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6.1 INTRODUCTION

Matrices and Determinants have become an important tool in the study of science
and engineering.

In this unit, we will introduce matrices and various operations involving them.
After introducing the notion of determinant of a square matric, some important
properties of determinants are observed. These properties are useful in computing
the determinants of a matric more efficiently. Determinants will be used to
understand certain aspects of matrices. The notion of adjoint and inverse of a
matric are also introduced and these concepts will be used in solving a system of
linear equations.

Objectives

After studying this unit, you should be able to

introduce the notion of matrices and operations involving matrices,

introduce determinants of order n and give some useful properties of
determinants,

introduce the concept of inverse of a matrix, and

understand certain aspects of matrices in terms of determinants.

6.2 MATRICES

In this section, we introduce the notion of a matrix and then study some aspects of
matrices which are extremely useful to understand several engineering systems.
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A matrix of order m by n is an array of mn numbers (real or complex), arranged in
m ordered rows (each row containing N numbers) and n ordered columns (each
column containing m numbers). Note that the order, m by n, of a matrix
determines the number of rows, m, and the number of columns, n, associated with
the matrix. Let the ith row of a m by n matrix consists of the n numbers.

@iy @jp ... Qjp,

for 1 = 1 to m. If we denote this matrix by A, then we usually write

8.11 a12 [N aln

a a ... a
A= 21 22 2n

A Qn2 .- Apn

or, more compactly as,

A=(gj),i=1tom and j=1ton.

Note that the first suffix i in a;j refers to the row index and the second suffix j in
ajj refers to the column index. The number &j; is called the entry or element in the
ith row and jth column of the matrix A.

A matrix is called a rectangular matrix or a square matrix as m#n or m=n.

A square matrix with n rows and n columns is also referred to as a n-square
matrix or a square matrix of order n. A matrix of order m by 1 is called a column
matrix. Similarly, a matrix of order 1 by n is called a row matrix. For example,
the following are matrices of orders mentioned against each matrix :

23 .

matrix of order 2 by 3.

2 0 5]

SEP
square matrix of order 3.
column matrix of order 3 by 1.

13

12 1] : row matrix of order 1 by 3.

Amongst all the m by n matrices, a matrix with every entry 0 is called a null (or
zero) matrix. A null matrix is denoted by 0. Note that we have a null matrix of
every order and each of these is denoted by the same symbol, viz., 0. The
following are example of null matrices :

[0 0
00 : null matrix of order 3 by 2.
0 0
[0 0 00

null matrix of order 2 by 4.
0000

Amongst all the n square matrices, we also single out the following matrix :
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0 ... 0
A=1. = (aij ) s
000 ... 1

i.e., &j=0 for i # ] and a;; = 1 for i = j. This matrix is called the identity matrix (or
Unit Matrix) and is denoted by I. Again, note that we have an identity matrix | for
every N and each of these is denoted by the same symbol, viz. |. For example, the
identity matrix of order 3 is

1 00
010
0 01
We remark that the context in which a null matrix or identity matrix is used

usually indicates the order of these matrices. Otherwise, the order of a null or
identity matrix should be specified.

A square matrix A = (a@;j) is called a diagonal matrix if & = 0 for i # j and a;; are
arbitrary. The diagonal matrices play an important role. The following is an
example of a diagonal matrix of order 4 :

1 0 0 O
0 2-1 0 O
0 0 30
0 0 00

Note that some diagonal entries, @i, of a diagonal matrix may also be zero.

A square matrix A = (&) is called an upper triangular matrix if a;; = 0 for i > |
and a lower triangular matrix if a;; = 0 for i <j. A matrix which is either upper
triangular or lower triangular is called triangular matrix. Note that a diagonal
matrix is both upper triangular and lower triangular. The following are examples
of triangular matrices :

(1 2 3+i 4
0 -2 1 2 . .
) upper triangular matrix of order 4
0 0 I+1 5
0 0 0 6
3 00 0
2411 0 0 . .
lower triangular matrix of order 4.
0 10 O
| 0 2 5 6+i

Either of these matrices is an example of a triangular matrix.

6.2.1 Equality of Matrices
Let A=(a;) and B = (bjj) be any two matrices of the same order. Then, we
define
A=B < a;=b; foralliand]j.
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Thus, two matrices are equal if
(1)  their orders are same, and
(i1) the entries in the corresponding positions are same.

Observe that the following properties are satisfied by the above concept of
equality of matrices.

i) A=B=B=A
(i) A=Band B=C=>A=C
6.2.2 Sum of Matrices

The sum A + B of two matrices A= (a;;) and B = (by;) of the same order is
defined by
A+ B = (aij + blj)

Thus, we add the corresponding entries of two matrices to find the sum of the
given matrices. For example, if

1 2 0 i -1 1
A= ) and B = i
3+1 4 -1 -6 3+21 0

1+ 1 1
then A+B= . .
-3+1 7+21 -1

The following properties of addition of matrices, as defined above, are easy to

prove :

(iii) The sum of any two matrices of the same order is a matrix of the
same order.

(iv) A +B=B+ A for any two matrices A and B of the same order.

v) (A+B)+C=A+ (B + C) for any three matrices A, B and C of
the same order.

(iv) A+0=0+ A=A for any matrix A, where 0 is a null matrix of the
same order as that of A.

(vii) For any matrix A, we can associate a matrix B such that
A +B=B+ A =0.Infact,if A =(a;), then B=(-a;). The

matrix B thus obtained is usually denoted by (— A) and is called
the negative of A.

