
AtanAtan1

AtanAtan
2−

=
−

+
=  

 Cor. 1 

  Replacing A by 
2
A  and hence 2A, by A, we get 

(i) 

2
Atan1

2
Atan2

2
Acos

2
Asin2Asin

2+
==  

(ii) 
2
Asin

2
AcosAcos 22 −=  

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−

−
=

+

−
=

2
Asin21

1
2
Acos2

2
Atan1

2
Atan1

2

2

2

2

 

(iii) 

2
Atan1

2
Atan2

Atan
2+

=  

Cor. 2 

1
2
Acos2Acos 2 −=  

     Acos1
2
Acos2 2 +=⇒  

      
2

Acos1
2
Acos2 +

=⇒  

      
2

Acos1
2
Acos +

±=⇒  

and 

 
2
Asin1Acos 2−=  
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      Acos1

2
Asin2 2 −=⇒  

      
2

Acos1
2
Asin2 −

=⇒  

      
2

Acos1
2
Asin −

±=⇒  

Consequently, 

   

2
Acos1

2
Acos1

2
Acos

2
Asin

2
Atan

2

2
2

+

−

==  

   
Acos1
Acos1

2
Atan2

+
−

=⇒  

   
Acos1
Acos1

2
Atan

+
−

±=⇒  

Theorem 6 

Prove that 

(i) . Asin4Asin3A3sin 3−=

(ii) . Acos3Acos4A3cos 3 −=

(iii) 
Atan31

AtanAtan3A3tan 2

3

−

−
= . 

Proof 

We have 

(i) AsinA2cosAcosA2sin)AA2(sinA3sin +=+=  

              Asin)Asin21(AcosAcosAsin2 2−+=

   )Asin21A2cos,AcosAsin2A2sin( 2−==∵

          Asin2Asin)Asin1(Asin2 32 −+−=

           =  Asin4Asin3 3−

(ii) AsinA2sinAcosA2cos)AA2(cosA3cos −=+=  

  )BsinAsinBcosAcos)BA(cos( −=+∵  

   )AcosAsin2(Asin)1Acos2(Acos 2 −−=

   AcosAsin2)1Acos2(Acos 22 −−=

   Acos)Acos1(2)1Acos2(Acos 22 −−−=

   Acos2Acos2AcosAcos2 33 +−−=

  . Acos3Acos4 3 −=
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Functions(iii) )A2A(tanA3tan +=  

          
A2tanAtan1

A2tanAtan
−

+
=  

          

Atan1
Atan2.Atan1

Atan1
Atan2Atan

2

2

−
−

−
+

=  

          
Atan2Atan1

Atan2)Atan1(Atan
22

2

−−

+−
=  

          
Atan31

AtanAtan3
2

3

−

−
= . 

Example 4.4 

Prove that  oooo 15cos105cos15sin75sin +=−

Solution 

   oooo 75sin)7590(cos15cos =−=

and  

   oooo 15sin)1590(cos105cos −=+=

∴ L. H. S. = R. H. S. 

Example 4.5 

Prove that 
yx
yx

yx
yx

tantan
tantan

)(sin
)(sin

+
−

=
+
−

=  

Solution 

 L. H. S. 
y xyx
y xyx

yx
yx

sincoscossin
sincoscossin

)(sin
)(sin

+
−

=
+
−

=  

   ]coscosbyDividing[
tantan
tantan yx

yx
yx

+
−

=  

    = R. H. S. 

