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1.1 INTRODUCTION 

You may recall from your school physics course that matter exists in any one of 
the three states namely solid, liquid and gas. At the atomic level, these states of 
matter are distinguished from each other in terms of the nature of bonding among 
their atoms or molecules. In solids, atoms or molecules are strongly bound to each 
other and are almost fixed at their positions. In liquids, atoms or molecules are 
not bound to each other as strongly as in the case of solids and they are somewhat 
free to move inside the whole mass of the liquid. In gases, atoms or molecules are 
not bound to each other and are completely free to move around in the entire 
volume of the container. Due to unique nature of their atomic or molecular 
bondings, solids, liquids and gases possess characteristics macroscopic properties. 
In this unit, you will study some of these properties of matter such as surface 
tension, viscosity, hydrostatic pressure and elasticity. These properties have wide 
ranging applications in engineering, industry and even in our day-to-day lives. 

Due to weaker intermolecular forces, the molecules of a liquid can move about 
freely. This gives rise to surface tension – a characteristic property of stationary 
liquids which helps us understand phenomenon like the formation of water 
droplets, how the mosquitoes stand and walk on still water, and why mercury 
spreads in the form of spherical globules on the flat ground. You will learn 
surface tension in Section 1.2. 

One of the important discoveries of science is that fluids – liquids and gases – 
exert pressure. We talk of hydrostatic pressure in case of liquid at rest and 
atmospheric pressure in case of air in our atmosphere. This property of fluids has 
contributed significantly in the industrial progress and sophistication in machines. 
You will learn the characteristics of fluids at rest in Section 1.3. In Section 1.4, 
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Physics you will study viscosity – a property of fluids in motion – which is a measure of 
fluids’ resistance to flow. Understanding of viscosity enables us to explain 
lubrication, fluid flow in pipes or blood vessels and sedimentation rates. 

In Section 1.5, you will study an important property of solids called elasticity. 
Elasticity of solids and related parameters are of vital importance for the 
construction of buildings, machines, bridges etc. For example, elastic properties 
of steel help us determine the size and shape of a steel beam needed to safely 
support a given load. 

Objectives 
After studying this unit, you should be able to 

• use the concept of surface tension to explain various day-to-day 
observations, 

• determine the hydrostatic pressure at a point inside a liquid, 

• state and explain the Pascal’s law and the Archimedes Principle, 

• derive the equation of continuity and Bernoulli’s equation for fluids 
and discuss their applications, 

• understand the concept of viscosity and explain the associated terms 
like critical velocity and Reynolds’s number, 

• define elasticity and other parameters related to it, 

• state the Hooke’s law, and 

• define the Young’s modulus, bulk modulus, modulus of rigidity and 
Poisson’s ratio. 

1.2 SURFACE TENSION 

You might have observed some of the interesting characteristics of liquids. For 
example, drops of mercury on a plane surface always assume spherical shape. 
Similarly, raindrops and dewdrops on the leaves of plants appear spherical. Did 
you ever ask yourself : Why a small amount of liquid gather together into a 
spherical drop? Further, you also might have observed that small insects could 
move on the surface of water without sinking! Similarly, sewing needle floats on 
the surface of water. On the other hand, heavier objects can neither walk nor float 
on the water surface; they simply sink. On the basis of these observations, you 
may conclude that : 

• there exists a force along the surface of the liquid which tends to 
shrink the liquid surface so that it has minimum area, and 

• the surface of the liquid behaves like a stretched membrane. 

A logical question you may ask now is : Why does a liquid surface behave in 
this manner? What causes such behaviour of liquids? The phenomenon 
responsible for above characteristics of liquids is called surface tension. Due to 
this phenomenon, the free surface of a liquid behaves like a stretched elastic 
membrane tending to contract so as to have minimum surface area. 

Now, let us first understand this phenomenon qualitatively. You know that all 
substances are made of molecules and the molecules interact with each other. The 
intermolecular force which enables same types of molecules of a given substance 
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Properties of Matterto attract each other is called cohesive force and this process is called cohesion. 

In solids, the cohesive forces are very strong. On the other hand, cohesive forces 
are weak for liquids and weakest for gases. That is why solids have definite 
shape, liquids have definite free surface and gases have neither. The force of 
attraction or repulsion between unlike molecules is called adhesive force and the 
process is called adhesion. Adhesive forces come into play at the common 
surface of two different substances. For example, glue adheres to wood, solder 
adheres to brass, water adheres to glass etc. On the basis of these concepts, you 
can understand the surface tension related characteristics of liquids mentioned 
above. Let us discuss some of them now. 

Due to the cohesive force, molecules at the surface of a liquid attract each other 
more strongly than the molecules in the interior of the liquid (Figure 1.1). It is so 
because the surface molecules do not have neighbouring molecules above the 
surface and, therefore, there are lesser number of molecules to share the cohesive 
force. This enhancement of cohesive forces among the molecules at the surface 
gives rise to a well-defined surface to liquids and the liquid surface behaves like a 
stretched membrane (something similar to a rubber sheet) tending to have 
minimum surface area. You may ask : How does this explain spherical shape of 
a liquid drop? Well, there is a little geometry involved here. You may recall that 
for a given volume, the surface area of a sphere is minimum. Thus, a drop of 
liquid must attain a spherical shape to have minimum surface area. 

 

Figure 1.1 : Two-dimensional View of the Molecules on the 
Surface and Interior of a Liquid 

When small insects move on a liquid surface or when we place a sewing needle 
on a liquid surface, the surface of water is slightly depressed under the feet of the 
insect or under the needle. At these points, the cohesive force between the surface 
molecules gives rise to a restoring force which is equal in magnitude and opposite 
in direction of the weight of the insect or the needle. As a result, cohesive force 
tends to restore the horizontal surface of the liquid. It is, however, important to 
mention here that when the weight of the insect or the needle become very large, 
the restoring force due to cohesion can no longer support them and they sink in 
the liquid. 

P

Q

 

Figure 1.2 : Cohesive Force between Molecules on the 
Two Sides of a Line, PQ, on a Liquid Surface 
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To obtain an analytical expression for the surface tension, let us consider an 
imaginary line PQ drawn on the free surface of a liquid (Figure 1.2). Due to 
cohesive force, the molecules just lying on one side of the line PQ try to pull 
away from the molecules lying just on the other side so as to decrease the surface 
area. Surface tension is essentially a manifestation of the cohesive force among 
the surface molecules of the liquid. Hence, it is measured as the force per unit 
length acting perpendicularly on either side of any imaginary line in the liquid 
surface in equilibrium; the direction of the force being tangential to the surface. 
Mathematically, we write 

Physics 

  Surface Tension 
Force( )

Length
F
l

σ = =         . . . (1.1) 

where F is the force acting on either side of the line PQ which is of length l. The 
unit of surface tension in SI system is Newton per metre (Nm− 1) and its 
dimensions are MT − 2. 

It is important to mention here that the value of surface tension depends on the 
temperature of the liquid : the value diminishes with the rise in temperature. At 
20oC, the values of surface tensions of water and mercury are given below : 

       13
water mN106.72)( −−×=σ

    13
mercury mN10465)( −−×=σ

Let us now discuss some more day-to-day observations which can be explained 
on the basis of surface tension. 

Examples of Surface Tension 

(a) You might have noticed that umbrellas, raincoats, tents and canvas 
have tiny holes in them because they are made of fabrics. Despite this, 
during rain, the water does not pass through these pores. Did you ever 
ask yourself why it is so? It is because the surface tension of water 
prevents it from passing through the fabric. 

(b) One of the important consequences of surface tension is that the free 
surface of a liquid tries to have the minimum possible area. For a 
given volume, a sphere has the least surface area. Hence the liquid 
assumes a spherical shape. That is why the raindrops and the mercury 
globules are spherical in nature. However, the spherical shape of 
liquid gets distorted if the mass is somewhat larger. This is caused 
by the force of gravity. If the force of gravity is counter balanced, 
even a large mass of liquid will assume a perfectly spherical shape. 
An experiment to verify this was done by Platau. In Platau’s 
experiment, a large drop of olive oil is introduced in a mixture of 
alcohol and water. The mixture has the same density as olive-oil. It is 
observed that the drop assumes a perfectly spherical shape (Figure 
1.3). In this experiment, the effect of gravitational force on the drop of 
olive-oil is balanced by the upward thrust of the water-alcohol 
mixture on it. 

