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Laws of MotionUNIT 6 LAWS OF MOTION 
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6.1 INTRODUCTION 
The kinematics of motion structure, in Unit 5, did not consider the effect of force 
on motion. In this unit, we will study the relationship between the motion and the 
force causing it. Such a study is termed as kinetics. These relationships are 
governed by what are known as laws of dynamics. Newton’s three laws of motion 
constitute important part of laws of dynamics. 

Important Terms 

Some significant terms associated with kinetics can be listed as follows : 

Mass 

It is representative of the matter contained in a body. Units are 
kilograms, tonnes, pounds etc. 

Force 

It is defined as the cause which produces or tends to produce a change 
in state of rest or of uniform motion of a body, commonly expressed 
as Newton (N), kilo Newton (kN), kgf etc. 
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Applied Mechanics Weight 

It is the force produced in the body due to gravitational attraction of 
earth. It acts towards the centre of earth. Since it is a force, its units 
are same as that of force, e.g. N, kN, kgf etc. 

Inertia 

It is inherent property of a body which offer resistance to change in its 
state of rest or of uniform motion. 

Momentum 

It is quantitative measure of motion possessed by a body when it is 
moving in a straight line. It can be expressed as a product of its mass 
and its velocity, e.g. Momentum = m × v. 

Absolute Unit of Force 

In C.G.S. units, the absolute unit of force is dyne. One dyne is defined 
as the force which acting on a mass of 1 gram produces an 
acceleration of 1 cm/sec2 with the direction of its action. 

In MKS system, the absolute unit of force is Newton which is the 
force which produces an acceleration of 1 m/sec2 in a mass of 1 kg. 
Thus 

1 N =10 5 dynes 

Gravitational Unit of Force 

The force produced on a mass due to attraction of earth (gravity) is 
the gravitational force. Thus, if 1 Newton signifies the force produced 
by a mass of 1 kg with an acceleration of 1 m/sec2 then the same body 
moving with an acceleration due to  gravity of 9.81 m/sec2 will 
produce a weight (Force) of 9.81 Newtons. This is also called a 
weight of 1 kgf which is gravitational of engineers’ unit of force, i.e.  
1 kgf = 9.81N. 

Gravitational unit of force is equal to “g” times the absolute unit 
where “g” is acceleration due to gravity (W = m × g  or  m = W/g). 

Objectives 
After studying this unit, you should be able to 

• conceptualise the Newton’s laws of motion, 

• compute simple problem on laws of motion, 

• describe the motion on a circular path, 

• explain simple harmonic motion, 

• explain the relationship of work to kinetic and potential energy, 

• state the range of application of principle of conservation of 
momentum and conservation of energy, 

• understand the concept of power, and 

• estimate the motion of bodies after their impact. 
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Laws of Motion6.2 NEWTON’S LAWS OF MOTION 

Newton proposed three basic laws of motion which are commonly known as 
Newton’s Laws of motion.  These can be enunciated as follows 

6.2.1 First Law of Motion 
A body continues in its state of rest or of uniform motion in a straight line unless 
it is acted upon by some external force to change its initial state. 

6.2.2 Second Law of Motion 
The rate of change of momentum is directly proportional to the applied force and 
takes place in the direction of application of force in a straight line. 
Let a mass of body m moving with an initial velocity u (x = 0 in the state of rest) 
is acted upon by a force p. This force will cause its velocity to change from u to 
final velocity v in time t. Then, initial momentum of the body is mu and the final 
momentum of the body after time t is mv. 

Then the change in momentum in time t would be mv — mu = m (v − u) or, rate of 

change of momentum would be ma
t

uvm
=

− )( . 

where a = acceleration = rate of change of velocity =
t

uv − . 

As per Newton’s second Law of motion, rate of change of momentum will be 
directly proportional to applied force or P ∝ m . a = kma, where k is constant of 
proportionality. If the force is defined such as to produce unit acceleration in a 
body of unit mass, then 

1= k × 1 × 1 or k = 1 
i.e  p = ma                 . . . (6.1) 

6.2.3 Third Law of Motion 
“To every action, there is an equal and opposite reaction.” This implies that force 
is an action which one body applies on another. Thus, if a force is exerted by 
body A on another body B, an equal and opposite force will be applied by body B 
on body A. Thus, when a person applies some effort on a stone to lift it up, the 
stone exerts an equal downward force on the person. 

6.2.4 Law of Conservation of Momentum 
From the above basic laws of motion as stated by Newton, we can conclude that 
“Total momentum of any group of objects always remains the same if no external 
force acts on them”. 
From Newton’s second law, we know that to change the momentum of a system 
of bodies, external force is required which is proportional to the rate of change of 
momentum. Hence, total momentum will remain same in the absence of an 
external force. Any action amongst the system of bodies will cancel out as any 
action of one body in the system will produce equal and opposite reaction on it by 
Newton’s third law. 

6.2.5 Impulse and Impulse Force 
Impulse is defined as mass multiplied by change in velocity of the body. If a body 
of mass m is subjected to a force P which is acting on it for a time period t, 
causing its velocity to change from u to v. 
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Then impulse  I = m × (v − u)          . . . (6.2(a)) Applied Mechanics 

or am
t

uvm
t
I

×=
−

×=
)(  

⎭
⎬
⎫

⎩
⎨
⎧ −

=
t

uva∵  (by Newton’s Second Law) 

or   I = P × t          . . . (6.2(b)) 

Hence, impulse can also be defined as forces × time interval or impulsive force. 
Its units are Ns (Newton’s Seconds) or kgf s. From Eq. (6.2(a)), the impulse of a 
force P can also be called as change of momentum produced in the body on its 
application. 
When a force is applied on a body gradually, it is said that the force system is in 
steady state. It is sustained on the body for a long period. However, if time 
duration of force is small, the force is said to be suddenly applied force producing 
an impact. The concept of impulsive of a force is very useful in analysing 
problems of suddenly applied force or impacts. The examples of impact could be 
firing of a bullet or collision of two bodies. 
Simple Example of Recoil of Gun 

Principle of impulse and the conservation of momentum can be of great use 
in considering problems associated with a recoil of a gun and likewise. 
Before firing, the gun is loaded with the bullet and both are in a state of 
rest. The initial velocity of bullet as well as that of the gun is zero. Hence, 
the initial total momentum of the system is zero. Upon firing, the bullet 
moves in one direction while the gun in the opposite direction, e.g. it 
recoils. By principle of conservation of momentum the momentum of the 
bullet will be equal and opposite to that of the gun, because the total final 
momentum of the system shall also be zero. 

Example 6.1 
A gun has a mass of 30 tonnes. It fires a bullet whose mass is 450 kg with a 
velocity of 300 m/s. 
(i) Calculate the initial velocity of gun recoil. 
(ii) If a resistive force of 600 kN is applied on gun on an average, 

calculate the distance travelled by the gun during recoil? 
(iii) Also compute the time period of recoil. 