6.2.3 Scalar Multiplication

We define multiplication of a matrix A =(g;) by a scalar (number) a by the

following rule :

oA = Ao = (Otaij),

i.e., we multiply every entry of A by a to obtain aA. For example, if

1 0 -3 4
A=\, .
1 3+71 1 -4
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4@ 12+281 4 -16
i 0 -3i di
and iA= . .
-1 =-7+31 1 -4

The following properties of scalar multiplication follow from the definition :
(viii) aA is a matrix of the same order as that of A for every a.
(ix) a(A+B)=0A +aB
x) (@+PA=0A+BA
(xi) (@p)A=a(pA)
(xii) lA=AIl=A

6.2.4 Transpose and Conjugate of a Matrix

Let A=(a;) be am by n matrix. A new matrix, of order n by m, called the

transpose of A and denoted by A', can be associated with the matrix A as
follows :

AT =(aj), j=1tonandi=1tom.

Thus the ith row of A is the ith column of A" and the jth column of A is the jth
row of AT. To obtain the transpose of a matrix, we have to interchange its rows
and columns. For example, if

2 3 4 21
A=[ }then AT =3 2

125
4 5

If ajj are complex numbers, we can also define the conjugate, denoted by A, of
the matrix A = (a;;) as follows :

A=(3))

i.e. we replace every ajj by its conjugate &; to obtain A . For example, if

A=[1+i_ 2 _}then Kz{l_i_ 2 }
3-1 4+2i 341 4-2i
We observe the following properties which follow from the definition itself :
(xiii) (AN = A
(xiv) (A +B)" = A" + B"
(xv) (A)=A
(xvi) m -A+B
(xvii) (@ A)" = a A"

(xvii)) (e A) =a A
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6.2.5 Special Matrices

Using the notions of conjugate and transpose of a matrix, we now define some
special types of matrices. These matrices have some properties which are not
valid for arbitrary matrices.

A matrix A is called a symmetric matrix, if
A=A

Thus, A= (a;) is a symmetric matrix, if
a; =aj; foralliand]

For example, the matrix

-1 2 4
2 03
4 35

is a symmetric matrix.

A matrix A= (g;) is called skew-symmetric, if

a; = —aj; forall i and j,

ij:
ie. A=—AT

For example, the matrix

0 -1 2
1 0 3
-2 =30

is a skew-symmetric matrix.

Note that a; =0 for all i = in a skew-symmetric matrix because

(a) Verify properties (v), (ix), (x) and (xi) with the following data :

2 3-i 4 —i I 2+i 3 2i 0 2-i 3i 1
A=(1 0 2i 4+i,B=0 1-i i 1 ,C=|-2 2i 3 -5
3 4 0 1+i 0 3 4i -3 4 2 0 6i

anda =2, 3 =- 3.

(b)  Verify the properties (xiii) to (xviii) using the data given in SAQ 1(a).
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6.3 MATRIX MULTIPLICATION

In this section, we introduce the important concept of matrix multiplication.
Let A=(a;) be a matrix of order m by nand B = (bj) be a matrix of order n by

psothati=1tom,j=1tonandk=1 top. Note that n is common in the orders
of A and B, i.e. the number of columns of A equals the number of rows of B. If A
and B have the orders as specified, then we say that A is conformable or
compatible with B for multiplication. Further, the product of A with B, denoted by
AB, is defined as follows :

AB = (cy ), i=1tom,k=1to p,
where Cik = aj blk + djp b2k +...+aj, bnk
Thus, each of the n numbers in ith row of A, viz, & 1s multiplied with the

corresponding number in the kth column of B, viz, by, and these n products are

added to obtain c;, , the element in the ith row and kth column of the matrix AB.
Thus, we can write

n
Cik =Z ajj by
j=1

Note that the matrix AB, as defined above, is of order m by p, where m is the
number of rows of A and p is the number of columns of B.

As an example, let

1 2 4 10
A:{ }and B:{ }
4 5 5 2 1

Since the number of columns of A equals the number of rows of B, we can
multiply A with B. AB is of order 2 by 3. Thus, we have

I1x4+2x5 1x1+2x2 1x0+2x1
4x4+5%x5 4x1+5%x2 4x0+5x%1

145 2
41 14 5
It may be noted that AB may be defined whereas BA may not be defined, because

B may not be conformable with A for multiplication. However, if A and B are
square matrices of the same order then both AB and BA are defined.

AB =

Theorem 1
Prove the following properties of matrix multiplication :
i A@BOC=ABC
i) AB+C)=AB+ AC

(iii) (A +B)C=AC +BC
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(iv) (@A)B=a (AB)= A (o B)

\))

(AB)' =B" A"

(vi AB=AB
(vii) Al=1A=A

Proof

Here we have assumed that the orders of the matrices A, B and C are such
that the various matrices involved in the above properties are well defined.
For example in (ii) if A is of order m by n then the orders of both B and C

must be n by p for some p.

(1)

(i)

Let A=(a;), B=(by),and C=(c) bemxn,nxp,andpxq

matrices respectively, i.e. 1<i<m, 1< j,k<n 1<I<p

n
(i, )™ element of AB = D ;b
j=1

Hence for 1<i<m,1<s<q

(i, 5)™ element of (AB) C

g

Ij ka Cks “ .. (6.1)

M'U Il M'U
M=

=
Il
—

1

i
Alsofor I<k<n,1<s<q
p
(k, )" element of BC = by, ¢
k=1
Hence for 1<i<m,1<s<q
(i, 5)™ element of A (BC)

:i 3 {Z b cksj

j=1

™-
Mo

—
Il
—_
x
._.

aij by Cs

Il MU

Z bix Cis ... (62)

By rearranging the sum from Eqgs. (6.1) and (6.2), we conclude that
A(BC)=(AB)C

Let A=(a;), B=(bj),and C=(cy) bemxn,nxp,andnxp

matrices. Note that B and C are of the same order so that B + C is

definedas B +C =(bj +Cj)-

Hence (i, k)" element of
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AB+C)= Z &jj (bjk + Cjk) Determinants

i=1
n n
=D ay by + D ;¢
=1 i=1
= (i, k)™ element of AB + (i, k)" element of AC
For1<i<m,1<k<p
AB+C)=AB+AC
Similarly, (ii1) and (iv) can be proved.

