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Definite IntegralsUNIT 4 DEFINITE INTEGRALS 

Structure 
4.1 Introduction 
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4.2 Definite Integrals 

4.3 Fundamental Theorem of Calculus 
4.3.1 Area Function 
4.3.2 First Fundamental Theorem of Integral Calculus 
4.3.3 Second Fundamental Theorem of Integral Calculus 
4.3.4 Evaluation of a Definite Integral by Substitution 

4.4 Properties of Definite Integrals 

4.5 Applications 

4.6 Summary 

4.7 Answers to SAQs 

4.1 INTRODUCTION 

We have seen in Unit 2 that one of the problems which motivated the concept of a 
derivative was a geometrical one – that of finding a tangent to a curve at a point. 
The concept of integration was also similarly motivated by a geometrical problem 
– that of finding the areas of plane regions enclosed by curves. Some recently 
discovered Egyptian manuscripts reveal that the formulas for finding the areas of 
triangles and rectangles were known even in 1800 BC. Using these formulas, one 
could also find the area of any figure bounded by straight line segments. But no 
method for finding the area of figures bounded by curves had evolved till much 
later. 

In the third century BC, Archimedes was successful in rigorously proving the 
formula for the area of a circle. His solution contained the seeds of the present 
day integral calculus. But it was only later, in the seventeenth century, that 
Newton and Leibniz were able to generalize. Archimedes’ method and also to 
establish the link between differential and integral calculus. The definition of the 
definite integral of a function, which we shall give in this unit, was first given by 
Riemann in 1854. We will also acquaint you with various application of 
integration. 

Objectives 
After studying this unit, you should be able to 

• define the definite integral of a given function as a limit of a sum, 

• state the Fundamental Theorem of Calculus, 

• use the Fundamental Theorem to calculate the definite integral of an 
integrable function, 

• learn the different properties of definite integral, and 

• use the definite integrals to evaluate areas of figures bounded by 
curves. 
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 4.2 DEFINITE INTEGRALS 

We have studied indefinite integrals in Unit 3. In this unit, we define a definite 
integral and see how it can be used to find the area under certain curves. 

4.2.1 Definite Integral as the Limit of a Sum 
Let f be a continuous function defined on a classed interval [a, b]. Assume that all 
the values taken by the function are non-negative, i.e. the graph of the function is 
a curve above the x-axis. 

 

 

 

 

 

 

 

 
Figure 4.1 

Consider the area of Figure 4.1. Let us find the area of this region. 
Let AM and BN be the ordinates for x = a and x = b. Divide MN into n equal parts 
of length h each and let  be the ordinates at 

, then nh = b – a, i.e. 

112211 ,...,, −− nn PMPMPM

121 ,...,, −nMMM
n

abh −
= . 

Also abscissae of the point  are BPPPA n ,,...,,, 121 −

bhnahahaa ,1,...,2,, −+++ . 

∴      MA = f (a) 
   )(11 hafPM +=  

  )2(22 hafPM +=  

   : 
   : 
  )1(11 hnafPM nn −+=−−  

       )(bfMB =  

We consider the left end points of these sub regions and construct rectangles  
1, 2, 3, . . . , n as shown in Figure 4.1. 
  Area of the first rectangle = h f (a) 
  Area of the second rectangle = h f (a + h) 
  Area of the third rectangle = h f (a + 2h) 
  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

  Area of the nth rectangle = )1( hnafh −+  
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Definite Integrals∴ Sum of these areas )1(...)()( hnafhhafhafh −+++++=  

We note that this area is approximately equal to the area of the region AMNB. 
Further as the number of sub-divisions increases, the estimation becomes better. 

Let the subdivisions become very large, i.e. n → ∞, then 0→
−

=
n

abh , which in 

turn implies that the area of the region AMNB 

 )]1(...)2()()([Lt
0

hnafhafhafafh
h

−+++++++=
→

           . . . (4.1) 

The expression on the R. H. S of Eq. (4.1) is called the definite integral of f (x) 

from a to b and is denoted by , where a is called the lower limit and b 

is called the upper limit. 

dxxf
b

a
)(∫

Thus, )]1(...)2()([Lt)(
0

hnafhafafdxxf
h

b

a
−+++++=

→∫ , where nh = b – a. 

