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4.1 INTRODUCTION 

This unit will help you in understanding the concepts of centre of gravity of thin 
uniform plates of various shapes with or without openings, and also the centroid 
of irregular shaped areas. The concept of centroid of plane areas is similar to 
centre of gravity of thin uniform plates of same shape as the plane areas. Moment 
of Inertia of plane areas about given axes are mathematically referred to as 
second-moment of areas. The knowledge of moment of inertia of plane areas is 
useful in the analysis of bending stresses of beams under flexure. The moment of 
inertia of rods, discs, or spheres are useful in studying the problems in dynamics 
of rigid-bodies. 

Objectives 
After studying this unit, you should be able to determine 

• position of centre of gravity of thin uniform rods, 

• position of centre of gravity of masses of plates of various shapes 
with or without openings, 

• position of mass centre of a system of coplanar particles, 

• position of centroid of irregular shaped areas, and 

• compute moment of inertia of various areas and masses, about the 
given axes. 
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Applied Mechanics 4.2 CONCEPT OF CENTRE OF GRAVITY 

A body can be considered as an agglomeration of a large number of particles each 
of which is adhering to its adjacent particles. These particles may have different 
sizes, density or may have uniform size and density. Each of these particles is 
subjected to gravitational force directed towards the centre of the earth. The 
magnitude of the gravitational force will depend on its mass. For all earthly 
bodies whose sizes are very small as compared to its distance upto the centre of 
the earth, the forces of gravitational attraction on various particles of the body can 
be assumed to be parallel. Hence the total weight of the body is the summation of 
all these parallel forces acting vertically down towards the centre of the earth.  
The line of action of the resultant R of these forces can therefore be found. 

Consider a case of a triangular metal plate ABC placed in a vertical plane with its 
side AB vertical (Figure 4.1). Divide the area of triangle in large number of 
imaginary vertical strips parallel to BA; for each of the strips the gravitational 
force can be computed and resultant R of all these forces will be along a vertical 
line (1-G) as shown in Figure 4.1(a), where G is a point at which entire weight of 
the plate is concentrated. When the plate is oriented at right angle to its previous 
position, line BC is placed vertically as shown in Figure 4.1(b). New vertical 
strips can be formed and resultant R, which is obviously of same magnitude R as 
in the case of first orientation (a), will be acting along vertical line (2-G). The 
location of G will be the intersection of lines of action of resultants obtained in 
cases (a) and (b). The mass centre is a unique point G in the plate ABC through 
which the resultant weight of all the strip-masses will always pass irrespective of 
the orientation of the plate. Figure 4.1(c) shows the third orientation of triangle 
ABC where one of the medians BG3 in the triangle is kept vertical. It will be 
proved later on that the point of intersection of all the medians represents the 
mass centre of the triangular plate. 

 

 

 

 

 

 

 
(a)        (b)        (c) 

Figure 4.1 : Position of Resultant R in Different Orientation of Plate ABC 

Centre of gravity or Mass-centre is a point in the body where the entire mass or 
weight is assumed to be concentrated and, for convenience, a single resultant 
gravity load R can be used as a replacement for distributed gravity loads at 
various locations of its particles. 

4.2.1 System of Two Equal Masses 
Consider a system consisting of two masses mA and mB with their centres at 
locations A and B which are rigidly connected by a thin rod of negligible weight 
as shown in Figure 4.2 

B
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Centre of Gravity and 

Moment of InertiaThe resultant force R due to combined effect of the weight of the two masses is 
equal to (mAg + mBg), and the location G, on the thin rod, of this resultant of a 
single equivalent force (m

B

A + mBB) × g is the centre of gravity of the two masses. 

When the two masses are of equal magnitude, mA = mB = m, the resultant R of 
magnitude 2 mg will act at mid-point of AB as shown in Figure 4.2. 

B

 

 

 

 

 
 

 

 
Figure 4.2 

Hence, the two equal masses m at A and B can be looked upon as a single 
equivalent mass 2 m at the centre of gravity G, where GA = GB. The case of two 
unequal masses will be dealt with later in this unit. 

4.2.2 Centre of Gravity of a Thin Uniform Rod 
Let AB = L be the length of a uniform rod or a uniform strip with its mid point G. 
The mass per unit length of this rod or strip is same at all points.  For any 
elemental mass (δm) at point P located at a distance x from the mid-point G as 
shown in Figure 4.3, there is an equal mass (δm) at P′ at the same distance x′ = x 
on the other side of centre line passing through point G of the bar. The centre of 
gravity of these two equal masses at P and P′ is at their midpoint G. This is true 
for all other pair of masses : one set in the portion GB of the bar and the 
corresponding masses in the counterpart GA. Thus G, the midpoint of AB, 
happens to be the centre of gravity of the uniform rod.  However, if the bar is of 
non-uniform weight, the position of G will shift from the central point. 

