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1.1 INTRODUCTION 

Calculus was related to meet the pressing mathematical needs of the 17th century 
science and is still the fundamental mathematics for solving problems in Science 
and Technology. In this unit, we will introduce the concept of functions and 
discuss different types of functions, algebra of functions and their limit and 
continuity. We will also introduce the concept of derivative as the instantaneous 
rate of change. We shall discuss methods of differentiation. 

Objectives 
After studying this unit, you should be able to 

• recall the basic properties of real numbers, 

• define a function and examine whether a given function is one-
one/onto, 

• identify whether a given function has an inverse or not, 

• determine weather a given function is even or odd, 
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• evaluate the limit of a function at a point, 

• identify points of continuity and discontinuity of a function, and 

• obtain the derivative of a function at a point. 

1.2 REAL NUMBER SYSTEM 

The set of all real numbers is denoted by R. The real number system is the 
foundation on which a large part of mathematics including calculus rests. You are 
familiar with the operations of addition, subtraction, multiplication and division 
of real numbers and with inequalities. We shall recall some of their properties : 

 P1 - R is closed under addition. 

 P2 - Addition is associative and commutative. 

 P3 - R is closed under multiplication. 

 P4 - Multiplication is commutative and associative. 

 P5 - Multiplication is distributive over addition. 

 P6 - For any two real numbers a and b, either a > b or a < b or a = b. 

You are also familiar with the following subsets of R. 

(i) N, the set of natural numbers. 

(ii) Z, the set of integers. 

(iii) Q, the set of rational numbers. 

Definition 1 

If x is a real number, its absolute value, denoted by | x | is defined as 

   | x | = x if x ≥ 0 

         = − x if x < 0 

For example 

   | 5 | = 5 

   | − 5 | = 5 

The following theorem (without proof) gives some of the important properties  
of | x |. 

Theorem 1 

If x and y are real numbers, then 

(i) | x | = max {− x, x} 

(ii) | x | = | − x | 

(iii) | x |2 = x2 = | − x |2 

(iv) | x + y | ≤ | x | + | y | 

(v) | x − y | ≥ | | x | − | y | | 
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Let S be a non-empty subset of R. An element u ∈ R is said to be upper 
bound of S if u ≥ x for all x ∈ S. If S has an upper bound, we say S is 
bounded above. On similar lines we can define a lower bound for a  
non-empty set S to be a real number v such that v ≤ x for all x ∈ S and we 
say that the set S is bounded below. 

1.2.1 Intervals on the Real Line 
Before we define an interval, let us see what is meant by a number line. The real 
numbers in set R can be put into one-to-one correspondence with the points on a 
straight line L. In other words, we shall associate a unique point on L to each real 
number and vice-versa. 

Consider a straight line L (Figure 1.1(a)). Mark a point O on it. The point O 
divides the straight line into two parts. We shall use the part of the left of O for 
representing negative real numbers and the part of the right of O for representing 
positive real numbers. We choose a point A on L which is to the right of O. we 
shall represent the number 0 by O and 1 by A. OA can now serve as a unit. To 
each positive real number, x we can associate exactly one point P lying to the 
right of O on L, so that OP = x units (= x). A negative real number y will be 
represented by a point Q lying to the left of O on the straight line L so that  
OQ = y units (= − y, since y is negative). We thus find that to each real number 
we can associate a point on the line. Also, each point S on the line represents a 
unique real number z, such that z = OS. Further, z is positive if S is to the right of 
O, and is negative if S is to the left of O. 

This representation of real numbers by points on a straight line is often very 
useful. Because of this one-to-one correspondence between real numbers and the 
points of a straight line, we often call a real number “a point of R”. Similarly, L is 
called a “number line”. Note that the absolute value or the modulus of any 
number x is nothing but its distance from the point O on the number line. In the 
same way, x – y denotes the distance between the two numbers x and y (Figure 
1.1(b)). 

| x – y |
y > x

| x – y |
y < x

− 2 0  1 2 − 1 

Q O A P 
x y

 

 

 y x
 

         (a)    (b) Distance between x and y is | x – y | 

Figure 1.1 

Now let us consider the set of real numbers which lie between two given real 
numbers a and b. Actually, there will be four different sets satisfying this loose 
condition. These are : 

(i) (a, b) = {x | a < x < b} a b 

(ii) [a, b] = {x | a ≤ x ≤ b} a b 

(iii) (a, b] = {x | a < x ≤ b} a b 

(iv) [a, b) = {x | a ≤ x < b} a b 

       Figure 1.1 (c)  
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The representation of each of these sets is given alongside (Figure 1.1(c)). Each 
of these sets is called an interval, and a and b are called the end points of the 
interval. The interval (a, b), in which the end points are not included, is called an 
open interval. Note that in this case we have drawn a hollow circle around a and 
b to indicate that they are not included in the graph. The set [a, b] contains both 
its end points is called a closed interval. In the representation of this closed 
interval, we have put thick black dots at a and b to indicate that they are included 
in the set. 
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The sets (a, b] and [a, b) are called half-open (or half-closed) intervals or  
semi-open (or semi-closed) intervals, as they contain only one end point. This 
fact is also indicated in their geometrical representation. 
Each of these intervals is bounded above by b and bounded below by a. 
Can we represent the set 
   I = {x : | x – a | < δ} 
on the number line? Yes, we can. We know that x – a can be thought of as the 
distance between x and a. This means I is set of all numbers x, whose distance 
from a is less than δ. Thus, I is the open interval (a − δ, a + δ). Similarly, 
   I1 = {x : | x – a | ≤ δ} 
is the closed interval [a – δ, a + δ]. Sometimes, we also come across sets like 
   I2 = {x : | 0 < | x – a | < δ} 
This means if x ∈ I2, then the distance between x and a is less than δ, but is not 
zero. We can also say that the distance between x and a is less than, δ, but x ≠ a. 
Thus, 
  I2 = (a – δ, a + δ) – {a} = (a – δ, a) ∪ (a, a + δ) 
Apart from the four types of intervals listed above, there area a few more types. 
These are : 
      (a, ∞)  =  {x | a < x}  (open right ray) 
      [a, ∞)  =  {x | a ≤ x}  (closed right ray) 
   (− ∞, b)  =  {x | x < b}  (open left ray) 
   (− ∞, b]  =  {x | x ≤ b}  (closed left ray) 
             (− ∞, ∞)  = R   (open interval) 
As you can see easily, none of these sets is bounded. For instance, (a, ∞) is 
bounded below, but is not bounded above, (− ∞, b) is bounded above, but is not 
bounded below. Note that ∞ does not denote a real number; it merely indicates 
that an interval extends without limit. 
We note further that if S is any interval (bounded and unbounded) and if c and d 
are two elements of S then all numbers lying between c and d are also elements  
of S. 

 SAQ 1 
 

(a) Prove the following using results of Theorem. 

(i) x = 0, iff | x | = 0 
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(ii) 0,
||

11 if ≠= x
xx

 

(iii) | x − y | ≤ | x | + | y | 

 

 

(b) State whether the following are true or false. 

(i) 0 ∈ [1, ∞]   True/False 

(ii) − 1 ∈ (− ∞, 2)  True/False 

(iii) 1 ∈ [1, 2]   True/False 

(iv) 5 ∈ (5, ∞)   True/False 

 

 

1.3 FUNCTIONS 

Now let us move over to functions. Here we shall present some basic facts about 
functions which will help you refresh your knowledge. We shall look at various 
examples of functions and shall also define inverse functions. Let us start with the 
definition. 

1.3.1 Definition and Examples 
Definition 3 

If X and Y are two non-empty sets, a function f from X to Y is a rule or a 
correspondence which connects every member of X to a unique member  
of Y. We write f : X → Y (reads as “f is a function from X to Y” or “f is a 
function of X into Y”). X is called the domain and Y is called the co-domain 
of f. We shall denote by f (x) that unique element of Y, which corresponds  
to x ∈ X. 

The following examples will help you in understanding this definition better. 
 
 

Example 1.1 

Consider f : N → R defined by f (x) = − x. Is “f ” a function? 
Solution 

“f ” is a function since the rule f (x) = − x associates a unique member (− x) 
of R to every member x of N. The domain here is N and the co-domain is R. 

 
 

Example 1.2 

Consider f : N → Z, defined by the rule 
2

)( xxf = . Is “f ” a function? 

Solution 
“f ” is not a function from N to Z as odd natural numbers like 1, 3, 5 . . . 
from N cannot be associated with any member of Z. 