(v) Let A=(a;), B=(bjy) betwom xn, nx p matrices, respectively.

Then AT = (cji) where cj; =a; and BT = (dyj) where dy; =bj, are
n x mand p x N matrices, respectively.
Now AB is a m x p matric = (AB)" is a p x m matric.
Also B" ATis a p x m matric.
Thus, both (AB)" and B" A'are matrices of order p x m.
(k, i)™ entry of (AB)"
= (i, k)™ entry of AB
n n n
=2, @by =2 cjidy=) dgcj
j=1 j=1 j=1

=(k, i)™ entry of B" AT,
(AB) =BT A".
Similarly, (vi) and (vii) can be proved.

Most of the properties that we have listed about matrix operations (addition,
scalar multiplication, multiplication) are also valid in numbers. However, there
are some important differences also. We bring these out in the following
examples.

Example 6.1 ‘—

Show that AB = BA in general.

Solution
1 23 00
Let A= ,B=|-11
011
2 3
0O 0 0
4 11
then ABz[1 4} and BA=|-1 -1 -2
2 7 9

In general, if A is of order m x n and B of order n x m, then AB is of order

m x m and BA of order n x n. Thus, if m # n, AB and BA are of different 163
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if
10 01
A= ,B=
o 0/®=lo o

then AB = [0 l}, BA = [O O} . Note that AB = BA.
00 00

Example 6.2 ‘—

Consider matrices A and B of Example 6.1. Here we have BA = 0 where
neither B = 0 nor A= 0.

It may also be noted that BA = 0 but AB # 0.

Example 6.3 ‘—

1 0 1 2 11
Let A= ’Bz ’C:
00 11 11

01
then B—C:{ }

00

Example 6.1 shows that
AB-C)=0

ie. AB-AC=0,

ie. AB =AC

Thus, AB=ACbutB=C

Example 6.4 ‘—

Let A:{_1 0}, and Bz{ 0 _1}
0 -1 -1 0

10 10
then A? = AA = ,and B> =BB =
0 1 0 1

Thus, A% =B? but A= B.

Example 6.5 ‘—

Let A

1 0 -1 0
then A = , and B2 =
01 0 -1

164 Thus, A% + B2 =0 but neither A =0 nor B=0.

1
1
—_ O
O =
L
o
=3
o,
vs)

Il

|
(e
O -
| |
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The above examples show that we have to be careful while working with various

matrix operations. The usual rules of the arithmetic of numbers are not valid in
the case of matrices.

Example 6.6

In this example, we observe that any system of linear equations can be
compactly written as a matrix equation.

Consider the following system of m linear equations in n variables :
Ay Xy + A, X, +..+a, X, =b
8y X; +8y X, +..4+8, X, =D,

. .

Ay X, 8y, X, +o.t+ay,, X, =b,

Using the arithmetic of matrices, this system can be represented by the
matrix equation

AX =B,
a, 8 ... a X by
ay 8y ... Xy b,
where A=| " v Ix<|lB=
_aml amz amn _Xn_ _bm_

-2
J, verify that (A + 1) (A—41)=0.

(b) Find the matrix X so that

X123_—7—8—9
456 | 2 4 6
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cosX —sinx 0
(c) If f(x)=|sinx cosx 0
0 0 1

Prove that f (o) f (B) =f (a0 + B).

(d) Let A be a square matric. Show that % (A+ A") is a symmetric

. 1 . . .
matrix and 5 (A— A") is a skew symmetric matrix.

(e) If A and B are square matrices of same order, then prove that
(i) If A and B are symmetric, A — B is also symmetric.

(i1)) If A and B are skew symmetric, A — B is also skew symmetric.

6.4 DETERMINANTS

Determinant of a Square Matrix

With every square matrix A, we associate a unique number called the
determinant of the matrix and is denoted by det A or | A | and is defined as
follows :

If A= (a;;) is a square matrix of order 1, then det A=a;;, i.e. | a;; | = ai.
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If A= ( H IZJ is a square matrix of order 2, then Determinants
a1 8y
a,, a
detA=| "' "Pl=ay ay —ay, ay,
a1 8y
a; a4 a3
If A=|a, a, ay; |Isasquare matrix of order 3, then
83 ap a3
8 8 a3
det A = 3.21 8.22 a23
a3 a3 a3

(D

=ay

We say that the determinant has been expanded with the help of the first
row.

The expansion with the help of the second row will be

a, a a,, a 3, a
T R PP e P e )
a3 as3 a3 33 a3 as
It can be verified that the value given by Eq. (2) is the same as given by
Eq. (1). We can also expand it with the help of any column. For example
expanding along the second column, we get its value equal to
a, a 3, a 3, a
_a, |2 g |8 B % A (3
a3 as3 a1 a3 8y dp3
For example,
(i) if A=(=3),thendetA=-3
R 4 2
(1) if A= . 7} thendetA=4.7-2.(-1)=28+2=30
24l 05 05 00
(i) if A=|0 0 5| then detA=2 -4 +1
01 3 1 3 0 3 01

=2(0-5-40-0)+1(0-0)
=-10
Evaluation of a Determinant of a Square Matrix of Order 3 by Sarrus Rule

A more convenient method for evaluating a determinant of a square matrix
of order 3 is given below. This is called sarrus rule.