 

  

 
 
 

 

 
Figure 4.3 

4.2.3 Centre of Gravity of a Uniform Rectangular Plate 
Let the dimensions of uniform rectangular plate ABCD be L × B, where AB = L 
and BC = B as shown in Figure 4.4. It is already seen from the previous section 
that the centre of gravity or mass-centre of any uniform strip of length L parallel 
to AB is at its midpoint G. Since the plate ABCD has a uniform mass all over its 
area, the centre of gravity of the first strip from AB or DC is indicated by G1, 
while those of second strip, third strip and so on, can be indicated by G2, G3 etc. 
depending upon the number of even strips chosen for the rectangular plate.  
Further, if the widths of the strips chosen are equal, the masses associated with 
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G1, G2 and G3 etc. will be of same magnitude, say m. In fact, you can realize that 
all these masses (m) are spread uniformly on line M1 M2, where M1 and M2 are 
midpoint of AB and DC. Obviously the C. G. of all these masses will be at G0 
which is the midpoint of M1 M2. 

Applied Mechanics 

 

 

 

 

 

 

 

 
 

 

 

 
Figure 4.4 

4.2.4 Mass-centre of a System of Two Unequal Masses 
Consider two spherical bodies of masses m1 and m2 with centres at points A and B 
respectively, where distance AB = L. Let us assume that these masses are 
connected by a massless thin rod so that distance AB is not changed. Let AB be a 
horizontal line along X direction. 

Let the weight W1 of mass m1 act vertically along A A1 and weight W2 of mass m2 
along B B1 as shown in Figure 4.5 

 

 

 

 

 

 

 
 

 
Figure 4.5 

Let G be the centre of gravity of the two masses at a distance 1x  from A. 

Now the resultant weight, R = (m1 + m2) × g acts vertically downward at G. 

Using the theorem of moments, we have 
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Centre of Gravity and 

Moment of Inertia
    LgmxR ×=× 21  

where   R = (m1 + m2) × g = [Σ (m)] × g 
∴    Lmxmm 2121 )( =×+  

∴    
)(

2
1 m

Lmx
Σ

= ; 

where   21)( mmm +=Σ

Similarly, by considering equilibrium of moments about point BB1, 

)(
1

2 m
Lmx

Σ
=  

Case I 
As a special case, when m1 = m2 = m 

  R = m + m = 2 m; 

221
L

m
mLx ==  

Thus, midpoint of line AB is the location of C.G. for two equal masses, as 
expected. 

Case II 
When AB = 6 m (say), and masses are given as follows : 

m1 = 2 kg at point A1

 m2 = 4 kg = 2 m1 at point B1

  m632 and111 ==+=Σ Lmmmm  

      
3

2
)(

2
1

L
m
Lmx =

Σ
=  

and   
3)(

1
2

L
m
Lmx =

Σ
=  

It is clear that in general, 

    
1

2

2

1
m
m

GB
AG

x
x

==  

This implies that distances of the C.G. from the two particle masses are 
inversely proportional to their masses. 
or    2211 xmxm =  

    2211 xgmxgm =  

Therefore, the moment of mass m1 about G just balances the moment of 
mass m2 about G. Thus G, the centre of gravity of two masses, happens to 
be fulcrum of an imaginary levels AB of negligible weight having two 
masses (m1) and (m2) placed at x1 and x2 from the fulcrum F as shown in 
Figure 4.6. 
The resultant mass (m1+ m2) is concentrated at location G so that total 
resultant weight R = (m1+ m2) g acts downward at G and if a fulcrum or 
support F is provided to the lever at G, the vertical reaction V offered by 
this support will balance the resultant weight R to keep the system of 
masses in equilibrium. 
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Figure 4.6 

4.2.5 Centre of Gravity of a System of Collinear Masses 
It is well understood by now, that centre of gravity of several masses is a point 
through which resultant weight R of the masses passes. 

Consider the case of two unequal masses with centres A and B as given in 
previous section. If the line AB is kept vertical, the two weights (mAg) and (mBg) 
will be collinear since they act along same vertical direction AB. Hence, the 
resultant, R = (m

B

A+ mBB) × g, will also be along the line AB passing through the 
centre of gravity G as shown in Figure 4.7(a). The distance ax (i.e. 1x ) has already 
been worked out in the previous section. 

This is also true for a system of masses mA, mB, mB C, mD etc., all having their 
centres A, B, C, D lying on a rigid massless rod along line AD. Hence, all these 
collinear masses can be placed along a single vertical line AD as shown in  
Figure 4.7(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(a)               (b) 

Figure 4.7 

Since the resultant force R of all these weights must also act along the line AD, 
the centre of gravity of the collinear masses is always on the line joining their 
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Centre of Gravity and 

Moment of Inertiacentres. This logical thinking is even otherwise appealing to our commonsense.  
The same type of reasoning can be applied to determine the location of centre of 
gravity of a triangular plate of uniform mass per unit area. 