 Example 1.3 
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Consider f : N → N, under the rule f (x) = a prime factor of x. Is “f ” a 
function? 

Solution 
Here, since 6 = 2 × 3, f (6) has two values : f (6) = 2 and f (6) = 3. This rule 
does not associate a unique member in the co-domain with a member in the 
domain and, hence, f, as defined, is not a function of N into N. 
 

Thus, you see, to describe a function completely we have to specify the following 
three things : 

(i) the domain, 
(ii) the co-domain, and 
(iii) the rule which assigns to each element x in the domain, a single fully 

determined element in the co-domain. 
Given a function f : X → Y, f (x) ∈ Y is called the image of x ∈ X under f or the  
f-image of x. The set of f-images of all number of X, i.e. {f (x) : x ∈ X} is called 
the range of f and is denoted by f (X). It is easy to see that f (X) ⊂ Y. 
Remark 

(i) Throughout this unit we shall consider functions whose domain and 
co-domain are both subsets of R. Such functions are often called real 
functions or real value functions. 

(ii) The variable x used in describing a function is often called a dummy 
variable because it can be replaced by any other letter. Thus, for 
example, the rule f (x) = − x, x ∈ N can as well be written in the form  
f (t) = − t, t ∈ N, or as f (u) = − u, u ∈ N. The variable x (or t or u) is 
also called an independent variable and f (x), which is dependent on 
this independent variable, is called a dependent variable. 

Graph of Function 
A convenient and useful method for studying a function is to study it 
through its graph. To draw the graph of function f : X → Y, we choose a 
system of co-ordinate axes in the plane. For each x ∈ X, the ordered pair  
(x, f (x)) determines a point in the plane (Figure 1.2). The set of all the 
points obtained by considering all possible values of x, that is,  
(x, f (x)) : x ∈ X) is the graph of f. 

 y 

 

 

 
 

x 

x)) 

(x) 

x 0 

(x,  f (

 f  

Figure 1.2 
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Differential CalculusThe role that the graph of a function plays in the study of the function will 

become clear as we proceed further. In the meantime let us consider some 
more examples of functions and their graphs. 
A Constant Function 

A simple example of a function is a constant function. A constant 
function sends all the elements of the domain to just one element of 
the co-domain. 

For example, let f : R → R be defined by f (x) = 1. 
Alternatively, we may write 

   f : x → 1 for all x ∈ R 
The graph of f is as shown in Figure 1.3. 

 y 

x 

 f (x) = 1 

1 

0 

 

 

 

 

 

 

Figure 1.3 

It is the line y = 1. 

In general, the graph of a constant function y : x → c is a straight line 
which is parallel to the x-axis at a distance of c units from it. 

The Identity Function 

Another simple but important example of a function is a function 
which sends every element of the domain to itself. 

Let X by any non-empty set, and f be the function of X defined by 
setting f (x) = x, for all x ∈ X. 

This function is known as the identity function on X and is denoted  
by IX. 

The graph of IR, the identity function of R, is shown in Figure 1.4. It is 
the line y = x. 

 y 

x 0 

y = x 
 

 

 

 

 

 

 
Figure 1.4 
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Another interesting function is the absolute value function (or 
modulus function) which can be defined by using the concept of the 
absolute value of a real number as 

    
⎩
⎨
⎧

<−
≥

==
0if,
0if,

|)(
xx
xx

| xxf

The graph of this function is shown in Figure 1.5. It consists of two 

rays, both starting at the origin and making angles 
4

3
4

and ππ  

respectively, with the positive direction of the x-axis. 

 y 

 

 
 

 

 

 
Figure 1.5 

The Exponential Function 

If a is a positive real number other than 1, we define a function  
f : R → R by f (x) = ax where a > 0, a ≠ 1. 

This function is known as the general exponential function. A special 
case of this function, where a = e, is often found useful. Figure 1.6 
shows the graph of the function f : R → R such that f (x) = ex. This 
function is called the natural exponential function. Its range is the set 
R+ of positive numbers. 

x 

2 3 

0 

θ1 θ2 

 

1 − 1 x 

y 

− 2 

1

2 

3 

(1, e) 

y = ex

 

 

 

 

 

 

 
Figure 1.6 

The Natural Logarithmic Function 
This function f : R+ → R is defined on the set R+ of all real numbers  
f : R+ → R such that f (x) = ln (x). The range of this function is R. Its 
graph is shown in Figure 1.7. 
 

 
y = ln (x) 

y 

(e, 1) 
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Figure 1.7 

The Greatest Integer Function 
Take a real number x. Either it is an integer, say n (so that x = n), or it 
is not integer. If it is not an integer, we can find an integer n, such that 
n < x < n + 1. Therefore, for each real number x we can find an 
integer n, such that n < x < n + 1. Further, for a given real number x, 
we can find only one such integer n. We say that n is the greatest 
integer not exceeding x and denote it by [x]. For example, [3] = 3 and 
[3.5] = 3, [− 3.5] = − 4. 

Other Functions 
The following are some important classes of functions. 
Polynomial Functions f (x) = a0 xn + a1 xn − 1 + . . . + an where a0, a1, . . . , an are 

given real numbers (constants) and n is a positive integer. 
We say n is the degree of the polynomial  
f (x) and assume a0 ≠ 0. 

Rational Functions 
,

)(
)()(

xk
xgxf =  where g (x) and k (x) are polynomial 

functions of degree n and m respectively. This is defined 
for all real x for which k (x) ≠ 0. 

Trigonometrical or 
Circular Functions 

f (x) = sin x,  f (x) = cos x,  f (x) = tan x, 
f (x) = cot x,  f (x) sec x, and  f (x) = cosec x. 

Hyperbolic Functions 
,

2
)(cosh)(

xx eexxf
−+

==  

.
2

)(sinh)(
xx eexxf

−−
==  

We shall study these in detail in this unit. 

1.3.2 Inverse Functions 
In this sub-section we shall see what is meant by the inverse of a function. But 
before talking about the inverse, let us look at some special categories of 
functions. These special types of functions will then lead us to the definition of 
inverse of a function. 

One-one and Onto Functions 

Consider the function h : x → x2, defined on the set R. Here 
h (2) = h (− 2) = 4; i.e. 2 and – 2 are distinct members of the domain R, but 
their h-images are the same (Can you find some more members whose  
h-images are equal?). In general, this may be expressed by saying : find x, y 
such that x ≠ y but h (x) = h (y). 

Now consider another function g : x → 2x + 3. Here you will be able to see 
that if x1 and x2 are two distinct real numbers, then g (x1) and g (x2) are also 
distinct. 



 
 

 

14 

For, Mathematics-II 
 

  )()(323222 21212121 xgxgxxxxxx ≠⇒+≠+⇒≠⇒≠ . 

We have considered two functions here. While one of them, namely g, 
sends distinct members of the domain to distinct members of the  
co-domain, the other, namely h, does not always do so. We give a special 
name to functions like g above. 

Definition 4 
A function f : X → Y is said to be a one-one function (a 1–1 function or an 
injective function) if images of distinct members of X are distinct members 
of Y. 
Thus, the function g above is one-one, whereas h is not one-one. 

Remark 
The condition that the images of distinct members of X are distinct 
members of Y in the above definition, can be replaced by either of the 
following equivalent conditions : 

(i) For every pair of members x, y of X, x ≠ y ⇒ f (x) ≠ f (y). 

(ii) For every pair of members x, y of X, f (x) = f (y) ⇒ x = y. 

We have observed earlier that for a function f : X → Y, f (X) ⊆ Y. 
This opens two possibilities : 
(i) f (X) = Y, or 

(ii) f (X) ⊂ Y, that is f (X) is a proper subset of Y. 

The function h : x → x2, for all x ∈ R falls in the second category. Since the 
square of any real number is always non-negative, h (R) = R+ ∪ (0) which is 
the set of non-negative real numbers. Thus h (R) ⊂ R. 

On the other hand, the function g : x → 2x + 3 belongs to the first category. 

Given any y ∈ R (co-domain), if we take
2
3

2
1

−⎟
⎠
⎞

⎜
⎝
⎛= yx , we find that  

g (x) = y. This shows that every member of the co-domain is a g-image of 
some member of the domain and, thus, is in the range g. From this, we get 
that g (R) = R. The following definition characterises this property of the 
function. 

Definition 5 
A function f : X → Y is said to be an onto function (or a surjective function) 
if every member of Y is the image of some members of X. 
Thus h is not an onto function, whereas g is an onto function. Functions 
which are both one-one and onto (or bijective) are of special importance in 
mathematics. Let us see what makes them special. 