Cor. 

dxxf
b

a
)(∫  = the area of the region below the curve )(xfy =  above the  

x-axis and bounded by the ordinates x = a and x = b. 
Remarks 

For simplicity of the above concept, we have taken non-negative values of  
f (x). In fact it makes sense for negative values of f (x) as well. 

 
 Example 4.1 

Evaluate  as the limit of a sum. dxx
b

a
2∫

Solution 

)]1(...)()([Lim
0

2 hnafhafafhdxx
h

b

a
−+++++=

→∫ , where nh = b – a 

and . 2)( xxf =

i.e. [ ]2222
0

2 )1(...)2()(Lim hnahafhaahdxx
h

b

a
−+++++++=

→∫  

     [ )1...321(2)...(Lim 222
0

−++++++++=
→

nahaaah
h

 

       ⎥⎦
⎤−+++++ 22222 )1...321( hn  

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +−−
+

−
+=

→ 6
]1)1(2[)1(

2
)1(2Lim

2
2

0

nnnhnnahnah
h

 

 ⎥⎦
⎤

⎢⎣
⎡ −−+−+=

→
)2()1(

6
1)()(Lim 2

0
hnhnhnhhnhnhanhah

h
 

 

⎥⎦
⎤

⎢⎣
⎡ −−−−−+−−−+−=

→
)2()()(

6
1)()()(Lim 2

0
habhababhababaabah

h
 

 )()()(
6
1)()( 222 abhabababaaba −−−−+−+−=  
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  )(

3
1])(

3
1)([)( 3322 abababaaab −=−+−+−=  

 
 

Example 4.2 

Evaluate  as a limit of a sum. dxex∫
2

0

Solution 

xexfhnhab ===∴−=− )(
n
2,202 and.e.i  

)]1(...)()([Lim
0

2

0
hnafhafafhdxe

h
x −+++++=

→∫  

           ]...[Lim 12
0

hnhahaa
h

eee eh −++

→
++++=  

           ]...[Lim 120
0

hnhh
h

eee eh −

→
++++=  as a = 0 

           
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

=
→ 1

1Lim
0 h

nh

h e
eh  using the formula for the sum of a G. P. 

           
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

=
→ 1

1Lim
2

0 hh e
eh  

           1
1Lim

1 2

0

2
−=

−
−

=

→

e

h
e

e
h

h

. 

 
 
 

Example 4.3 

Evaluate  as the limit of a sum. dxxsin
0∫
π

Solution 
Here π=== baxxf ,0,sin)(  

∴ π=
π

=
−

= nh
nn

abh .e.i,  

  00sin)0()( === faf  

  hhfhaf sin)()( ==+  

  hhfhaf 2sin)2()2( ==+  

  . . . . . . . . . . . . . . . . . . . . . . 

  hnhnaf 1sin)1( −=−+  

∴ [ ])1(sin...2sinsin0Ltsin
00

hnhhhdxx
h

−++++=
→

π

∫  

          ⎥⎦
⎤

⎢⎣
⎡ −+++=

→ 2
sin)(sin2...

2
sin2sin2

2
sinsin2

2
sin2

Lt
0

hhnhhhhhh
h

h
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Definite Integrals

  ⎢
⎣

⎡
++⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −=

→
...

2
5cos

2
3cos

2
3cos

2
cos

2

2
sin

1Lt
0

hhhh

h

hh
 

    ⎥
⎦

⎤
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ −

2
cos

2
3cos hnhhnh  

  ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−=

→ 2
cos

2
cos

2

2
sin

1Lt
0

hnhh

h

hh
 

  ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −π−=

→ 2
cos

2
cosLt.1

0

hh
h

 as nh = π and 1

2

2
sin

Lt
0

=
→ h

h

h
 

  211
2

cos
2

cosLt
0

=+=⎥⎦
⎤

⎢⎣
⎡ +=

→

hh
h

. 

SAQ 1 
 

 

Evaluate the following definite integrals as a limit of a sum : 

(i)  dxexb

a∫

(ii)  dxx
b

a
cos∫

(iii)  dxx )1( 22

1
−∫

 

 

 

 

 

4.3 FUNDAMENTAL THEOREM OF CALCULUS 

4.3.1 Area Function 

We have defined  as the area of the region bounded by the curve 

, x-axis and the ordinates x = a and x = b. Let 

dxxf
b

a
)(∫

)(xfy = ],[ bax∈ . 