4.2.6 Centre of Gravity of a Uniform Triangular Plate 
The centre of gravity of a uniform triangular plate (i.e. with uniform thickness) 
lies at its centroid, which is the point of intersection of its medians. This can be 
proved on the basis of following logic. 
Consider the triangular plate ABC as shown in Figure 4.8 

 

 

 

 

 

 

 

 

 

 
Figure 4.8 

Let M1 and M2 be the midpoint of sides BC and AB of the triangle. Consider a 
typical small strip BB1 C1 parallel to side BC. The midpoint M1′ of this strip lies on 
the median AM1. Since the strip has uniform mass per unit of length, mass centre 
of this strip is at M1′. 
This result is based on again the old logic that for every elemental mass δm at B′1 
there is an equal mass δm at C1′ which are equidistant from M1′. Similarly, 
mass-centre of any other strip parallel to BC will lie on this median AM1. Further, 
since the mass-centre for all such strips (parallel to BC) in the triangle lie on the 
median AM1, it can be concluded that the mass-centre of all these masses must lie 
on the median AM1. 
Similarly, considering the strips, like A2 BB2 parallel to AB, it can be proved that 
mass-centre of the triangular plate should lie on the median CM2. Hence,  
mass-centre of the triangular plate must be at the intersection of the medians. 

4.2.7 Mass-centre of a System of Coplanar Particles 
Consider a system of coplanar particles A1, A2, A3 etc., having masses  
m1, m2, m3, . . .  (or weights w1, w2, w3 etc.) which have their co-ordinates (x1, y1),  
(x2, y2), (x3, y3) and so on, as shown in Figure 4.9. 
For simplicity of understanding, assume that all the particles lie in a horizontal 
plane XOY and weights w1, w2, w3 of these particles A1, A2, A3 are acting 
vertically downward along z-direction. 
Let the resultant W of all these weights act at G whose co-ordinates are )( y,x . 

Then,  , where n is the number of coplanar 

particles. 

∑=+++=
n

i
iwwwwW .)..( 321
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Figure 4.9 

Hence, applying the Varignon’s theorem which states that “moment of the 
resultant force at G is equal to the algebraic sum of the moment of all the 
individual forces at A1, A2, A3 etc. about the horizontal axis OY”. 

∴    ...332211 +++= xwxwxwxW  

       =  ii
i

xwΣ

      
ii

iiiiii
w

xw

W

xw
x

Σ

Σ
=

Σ
=

)()(
 

Similarly, considering the theorem about axis OX. 

    ...332211 +++= ywywywyW  

∴        
ii

iii
w

yw
y

Σ

Σ
=  

where,  implies the sum of all terms where i varies from 1 onwards for all 

masses. 
i
Σ

The concept of centre of gravity or mass-centre of thin plates can be extended to 
that of centroid of plane areas. Thus, replacing the masses by corresponding 
areas, we have centroid of a rectangular area ABCD at its geometric centre or the 
point of intersection of diagonals. The centroid of a triangular area is at its point 
of intersection of the medians. Note that centroid of a plane area of a given shape 
and centre of gravity of thin plate of the same shape are at the same location 
provided the plate has uniform-mass per unit area. 

4.2.8 Centroid of Irregular Shaped Area 
Consider an irregular area, A, as shown in Figure 4.10 (having a small thickness 
throughout) which can be divided into a large number of elemental areas, such as, 
δAi. 

We can write A as a summation of elemental areas 

∴  A = δ A1 + δ A2 + . . . + δ Ai + . . .  

   = , where, i = 1, 2, 3, . . . , n (say). i
i

AδΣ
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Centre of Gravity and 

Moment of Inertia 

 

 
 
 
 

 

 
Figure 4.10 : An Irregularly Shaped Area 

Considering the centroid of the area A at ),( yxC the principle of moments can be 
applied on the same lines as that for the centre of gravity of weights of various 
elemental masses, δmi. 

∴     )( ii
i

xAxA Σ=  . . .  (taking moments of areas about y-axis) 

or       
ii

iii
A

xA
x

Σ

Σ
=  

Similarly,   
ii

iii
A

yA
y

Σ

Σ
=   . . . (taking moments of areas about x-axis) 

Considering a thin plate of uniform mass m per unit area, i.e., δmi = δ Ai × m 

Total mass   = mA. i
i

i
i

AmmM δΣ==Σ=

∴    ii
i

xgmxAgm Σ=.)(  i.e., taking moments about y-axis. 

Hence, centre of gravity of the uniform plate is given by 

     
i

ii

i

ii
A

xA
m

xmx
Σ
Σ

=
Σ
Σ

=  (as derived above)  mA = imΣ  

Similarly, we can find the corresponding expression for y . 

Hence, numerically the position of centroid of a given area is the same as centre 
of gravity of thin uniform plate of the same area. 

4.2.9 First Moment of Area 
The terms Ai xi and Ai yi are termed as the first moment of area Ai about y and x 
axes respectively, considering XOY as a horizontal plane. It is to be noted that xi 
and yi refer to the co-ordinates of centre of small area, Ai. 