Consider a function f : X → Y which is both one-one and onto. Since f is an 
onto function, each y ∈ Y is the image of some x ∈ X. Also, since f is  
one-one, y cannot be the image of two distinct members of X. Thus, we find 
that to each y ∈ Y there corresponds a unique x ∈ X such that f (x) = y. 
Consequently, f sets up one-to-one correspondence between the members of 
X and Y. It is the one-to-one correspondence between members of X and Y 
which makes a one-one and onto function so special, as we shall soon see. 
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Differential CalculusConsider the function f : N → E defined by f (x) = 2x, where E is the set of 

even natural numbers. We can see that f is one-one as well as onto. In fact, 

to each y ∈ E there exists Ny
∈

2
 such that yyf =⎟

⎠
⎞

⎜
⎝
⎛

2
. The correspondence 

2
yy → defines a function, say g, from E to N such that .

2
)( yyg =  

The function g so defined is called as inverse of f. Since, to each y ∈ E 
there corresponds a unique x ∈ N such that f (x) = y only one such function 
g can be defined corresponding to a given function f. For this reason, g is 
called the inverse of f. 
As you will notice, the function g is also one-one and onto and therefore it 
will also have an inverse. You must have already guessed that the inverse of 
g is the function f. 
From this discussion we have the following : 
If f is one-one and onto function from X to Y, then there exists a unique 
function g : Y → X such that for each y ∈ Y, g (y) = x ⇔ y = f (x). The 
function g so defined is called the inverse of f. Further, if g is the inverse of 
f, then f is the inverse of g, and the two functions f and g are said to be the 
inverse of each other. The inverse of a function f is usually denoted by f – 1. 
To find the inverse of a given function f, we proceed as follows : 
Solve the equation f (x) = y for x. The resulting expression for x (in terms  
of y) defines the inverse function. 

Thus, if    ,2
5

)(
5
+=

xxf  

we solve  xyx for2
5

5
=+  

This gives us         .))2(5( 5
1

−= yx  

Hence f – 1 is the function defined by .))2(5()( 5
1

1 −=− yyf  

1.3.3 Graphs of Inverse Functions 
There is an interesting relation between the graphs of a pair of inverse functions 
because of which, if the graph of one of them is known, the graph of the other can 
be obtained easily. 

Let f : X → Y be a one-one and onto function, and let g : Y → X be the inverse of 
f. A point (p, q) lies on the graph of f ⇔ q = f (p) ⇔ p = g (q)  (q, p) lies on the 
graph of g. Now, the point (p, q) and (q, p) are reflections of each other with 
respect to (w. r. t.) the line y = x. Therefore, we can say that the graphs of f and g 
are reflections of each other w. r. t. the line y = x. 
Therefore, it follows that, if the graph of one of the functions f and g is given, that 
of the other can be obtained by reflecting it w. r. t. the line y = x. As an 
illustration, the graphs of the functions x3 and y = x1/3 are given in Figure 1.8. 

 

 

 

x 

y 

0 
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Figure 1.8 

Do you agree that these two functions are inverses of each other? If the sheet of 
paper on which the graph have been drawn is folded along the line y = x, the two 
graphs will exactly coincide. 

If a given function is not one-one on its domain, we can choose a subset of the 
domain on which it is one-one and then define its inverse function. For example, 
consider the function f : x → sin x. 

Since we know that sin (x + 2π) = sin x, obviously this function is not one-one  

on R. But if we restrict it to the intervals ⎥⎦
⎤

⎢⎣
⎡ ππ
−

2
,

2
 we find that it is one-one. 

Thus, if 

   f (x) = sin (x), for all .
2

,
2 ⎥⎦

⎤
⎢⎣
⎡ ππ
−∈x  

Then we can define 

    .sin,)(sin)( if11 xyyxxf === −−

Similarly, we can define cos– 1 and tan– 1 functions as inverse of cosine and 

tangent functions if we restrict the domains to [0, π ] and ⎥⎦
⎤

⎢⎣
⎡ ππ
−

2
,

2
 respectively. 

 
SAQ 2  

(a) Compare the graphs of ln x and ex given in Figures 1.6 and 1.7 and 
verify that they are inverses of each other. 

 

 

 

 

(b) Which of the following functions are one-one? 

(i) f : R → R defined by f (x) = | x |. 

(ii) f : R → R defined by f (x) = 3x − 1. 

(iii) f : R → R defined by f (x) = x. 

(iv) f : R → R defined by f (x) = 1. 

(c) Which of the following functions are onto? 

(i) f : R → R defined by f (x) = 3x + 7. 

(ii) f : R+ → R defined by f (x) = x . 
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(iii) f : R → R defined by f (x) = x2 + 1. Differential Calculus

(iv) f : X → R defined by f (x) = 
x
1  where X stands for the set of 

non-zero real numbers. 

 

 

 

 

(d) Show that the function f : X → X such that 
1
1)(

−
+

=
x
xxf  where X is 

the set of all real number except 1, is one-one and onto. Find its 
inverse. 

 

 

 

 

(e) Give one example of each of the following : 

(i) a one-one function which is not onto? 

(ii) onto function which is not one-one? 

(iii) a function which is neither one-one nor onto? 

 

 

 

 

 

1.3.4 New Functions from Old 
In this sub-section, we shall see how we can construct new functions from some 
given functions. This can be done by operating upon the given functions in a 
variety of ways. We give a few such ways here. 

1.3.5 Operations on Functions 
Scalar Multiple of a Function 

Consider the function f : x → 3x2 + 1, for all x ∈ R. The function  
g : x → 2 (3x2 + 1) for all x ∈ R is such that g (x) = 2f (x), for all x ∈ R. We 
say that g = 2f and that g is a scalar multiple of f by 2. In the above 
example, there is nothing special about the number 2. We could have taken 
any real number to construct a new function from f. Also, there is nothing 
special about the particular function that we have considered. We could as 
well as have taken any other function. This suggests the following 
definition : Let f be a function with domain D and let k any real number. 
The scalar multiple of f by k is a function with domain D. It is denoted by kf 
and is defined by setting (kf) (x) = kf (x). 
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(i) Given any function f, if k = 0, the function kf turns out to be the zero 
function. That is, kf = 0. 

(ii) If k = − 1, the function kf is called the negative of f and is denoted 
simply by – f. 

Absolute Value Function (or Modulus Function) of a Given Function 

Let f be a function with domain D. The absolute value of function f denoted 
by | f | and read as mod f is defined by setting (| f |) (x) = | f (x) | for all x ∈ 
D. 

Since | f (x) | = f (x), if f (x) ≥ 0, thus | f | have the same graph for those 
values of x for which f (x) ≥ 0. 

Now let us consider those values of x for which f (x) < 0. Here  
| f (x) | = − f (x). Therefore, the graphs of f and | f | are reflections of each 
other w. r. t. the x-axis for those values of x for which f (x) < 0. 

As an example, consider the graph in Figure 1.9(a). The portion of the 
graph below the x-axis, that is, the portion for which f (x) < 0 has been 
shown as dotted. 

To draw the graph of | f | we retain the undotted portion in Figure 1.9(a) as 
it is, and replace the dotted portion by its reflection w. r. t. the x-axis  
(Figure 1.9(b)). 

 

x 0 

y 

x 0 

y 

 

 

 

 
 

(a)     (b) 

Figure 1.9 

Sum, Difference, Product and Quotient of Two Functions 

If we are given two functions with a common domain, we can form several 
new functions by applying the four fundamental operations of addition, 
subtraction, multiplication and division on them. 

(i) Define a function δ on D by setting δ (x) = f (x) + g (x). The functions 
is called the sum of the functions f and g, and is denoted by f + g. 
Thus, (f + g) (x) = f (x) + g (x). 

(ii) Define a function d on D by setting d (x) = f (x) – g (x). The function 
d is the function obtained by subtracting g from f, and is denoted by  
f – g. Thus, for all x ∈ D, (f − g) (x) = f (x) – g (x). 

(iii) Define a function p on D by setting p (x) = f (x) g (x). The function p 
is called the product of the functions f and g, and is denoted by fg. 
Thus, for all x ∈ D, (fg) (x) = f (x) g (x). 
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(iv) Define a function q on D by setting 
)(
)()(

xg
xfx q = . The function p is 

provided g (x) ≠ 0 for any x ∈ D. The function q is called the quotient 

of f by g and is denoted by .
g
f  Thus, 

)(
)()(

xg
xfx

g
f

= , 

(g (x) ≠ 0 for any x ∈ D). 
Remark 

In case g (x) = 0 for some x ∈ D, we can consider the set, say D′ of all those 

values of x for which g (x) ≠ 0 and define D
g
f ′on by setting 

)(
)()(

xg
xfx

g
f

=  

for all x ∈ D′. 
 