Solution 
Mass of gun (M) = 30,000 kg; Mass of bullet (m) = 450 kg, its  
velocity (v) = 300 m/s. 
Let V is recoil velocity of gun. 
(i) Then by principle of conservation of momentum 

MV + mv = 0 

or  s/m5.4
30000

300450
−=

×
=−=

M
mvV     . . . (a) 

(i.e. gun velocity is opposite to that of bullet) 

(ii) Impulse I = P × t = M (v − u)  
(Initial velocity of gun = u = — 4.5 m/s and Final velocity of  
gun = v = 0) 

or  600000 × t = 3 × 104 × 4.5 
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Laws of Motion

or  225.0
106

5.4103
5

4

=
×
××

=t  seconds    . . . (b) 

e.g., time period of recoil = 0.225 seconds. 

a = acceleration / retardation 2sec/m20
225.0

5.40
−=

−
=

−
t

uv  

(iii) We know v2 = u2 + 2 as (where s is distance travelled), then 

m506.0
40

25.20
)20(2

)5.4(0
2

222
=

−
−

=
−×

−
=

−
=

a
uvs    

Example 6.2 

A pile of mass 1000 kg is driven 30 cm into ground by a pile driver of mass 
250 kg falling from a height of 2.0 m. Find the average resistance of the 
ground to penetration of pile, assuming g = 10 m/sec2. 

Solution 

Let the velocity of pile driver after falling 2.0 m is v. 

Then   sec/m325.621022 =××=×= ghV    . . . (a) 

After the pile driver strikes the pile, the common velocity of system is V 
while its mass is (M + m) = 1000 + 250 = 1250 kg, by principle of 
conservation of momentum. 

Momentum before impact = momentum after impact. 

Then  m × v + m × 0 = (M + m) × V 

or  250 × 6.325 =1250 × V 

or  .s/m265.1
1250

325.6250
=

×
=V      . . . (b) 

Since the pile is driven 0.3 m into ground before coming to rest (e.g. final 
velocity = 0). 

v2 = u2 + 2 as 

02 – 1.2652 = 2 × a × 0.3 

or  67.2
3.02
)265.1( 2

−=
×

−=a  m/sec2  (retardation) 

By Newton’s Second law of motion, P = M × a 

Then   P = (M + m) × a = 1250 × 2.67 = 3337.50 N 

The resistance of ground R will be the retarding force so created plus the 
weight of the pile driven system 

Hence,  R = 1250 × 10 + 3337.50 = 15837.50 N 

Example of Motion of a Lift 

A lift or elevator normally moves vertically carrying its own weight and of 
the passengers/cargo it carries. Without much less of accuracy it can 
assumed to be moving under uniform acceleration. 

It has two types of motion 

(i) Moving upwards (against gravity) (Figure 6.1(a)) 
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Applied Mechanics (ii) Moving downwards (along gravity) (Figure 6.1(b)) 

Let us assume that 

ms = self mass of the lift assembly and msg its weight 

mL = mass of cargo carried by it and mLg its weight 

m = total mass moving with mg, i.e. the weight carried. 

Then m = ms + mL and  

W  = (ms + mL) g           . . . (6.3(a)) 

  α = uniform acceleration of lift 

  g = acceleration  due to gravity 

  T = tension in the cable supporting the lift. 

 

 

 

 

 

 
 

(a)      (b) 

Figure 6.1 : Motion of a Lift 

For upward movement against gravity 
Net upward force on the lift 

= T − W        . . . (i) 

 Inertia = m × α       . . . (ii) 
Satisfying equation of dynamic equilibrium, we get 

T − mg = m α or    T = m (g + α)        . . . (6.3(b)) 
And for downward movement along gravity, it would be 

W − T = m α or    T = m (g  −  α)        . . . (6.3(c)) 
Example 6.3 

A cage of self mass 1000 kg is carrying a shift load of six passengers of 
average mass 65 kg. If the cage is moving with 
(a) a uniform acceleration of 2 m /sec2 upwards 
(b) a uniform acceleration of 2 m/sec2 downwards or 
(c) a uniform velocity of 5 m/s downwards, find 

(i) the tension in wire supporting the cage 
(ii) the reaction of cage on the crew and of the crew on the cage 

Assume g = 10 m/sec2. 

Solution 

Mass of cage = 1000 kg 
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Laws of MotionMass of crew 6 × 65 = 390 kg 

(a) Upward α = 2 m/sec2 

Total mass = 1000 + 390 = 1390 kg (acting vertically downwards) 

(i) Equation of dynamic equilibrium 

 T − (1390) g = 1390 α     . . . (i) 

or T = 1390 (10 + 2) = 16680 N     . . . (ii) 

(ii) If R is reaction of cage on crew, then dynamic equilibrium gives 

 R − mg = mα 

or R = 390 (10 + 2) = 4680 N              . . . (iii) 

(iii) By Newton’s third law of motion, the force exerted by crew on 
cage will be same as force exerted by cage on crew. 

(b) Downward α = 2 m/sec2. 

(i) W − T = Mα 

or 1390 × 10 − T = 1390 × 2 

or T = 1390 (10 − 2) = 11120 N    . . . 
(iv) 

(ii) R = 390 × (10 − 2) = 3120 N     . . . (v) 

(c) Downward velocity v = 5 m/s, α = 0  

(i) 1390 × 10 − T = 0 

 or T = 13900 N      . . . 
(vi) 

(ii) R = 390 × 10 

or R = 3900 N               . . . (vii) 

Example 6.4 

An elevator of total mass 500 kg starts from position of rest and moves 
upwards at a constant acceleration. It gains a velocity of 2 m/sec in a travel 
distance of 3 m. While stopping a uniform retardation it comes to rest in  
2 seconds from a velocity of 2 m/sec. 

Assuming g = 10 m/sec2. Calculate the pull in cable during upward 
movement and pressure transmitted by a person of mass 70 kg to the floor 
during stopping. 

Solution 

While accelerating, the initial velocity of elevator u = 0; while final velocity 
v = 2 m/sec, and distance travelled = 3 m.  

Let uniform acceleration during this period be α. 

Then from equation v2 = u2 + 2 αs, we get 

22 = 0 + 2 α × 3 

or  2sec/m667.0
6
4
==α        . . . 

(i) 
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From equation of dynamic equilibrium of elevator Applied Mechanics 

 T − 500 × 10 = 500 × 0.667 

or  T = 5000 + 333.3 = 5333.3 N    . . . (ii) 

While stopping during retardation 

u = 2 m/sec,  v = 0 and t = 3 seconds 

From equation v = u+ αt, we get 

     0 = 2 + α × 2   or   1
2
2

−=−=α m/sec2            . . . (iii) 

From equation of dynamic equilibrium of person 

   W − R = − α × m 

or  R = 70 × 10 − 1 × 70 = 630 N    . . . 
(iv) 

SAQ 1 
A cannon of mass 20000 kg fires a shell of mass 100 kg with a muzzle 
velocity of 800 m/s.  Calculate the recoil velocity of cannon, average 
uniform force required to stop in a recoil distance of 400 mm and time 
period required for recoil. 

 

 

 

 

 

SAQ 2 
A shell of mass 1 kg is fired from a cannon of mass 1000 kg with a velocity 
of 300 m/s in a horizontal direction. The cannon is resting on a smooth 
horizontal surface against a spring buffer of spring constant 15 N/mm 
compression. Calculate the spring displacement due to firing. 