8 @ a3
Consider the determinant |a,; a,, a,;| and write the elements as

31 A3 as3

ap
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The value of the determinant is obtained by adding the products of elements
along the diagonals parallel to main diagonal and subtracting the sum of the
products of elements along the diagonals which run up from left to right.
Observe that the first two columns are repeated in the above table to
complete the process.

Remark

This method is only for determinants of order 3.

2 1 -4
For example, to evaluate | 1 5 0 |, write the elements as
-2 4 7

\\\
OO

The value of the given determinant
=(257+1.0.(-2)+(-4).1.4)
-((-2).5.(-4)+4.02+7.1.1)
=(70+0-16)-(40+0+7)
=54-47=17
Minors and Cofactors
Minors

Let A=(a;) be a square matrix of order n and let Ajj denotes the

square matrix of order n — 1, obtained from A by deleting the ith row
and jth column, then the number det Ajj is called minor of the entry a;;
and is denoted by Mjj, i.e.

My = AL 1<, j<n.

For examples,

(1) let A= , then
M11:|d|:d
M12:|C|:C,

M21=|b|=b,and



My =|a|=a.
4 -2 8

(i) let A=|—-1 i 0],then
31 2

i 0 . .
12

-2
. ‘:4—(—6)=10,and

4 -2 .

Cofactors

The number (- 1)' 1 det A is called the cofactor of the entry a;;
and 1s denoted by Cj, 1<i, j<n.

Note that Cj; = det Ay = Mj; if i+ j iseven, and

ij

Cij =—det A” Z_Mij lf |+J iSOdd.

For examples,

4 -2 8
let A=|-1 i 0],then
3 1 2
-1 0
C,=(=D"? ——(-2-0)=2
=010 3 2‘ ( )

4 -2
Cp =(-1*" ; 1|=—(4+6)=—10,and

Cy=(- 1)3+1

8 . .
0‘=(0—8|)=—8| etc.

Determinants and Cofactors
If A=(a;) beany n x n square matrix, then

n - -
det A=Y a; (-1 det A
j=1

n
=2, 3; Cj
j=1
(expansion with the help of ith row)

i.e. det A = the sum of the product of element of a row (column) with their
corresponding co-factor.

Example (o ]

Find the minors and the cofactors of each entry of the second row of the
matrix A and hence evaluate det A where

Matrices and
Determinants
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Solution

4 1
37

2 1
My =| 7 |=14-(-D=15,and

My =| - Y=6-ay=10
20-1 3 B

Cy=(=D*" My =(-1).25=-25,
Cy =(-1)*** M,, =1.15=15, and
Cyy=(-1)*" My =(=1).10=-10
Now, on expanding det A with the help of second row, we get
det A=a,, C,; + a5, Cyy + 3,3 Cyg

=3.(=25)+215+5.(-10)=—75+30—50=—95

IExamP]le 6.8 | o———————————————————————————
3 -2 4
Evaluate |2 0 1| by two methods.
1 2 3
Solution
3 -2 4
01 21 20
2 0 1]=3 —(-2) +4
23 1 3 1 2
1 2 3

=3(0-2)+2(6-1)+4(4-0) (Expansion by first row)
=—6+10+16=20

Also write the elements of the given determinant as (sarrus rule) :

\\\

170 The value of the given determinant



=(3.03+(-2).1.1+422)—(1.04+2.13+32(-2)) Matrices and

Determinants

=(0-2+16)—(0+6-12)=14+ 6 =20

____________________________________________________________________________________________|
6.4.1 Properties of Determinants

The properties of determinants serve as useful tools for determining the values of
the given determinants. We mention here these properties and verify them for a
second or a third order determinant.

Theorem 2

Let A=(ajj) be any square matrix of order n, then det A = det AT,

where A’ is the transpose of A.

Proof
a b ¢
Let A: a2 b2 Cz
a by oo
a b ¢
= detA=|a, b, c,| (expandby R;)
a by ¢
141 b, c, 142 a G 13 | b
= [Al=(-D"" a +(=D"" b +(=D "¢
by ¢ 3 C3 a; by
=a; (by¢3 —b3Cy) — by (8,63 —a3¢,) + ¢ (3, by —azh,)
=abyc; —abyc, —a,bcy +asbc, +a,byc —asb,c
(1)
a a4 a3
Also det AT =|AT|=|b, b, b;| (expandedbyR))
G G G
b, b b b b, b
2 C3 1 C3 ¢ G

=a; (byc3 —b;¢y) —a; (b c3 —bycy) +a; (bc, —bycp)
=abyc; —abyc, —a,bcy +a,bsc; +a3bc, —asb,c
=ab,cy —abyc, —a,bcy +a3bc, +a,byc; —ash,c ... (i)
From Egs. (1) and (i1), we have
|AI=|AT].

(The value of a determinant remains unchanged if its rows are changed into
columns and columns into rows.)
Theorem 3

If two rows (columns) of a determinant are interchanged, then the
value of the determinant changes in sign.

Proof
171
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Let A = a2 bz C2
a by oo
a b ¢
a by ¢
= |Al=a, (byC; —bscy) —by (a,¢3 —a3Cy) + ¢ (B b3 —azby)
(1)

Let X be the matrix obtained from A by interchanging its first and second
columns, then

b a ¢
det X =|b, a, ¢, (expand by R;)
by a3 ¢
=by (3¢ —a;¢y) = (b, C3 —byCy) + ¢ (bya3 —byay) ... (10)

From Egs. (1) and (i1), we have
IX]=—1A].