 
Consider the functions f : x → x2 and g : x → x3. Find the functions which 
are defined as 
(i) f + g, 
(ii) f – g, 
(iii) fg, 
(iv) (2f + 3g), and 

(v) 
g
f . 

Solution 
(i) (f + g) (x) = x2 + x3 
(ii) (f – g) (x) = x2 – x3 
(iii) (fg) (x) = x5 
(iv) (2f + 3g) (x) = 2f (x) + 3g (x) 

     = 2f (x) + 3g (x) 
     = 2x2 + 3x3. 

(v) Now, g (x) = 0 ⇔ x2 = 0 ⇔ x = 0. Therefore, in order to define the 

function 
g
f , we shall consider only non-zero values of x. If x ≠ 0, 

xx
x

xg
xf 1
)(
)(

3

2
== . Therefore, 

g
f  is the function ,1:

x
x

g
f

→  whenever  

x ≠ 0. 
 

1.3.6 Composition of Functions 

Example 1.4 

We shall now describe a method of combining two functions which is somewhat 
different from the ones studied so far. Uptil now, we have considered functions 
with the same domain. We shall now consider a pair of functions such that the  
co-domain of one is the domain of the other. 
Let f : X → Y and g : Y → Z be two functions. We define a function h : X → Z by 
setting h (x) = g (f (x)). 
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To obtain h (x), we first take the f-image f (x) of an element x of X. Thus f (x) ∈Y, 
which is the domain of g. We then take the g image of f (x), that is, g (f (x)), 
which is an element of Z. This scheme has been shown in Figure 1.10. 

 

g[f (x)] 

h 

h 

y 

g f 
f (x) 

Z X 

X 

 

 

 

 

 

 
Figure 1.10 

The function h, defined above, is called the composition of f and g and is written 
as “gof”. Note the order. We first find the f-image and then its g-image. Try to 
distinguish the composite function gof from the composite function fog which 
will be defined only when Z is a subset of X. 

 

 

For functions f : x → x2, ∀ x ∈ R and g : x → 8x + 1, for all x ∈ R, obtain 
functions “gof ” and “fog”. 

Solution 

“gof ” is a function from R to itself, defined by 

  (gof ) (x) = g (f (x)) = g (x2) = 8x2 + 1 for all x ∈ R 

“fog ” is a function from R to itself, defined by 

  (fog) (x) = f (g (x)) = f (8x + 1) = (8x + 1)2. 

Thus gof and fog are both defined but are different from each other. 

 

The concept of composite functions is used not only to combine functions, but 
also to look upon a given function as made up of two simpler functions. For 
example, consider the function 

Example 1.5 

  h : x → sin (3x + 7). 

We can think of it as the composition (gof) of the functions f : x → 3x + 7, for all 
x ∈ R and g : u → sin u, for all u ∈ R. 

Now let us try to find the composite functions “fog” and “gof” of the functions : 

 f : x → 2x + 3, for all x ∈ R, and g : x → ,
2
3

2
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛ x  for all x ∈ R. 

Note that f and g are inverses of each other. Now 

 gof (x) = g (f (x)) = g (2x + 3) = .
2
3)32(

2
1 xx =−+  

Similarly, 
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 fog (x) = f (g (x)) = f .3
2
3

2
2

2
3

2
xxx

=+⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −  

Thus, we see that gof (x) = x and fog (x) = x are the identity functions on R. What 
we have observed here is true for any two functions f and g which are inverses of 
each other. Thus, if f : X → Y and g : Y → X are inverses of each other, then gof 
and fog are identity functions. Since the domain of gof is X and that of fog is Y, 
we can write this as : 

   gof = Ix, fog = Iy

This fact is often used to test whether two given functions are inverses of each 
other or not. 

1.3.7  Types of Functions 
In this section, we shall talk about various types of functions, namely, even, odd, 
increasing and decreasing. In each case, we shall also try to explain the concept 
through graphs. 

Even and Odd Functions 

We shall first introduce two important classes of functions : even functions 
and odd functions. 

Consider the function f defined on R by setting 

   f (x) = x2, for all x ∈ R. 

You will notice that 

   f (− x) = (− x)2 = x2 = f (x), for all x ∈ R. 

This is an example of an even function. Let’s take a look at the graph  
(Figure 1.11) of this function. We find that the graph (a parabola) is 
symmetrical about the y-axis. If we fold the paper along the y-axis, we shall 
see that the parts of the graph on both sides of the y-axis completely 
coincide with each other. Such functions are called even functions. Thus, a 
function f, defined on R is even if, for each x ∈ R, f (− x) = f (x). 

 

x 

y 

 

 

 

 
0  

Figure 1.11 

The graph of an even function is symmetric with respect to the y-axis. We 
also note that if the graph of a function is symmetric with respect to the  
y-axis, the function must be an even function. Thus, if we are required to 
draw the graph of an even function, we can use this property to our 
advantage. We only need to draw that part of the graph which lies to the 
right of the y-axis and then just take its reflection w. r. t. the y-axis to obtain 
the part of the graph which lies on the left of the y-axis. 

Now let us consider the function f defined by setting f (x) = x3, for all x ∈ R. 
We observe that f (− x) = (− x)3 = − x3 = − f (x), for all x ∈ R. If we consider 
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another function g given by g (x) = sin x, we shall be able to note again that 
g (− x) = sin (− x) = − sin x = − g (x). 
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The functions f and g above are similar in one respect : the image of – x is 
the negative of the image of x. Such functions are called odd functions. 
Thus, a function f defined on R is said to be an odd function if  
f (– x) = − f (x), for all x ∈ R. 

If (x, f (x)) is a point on the graph of an odd function f, then (– x, − f (x)) is 
also a point on it. This can be expressed by saying that the graph of odd 
function is symmetric with respect to the origin. In other words, if you turn 
the graph of an odd function through 180o about the origin you will find 
that you get the original graph again. Conversely, if the graph of a function 
is symmetric with respect to the origin, the function must be an odd 
function. The above facts are often useful while handling odd functions. 

While many of the functions that you will come across in this course will 
turn out to be either even or odd, there will be many more which will be 
neither even nor odd. Consider, for example, the function f : x → (x + 1)2. 
Here f (− x) = (− x + 1)2 = x2 – 2x + 1. 

Is f (x) = f (− x), for all x ∈ R? 

The answer is ‘no’. Therefore, f is not an even function. 

Further is f (x) = − f (− x), for all x ∈ R? 

Again, the answer is ‘no’. Therefore f is not an odd function. The same 
conclusion could have been drawn by considering the graph of f which is 
given in Figure 1.12. 

3

2

1

4
y 

x 

 

 

 

 

 
−1−3 −2 2 31 0

Figure 1.12 

You will observe that the graph is symmetric neither with respect to the 
y-axis, nor with respect to the origin. 

Now, there should be no difficulty in solving the exercise below. 

 SAQ 3 
 

(a) Given below are two examples of even functions, alongwith their 
graphs. Try to convince yourself, by calculations as well as by 
looking at the graphs, that both the functions are, indeed, even 
functions. 

(i) The absolute value function on R 

   f : x → | x | 

The graph of f is shown in Figure 1.13. 
y 
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x 

 

 

 0 

 

 

Figure 1.13 

(ii) The function g defined on the set of non-zero real number by 

setting .0,1)( 2 ≠= x
x

xg  The graph of g is shown in Figure 1.14. 

x 

1

2

3

4

y 

3

 

 

 

 

 

 
1 2−3 −2 −1 0

Figure 1.14 

 

 

 

 

 

 

 

 

(b) We are giving two functions alongwith their graphs (Figures 1.15(a) 
and (b)). By calculations as well as by looking at the graphs, prove 
that each is an odd function. 

(i) The identity function on R : 

   f : x → x 

(ii) The function g defined on the set of non-zero real numbers by 
setting 

    .0,1)( ≠= x
x

xg   

 

 

 

 
x 0 

y 

x 2 

−2 

4

−4 

2 

4

1 3

−1 1 −3 

3 

−1 
0 
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−2 
−3  
−4 

 
  (a)        (b) 

Figure 1.15 

 

 

 

 

 

 

(c) Which of the following functions are even, which are odd, and which 
are neither even nor odd? 