Similarly, the terms (mi g) xi is the first moment of the weight of mass mi about  
y axis, where xi is the x co-ordinate of centre of the small mass, mi. 

The numerator (Σ Ai xi) or (Σ mi xi) in the expression for x  referred to in the 
previous section is obtained from the concept of summation of First Moment of 
area (Ai) or mass (mi). 

Example 4.1 
Determine the centroid of the area OBCD as shown in Figure 4.11. 
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Figure 4.11 

Solution 
The trapezium area is divided into two simple areas : 

(i) A1 = Rectangle OLDC = 3 × 6 = 18 m2 with centroid at G1 (1.5, 3) 

(ii) A2 = Triangular area 2m9
2

36DLB =
×

=  with its centroid at G2 (4, 2) 

The computation of co-ordinates ),( yx  for G and other aspects are given in 
Table 4.1. 

Table 4.1 

Sl. No. Area (m2) Ai xi yi Ai xi Ai yi

1 A1 = 18 1.5 3 27 54 

2 A2 = 9 4 2 36 18 

 )( iAΣ  = 27   Σ Ai xi = 63 Σ Ai yi = 72 

Then,  m33.2
27
63

==x  

m67.2
27
72

==y  

Hence, the co-ordinates of centroid G are m33.2=x  and m67.2=y  

Example 4.2 

Determine the centroid  of an area shown in Figure 4.12(a). 

 

 

 

 
 

 
Figure 4.12(a) 

Solution 
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Centre of Gravity and 

Moment of InertiaThis problem can be attempted in two ways as shown in Figure 4.12(b) and 
Figure 4.12(c). 

The total area A is divided in to the three parts A1, A2 and A3 in  
Figure 4.12(b) while the same area A can be divided in two parts A1′ and 
A2′ (shown shaded) in Figure 4.12(c). 

 

 
 

 
 
 

 
(b)                (c) 

Figure 4.12 

Let G be the centroid of area A as shown in Figure 4.12(a) with ),( yx  
co-ordinates. 

Table 4.2 

Refer Figure 4.12(b) Refer Figure 4.12(c) 

Sl. No Ai (m2) xi 
(m) 

Ai xi 
(m3) 

yi 
(m) 

Ai yi 
(m3) 

Ai′ 
(m2) 

xi′ 
(m) 

Ai′ xi′ 
(m3) 

1 A1 = 18 

(OLM2B) 

1.5 27 3 54 A1′ = 36 
(= 6 × 6) 

3 108 

 

2 A2 = 9 

(ALKM1) 

4.5 40.5 1.5 13.5 A2′ = (− 4.5) 5 − 22.5 

3 A3 = 4.5 

(M1M2K) 

4 18.0 4 18 Σ Ai′ = 31.5 m2

       
             Σ Ai = 31.5 m2

                Σ = 85.5             Σ = 85.5 m714.2
5.31
5.85
===∴ yx  

Σ = 85.5 

∴   ;
5.31
5.85

=x    
5.31
5.85

=y  

∴   ,m714.2=x   m714.2=y  

It is to be noted from Table 4.2 that whichever way we consider the division 
of regular area, either all positive or some of them negative, we should 
finally get a unique value of 

(i)  ,iAΣ

(ii)  and ,ii xAΣ

(iii)  ,ii yAΣ

For a given area A, the co-ordinates, yx and  will be a unique set of values. 

Note : If the problem of C.G. (centre of gravity) of a uniform plate is 
considered, where out of a square plate OACB a triangular part  
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M1 CM2 is cut out, the position of centre of gravity of such a plate is 
the same as the position of centroid of area in Figure 4.12(a). 

Applied Mechanics 

Example 4.3 
A square plate of uniform thickness and density is bent along M1 M2 till 
corner C coincides with centre C′ as shown in Figures 4.13(a) and (b).  
Determine the centre of gravity of the area thus formed. 

 

 

 

 

 

 

 
 
 

(a)             (b) 

Figure 4.13 

Solution 
Let w be the uniform weight of the plate per unit area. The entire plate after 
it is bent can be considered to be made up of three parts. 
(i) W1 = Weight corresponding to a square plate OACB 
    = (36 w) at location (3, 3) 

(ii) W2  = weight corresponding to overlapped portion M1 C′ M2

    = (4.5 w) at location (4, 4) 

(iii) (− W3) = Portion (M1 (M2)) which is removed  

          = (− 4.5 w) at location (5, 5) 

∴   Resultant W .w36)( 321 =−+=Σ= wwwWi  

Table 4.3 

Sl. No. wi xi wi xi yi wi yi

1 w1 = 36 w 3 108 w 3 108 w 

2 w2 = 4.5 w 4 18 w 4 18 w 

3 w3 = − 4.5 w 5 − 22.5 w 5 − 22.5 w 

 Σ wi = 36 w  Σ wi xi = 103.5 w  Σ wi xi = 310.5 w 

∴   m88.2
36

5.103
==x   and m88.2=y  

This example can also be solved by other alternative way by considering 
the total plate in parts as follows : 

(i) W1′ = weight of rectangular plate (BM2 M3 O) 

           18 w with its mass-centre at (1.5, 3) 
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Centre of Gravity and 

Moment of Inertia(ii) W2′ = weight of square plate (C′ M1 AM3) 

           9 w with its mass-centre at (4.5, 1.5) 

(iii) W3′ = weight of two triangular plates (M1 M2 C′) 

            9 w with its mass-centre at (4, 4) 

Note that resultant weight W = Σ wi = (18 + 9 + 9) w = 36 w as before. 