Cor. 1
If B be a matrix obtained from a square matrix A by passing one of its rows
(or columns) over r rows (or columns), then
detB=(-1)" det A.

Theorem 4
If two rows or columns of a determinant are identical, then the value of
the determinant is zero.

Prove

Let A be a given matrix of order 3 x 3 which has two parallel lines identical,
say second and third rows, i.e.

a b ¢

|A|: a2 b2 C2 .

Let B be the matrix obtained from A by interchanging the second and third
rows, 1.e.
a b ¢
B = a2 b2 Cz s
a b ¢
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then |B| = 612 b2 C2 .

a b, ¢
Obviously, |IB|=]A] ()
Also by Theorem 2, |B|=—|A]| ... (1)

From Egs. (i) and (ii), we get
|[Al=—|Al= 2|A|=0
= |A|=0,1.e.det A=0.

Theorem 5

If each element of a row or a column of a determinant is multiplied by
the same number, then the value of the determinant is also multiplied

by that number.
Proof

det A = a2 b2 C2

= |Al=a;(by¢3 —b3¢y) — by (8¢5 —83C;) + ¢ (ay by —azhy) ... (1)
Let X be the matrix obtained from A by multiplying every element of third
row by the same number, say o, then
a b g
IXI=| & by ¢
oa; ab; ac,
=3, (ab,cy —abyc,) - b (aa,cy —aazcy) + ¢ (aa, by —aash,)
= o fa(by 3 —b3Cy) — by (8363 —a3Cy) + €y (B3 —azby)] ... (i)
From Egs. (i) and (ii), we get
det X = o det A.

Cor. 2
Let A=(a;) be asquare matrix of order n, then if B= 4 A where 1 is a

scalar, then det B = A" det A.

Cor. 3
If A is a square matrix in which two rows (columns) are proportional, then
detA=0.

Theorem 6

If each element in any row (or column) of a determinant consists of
sum of two terms, then the determinant can be expressed as the sum of

two determinants.
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Proof

a b +d; ¢
Then  detA=|a, b, +d, ¢, (expand by second column)
a; by +d; c

a G a G a G
=—(b +d)) +(by +dy) = (b; +dj)
a; G a3 G a G
a, C a, C a, C
_l_p, L) +b, 1 G b, 1 G
a; G a; C3 a G
a, ¢ a ¢ a ¢
+l-d, LY +d, 1 G _d, 1 G
a3 G a3 C3 A G

a b ¢ a d ¢
a; by ¢ a; d; ¢

=det B+detC.

Theorem 7

If the same multiple of elements of any row (or column) of a
determinant are added to the corresponding elements of any other row
(or column), then the value of the new determinant remains unchanged.

Proof

a b ¢

a by ¢

a +Ac, b ¢

B: a2 +>LC2 b2 C2 Py
a; +AC; by C

then we shall show that det B = det A.
a +Aic, b ¢
a; +AC; by c;
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=la, b, c,|+|Ac, b, c,| (using Theorem 5)
a; by ¢ ACy by G

¢ b

=detA+A|C, b, ¢, (using Theorem 4)
C; by ¢

=detA+21.0 (using Theorem 3)

detB = det A.

Theorem 8
If A and B are square matrices of same order, then
det AB =det A. det B.

{a b},and
c d
Xy

z t|

Then AB:[a b} {X y}
c dl|lz t

ax+bz ay+bt
cx+dz cy+dt

Proof

Let A

B

ax+bz ay+bt

= det AB =
cx+dz cy+dt

=(ax+bz)(cy+dt)—(ay+bt)(cx+dz)

= axcy + axdt + bzcy + bzdt — aycx — aydz — btcx — btdz
= axdt — aydz + bzcy — btex

=ad (xt — yz) + bc (yz — xt)

=(ad —-bc) (xt—-y2)

ab
cd

=det A . det B.

Xy
z t

Theorem 9

The sum of the products of the elements of any row (or column) of a
square matrix with cofactors of the corresponding elements of any
other row (or column) of the given matrix is always zero.

Proof
a;; a
Let A= { 1 12} ,
ay; Ay

then cofactor of a;; = Cyg
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= (- D" det |ay, | = ay
cofactor of a;, = Cy»
= (= 1'"? det|ay | = - ay

Now, sum of the products of the elements of second row with the cofactors
of corresponding elements of first row

=3, Cj +2a5,Cpy
=ay 8y ta (—ay)=0.
Notations

Let A be a matrix of order h x n.

Let Ry, Ry, Rs, . . ., R, denote its first, second, third, . . . , nth rows and
Ci, Cy, Gy, ... C, denote its first, second, third, . . ., nth columns,
respectively.

(1)  The operations of interchanging ith and jth rows of A will be denoted

The operation of interchanging ith and jth columns of A will be
denoted by C; <> C;.

(i) The operation of multiplying each element of ith row of A by a scalar
A will be denoted by R; (1) .

The operation of multiplying each element of ith column of A by a
scalar A will be denoted by C; (1) .

(iii) The operation of adding to each element of ith row of A, A times the
corresponding elements of jth row (j # i) of A will be denoted by
Ri +AR;.

The operation of adding to each element of ith column of A, A times
the corresponding elements of jth column (j # i) of A will be denoted

Example (.|

If w is one of the imaginary cube root of unity, find the value of

1 w w
2
w w1
2

W 1 W
Solution
1w w?
Let A=lw w? 1
w> 1w

Adding the second and the third row to the first row, we have



T+w+w? T+w+w? 1+w+w?