(c) If you blow a soap bubble at the end of a thin glass tube and allow it 
to stay in this state for some time, you will observe that it gradually 
shrinks in volume. This happens because the surface tension of the 
surface of the bubble tends to reduce the surface area to a minimum. 
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Mixture of Alcohol 
and Water

Drop of Olive Oil

 

Figure 1.3 : Platau’s Experiment; the Shape of Even a Large Drop of Liquidremains 
Spherical if the Effect of Gravity is Neutralised 

(d) When you dip a camel-hair brush in water, you may observe that the 
individual hair gets separated and projects in different directions. 
However, as soon as the brush is removed from the water, the hairs 
are drawn together as if they are now connected by a stretched 
membrane. 

(e) If you place a drop of oil on a water surface, you will observe that the 
oil drop is unable to maintain its spherical shape and it spreads over 
the surface of water. Can you guess why does it happen? If you are 
thinking that it is caused due to difference in the values of the surface 
tensions of the two (oil and water) liquids, you are correct. The 
surface tension of oil is much less than that of water. The greater 
tension of water surface stretches the oil surface in all directions and 
oil drop spreads on the water surface. 

You know from the above discussion that, due to surface tension, a liquid tends to 
have minimum surface area. At this stage, an obvious question is : What 
happens when the surface area of a liquid is increased? This question can be 
answered in terms of the work done or the surface energy of the liquid surface. 
You will learn it now. 

1.2.1 Surface Energy 
If we wish to increase the area of the liquid surface, we will have to do work 
(apply force) to stretch it and this work will have to be done against the surface 
tension. To find an expression for the work to be done, consider a rectangular 
wire frame MNPO (Figure 1.4) in which the wire OP is movable. Let l is the 

O
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Figure 1.4 : Soap Film on a Rectangular Frame 
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length of the wire OP. If we dip this frame in soap solution, a soap film is formed. 
Due to surface tension, the soap film pulls the wire OP inward. From Eq. (1.1), 
this force can be written as : 

Physics 

Force l2×σ=                    . . . (1.2) 

where σ denotes the surface tension of the film. Note that we have multiplied the 
length of the wire by a factor of 2 because the soap film touches the wire OP 
above as well as below. Suppose that a force is applied on the wire OP such that, 
the film stretches from position OP to O' P' by a small distance x. Thus, the work 
done on the wire OP can be written as : 

           Work Done = Force × Displacement 

           2 l x= σ × ×  

      s= σ × Δ                    . . . (1.3) 

where  is the total increase in the surface area of the soap film. 
This work is stored as the surface energy in the soap film. Further, Eq. (1.3) 
can be written as : 

( 2 )s lΔ = × x

  Surface Tension Work Done( )
Area

σ =  

              Surface Energy
Area

=  

Therefore, we can also define surface tension as surface energy per unit area 
of the surface. 

You must have noticed that, in discussing surface tension, we used the concepts 
of mechanics such as force, work and energy. Similarly, other static and dynamic 
properties of liquids can be explained using the concepts of mechanics such as 
force, pressure, density and velocity. In the next section, you will study one of the 
most important properties namely hydrostatic pressure. You will also learn the 
Pascal’s law and Archimedes principle which govern the behaviour of fluids at 
rest. 

1.3 FLUID STATICS 

If one of your friends claims that she/he can lift an elephant, you will think she/he 
is joking. Actually, your friend is not joking : a person can indeed lift an elephant 
by his/her own body weight by standing on the platform of a hydraulic lift. A 
hydraulic lift is a machine which is based on the mechanical properties of a fluid 
in hydrostatic equilibrium. The study of the properties of a fluid in hydrostatic 
equilibrium is called fluid statics. 

You may ask : What is hydrostatic equilibrium? This means that in a given 
volume of a fluid at rest, the individual fluid molecules may move continuously 
but the mass of the fluid as a whole has zero velocity and zero acceleration. In 
this section, we wish to study the behaviour of such fluids by asking ourselves : 
What happens when force/pressure is applied on a fluid at rest? Or, does 
fluids at rest exert pressure on a body immersed in it? Answers to these questions 
were discovered by Pascal and Archimedes. Before we discuss the Pascal’s law 
and the Archimedes principle, it is necessary to recapitulate the concept of 
pressure. 



    

11

 
Properties of MatterPressure 

You are familiar with the concepts of force and pressure from your school 
physics. To appreciate the difference between these two quantities, think 
about the following situations. 
Why is it that camels walk easily in deserts on sand but for us it is quite 
difficult? Similarly, when we press a balloon filled with air, it does not 
burst easily. However, if we prick the balloon with a pin, the balloon bursts 
easily. The clue to explain these observations is that besides force, we must 
also consider the area over which the force acts. And, therein lies the 
concept of pressure which is defined as the ratio of the force to the area on 
which it acts; that is, 

   Force  ( )Pressure ( ) =
Area  ( )

FP
A

                  . . . (1.4) 

The unit of pressure is Nm−2 or kg m− 1s−2. This unit is also known as 
Pascal denoted by Pa. 

1.3.1 Pressure-Depth Relation 
When an object is immersed in a fluid at rest, the fluid exerts pressure on it. The 
pressure on the object at any point inside the liquid depends on its depth from the 
free surface of the liquid. It is so because the fluid pressure refers to the weight of 
the fluid above each square meter at that level. 
To find a relation between pressure and depth in a fluid, consider point A which is 
at the depth h below the free surface of water in a container (Figure 1.5). We 
consider a column of fluid over unit area at this point. Therefore, the height of 
this column is equal to the magnitude of its volume. (This is because volume is 
equal to the area of cross-section times height, that is, V = a × h. Since we are 
considering a unit cross-sectional area, a = 1. Thus, V = h.) Now, mass of liquid 
in this column of unit cross-sectional area can be written as : 

       Mass = Density × Volume 
         Vm ×ρ=  

                 h= ρ ×

Therefore, weight of the liquid in this column is : 
       Weight =  gm ×

               gh ××ρ=  

where g is the acceleration due to gravity. The value of g is 29.8 ms− . Now, the 
pressure exerted by this column of fluid at point A is the force exerted by the 
liquid column at point A per unit area. Equivalently, we can say that the pressure 
at point A is equal to the weight of the liquid in a column of unit cross-sectional 
area and height h (vertical distance of the point A from the free surface of liquid). 
Thus, we can write : 
                        . . . (1.5) ghP ρ=

Eq. (1.5) implies that the pressure of fluid is proportional to the height of the 
column : as the height of the liquid column (or the depth of the point under 
consideration) increases, the pressure increases. Also note that the fluid pressure 
does not depend upon the total mass or total volume of the liquid. 
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Physics 

Figure 1.5 : Liquid Pressure at a Point A inside the Liquid 

The pressure-depth relation of a fluid can be demonstrated using an apparatus 
shown in Figure 1.6. It consists of a cylindrical container in which there are small 
holes on the surface along a line parallel to its axis. Keeping all the holes closed, 
the container is filled with water and put on a flat surface. When all the holes are 
opened simultaneously, it is observed that the water jets coming out from 
different holes touches the surface at different distances from the axis of the 
container : the jet from the lowest hole falls farthest and that from the top most 
one falls closest to the base. This clearly shows that the pressure exerted by the 
liquid near the lower hole is highest and vice-versa. 

4

3

2

1

Different Holes

Container

 

Figure 1.6 : Pressure of Liquid Coming out from Different Holes Depends 
on their Depth from the Free Surface of the Liquid 

Atmospheric Pressure 

As liquids exert pressure on object immersed in it, the air in the earth’s 
atmosphere also exerts pressure on all of us at all times. The pressure 
exerted by the atmospheric air at any point is equal to the weight of air 
contained in a column of unit cross-sectional area and extending up to the 
top of the atmosphere. 

The atmospheric pressure at the surface of the earth is approximately 
105 Pa. At an altitude of 5 km, the pressure is approximately one half of the 
pressure at the surface. And, at an altitude of 31 km, pressure is only one 
percent of the pressure at the surface. The question is : Why does 
atmospheric pressure decreases with altitude? This is due to the fact that 
the height of the air column decreases with altitude which results in the 
decrease of weight of the air in a column of unit cross-sectional area. An 
instrument called barometer is used to measure the atmospheric pressure. 
Barometer measures the atmospheric pressure at a point in terms of the 
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Properties of Matterheight of a mercury column. The standard atmospheric pressure at the sea 

level is equivalent to the pressure due to a mercury column of height 76 cm 
or 760 mm. The numerical value of the atmospheric pressure at the sea level 
is  or 1025 mN10013.1 −× 5 Pa. 