Example 4.4 

Determine the centroid of the shaded area shown in Figure 4.14. 

 

 

 
 

 
 

 

 

 
 

 
Figure 4.14 

Solution 

Net area of shaded portion of Figure 4.14 

= The area (A1) of full circle of radius r − The area (A2) of cut out circle of 

radius
2
r . 

4
3

4

22
2 rrr π

=
π

−π=  

Area A2 is to be regarded as negative area. 

Consider moment of areas about G, the required centroid. 

∴ Σ Aixi = 0 since the lever-arm of the resultant area A about G is zero, 

∴ 0)0()( 2211 =×=−+ AxAxA  (i.e., taking moments of areas about G) 

∴ 0
24

)(
2

2 =
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ +−×⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ π
−+−π xrrxr  (distances to the left of G are 

taken as – ve, or say anticlockwise moments are taken as –ve). 

∴   0
244

3 32
=

×
π

+
π

−
rxr  

∴   
6
rx +=  

Positive sign of x  indicates that with respect to the origin O of reference 
axes x and y, x  = OG is along positive direction of x axis. Since the centres 
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Applied Mechanics O and A of the two areas (A1) and (− A2) are taken along x axis; G lies on 
AO. 

SAQ 1 
Determine the centroid of a plate with uniform mass per unit area having a 
shape given in Figure 4.15. 

 

 

 

 

 

 

 
 
 
 

 
 

Figure 4.15 

 
 

 

 

 

SAQ 2 
Determine the centroid of the area as shown in Figure 4.16, where D is the 
contact point of the circle to the edge CF. 

 

 

 

 

 

 

 

 
 

 
Figure 4.16 
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Centre of Gravity and 

Moment of InertiaSAQ 3 
A thin uniform triangular plate OAB where ∠ AOB = 90o is bent along  
M1 M2 where M1 and M2 are midpoints of AB and AO, respectively till apex 
A is made to coincide with point O. Here OA = 12 cm and OB = 6 cm. 

Determine the location of C.G. of such a plate with respect to axes OA  
(x axis) and OB (y axis). 

 

 

4.3 MOMENT OF INERTIA OF AREA 

4.3.1 Definition 
Consider an area of a surface as consisting of a large number of small elements of 
area dA each. The area integral of all such elements can be written 
mathematically as under : 

∫ =
A

AdA)(  

Referring to Figure 4.17, the Area Moment of Inertia of elemental area dA about  
x-axis, in its plane is defined as : 

Ix (element) = dA × y2

     Iy (element) = dA × x2

Since, the axis x lies in the plane of element, these are also called as axial 
moment of inertia of the element dA. 

 

 

 

 

 

 

 

 

 
 

 
Figure 4.17 

Polar moment of inertia of dA about z-axis perpendicular to plane of A is 
defined as : 

      )( 22
)Element( yxdAI z +=

Also, we defined the product of Inertia of element dA with respect to axes x 
and y, 
      )()Element( yxdAI xy ×=
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Moment of Inertia of Area A Applied Mechanics 

Moment of Inertia (M. I.) of full area A about centroidal axis CX, 
where C is the centroid of the area A is given by surface integral as 
follows : 

      2
)( ydAI

A
Ax ×= ∫

Similarly, about axis CY, 2
)( xdAI Ay ×= ∑  

4.3.2 Perpendicular Axis Theorem 
Polar Moment of Inertia of A about z axis passing through C. Referring  
Figure 4.17, where axis ZC is perpendicular to the plane of area A, we have  

       )( 222
)( yxdArdAI Az +== ∑∑  

i.e.,      )()()( AxAyAz III +=  

Moment of inertia of the area A about any axis X1X1 shown in Figure 4.17 is 
given by 

)( axisfromdistanceofsquare 11)( 11
XXI XX =  

     2
1)( yydA += ∑

where y1 is the perpendicular distance between X1X1 and CX. Thus for a given 
axis X1X1, y1 is constant. 

