
    

55

 
Applications of 

DerivativesUNIT 2 APPLICATIONS OF DERIVATIVES 

Structure 
2.1 Introduction 
 Objectives 

2.2 Application to Geometry 
2.2.1 Geometrical Meaning of the Derivative 
2.2.2 Equations of Tangent and Normal at a Point 
2.2.3 Angle of Intersection between Two Curves 

2.3 Derivative as a Rate Measure 
2.3.1 Motion in a Straight Line 
2.3.2 Motion under Gravity 

2.4 Increasing and Decreasing Function 

2.5 Maxima and Minima 
2.5.1 Necessary Condition for a Maximum and Minimum 
2.5.2 Rule for Finding Maxima and Minima 
2.5.3 Greatest and Least Values of a Function in a Closed Interval 
2.5.4 Maxima and Minima : Problems 

2.6 Rolles Theorems 

2.7 Mean Value Theorem 

2.8 Curve Sketching 

2.9 Summary 

2.10 Answers to SAQs 

2.1 INTRODUCTION 

In Unit 1, we have defined the derivative of a function. In this unit, we shall study 
some applications of the derivatives of a function. In Section 2.2, we propose to 
study the application of derivative to geometry. In Section 2.4, we will define 
increasing and decreasing functions and in Section 2.5, we shall discuss how 
derivatives can be used to determine the points where a differentiable function 
has maxima and minima and how to solve problems involving maximisation or 
minimisation of some functions. We shall also discuss some fundamental 
theorems of differential calculus. 

Objectives 
After studying this unit, you should be able to 

• find the tangent and normal to a given function at given points, 

• find the angle of intersection between two curves, 

• determine whether a function is decreasing or increasing, 

• locate the points where a function has a maximum or a minimum, 

• solve some problems when it is required to minimize or maximize a 
function, and 
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• identify whether the derivative of a function can vanish once within 
an interval. 

2.2 APPLICATION TO GEOMETRY 

2.2.1 Geometrical Meaning of the Derivative 
In Unit 1, we defined the derivative of a function y = f (x) as 

  
h

xfhxf
dx
dy

h

)()(lim
0

−+
=

→
 

We now examine the geometrical meaning of this definition. Let P (x, y) and  
Q (x + h, y + k) be two neighouring points on the curve y = f (x) (Figure 2.1). 

 

 

 
 

 

 
 

 
Figure 2.1 

Draw PM, QN the ordinates through P and Q respectively. Let the secant PQ 
makes an angle θ with the positive x-axis. Draw PR perpendicular to QN. Then 
from Figure 2.1, we see that 
  kyhxfNQyxfMP +=+=== )(,)(  

  )()( xfhxfMPNQNRNQRQ −+=−=−=  

  PRhMN ==  

Hence  θ==
−+ tan)()(

PR
RQ

h
xfhxf  

        = slope of the secant PQ. 

In the limit h → 0, the point Q → P along the curve y = f (x) and the secant PQ 
becomes the tangent at P. If the tangent at P makes an angle ψ with the positive 
direction of the x-axis, we get 

  ψ=θ=
−+

=
→→

tantanlim)()(lim
0 PQh h

xfhxf
dx
dy  

        = slope of the tangent at P.             . . . (2.1) 

Eq. (2.1) shows that 

  ψ= tan
dx
dy  

represents the slope of the tangent to the curve y = f (x) at any point (x, y). The 
above discussion shows that at any point of the graph of a differentiable function 
y = f (x), the slope of the tangent is defined and is equal to the derivative of the 
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function at that point. This means that if y = f (x) is differentiable, then the graph 
of y = f (x) has a tangent at every point. 

Remark 

(i) If 0=
dx
dy  at a point P, then tan ψ = 0. Hence ψ = 0. This means the 

tangent to the curve at P is parallel to the x-axis. Conversely, if the 

tangent at a point is parallel to the x-axis then 0=
dx
dy  at that point 

(Figure 2.2(a)). 

 

 

 
 

 

 
 

Figure 2.2(a) : 0=
dx

dy
, Tangent Parallel to x-axis 

(ii) If 
dx
dy  is infinite at a point P then tan ψ = ∞ or ψ = 

2
π , so that the 

tangent is parallel to the y-axis at that point (Figure 2.2(b)). 

 

 

 

 

 

 

Figure 2.2(b) : 0=
dx

dy
, Infinite, Tangent Parallel to y-axis 

2.2.2 Equations of the Tangent and Normal at a Point 
You know that the equation of the line through (x1, y1) with slope m is 

         y – y1 = m (x – x1) 

If this line is the tangent to y = f (x) at (x1, y1), then we must have 

   
),( 11 yxdx

dym ⎟
⎠
⎞

⎜
⎝
⎛=  

where 
),( 11 yxdx

dy
⎟
⎠
⎞

⎜
⎝
⎛ is the value of the derivative at (x1, y1). Hence the equation of 

the tangent to the curve y = f (x) at (x1, y1) is 

   ),( 11
),(

1
11

yx
dx
dyyy

yx
⎟
⎠
⎞

⎜
⎝
⎛=−              . . . (2.2) 
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The normal at P (x1, y1) is perpendicular to the tangent at P. The normal at  
P (x1, y1) therefore has the slope 
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11

11

1

yx

yx
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dx
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dy ⎟⎟
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⎝

⎛
−=

⎟
⎠
⎞

⎜
⎝
⎛

−  

[Recall that if two straight lines with slopes m and m′ are perpendicular to each 

other then 
m

mm 1m1 or −=′−=′ ]. Hence the equation of the normal at (x1, y1) to 

y = f (x) is 

   )(1
1

),(

1

11

xx

dx
dy

yy

yx

−
⎟
⎠
⎞

⎜
⎝
⎛

−=−  

or   .0)()( 1
),(

1
11

=−⎟
⎠
⎞

⎜
⎝
⎛+− yy

dx
dyxx

yx
            . . . (2.3) 

 

 
Example 2.1 

Find the equations of the tangent and normal to the parabola y2 = 4ax at the 
point (x1, y1). 

Solution 

From y2 = 4ax, we find 

   a
dx
dyy 42 =  

or  
y
a

dx
dy

2
4

=  

This gives 
1),(

2

11
y
a

dx
dy

yx
=⎟

⎠
⎞

⎜
⎝
⎛  

The equation of the tangent is (by Eq. (2.2)) 

   )(2
1

1
1 xx

y
ayy −=−  

or   1
2
11 22 axaxyyy −=−

or   2
111 22 yaxaxyy +−=

Since (x1, y1) is a point on the parabola, we have . Using this we 
can write the equation of the tangent as 

1
2
1 4axy =

   111 422 axaxaxyy +−=  

or  )(2 11 xxayy +=  

Similarly, the equation of the normal by Eq. (2.3) is 

    0)(2)( 1
1

1 =−+− yy
y
axx  
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Find the points where the tangent to the circle x2 + y2 = 25 is parallel to the 
line 2x – y + 6 = 0. 