 

 
 

 

 

 

6.3 MOTION ON A CIRCULAR PATH 

6.3.1 Angular Motion, Relationship with Linear Motion 
When a body is rotating about an axis, its motion will be along a circular path. Its 
position at any time can be described by its distance from axis of rotation (radial 
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Laws of Motiondistance) and angle θ it subtends at centre with respect to the radial line drawn at 

the position t = 0 (Figure 6.2). 

(a) Angular Displacement 

In a rotational motion, angular displacement θ or the movement of body 
along its circular path will vary with time. In general, θ can be expressed as 
a function of time equation 

    θ = f (t)         . . . (6.4(a)) 

(b) Angular Velocity 

Like rectilinear velocity which was defined as the rate of change of 
rectilinear displacement with time, angular velocity can also be defined as 
rate of change of angular displacement with time. 

 

 

 
 

 

 
 
 

(a)      (b) 

Figure 6.2 

Let the body moves from θ to θ + δθ position while moving from time t to  
t + δt. Then the body moves an angular distance of δθ in time interval δt or 

angular velocity denoted by ω (omega) =
tδ

δθ       . . . 

(i) 

If the body is moving with a uniform angular velocity, same angular 
distance δθ will be travelled in a similar time interval δt, however small or 
large δt could be. 

However, when the angular velocity is changing with time, the average 

angular velocity over the time period δt would be
tav δ

δθ
=ω . 

Hence if time interval δt is taken very small 

dt
d

tt

θ
=

δ
δθ

=ω
→δ 0
Lt      . . . (ii) 

This is termed instantaneous angular velocity at time t. If the body’s angular 
rotation is measured in terms of revolutions per minute (= N rpm), 

Then the angular velocity would be 

60
2 Nπ

=ω  rad/sec.               . . . (iii) 

(c) Tangential Velocity 

If r is the radius of circular path and v is the rectilinear velocity of the body 
at time t then 
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dt
dr

t
r

t
sv

tt
t

θ
=

δ
δθ

=
δ
δ

=
→δ→δ 00
LtLt    . . . 

(iv) 

Applied Mechanics 

or  vt = ωr 

where s is the distance travelled by body along the circumference of the 
circular path and δs is the circumferential distance travelled by the body in 
time δt. 

(d) Acceleration 

Let the angular velocity ω changes with time t. Then angular acceleration  

α (alpha) is defined as rate of change of angular velocity. If the change in 
angular velocity during time interval δt is δω. 

Then  
tδ

δω
=α       . . . 

(vi) 

Hence instantaneous angular acceleration would be 

dt
d

tt

ω
=

δ
δω

=α
→δ 0
Lt               . . . (vii) 

Let the tangential velocity be vt at any given time t (Figure 6.2(b)). Then the 
change in velocity in tangential direction would be dV in forward direction 
of θ while it would be Vdθ in radial direction (inward towards centre of 
rotation). 

Since acceleration of a particle would be its ratio of change of velocity with 
time, the components of acceleration would be 

   (tangential)tα α=
θ

=⎟
⎠
⎞

⎜
⎝
⎛== r

dt
dr

dt
d

dt
rd

dt
dVt

2

2θ           . . . (viii) 

and  (radial)rα r
r

vV
dt
dV t

tt
2

2
ω−=−=ω−=

θ
−=              . . . (ix) 

Negative sign indicates that direction of radial (or normal) acceleration 
would always be inwards. This normal acceleration directed towards the 
centre of rotations is also called centripetal acceleration. 

6.3.2 Equations of Angular Motion 
Let ω0 be initial angular velocity, then 

t
0ωωα −

=  or  αt = ω − ω0 or  ω = ω0 + αt        . . . (6.5(a)) 

Average angular velocity over time period 
2

0ω+ω
=t  

then   t×
ω+ω

=θ
2

)( 0  

or   
ω+ω

θ
=

0

2t          . . . 

(i) 
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   2
0

00
2
1

2
tttt

α+ω=⎟
⎠
⎞

⎜
⎝
⎛ α+ω+ω

=θ  

or  2
0 2

1 tt α+ω=θ           . . . (6.5(b)) 

Substituting Eq. (i) in Eq. (6.5(a)) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω+ω

θ
α+ω=ω

0
0

2  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω+ω

θ
=

0

2t∵  

or  ω (ω0 + ω) = ω0 (ω0 + ω) + 2 αθ 

or  ω2 
—  ω0

2 = 2 αθ 

or   ω2 = ω0
2 + 2 αθ          . . . (6.5(c)) 

Eqs. 6.5(a), (b) and (c) are similar to corresponding equations of linear motion. 

Example 6.5 

A wheel of 1.0 m diameter is mounted on a shaft between two bearings.  
The wheel is subjected to constant moment of 100 Nm at the rim for  
10 minutes to attain a speed of 120 rpm. 

Determine 

(i) The number of revolutions made during this period. 

(ii) The angular acceleration, the tangential acceleration and centripetal 
acceleration. 

(iii) The work done in rotating the wheel during this time. 

Solution 

Initial angular velocity of wheel = ω0 = 0. 

Final angular velocity, π=
×π

=
×π

=ω 4
60

1202
60

2 N rad/ sec   . . . (a) 

Radius of wheel =1.0/2 = 0.5 m 

Time taken t = 10 minutes = 600 sec. 

(i) Then angular rotation θ = average angular velocity × time 

π=×⎟
⎠
⎞

⎜
⎝
⎛ π+

= 1200600
2

40  radians     . . . (b) 

Number of revolution made = 1200π / 2π = 600    . . . (c) 

(ii) We have ω = ω0 + αt 
   60004 ×α+=π

or   
150600

4 π
=

π
=α  rad/ sec2     . . . (d) 

Tangential acceleration, αt = α r = 
300

5.0
150

π
=×

π m/sec2. 

Normal acceleration, αn = − ω2 r = 0.5 × (4π)2 = − 8 π2 m/sec2. 

(iii) Work done = Torque × Angle turned 

  100 × 1200 π = 120000 π  Joule. 
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6.3.3 Centripetal and Centrifugal Forces  Applied Mechanics 

As shown in Figure 6.2, a body has tendency to move tangentially if it is moving 
on a circular path. In order to resist this tendency of moving away from the 
centre, an external force will be required to applied acting radially towards the 
centre (centripetal). This will ensure that the body continue to move along the 
circular path. The inertia forces which are equal in magnitude and opposite in 
direction of centripetal forces are called centrifugal forces. 

During its rotation, the body has an acceleration which has two components  

(i) tangential acceleration tα (= r 
dt
dω ), and (ii) normal acceleration ( = ωnα

2 r). If 

m is the mass of body then magnitude of centripetal force Fc would be equal 
to .nm α×  

or Fcp = − mω 2 r = 
r

mvt
2

−  (indicating inward force)        . . .(6.6 (a)) 

The inertia forces, also known as centrifugal forces, would be 

 Fcf  = − Fcp = 
r

mv2

 (radially outward)         . . . (6.6(b)) 

The concepts of centripetal and centrifugal forces are explained by studying the 
motion of a vehicle on a level curved path. 