Similarly,  2
2 )(

22
yydAI XX += ∑  

4.3.3 Parallel Axis Theorem 
With reference to Figure 4.17, it is noted that first moment of elemental area dA 
about centroidal axis is given by (dA × y). By the definition of centroid C of the 
area, it is further noted that 

      0=×∑ ydA

This means that horizontal plate of area A gets balanced about axis CX. When 
Moment of Inertia of areas are computed about any random axis X1X1, then 

     2
1)( )(

11
yydAI XX += ∑  

      )2( 2
11

2 yyyydA ++= ∑  

     dAyydAyydA ∑∑∑ +×+×= 2
11

2 2  

          2
1)(0 yAIcx ++=

Similarly,   .  )( 2
222

yAII cxXX +=

This equation is termed as parallel axis theorem, whereby it is observed that out 
of all axes parallel to centroidal axis, CX, the Moment of Inertia about the 
centroidal axis is minimum, for a given direction of the axis. 

Similarly, Referring Figure 4.17, 
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1 )(

11
xAII cyYY +=

where x1 is the perpendicular distance between the axes y1 y1 and CY. 

       )( 2
1

2
111

yxAGI CZZZ ++=

where the perpendicular distance between axes z1z1 passing through point  
K (x1, y1) and CZ is 

   2
1

2
11 yxr +=  

Example 4.5 

Determine the axial moment of inertia of a rectangular area of base b and 
height d about centroidal axis GX and the base BB1B2B . 

Solution 

Referring Figure 4.18, where centroidal axis GX divides the area at  

mid-depth, i.e. 
2
d . 

 

 

 

 
 
 

 

 

 
Figure 4.18 

For a thin strip shown shaded, of width b and thickness (very small) dy, all 
points on it are at a constant distance y from GX, 

∴      dA = b dy 

Considering y as positively upward from centroidal axis GX, for elements 
below GX, y will be treated as negative. 

∴     ∫ = 0dyA

        22 ( ydy)bdAyIGX ×== ∑∑

∴   ∫
+

−

+

−⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

)2/(

)2/(

)2/(

)2/(

3
2

3

d

d

d

d

ybdyyb  

       
12

3bd
=  

Similarly, referring to y axis through centroid G, 

    
12

3dbIGY =  
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Moment of inertia about base BB1 B2B  can be computed either directly or by 
using parallel axis theorem. 

Applied Mechanics 

Direct approach is as follow. Referring Figure 4.19, 

∫ ′×= 2)(
21

ydAI BB  

∫
=′

=′

′×′=
)(

)0(

2)()(
21

dy

y
BB yydbI  

        dyb
0

3][
3

′=  

    
3

3bd
=  

 

 

 

 

 

 

 

 
 

Figure 4.19 

Alternatively, using theorem of parallel axis, we have 

     2
1 )(

21
yAII GXBB +=

where, ==
21
dy perpendicular distance between GX and BB1 B2B . 

            
23

212
⎟
⎠
⎞

⎜
⎝
⎛+=

dbdbd  

        
3

3bd
=  

Example 4.6 

Determine the Moment of Inertia of a triangular area ABC having base b 
and height d about its base BC. Hence or otherwise determine the Moment 
of Inertia about the centroidal axis parallel to the base. 

Solution 

Figure 4.20 shows the triangular area ABC with its centroid G, where 

perpendicular distance from G to BC (= b) is ⎟
⎠
⎞

⎜
⎝
⎛

3
d . 

 



    

125

 
Centre of Gravity and 

Moment of Inertia 

 

 

 

 

 
 

 
Figure 4.20 

Consider a thin strip LM, of thickness dy, at distance y from the base BC.  
Considering similar triangles, ALM and ABC, we have : 

d
b

d
BC

yd
LM

==
− )(

 

     )( yd
d
bLM −=  

            ⎟
⎠
⎞

⎜
⎝
⎛ −=

d
yb 1  

Now Elemental Area (shaded) dy
d
ybdA ⎟
⎠
⎞

⎜
⎝
⎛ −= 1  

∫
=

=

⎟
⎠
⎞

⎜
⎝
⎛ −=

dy

y
BC ydy

d
ybI

0

2 )(1  

      ∫ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

d

dy
d
yyb

0

3
2  

         
d

d
yyb

0

43

43 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=  
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1
3
1 3

3 bdbd =⎟
⎠
⎞

⎜
⎝
⎛ −=  

Using theorem of parallel axes, we get : 

   
2

3
⎟
⎠
⎞

⎜
⎝
⎛−=

dAII BCGX  

where, GX is the axis through G and parallel to BC. 

        ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

9212

23 dbdbd  

          
363

1
2
1

6

33 bdbd
=⎟

⎠
⎞

⎜
⎝
⎛ −=  

Example 4.7 

Determine the Moment of Inertia of an I-shaped area about its centroidal 
axis as shown in Figure 4.21(a) (dimensions are given in mm). 
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(a)                 (b) 

Figure 4.21 

Solution 

(a) The area of I section can be divided into three parts namely A1, A2  
and A3. 

24
321 mm1018)2003002150400( ×=×+××=++= AAAA  

The centroid G is at mid-depth as shown in Figure 4.21(a). 