Solution 

From   we get ,2522 =+ yx

   022 =+
dx
dyyx  

Hence  
y
x

dx
dy

−=  

So the slope of the tangent at any point on the circle is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

y
x . The slope of 

the given line is 2. So the tangent to the circle is parallel to the given line if 

   yx
y
x 22 or −==−  

Solving this and we get the required points as ,2522 =+ yx )5,52(−  
and )5,52( − . 

 

2.2.3 Angle of Intersections between Two Curves 

Example 2.2 

Two curves may intersect at one or more points. The x-coordinates of the points 
of intersection of two curves given by the equations )()( 21 and xfyxfy == can 
be obtained by solving the equation )()( 21 xfxf = . The y-coordinates of the 
points of intersection can be obtained by putting these values of x in any of the 
equations . )()( 21 or xfyxfy ==

If A is the point of intersection of two curves, then the angle between the two 
curves at A is defined to be the acute angle between the tangents to the two curves 
at A. Let C1 and C2 be two curves intersecting at A and let α be the acute angle  
(Figure 2.3) between the tangents to C1 and C2 at A. 

 

 
 

 

 

 

 
Figure 2.3 

Let m1 = slope of the tangent
dx
dyAT =1  for the first curve C1 : y = f1 (x) at A and  

m2 = slope of 
dx
dyAT =2  for the second curve C2 : y = f2 (x) at A. 
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Hence  ,
11

αtan
21

21

21

21
ff
ff

mm
mm

′′+
′−′

=
+
−

=  
Mathematics-II 
 

where the derivatives on the right hand side are to be evaluated at the point of 
intersection. 

Remark 

If α = 0, the two curves have a common tangent. The two curves are said to 
touch each other if they have a common tangent. 

Remark 

If 
2
π

=α , the two curves intersect orthogonally. In this case, tan α = ∞ or 

. 121 −=mm

 

 
Example 2.3 

Show that the ellipse 1
818

22
=+

yx  and the hyperbola x2 – y2 = 5 cut 

orthogonally. 

Solution 

We first find the points of intersection of the two curves. To do this, we 
solve simultaneously 

    1
818

22
=+

yx       . . . (1) 

and       x2 – y2 = 5      . . . (2) 

From Eq. (1)           ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

18
18

2
2 xy  

Substituting this in Eq. (2), we get 

   5
18

18
2

2 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

xx  

or          13
9
4 22 =+ xx  

or                 13
9

13 2
=

x  

or           x2 = 9 

             x = ± 3 

Putting these values of x in Eq. (2), we get 

   2459 oror 22 ±===− yyy

Hence the points of intersections are 

  A (3, 2), B (3, − 2), C (− 3, 2) and D (− 3, − 2) 
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Differentiating Eq. (1), we get 

   0
818

=+
dx
dyyx  

or  
y
x

dx
dy

9
4

−=  

Let m1 and m2 denote the slope of the tangents to the curves (1) and (2) 
respectively. 

Then  
3
2

2
3

9
4

1
−

=⎟
⎠
⎞

⎜
⎝
⎛−

=m  at A. 

Similarly 

   Bm at
3
2

1 =  

   Cm at
3
2

1 =  

   Dm at
3
2

1
−

=  

Differentiating (2), we get 

   022 =−
dx
dyyx  

or  
y
x

dx
dy

=  

So  Am at
2
3

2 =  

   Bm at
2
3

2 −=  

   Cm at
2
3

2 −=  

and  Dm at
2
3

2 =  

Now m1 m2 at 1
2
3

3
2

−=⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−=A . 

Hence the two curves cut orthogonally at A. 

 

Similarly, you can verify that the two curves cut orthogonally at all the other 
points of intersection. 

SAQ 1 
 

 

(a) Find the equation of the tangent and the normal at any point of the 

ellipse 122 =+
b
y

a
x 22

. 



 
 

(b) Find where the tangent is parallel to the x-axis for the curve Mathematics-II 
 

   . )2(23 xxy −=

 

 

 

 

(c) Show that the curves 

   11 2

2

2

2

2

2

2

2
and =

λ+
+

λ+
=+

b
y

a
x

b
y

a
x  

intersect orthogonally. 

 

 

 

(d) Find the angles of intersection of xy = 10 and x2 + y2 = 29. 

 

 

 
 

2.3 DERIVATIVE AS A RATE MEASURE 

The derivative of a function y = f (x) with respect to the independent variable x is 
nothing but the rate measure of change of y with respect to change in x. Let there 
be a small change Δx in the value of x and let Δy be the corresponding small 
change in the value of y. 

Then   y + Δy = f (x + Δx) 

    ⇒ Δy = f (x + Δx) – y 

              = f (x + Δx) – f (x) 

Average change in y per unit change in x 

        
x

xfxxf
x
y

Δ
−Δ+

=
Δ
Δ )()(  

For small values of Δx, this average rate of change in the value of y will 
approximate very closely to the rate of change in the value of y. Hence when  

Δx → 0, 
x
y

Δ
Δ  represents the rate of change of y with respect to x, i.e. the rate of 

change of y w. r. t the change in x. 

   )()()(lim
0

xf
x

xfxxf
x

′=
Δ

−Δ+
=

→Δ
 

i.e. f ′ (x) represents the rate measure of f (x) w. r. t x. 
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A balloon which remains spherical has a diameter )32(
2
3

+x . Determine 

the rate of change of volume w. r. t x. 
Solution 

Radius of the sphere )32(
4
3)32(

2
3

2
1

+=+= xx.  

   V = volume
3

3 )32(
4
3

3
4

3
4

⎥⎦
⎤

⎢⎣
⎡ +π=π= xr  

           3)32(
16
9

+π= x  

Rate of change of volume w. r. t x 

   2)32(3
16
9 2 .. +π= x

dx
dV  

         2)32(
8
27

+π= x  

 

 

A man 2 metres high walks at a uniform speed of 6 km/h away from a lamp 
post 6 metres high. Find the rate at which the length of his shadow 
increases. 

 

 

 

 

 

 
Figure 2.4 

Solution 
Let S be the source of light and BS is the pole. Let HP be the position of the 
man at any time t. Let x be the distance of the man from the pole and y be 
the length of the shadow. 
From similar triangles AHP and ABS, we have 

   
3
1

6
2
==

+
⇒=

xy
y

BS
HP

AB
AH  

         xyxyxyy
2
123 =⇒=⇒+=⇒  

∴ 
dt
dx

dt
dy

2
1

= , we are given h/km6=
dt
dx . 