Let a vehicle of weight W is moving with a linear velocity v on a curved path of 
radius r (Figure 6.3). 

 

 

 

 

 

 
 

Figure 6.3 

Due to rotational movement of vehicle along the circular path of radius r, it will 

experience a radially outward acting centrifugal force Wcf, where Wcf  =
r

v
g

W 2

. 

There will be a tendency of the vehicle to skid outwards resulting on producing 
frictional forces in tyres at point of contact with pathway.  From Figure 6.3, the 
following forces acting on the vehicle can be listed 

(i) Centrifugal forces, Fcf  = r
v

g
W 2

 

(ii) Weight of vehicle, W 
(iii) Normal Reactions, RA and RB  B

(iv) Frictional force, FA = BBA RFR μ=μ and  

To study the stability of vehicle in negotiating the curved path, following cases 
are to be considered. 
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Laws of Motion(a) Skidding of Vehicle 

For dynamic equilibrium of vehicle in vertical direction 
0=Σv   

          . . . 
(i) 

BA RRW +=

horizontally  0=ΣH

WRRRR
r

v
g

W
BABA μ=+μ=μ+μ= )(

2
 . . . (ii) 

i.e.   grv
gr
v .max

2
or μ==μ             . . . (6.7) 

Hence, the maximum velocity with which the vehicle can negotiate 
the curve without skidding will be gr.μ . For safety against 
skidding, V shall be less than Vmax. 

(b) Vehicle Over Turning  

Dynamic equilibrium of vehicle also require .0=ΣM Taking moments 
about A, 

h
r

v
g

WdWdRB ×+×=×
2

2
 

or   ⎥
⎦

⎤
⎢
⎣

⎡
+=

grd
hvWRB

221
2

        . . . (6.8(a)) 

⎭
⎬
⎫

⎩
⎨
⎧
−=−=

grd
hvWRWR BA

221
2

       . . . (6.8(b)) 

Eq. (6.8(b)) signified that the term 
grd

hv 22  can become more than 1 for 

larger value of v, making reaction RA negative and vehicle will 
overturn. The maximum speed with which the vehicle may move 
without over turning will be 

Vmax  =
h

grd
2

         . . . (6.8(c)) 

For the vehicle to overturn and skid simultaneously Eq. (6.7) and  
Eq. (6.8(b)) are satisfied simultaneously, e.g.  

h
grdgrv
2

2 =μ=  

or       h = 
μ2

d               . . . (6.9) 

6.3.4 Banking of Roads and Railway Tracks 
The vehicle negotiating the curve exerts a frictional force between the tyres and 
the roads or wheels and rails causing wear and tear. Also, it exerts a centrifugal 
force at centroid of vehicle to cause its overturning. In order to improve the safety 
and stability of vehicle and to reduce the wear and tear of road/rail, it is advisable 
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to develop an external centripetal force This can be achieved by providing 
inclined track surface sloping towards its centre of curvature. This ensures 
inclined reactive forces with components in centripetal direction as against 
centrifugal forces produced by angular speed of vehicle. This raising of external 
portion of track with respect to its inner portion is termed banking or super 
elevation. The design of banking or super elevation of a curved track can be 
achieved considering following parameters  

Applied Mechanics 

(a) Angle of Super Elevation, “β” 

Let the angle of super elevation of track be β as shown in Figure 6.4. In 
ideal condition, β shall be so selected that horizontal component of normal 
reactions, RA and RB,B  should be equal and opposite to centrifugal force, 

r
v

g
W 2

, and their vertical component should be equal to vehicle weight, W.  

Hence  (RA + RB) cos β = W       . . . (a) B

and  (RA + RB) sin β = B

r
v

g
W 2

     . . . (b) 

From above equations, we get  

=
β+
β+
 cos)(
 sin)(

 R  R
 R  R

BA

BA
r

v
g

W 2
 ×

W
1      . . . (6.10(a)) 

or  tan β = ⎥
⎦

⎤
⎢
⎣

⎡
gr
v 2

        . . . (6.10(b)) 

Hence, for negotiating a curve of radius r with velocity v, the ideal angle of 
super elevation shall be β as given by Eq. (6.10(b)). Conversely, on a track 
with super elevation of β, the corresponding velocity of vehicle could be 

βtangr         . . . (6.10(c)) 

 

 

 

 

 

 
Figure 6.4 

(b) Maximum Velocity 

To avoid the skidding of vehicle on a super elevated track, the equations of 
motion can be derived as follows. For dynamic equilibrium, resolve all 
forces acting on vehicle along the inclined surface and normal to the 
inclined surface. 

W sin β=++β cos
2

r
v

g
WFF BA  (along surface)   . . . (c)  
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β+β=+ cossin
2

W
r

v
g

WRR BA  (normal to surface) 

We know that ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
β+βμ=+μ=+ cossin)(

2
W

r
v

g
WRRFF BABA      . . . (d) 

Hence β
μ

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

β
μ

+βμ+β cossincossin
22

gr
Wv

gr
vW  (from Eq. (c)). 

 or  
gr
v

gr
v 22

)tan1(tan μ
=β+μ+β       . . . (f) 

If φ is angle of friction between tyre and track, then tan μ=φ . The Eq. (f) 
can be written as  

φ=φβ+φ+β tantantantantan
22

gr
v

gr
v  

or )(tan
tantan1

tantan2
φ+β=

φβ−
ϕ+β

=
gr
v            . . . (6.11) 

Hence to avoid skidding 

)(tanmax φ+β= grV         . . . (6.11(b)) 

(c) Maximum Speed to avoid Overturning on a Super Elevated Track 
As observed in analysing the maximum vehicle speed on a curved plane 
track, it can be said that to avoid overturning the normal reaction RA shall 
always be positive. It could be zero in critical case. 
Let us identify the forces acting on a vehicle on a super elevated track as 
shown in Figure 6.5. 

 

 

 
 

 
 

 

 
 

Figure 6.5 

In critical case, NA = 0, the total reaction at β1 will be the combination of 
tangential frictional force, FB, and normal reaction, NB BB, inclined at an angle 
of φ with normal. For centroid of vehicle G to be in equilibrium the reaction 

RB, weight, W, and centrifugal force, B

r
v

g
W 2

, meeting at G shall be in 

equilibrium as represented by triangle of force abc in Figure 6.5(b). Hence, 
we get 

=φ+β )(tan
gr
v

Wr
v

g
W 22 1

=×            . . . (6.12(a)) 
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Applied Mechanics or  )(tan φ+β= grv        . . . (6.12(b)) 

For reaction RB to pass through point G in Figure 6.5(a), we have  B

h
d

h
d

2
1

2
tan =×=φ  

Substituting this value of tan φ in Eq. 6.12(a), we get  

⎭
⎬
⎫

⎩
⎨
⎧

φβ−
φ+β

=
tantan1

tantangrv  

or  
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

β−

+β
=

tan
2

1

2
tan

h
d

h
d

grv       . . . (6.12(c)) 

Example 6.7 

A truck with total weight of 200 kN (with two axles and four wheels) is 
travelling with a speed of 72 kmph on a plane flat curved road of radius  
200 m. The wheel distance of an axle is 1.6 m. The centroid of truck is at a 
height of 1.5 m above ground along the axis of truck. Assuming the truck 
load is equally distributed on two axles and g = 10 m/sec2, obtain the 

(i) vertical pressure on each wheel. 