Example 4.6 

Find the value of  03.22tan o ′

Solution 

Let , then o45=θ
2

0322o θ
=′  

  
θ+

θ
=

θ

θθ

=
θ

θ

=
θ

∴
cos1

sin

2
cos2

2
cos

2
sin2

2
cos

2
sin

2
tan

2
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1

12
12

1.
12
12

12
1

2
11

2
1

−
=

+−
−

=
+

=
+

=  

Mathematics-I 

      12 −=  

SAQ 2 

(a) If 
13
12cos,

17
15sin =β=α , find the value of . )(tan β+α

(b) Show that . ooo 45cos105cos105sin =+

(c) Prove the following 

(i) A2tan
A3cosAcos
A3sinAsin

=
+
+  

(ii) 
θtanθtan61

θ)tan1(θtan4θ4tan 42

2

+−

−
=  

(iii) 0Acos)AcosA3(cosAsin)AsinA3(sin =−++  

(iv)  )BA(sin)BA(cosBcosAcos2BcosAcos 222 +=+−+

(v) 
1A2cos2
1A2cos2)A60(tan)A60(tan oo

−
+

=−+  

(vi) 
2

cos4)sin(sin)cos(cos 222 β−α
=β+α+β+α  

(vii) 
16
178cos66cos42cos6cos oooo =  

 (Hint : combine ) oooo 78cos42cosand66cos6cos

(viii)  A3tan3)A120(tan)A60(tanAtan oo =++++

(ix) AtanA2tanA3tanAtanA2tanA3tan −−=  

(x) 
2
3)120A(cos)120A(cosAcos o2o22 =−+++  

 

 
 

4.3.5 Graphs of Trigonometric Functions 
Definition 4 : A function f is said to be periodic if their exists a real number  

T > 0 such that (x)fT)(xf =+  for all x. 

Since θsin)π2θ(sin =+  
  θcosπ)2(θcos =+  

Thus sine and cosine are periodic functions. 

If a function f is periodic then the smallest T > 0 if it exists such that 
 for all x is called the period of the function. tan x is a 

periodic function where period is π. 
)()( xfTxf =+
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Trigonometric 

FunctionsThe graph of any periodic function with period T need to be sketched only 
in an interval of length T as once it is drawn in one such interval, it can 
easily be drawn by repeating it over other intervals of length T. 

The graphs of all the T. functions are given in Figure 4.16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.16 

4.4 INVERSE TRIGONOMETRIC FUNCTIONS 

Definition 5 : The Inverse of a Function 
Let  be a function. f is said to be one-one if YXf →: )()( 21 xfxf ≠  
whenever  and f is said to be onto if for each 21 xx ≠ ,Yy ∈  we can find a 

such that Xx∈ yxf =)( . If  is 1 – 1 and onto, we can define a 
unique function  such that 

YXf →:
XYg →: xyg =)(  where yxf =)( . Thus the 

domain of g is the range of f and the range of g = domain of f. The function 
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Mathematics-I g is called the inverse of f and is denoted by . Let us denote domain of f 
by D

1−f
f and range of f by Rf. 

Definition 6 : Arc Sine Function 
Consider the sine function f denoted by 

].1,1[,,sin)( −=== ff RDxxf R  

If we restrict the domain from 
2
π

−  to 
2
π  both inclusive, we observe that in 

this part of the domain, f is strictly increasing and is one-one. Therefore, the 

function ,sin)( xxfy ==  with ⎥⎦
⎤

⎢⎣
⎡ ππ
−=

2
,

2fD  and  has an 

inverse function called the arc sine function or the inverse sine function, 

denoted by  and  and 

]1,1[−=fR

1sin− yxxy siniffsin 1 == −
⎥⎦
⎤

⎢⎣
⎡−

2
π,

2
π . 

 

 

 

 

 

 

 

 

 
Figure 4.17 

It has the following properties : 

(i) Domain of  and its range is ]1,1[issin 1 −− x ⎥⎦
⎤

⎢⎣
⎡ ππ
−∈

2
,

2
y  

(ii)  1||],1,1[)(sinsin .e.ifor1 ≤−∈=− xxxx

(iii) 
2

||,)(sinsin .e.ifor1 π
≤⎥⎦

⎤
⎢⎣
⎡−∈=− y

2
π,

2
πyyy  

(iv) ⎥⎦
⎤

⎢⎣
⎡ ππ
−→−−

2
,

2
]1,1[:sin 1  is one-one. 