Then  represents the area of the shaded region in Figure 4.2. dxxf
x

a
)(∫

(Here it is assumed that  for . 0)( >xf ],[ bax∈
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Figure 4.2 

The area of this shaded region depends on x, i.e. in other words is a function of x. 
We denote it by A (x) 

∴   dxxfxA
x

a
)()( ∫=

We will show that )()( xfxA =′ . 

4.3.2 First Fundamental Theorem of Integral Calculus 

Let the area function be defined by  for all dxxfxA
x

a
)()( ∫= ax ≥ , 

where the function f is continuous on [a, b]. Then )()( xfxA =′  for all ],[ bax∈ . 

(We assume it without proof). 

4.3.3 Second Fundamental Theorem of Integral Calculus 
Let f be a continuous function defined on an interval [a, b] and F is an 
antiderivative of f, then 

   )()()( aFbFdxxf
b

a
−=∫

(We assume it without proof). 

Remarks 

(i)  = (value of an antiderivative at the upper limit b) – (value 

of the same antiderivative at the lower limit a). 

dxxf
b

a
)(∫

(ii) This theorem is very useful as it gives us a method of calculating a 
definite integral more easily without calculating the limit of a sum. 

For convenience )()( aFbF −  is denoted by . b
axF |)(

(iii) If we consider F (x) + c to be an antiderivative value of f (x) instead of 
F (x), then 

))(())((])([)( caFcbFcxFdxxf b
a

b

a
−−+=+=∫  

      )()( aFbF −=  

Hence, there is no need to keep the integration constant c. 

 Example 4.4 
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Definite Integrals 

Evaluate dxx 2
3

4

0∫  

Solution 

 2
52

5

2
3

5
2

2
5 xxdxx ==∫  

∴ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−==∫ 04

5
2

5
2 2

5
4
0

2
5

2
3

4

0
xdxx  

     
5

642.
5
2 5 ==  

 
 

Example 4.5 

Evaluate dx
x

x
2

11

0 1
tan
+

−

∫  

Solution 

2
)(tan

1
tan 21

2

1 xdx
x

x −−
=

+∫  

∴ 1
0

21
2

11

0
)(tan

2
1

1
tan xdx

x
x −

−
=

+∫  

  [ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ π=−= −− 0

42
1)0(tan)1(tan

2
1 2

2121  

  
3216

.
2
1 22 π

=
π

=  

 
 Example 4.6 

Evaluate dx
xx

x
44

2
0 cossin

2sin
+∫

π

 

Solution 

dx
xx

xxdx
xx

x
44

2
044

2
0 cossin

cossin2
cossin

2sin
+

=
+ ∫∫

ππ

 

           dx
x

xx
1tan

sectan2
4

2
2

0 +
= ∫

π

 

Now xdx
x

xx 21
4

2
tantan

1tan
sectan2 −=
+

= ∫  

∴    2
0

21
44

2
2

0
tantan

cossin
sin

π
−

π

=
+∫ xdx

xx
x  
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 0tantan

2
tantan 2121 −− −

π
=  

2
0

2
π

=−
π

= . 

 

4.3.4 Evaluation of a Definite Integral by Substitution 

When we use the method of substitution for evaluating an integral , 

we follow the following steps : 

dxxf
a

b
)(∫

Step 1 
Substitute x = g (y). 

Step 2 
Integrate the new integrand with respect to y. 

Step 3 
Resubstitute the value of y in terms of x in the answer. 

Step 4 

Find the value of the answer in Step 3 at the given limits and find the 
difference. 

In order to quicken this method we can proceed as follows : 

After performing Step 2, there is no need for Step 3. Instead the integral will be 
kept in the new variable y and the limit of the integral will be accordingly 
changed. 

 

 

Evaluate dxxx 15 541

1
+∫− . 

Solution 

Let  dxxdtxt 45 5,1 then =+=

When  and when 211,1 5 =+== tx 1−=x , . 0111)1( 5 =+−=+−=t

∴ dttdxxx ∫∫ =+
−

2

0
541

1
15  

         2
0

2
3

3
2 t=  

         
3

2402
3
2 2

3

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= . 