SAQ 1 

The hydrostatic pressure has some other characteristics. These were discovered 
on the basis of experimentations and a few laws were formulated. You will now 
learn some of them such as the Pascal’s law and the Archimedes principle. 

 

 

Calculate value of the atmospheric pressure in Nm− 2 at a point where the 
height of mercury column (in a barometer) is 76 cm. Take the density of  
mercury equal to 13,600 kgm− 3 and the value of g equal to 9.8 ms− 2. 

 

 

1.3.2 Pascal’s Law 
According to this law, “when pressure is applied anywhere on the surface of an 
enclosed liquid at rest, an equal and uniform pressure is transmitted over the 
whole liquid; the pressure is transmitted throughout the liquid and acts in a 
direction at right angles to the surface of the liquid everywhere”. 

Pascal’s law can be demonstrated by taking a spherical flask filled with water and 
fitted with a piston (Figure 1.7). As shown in the figure, the flask has a number of 
small holes all around its circular surface. When the piston is gradually pushed-in, 
the water spreads out through different holes at almost the same speed. 

Piston

 

Figure 1.7 : Demonstration of Pascal’s Law 

Pascal’s law has been put to a variety of uses in our everyday life. Some of the 
machines which operates on Pascal’s law are the hydraulic press used to 
compress metal steels, wool etc., the hydraulic brakes used in cars, aircrafts etc., 
and the hydraulic jack used to lift vehicles in workshops. These machines are 
collectively referred to as hydraulic machines. Let us discuss the working of one 
of these hydraulic machines. 

A hydraulic jack is used to lift heavy vehicles (like cars, trucks, buses etc.) to 
required heights in automobile workshops so that mechanic can do work 
conveniently under the vehicles. A force F1 is applied on the piston of smaller 
area of cross-section A1 (Figure 1.8). This pressure is transmitted to a piston of 
larger cross-sectional area (that is, the platform which lifts the vehicle) A2. Now, 
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Figure 1.8 : A Schematic Diagram Showing the 
Principle of Operation of a Hydraulic Jack 

according to Pascal’s law, the pressure would remain the same in the larger 
piston. But, due to larger area of cross-section of this piston, the force F2 exerted 
by it will be larger. That is, if pressure remains the same, force will be 
proportional to the area of cross-section of the pistons as per the relation, 
F = PA. However, you must note that the work done on the smaller piston will be 
the same as the work done by the larger piston; F1 d1 = F2 d2 where d1 and d2 are 
the displacements of the smaller and larger pistons respectively such that d1 > d2. 

1.3.3 Archimedes’ Principle 
While you take bath, you might have noticed that a mug filled with water and 
fully immersed in bucket of water does not feel as heavy as when it is taken out 
completely from the bucket. You can feel the increase in weight as the object 
comes out of the water. Do you know : why does this happen? This happens 
because of buoyancy. Buoyancy (an upward thrust) arises because the fluid 
pressure increases with depth. Due to this, there is an unbalanced upward force 
called the buoyant force on the bottom of the object (like mug full of water) 
immersed in the liquid. The effect of buoyant force on objects immersed partially 
or completely in fluids is summarised in Archimedes’ principle. 

According to the Archimedes’ principle, a body immersed in a fluid appears to 
loose weight and the apparent loss of weight is equal to the weight of the fluid 
displaced by it (the body). The apparent loss in weight of the body is caused by 
the upward thrust of the liquid on it, that is, the buoyancy. 

Archimedes’ principle enables us to determine the density of a material and it 
also helps us know whether or not a given object will float in a liquid. In order to 
prove that the floatation depends on the relative densities of the object and the 
liquid, let us consider a (solid) body of volume V and density ρS which is 
immersed in a liquid having density ρL. Let Wa is the weight of the body in air 
and WL is the weight of the body when it is fully immersed in the liquid. Hence, 
the apparent loss of weight of the body aW W= − . Now, according to the 
Archimedes’ Principle, the weight (= )V gρ of the liquid displaced by the 
immersed body is equal to the apparent loss in the weight of the body; that is, 

        a L LW W gV− = ρ  

or,    s L LgV W gVρ − = ρ  

or,                 ( )L s LW V g= ρ − ρ                  . . . (1.6) 

From Eq. (1.6), you may note that if ρS < ρL, WL will be negative. Since effective 
weight of the body cannot be negative, the body will rise to the surface instead of 

d2 

A2 

F2 

A1 

F1 

d1 
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Properties of Mattergoing to the bottom and a part of it will come out of the liquid. The body will stop 

rising when its effective weight becomes zero. This is the condition of floatation. 

Further, the Archimedes’ principle can also be used for the determination of 
density of a solid. You must have noticed that when a piece of wood or plastic or 
cork is put on the surface of water, it does not immerse fully; a part of the body 
remains outside above the free surface of water. Let V be the volume of the body 
placed on the surface of water so that its volume outside the water is V − Vsub, 
where Vsub is the volume of the submerged portion of the body. The loss in weight 
of the body will be equal to the weight of the water displaced, that is, Vsub ρL g. 
Therefore, we can write : 

  W W V ga L sub L− = ρ  

or,                         . . . (1.7) ( subW V VL S L= ρ − ρ ) g

Since the body is floating, we have , we can find a value of 
V

suband VVLS >ρ<ρ

sub (which is not fixed) such that WL = 0 i.e., the apparent weight of the body 
within the liquid (or gas) is zero. In such as condition; we have from Eq. (1.7) : 

  
L

S

V
V

ρ
ρ

=sub                 . . . (1.8) 

Eq. (1.8) can be used to determine the density of a liquid. To do so, we can take a 
block of wood which has a graduated scale on one side and let it float in the 
liquid whose density is to be determined. We note down the mark up to which the 
block dips in the liquid and determine Vsub. Thus, knowing V, Vsub and ρs, we can 
determine ρL using Eq. (1.8). 

Till now, you studied the properties of fluids at rest and some of their 
applications. The next logical step is to understand the behaviour of fluids in 
motion. This is the subject matter of the next section. You should solve an SAQ 
before proceeding further. 

 SAQ 2 
 

(a) A solid floats with one fourth of its volume above the surface of 
water. Calculate the density of the solid. 

(b) A copper cube of mass 0.50 kg is weighed in water. The mass of the 
cube is found to be 0.40 kg. Is the cube hollow or solid? Take the 
densities of water and copper as 103 kgm– 3 and 8.96 × 103 kgm– 3 
respectively. 

(c) A piece of ice floats on water. What fraction of its volume will be 
above the surface of water? 

Take the density of ice to be 0.92 × 103 kgm– 3. 

 
 

1.4 FLUIDS IN MOTION 

Whether it is the flow of water in rivers or in pipes, or the flow of blood in the 
blood vessels, all these motions of fluids are governed by the principles of fluid 
dynamics. In reality, the motion of fluids is a rather complex phenomenon. To 
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keep our discussion of fluid motion simpler, we make certain simplifying 
assumptions as given below : 

Physics 

(a) The fluid is incompressible. This condition is ordinarily satisfied by 
liquids but not by gases. However, if a gas is not subjected to large 
change in pressure, it can also be considered incompressible. 

(b) The fluid is non-viscous. That is, fluid motion does not suffer any 
friction. This condition is similar to ignoring rolling or sliding friction 
in mechanics. (The motion of viscous fluid has been discussed in the 
next section on viscosity.) 

(c) The flow of fluid is steady. This means that the fluid velocity does 
not change with time at a given position. Note that this does not mean 
that the velocity of fluid is same at all positions in the body of the 
fluid. 

(d) The fluid motion is irrotational. This implies that if a paddle wheel 
is placed in the flowing fluid, it will not rotate. 