The graph of  is shown in Figure 4.17. x1sin−

Remark 

Besides ⎥⎦
⎤

⎢⎣
⎡ ππ
−

2
,

2
, there exist other intervals where the sine function 

is one-one and, therefore, has an inverse function but for us  

shall always mean the function : 

x1sin−

⎥⎦
⎤

⎢⎣
⎡ ππ
−→−−

2
,

2
]1,1[:sin 1  defined 

above (unless stated otherwise). The portion of the curve for which 
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22
π

≤≤
π

− y  is known as the principal value branch of the function 

 and these values of y are known as the principal values 
of the function . 

xy 1sin−=

xy 1sin−=

Definition 7 : Arc Cosine Function 
Consider the cosine function f defined by 

].1,1[and,cos)( −=== ff RDxxf R  

Obviously, f is not one-one but if we restrict the domain to [0, π], f is  
one-one and so it has an inverse function called arc cosine or inverse 
cosine, denoted by . 1cos−

and  ].,0[andcoscos 1 π∈== − yyxiffxy

It has the following properties : 

(i) Domain of  and its range is [0, π]. ]1,1[iscos 1 −− x

(ii)  1||],1,1[)(coscos .e.ifor1 ≤−∈=− xxxx

(iii)  ],0[allfor)(coscos 1 π∈=− yyy

(iv)  ],0[]1,1[:cos 1 π→−−

is strictly decreasing and one-one. The graph of  is shown in  
Figure 4.18. 

x1cos−

 

 

 

 

 

 

 

 

 

 
Figure 4.18 

The values of y satisfying  are known as the principal values of 
the function . 

π≤≤ y0

xy 1cos−=

Definition 8 : Arc Tangent Function 

Consider  the tangent function of defined by *R== fDxxf ,tan)(  and 
. R=fR

Obviously, f is not one-one but if we restrict the domain to ⎥⎦
⎤

⎢⎣
⎡ ππ
−

2
,

2
, f is 

one-one and so f has an inverse function called arc tangent or inverse 
tangent, denoted by  1tan−
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and .

2
,

2
and,tantan 1

⎥⎦
⎤

⎢⎣
⎡ ππ
−∈∈== − yRxyxiffxy  

It has the following properties : 

(i) Domain of  and its range isRistan 1 x−
⎥⎦
⎤

⎢⎣
⎡ ππ
−

2
,

2
. 

(ii) . R∈=− xxx allfor)(tantan 1

(iii) ⎥⎦
⎤

⎢⎣
⎡−∈=−

2
π,

2
πl)(tantan alfor1 yyy  

(iv) ⎥⎦
⎤

⎢⎣
⎡ ππ
−→−

2
,

2
:tan 1 R  is strictly increasing and is one-one.  

A portion of the graph of  is shown in Figure 4.19. The values 

of y satisfying 

x1tan−

2
π

2
π

<<− y  are known as the principal values of the 

function . xy 1tan−=

 

 

 

 

 

 
 
 

 

 
Figure 4.19 

Definition 9 : Arc Cotangent Function 

Consider the cotangent function f defined by 

    R**R === ff RDxxf and,cot)( . 

Obviously, f is not one-one but if we restrict the domain to (0, π), f is one-
one and so it has an inverse function called arc cotangent, or inverse 
cotangent, denoted by . 1cot−

and    ].,0[and,cotcot 1 π∈== − yyxiffxy

It has the following properties : 

(i) Domain of  and its range is [0, π]. Riscot 1 x−

(ii)  R∈=− xxx allfor)(cotcot 1

(iii)  ],0[allfor)(cotcot 1 π∈=− yyy

(iv) is strictly decreasing and is one-one. ],0[:cot 1 π→− R
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Trigonometric 

FunctionsA portion of the graph of  is shown in Figure 4.20. The values of  
y satisfying  are known as the principal values of the function 

. 

x1cot−

π<< y0

xy 1cot−=

 

 

 
 
 
 

 
Figure 4.20 

Definition 10 : Arc Secant Function 

Consider the secant function f defined by 
).,1[]1,(rangeand,sec)( ∞∪−∞−=== *RfDxxf  

Obviously, f is not one-one but if we restrict the domain to ⎥⎦
⎤

⎜
⎝
⎛ π
π

∪⎟
⎠
⎞

⎢⎣
⎡ π ,

22
,0 , 

f is one-one and so it has an inverse function called arc secant, or inverse 
secant, denoted by . 1sec−

and   ⎥⎦
⎤

⎜
⎝
⎛ π
π

∪⎟
⎠
⎞

⎢⎣
⎡ π

∈== − ,
22

,0and,secsec 1 yyxiffxy . 