(ii) maximum speed at which the vehicle can negotiate the curve without 
over turning. 

(iii) maximum coefficient of friction between tyre and road surface to 
avoid skidding. 

(iv) angle of super elevation required so that the truck can travel on this 
curve without frictional support. 

Solution 

Load of truck on each axle = 
2

200 = 100 kN 

Speed of truck = 72 km/h = 
6060

100072
×
×  = 20 m/s      . . . 

(i) 

Centrifugal force acting on truck = Fcf = 200
20

10
200

2

22
×=

v
g

W = 40 kN   . . . (ii) 

(i) Let the reactions on the outer wheels be R0 and on inner wheels be NI 
(Figure 6.6). Taking moments about i, 

40 × 1.5 + 200 × 0.8 = 6.10 ×′R  
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Figure 6.6 

or   R′0 = 137.5 kN 

and  Ri = 200 − 137.5 = 62.5 kN 

Thus, pressure on each inner wheel = kN25.31
2
0 =
′R             . . . (iii) 

and on each outer wheel = kN75.68
2
0 =

R    . . . 

(iv) 

(ii) At just the stage of overturning, let the truck speed be Vc then  

Fcf = 1000
1010

200000 2
×× cv . 

The restoring moment due to truck load must be equal to or less than 
overturning movement due to centrifugal force about 0. 

 or  8.0200005.1
10

1000
2

×=×× cv
 

 or  vc
2 = 7.1066

5.1
108

0001
000,200

=
×

×
///
///

 

 or   vc = 32.664 m/s 

     = phkm6.117
1000

6060664.32
=

××     . . . (v) 

(iii) For avoiding skidding, the minimum coefficient of friction,
gr
v2

=μ  

(as per Eq. (6.7)). 

or   2.0
20010
2020

=
×
×

=μ      . . . 

(vi) 

(iv) In Eq. (6.11(b)) to avoid assistance of friction 0=φ  hence 

tan 
gr
v2

=β  

or  2.0
20010

20tan
2

=
×

=β  

or  β = 11° 18.5 ′ 

SAQ 3 
A horizontal bar AB 1.6 m long is rotating about the vertical axis through 
end A, in an interval of 10 seconds it accelerates uniformly from 1200 to 
1800 rpm. Compute the initial and final linear velocities. Also compute the 
tangential and normal components of acceleration of the mid-point of bar 
after 8 seconds from start. 
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SAQ 4 

A locomotive weighing 600 kN is negotiating a curve of 300 meter radius at 
a speed of 100 kmph. Calculate the radial pressure and radial acceleration 
between wheel and rails. If the wheel base is 1.2 m, find the vertical height 
at which the outer rail is to be raised above the inner wheel so that the radial 
pressure is zero at this speed? Also calculate the vertical pressures upon 
each rail (i) when the track is flat, and (ii) when super elevation is provided 
as above. Assume g = 10 m/sec2. Engine has four wheels on two axles, and 
centroid of locomotive is 1.8 m above the rails. 

 
 
 
 
 

6.4 SIMPLE HARMONIC MOTION 

Many types of motion of a particle of a body are such that it acquires the same 
position and moves in the same direction with the same velocity after a certain 
fixed time interval, e.g. motion of a piston of the engine, vibration of spring or 
oscillations of a pendulum. Such motions are termed as periodic motion, and the 
above referred time interval is called period.  Simple harmonic motion is a special 
case of this general periodic motion, when the body moves in a straight line, its 
acceleration is always in a direction towards a central fixed point and at any 
instant is proportional to the distance of the body at that instant from the referred 
fixed point. Hence the basic characteristics of a simple harmonic motion can be 
defined as 

(i) the fixed point of reference is situated on the path of motion, 

(ii) at any instant, the acceleration of the body is directed towards or 
away from this reference point along the path of motion, and  

(iii) the magnitude of acceleration at any instant is proportional to the 
distance of the body from the fixed point at that instant. 

Let us consider the motion of a body as shown in Figure 6.7. The path of motion 
is XX ′ rectilinear and O is the fixed reference point. 
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Figure 6.7 

Body A is moving in a simple harmonic motion with extreme positions P and p1
 

at a distance r from fixed point O. When the body is moving from O towards P 
and is at position A at any instant, it will have a retardation, i.e. negative 
acceleration towards O which is directly proportional to the distance OA (= x).  
With increase in x, retardation goes on increasing till it reaches P (x = r) where 
velocity becomes zero and retardation maximum. As velocity is zero at P, the 
body is at rest. The distance P(r) is also known as amplitude. 
Now the body starts moving towards O with decreasing acceleration to attain a 
value of zero at fixed point O (x = 0). The velocity is maximum at this point. 

6.4.1 Important Terms  
Time Period 

When the body start from fixed position O, traverse the path OPOP′O such 
that the body is once again at O moving in the same direction OP and with  
same acceleration (o) with same velocity, it is said to have completed one 
oscillation. Time taken by the particle in completing one oscillation is 
called time period and is denoted by T. 

Referring Figure 6.8, the motion of body A along rectilinear path XOX′can 
be treated as projection of point B moving on a circular path of radius 

 

 

 

 

 

 

 
Figure 6.8 

and uniform angular velocity ω rad/sec. In one complete oscillation, the  
distance covered will be 2  Then .radπ

T = 
ω
π2                   . . . (6.13(a)) 

Amplitude 
The distance of extreme position of body from fixed point (= OP) is called 
amplitude. It may be noted that fixed point O representing the mean 
position of the body during a simple harmonic motion. 

Frequency 
The number of oscillations (also called vibrations or cycles) per second is 
called frequency. Thus if f is the frequency then 

f = 
π
ω

=
2

1
T

       . . . (6.13(b)) 

Phase 
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The position or direction of motion of the body at any time is denoted by 
the phase while phase difference is referred to the amount by which the 
phase of a body differ from fixed reference or another body. 

Applied Mechanics 

6.4.2 Velocity and Acceleration 
Referring to Figure 6.8, the angular displacement of the body from position of 
rest (= 0) after a time internal, t, would be ωt = θ. The projectile of this on x axis 
will be OA (= x). 

where    x = r sin θ = r sin ωt.         . . . (6.14(a)) 

Let point B moves from BBt to in time t at an angular distance of  
θ + δθ = ω (t + δt). 

ttB δ+

Then project dx = x + dx – x 

   = trttr ω−δ+ω sin)(sin  

  = r [(sin tω  cos tδω  + cos tω  sin tδω ) − sin tω )] 

if  is chosen as a small interval of time then sin tδ tδω = and cos tδω tδω = 1. 
This makes dx = r [sin tω + tδω  cos tω  – sin tω ) = rω tδ  cos  tω

Hence, velocity of projection, tr
t
xvx ωω=

δ
δ

= cos                 . . . (6.14(b)) 

        ω     . . . (6.14(c)) )( 22
1 xrBA −=′ω=

working similarly. 