A= W w? 1
w? 1 W
0O 0 O
=lw w? 1 (1+w+w? =0)
wro1low
=0
Example 6.10 —
219 117 345
Evaluate |19 9 34
7 3 5
Solution
219 117 345
Let A=|19 9 34
7 3 5

By R; — 10 R, (i.e. subtract 10 times the 2™ row from the 1% row), we have

29 27 5
A=19 9 34
7 3 5

Now by R; — R3 and R, — 3R3, we have

22 .24 0 11 12 0
A=|-2 0 19|=2|-2 0 19
7 3 5 7 35
11 4 0
=6(—-2 0 19 (by taking 3 common from 2™ column)
7 1 5

=6[-11x19 -4 (=10 —133)]
=6 (=209 + 572) = 6 x 363 = 2178

Example 6.11 —

a a+b a+b+c
Show that [2a 3a+2b 4a+3b+2c|=a’
3a 6a+3b 10a+ 6b+3c

Solution
a a+b a+b+c
Let A=[2a 3a+2b 4a+3b+2c
3a 6a+3b 10a+ 6b+3c

Matrices and
Determinants
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Mathematics-I1 a a a+b+c a b a+b+c
=|2a 3a 4a+3b+2c|+|2a 2b 4a+3b+2c
3a 6a 10a + 6b+3c 3a 3b 10a+ 6b + 3c

The 2™ determinant is zero as first and second columns are proportional.

a a a a a b a a ¢
A=|2a 3a 4a|+|2a 3a 3b|+|2a 3a 2c
3a 6a 10a 3a 6a 6b 3a 6a 3c

(The 2™ and the 3" determinants are zero).

a a a 1
A=|2a 3a 4da|=a’|2
3a 6a 10a 3

1
4
10

AN W =

(Applying C, — C; and C; — Cy).
1 00
A=a’|2 1 2|=a’(7-6)
337

(a) Evaluate the following determinants.

a-b b-c c-a
(1) b-c c-a a-b
c—-a a-b b-c
b+c a a
(i1) b c+a b
c c a+b
265 240 219
(iii) [240 225 198
219 198 181

(b) Prove the following identities
1 1 1
(1) a b cl|=(b-c(c-a@-by(a+b+c
a’ b ¢’
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X y z
(i) |x* y? 2 {=(y -2 @-X) (X=Y) (Y2 +2X+XY)
yz X Xy
I+a 1 1
(1i1) 1 1+b 1 |=bc+ca+ab+abc
1 1 1+c
(b+c)? a’ a’
(iv) b> (c+a)? b’
c2 2 (a+bh)?

1 b+c b?>+c?

(v) |1 c+a c*+a’|=(a-b)(b-c)(c—-a)

1 a+b a’+b?

(c) Ifx,y,zare all different and

X x> 1+x°
y y? ey’ =0
z 72 1+2°

show that xyz =— 1.

=2abc (a+b +c)’

6.5 ADJOINT AND INVERSE OF A MATRIX

6.5.1 Adjoint of a Square Matrix
Definition 1

Let A=(a;) be asquare matrix of order n. Then the adjoint of A,
written as adj A, is defined as the transpose of the matrix (C;;) where

Cj; is the cofactor of a; in[A|.

4 3 4
For example, let A= [1 6} then |A| = ‘1

NOW Cll :6, C12 =-1
Cy=-3,Cp =4

3
6

Matrices and
Determinants

179



Mathematics-I1 c c T
Then adj A:[ = 12}
C1 Cx»

Theorem 10
If A is a square matrix of order 3, then A (adj A) =| A| I; =(adj A) A.
Proof
a8 a3
Let A=|a,; a,, a,;|beasquare matrix of order 3, then
831 83 33

- T
Cii Cy Gy

adjA=1Cy Cy Cy| =1Cp Cyp Cy
Cyi Gy Cys Ci3 Cy Cy

a;, ap a3 |Gy Cy Gy
o A(adjA)=|ay a3y a3 |G Cp Gy
a3 ap a3 || Cjz Cy Gy

1Al 0 0
=0 |A 0
0 0 |A

(. The sum of products of the elements of a row (or column) with their
corresponding cofactors = det A, and the sum of the products of the
elements of a row (or column) with cofactors of the corresponding elements
of another row (or column) is zero).

1 00
Aadj A)=|A||0 1 0|=|All;5.
0 01
Similarly, (adjA)A=]A]|l.
Therefore, A(adjA)=|A]l;.
=(adj A) A.

Remark

The above result holds true for any square matrix of order n. In fact, we
have

A (adj A) = | A| I, = (adj A) A,

where A is any square matrix of order n.

Example 6.12 —
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Find the adjoint of the matrix A=| -1 -1 1 | and verify that

-4 11 -1
A(adjA)=(adjA) A=A .
Solution
4 -6 1
Here |Al=|-1 -1 1 |=4(1-1)—-(=6)1+4) +1(-11-4)
-4 11 -1

=—40+30-15=-125.

Cofactors of the elements of the first row are :

-1 1
C, =(=D"! =-10,
n=D 11 -1

-1 1
C :_11+2 :_5’
=00 _4 -1

-1 -1
C :_11+3 -_15
3=0-1D _4 1

Cofactors of the elements of second row are :

-6 1
Cy = (=" =5,
21 =(=1D -1

4 1
C :_12+2 :0,
»n=0-1 4 _1‘

4 -6
Cyy = (- 1?3 =-20.
» =D 4 11|

Cofactors of the elements of third row are :

—6 1
Cy = (= 1" =-5,
51=01D 41

4 1
Cyy = (- 1" =-5,
=00 1

4 -6
Cyy =(-1°*? | 1‘:—10.