It has the following properties : 

(i) Domain of  and its range is [0, π] except ),1[]1,(issec 1 ∞∪−∞−− x

2
π , i.e. ⎥⎦

⎤
⎜
⎝
⎛ π
π

∪⎟
⎠
⎞

⎢⎣
⎡ π ,

22
,0 . 

(ii)  1|for)(secsec 1 ≥=− |xxx

(iii) ⎥⎦
⎤

⎜
⎝
⎛ π
π

∪⎟
⎠
⎞

⎢⎣
⎡ π

∈=− ,
22

,0for)(secsec 1 yyy , i.e. 
2

],,0[ π
≠π∈ yy . 

(iv)  is strictly increasing (piece-wise) and is one-one. x1sec−

The values of y in [0, π] except 
2
π  are known as the principal values of the 

function . xy 1sec−=

Definition 11 : Arc Cosecant Function 

Consider the cosecant function f defined by 
).,1[]1,(rangeand,eccos)( ∞∪−∞−=== **RfDxxf  

Obviously, f is not one-one but if we restrict the domain to, ⎥⎦
⎤

⎢⎣
⎡ ππ
−

2
,

2
  

except 0, i.e. ⎥⎦
⎤

⎜
⎝
⎛ π

∪⎟
⎠
⎞

⎢⎣
⎡ π
−

2
,00,

2
, f is one-one and so it has an inverse 

function called arc cosecant, or inverse cosecant, denoted by . 1eccos −



 
 

94 

 

Mathematics-I 
and and yxiffxy eccoseccos 1 == −

⎥⎦
⎤

⎜
⎝
⎛ π

∪⎟
⎠
⎞

⎢⎣
⎡ π
−∈

2
,00,

2
y . 

It has the following properties : 

(i) Domain of  and its range is ),1[]1,(iseccos 1 ∞∪−∞−− x ⎥⎦
⎤

⎢⎣
⎡ ππ
−

2
,

2
 

except 0, i.e. ⎥⎦
⎤

⎜
⎝
⎛ π

∪⎟
⎠
⎞

⎢⎣
⎡ π
−

2
,00,

2
. 

(ii)  1|for)ec(coseccos 1 ≥=− |xxx

(iii) ⎥⎦
⎤

⎜
⎝
⎛ π

∪⎟
⎠
⎞

⎢⎣
⎡ π
−∈=−

2
,00,

2
for)ec(coseccos 1 yyy . 

(iv)  is strictly decreasing (piecewise) and is one-one. x1eccos −

The values of y in ⎥⎦
⎤

⎢⎣
⎡ ππ
−

2
,

2
 except 0 are known as the principal values of 

the function . xy 1eccos −=

Theorem 7 

Prove that 

(i) 1||,tan2
1

2sin 1
2

1 ≤=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−− xx

x
x  

(ii) 0,tan2
1
1cos 1

2

2
1 ≥=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

− −− xx
x
x  

Proof 

(i) Let  θ=⇒θ=− tantan 1 xx

Since 1|| ≤x , therefore, 
44
π

≤θ≤
π

−  

 ⎥⎦
⎤

⎢⎣
⎡ ππ
−∈θ⇒

π
≤θ≤

π
−⇒

2
,

2
2

4
22

4
2  

Also, θ2sin
θtan1

θtan2
1

2
22 =

+
=

+ x
x  

 1||,tan22
1

2sin 1
2

1 ≤=θ=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
⇒ −− xx

x
x  

(ii) Let  θ=⇒θ=− tantan 1 xx

Since , therefore, 0≥x
2

0 π
<θ≤  

 π≤θ≤⇒
π

<θ≤⇒ 20
2

2,20.2  

Also, θ2cos
θtan1
θtan1

1
1

2

2

2

2
=

+

−
=

+

−

x
x  
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Trigonometric 

Functions 0,tan2θ2
1
1cos 1

2

2
1 ≥==⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
⇒ −− xx

x
x  

Example 4.7 

Find the principal values of 

(i)  )1(eccos 1 −−

(ii) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−

3
1cot 1  

Solution 

(i) Let , then y must satisfy y=−− )1(eccos 1 0
2

<≤
π

− y  and 

. This is true only for 1eccos −=y
2
π

−=y . 