∴ h/km36
2
1

== .
dt
dy  

Example 2.5 
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Suppose a particle P is moving in a straight line. We take a point O on the straight 
line as origin and set up a coordinate system on the line, that is, we consider it as 
the number line. The directed distance of the particle from the origin is a function 
of line. Let the particle P be at the point s at time t. Then s = f (t). 
As you already know, the velocity of the particle is the rate of change of its 
distance (from the origin). Let the position of the particle be the point (s + Δs) at 
time t + Δt, so that s + Δs = f (t + Δt). Then average velocity of the particle 
between the points 

   s and s + 
t
ss

Δ
Δ

=Δ  

The velocity v (instantaneous velocity) of the particle at the point s (at time t) is 

the limiting value of 0as →Δ
Δ
Δ t

t
s . 

∴ )()()(lim)(limlim
000

tf
t

tfttf
t

sss
t
sv

ttt
′=

Δ
−Δ+

=
Δ

−Δ+
=

Δ
Δ

=
→Δ→Δ→Δ

 

Similarly, if v is the velocity of the particle at time t and v + Δv is the velocity at  
t + Δt, then average acceleration of the particle between the points s and s + Δs. 

    
t

tfttf
t

vvv
t
v

Δ
′−Δ+′

=
Δ

−Δ+
=

Δ
Δ

=
)()()(  

The acceleration a at the point s is the limiting value of the average acceleration 
of the particle between the points s and s + Δs. 

     )()()(lim
0

tf
t

tfttf
t

′′=
Δ

′−Δ+′
=

→Δ
 

Thus when the distance travelled by a particle (from the origin) is given as a 
function of time, say 

s = f (t), then ⎟
⎠
⎞

⎜
⎝
⎛=′

dt
dstf )(  represents the velocity and ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=′′

2

2
)(

dt
sdtf  represents 

its acceleration at time t. 
 

 
 

Example 2.6 

A particle is moving along a straight line according to the formula  
s = 12t – 3t2, where s is in metres and t is in seconds. Find its velocity and 
acceleration. 

Solution 
We have s = 12t – 3t2. Differentiating with respect to t. 

   t
dt
ds 612 −=  

This gives the velocity at time t. 
Differentiating once again with respect to t. 

   62

2
−=

dt
sd  

This gives the acceleration at time t. 
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We note that the acceleration is the same at all times t. 
The negative sign of the acceleration means that the velocity is decreasing. 
Sometimes it (negative acceleration) is called retardation. 

 

 
Example 2.7 

A particle is moving in a straight line according to the formula  
s = t3 – 9t2 + 3t + 1, where s is measured in metres and t in seconds. When 
the velocity is – 24 m/s, find the acceleration. 

Solution 
We have 

    139 23 ++−= ttts

The velocity is given by )16(33183 22 +−=+−= tttt
dt
ds . 

If this is equal to – 24, then 

    024)16(3 2 =++− tt

That is,   0962 =+− tt

∴ t = 3. 
The acceleration is given by 

   )3(6)62(32

2
−=−= tt

dt
sd  

∴  0
3

2

2
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

=tdt
sd  

Thus, when the velocity is – 24 m/s, the acceleration is 0 m/s2. 
 

2.3.2 Motion Under Gravity 
One particular instance of motion in a straight line is the motion of a falling body 
under gravity. The acceleration of the falling body due to gravity has been 
calculated as g = 32 feet/second2 or 9.8 metres/second2, towards the centre of the 
earth. In this sub-section, we use differentiation to some practical problems 
concerning this motion. 
 

 Example 2.8 

The motion of a stone thrown vertically upwards satisfies an equation of the 
form s = at2 + bt when s and t are measured in metres and seconds 
respectively. If the maximum height reached by the stone is 4.9 metres and 
if its acceleration is – 9.8 m/s2, find its height after half a second. 

Solution 

We have s = at2 + bt. Differentiating bat
dt
ds

+= 2 . 

Differentiating once again, 

   a
dt

sd 22

2
=  
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∴ 2a = − 9.8 
or    a = − 4.9 

∴  tb
dt
ds 8.9−=  

dt
ds  becomes zero when 

8.9
bt =  and negative for greater values of t. (If b 

were negative, there would be no upward motion at all). The maximum 
height reached is given by 

   
8.9

with2 btbtats =+= . 

This is, when 
6.192

11
8.98.9)8.9(

9.4
222

2

2 bbbbs =⎟
⎠
⎞

⎜
⎝
⎛ −=+−=  

From the given data 9.4
6.19

2
=

b  

∴  6.199.42 ×=b

∴   b = 9.8 (as already mentioned, b cannot be negative) 
∴    The equation of motion of the stone becomes s = 4.9t2 + 9.8t. 

When 9.4
4
9.4

2
8.9

4
9.4,

2
1

+−=+−== st  

    675.3
4

7.14
4
119.4 ==⎟
⎠
⎞

⎜
⎝
⎛ −=  

The stone is at a height of 3.675 m after half a second. 

2.4 INCREASING AND DECREASING FUNCTIONS 

Definition 1 
Let I be an open interval contained in the domain of a real function f. f is 
called an increasing (decreasing) function on I if whenever x1 < x2 in I it is 
true that )]()([)()( 2121 xfxfxfxf ≥≤ . Symbolically, it is written as f (x) is 
an increasing function on I if 21 xx <  in I ⇒ and f (x) is a 
decreasing function on I if 

)()( 21 xfxf ≤

21 xx <  ⇒ . )()( 21 xfxf ≥

 

 

 
 

 
 

 
 

(a)      (b) 

Figure 2.5 
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The graph in Figure 2.5(a) is the graph of an increasing function f (x) in  
(a, b) and the graph in Figure 2.5(b) is the graph of a decreasing function  
f (x) in (a, b). 

Remark 
It is possible that a function f is neither increasing nor decreasing on a given 
interval I. The function f (x) in Figure 2.6 is neither increasing nor 
decreasing in (a, b). 

 

 

 

 

 

 
Figure 2.6 

If , then f is said to be strictly 
increasing (or decreasing). 

)]()([)()( 212121 or xfxfxfxfxx ><⇒<

Definition 2 
A function f is said to be increasing at a point x0 if there is an interval 

 containing x),( 00 hxhxI +−= 0 such that for x1, x2 ∈ I. 