Acceleration projection         tr
t

vx
x ωω−=

δ
δ

=α sin2      . . . (6.15(a)) 

Negative sign indicates it is retardation when x is positive, 

hence                     . . . (6.15(b)) xtrx
22 sin ω−=ωω−=α

or              )2()2( 22 fasf
x
x π=ωπ=ω−=

α  

or                 f =
x
xα

π2
1         . . . (6.15(c)) 

and time period    
x

x
f

T
α

π== 21        . . . (6.15(d)) 

6.4.3 Graphical Representation of SHM 
The algebraic expressions developed for displacement (x), velocity, , and 
acceleration, , as developed above can be graphically represented as follows 
(Figure 6.9). 

xv

xα

     trx ω= sin  

2
3

2
atandatmax

π
=ω−=

π
=ω= trtrx  

 ππ=ω= 2,0 andatmin tox  

     = xV tr ωω cos  
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              π=ωω−= tr at

 
2

3
2

0 andatmin
ππ

=ω= tvx  

       trx ωω−=α sin2

2
3

2
atandat 22

max
π

=ωω+=
π

=ωω−=α trtrx  

      ππ=ω=α 2,00 andat tx  

then         
ω
π

=
2T  

 

 

 

 

 

 

 

 

 

 
 

 
Figure 6.9 

Example 6.7 

The piston of an engine with stroke of 1.0 m is assumed to be executing a simple 
harmonic motion. The crank rotates at 600 rpm. Find velocity and acceleration of 
the piston when it is at a distance of 0.3 m from its centre. 

Solution 

Angular velocity of crank = π=
×π

=ω 20
60

6002  

Radius of crank circle = m5.0
2

Stroke
=  

Then velocity at a distance of 0.3 m from centre would be 

s/m83.05.020)( 2222 π=−π=−ω= xrv    . . . (a) 

2222 sm1203.0)20( π−=×π−=ω−=α xx     . . . (b) 

SAQ 5 
A pump plunger weighing 300 N is driven by a crank of uniform velocity of 
150 rpm. The crank length is 300 mm. Find 

(a) velocity and acceleration of plunger when it is at mid point. 
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Applied Mechanics (b) maximum velocity and maximum acceleration of plunger and the max 
accelerating force. 

(c) the periodic time. 

Assume g = 10 m/sec2. 

 

6.5 WORK, POWER AND ENERGY 

6.5.1 Work 
According to Newton’s second law of motion, a force when applied on a body 
displaces or tends to displace the body from its position of rest or of uniform 
motion. However, this force can be considered to have performed some work 
only and only when it moves the body. If the body does not get displaced no work 
is assumed to be performed however large the magnitude of the force might be. In 
other words, the work is performed only when the force accomplishes some 
displacement of body in the direction of application of the force. 

Work performed is denoted by the product of the magnitude of force (= P) and 
the displacement in the direction of the force (d) (i.e., W =P × d). 

Let a force of magnitude, P, is acting on a body is resting on a frictionless surface 
(Figure 6.10) to cause its displacement (x) from position A to A1 and let the force 
be inclined at an angle α with the direction of displacement force P is resolved in 
to components p cos α along the direction of movement and p sin α normal to it. 

 

 

 

 

 
Figure 6.10 

Then work done by force P in moving the body will be sum of the work done by 
its components along their respective directions. Thus 

W = P . d = P cos α × x + P sin x . 0 = P x cos α         . . . (6.16) 

It may be noted that only the components of the force system in the direction of 
displacement does perform the work. 

Since W = P. d, the unit of work done will be unit of force unit of distance. 

In SI units, the unit of force is N while that of distance is meters (m) hence unit of 
work would be Nm. It is defined as the amount of work done by the force of 
magnitude 1 N in moving a body by a distance of 1m in its direction. This is also 
called Joule. Thus 

1 Joule = 1 Nm 

Gradually Applied Load and Sustained Load 

Difference should be made between a sustained load and a gradually 
applied loads in computing the work done by it. Let us take the example of 
a beam AB (Figure 6.11(a)) supported at ends AB and assume a load is 



    

185

 
Laws of Motionapplied gradually at point 1 to produce a displacement of 11δ  at point 1. 

When the load is starting to be applied at 1 the displacement at point 1 is 
zero. As the magnitude is gradually increased from zero to full value P1 is 
displacement of 1 gradually becomes 11δ , while that at another point 2 will 

be . The average load applied during this process is 21δ
22

0 11 PPPav =
+  

(Figure 6.11(b)) and work done by this force will be 11
1

2
δ

P  while at point 2 

it will be zero (i.e. O × 21δ ). Now, let us gradually apply a load at point 2 
developing from zero to P2. The displacements produced would be 12δ  at 1 
and at point 2. If the load P22δ 1 at 1 is continued to be sustained on beam. 

The work done will be P1 ×  at 1 and 21δ 2
2

at22
2 δ×

p  producing a total 

work 22
2

211 2
δ+δ=

PpW . 

This concept can also be explained with the help of graphic representation 
of work as shown in Figures 6.11(a) and (b). When the load is suddenly 

applied, the average load is not 
2
p  but full value P and the work done will 

be Pδ (Figure 6.11(c)). 

 

 
 
 

 
 
 
 

(a)      (b) 

 

 

 

 
(c) 

Figure 6.11 

6.6.2 Power 
The rate of doing work by a force is defined as power. If a force of magnitude P 
causes a displacement in a body d in t units of time. The work done would be W, 
where W = P × d and Power would be 

vP
t

dP
t

W
×=

×
=             . . . (6.17) 

Hence, Power can also be defined as force × velocity (since v
t
d
= ). The power is 

measured in S1 units as watts where one watt is the work done by 1 N force is 
causing a displacement of 1m in one sec (1 N m/s). In practical cases, this unit of 
power (watt) is too small hence the unit employed is kilo watt where 1 kilo watt 
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(1 kW = 1000 watts). In Engineering systems, normally we use MKS system, i.e. 
kgf, meter and sec units. Hence the unit of power would be the work done per 
second by a force of magnitude 1 kgf in causing a displacement of 1 m. The 
engineering unit of power generally would be horse power (hp) where  
1 hp = 75 m kg f/s or 4500 m kg f/min. 

Applied Mechanics 

In many engineering problems, we use mechanical appliance like engine or 
motors etc. Hence we need to define power more explicitly. Two terms, e.g. 
indicated power (IP) and brake power (BP) are frequently used. 

Indicated power is IP or IHP (if power unit used is horse power) is the power 
developed in the cylinder of the engine or input power of a motor. This represents 
the rate at which work can be performed at piston or at which power is externally 
supplied to a motor. 

Brake power, i.e. BP or BHP (if unit is horse power) is the power supplied by the 
engine at pulley or shaft of the engine. It is termed brake power as it is measured 
by means of a brake drum. 

It can be easily observed that BP will always be less than IP as some work will 
always be lost due to frictional forces in the mechanical system. Hence the 
mechanical efficiency of a machine can be defined as 

Efficiency, η  = 100×
IP
BP percent     

which will always be less than 100%. 

The effort lost due to these frictional forces can be said to be work lost in friction 
or friction power (FP) and is representative of the efficiency of the mechanical 
system. Efforts are made to minimize the frictional losses of power to improve 
the efficiency of the system.  