Above simplifying assumptions enable us to analyse the behaviour of a fluid in 
motion without using complex mathematical techniques. Further, before you 
study the dynamics of a incompressible, non-viscous, steady and irrotational 
fluid, it is advisable to understand the concepts of streamline motion and 
turbulent motion. 
Streamline Motion 

The flow of liquid is said to be streamline (motion) if 
(a) the liquid particles move along fixed paths known as 

streamlines, and 
(b) the velocity of the particles passing through a given point, one 

after the other, on a streamline remains unchanged in magnitude 
and direction at that point. 

You may ask : What is a streamline? A streamline is defined as the curve 
whose tangent at any point gives the direction of the liquid velocity at 
that point. In other words, streamlines are the curves parallel to the 
direction of the fluid velocity at all points. Refer to Figure 1.9(a) which 
shows the flow of liquid through a straight tube. In steady flow, the 
streamlines such as PQ coincides with the line of flow. 
One of the most important properties of streamlines is that the two 
streamlines never cross each other. Further, in a streamline motion, it is 
assumed that the entire thickness of the stream of the liquid is made up of a 
large number of plane layers, one flowing over the other. Such a flow is, 
therefore, also called laminar flow. 

P Q

 

   (a)       (b) 

Figure 1.9 : (a) Streamline and (b) Turbulent Flow of Liquid 

Turbulent Motion 
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Properties of MatterIn turbulent motion, the velocity of a fluid particle passing through a given 

point is not the same as that of the particle which preceded it. In this kind of 
flow, the streamlines cross each other and the flow path becomes zigzag as 
shown in Figure 1.9(b). 

With this background knowledge, you are now in a position to learn two basic 
equations namely the equation of continuity and the Bernoulli’s equation 
governing fluid dynamics. 

1.4.1 Equation of Continuity 
The equation of continuity for a flowing fluid is essentially a consequence of the 
conservation of mass. To appreciate what does conservation of mass mean for 
fluid in motion, let us consider a pipe filled completely with an incompressible 
fluid. If more fluid enters the pipe from one end, an equal amount must leave 
from the other end, that is, the mass of the fluid in the pipe is conserved. 

a1

a2

P

Q
v1 v2

 

Figure 1.10 : Liquid Flowing through a Tube of Different Cross-sectional Areas 

To obtain the equation of continuity, consider a tube which has different areas of 
cross-sections a1 and a2 at points P and Q respectively (Figure 1.10). Let a liquid 
flowing through this tube has velocities v1 and v2 respectively at points P and Q. 
The distance travelled by a particle of the liquid crossing point P in a small time 
interval . Considering all the particles crossing point P in this time 
interval δt, we can write the volume of liquid crossing point P as 

tvt δδ 1is

1 1 .a v tδ  

Further, if  is the density of the liquid, mass of liquid crossing P in time 
 is . Similarly, in time , mass of liquid crossing point Q is 

. 

1ρ
tδ tva δρ 11 tδ

2 2a v tρ δ

Now, according to the law of conservation of mass, the mass of liquid entering at 
point P must be equal to the mass leaving the point Q because there is no 
accumulation of mass between the points P and Q in the tube. Therefore, we can 
write : 

           tvatva δρ=δρ 2211  

or,                 2211 vava =

or,                    a v = constant.              . . . (1.9) 

Eq. (1.9) is called the equation of continuity for streamline flow of a liquid. One 
of the important consequences of the equation of continuity can be obtained if we 
write Eq. (1.9) as : 

     
2

1
12 a

avv =  

This implies that if then . That is, the velocity of liquid flow 
increases if the tube becomes narrower and vice-versa. This explains why water 
from a tube falls at a larger distance if its outlet is made narrower. 

12 aa < 12 vv >

An important advancement in the understanding of fluid dynamics was made by 
Bernoulli. In view of the fact that, like mechanical particles, fluid particles also 
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obey the Newton’s laws of motion, Bernoulli employed work-energy principles to 
investigate the behaviour of fluid in motion. This gave rise to the Bernoulli’s 
equation which you will study now. 

Physics 

1.4.2 Bernoulli’s Equation 
To derive Bernoulli’s equation, let us consider a tube AB in which a liquid is 
flowing as streamline flow (Figure 1.11). Let the density of the liquid is ρ and the 
heights of points A and B above ground level be respectively. Let 

be the areas of cross-sections of the tube at points A and B and  be 
the pressures and  be the velocities of flow at these points respectively. 

21 and hh

21 andaa 21, pp

21, vv

Since the flow of liquid is streamline and in view of the equation of continuity, 
the net result of liquid flow in a time interval  is transfer of mass, say m, from 
point A to point B. The question is : How much work is done on the liquid of 
mass m and what is the change in its kinetic energy when it is transferred 
from point A to point B? 

tδ

h1

h2

v1

v2

a2

a1

p1

p2

A
B

Ground Level  

Figure 1.11 : Streamline Flow of Liquid through a Tube of Different 
Cross-sectional Areas at difficult Heights from the Ground Level 

To find an answer to these questions, we need to 

(a) calculate the change in the kinetic energy of mass m of the liquid in 
moving from point A to B, and 

(b) calculate the work done on the system (mass m of the liquid) by 
(i) pressure difference between points A and B, and (ii) the gravity. 

The change in kinetic energy of mass m is given by : 

   2
1

2
2 2

1
2
1 vmvmKE −=Δ                 . . . (1.10) 

To obtain an expression for the work done on the liquid due to pressure at 
points A and B, let the pressure force at A displaces the fluid by a distance 1xδ  
and the corresponding displacement at point B is 2xδ . So, the work done at 

 and work done at point 1 1 1A p a x= δ 222 xapB δ−= . The negative sign 
indicates that at point B, the pressure force p2 a2 is directed opposite to the 
displacement . So, the net work done on the liquid due to pressure forces is 2xδ

1 1 1 2 2 2( )p a x p a xδ − δ . Now, since 2211 and xaxa δδ  are the volumes of equal 

mass m, we may write, 
ρ

=δ=δ
mxaxa 2211 . Thus, the net work done on the 

liquid of mass m by the liquid pressure can be written as : 
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ρ

−
mpp )( 21                  . . . (1.11) 

There is yet another kind of force acting on the fluid : the gravitational force, 
which contributes to the work done on the liquid of mass m. You may note from 
Figure 1.11 that mass m moves through a vertical distance (h2 – h1) in going from 
the point A to B. Thus, work must be done on the liquid to move it from A to B 
against the gravitational force. The net work done on the system by the 
gravitational force can be written as : 
    – mg (h2 – h1)                 . . . (1.12) 
According to the work-energy principle, the change in kinetic energy of the 
system is equal to the net work done on the system by external forces. So, from 
Eqs. (1.10), (1.11) and (1.12), we can write : 

   2 2
2 1 1 2 2 1

1 ( ) ( ) [ (
2

mm v v p p mg h h− = − + − −
ρ

)]  

or,   
2 2

1 1 2
1 22 2

2p v p vgh gh+ + = + +
ρ ρ

               . . . (1.13) 

Eq. (1.13) is called Bernoulli’s equation. It can also be written as : 

   =++
ρ 2

2vghp constant. 

Multiplying both sides by ρ, we get : 

   =ρ+ρ+ 2

2
1 vghp constant.                . . . (1.14) 

We have written Bernoulli’s equation in the form represented by Eq. (1.14) to 
show that it (Bernoulli’s equation) is a statement of the fact that the available 
energy per unit volume of a fluid remains constant along any given tube of 
flow. This follows from the fact each term in Eq. (1.14) has the dimensions of 

energy. The term 2

2
1 vρ is the kinetic energy per unit volume; the term ρ gh is 

the gravitational potential energy per unit volume; and p represents the flow 
energy per unit volume. Thus, in other words, Bernoulli’s equation represents the 
fact that the various forms of available energy (kinetic, potential and flow or 
pressure energy) can be transformed from one to another; the total available 
energy remains constant. Now let us discuss a few illustrations of Bernoulli’s 
equation. 
Venturi Meter 

It is an instrument used for measuring the rate of flow of a liquid and it 
works on the principles of Bernoulli’s equation. As shown in Figure 1.12, it 
consists of two wide bore tubes A and B joined by a narrow tube C (known 
as the throat). A and C are fitted with manometer tubes. The apparatus is 
interposed horizontally in the pipe in which the rate of flow of a liquid is to 
be measured. The horizontal placement of the apparatus ensures that the 
potential energy of the liquid remains the same at all points along the axis. 
Let a1 and a2 be the areas of cross-sections of the tubes A and C and let v1 
and v2 be the velocities of flow of the liquid through these tubes 
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Physics 

Figure 1.12 : A Venturi Meter 

respectively. If V be the volume of the liquid flowing through a given 
section in one second, we can write : 

    hg
aa

aaV 2.
2
2

2
1

21

−
=  

or,   .hkV =  

where, 1 2 2 2
1 2

2. gk a a
a a

⎛ ⎞
=⎜⎜ −⎝ ⎠

⎟⎟  is a constant. Thus, we get : 

    hV ∝  

Knowing the value of the constant k for a given apparatus 
(venturi meter) can be calculated once for all. Hence, V, the rate of flow of a 
liquid, can be determined by recording the value of h in the manometers. 