   )()( 2020 xfxfxx ≤⇒<

and  )()( 0101 xfxfxx ≤⇒<

Definition 3 
A function f is said to be decreasing at a point xo if there is an interval 

 containing x),( 00 hxhxI +−= 0 such that for x1, x2 ∈ I. 

   )()( 2020 xfxfxx ≥⇒<

and  )()( 0101 xfxfxx ≥⇒<

  Example 2.9 

Prove that the function f (x) = 3x + 5 is an increasing function. 

Solution 

Let  such that xRxx ∈21, 1 < x2, i.e. 021 <− xx then 

  )53()53()()( 2121 +−+=− xxxfxf  

                                0)(3 21 <−= xx

∴  )()( 21 xfxf <

i.e. f (x) is an increasing function. 

Note that f (x) is a strictly increasing function. 

 

 
Example 2.10 

f (x) = x2 is a strictly decreasing function in I = (− ∞, 0). 
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Let  s. t xIxx ∈21, 1 < x2. Multiplying by x1 ∈ I, i.e. x1 is negative then we 
have . 21

2
1 xxx >

Similarly  (Multiplying x2
221 xxx > 1 < x2 by x2) 

i.e.  2
2

2
1 xx >

i.e.  )()( 21 xfxf >

∴ f is a strictly decreasing function. 
 
Theorem 1 

A differentiable real function f (x) is strictly increasing on an open 
interval I if 0)( >′ xf  for all x in I. 

Explanation 
If f ′ (x) is positive then )()( xfhxf −+  and h have the same sign for small 
values of h. When h is +ve, then )()( xfhxfxhx >+⇒>+  and when h 
is – ve, then )()( xfhxfxhx <+⇒<+ . This means f (x) is strictly 
increasing function as shown in Figure 2.7. 

 

 

 

 

 

 
Figure 2.7 

On similar lines, we have that a differentiable real function is strictly 
decreasing on an interval I if 0)( <′ xf  for all x in I. 

Remark 

When the interval is not mentioned, we must prove it for its domain, i.e. R. 

 

 Example 2.11 

Prove that the function sin x is strictly increasing in the interval ⎟
⎠
⎞

⎜
⎝
⎛ π

2
,0  and 

strictly decreasing in the interval ⎟
⎠
⎞

⎜
⎝
⎛ π
π ,
2

. 

Solution 

Let f (x) = sin x 

Then f  ′ (x) = cos x 

We know that cos x is +ve in ⎟
⎠
⎞

⎜
⎝
⎛ π

2
,0  and –ve in ⎟

⎠
⎞

⎜
⎝
⎛ π
π ,
2

. 
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⎠
⎞

⎜
⎝
⎛ π

2
,0  and strictly decreasing in ⎟

⎠
⎞

⎜
⎝
⎛ π
π ,
2

. 

 

 
Example 2.12 

Find the intervals in which the function  is  
(a) strictly increasing (b) strictly decreasing. 

73632)( 23 +−−= xxxxf

Solution 

    73632)( 23 +−−= xxxxf

   )6(63666)( 22 −−=−−=′ xxxxxf

            )2()3(6 +−= xx

∴   f′  (x) = 0 if x = 3 or x = − 2 

The points x = − 2 and x = 3 divide the real line in the disjoint intervals. 
       ),3()3,2(),2,( 321 and ∞=−=−∞−= III  

In  is +ve. )(,1 xfI ′

In  is –ve. )(,2 xfI ′

In  is +ve. )(,3 xfI

Hence f (x) is strictly increasing in I1 and I3 and strictly decreasing in I2. 

SAQ 2 
 
 

(a) Prove that the function 
x

x 1
+  is strictly increasing on (− 1, 1). 

 

 

 

(b) Which of the functions are strictly decreasing on ⎟
⎠
⎞

⎜
⎝
⎛ π

2
,0  

(i) cos x, 

(ii) tan x. 

 

 

 

2.5 MAXIMA AND MINIMA 

We shall study how to locate the points where a differentiable function has its 
maximum or minimum. 

We shall also consider some practical problems involving the theory of maximum 
and minimum of a function. 
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We say that a function f has a maximum at a point x = c, if for all x in a 
sufficiently small neighbourhood of c, 

    f (x ) ≤ f (c) 

Definition 5 

We say that a f has a minimum at a point x = d, if for all x in a sufficiently 
small neighbourhood of d, 

    f (x ) ≥ f (d) 

 
 

Example 2.13 

In Figure 2.8, the graph of some function f in the interval [a, b] is shown. 
Let A be the point x = c. As you see, at this point f has a maximum because 
at x = c the value f (c) of the function (the ordinate AP) is greater than the 
value of the function f (x) for all values of x in a small neighbourhood of A. 

 

 

 

 
 

 
 

 
 

 
Figure 2.8 

The dotted line near the ordinate AP indicates that all other ordinates at 
points near to A are smaller than AP. 
Similarly the point B, where x = d, the function f has a minimum because in 
the neighbourhood of x = d the value of the function is greater than f (d). 
The ordinate BQ is smaller than any other ordinates at points in a small 
neighbourhood of B. This is indicated by the dotted lines. 
From the figure, it is clear that A is not the only point where there is a 
maximum and B is not the only point where there is a minimum. The 
function has maximum at A1, A2 and it has minimum at BB1, B2B . Also note 
that the value of the function at A1 (which is a maximum) is less than the 
value of the function at B (which is a minimum). 
Thus there can be several maxima and minima in an interval. 
In ordinary language, the expression maximum and minimum are used to 
mean the greatest value and the least value respectively. For us the meaning 
of maximum (or minimum) is not the same. All we need for a function f to 
have a maximum at x = c is that f at x = c should be greater than all other 
values of f in some small neighbourhood of x = c. 
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Note that the greatest value is automatically a maximum but a maximum 
need not be the greatest value of the function in its domain. Similarly, a 
minimum is not necessarily the smallest value of the function in its domain. 
In order to distinguish from the greatest value, the maximum is sometimes 
called a relative or local maximum and the greatest value is called absolute 
or global maximum. Similarly, a minimum is called relative or local 
minimum and the least value is called the absolute or global minimum. The 
term extremum (plural extrema) or extreme value is used to mean both 
maximum and minimum. 

 
 

Let . The graph of f is a parabola (Figure 2.9). Since  
f (x) ≥ 0 for all x in 

21,)( 2 ≤≤−= xxxf
0)0(21 and =≤≤− fx , we conclude that f has a 

minimum at x = 0. Since this is the only minimum, x = 0 is the absolute 
minimum. The function has maxima at the two end points x = − 1 and x = 2. 
At the point x = 2, there is an absolute maximum. 