6.6.3 Energy 
When an actual effort is applied in causing a displacement in a mechanical 
system, work is considered to be performed while the rate of doing this work is 
termed as power. The mechanical system under consideration may be capable of 
doing more work than actually performed in a particular case. The capacity of 
work performance, i.e. the maximum work which can be performed by the system 
is defined as the energy of the system.  

There can be several forms of energy viz. mechanical, electrical, thermal, 
chemical or nuclear etc. The form of energy can be transformed from one form to 
another. It can be observed that energy can neither be created nor destroyed. It 
can only change its form. This concept is known as law of conservation of 
energy. In formal form, this law can be stated as follows. 

The total amount of energy of the universe (or any system) is constant. It can 
neither be created nor destroyed although it changes its form. 

In mechanics, the form of energy with which we are most concerned is 
mechanical energy. It can exist in a body either by virtue of its position or 
configuration (termed Potential energy (PE) or by virtue of its motion (termed 
kinetic energy) KE). 

To explain the concept of potential energy and kinetic energy, let us consider a 
body of mass m raised through a height “h” above ground level, the work done on 
the body will be force × distance = mg × h. This will be stored in the body in the 
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Laws of Motionform of potential energy. Thus the Potential Energy of the body due to its position 

at h above the ground is 

PE = mgh            . . . (6.17) 

Now, let the body to fall to ground under its own weight. At time t = 0, the initial 
velocity of body u = 0 and is moving with a constant acceleration α, where α = g 
i.e. acceleration due to gravity. Let it attain a velocity, v, when it touches the 
ground, i.e. it travels through a distance h, then 

ghvghuv 22 or22 =+=      . . . (i) 

or  
2

2vgh=        . . . (ii) 

The work done by the body during this process will be force × distance 

i.e.        = mgh                 . . . (iii) 

Substituting gh from Eq. (ii) into Eq. (i), we get  

Work done by body virtue of its motion, i.e. the kinetic energy is KE  

where   KE = 2

2
1 mv       . . . 

(iv) 

By principle of conservation of energy 

KE = PE  or  mgh = 2

2
1 mv      

Next let us consider any position of the body (say c) referred above as shown in 
Figure 6.12 and consider the energy 

At A,    y = 0, v = 0, PE = mgh, KE = 0 

         TE = mgh + 0 = mgh       . . . 
(i) 

At C,   y = y, v2 = 0 + 2 gy, PE = mg (h — y)     . . . (a) 

         KE = mgygymvm =×=× 2
22

1 2      . . . (b) 

         TE = PE + KE = mg (h — y) + mgy = mgh   . . . (ii) 

At B,    y = h, v2 = 2 gh, PE = mg (h — h) = 0 

         KE = 2

2
1 mv  = mghghm

=×2
2

              . . . (iii) 

 

 

 

 

 

 
 
 

Figure 6.12 



 
 

 
188 

It can be clearly seen that total energy of the body at any position A, B or C is 
same (Eqs. (i), (ii) or (iii) = mgh). Verifying the principle of conservation of 
energy which states that total energy remains constant while the form of energy 
changes from potential energy at A to part potential energy and part kinetic 
energy at C and ultimately to only kinetic energy at B. 

Applied Mechanics 

Example 6.6 

To stretch a spring by 30 mm certain force is applied to it. Calculate the 
work done, if spring constant i.e. force required to stretch the spring by  
1 mm is 60 N. 

Solution 

Force required to cause 1 mm displacement is 60 N. Maximum force 
required for 30 mm = 60 × 30 = 1800 N. Force is gradually applied, i.e. it 
grows from 0 to 1800 N. 

Average force, Pav = N900
2
18000

=
+  

Hence work done = 900 ×30 = 27,000 Nmm = 27 Nm = 27 J. 

Example 6.7 

A train with total weight of 1000 tonne is resting on an inclined track of 1 
in 100 with tractive resistance of 5 N per kN. The train is pulled downwards 
by a locomotive with a constant pull of 5 tonnes. Assuming g = 10 m/sec2, 
calculate the power developed by the locomotive, after it has travelled a 
distance of 1 km (Figure 6.13). 

 

 

 

 

 

 

 
Figure 6.13 

Distance travelled = s = 1000 m 

Initial velocity = 0, final velocity = v (say) : acceleration = a 

Then equation of dynamic equilibrium is  

⎭
⎬
⎫

⎩
⎨
⎧ α=α=α=−+ smalliswhen

100
1sintana

g
WFTP  

or  50000  +  100000 a×
/

/
=×−

01
010000000,10005

100
1   

or    a = 1.0
100000

50000
001

00100050000
=⎭

⎬
⎫

⎩
⎨
⎧ −

//
//

+
 

also   20010001.020222 =××+=+= axuv
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Laws of Motionor  v = 14.14 m/s 

Power developed = Work done/sec = Force ×Speed  

  = 50000 ×14.14 watts 

or     = 707000 watts  

or     = 707 k watts. 

Example 6.8 

During the impact test on metal specimen, in the strength of material 
laboratory, the hammer head weighing 100 N is arranged to swing in a 
circular path and is released at point 1.6 m higher than the specimen fixture. 
At impact, after breaking the specimen hammer rises to 0.6 m height above 
specimen fixture. Calculate the speed of hammer and kinetic energy just 
before the impact and the energy spent in breaking the specimen, assume  
g =10 m/sec2. 

Solution 

Potential energy of hammer head above specimen = 100 ×1.6 

    = 160 Nm (or J)    . . . (i) 

Potential energy of hammer remaining after breaking the specimen  
= 100 ×0.6 = 60 Nm (or J)      . . . (ii) 

Energy observed during breaking = 160 – 60 = 100 Nm or (J)            
. . . (iii) 

The potential energy at the level of specimen (lowest point on the one of 
swing) = 0. Since total energy of the body must remain same, kinetic energy 
of body at this point = 160 Nm (from Eq. (ii)), i.e. maximum potential 
energy. Initial velocity of hammer u = 0, then from v2 = u2 + 2 gh  

or v2 = 0 + 2 s/m66.532326.110 or ===×× v  

Kinetic energy at this point = 32
10

100
2
1

2
1 2 ××== mvKE = 160 Nm same  

as (i). 

SAQ 6  
In railway yard, spring bumper with stiffness, K, is provided at the end of a 
side track of track resistance is N per kN. The bumper spring has the total 
compressibility of 0.5 m. The stiffness of the spring is to be so designed that 
the wagon weighing 50 kN travelling at a speed of 4 m/s dawn a slope of 
50, at a distance of 40 m from the junction A (Figure 6.14) and from A m 
over on a horizontal track for 100 m before striking the bumper, find the 
spring stiffness K and the roll back distance of the wagon from the point of 
maximum compression. Assume g = 10 m/sec2. 
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Figure 6.14 

 

SAQ 7 
A wagon weighing 50 kN is moving with a velocity of 36 km/hr on a level 
track with negligible track resistance. At the end of track A, main bumper 
shield with spring constant of 2 kN/mm is provided. Two auxiliary bumper 
shields each of spring constant 1 kN/mm are provided 200 mm before main 
shield. Determine the maximum compression in main bumper. Also how 
much share of energy is transmitted to auxiliary springs?  
Assume g = 10 m/sec2. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.15 
 
 
 
 
 
 
 
 

6.7 SUMMARY 

Motion is a common phenomenon in nature but by mechanics point of view, it is 
an extremely important phenomenon. In this unit, we have understood the cause 
of motion and found that a body at rest may be set into motion, on being acted 
upon by external forces. We have also discussed motion of a particle on a circular 
path as well as in simple harmonic motion. 