,and, 21 gaa

Spinning Cricket Ball 

Consider a cricket ball which has translational as well as rotational motions. 
Refer to Figure 1.13 which shows a cricket ball B spinning in the clockwise 
direction about an axis perpendicular to this paper and moving along a line 
from left to right. Let the air is rushing in the opposite direction (right to 
left). Due to the rotational motion, the air below the ball gets speeded up 
and that above it is slowed down. According to the Bernoulli’s equation, the 
increase in kinetic energy of air (fluid) below the ball is compensated by 
decrease in the pressure energy. As a result, low pressure area is created in 
the region below the ball. The ball, therefore, gets deflected downwards. 

v

Low Pressure Region

B

High Pressure Region

 

Figure 1.13 : A Cricket Ball with Rotational and Translational Motion 
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Properties of MatterFlying of an Aeroplane 

Do you know how an aeroplane lift itself above the ground and keep 
flying in the air? It is mainly due to the aerodynamic force called lift. To 
understand the operation of the lift force, we need to apply the Bernoulli’s 
equation on the air (fluid) around the wings of the aeroplane. Refer to 
Figure 1.14 which shows the cross-section of the wing of an aeroplane. 
When the airplane moves, the air above and below the wings flow. 
Aeroplane wings are so designed (i.e. streamlined) that the total distance 
traveled by air flowing over the wing is longer than that of the distance 
under it. Thus, the velocity of air flow above the wing must be higher than 
the velocity of air flow under the wing. Now, according to Bernoulli’s 
equation, in this situation, the pressure  above the wing must be lower 
than the corresponding pressure  under the wing. This unbalanced in 
pressures causes a force (lift) to act on the wings. The lift force can be 
resolved into two components – the vertical component, L enables the 
aeroplane to rise above the ground and the horizontal component, D (also 
called drift) enables it to keep flying in the air. 

2p

1p

D

L P2

P1  
Figure 1.14 : Air Pressures in the Upper and Lower 

Regions of the Wing of an Aeroplane 

Till now, you studied the dynamical properties of non-viscous fluids, that is, the 
characteristics of the frictionless fluid motion. However, the motion of real fluids 
is opposed by frictional or viscous forces. This characteristics of fluids to resist 
motion is known as viscosity about which you will learn now. 

1.4.3 Viscosity 
Viscosity of a fluid is defined as a measure of its resistance to flow. The greater 
the viscosity of the fluid, larger is the force (or pressure) required to maintain the 
flow. For example, when water flows in a uniform horizontal tube, there is a fall 
in its pressure along the tube in the direction of flow. This is because work 
(force × displacement) needs to be done against viscosity. In other words, 
viscosity of fluids is similar to the frictional force encountered by solids in 
motion. 

Maximum 
Velocity

Bed(S)
A

B

P

Q

v
v dv + 

x dx + x

Free Surface of Liquid

v dv+ 

vFP
dx

F

Q

 
(a)      (b) 

Figure 1.15 : (a) Laminar Flow of Liquid; and (b) Motion of Two Layers P and Q 
of Liquid Separated by a Distance dx 



 
 

 
22 

To understand the effect of viscosity, let us consider a liquid flowing over a 
horizontal surface (Figure 1.15) in such a manner that the velocity of each layer is 
almost the same as that of the adjacent layer. That is, the velocity changes 
continuously. The velocity of the layer in contact with the surface (bed) is 
negligibly small and can be taken to be zero. As the distance increases from the 
bed, the velocity goes on increasing as shown in Figure 1.15(a). The velocity of a 
given layer is proportional to its distance from the stationary layer. The motion of 
a liquid characterized by these features is called laminar flow and is valid for 
flow of viscous fluids at low velocities. 

Physics 

In laminar flow, a fast moving layer of liquid tends to accelerate the motion of a 
given layer adjacent and lower to it whereas the slow moving layer adjacent and 
lower to a given layer tends to retard its motion. Thus, there are two types of 
forces which act on a layer in opposite directions and consequently the layer of 
liquid is subjected to a shearing (or tangential) stress. (You will learn about 
shearing stress in the next section of this unit.) Forces acting on two adjacent 
layers tend to destroy the relative motion between them. This force is called the 
dragging force or the viscous force which is the characteristic of a particular 
liquid. The property by virtue of which a liquid opposes relative motion between 
its different layers is called viscosity. 

All gases and liquids possess the property of viscosity. Gases offer a smaller 
resistance to flow than liquids do because the viscosity of gases is less than 
liquids. 

Co-efficient of Viscosity 

To obtain a quantitative expression for viscosity, let us consider the 
velocities of the layers P and Q situated at distance x and x + dx 
respectively from the stationary horizontal surface S (Figure 1.15(b)). Let 
the velocities of layers P and Q be v and v + dv respectively and the 

velocity gradient between the two layers is 
dx
dv . The viscous force between 

the two layers is proportional to : 

(a) the surface area A of the layer on which it acts, and 

(b) the velocity gradient 
dx
dv . 

Therefore, we can write the viscous force F as : 

     
dx
dvAF ∝  

or,    
dx
dvAF η−=                 . . . (1.15) 

where η is the constant of proportionality known as the co-efficient of 
viscosity. It depends on the nature of the liquid. The negative sign in 
Eq. (1.15) signifies that the viscous force acts in a direction opposite to the 

flow of liquid. Further, if 1 and 1dvA
dx

= = , we have . That is, the 

co-efficient of viscosity (η) of a liquid can be defined as the tangential 
viscous force per unit area acting between layers of a liquid in which unit 
velocity gradient is maintained in a direction normal to the layers. To 
determine the dimensions of η, we can write from Eq. (1.15) : 

F = η
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     /
/

F A
dv dx

η =  

        Force / Area
Velocity / Distance

=  

                 
2 2

1
MLT / L

LT / L

−

−=  

          1 1= ML T− −

The absolute cgs unit of the co-efficient of viscosity is “Poise” and SI unit 
is . Also, 1 . 2 1 1−N m s or Pa s or kg m s− − 1Poise 10 Pa s−=

Above description of viscosity is valid only when the flow of fluid is 
laminar, that is, the velocity of liquid has a small value. The flow of fluid 
becomes turbulent if the value of velocity is too low or when it is too high. 
In other words, the flow of liquid remain laminar only for a range of 
velocity called critical velocities. You will learn it now. 

Critical Velocity 

Streamline flow occurs for small values of the velocity of the fluid. In fact, 
it is observed that there are actually two critical velocities, a lower one at 
which streamline flow is unstable and turbulence is possible and a higher 
one above which turbulence is inevitable. Here, we shall confine our 
discussion to the lower critical velocity, vc. 

The critical velocity vc of the liquid flowing through a narrow tube is a 
function of the density ρ, the viscosity η of the liquid and the diameter d of 
the tube. In view of this, we can find an expression for vc, using the method 
of dimensions, by writing : 

     
d

kvc ρ
η

=  

where, k is a number ~ 1150 (for water). The usual way in which this 
expression is written is to combine v, ρ and η to give a dimensionless 
product : 

     
η
ρ

=
dvk c  

where k is called the Reynold’s number. 

Reynold’s Number 

Reynold’s number is a pure number which gives an idea whether the flow of 
fluid is laminar or turbulent. The Reynold’s number is given as 
(see above) : 

     
η
ρ

=
dvk c         . . . (1.16) 

Eq. (1.16) can also be written as : 
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2 Inertial Force
/ Force of Viscosity
c

c

vk
v d
ρ

= =
η

 

Thus, the Reynold’s number k is the ratio of the force of inertia and the 
force of viscosity. The flow of the fluid is said to be laminar when the value 
of k is less than 2000. For values of k above 3000, the flow is turbulent. For 
k between 2000 and 3000 the flow is unstable and may switch over from 
laminar to turbulent and vice-versa. 