 

 

 

 
 
 
 

 
 

Figure 2.9 

 

2.5.1 Necessary Condition for a Maximum and Minimum 

Example 2.14 

We give a method for finding possible points of the maxima and minima of a 
function. We have the following theorem which we state without proof. 

Theorem 2 

If f is differentiable at x = x1 and if f has a maximum or a minimum at  
x = x1 then . 0)( 1 =′ xf

Note 

The theorem does not say that if 0)( 1 =′ xf  then f has a maximum or 
minimum at x = x1. In fact, even 0)( 1 =′ xf , there may not be any maximum 
or minimum as the following example will show. 

 

 
Example 2.15 

Let  3)( xxf =

Then  0)0(3)( and2 =′=′ fxxf
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But f (x) < 0 if x < 0 and f (x) > 0 if x > 0. Mathematics-II 
 

Therefore, we cannot find any neighbourhood of x = 0 where 

   )()0()()0( or xffxff ≤≥  

Hence x = 0 is neither a maximum nor a minimum even though f ′ (0) = 0. 
Thus  is a necessary condition for f to have a maximum or a 
minimum at x = x

0)( 1 =′ xf
1 but it is not sufficient. 

We know from Section 2.2 that if 0=
dx
dy  at a point x = x1 then the tangent 

to the curve y = f (x) is parallel to the x-axis. We also know that if f has a 
maximum or a minimum at a point x = x1 and if  exists, then 

. Combining these two results, we get the following obvious 
geometric fact : 

)( 1xf ′
0)( 1 =′ xf

If f is differentiable at a point x = x1 and if f has a maximum or a 
minimum at x = x1, then the tangent to the curve y = f (x) at 1xx = is 
parallel to the x-axis. 

 

2.5.2 Rule for Finding Maxima and Minima 
The derivative  gives us the points of local minima or points of local 
maxima. How do we distinguish whether the point x

)(xf ′

0 satisfying 0)( =′ xf  is a 
point of local maximum or a point of local minima? We have seen that if x0 is a 
point of local maximum then 0)( >′ xf  at a nearby point to the left of x0 and < 0 
at a nearby point to the right of x0. On the other hand, if x0 is a point of local 
minimum, then 0)( <′ xf  at a nearby point of the left of x0 and > 0 at a nearby 
point to the right of x0. Thus, we have the following working rule for finding the 
points of local maxima or local minima. 

Theorem 3 : First Derivative Test 

Let f (x) be a differentiable function on I. Then 

(a) x0 is a point of local maximum of f (x) if 

(i) 0)( 0 =′ xf  

(ii) 0)( 0 >′ xf  at every point close to the left of x0 and 
0)( 0 <′ xf  at every point close to the right of x0. 

(b) x0 is a point of local minimum of f (x) if 

(i) 0)( 0 =′ xf  

(ii) 0)( 0 <′ xf  at every point close to the left of x0 and 
0)( 0 >′ xf  at every point close to the right of x0. 

(c) If 0)( 0 =′ xf  but )(xf ′  does not change sign as x increases 
through x0, then x0 is neither a point of local maxima nor local 
minima. Such a point is called the point of inflection. 

The First Derivative Test helps us in finding the points of local maximum  or 
local minimum. But it takes time to verify how )(xf ′  is changing sign as x passes 
through the points given by 0)( =′ xf . We have another test known as the second 
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derivative test which enables us to find the points of local maxima or local 
minima. 

Consider a point x0 such that  and 0)( 0 =′ xf 0)( 0 <′′ xf . It being assumed that the 
second derivative exists at x0. This suggests that f ′ is strictly decreasing at x0 as 
its derivative is negative. Therefore  is positive to the left of x)(xf ′ 0 and negative 
to the right of x0 in a small interval around x0. This in turn implies that f (x) is 
strictly increasing upto x0 and then decreasing in this small interval, i.e. x0 is a 
point of local maximum. 

 

 

 

 

 

 
 

Figure 2.10 

Thus if  and , x0)( 0 =′ xf 0)( 0 <′′ xf 0 is a point of local maximum. 

Similarly, if  and , x0)( 0 =′ xf 0)( 0 >′′ xf 0 is a point of local minimum. 

Theorem 4 : Second Derivative Test 

Let f (x) be a differentiable function on an interval I and x0 ∈ I and 
 be continuous at x)(xf ′′ 0. Then 

x0 is a point of local maximum if both 0)( 0 =′ xf  and 0)( 0 <′′ xf . 

x0 is a point of local minimum if both 0)( 0 =′ xf  and 0)( 0 >′′ xf . 

So we have the following rule for finding points of local maximum or local 
minimum. 

Step 1 

Find all the points where f ′ is zero. 

Step 2 

At each of these points find the sign of f ′′. 

Step 3 

If f ′′ is –ve, the point is a point of local maximum. If f ′′ is +ve, then the 
point is a point of local minimum. 

Note : This test fails if  is also zero. In that case, we go back to the first 
derivative test. 

)( 0xf ′′

 

 Example 2.16 

Find the maximum and minimum of  with the help of the first 
derivative test. 

xxxf −= 2)(

Solution 
To solve this problem, we follow the steps discussed above. 
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We observe that f is differentiable at all points. 
Step 2 

2
10)(,12)( gives ==′−=′ xxfxxf  

Step 3 

So the only critical point is 
2
1

=x . 

Hence, if f has any maximum or minimum, it must be at 
2
1

=x . 

Step 4 

We test the change of sign of )(xf ′′  while crossing 
2
1

=x  from left to 

right. We have ⎟
⎠
⎞

⎜
⎝
⎛ −=−=′

2
1212)( xxxf  

(i) 
2
10)( if <<′ xxf , and 

(ii) 
2
10)( if >>′ xxf . 

Therefore, f has a minimum at 
2
1

=x . 

 

 
Example 2.17 

Investigate the maximum and minimum of the function 
 with the help of the first derivative test. 155)( 345 −+−= xxxxf

Solution 
(i) The function is differentiable at all points. 

(ii)  234 15205)( xxxxf +−=′

          )34(5 22 +−= xxx

          )1()3(5 2 −−= xxx

(iii) The critical points are given by 0)( =′ xf . 

or   0)3()1(5 2 =−− xxx

or  3,1,0 === xxx  

(iv) We now test the critical points, 
The critical point x = 0. 
When x < 0, we have 

   0301,0 and2 <−<−> xxx

Hence      . . . (1) 0)3()1(5)( 2 >−−=′ xxxxf
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   (+)  (−) (−) 

When x crosses over x = 0 but remains very near x = 0, we have x > 0, 
x < 1, and x2 > 0, x – 1 < 0 and x – 3 < 0. 