(i) x → x2 + 1, for all x ∈ R. 

(ii) x → x2 – 1, for all x ∈ R. 

(iii) x → cos x, for all x ∈ R. 

(iv) x → | x |, for all x ∈ R. 

(v) . 
⎩
⎨
⎧

=
irrationalisif,1
rationalisif,0

)(
x
x

xf

 

 

 

 

 

 

1.4 LIMITS 

In Section 1.3, we introduced you to the concept of a function and discussed 
several useful types of functions. In this section, we consider the value “to which  
f (x) approaches as x gets closer and closer to some number a”. The phrase in 
inverted commas is to be understood intuitively and through practice. We do not 
give a formal definition here. We call such a value the limit of f (x) and denote it 
by  Sometimes, this value may not exist, as you will see in an example 

later. 

).(lim xf
ax→

 

 
Example 1.6 

Consider the function f : R → R given by f (x) = x + 4. We want to find 
. )(lim

2
xf

x→
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Look at Tables 1.1 and 1.2. These give values of f (x) as x gets closer and 
closer at 2 through values less than 2 and through values greater than 2, 
respectively. 

Table 1.1 

x 1 1.5 1.9 1.99 1.999 

f (x) 5 5.5 5.90 5.99 5.999 

Table 1.2 

x 3 2.5 2.1 2.01 2.001 

f (x) 7 6.5 6.1 6.01 6.001 

From the above tables, it is clear that as x approaches 2, f (x) approaches 6. 
In fact, the nearer x is chosen to 2, the closer f (x) will be to 6. Thus, 6 is 
limit of x + 4 as x approaches 2, that is, .6)4(lim

2
=+

→
x

x
 

In the above example, the value of )4(lim
2

+
→

x
x

coincides with the value  

x + 4 when x = 2, that is,  ).2()(lim
2

fxf
x

=
→

Numbers x near 2 fall into two natural categories; those which are < 2, that 
is, those that lie to the left of 2, and those which are > 2, that is, those which 
lie to the right of 2. 

We write 
     6)(lim

2
=

−→
xf

x

to indicate that as x approaches 2 from the left, f (x) approaches 6. 

We shall describe this limit as the left-hand limit of f (x) as x approaches (or 
tends to) 2. 

Similarly, 
     6)(lim

2
=

+→
xf

x

indicates that as x tends to 2 from the right, f (x) approaches 6. 

We shall call this limit as the right-handed limit of f (x) as x approaches 2. 

The left and right-hand limits are called one-sided limits. 

It is clear now that 
     6)(lim

2
=

→
xf

x

if and only if, both 

     and 6)(lim
2

=
−→

xf
x

6)(lim
2

=
+→

xf
x

. 

In the above example, the value of )4(lim
2

+
→

x
x

 coincides with the value of  

x + 4 when x = 2, that is 
    ).2()(lim

2
fxf

x
=

→
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 Likewise  .1)13(lim 2

2
−=+−

→
xx

x

as also   .)13(lim1)13(lim 2

2

2

2
+−=−=+−

+− →→
xxxx

xx

Now consider another function RR →− }2{:f  given by .
2
4)(

2

−
−

=
x

xxf  

This function is not defined at the point x = 2, since division by zero is 
undefined. But f (x) is defined for values of x which approach 2. So it makes 

sense to evaluate .
2
4lim

2

2 −
−

→ x
x

x
 Again, we consider the following Tables 1.3 

and 1.4 which give the values of f (x) as x approaches 2 through values less 
than 2 and through values greater than 2, respectively. 

Table 1.3 

x 1 1.5 1.9 1.99 1.999 
f (x) 3 3.5 3.9 3.99 3.999 

Table 1.4 

x 3 2.5 2.1 2.01 2.001 
f (x) 5 4.5 4.1 4.01 4.001 

As you can see 
   4)(lim

2
=

−→
xf

x
 and .4)(lim

2
=

+→
xf

x
 

Hence, we shall say 
   .4)(lim

2
=

→
xf

x
 

 
Now we are in a position to define the limit of a function. 
Let f be a function and let a be a real number. We do not require that f be defined 
at a, but we do require that f be defined on a set of the form (a – p, a) ∪ (a, a + 
p). 
(This guarantees that we can form f (x) for all x ≠ a that are “sufficiently close” 
to a.) 
Definition 6 

f (x) is said to tend to the limit l as x approach a, written as 
   ,)(lim

2
lxf

x
=

→
 

if, and only if, 
   ,)(lim

2
lxf

x
=

−→
  and  .)(lim

2
lxf

x
=

+→
 

There is another definition of the limit of a function, equivalent to the above 
definition. 
Definition 7 

Let f be a function defined on some set (a – p, a) ∪ (a, a + p). 
Then  lxf

x
=

→
)(lim

2
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Differential Calculusif, and only if, for each ε > 0 there exists δ > 0 such that | f (x) – l | < ε 

when 0 < | x – a | < δ. Note that we do not deny that f may be possibly 
defined at the point a. All we are saying is that the definition does not 
require it. 

We illustrate the above definitions with the help of examples. 
 

 
Example 1.7 

Show that 
   .0;)(lim ≠+=+

→
mnmanmx

ax
 

Solution 
Let ε > 0. We seek a number δ > 0 such that, if 0 < | x – a | < δ, then  
| (mx + n) – (ma + n) | < ε. 

What we have to do first is establish a connection between 
   | (mx + n) = (ma + n) |  and  | x – a |. 
The connection is simple : 
   | (mx + n) – (ma + n) | = | m |  | x – a |. 

To make | (mx + n) – (ma + n) | < ε, we need only make .
||

||
m

ax ε
<−  

This suggests that we choose .
||m

ε
=δ  

Thus, if 0 < | x – a | < δ, then | (mx + n) – (ma + n) | < ε. 
Hence   .)(lim nmanmx

ax
+=+

→

 
 

Example 1.8 

Given  evaluate if it exists. 
⎩
⎨
⎧

= ,
otherwise,1

egerintan,3
)(

x
xf ),(lim

2
xf

x→

Solution 
   ).(lim1)(lim

22
xfxf

xx +− →→
==

Hence  .1)(lim
2

=
→

xf
x

 
 

Example 1.9 

Consider the function  given by RRf →− }0{:
x

xf 1)( = . As you see, f (0) 

is not defined. In contrast to Examples 1.6, 1.7 and 1.8 where f is defined at 
the point a where we are evaluating the limit. We try to evaluate   ).(lim

0
xf

x→

Look at Tables 1.5 and 1.6. 
Table 1.5 

x 
2
1  

10
1  

100
1  

1000
1  
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f (x) 2 10 100 1000 

Table 1.6 

x 
−

2
1  −

10
1  −

100
1  −

1000
1  

f (x) − 2 − 10 − 100 − 1000 

We see that f (x) does not approach any fixed number as x approaches 0. In 
this case we say that  does not exist. )(lim

0
xf

x→

 
 
Evaluate the following limits : 

(i) 
3
9lim

2

3 −
−

→ x
x

x
 

(ii) 
3
27lim

3

3 +
−

−→ x
x

x
 

Solution 

(i) 
)3(

)3()3(lim
3
9lim

3

2

3 −
−+

=
−
−

→→ x
xx

x
x

xx
 

     6)3(lim
3

=+=
→

x
x

 

(ii) 
3
27lim

3

3 +
−

−→ x
x

x
 

   
)3(

)93()3(lim
2

3 +
+−+

=
−→ x

xxx
x

 

    279)3(3)3()93(lim 22
3

=+−−−=+−=
−→

xx
x

 

We state below a theorem giving six properties of limits. 

Example 1.10 

Theorem 2 : Properties of Limits 

Let f and g be two functions of x. Then 

(i) For any constant c, .lim cc
ax

=
→

 

(ii) )(lim)(lim)]()([lim xgxfxgxf
axaxax →→→

+=+  

(iii) )(lim)(lim)]()([lim xgxfxgxf
axaxax →→→

−=−  

(iv) kxfkxkf
axax

),(lim)]([lim
→→

=  is any real number 

(v) )](lim[)](lim[)]()([lim xgxfxgxf
axaxax →→→

+=  



    

29

 
Differential Calculus

(vi) 
)](lim[

)](lim[

)(
)(lim

xg

xf

xg
xf

ax

ax

ax
→

→

→
=⎥

⎦

⎤
⎢
⎣

⎡  provided 0.)(lim ≠
→

xg
ax

 

Using the above properties, we try a few examples. 