Applications of Viscosity 

• The viscosity of liquids plays a major role in the selection of 
lubricating materials for various machines. Heavy machines require 
lubricant having high value of viscosity whereas light machines 
require low viscous oil. For example, a cycle requires oil of higher 
viscosity for lubrication as compared to a watch. 

• The quality of fountain pen ink depends largely on its viscosity. 

• The normal circulation of blood through arteries and veins depends on 
the viscosity of blood. 

• The shape of the aircraft, the ship and the car is streamlined to 
minimise the effects of viscosity. 

Till now, you learnt some characteristic properties of fluids. You must have noted 
that these properties of fluids have a variety of applications and they also enable 
us to explain some of the day-to-day observations. Further, the numerous ways in 
which we have been able to use solid materials is truly amazing. Be it the sewing 
needle or the ship or the satellite, we need solids. The question is : How do we 
decide which solid material is appropriate for making a particular object such as a 
sewing needle or a ship? Well, the choice of material is decided on the basis of 
some of characteristic properties of solids. One such property is known as 
elasticity. Elasticity plays an important role in selection of materials for 
construction of buildings, bridges, machines etc. You will now learn elasticity of 
solids. 

1.5 ELASTICITY 

Whenever an external force is applied on a body, it is deformed (that is, its shape 
or size or both changes). The extent of deformation depends upon the nature of 
the material and shape of the body and the manner in which the force is applied. 
As soon as the external (deforming) force is removed, the body regains its 
original state. This characteristic of the body to regain its original shape and size 
is called elasticity. 

We come across many situations in our daily life in which the elasticity of solids 
is evident. For example, when a force is applied at one end of a metallic spring 
fixed at the other end, it elongates (Figure 1.16(a)). When the force is removed by 
removing weights on the pan, it comes to its original position (Figure 1.16(b)). 
Other examples of elasticity are : a rubber ball gets deformed when we apply a 
force on it; mattresses compress when we sleep; application of a force on the 
string of a bow produced deformation in the bow (Figure 1.17). All these objects 
regain their original condition (shape and size) as soon as the applied force is 
removed. 
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(a)          (b) 

Figure 1.16 : (a) Elongated Spring due to Weight on the Pan; and 
(b) The Spring Returns Back to its Normal Length when Weight is Removed 

String

Bow

Hand
 

Figure 1.17 : Stretching the Spring Produces Deformation in the Bow 

At this stage, you may ask : Is it always true that a body regains its original 
shape and size once the deforming force is removed? To answer this question, 
we need to understand the concepts of elastic limit and the difference between 
elastic and plastic bodies. 
Elastic and Plastic Bodies 

A body (such as a stretched rubber band and a loaded spring) which returns 
to its original (shape or size) state after the removal of the deforming force 
is called perfectly elastic. However, if we go on increasing the strength of 
the external (deforming) force, a situation comes when the body no longer 
regains its original state. This deforming force characterises the elastic 
limit of the body. On the other hand, if a body does not completely attain its 
original shape and size even on removing the deforming force, it is said to 
be perfectly plastic. 
In physics, elasticity stands for opposition to change. Therefore, steel is 
more elastic than rubber because steel offers more resistance to any effort to 
deform it. You must note that this meaning of the term elasticity is quite 
opposite to its meaning in common use (wherein we say that rubber is more 
elastic than steel). 

The elasticity of a material is described in terms of stress and strain. You will 
learn it now. 

1.5.1 Stress and Strain 
When an external force or a system of forces is applied on a body, restoring 
forces are developed due to displacements of molecules from their respective 
positions of equilibrium. The restoring force opposes the external (deforming) 
force. In equilibrium, the restoring force is equal in magnitude and opposite in 
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direction to the external deforming force. Stress is defined as the restoring force 
per unit area of cross-section of the body. Mathematically, we write : 

Physics 

    Restoring Force ( )Stress =
Area  ( )

F
A

 

The unit of stress in SI system is Nm− 2. In the cgs system, stress is measured in 
dyne cm− 2. The dimensional formula for stress is 1 2ML T− − . 

F F
 

Figure 1.18 : Longitudinal Stress 

Depending upon the manner in which deforming force is applied, the following 
three kinds of stresses can be defined : 

Longitudinal Stress 

When the deforming force is applied along the length of the body 
(Figure 1.18), the stress produced is called longitudinal stress. 

Normal (or Compression) Stress 

Suppose the deforming forces are applied uniformly over the entire surface 
of the body normally (Figure 1.19(a)) which produce change in volume of 
the body without changing its shape (Figure 1.19(b)). The restoring force 
acting per unit area normal to the surface of the body is called normal or 
compression stress. For example, when we apply hydrostatic pressure 
uniformally over the entire surface of the body, normal stress is produced. 
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(a)          (b) 

Figure 1.19 : (a) Deforming Forces Acting Normally on a Body; and 
(b) The Deforming Force Cause Change in its Volume 

You may wonder : What is the difference between pressure and normal 
stress? Pressure is defined as the external (deforming) force per unit area 
normal to the surface. Whereas, normal stress is defined as the internal 
restoring force developed per unit area normal to the surface. 

Shear Stress 

If the deforming force acts tangentially or parallel to the surface 
(Figure 1.20) so that shape of the body changes without change in its 
volume, the stress is called shear stress. 
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Figure 1.20 : Deforming Force Parallel to the Surface Produces Shear Stress 

Strain 
Strain is a measure of the deformation produced in a body as a result of an 
external (deforming) force applied on it. It is defined as the fractional 
change in the dimensions of the body under stress. That is, strain is the 
change in dimension per unit dimension of the body. Since strain is the 
ratio of two similar quantities, it is dimensionless quantity. 
Further, corresponding to three different types of stresses, we define the 
following three kinds of strains : 
Linear Strain 

It is defined as the ratio of the increase in length (Δ l ) to the original 
length (l) of the body when a longitudinal deforming force 
(Figure 1.21) is applied on it. Mathematically, we write :  

  Change in Length ( )Linear Strain =
Original Length ( )

l
l
Δ  

A F

Δll  

Figure 1.21 : Linear Strain 

Volume Strain 
It is defined as the ratio of the change in volume (Δ V ) (without 
change of shape) to the original volume (V) of the body when a 
uniform pressure is applied on the body (Figure 1.22). That is : 

 Change in Volume ( )Volume Strain =
Original Volume ( )

V
V
Δ  

ΔP

ΔP

ΔPΔP

ΔVV

 

Figure 1.22 : Volume Strain 
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Shear Strain Physics 

When the deforming forces act tangentially (Figure 1.23) the shear 
strain is defined in terms of the angle θ (in radian) through which a 
line perpendicular to the fixed plane is turned after deformation. For 
small angle deformation, shear strain is given by : 

    x
y
Δ

θ =  

A

Fixed

θy

x
F

θ =
Δx
y

xΔ

 

Figure 1.23 : Shear Strain 

With this background knowledge about stress and strain, you are now in a 
position to understand elasticity of materials. Before doing that, it will be useful 
to study the experimentally observed variation of strain with the stress (applied 
deforming force) for a few solids. 

1.5.2 Stress-Strain Curves for a Metal Wire and Rubber 
The experimentally observed variation of strain of a material with the applied 
deforming force gives valuable information about its practical utility. In fact, on 
the basis of such observations, a few laws have also been formulated which holds 
true for solids in general under certain conditions. Let us discuss a few such 
experimental curves and, in the process, define a few important parameters of 
solids. 
Metal Wire 

Refer to Figure 1.24 which shows the variation of stress with the variation 
of strain in a metallic wire of uniform cross-sectional area subjected to an 
increasing load (deforming force). 
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Figure 1.24 : Stress-Strain Curve for Steel Wire 
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Properties of MatterNote from the figure that there are certain distinct regions and special 

points on this curve. Let us briefly understand their significance : 

Region of Proportionality (OA) 

Note that the region OA of the curve is a straight line which implies 
that in this region, stress is proportional to strain. This linear relation 
between stress and strain is a characteristic of a perfectly elastic body. 