∴ The principal value of 
2

)1(eccos 1 π
−=−− . 

(ii) y=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−

3
1cot 1  (say). Then 3tanor

3
1cot −=

−
= yy . Since 

3
3

tan =
π , the principal value of 

3
2

3
is

3
1cot 1 π

=
π

−π⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −− . 

Example 4.8 

Prove that 1||,1)(cossin)(sincos 211 ≤−== −− xxxx  

Solution 

Let θ=⇒
π

≤θ≤
π

−θ=− sin
22

thatsosin 1 xx  

    2122 1)(sincos1sin1cos xxx −=⇒−=−= −θθ  

Let         txttx cos0thatsocos 1 =⇒π≤≤=−

      22 1cos1sin xtt −=−=  

  21 1)(cossin xx −=∴ −  

Example 4.9 

Show that 

  21
22

22
1 cos

2
1

411

11
tan x

xx

xx −− +
π

=
−−+

−++  

Solution 

Let   0,cos
2
1 21 ≠=θ − xx  

Then 
2

202cos2 π
≤θ≤θ=x  
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Hence L. H. S. 
θ2cos1θ2cos1

2cos1θ2cos1
tan 1

−−+

−++
= − θ

 

   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θ−θ
θ+θ

= −
sincos
sincostan 1  

   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θ−
θ+

= −
tan1
tan1tan 1  

   ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ θ+
π

= −
4

tantan 1  

   .S.H.Rcos
2
1

44
21 =+

π
=θ+

π
= − x  

Example 4.10 

Write ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
x

x
sin1

costan 1  in the simplest term. 

Solution 

Let θ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
x

x
sin1

costan 1  

Then θ=
+

tan
sin1

cos
x

x  

  

2
cos

2
sin2

2
sin

2
cos

2
sin

2
cos

sin1
cos

22

22

xxxx

xx

x
x

++

−
=

+
 

     2

2
sin

2
cos

2
sin

2
cos

2
sin

2
cos

⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛ −

=
xx

xxxx

 

     ⎟
⎠
⎞

⎜
⎝
⎛ −
π

=
⎟
⎠
⎞

⎜
⎝
⎛ −
π

⎟
⎠
⎞

⎜
⎝
⎛ −
π

=
+

−
=

24
tan

24
cos

24
sin

2
sin

2
cos

2
sin

2
cos x

x

x

xx

xx

 

   
24

θ
sin1

costan 1 x
x

x
−==

+
∴ − π  

if  
2242
π

<−
π

<
π− x  

i.e. if 
2

3
2

π
<<

π− x . 

SAQ 3 
(a) Find the principal values of 

(i)  )1(sin 1 −−
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Functions(ii) ⎟
⎠
⎞

⎜
⎝
⎛ −−

2
1cos 1  

(iii) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−

3
2sec 1  

(iv) )3(cot 1−  

(v)  )2(eccos 1 −−

(vi) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−

3
1tan 1  

(b) Prove the following 

(i) 
32

3sin 1 π
−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−  

(ii) 
25
24

5
3cos2sin 1 −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−  

(c) Prove the following 

(i) x
x
x 1

2
1 tan

2
111

tan −− =
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −+  

(ii) ax
a
x

xa

x
<=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−

−− ||,sintan 1
22

1  

(iii)  π=−++ −−− )8(cot)21(cot)13(cot 111

(iv) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
= −−

2

3
11

3 1
3tantan3

x
xxx  

(v) 1||,
1

2sin1tan2 2
11 ≥

+
= −− x

x
x

x
 

(vi) xx
xx

xx 111 tantan
1

tan −−− +=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+  

 

 

 

 

SAQ 4 

(a) Write the following functions in the simplest term 

(i) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−−

xx
xx

sincos
sincostan 1  

(ii) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

12
1sec 2

1

x
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(iii) 

x
x
+

−
1

sin 1  

(iv) )11(sin 221 yyyx −+−−  

(v) 21 1cos x−−  

(b) Find x if 
3
π2sinsin 11 =+ −− xx . 