So  .     . . . (2) 0)3()1(5)( 2 >−−=′ xxxxf

From Eqs. (1) and (2), we see that )(xf ′′  remains positive when x 
goes from left to the right of the critical point x = 0 and does not 
change its sign. Hence, at x = 0, the function has neither a maximum 
or minimum. The function increases at x = 0. 

Critical point x = 1. 

When  03,01,0,1 2 <−<−>< xxxx

Hence      . . . (3) 0)3()1(5)( 2 >−−=′ xxxxf

   (+)  (−) (−) 

When x crosses over x = 1 but remains very near x = 1, we have 

   03,01,02 <−>−> xxx

so that      . . . (4) 0)3()1()( 2 <−−=′ xxxxf

Thus, from Eqs. (3) and (4), )(xf ′′  changes its sign from positive to 
negative. Hence, at x = 1 there is a maximum. 
Similarly, it can be seen that x = 3, the function has a minimum. 

 
 

Find the points of maximum and minimum for the function of Example 2.17 
by using second derivative test. 

Solution 
We have 

    155)( 345 −+−= xxxxf

    234 15205)( xxxxf +−=′

             )3()1(5 2 −−= xxx

The critical points are x = 0, x = 1, x = 3. 

    xxxxf 306020)( 23 +−=′′

         010306020)1(,1 <−=+−=′′= fx  

Therefore, at x = 1, the function f has a maximum. 

At   090905405403.303.603.20)3(,3 23 >=+−=+−=′′= fx

Therefore, at x = 3, the function f has a minimum. At x = 0, f′′ (0) = 0. 
(However, by observing the change of sign of 0)( at =′ xxf , we have seen in 
Example 2.17 that at x = 0, there is neither a maximum nor a minimum.) 
 

Example 2.18 



 
 

 

2.5.3 Greatest and Least Values of a Function in a Closed 
Interval 

Mathematics-II 
 

Let f be continuous in a closed interval [a, b]. Then we know that f always has a 
greatest value and a least value in this interval [a, b]. The greatest (or least) value 
may be attained either at an interior point of the interval or at the end points x = a 
(or x = b) of the interval. 
It is easy to verify that 

(i) f  has a maximum at x = a if 0)( <+′ af . 

(ii) f  has a minimum at x = a if 0)( >+′ af . 

(iii) f  has a minimum at x = b if 0)( <−′ bf . 

(iv) f  has a maximum at x = b if 0)( >−′ bf . 

Therefore, if we are required to find the greatest (or least) value of a continuous 
function in a closed interval [a, b], we should consider the following steps : 

(i) Find all the maxima (or minima) in the open interval a < x < b. To do 
this we follow the procedure described in Sub-section 2.5.2. Find the 
values of the function at the maximum (or minimum) points so 
obtained. 

(ii) Find the value f (a) and f (b) of the function at the end points x = a 
and x = b of the interval [a, b]. 

(iii) Now pick the greatest (or least) of all the values of the function so 
obtained. This value will be the greatest value (or the least value) of 
the function in the closed interval [a, b]. 

 
 

Determine the greatest and the least value of the function 

    155)( 345 −+−= xxxxf

in the interval [0. 2]. 
Solution 

In Example 2.18, we saw that the critical points of this function are 
   x = 0, x = 1 and x = 3 
Since x = 3 is outside the given interval [0, 2] and x = 0 is an end point, thus 
the only critical point in the open interval 0 < x < 2 is at x = 1. 
Now   f (1) = 1 – 5 + 5 – 1 = 0. 
The values of the function at the end points are 

     f (0) = − 1 

     12.52.52)2( 345 −+−=f

            1408032 −+−=  

             = − 9 
Thus the greatest value of f (x) in [0. 2] is 0 and the least value is – 9. 

Example 2.19 

76 
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Derivatives2.5.4 Maxima and Minima : Problems 
The theory of maxima and minima developed in the previous sections provides a 
powerful tool for solving problems that require minimizing or maximizing certain 
functions. In this section, we illustrate how this is done by solving some 
problems. We shall summarise the technique at the end. 
 

 Example 2.20 

Find two positive numbers such that their sum is 10 and their product is as 
large as possible. 

Solution 
Let one of the numbers be x. Then the other number must be 10 – x. The 
product of the two numbers is 

         . . . (1) 210)10()( xxxxxf −=−=

Since both the numbers are positive, we have 
    x > 0 and 10 – x > 0 or x < 10. 
We have to choose x in such a way that f (x) is maximum. 
From Eq. (1), we find 
    )5(2210)( xxxf −=−=′  

Therefore  50)( at ==′ xxf

Now    50)( if <>′ xxf

and   50)( if ><′ xxf  

Hence f (x) has a maximum at x = 5. 
Hence the two required numbers are x = 5 and 10 – x = 5. 

 
 Example 2.21 

A cylindrical container is to be made with capacity 1000 cubic metre. The 
material for the side costs Rs. 200/- per square metre and for the ends  
Rs. 150/- per square metre. Find the radius of the base so that the cost of 
material for making the container is least. 

Solution 
Let the cylinder be of radius r and height h, 
Its volume is 

      )(1000 given2 =π= hrV

or    2
1000

r
h

π
=        . . . (1) 

The area of the side is 
     hrA π= 21

Cost of the material for side = Rs. 200. hrA π= 21  . 200   . . . (2) 

Area of top end  2rπ=
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 Area of bottom end  2rπ=

So that sum of the areas of the two ends  22 rπ=

Cost of material of the two ends . 150     . . . (3) 22 rπ=

Hence total cost [adding Eqs. (2) and (3)] 

     200.2150.2 2 hrrC π+π=

         hrr π+π= 400300 2

        2
2 1000.400300

r
rr

π
π+π=  

(Substituting the value of h from Eq. (1)) 

        
r

r 400000300 2 +π=  

Hence           2
400000600

r
r

dr
dC

−π=  

         = 0 (when C is minimum) 

This gives 
π

=
π

=
3

2000
600

4000003r  

       r = 5.96 
So radius of the base is 5.96 cm.      . . . (4) 

Note that 0800000600 32

2
>+π=

rdr
Cd  for the value of r. Hence the cost C is 

minimum. 
 

 Example 2.22 

The cost of running an engine is proportional to the square of its speed and 
is Rs. 48/- per hour for a speed of 16 m.p.h. Other expenses amount to  
Rs. 300/- per hour. What is the most economical speed? 

Solution 

Let v km.p.h be the speed. If C is the cost of running the engine then  
C = Kv2, where K is a constant. Now C = 48 when v = 16. Therefore 

   
16
3

1616
48

2 =
×

==
v
CK  

The running cost per hour is ⎟
⎠
⎞

⎜
⎝
⎛ += 2

16
3300 v . 