 

 
Example 1.11 

Evaluate  )1()4(lim 22
2

++−
→

xxx
x

Solution 

)]1(lim[])4(lim[)1()4(lim 2
2

2
2

22
2

++−=++−
→→→

xxxxxx
xxx

 

     = (4 – 4) (4 + 2 + 1) = 0. 
 

 

Evaluate 
xx

xxx
x 2

2lim 2

23

0 +
++

→
. 

Solution 

First we reduce 
xx

xxx
2

2
2

23

+
++ by cancelling the common factor : 

  
2
)1(

)2(
)1(

2
2 22

2

23

+
+

=
+
+

=
+

++
x
x

xx
xx

xx
xxx  

Hence, 
2
)1(lim

2
2lim

2

02

23

0 +
+

=
+

++
→→ x

x
xx

xxx
xx

 

         .
2
1

)2(lim

)1(lim

0

2
0 =

+

+
=

→

→

x

x

x

x  

 
We now turn to another limit, the importance of which will become clear in this 
unit. 

Example 1.12 

Theorem 3 

(i) 1.sinlim
0

=
→ x

x
x

 

(ii)  1.coslim
0

=
→

x
x

We are now in a position to evaluate a variety of trigonometric limits. 
 
 

 
 
 

Example 1.13 
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 Find 

x
x

x

4sinlim
0→

 

Solution 

You have seen that .1sinlim
0

=
→ x

x
x

 

From this, it follows that 

   1
4

4sinlim
0

=
→ x

x
x

 

and  .4
4

4sin)4(lim4sinlim
00

=⎟
⎠
⎞

⎜
⎝
⎛=

→→ x
x

x
x

xx
 

 
 
 

Example 1.14 

Find  .4cotlim
0

xx
x→

Solution 

We write 
x
xxxx

4sin
4cos4cot =  

Since  ,1sinlim
0

=
→ x

x
x

 

it follows that 

   1
1
1

sin
1lim

sin
lim

00
===

→→

x
xx

x
xx

 

Thus  .
4
1)1()1(

4
1

4sin
44cos

4
1lim4cotlim

00
=⎟

⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

→→ x
xxxx

xx
 

 

 
Example 1.15 

Find 
1sec

lim
2

0 −→ x
x

x
 

Solution 

We cannot deal with the expression 
1sec

2

−x
x  as it stands since both the 

numerator and denominator tend to zero with x. As such we rewrite the 
expression in a certain form which will make things easy. 

  

2
sin2

coslim
cos1
coslim

1sec
lim

2

2

0

2

0

2

0 x
xx

x
xx

x
x

xxx →→→
=

−
=

−
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2

0

2
sin

2)x(cos)2(lim
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=
→ x

x

x
 

             = (2) (1) (1) = 2. 

SAQ 4  
 

Evaluate the limits that exist : 

(i) 2

2

2 )2(
6lim

+
−−

−→ x
xx

x
  (ii) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+
+−→ 4

8
4

3lim
4 xx

x
x

 

(iii) 
3

)12(lim
22

3 −
−+

→ x
xx

x
 (iv) 

x
x

x

tanlim
0→

 

(v) 
x
xx

x 3sin
2lim

2

0

−
→

  (vi) 
)cos1(

sinlim
2

0 xx
x

x −→
 

(vii) 2)(
)(sinlim

ax
ax

ax −
−

→
  (viii) 

x
x

x

33
lim

0

−+
→

 

(ix) 
x
x

x β
α

→ sin
sinlim

0
. 

 

 

 

 

 

1.5 CONTINUITY 

In ordinary language, to say that a certain process is “continuous” is to say that it 
goes on without interruption and without abrupt changes. In mathematics, 
continuity of a function can also be interpreted in a similar way. 

Like limits, the idea of continuity is basic to calculus. First we introduce the idea 
of continuity at a part (or number) a, and then about continuity on an interval. 

Continuity at a Point 

Definition 8 

Let f be a function defined at least on an open interval (a – p, a + p). 

We say f is continuous at a if, and only if, 
    ).()(lim afxf

ax
=

→

or, equivalently, 
   ).()(lim

0
afhaf

h
=+

→
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If the domain of f contains an interval (a – p, a + p), then f can fail to 
be continuous at a for one of the following two reasons : 

Mathematics-II 
 

(i) Either  does not exist. )(lim xf
ax→

(ii)  exists but is not equal to f (a). )(lim xf
ax→

The function graphed in Figure 1.16 is discontinuous at a because it 
does not have a limit at a. 

x p 0 

y  

 

 

 

 

 

Figure 1.16 

The function depicted in Figure 1.17 does have a limit at a. It is 
discontinuous at a only because  is different from f (a), the 

value of f at a. The discontinuity at a is removable; it can be removed 
by lowering the dot into place (or by redefining f at a). 

)(lim xf
ax→

x 0 p 

y  

 

 

 

 

 

Figure 1.17 

An ε, δ characterization of continuity at a reads as follows : 
Definition 9 

f is continuous at a if, and only if, for each ε > 0, there exists δ > 0 
such that if | x – a | < δ, then | f (x) – f (a) | < ε. Clearly, δ will 
depend both on ε and a; if any of these are changed the same δ may 
not work. 
Continuity of the function f (x) at an end point of an interval [a, b] of 
its domain is defined below : 
(i) f (x) is continuous at the left end point ‘a’  = f (a). )(lim xf

ax +→

(ii) f (x) is continuous at the right end point ‘b’  = f (b). )(lim xf
bx −→

If a function is continuous at each point of an interval, it is 
continuous over the interval. 
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Remark 
If the interval is closed, the limit in the continuity test over the interval is 
two-sided at an interior point and the appropriate one-sided at the end 
points. 

 
 
 

Example 1.16 

Prove that f (x) = sin x is continuous at x = 0. 
Solution 

(i) f (0) = sin 0 = 0 
(ii)  =  = 0 and )(lim

0
xf

x→
x

x
sinlim

0→

(iii)  = f (0) = 0 )(lim
0

xf
x→

Therefore, f (x)  = sin x is continuous at x = 0. (In fact sin x and cos x are 
continuous at each real x.) 

 
 

Examine the continuity of the function .1)(
x

xf =  

Solution 
The function is defined for all non-zero real value of x. It is not defined at  
x = 0. 
 
 

 

 

 

 

 
Figure 1.18 

Also  0),(1)(lim 00
0

if
0

≠==
→

xxf
x

xf
xx

 

Therefore, the function is continuous for all real x ≠ 0. It fails to be 
continuous at x = 0 (why)? (Figure 1.18). This function is continuous on 
any interval which does not include x = 0 as an element of it. 

 
Theorem 4 

x 

y 

0 

x
y 1
=

Example 1.17 

If the functions f (x) and g (x) are continuous at x = a, then 
(i) f (x) ± g (x), 
(ii) f (x) g (x), and 
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 (iii) 0,)(,

)(
)(

≠ag
xg
xf  are continuous at x = a. 

(iv) If f (x) is continuous at x = x0 and if g (y) is continuous at  
y = y0 = g (x0), then the composite function F (x) = g (f (x)) is 
continuous at x = x0. 

These results are in fact the immediate corollaries of the corresponding limit 
theorems discussed in Section 1.4 also. 
If a function is not continuous at a point x0, it is said to be discontinuous at x0. 
 

 
 

Example 1.18 

Let )0(sin)( ≠= x
x

xxf . Now f is not defined at x = 0. If we define f (0) = 1 

which is same as ,sinlim
0 x

x
x→

 then f is continuous at x = 0. 

x 0 

x
xy sin

=

y 
 

 

 

 

 

 

Figure 1.19 

 
 
 

Example 1.19 

The function f defined by 

    
⎩
⎨
⎧

≤−
>

=
0for1
0for1

)(
x
x

xf

is discontinuous at x = 0. 

x 0 

−1

1 

y  

 

 

 

 

 

Figure 1.20 
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Example 1.20 

Draw the graph of the function 

   

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤<
<<+−

=
<≤
<≤−+−

=

32,0
21,2

1,2
10,

01,1

)(

2

x
xx

x
xx

xx

xf

and examine its continuity on [− 1, 3]. 

Solution 

The points of discontinuity : 

(i) )(lim)0(01)(lim
00

xffxf
xx +− →→

==≠−=  

  Therefore, x = 0 is a discontinuity. 