~10 =5 151" [-10 5 -5
adiA=| 5 0 -20| =|-5 0 -5
-5 -5 —10 15 =20 —10

Verification
4 -6 1 ||-10 5 -5
A@diA)=l-1 -1 1||-5 0 =5
-4 11 -1{f|-15 =20 -10

~40+30-15 20-0-20 —20+30-10
=| 10+45-15 -5-0-20 5+5-10
40-55+15 —20+0+20 20-55+10 181
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-25 0 0 100

=| 0 -25 0 |[=-25(0 10
0 0 -25 001

=(=25) 15 =[Al ;5

Similarly, we can show that (adj A) A =|A| ;.

Hence (adj A) A=Al l; = A(adj A).
]
6.5.2 Inverse of a Square Matrix
Definition 2

Let A=(a;) be asquare matrix of order n, then A is called inversible (or

invertible) iff there exists a square matrix B of order n such that
AB = |, = BA, I, being the unit matrix of order n. B is called an inverse

of A.
Theorem 11

If a square matrix has an inverse, then it is unique.
Proof

Let A be a square matrix of order n, and let B, C (n-rowed square matrices)
be two inverses of A, then (by definition).

AB =1, =BA )
and AC =1, =CA ... (1)
Now AB = I, = C (AB) = Cl,, (pre-multiplying by C)

= (CA)B=C (- Cl, =0)
= 1,B=C (by Eq. (i)
= B=C ('~ 1,B=B)

Hence, inverse of a square matrix, if it exists, is unique.

Notation
If a square matrix A is inversible, then its unique inverse is denoted by A
and AA' =1=A"A,

Definition 3 : Non-singular Matrix

Let A be a square matrix, then A is called non-singular iff | A | =0,
otherwise, A is said to be singular, i.e. a square matrix A is singular iff
|A|=0.

Theorem 12
A square matrix is inversible iff it is non-singular.
Proof

Let A=(g;) be a square matrix of order n.



First, let A be inversible, then there exists a square matrix B of order n such

that

AB=1,=BA=|AB|=|l,|=|BA|
= |Al.[B]=1=|B].|Al o [ [=1)
= |Al# 0= A is non-singular.

Conversely, let A be non-singular, i.e. |A] # 0, we know that
A (adj A) = Al 1, = (adj A) A

1 1
= A —adeJzI =(—adejA (v |A|#0)
(|A| " A

Let B = 1 adj A, then AB =1, = BA= A is invertible and
|A|
Al=B =i(adj A).
|A|
Cor. 4

If Ais an n x n matrix and there exists a matrix B of order n xn such that
AB =1, or BA=1,,then Ais invertibleand A™' =B.

Proof
First, let AB =1, = det AB =det |,

= det Adet B=1=det A= 0

= A is invertible, i.e. A™' exists.
Now, AB=1,=>A"@AB)=A"1,
= A'AB=A"=1,B=A"
= B=A"
Similarly, we can prove that result when BA=1,.
Cor.5
If A is non-singular, i.e. A is invertible, then A" =1, =A"A= Al is
invertible and (A™")™! = A. (By definition of invertibility)

Cor. 6

A skew symmetric matrix of odd order is always non-invertible as its
determinant is always 0.

Theorem 13

If A, B, C are square matrices of the same order such that AB = AC and
A is invertible, then B = C.

Proof
Given AB = AC, pre-multiplying both sides by A~

A'(AB) = A™! (AC), use associative law

Matrices and
Determinants
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= B=C.
Theorem 14

If A, B are invertible square matrices of the same order, then AB is also
invertible and (AB) ' =B7! AL,

Proof
Given A and B are invertible square matrices of same order
= det A=0,det B=0
= det AB=det A.detB =0
= AB is invertible.
Let (AB)' =D, then (AB) D =1 = D (AB)
= A(BD)=1= A" (ABD)=A"I
= (A" A)(BD)= A"!
= | BD)=A'=(B)D=A"
= BD=A"
= B~ (BD)=B!' A”!
= B'ByD=B"" A"
= ID=B'A'=D=B"A".
Theorem 15
If A is a non-singular matrix of order n, then det (adj A) = (det A)"~ !
Proof

We know that A (adj A) =|A[ 1, = (adj A) A

- det (A (adj A)) = det (Al 1,))

- det A det (adj A) = | A" det 1,

- |Al|adj A = |Al" (o det 1, =1)

= ladj A|=|A"™" (.- |A]#0) as A is non-singular.

Example 6.13 —

4 -6 1
Let A=-1 -1 1
-4 11 -1

Show that A is invertible. Find A" ' and Adj A.

Solution
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Hence

Now

4 -6
|Al=]-1 -1
—4 11

= —40+30-15=-25

1
1
-1

=4(1-1)+6(1+4)+(-11-4)

|A|#0
A is invertible.
C21=5 C22—0
C3=-5 Cyp=-5
-10 5 -5
AdjA=| -5 0 -5
-15 =20 -10
2 -1
5 5
A—l—iAde: L
|Al 5
3 4
15 5
2 -1 1
=ll 1
5
3 2

N[N ==

Ciy=-15
C23 :_20
Cyy=—10

(a) Find the adjoint of the following matrices

(1)

(i)

1 -1 2
31 =2
1 0 3

(b) Find the inverse of the following matrices

(1)

2 1
4 -10
-7 2

Matrices and
Determinants
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1 -1 2
G) |0 2 -3
3 -2 4

6.6 SOLUTION OF LINEAR EQUATIONS WITH THE
HELP OF INVERSE OF A MATRIX

We have seen in Example 6.6 that a system of linear equations can be written in
the matrix form as AX = B.