Elastic Limit (B) 

If we increase the strain a little bit beyond the point A, the stress is no 
longer proportional to the strain. However, the wire still remains 
elastic. This means that, when the external force is removed, the body 
regains the original state. Thus, point B indicates the maximum value 
of stress for which a body (wire) shows elastic property and this point 
is called elastic limit. 

Yield Point (C) 

When the wire is stressed beyond the elastic limit B, strain increases 
more rapidly and the body behaves like a plastic material; that is, if 
the load is removed, wire will contract but it will not regain its 
original length. The material follows dotted line CD on the curve 
when the deforming force is removed and the residual strain OD is 
known as a permanent set. 

When the applied stress is further increased, we reach a point E. 
Beyond the point E, none of the extension is recoverable and the 
material exhibits completely plastic behaviour. 

Breaking Point (F) 

Beyond point E, strain increases much more rapidly and near point F 
the length of wire increases continuously even without increase of 
deforming force or even by reducing the force a little. In other words 
the wire breaks at point F. This is called breaking point. The stress 
corresponding to breaking point F is called breaking stress or tensile 
strength. 

If large deformation takes place between the elastic limit and the 
breaking point, the material is called ductile. If it breaks soon after 
the elastic limit is crossed, it is called brittle. 

Rubber 

When a rubber cord is stretched to over several times its original length, it 
regains its original length when the stretching force is removed. The stress-
strain curve for rubber is shown in Figure 1.25. You may note that this 
curve is distinctly different from that for a metal wire (Figure 1.24). For 
example, no part of this curve is linear, that is, stress is not proportional to 
strain in any region of the curve. Secondly, when the deforming force is 
removed, the cord acquires its original length. However, the work done by 
the cord material in returning to its original length is less than the work 
done by the deforming force in deforming it. As a result, certain amount of 
energy is absorbed by the material in each cycle of stretching and the return 
back to its original length. This energy appears as heat and the phenomenon 
is called elastic hysteresis. 
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Figure 1.25 : Stress-Strain Curve for Rubber 

Elastic hysteresis has an important application in shock absorbers. A part of 
energy transferred by deforming force is absorbed by the shock absorber 
and only a small part is transmitted to the body. 

Experimental results similar to those discussed above clearly indicates that stress 
and strain of a material are related to each other. First successful attempt to 
establish the relation between these two parameters was made by Robert Hooke 
who proposed a law for this purpose. You will learn the Hooke’s law now. But, 
before that, how about solving a few SAQs? 

SAQ 3  
 
(a) A load of 4.0 kg attached to a steel wire of radius 2.0 mm is 

suspended from a ceiling. Calculate the tensile stress developed in the 
wire. Take g = 3.1 π ms− 2. 

(b) For steel, the breaking stress is  and its density is 67.9 10 Nm−× 2

337.9 10 kgm−× . Determine the maximum length of a steel wire 
which can be suspended without breaking under its own weight. Take 
g = 9.8 ms− 2. 

 
 

1.5.3 Hooke’s Law 
According to this law, within the elastic limit, the stress is directly 
proportional to the corresponding strain. That is,  
   Stress ∝ Strain 

or,    Stress
Strain

 = Constant (E)                          . . . (1.17) 

The constant of proportionality, E, is a measure of elasticity of the material and is 
called modulus of elasticity. As strain is a dimensionless quantity, modulus of 
elasticity has the same dimensions (or units) as that of stress. Its value is 
independent of stress and strain; it depends on the nature of the material. 
Modulii of Elasticity 

For practical purposes, the elasticity of materials is specified in terms of a 
parameter called modulus of elasticity. For a given materials, we define 
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Properties of Matterthree modulii of elasticity namely, Young’s modulus, bulk modulus and 

modulus of rigidity corresponding to linear strain, volume strain and 
shearing strain respectively. Let us now discuss each of them briefly. 

Young’s Modulus (Y) 
It is defined as the ratio of the longitudinal stress to the longitudinal 
strain for the material of the body. To write an expression for the 
Young’s modulus, let a wire of length l and area of cross-section A be 
stretched by a longitudinal force F causing a change Δ l in the length 
of the wire. Then we can write : 

   Longitudinal stress = F / A; and 

   Longitudinal strain = Δ l / l 
Therefore, the Young’s modulus is written as : 

   
F

F lAY l A l
l

= =
Δ Δ

       . . . (1.18) 

If r is the radius of the wire suspended vertically with a rigid support 
and M is the mass attached to its free end, we can write : 

    2 andA r F M= π = g

Substituting for A and F in Eq. (1.18), we get : 

∴   2
M g lY
r l

=
π Δ

                        . . . (1.19) 

The units of Young’s modulus are Pascal (Pa) or Nm− 2 in the SI 
system. 

Bulk Modulus (B) 
The ratio of normal stress to the volume strain is called the bulk 
modulus of the material of the body. Mathematically, we write : 

   Normal Stress
Volume Strain

B =  

If increase in pressure Δ p causes the volume V of the body to 
decrease by an amount Δ V without any change in its shape, we can 
write : 

   Normal Stress = Δ p 

   Volume Strain V
V
Δ

= −  

Negative sign in the expression for volume strain indicates that 
increase in pressure results in decrease in volume of the body. Thus, 
the bulk modulus can be written as : 

   pB V
V

Δ
= −

Δ
 

   pV
V

Δ
= −

Δ
                . . . (1.20) 
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The units of bulk modulus are Pa or Nm− 2 in the SI system. The 
reciprocal of bulk modulus is called compressibility. Thus, the 
expression for compressibility (K) of a material can be written as 
(Eq. (1.20)) : 

Physics 

   1K
B

=  

       1 V
V p

Δ
= −

Δ
                . . . (1.21) 

Modulus of Rigidity 

It is defined as the ratio of the shear stress to shear strain of the body. 
If F is the tangential force applied on a body of surface area A and θ is 
the resulting shear strain, we can write the modulus of rigidity as : 

   Shear Stress
Shear Strain

η =  

      
F
A=
θ

 

     F
A

=
θ

                 . . . (1.22) 

where θ is in radians. 

Poisson’s Ratio 

When a wire is stretched along its length, it is elongated and, 
simultaneously, there is a contraction in its diameter. The length of the wire 
increases in the direction of the applied force, whereas the contraction in its 
diameter occurs in the direction perpendicular to the direction of the applied 
force. This is true not only for wire but also for all other bodies under strain. 
The strain (change in the dimensions of the body) perpendicular to the 
applied force is called lateral strain. Poisson pointed out that within elastic 
limit, lateral strain is directly proportional to longitudinal strain. In other 
words, the ratio of lateral strain to longitudinal strain is a constant for a 
material body and is known as Poisson’s ratio. It is denoted by PR. 

If α and β be the longitudinal and lateral strains respectively of a material 
body, its Poisson’s ratio is given by : 

     RP β
=
α

                 . . . (1.23) 

Let, due to an applied stretching force, the length l of a wire (rod or tube) 
increased by an amount Δ l and its diameter d is decreases by an amount 

Δ d. Thus, longitudinal strain is l
l
Δ , and lateral strain is d

d
Δ . And, the 

Poisson’s ratio is given as : 

     R

d
dP l
l

Δ

=
Δ
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                          l d
d l
Δ

=
Δ

                        . . . (1.24) 

Since Poisson’s ratio is a ratio of two strains, it is a dimensionless 
quantity. The value of Poisson’s ratio depends on the nature of the material 
and for most of the substances, it lies between 0.2 and 0.4. When a body 
under tension suffers no change in its volume, i.e. the body is perfectly 
incompressible, the value of Poisson’s ratio is the highest (i.e. 0.5). 

SAQ 4 

To fix your understanding of the various parameters discussed in this 
section, you should solve the following SAQs. 

 

 

(a) A load of 4.0 kg is suspended from a ceiling by a steel wire of length 
2 m and radius 2.0 mm. It is observed that the length of the wire 
increases by 0.031 mm. Calculate the Young’s modulus for steel. 
Take . 23.1 msg −= π

(b) A 4.0 m long copper wire of cross-sectional area 1.2 cm2 is stretched 
by a force of . If the Young’s modulus for copper is 

, calculate 

34.8 10 N×
11 21.2 10 Nm−×

(i) the stress, 

(ii) the strain, and 

(iii) increase in the length of the wire. 