In this unit, we learnt that whenever a constant force, F, acts on an object while it 
experiences a displacement, d, we say that the force does work W on the object. 
The amount of work done is a scalar quantity, and is calculated from W = F. d. 
The concepts of work, power and energy have been explained in detail in this unit 
along with different forms of energy. 
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Laws of Motion6.8 ANSWERS TO SAQs 

SAQ 1 

Cannon Mass (M) = 20000 kg, Shell mass (m) = 100 kg. 

Its velocity is = 800 m/s, 

Let recoil velocity be V then MV + mv = 0 by principle of conservation of 
momentum 

or 0.4
20000

800100
−=

×
−=V m/s. 

 (Direction of cannon velocity opposite to that of the shell.) 

Final velocity of cannon (v) = 0, initial velocity u = 4.0 m/s. 

Let a = acceleration of cannon, 

 t = time taken to stop cannon in its recoil distance of s (s = 0.4 m). 

Then   v2 = u2 + 2 as 

or        20}0.40{
4.02

1 2 −=−×
×

=a m/sec 2 (retardation) 

Then retarding force P required = M × a = 20000 × 20 = 4 × 105 N 

Also  v = u + at 

O = 4.0 − 20 × t 

or   t = 0.2 sec 

SAQ 2 

Mass of cannon (M) = 1000 kg; bullet (m) = 1 kg, its velocity (v) = 300 m/s. 

Spring constant K = 12 N/mm = 12000 N/m. 

By principle of conservation of momentum 

MV + mv = 0 

or 1000 × V = − 1 × 300 

or V = − 0.3 m/sec 

The final velocity of cannon = 0 after it presses buffer. 

Let    s = spring displacement, then 

  v2 = u2 + 2 as 

 0 = 0.32 + 2 as       . . . (a) 

Also by Newton’s second law 

P = m × a  and K = 
s
P     or P = 12000 s 

Also P = 1000 × a 

Then  1000 a = 12000 s 

or 
12
as =          . . . (b) 

Substituting Eq. (b) in Eq. (a) 
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12
209.0 aa××−=    or   a2 = 0.54    or    a = 0.735 m/sec2 (retardation)  

Applied Mechanics 

Substituting Eq. (a) from Eq. (c) into Eq. (b) 

m0613.0
12
735.0

==s  or     61.3 mm     . . . (d) 

SAQ 3 

Initial angular velocity = ω0 = π=
×π 40
60

12002  

Final angular velocity = ω1 = π=
×π 60
60

18002  

The free end of bar describes a circle of radius 1.6 m. 

Initial linear velocity of B = ω0  r = 40 π ×1.6 = 64 π    . . . (a) 

Final linear velocity of B after 10 seconds = ω1 r = 60 π × 1.6 = 96 π  . . . (b) 

We have ω1 = ω0 + π t 

 or 60 π = 40 π + α × 10 or α = 2 π rad/sec2

Angular velocity after 8 seconds = ω1= ω1 = 40 π + 8 × 2 π = 56 π 

The mid-point of bar describes a circle of 0.8 m radius. 

nα = normal acceleration = − ω2 r = (56 π)2 × 0.8 

          = − 2508.8 π2 m/sec2 

 = tangential accelerationtα rα = 2 π × 0.8 = 1.6 π m/sec2

SAQ 5 

Angular speed of crank = π=
×π

=ω 5
60

1502  

Periodic time            = 40.0
5
22

=
π
π

=
ω
π

=T      . . . (a) 

Displacement of plunger = 0.15 m from its mean position 

Velocity      s/m3.1)15.03.0(5)( 2222 π=−π=−ω= xrVx   . . . (b) 

             . . . (c) 222 75.351.0)5( π=×π=ω=α xx

         . . . (d) 22
max 5.73.0)5( π=×π=α

  N2255.7
10
300Force 22

max(max) π=π×=α
g

W     . . . (e) 

SAQ 6 

Weight of wagon = 50 kN = 50000 N 

Track resistance = 8 ×50 = 400 N 
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Laws of MotionInitial velocity of wagon = 4 m/s 

Initial height of wagon above A = m8.0
50
140 =×  

Total distance travelled by wagon before coming to stop by  
bumper = 40 + 100 + 0.6 = 56240 Nm 

Work done in spring compression : If k is spring constant and δ 
compression then force in spring is k δ since work = force ×distance. 

Initial KE of Wagon = KE = 22 4
102

50000
2
1

×
×

== mvKE = 40000 Nm. 

By principle of conservation of energy. 

Initial KE of wagon + Work done by gravity = Work against friction 
           + Work done m spring compression 

i.e. 40000 +  50000 ×0.8 = 56240 + 0.18 K 

 or  K = 23760/0.18 = 132000 N/m 

132 N/mm or 0.132 kN/mm. 

The energy transferred from wagon to bumper during impact is released by 
pushing the wagon back by a distance of “s” m. Thus 

Energy stored in spring = s×=×× 4006.0132000
2
1 2  

or             S = m4.59
400

23760
=  

SAQ 7 

Refer Figure 6.14. 

Weight of wagon = 50 kN  

Initial velocity = 36 km/hrs 

        s/m10
0606

00360
=

/×/
//  

Initial KE of the wagon 22 10
10

50000
2
1

2
1

××== mv  

Km = 2 kN/mm = 2000 kN/mm = 250,000 Nm = 250 kNm 

   KA = 1 kN/mm = 1000 kN/m 

Let the total compression in auxiliary spring be δ, then total compression of 
main spring will be 0.2 + δ. 

Energy absorbed by main spring = 2)2.0(
2
1

δ+mk  

   22 )2.0(1000)2.0(2000
2
1

δ+=δ+××=     . . . 

(i) 

Energy absorbed by auxiliary spring = 22 1000
2
12 δ=δ× AK  

Law of conservation of energy gets 250 = 1000 (0.2 + δ)2  
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Applied Mechanics or  0.04 + 0.4  25.02 2 =δ+δ

or   )125.002.0(2.02 −+δ+δ

or   0105.02.02 =−δ+δ

Hence  
2

68.02.0
2

42.004.02.0 ±−
=

+±−
=δ  

Omitting – ve sign as unfeasible 

mm24m24.0 or=δ                . . . (iii) 

Total deformation of main spring = 0.2 + 0.24 = 0.44 m 

or     = 440 mm      . . . 
(iv) 

Energy absorbed by main bumper = kNm6.193)44.0(2000
2
1 2 =××   . . . (v) 

Hence % of energy absorbed by main spring %2.77
250

6.193
==  

or        % energy absorbed by auxiliary spring = 22.8 %. 
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