 

 

Example 4.7 

SAQ 2 
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Definite Integrals(a) Evaluate 

(i) dxxcos2

2
∫
π

π
−

 

(ii) dx
x

x
4
36

2

2

0 +
+

∫  

(iii) dxxx
⎟
⎠
⎞

⎜
⎝
⎛ −∫

π

2
cos

2
sin 22

0
 

 
 
 
 

(b) Evaluate 

(i) dxxx cossin2
0∫
π

 

(ii) 
x

dx
cos450 +∫

π
 

(iii) 
xx

dx
sin4cos2

2
0 +∫
π

 

 
 
 
 
 
 

4.4 PROPERTIES OF DEFINITE INTEGRALS 

We consider below some important properties of the definite integral. These will 
be useful in evaluating the definite integrals more easily. 
Property 1 

dxxfdxxf
a

b

b

a
)()( ∫∫ −=  

Property 2 

dxxfdxxfdxxf
b

c

c

a

b

a
)()()( ∫∫∫ +=  for a < c < b 

Property 3 

dxxafdxxf
aa

)()(
00

−= ∫∫  

Property 4 

dxxfdxxf
aa

)(2)(
0

2

0 ∫∫ =  if )()2( xfxaf =−  
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        = 0         if )()2( xfxaf −=−  Mathematics-II 
 

Property 5 

dxxfdxxf
aa

a
)(2)(

0∫∫ =
−

 if f is an even function. 

        = 0         if f is an odd function. 

We give proof of these properties. 

Property 1 

Let F be an antiderivative of f. 

Then  dxxfbFaFaFbFdxxf
a

b

b

a
)(])()([)()()( ∫∫ −=−−=−=

Property 3 

Let   t = a – x 

Then dt = − dx 

 When   x = 0, t = a and when x = a, t = 0 

∴  dttafdxxf
a

a
)()(

0

0
−−= ∫∫

          1Propertyby)(
0

dttaf
a

−+= ∫

          by changing the variable t to x. dxxaf
a

)(
0

−+= ∫
Property 4 

dxxfdxxfdxxf
a

a

aa
)()()(

2

0

2

0 ∫∫∫ +=  by Property 2 

Put xat −= 2  in the second integral 

Then   dttafdxxf
a

a

a
)2()(

02
−−= ∫∫

             dxxafdttaf
aa

)2()2(
00

−=−= ∫∫

∴   dxxafdxxfdxxf
aaa

)2()()(
00

2

0
−+= ∫∫∫

             0)(2 or
0

dxxf
a

∫=

according as )()2( xfxaf =−  

or  )()2( xfxaf −=−  

Property 2 and Property 5 are left as exercises. 

 
 
 

Example 4.8 
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Definite Integrals

Evaluate dx
xx

x
cossin

sin
2
π

0 +∫  

Solution 

Let dx
xx

x
I

cossin
sin

2
π

0 +
= ∫      . . . (1) 

by Property 3 

  dx
xx

x
I

⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

= ∫
2
πcos

2
πsin

2
πsin

2
π

0
 

    dx
xx

x
sincos

cos
2
π

0 +
= ∫       . . . (2) 

Adding Eqs. (1) and (2), we have 

  dx
xx
xx

I
cossin
cossin

2 2
π

0 +

+
= ∫  

      
2

2
0

2
π

0

π
===

π

∫ xdx  

∴  
4
π

=I  

 
 

Example 4.9 

Evaluate dxx24
π

4
π cos∫−  

Solution 
2cos x is an even function. 

∴ by Property 5 

  dxxdxx 24
π

0
24

π

4
π cos2cos ∫∫ =

−
 

             dxx
2

2cos12 4
π

0

+
= ∫  

             4

02
2sin

2
2

π

+=
xx  

             ⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ += 0sin

2
10

2
πsin

2
1

4
π  

2
1

4
π
+=  

 

 
Example 4.10 
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 Evaluate dxxsinlog2