If the distance travelled is s km, then number of hours the engine run is 
v
s . 

Hence the total cost of running is 

     ⎟
⎠
⎞

⎜
⎝
⎛ += 2

16
3300 v

v
sy . 

For the most economical speed, we must have 
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2
and >=

dv
yd

dv
dy . 

Now   0
16
3300

2 =⎟
⎠
⎞

⎜
⎝
⎛ +−=

v
s

dv
dy  

gives      v = 40 

Again          400600 for32

2
=>= v

v
s

dv
yd . 

Hence, the most economical speed is 40 km.p.h. 

SAQ 3  
 

(a) Find the maximum and minimum of 

(i) 
2

4
+

+
x

x . 

(ii)  on the interval 333 +− xx ⎥⎦
⎤

⎢⎣
⎡−

2
3,3 . 

(iii) . 2)2()1( −−= xxy

 

 

 

(b) Show that f (x) = sin x (1 + cos x) has a maximum at 
3
π

=x . 

 

 

 

 
(c) Find the extreme values of f (x) = sin 2x for 0 ≤ x ≤ 2π. 

 

 

 

 

(d) Show that the maximum rectangle that can be inscribed in a circle is a 
square. 

 

 

 

(e) Show that of all the rectangles of given area the square has the 
smallest perimeter. 
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 2.6 ROLLE’S THEOREM 

Consider the function sin x. It takes the value zero at the points 0, ± π, ± 2π, . . .  

Its derivative is cos x which vanishes at the points ...,
2

3,
2

π
±

π
±  We note that 

between any two points where sin x vanishes, there is a point where its derivative 
vanishes. 

Consider another function . This vanishes at the points x = 1 and x = 
3. The derivative of this function is 2x – 4 which vanishes at x = 2. Hence, again  
x = 2 is a point lying in between 1 and 3. 

342 +− xx

In the above two examples, we have observed that between any two points where 
a function vanishes, there is a point where its derivative is also zero. Rolles 
theorem asserts that the observed result is a general truth which is as follows : 

Rolle’s Theorem 

Let f be a real function defined in a closed interval [a, b] such that 

(i) f (a) = f (b) 

(ii) f is continuous in the closed interval [a, b]. 

(iii) f is differentiable in the open interval (a, b),  
then there is a point c ∈ (a, b) such that f ′ (c) = 0. 

The conclusion of Rolle’s theorem also holds true if we replace the 
condition f (a) = f (b) by the condition f (a) = f (b) = 0 keeping other 
conditions the same. Rolle’s theorem has a very simple geometrical 
interpretation. If the graph of a function is an unbroken curve intersecting 
the x-axis at the points a and b and if the curve has a tangent at every point 
except, possibly, at the end points, then there must be at least one point  
(c, f (c)) on the curve different from the end points at which the tangent is 
parallel to the x-axis [Figures 2.11(a) and (b)]. 

 

 

 

 

 

 
(a)      (b) 

Figure 2.11 

 
 Example 2.23 

The polynomial function  is continuous and differentiable for 
all real x. If we take a = − 1 and b = 1, we have . 
Therefore, the conditions of Rolle’s theorem are satisfied on [− 1, 1]. Thus, 
there must be at least a number c such that – 1 < c < 1 and 

. In fact we have two values 

xxxf −= 3)(
)1(0)1( ff ==−

013)( 2 =−=′ ccf
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3
1 where =′⎟
⎠
⎞

⎜
⎝
⎛±= c fc  

Both the roots are between – 1 and 1. 
 

 Example 2.24 

The function 

    
⎩
⎨
⎧

=
≤≤

=
1if,0

10if,
x

xx
y

is zero at x = 0 and x = 1 and 
dx
dy  exists on the open interval (0, 1). But the 

function is not continuous on [0, 1]. The end point x = 1 is a point of 
discontinuity. Therefore, Rolle’s theorem is not applicable on the interval  

[0, 1]. You can observe that 
dx
dy  is different from zero ⎟

⎠
⎞

⎜
⎝
⎛ = 1

dx
dy  on (0, 1). 

 
SAQ 4  

 
(a) Show that the conical tent of given capacity will require the least 

amount of canvas if its height is 2  times its base radius. 

 

 

 

 

(b) An open storage bin with square base and vertical sides is to be 
constructed from a given amount of material. Determine its 
dimensions if its volume is to be maximum neglecting the thickness 
of material and waste in constructing it. 

 

 

 

 

(c) Find the height of a right cylinder with greatest lateral surface area 
that may be inscribed in a given sphere of radius R. 

 

 

 

 

(d) Given a point on the axis of the parabola  at a distance a 
from the vertex, find the abscissa of the point of the curve closest to 
it. 

pxy 22 =
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(e) Can Rolle’s theorem be applied to each of the following functions? 
Find ‘c’ in case it can be applied. 
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(i)  on the interval [0, π]. xxf 2sin)( =

(ii)  on [− 2, 2]. 4)( 2 += xxf

(iii) ⎥⎦
⎤

⎢⎣
⎡ π

+=
2

,0cossin)( onxxxf . 

(iv)  on [0, 1]. xxxf 2)( 3 −=

 

 
 

 

2.7 MEAN-VALUE THEOREM 

Let us consider a function f (x) which satisfies all the conditions of Rolle’s 
theorem except the condition, f (a) = f (b). Then the conclusion of the theorem 
need not hold true. That is, there need not be a point (c, f (c)) on the graph where 
the tangent is parallel to the x-axis. However, there appears to be a point where 
the tangent is parallel to the chord that joins the points (a, f (a)) and (b, f (b)) of 
the graph y = f (x). A generalization of Rolle’s theorem, called the Mean-value 
Theorem, says that this will always happen, if the curve y = f (x) is continuous on 
[a, b] and differentiable on (a, b). 

 

 

 
 
 

 

 

 

 
 
 

Figure 2.12 

Theorem 5 : The Mean Value Theorem 

Let f : [a, b] → R be a function such that 

(i) f is continuous on [a, b] 

(ii) f is differentiable on (a, b). 

Then there exists at least one point c ∈ (a, b) such that 

   
ab

afbfcf
−
−

=′ )()()(  
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Example 2.25 

Let . 22and3 ≤≤−= xxy

Find a number c such that the tangent to the curve at the point P : (c, f (c)) 
is parallel to the chord joining A : (−2, − 8) and B : (2, 8). 

Solution 

We see that  satisfies the conditions of Mean-value theorem. 3xy =

The slope of the tangent to  is 3xy = 23x
dx
dy

= . 