Now,  )(3)(2)(1)( xAxAxAxA IIII ++=  

where, 23 )225(150400150400
12
1

)(1)(3
××+××== xAxA II  

(where, 225
2

150150 =+ ). 

or,    466 mm103150]5.30375.112[10)(1)(3
×=+== xAxA II

463 mm10450300200
12
1

)(2
×=××=xAI  

∴      610]450)31502[()( ×+×=xAI

        46 mm106750 ×=

(b) Alternatively, the M. I. of I-section about x axis can be obtained by 
subtracting the M. I. of area )](2[ 2A′×  from the M. I. of area )( 1A′ as 
shown in Figure 4.21(b). 

Here,     2
2

2
1 mm300100mm600400 and ×=′×=′ AA

∴       21 2AAA ′−′=  

        2444 mm10181061024 ×=×−×=

Then,    ]2[ )()()( 22
×−= ′′ AAXA III  

           
12

3001002
12

600400 33 ××
−

×
=  

           466 mm106750]540086400[10
12
1

×=−×=  
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Moment of InertiaSAQ 4 
Determine the area moment of inertia of a T-section about its centroidal 
axis as shown in Figure 4.22. Determine also the radius of gyration about its 
centroidal axis CX. 

 

 
 

 

 

 

 

 
 

Figure 4.22 

 

 

 

 

 

SAQ 5 
Compute the M. I. of a hollow section shown in Figure 4.23 about its 
centroidal axis OX. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.23 
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SAQ 6 Applied Mechanics 

Determine the centroid of the shaded area shown in Figure 4.24. 

 

 

 

 

 

 

 

 
Figure 4.24 

 
 
 
 

4.4 SUMMARY 

• Centroid C of an area A is a point in the plane of the area where entire 
area can be assumed to be concentrated. 

• Centre of gravity G of a thin plate of same surface area A referred 
above is a point where the entire mass or weight of the plate is 
assumed to be concentrated. In fact, it is possible to support this plate 
in a horizontal plane by a tip of the vertically placed single pin at 
point G. 

• The geometric centre of a rectangular area or a circular area also 
represents its centroid. Centroid lies on an axis of symmetry of the 
area. When there are two axes of symmetry, the centroid is the point 
of intersection of the two axes. 

• For the triangular area A (or triangular plate of same area A with mass 
M and of small uniform thickness), the centroid of A (or centre of 
gravity of the plate of mass M) is at the point of intersection of the 
medians of the triangle. 

• Generally, any given area can be divided into parts A1 to An for each 
of area A1 can be computed along with the location of its centroid  
(xi, yi), the values of ( yx, ) of centroid can be computed as 

ii

n

i
xAxA ∑

=

=
1

 

    and     ii

n

i
yAyA ∑

=

=
1

 

• For a uniform plate of mass M, the entire mass can be divided into 
individual masses Mi for which centre of gravity is known as (xi, yi), 
the values of yx,  for centre of gravity is given by 
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ii

n

i
xMxM ∑

=

=
1

 

and     ii

n

i
yMyM ∑

=

=
1

 

• Area moment of inertia about x axis  )(
2 )( AXX

A

IydA == ∫

• Area moment of inertia about y axis  )(
2 )( AYY

A

IxdA == ∫

• Parallel Axis Theorem : Area moment of inertia about X1 X1 axis at 
distance y1 from XX         2

1)(yAI xx +=

• Perpendicular Axis Theorem : If z axis is perpendicular to the plane of 
area A, then         yyxxzz III +=  

4.5 ANSWERS TO SAQs 

SAQ 1 

Total area is divided into three parts A1, A2 and A3 as shown in figure below. 

 

 

 

 

 
 
 
 

 

 

 

 

 
Figure for Answer to SAQ 1 

Area mark 
Ai

Area 
(cm2) 

ix  
(cm) 

iy  
(cm) 

ii xA  
(cm3) 

ii yA  
(cm3) 

A1 36 1.5 6 54 216 
A2 36 6 13.5 216 486 
A3 36 7 2 252 72 

Total 108   522 774 

∴     cm83.4
108
522

==x  

     cm17.7
108
774

==y . 
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SAQ 2 Applied Mechanics 

Referring to Figure for Answer to SAQ 2, total area is divided into three 
parts A1, A2 and A3. 

 

 

 

 

 

 

 

 

 

 
Figure for Answer to SAQ 2 

Area mark 
Ai

Area 
(cm2) 

ix  
(cm) 

iy  
(cm) 

ii xA  
(cm3) 

ii yA  
(cm3) 

A1 20 5 1 100 20 

A2 20 1 7 20 140 

A3 50.26 6 8 301.59 402.12 

Total 90.26   421.59 562.12 

∴     cm67.4
26.90

421
==x  

     cm23.6
26.90
12.562

==y . 

SAQ 3 

Refer Figure for Answer to SAQ 3. Since portion AM2M1 takes up a new 
position A′M2M1, weight of plate A′M2M1 add to weight of plate OM2M1, 
then portion OM2M1B is considered as areas A1 and 2A2. 