We can solve the system of equations by finding A"

Example 6.14 —

Solve the system of equations

2x -3y +3z=1

2X+2y +32=2

3x -2y +2z=3
Solution

This system of equation can be written in the form

2 =3 3[x] [1
2 2 3|lyl=]2
3 -2 2]|z] |3
(1)
2 -3 3]
Let A=[2 2 3
3 -2 2]

then  |A|=2(4+6)+3(4-9)+3(~4-6)
=20-15-30=-25

AISO Cll :10 Clz = 5 C13 = _10
C21:O C22:—5 C23:—5
C31 = - 15 C32 = 0 C33 = 10
. 10 0 -15
Al=——| 5 -5 0
25
-10 -5 10
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2 0 -3
L T
-2 -1 2

Premultiplying (i) by A"', we have

| 2 0 -=-3|[2 =3 3|[x
-5 1 -1 0|2 2 3|y
-2 -1 2 (|3 -2 2||z
2 0 3"1
__ 1 1 -1 01[2
5
-2 -1 2|3
X 2-9
ie. A'A|y =—% 1-2
z —-2-2+6
X | -7
=——|-1
1.€ y 5
Z 2

Solve the following equations by finding inverse of a matrix

(i) 2x+3y+3z=5
X-2y+z=-4
3Xx—y—27=3

(i) x+y-z=0
X=2y+2=0
3x+6y —-52=0

(1) x-3y+4z=0
2X+3y —2=0
3x+y+32=0
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Type of Matrices

A= (&) be an m x n matrix, then A is said to be

° a row matrix iff m=1,
° a column matrix iffn=1,

o a zero matrix iff a; = 0 for all i and ,

. a square matrix iff m =n,

° a diagonal matrix iff m = n and a; =0, fori+#j, and

o a unit matrix iff m=n, a; =0 fori# jand a; =1 for all i.

Algebra of Matrices

. Two matrices are equal iff they are of the same type and
corresponding entries are equal.

. If A=(a;) and B = (b;) are of the same order, then
A+B=(a +bj), - A=(-g;) and L A=(Lg;), where A is a scalar.

. If A=(a;), B=(bj) are two m x nand n x p matrices, respectively,

n
then AB = (C; ) is an m x p matrix where ¢; = Z aj by , for
j=1
I<i<ml1<k<p.

Properties of Matrices

If A, B, C, O (null) are matrices of the same order and A, p are scalars, then
o A+B=B+A

° (A+B)+C=A+(B+0C)

e A(A+B)=AA+AB

e  (A+wA=rA+pA

o« (AW A=L®@A

. (AB)C =A(BC) A, B, C are suitable matrices

e A(AB)=(LA)B=A(LB)

e (A+B)C=AC+BC

J In general AB = BA

J AB may be zero when both A and B are non-zero matrices.

Transpose of a Matrix
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n x m matrix which is the transpose of A and is denoted by A'.

Symmetric and Skew-symmetric Matrices

A matrix A= (g;) is symmetric if AT = A and skew-symmetric if

AT =— A,

Determinant of a Square Matrix

If A=[a;],thendetA=|A|=ay,

[a,, a
If A: 1 12:|, then det A: all a22 - a21 a12:
1 ap

Qi QY3
If A: azl 8.22 a23 ,then

a3 83 s
8y o3 a1 Ay 8y axp
|A|=a11{ j|_a12|: }“’#3{ }
a3 a3 831 833 a3 a3
In general if A =(a;;) is a square matrix of order n, then
|Al= T ay [ Ay (- D"
where A; is the minor of a;; and is obtained from the matrix A by

deleting the ith row and jth column. Cj; = (- pi+n |Aj| and Cj is

called the cofactor of a;;.

Properties of Determinants

det I, =1, where |, is the identity matrix of order n.

The value of a determinant remains unaltered if its rows and columns
are interchanged.

If two rows or columns of a determinant are interchanged, then the
value of the determinant changes in sign.

If two rows or columns of a determinant are identical, then the value
of the determinant is zero.

If each element of a row or column of a determinant is multiplied by
the same number, then the value of the determinant is multiplied by
the same number.

If each element in any row or column of a determinant consists of two
terms, then the determinant can be expressed as the sum of two
determinants.

If the same multiple of elements of any row or column of a
determinant are added to the corresponding elements of any other row
or column, then the value of the new determinant remains unaltered.

Adjoint of a Square Matrix
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the cofactor of a;; in|A|and A(AdjA)=|A|l, =(adj A) A,

Inverse of a Matrix
Let A= (a;) be a square matrix of order n. If there exists a matrix B of

order n

) Such that AB = BA = |,,, then A is said to be invertible and B is called
the inverse of A and is denoted by A~ .

. A square matrix A is called non-singular iff | A | # 0 otherwise it is

called singular.

J A square matrix A is invertible iff | A | =0 and A = ﬁ (adj A) and
(AB)' =B~ AL

6.8 ANSWERS TO SAQs

SAQ 2
1 -2
X:
(b) {2 0}
SAQ 3
@ (@) A=0
(i) A=4abc
(i) A=0
SAQ 4
330
@ @ |-11 1 38
-1 -1 4
3 1 -11
Gy |-12 5 -1
6 -2 5
153
®) () -% 4 3 12
1 -11 -6
-2 0 -1
Gi) —-[-9 -2 3
-6 -1 2
SAQ 5

i) x=lLy=2,z=-1
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