(c) Prove that 
499

1tan
70
1tan

5
1tan4 111 π

=+− −−− . 

 
 
 
 
 
 
 
 

4.5 SUMMARY 

(i) Measurement of an Angle. 

• English System : 1 right angle = 90o, 1o = 60 minutes = 60′, and  
06601 ondssec ′′==′  

• Circular System : 2 right angles = 180o. 

(ii) Trigonometrical Ratios (circular functions) 

xxxxxx 222222 eccoscot1,sectan1,1cossin =+=+=+  

x
x

x
x

x
xx

sin
1eccos,

cos
1sec,

cos
sintan ===  

(iii) T Ratios of some standard angles. 

t-ratio of 
f the Angle 

sin A cos A tan A cot A sec A cosec A 

0o 0 1 0 …  1 … 

 
30o

2
1

 
2
3

 
3

1
 

 
3  3

2
 

 
2 

 
45o

2
1

 
2

1
 

 
1 

 
1 

 
2  

 
2  

 
60o

2
3

 2
1

 
 
3  3

1
 

 
2 3

2
 

90o 1 0 … 0 --- 1 

180o 0 − 1 0 … − 1 … 

(iv) Formulae for t-ratios of Allied Angles : 
)A360(sinAsin)A(sin −=−=−  
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)A360(cosAcos)A(cos −==−  

Acos)A90(sin,Acos)A90(sin =+=−  

Asin)A90(cos,Asin)A90(cos −=+=−  

Asin)A180(sin,Asin)A180(sin −=+=−  

Acos)A180(cos,Acos)A180(cos −=+−=−  

Trigonometric 
Functions

(v) Standard Formulae involving t-ratios 
BsinAcosBcosAsin)BA(sin ±=±  

BsinAsinBcosAcos)BA(cos ∓=±  

BtanAtan1
BtanAtan)BA(tan

∓
±

=±  

2
DCcos

2
DCsin2DsinCsin −+

=+  

2
DCsin

2
DCcos2DsinCsin −+

=−  

2
DCcos

2
DCcos2DcosCcos −+

=+  

2
DCsin

2
DCsin2DcosCcos −+

−=−  

(vi) Formulae involving t-ratios of multiple and submultiple angles. 

Atan1
Atan2AcosAsin2A2sin 2+

==  

Atan1
Atan1A2cos 2

2

+

−
=  

2
A2cos1Acos,

2
A2cos1A2sin 2 +

=
−

=  

Atan31
AtanAtan3A3tan,

Atan1
Atan2A2tan 2

3

2 −

−
=

−
=  

4.6 ANSWERS TO SAQs 

SAQ 1 

(a) (i) 
12
π , 

  (ii) 
8
π−  

(b) (i) , o420

 (ii)  )nearly(9114o ′

(c) (i) 
3
1cot,2sec,

3
2eccos,3tan,

2
3sin −

=θ−=θ=θ−=θ=θ  
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(ii) 

3
4cot,

4
5sec,

3
5eccos,

5
4cos,

5
3sin =θ

−
=θ

−
=θ

−
=θ

−
=θ  

(iii) 
3
4cot,

4
5sec,

3
5eccos,

4
3tan,

5
4cos =θ=θ=θ=θ=θ  

SAQ 2 

(a) 
21

220  

SAQ 3 

(a) (i) 
2
π− , (ii) 

3
2 π , 

(iii) 
6
π ,  (iv) 

6
π , 

(v) 
6
π−   (vi) 

6
π−  

SAQ 4 

(a) (i) x−
π
4

, (ii) , x1cos2 −

(iii) x1tan− , (iv) , y x 11 sinsin −− +

(v)  x1sin−

(b) 
28
3

=x  
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