 

 

 

 

 

 

 
 

 
Figure for Answer to SAQ 3 
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Moment of InertiaAi Area ix  iy  ii xA  ii yA  

A1 20 5 1 100 20 

2A2 20 1 7 20 140 

A3 50.26 6 8 301.59 402.12 

Total 90.26   421.59 562.12 

∴     23 and == yx  

SAQ 4 

Let G be the centroid at distance yT from top face as shown in figure. 

A 
(cm2) 

yT 
(cm) 

Ayt

1000 10 104

800 40 3.2 × 104

1800=∑ iA   4.2 × 104

 

 
 
 
 
 

 
 

 
Figure for Answer to SAQ 4 

       cm3.23
18
420

==Ty  

       cm7.26=By  

      
21)( AAA III +=  

I about 2
3

2
3

)7.6(800
12

4020)3.13(1000
12

2050
×+

×
+×=

×
=CX  

          2333 )7.6(8001066.1061089.1761033.33 ×+×+×+×=

∴     243
)( )(cm10377 cxcx rAI =×=

So,   cm47.14
1800

10377 2
1

3
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ×
=cxr  

SAQ 5 

Referring to Figure for Answer to SAQ 5. 
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Figure for Answer to SAQ 5 

   }{OX
Section

FullOX
Section
HollowOX

VOIDIII −=
⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧  

           
4

)5.7(
12

2020 43 π
−

×
=  

             4cm10848=

SAQ 6 

The shaded area A can be considered as algebraic sum of three areas A1, A2 
and A3 as shown in Figure for Answers to SAQ 6. 

      321 AAAA −+=  

 

 

 
 
 

 

 

 
Figure for Answer to SAQ 6 

where  with centroid at (100, 100) 2
1 mm000,40200200 =×=A

   2
2

2 mm700,15
2
100

=
×π

=A  with centroid at (2424, 100) and 

   2
2

3 mm5655
2

60
−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ×π−
=A  with centroid at (100, 35.44). 
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Moment of InertiaSl. No. Area Ai 
(mm2) 

ix  
(mm) 

ii xA  
(mm3) 

iy  
(mm) 

ii yA  
(mm3) 

1 A1 = 40,000 100 400 × 104 100 400 × 104

2 A2 = 15,700 242.4 380 × 104 100 157 × 104

3 A3 = − 5655 100 − 56  × 104 25.44 − 14 × 104

            2mm045,50=∑∴ iA 410724 ×=∑ ixiA 410543 ×=∑ iyiA

                
0045.5
724

=∴ x         
0045.5
543

=∴ y  

                    = 144.67 mm     = 108.50 mm 
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Example 4.8 Applied Mechanics 

Determine Moment of Inertia of circular area of radius a = 10 cm about its 
centroid axis OX as shown in Figure 4.23. 

 

 

 

 

 

 

 
Figure 4.23 

Solution 

Consider a thin strip of width BBy at distance y from axis OX where 
  )θcos(2θsin and aBay y ==  

differentiating this equation : 
θθcos dady =  

θθcos)θcos2( daadyBdA y ==  

  2ydAI
A

x ×=∫

All elements have to be considered for values of θ ranging from – 90o  
to + 90o. 

  ∫ ∫
+

−

×=×=

o

o o

90

90

2
o90

0

2

2
2 ydAydAI x  

  θsinθθcos2 222
90

0

2
o

o

ada ×= ∫

Note that,  1θcos2θsinθcosθ2cos 222 −=−=

and    θcos1θsin2θsin21θ2cos 222 or −=−−=

∴      θ2cos1θcos2 2 +=

∴            ∫
π+

π−

θθθ=
)2/(

)2/(

2
4

)cossin2(
2

daI x  

We know     ∫ ∫ −= θ)θ4cos1(
4

θ]θ2[sin2
4

4
2

4
dada  

And,        θ−=θ∴θ−=θ 4.cos1)2(sin2,)2(sin214cos 22

∴      
2/

2/

4

4
4sin

4

π+

π−
⎟
⎠
⎞

⎜
⎝
⎛ θ

−θ=
aI x  
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4

4aπ
=  

          
64

4Dπ
=  

Where, D = diameter of circle = 2 a in the present problem. 

∴      .cm7857
4
10 4

4
=

×π
=xI  

if       2a = 10 cm. 

It is to be noted that circular cross-section is axis-symmetric i.e. it is 
symmetric about both x and y axes or any other radial direction and also has 
same nature of shape about all centroidal axes. 

      ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
π=

π
==

444

22
2

4 aAaaaII xy  

where A = Area of the circle of radius a. 

Considering perpendicular axis theorem, 

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=+=

2

2aAIII yxz  

 

 

SAQ 6 
Determine the moment of inertia of the semicircle about axis AT which is 
tangential to the circle as shown in Figure 4.26. 

 

 

 

 

 

 

 

 
Figure 4.25 
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