(ii)  )1)((lim)(lim
11

==
+−

→→
xfxf

xx

  But . Therefore, x = 1 is a discontinuity. 2)1(1)(lim
1

=≠=
→

fxf
x

(iii) The function is not defined at x = 2, but 0)(lim
2

=
→

xf
x

 exists. 

Therefore, x = 2 is also a removable discontinuity. 

 

x 

2 

0 

1 

−1 

y = − x + 2y = x 

y = −1+x2 
2 3 1 

−1 

y 

 (1,2) 

 

 (1,1) 

 

 

 

 

 

 
Figure 1.21 

 SAQ 5 
 

(a) Which of the following functions are continuous 

(i)  
⎩
⎨
⎧

≥+
<−

=
012
012

)(
if
if

xx
xx

xf

(ii) 
⎪⎩

⎪
⎨
⎧

=

≠
=

00

0)(
if

if

x

x
|x|

x
xf  



 
 

 

36 

(b) Find the value of b for which the function Mathematics-II 
 

    
⎪⎩

⎪
⎨
⎧

≥+

<+
=

22
21

)(
when

when3

x
x

bx

xx
xf  

continuous at x = 2. 

 

 

 

 

 

(c) Prove that the greatest integer function [x] is not continuous at x = 0  
and x = 1. 

 

 

 

 

1.6 DERIVATIVE 

You are familiar with notions like velocity, acceleration, slope of a tangent line, 
etc. You also know that differential calculus is the right mathematical tool to 
obtain formulae to calculate velocity and acceleration of moving bodies, the slope 
of the tangent line to a curve, etc. In fact differential calculus deals with the 
problem of calculating rates of change and also helps to express the physical laws 
in precise mathematical terms for studying their consequences. The problems 
associated with a moving body are mainly responsible for development of the 
concept of derivative in calculus. To illustrate the fact we consider the rectilinear 
motion of a body. We know that the distance ‘s’ traversed by the body and 
measured from a fixed point depends on the time ‘t’. Let the distance s = f (t) be a 
function of time ‘t’. The average of velocity during a time interval (t, t + Δt) is 

   ).()(, where tfttfs
t
sVav −Δ+=Δ

Δ
Δ

=  

To obtain the velocity at time t, we need to calculate 

   
t

tfttf
t Δ

−Δ+
→Δ

)()(lim
0

 

The above limit, if exists, is called the derivative of f (t) with respect to t and we 
write 

   ).(lim
0

tf
dt
ds

t
s

t
′==

Δ
Δ

→Δ
 

The derivative 
dt
ds  is the velocity of the moving body at time t. 



    

37

 
Differential Calculus1.6.1 Derivative of a Function 

We now define the derivative of a given function by using the notion of limit. 

Definition 10 

The function y = f (x) is said to have a derivative (or be differentiable) at a 
point x if, and only if, the limit 

   
h

xfhxf
h

)()(lim
0

−+
→

 

exists and is finite. This limit, written as 
dx
dy  or f ′ (x), is called the 

derivative of f (x) with respect to x. 

If the derivative of a function exists at every point of an interval, then we say that 
the function is differentiable in that interval. However, while considering the 
derivatives at the end points of an interval, we evaluate suitable one-sided 
derivatives. For example, if the interval is [a, b], then the derivative at x = a is 
calculated as 

  
h

afhaf
h

)()(lim
0

−+
+→

 and at b as 
h

bfhbf
h

)()(lim
0

−+
−→

 

If f ′ (x) is continuous at a point, then we say that f (x) is continuously 
differentiable at that point. 

 

 

Let y = xn (n is a positive integer). Prove that .1−= nnx
dx
dy  

Solution 

      nxxfy == )(

Then    
h

xhx
h

xfhxf nn −+
=

−+ )()()(  

    xhxhx
h

xhx nn 21 )()([)( −− +++
−+

=     ])(... 12 −− ++++ nn xxhx

The above step is derived by using the result 

    ]...[)( 1221 −−−− ++++−=− nnnnnn babbaababa

We now have 

 1221 )(...)()()()( −−−− +++++++=
−+ nnnn xxhxxhxhx

h
xfhxf  

Taking the limit h → 0, we get 

 121
0

...)()(lim −−−

→
+++=

−+
= nnn

h
xxxx

h
xfhxf

dx
dy  (n number of terms) 

 Therefore, .1−= nnx
dx
dy  

 

Example 1.21 
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In the following theorem, we make an important observation (a necessary 
condition) about any differentiable function. 

Mathematics-II 
 

Theorem 5 

If a function y = f (x) is differentiable at some point x = x0, it is 
continuous at that point. 

Proof 

By definition, the derivative of f (x) at x = x0 is 

   
h

xfhxfxf
h

)()(lim)( 00
00

−+
=′

→
 

Now )]()([lim 000
xfhxf

h
−+

→
 

               = h
h

xfhxf
h

.)()(lim 00
0

−+
→

 

    
h

xfhxf
h

)()(lim 00
0

−+
=

→
.  h

h 0
lim
→

    0)( 0 .xf ′=  

     = 0 

∴  0)(lim)(lim 0000
=−+

→→
xfhxf

hh
 

i.e.  )(lim)(lim 0
0

0
0

xfhxf
hh →→

=+  

i.e. f (x) is continuous at x0. 
The converse of the above result is not true. Indeed, there exist functions 
which are continuous but not differentiable. 

 
 
 

Example 1.22 

Examine the differentiability of the function 

    
⎩
⎨
⎧

≤−
>

=
0whenever
0whenever

xx
xx

y

Solution 
The function is continuous for – ∞ < x < ∞. The graph of the function is 
given below. 

 
y =− x y = x 

y 

 

 

 

 
x 0  

Figure 1.22 
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Further  10)0()0(
=

−
=

−+
h

h
h

fhf  when h is positive. 

       10
−=

−−
=

h
h  when h is negative. 

∴  1)0()0(lim
0

=
−+

+→ h
fhf

h
 

   1)0()0(lim
0

−=
−+

−→ h
fhf

h
 

i.e. f ′ (0) does not exist. 
 

Remark 
The above example will help you to conclude that a function can never have 
derivative at a point of discontinuity. In the light of this remark, look at the 
following example. 

 
 
 

Example 1.23 

Examine the differentiability of the function 

    
⎪
⎩

⎪
⎨

⎧

≤−
<≤

<<∞−
=

xx
x

xx
y

2,3
20,1

0,

Solution 

x 0 1 2 3 

y = 3 − x

y = x 

y 
 

 

 
y = 1 

 

 

 

 

 

 
Figure 1.23 

From Figure 1.23, we observe as follows : 

(i) The function is not continuous at x = 0. Hence it is not differentiable 
there. 

(ii) Though the function is continuous at x = 2, the one-sided limits 

   
h

fhf
h

)2()2(lim
0

−+
+→

 

          
h
h

h

)23(])2(3[(lim
0

−−+−
=

+→
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h
h

h

123lim
0

−−−
=

+→
 

          1lim
0

−=
−

=
+→ h

h
h

 

and 
h

fhf
h

)2()2(lim
0

−+
−→

 

         
hh

)23(1lim
0

−−
=

−→
 

         00lim
0

===
−→h

 are not equal. 

Therefore, the derivative does not exist at x = 2. 

At all points (x ≠ 0 and x ≠ 2) the derivatives exist. 

 SAQ 6 
 

(a) Show that the derivative of a constant function is zero. 

 

 

 

 

(b) Show that y = | x | is differentiable at all points except at x = 0. 

 

 

 

 

(c) Find the derivative of the function 

(i) y = x2 

(ii) y = 3x2 + 5x – 1. 

 

 

 

 

1.6.2 Algebra of Derivatives 
We now state some important rules regarding the derivatives of the sum, 
difference, product and quotient of functions in terms of their derivatives. 
Theorem 6 

If f (x) and g (x) are differentiable functions at a point x, then 

(i) 
dx

xdg
dx

xdfxgxf
dx
d )()()]()([ ±=±  
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(ii) 
dx

xdfxg
dx

xdgxfxgxf
dx
d )()()()())(.)(( +=  

(iii) 2)]([

)()()()(

)(
)(

xg
dx

xdgxf
dx

xdfxg

xg
xf

dx
d −

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛  

provided g (x) ≠ 0. 
We shall give the proof of the result (ii) below. Other results we leave as an 
exercise for you. 
Proof 

Let    y = f (x) . g (x) 

Then 
h

xgxfhxghxf
dx
dy

h

)()()()(lim
0

−++
=

→
 

Now )()()()( xgxfhxghxf −++  

       )]()([)()]()([)( xfhxfxgxghxghxf −++−++=  

∴ 
⎭
⎬
⎫

⎩
⎨
⎧ −+

+
−+

+=
→ h

xfhxfxg
h

xghxghxf
dx
dy

h

)]()([)()]()([)(lim
0

 

  
h

xghxghxf
dx
dy

hh

)()(lim)(lim
00

−+
+=

→→
 

   
h

xfhxfxg
h

)()(lim)(
0

−+
+

→
.  