The slope of AB is 

   4
4

88
)2(2

)2()2(
=

+
=

−−
−− ff  

By Mean-value theorem we have a point ‘c’ such that – 2 < c < 2 and 

 which implies that 43)( 2 ==′ ccf
3

2
±=c . There are two values of c 

between – 2 and 2 where the tangent to the curve  is parallel to the 
chord AB. 

3xy =

 

 

 

 

 

 

 
 

Figure 2.13 

 

 

Check whether Mean value theorem is applicable to the function 3
2

1 xy −=  
over the interval [− 1, 1]. 

Example 2.26 

Solution 

The function is continuous in [– 1, 1]. 

The derivative 3
1

3
2)(

−
−=′ xxy  exists at all non-zero points of [– 1, 1] and 

does not exist at x = 0. Moreover, the slope of AB is 

   0
11

)1()1(
=

+
−− ff  

and 0)(
3
2)( 3

1

≠−=′
−

ccy  for any finite c. 
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Mean value theorem does not hold in this case because the derivative f ′ (x) 
fails to exist at a point of (– 1, 1), y = f (x) does not have a tangent at x = 0. 

 
SAQ 5 

 

Verify the condition of mean value theorem in the following examples. In 
each case, find c in the interval as stated by the mean value theorem 

(i) ⎥⎦
⎤

⎢⎣
⎡ ππ

2
5,

2
sin onx  

(ii) . ]1,0[32 on23 +−− xxx

 

 

 

 

2.8 CURVE SKETCHING 

In this section, we use the results of differential calculus to sketch some curves. 
Then results will be used to find 

(i) in which intervals is the curve increasing. 
(ii) in which intervals is the curve decreasing. 
(iii) at which points the curve takes turn. 

We can use these points together with the observations of symmetry to sketch the 
curve. 
 

 
Example 2.27 

Draw the graph of the curve . xxxf 4)( 2 −=

Solution 

xxxf 4)( 2 −=  

f being a polynomial function is differentiable for all values of R so the 
curve is continuous. 
   )2(242)( −=−=′ xxxf  

For x ≥ 2, f is an increasing function and for x ≤ 2, f is a decreasing 
function. Also 0)( =′ xf  for x = 2, i.e. the tangent to the curve is parallel to 
x-axis for  
x = 2. We construct a table of values of x only as under 

x − 2 − 1 0 1 2 3 4 5 

y 12 5 0 − 3 − 4 − 3 0 5 

Plot the points and the graph as shown in Figure 2.14. 
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Figure 2.14 

 

 
Example 2.28 

Draw the graph of the curve . xy 2sin=

Solution 

The function is continuous and differentiable for all value of x ∈ R. Also, it 
is symmetrical about y-axis as the equation remains unchanged when x is 
changed to – x. 

   xxxxf 2sincossin2)( ==′  

Hence 

    0)( >′ xf

when   

   ...,
2

52,
2

3,
2

0 π
<<π

π
<<π

π
<< xxx  

and  0)( <′ xf  

when  ...,2
2

3,
2

π<<
π

π<<
π xx  

i.e. f (x) is increasing in the intervals ...,
2

5,2,
2

3,,
2

,0 ⎥⎦
⎤

⎢⎣
⎡ π
π⎥⎦

⎤
⎢⎣
⎡ π
π⎥⎦

⎤
⎢⎣
⎡ π  and 

decreasing in ...,2,
2

3,,
2 ⎥⎦

⎤
⎢⎣
⎡ π
π

⎥⎦
⎤

⎢⎣
⎡ π
π . 

Also,  

           0)( =′ xf

when 
    ...,3,2,,02 πππ=x
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 i.e.    ...,

2
3,,

2
,0 π

π
π

=x  

A sketch of the curve is as follows : 

 

 

 

 

 

 

 
Figure 2.15 

2.9 SUMMARY 

The important points covered in this unit are 

• Given the curve 
dx
dyxfy ,)(=  represents the slope of the tangent to 

the curve at the point (x, y). 
• The equation of the tangent to the curve )(xfy =  at the point (x1, y1) 

is )( 1
),(

1
11

xx
dx
dyyy

yx
−⎟

⎠
⎞

⎜
⎝
⎛=− . 

• The equation of the normal to the curve )(xfy =  at the point (x1, y1) 

is 0)()(
),(

11
11

=⎟
⎠
⎞

⎜
⎝
⎛−+−

yxdx
dyyyxx . 

• The time rate of change of displacement is called velocity. The time 
rate of change of velocity is called acceleration, i.e. 

2

2
,

dt
sd

dt
dva

dt
dsv === . 

• Let f be a real function and I be a subset of R, then f is called an 
increasing (decreasing) function on I iff x1, x2 ∈ I, 

))()(()()( 212121 xfxfxfxfxx ≥≤⇒< . 

• If ))()(()()( 212121 xfxfxfxfxx ><⇒<  then f is called a strictly 
increasing (strictly decreasing) function on I. 

• f (x) has a maximum at x = x0 if 0)(0)( 00 and <′′=′ xfxf . 

• f (x) has a minimum at x = x0 if 0)(0)( 00 and >′′=′ xfxf . 

• We have studied Rolles theorem and learned the geometrical meaning 
of it. 

• Learned the Mean value theorem and its applications. 

2.10  ANSWERS TO SAQs 

SAQ 1 
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Applications of 

Derivatives(a) Equation of the tangent is 12
1

2
1 =+

b
yy

a
xx . 

and equation of the normal is ⎟
⎠
⎞

⎜
⎝
⎛ −=− 22112

1
2
1 11

ab
yx

a
yx

b
xy . 

(b) Tangent is parallel to x-axis at 
3

3,
3
4 2

== yx . 

(d) 
20
21tan −=α  at the point (5, 2). 

SAQ 2 

(a) Local minimum value . 2)0( =f

Local maximum value 6)4( −=−f . 

(b) (i) Minimum = − 15 

 Maximum = 5 

(ii) x = 2 is minima. 

         
3
4

=x  is a maxima. 

SAQ 3 

(c) Extreme values are 1, − 1. 

SAQ 4 

(b) 
2
ah = , where h is the vertical side and a is the side of the square base. 

(c) h = 2 r, where h is the height and r is the radius of the base. 

(d) )2,(),2,( paapaa − . 

(e) (i) Yes. Rolle’s theorem is applicable,
2
π

=c . 

(ii) Yes, c = 0. 

(iii) Yes, 
4
π

=c . 

(iv) No. 

SAQ 5 

(i) ⎟
⎠
⎞

⎜
⎝
⎛ π

= −

2
3cos 1c . 

(ii) 
3
1

=c . 
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