π

0∫  

Solution 

Let   dxxI sinlog2
π

0∫=  

Then   dxxI ⎟
⎠
⎞

⎜
⎝
⎛ −= ∫ 2
πsinlog2

π

0
 

       dxxcoslog2
π

0∫=  

∴ dxxxI }coslogsin{log2 2
π

0
+= ∫  

       dxxx )cossin(log2
π

0∫=  

       dxxx
⎟
⎠
⎞

⎜
⎝
⎛= ∫ 2

cossin2log2
π

0
 

       dxx
2
2sinlog2

π

0∫=  

       dxdxx 2log2sinlog 2
π

0
2
π

0 ∫∫ −=  

       2
0

2
π

0
.2log2sinlog

π

−= ∫ xdxx  

       2log
2
π2sinlog2

π

0
−= ∫ dxx                 . . . (1) 

But dxx2sinlog2
π

0∫  

Putting  2x = t we have dttdxx sinlog
2
12sinlog

π

0
2
π

0 ∫∫ =  

       dxxsinlog
2
1 π

0∫=  

       dxxsinlog2.
2
1 2

π

0∫=  as xx sin)(sin =−π  

        = I         . . . (2) 
From Eqs. (1) and (2), we have 

∴ 2log
2

2 π
−= II  

i.e.   2log
2
π

−=I  

SAQ 3 
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Definite Integrals 

Evaluate 

(i) dxx)tan1(log4
π

0
+∫  

(ii) dx
xx

x
sincos

cos
2
π

0 +∫  

(iii) 
xx

dxx
cossin

2
π

0 +∫  

(iv) dxx42
π

2
π cos∫−  

(v) dx
x

x
2

1

0 1
)1(log

+
+

∫  

 

 

 

 

 

 

4.5 APPLICATIONS 

We have seen that the area below (or above) the curve y = f (x), above (or below) 
the x-axis and between the ordinates x = a and x = b is represented by the definite 
integral 

   dxydxxf
b

a

b

a ∫∫ =)(

Likewise the area enclosed between the graph of the curve x = F (y), y-axis and 
the lines y = c, y = d is given by 

   dyxdyyF
d

c

d

c ∫∫ =)(

 

 
Example 4.11 

Draw a rough sketch of the curve 43 += xy  and find the area under the 
curve, above the x-axis and between x = 0, x = 4. 

Solution 

  43 += xy  

∴ Its domain consists of those x for which 043 ≥+x , i.e. 
3
4

−≥x . 

We construct the table of values as under 
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 x 

3
4

−  − 1 0 1 2 3 4 

y 0 1 2 7  10  13  4 

A portion of the rough sketch of curve is shown in Figure 4.3. 

Required area is the shaded area . dxxf )(
4

0∫=

       dxx 43
4

0
+= ∫  

    ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

+
= 2

3
2
3

4
0

2
3

416
9
2

3
2
3

)43(

.

x  

    
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= 2

3
22

3
2 )2()4(

9
2  

    units.sq
9

112]864[
9
2]24[

9
2 33 =−=−=  

 

 

 

 
 
 

 
 

 
Figure 4.3 

 

 
Example 4.12 

Make a rough sketch of the graph of the function y = 3 sin x, π≤≤ x0  and 
determine the area enclosed by the curve and the x-axis. 

Solution 

We construct the table of values as under 

x 0 
6
π  

3
π  

2
π  

3
2π  

6
5π  π 

y 0 
2
3  

2
33  

3 
2

33  2
3  

0 

A rough sketch of the curve is shown in Figure 4.4. 

 

 



    

133

 
Definite Integrals 

 

 

 

 

 

 
Figure 4.4 

Required Area  dxxf )(
0∫
π

=

            dxxsin3
0∫
π

=

           ]0cos[cos3)]cos(3[ o
0 −π−=−= πx  

           units.sq6)11(3 =−−−=  

Note : Since the curve is symmetrical about the line 
2
π

=x . 

∴ Required Area = 2 Area OAM 

              dxxdxxf sin32)(2 2
0

2
0 ∫∫

ππ

==  

              ⎟
⎠
⎞

⎜
⎝
⎛ −−=−= o2

π

0 0cos
2
πcos6cos6 x  

              units.sq6)10(6 =−−=  

 

Remark 

In case of symmetrical closed area, find the area of the smaller part and 
multiply the result by the number of symmetrical parts. 

 

 
Example 4.13 

Find the area enclosed between the ellipse 12

2

2

2
=+

b
y

a
x  and the line 

1=+
b
y

a
x  which lies in the first quadrant. 