(c) When a solid rubber ball is taken from the surface to bottom of a lake, 
its volume decreases by 0.0012%. The depth of the lake is 360 m, 
density of the lake water is 103 kgm− 3. Calculate the bulk modulus of 
rubber. Take g = 10 ms– 2. 

 

 

 

Now, let us summarise what you have learnt in this unit. 

1.6 SUMMARY 

• Due to surface tension, the free surface of a liquid behaves like a stretched 
elastic membrane tending to contract so as to have minimum surface area. It 
is measured as the force per unit length perpendicular to an imaginary line 
on the liquid surface. 

• Pressure is defined as the ratio of the force to the area on which it acts. That 
is : 

     FP
A

=  

The fluid pressure at a point within a fluid is given as : 

        P h g= ρ
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Physics • According to the Pascal’s law, pressure applied at any point on the surface 
of a given mass of an enclosed liquid at rest is transmitted over the whole 
liquid. 

• Archimedes’ principle states that there is an apparent loss in the weight of a 
body immersed in a liquid (or gas) and this loss of weight is equal to the 
weight of the liquid (or gas) displaced by it. 

• An ideal fluid is incompressible and its flow is laminar, non-viscous and 
irrotational. The flow of liquid is of two types. That is : 

(i) streamline motion, and 

(ii) turbulent motion. 

• The equation of continuity is a consequence of the principle of conservation 
of mass of liquid and for streamline flow of a liquid is 

     1 1 2 2a v a v=  

where  are the areas of two different cross-sections of a tube of 
flow and respectively are the velocities of flow through these 
sections. 

21 and aa

21 and vv

•  The Bernoulli’s equation is an expression representing the principle of 
conservation of energy for liquids. It is expressed as : 

     
2

2
P vg h+ + =
ρ

constant 

• The property by virtue of which a liquid opposes relative motion between 
its different layers is called viscosity. It is similar to the frictional force 
experienced by solids in motion. 

• The property of matter to regain its natural shape and size or to oppose any 
attempt to deform it is called elasticity. 

• The internal restoring force, arising due to an external deforming force 
applied on a body, and acting per unit area of cross-section of the body is 
called stress. The stress may be longitudinal, compressional and shearing. 

• Strain is defined as the change in dimension of a body per unit dimension. 
Strains are of three types, namely 

(i) linear strain, 

(ii) volume strain, and 

(iii) shearing strain. 

• Hooke’s law states that, within elastic limit, the stress is directly 
proportional to the corresponding strain. 

1.7 ANSWERS TO SAQs 

SAQ 1 

According to the problem, we have : 

h = 0.76 m; ρ = 13.6 × 103 kg m– 3; and g = 9.8 ms– 2

From Eq. (1.5), the atmospheric pressure, P, is given as : 
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   P h g= ρ Properties of Matter

2     3 3(0.76 m) (13.6 10 kg m ) (9.8 ms )− −= × × ×

       25 Nm10013.1 −×=

SAQ 2 

(a) Let V and ρ be the volume and density of the solid respectively and ρ′ 
be the density of water. Thus, from the problem, we have : 

   3 310 kg m−′ρ =  

Now, we can write : 

Weight of the body = V ρ g 

Volume of solid body outside water 
4
V

=  

Volume of solid body inside water 
4

3
4

VVV =−=  

Weight of water displaced by solid gV
××= 310

4
3  

As solid body is floating, the following condition must be satisfied : 

Weight of body = Weight of water displaced by it. 

  33 10
4
VV g gρ = ×  

or,       3 1000
4

ρ = ×  

           3750 kg m−=

(b) According to the Archimedes’ principle, we have : 

The apparent loss of weight of the copper tube in water = Weight of 
water displaced by the upper cube. 

If V be the volume of the cube, then above condition can be written 
as : 
  (0.50 0.40) kg (Density of water)g V g− × = × ×  

or,  3 3(0.10 ) kg V 10 kg mg g −× = × ×  

or,  3
3

0.1 m
10

V =  

        4 310 m−=

To know whether the cube is hollow or solid, we can calculate the 
density of the cube. 

     Density of the copper cube 3 3
4 3

0.50 kg 5 10 kg m
10 m

m
V

−
−= = = ×  

Since the density of the copper cube is less than that of pure copper, 
we conclude that the cube must be hollow. 
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(c) Let V be the total volume of the piece of ice and Vsub be the volume of 
the portion to the piece of ice submerged in the inside water. ρi be the 
density of ice, ρw be the density of water. Then, according to Eq. 
(1.8), we have : 

Physics 

  sub i

w

V
V

ρ
=
ρ

 

or,  sub1 1 i

w

V
V

ρ
− = −

ρ
 

or,  
w

iw
V
VV

ρ
ρ−ρ

=
− sub  

or,  
3 3

sub
3 3

(1 0.92) 10 kg m
10 kg m

V V
V

−

−
− − ×

=  

                0.08 ( 0.1)= ≈  

Therefore, approximately one-tenth of the piece of ice is above the 
water surface. 

SAQ 3 

(a) You know that the tension in the wire is developed due to the weight 
of the load suspended by it. Thus, we can write the force, F, causing 
tension in the wire as : 

  F M g=  

      2(4.0 kg) (3.1 ms )−= × π  

Further, the area of cross-section in the wire, 

  2A r= π  

      3 2 2(2.0 10 ) m−= π ×

      26 m100.4 π×= −

The tensile stress developed in the wire is : 

     F
A

=  

     
2

6 2
(4.0 kg) (3.1 ms )

4.0 10 m

−

−
× π

=
× π

 

     6 23.1 10 N m−= ×  

(b) Let L be the maximum length of wire suspended without breaking. If 
ρ be the density and A be the area of cross-section of the wire, then 
weight W of the wire is 

  gmW =  

  gLAW ρ=  
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Properties of Matter(Because m  and the volume, V is equal to the product of length 

(L) of the wire and its area of cross-section (A); that is, V = AL. Thus, 
we have written m = A L ρ above.) 

V= ρ

And the stress developed in wire due to its own weight W is given as 

  Stress = W
A

 

             L g= ρ

The value of stress developed in the wire must not exceed the 
breaking stress. Thus, we may write : 

  6 27.9 10 N mL g −ρ = ×  

or  
6 2

3 3
7.9 10 Nm

(7.9 10 kg m ) (9.8 ms )
L

−

− −
×

=
× × 2  

       210 m=

So, the length of the wire must be less than 100 m 

SAQ 4 

(a) We can write longitudinal stress  F
A

=  

      2
M g

r
=
π

 

      
2

3 2
(4.0 kg) (3.1 ms )

(2 10 m)

−

−
× π

=
π ×

 

      6 23.1 10 N m−= ×  

And, longitudinal strain l
l
Δ

=  

              
30.031 10 m

2.0 m

−×
=  

     30.0155 10−= ×  

Thus, Young’s modulus, Longitudinal Stress
Longitudinal Strain

Y =  

          
6

2
3

3.1 10 N m
0.0155 10

−
−

×
=

×
 

          11 22.0 10 N m−= ×  

(b) (i) Longitudinal Stress F
A

=  

        
3

4 2
4.8 10 N

1.2 10 m−
×

=
×

 

                 7 24.0 10 N m−= ×  
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(ii) Longitudinal Strain Stress

Y
=  

       
7 2

11 2
4.0 10 Nm
1.2 10 Nm

−

−
×

=
×

 

       43.3 10−= ×  

(iii) Longitudinal Strain ll /Δ=  

 or, Longitudinal Strainl lΔ = ×  

        4(3.3 10 ) (4 m)−= × ×

        31.32 10 m−= ×

(c) When the rubber ball is taken from the surface of the lake water to the 
bottom of the lake, the increase in pressure on the ball, 
  p h g= ρ  

      3 3(360 m) (10 kg m ) (10 ms )− −= × × 2

     6 23.6 10 N m−= ×  

The volume strain of the ball at the bottom of the lake is 

     V
V
Δ

=  

     0.0012
100

=  

     51.2 10−= ×  

And the bulk modulus B, is defined as 

  p VB
V

=
Δ

 

Substituting the values of p and V
V
Δ⎛

⎜
⎝ ⎠

⎞
⎟  from above, we get 

  p VB
V

=
Δ

 

  
6 2

5
3.6 10 Nm

1.2 10
B

−

−
×

=
×

 

     11 23.0 10 Nm−= ×  
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