Solution 

The given ellipse is 

    12

2

2

2
=+

b
y

a
x       . . . (1) 

and the line is 

    1=+
b
y

a
x       . . . (2) 
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Line (2) meets the curve (1) in A (a, 0) and B (0, b). The required area is 
shown in Figure 4.5. 

Mathematics-II 
 

 

 

 

 
 

 
 

 
Figure 4.5 

For the ellipse 
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y −
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i.e.     22 xa
a
by −±=  

i.e. for the first quadrant 

      22 xa
a
by −=  

Shaded Area = Area OATB – Area of the triangle OAB 

Area of the triangle ab
2
1OB.OA

2
1OAB ==  

Area OATB = Area bounded by the ellipse, x-axis in the first quadrant. 
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22

22 abaa
a
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=⎥⎦

⎤
⎢⎣
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π
=  
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Example 4.14 

Find the area of the region bounded by the parabola  and the 
lines y = x, x = 0, x = 3. 

22 += xy

Solution 
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Definite Integralsy = x is the equation of a straight line lying below the parabola and the line  

x = 3 meets the parabola at (3, 11). The line y = x meets the line y = x at  
(3, 3). The region whose area is required is shaded and shown in Figure 4.6. 

 

 
 

 
 

 

 

 
 
 
 
 

Figure 4.6 

Required Area = Area bounded by the parabola, x-axis and the ordinates  
x = 0, x = 3 − (Area bounded by the line y = x, x-axis and the ordinates  
x = 0, x = 3). 
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⎜
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⎝
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   units.sq
2
21

2
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Note : Area bounded by the line y = x, x-axis and the ordinates at x = 0, and 

x = 3 is also the area of the triangle 
2
93.3

2
1AM.OM

2
1OAM === . . 

SAQ 4 
 

 
 
Find the area of the regions 

(i) bounded by  and the x-axis in the first 
quadrant. 

42,9 and2 === xxxy

(ii) bounded by  and the y-axis in the first 
quadrant. 

6,4,32 ==−= yyyx

(iii) bounded by the ellipse 1
916

22
=+

yx . 

(iv) bounded by the circle , the line 422 =+ yx yx 3= , x-axis lying in 
the first quadrant. 

(v) bounded by the curve  and the line yx 42 = 24 −= yx . 

(vi) enclosed between the circles . 1)1(1 2222 and =+−=+ yxyx
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4.6 SUMMARY 

In this unit, we have covered the following points. 

• If f is continuous on [a, b], then  represents the area of the 

region bounded by the curve 

dxxf
b

a
)(∫

)(xfy = , x-axis and the ordinates x = a, 
x = b. 

• , where ])1([Lim)(
10

hiafhdxxf
n

ih

b

a
−+= ∑∫

=→ n
abh −

= . 

• Fundamental theorem of calculus 

(i) If f is continuous on [a, b] then for ],[ bax∈  if  

then 

dxxfxA
x

a
)()( ∫

)()( xfxA =′  for all ],[ bax∈ . 

(ii) If f is continuous function on [a, b] and F is an antiderivative of 

f then . )()()( aFbFdxxf
b

a
−=∫

• Area bounded by a curve )(xfy= , x-axis and the lines x = a, x = b is 

. dxydxxf
b

a

b

a ∫∫ =)(

• Area bounded by a curve x = g (y), y-axis and the lines y = c, y = d is 

. dyxdyyg
d

c

d

c ∫∫ =)(

4.7 ANSWERS TO SAQs 

SAQ 1 

(i)  ab ec −

(ii) sin b – sin a 

 (iii) 
3
4  

SAQ 2 

(a) (i) 2 

(ii) 
8

32log3 π
+  

(iii) 0 
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Definite Integrals

(b) (i) 
3
2  

(ii) 
3
π  

(iii) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
2

53log
5

1  

SAQ 3 

(i) 2log
8
π  

(ii) 
4
π  

(iii) )21(log
22

+
π  

(iv) 
8

3π  

(v) 2log
8
π  

SAQ 4 

(i) 2416 −  

(ii) )133(
3
2

−  

(iii) 12 π 

(iv) 
3
π  

(v) 
8
9  

(vi) 
2
3

3
2

−
π  
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