That is, 

  ,)()()()(
dx

xdfxg
dx

xdgxf
dx
dy

+=  

Use of the product rule (ii) and the result which states that ‘derivative of a 
constant is zero’ gives 

  )()]([ xf
dx
dcxcf

dx
d

== , 

where c is a constant. 

 

 Example 1.24 

 
Find the derivative of y = 5x2 sin x. 

Solution 

  )](sin)(sin[5 2 2+= x
dx
dxx

dx
dx

dx
dy  

We derive )(sin x
dx
d  as under : 

  
h

xhxx
dx
d

h

sin)(sinlim)(sin
0

−+
=

→
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⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ +=

→
2

2
sin

2
coslim

0
2

h

h
hx

h
 

       

2

2
sin

lim
2

coslim
0

2
0

2
h

h
hx

hh

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ +=

→→
.  

        = cos x . 1 = cos x 

and  xx
dx
d 2)( 2 =  

Hence,  ]sin2cos[5 2 xxxx
dx
dy

+= . 

 

 

Find 
dx
dy , if 2

cos
x

xy = . 

Solution 

By formula (iii) 

   4

22 )(cos)(cos

x

x
dx
dxx

dx
dx

dx
dy −

=  

To obtain )(cos x
dx
d , we have 

   
h

xhxx
dx
d

h

cos)(coslim)(cos
0

−+
=

→
 

                  
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ +−=

→→
2

2
sin

lim
2

sinlim
0

2
0

2
h

h
hx

hh
 

                  

2

2
sin

lim
2

sinlim
0

2
0

2
h

h
hx

hh

⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−=

→→
 

        = − sin x . 1 = − sin x 

and     xx
dx
d 2)( 2 =  

Therefore,  3
cos2sin

x
xxx

dx
dy +

=  

 

 

Example 1.25 
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Differential Calculus1.6.3 Derivative of a Composite Function (Chain Rule) 

Theorem 7 

If y = f (u) is a differentiable function of u and u = g (x) is a 
differentiable function of x, then y = f (g (x)) as a function of x is 
differentiable and 

   
dx
du

du
dy

dx
dy .= . 

Proof 
Let u = g (x) be differentiable at x0 and y = f (u) be differentiable at u0 
where u0 = g (x0). 
Let h (x) = f (g (x)). The function g (x), being differentiable, is continuous at 
x0; so also the function f (u) at u0 and, therefore, at x0. 

   Δu = g (x0 + Δx) – g (x0) 

where Δu → 0 as Δx → 0 
and at u0

   Δy = f (u0 + Δu) – f (u0) 

        = f (g (x0 + Δx)) – f (g (x0)) 

        = h (x0 + Δx) – h (x0) 

Assuming Δu ≠ 0 (i.e. g (x) is not a constant function in neighbourhood  
of x0), we write 

   
x
u

u
y

x
y

Δ
Δ

Δ
Δ

=
Δ
Δ .  

In the limit, we get 

   
x
u

u
y

x
y

xux Δ
Δ

Δ
Δ

=
Δ
Δ

→Δ→Δ→Δ 000
limlimlim  

or           
dx
du

du
dy

dx
dy

=  

You can also show that in the case of Δu = 0 the above formula holds true. In fact 
it becomes an identity 0 = 0. Note that it cannot be divided by Δu in the case. 
 

 

If y = sin (x2), find 
dx
dy . 

Solution 
Let y = sin (u) and u = x2. By the chain-rule 

   
dx
duu

du
d

dx
dy .)(sin=  

         = (cos u) (2x) 
         = 2x cos x2. 
 

Example 1.26 



 
 

 

44 

1.6.4 Second Order Derivatives Mathematics-II 
 

You know that the derivative of a function y = f (x), i.e. f ′(x) is also a function. 
Hence we can calculate the derivative of f ′(x) at a point of its domain, if it exists, 

by using the same limiting procedure. That is, if 
h

xfhxf
h

)()(lim
0

′−+′
→

 exists, it is 

called the second order derivative of f (x) with respect to x. We write it as 

)(or2

2
xf

dx
yd ′′ . You can also calculate higher order derivatives like 3rd order,  

4th order etc., of a function f (x). 

 

 

Find the (i) 2nd order and (ii) 5th order derivatives of . 153 24 −+−= xxxy

Solution 

(i) 564 3 +−=′= xxy
dx
dy  

  612)564( 23
2

2
−=+−=⎟

⎠
⎞

⎜
⎝
⎛= xxx

dx
d

dx
dy

dx
d

dx
yd  

(ii)  0,24,24 )5()4()3( === yyxy

 

1.6.5 Implicit Differentiation 

Example 1.27 

If we are given an equation like , it is not easy to solve it 

for y in terms of x. However, it is often possible to calculate 

0134 346 =+−+ yxyx

dx
dy  straight from the 

equation by the method of implicit differentiation. For example, if we 
differentiate both the sides of the given equation, we get 

  )0(0334446 2345

dx
d

dx
dyy

dx
dyyxyx =+⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛++  

      0)916(46 2345 =−++⇒
dx
dyyxyyx  

Therefore, 23

45

916
)46(

yxy
yx

dx
dy

−
+−

=  

This holds for all points where . 0916 23 ≠− yxy

 SAQ 7 
 

(a) Differentiate 

(i) 
52
13

−
+

x
x  

(ii) 
83

1
3 −+ xx
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(iii) (x2 + x + 6) sin x Differential Calculus

(iv) (x + 2) (x2 + 1) + cos x 

 

 

 

 

(b) Find the derivatives of the functions 

(i) 
5
32

2 −
+

x
x  

(ii) tan x 

(iii) 
x

x
2cos1

)sin1(
+
−  

 

 

 

 

(c) Find the 2nd order derivatives of the functions 

(i) sin2 x 

(ii) ax3 + bx2 + cx + d 

 

 

 

 

1.6.6 Derivatives of Some Elementary Functions 
Power Function y = xα (α is real) 

We have already proved that the power function y = xn, where n is a 
positive integer, has the derivative 

   1−= nxn
dx
dy  

We shall show now that the above rule also holds when q
p

xy =  (q, p are 
integers with q > 0). 

Let us assume p, q > 0. 

Then yq = xp. By the method of implicit differentiation, we get 

or  11 −− = pq xp
dx
dyyq  

   n
q
pnxx

q
p

xq

xp
yq
xp

dx
dy nq

p

q
pp

p

q

p
===== −

−

−

−

−

−
if,1

11

1

1
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 In fact the formula 1)( −αα α= xx

dx
d  holds true for any real α. We shall 

accept this result without proof. 
Trigonometric Functions 

We have already seen that 

   xx
dx
dxx

dx
d sin)(cos,cos)(sin −==  

By using the quotient rule you can show that 

   xx
dx
dxx

dx
d 22 eccos)(cot,sec)(tan −==  

   xxx
dx
dxxx

dx
d coteccos)ec(cos,tansec)(sec −==  

Logarithmic Function 

We shall prove that 
x

x
dx
d 1)(log =  

Let     f (x) = log x 

Then  ⎟
⎠
⎞

⎜
⎝
⎛ +=−+=

−+
x
h

h
xhx

hh
xfhxf 1log1)](log)([log1)()(  

   
h

xhx
h

xfhxfxf
hh

log)(loglim)()(lim)(
00

−+
=

−+
=′

→→
 

            ⎟
⎠
⎞

⎜
⎝
⎛ +=

→ x
h

hh
1log1lim

0
 

            
x

x
h

x
h

h

1
1log

lim
0

.
⎟
⎠
⎞

⎜
⎝
⎛ +

=
→

 

            
xxx

x
h

x
h

hh

1111lim
1log

lim
00

=×=
⎟
⎠
⎞

⎜
⎝
⎛ +

=
→→

.  

or           ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+
→

1)1(loglim
0 y

y
y

∵  

Exponential Function (with respect to the base a) 
We shall now prove that 

   )10(log)( but ≠>= aaaaa
dx
d

e
xx .  

Let   y = ax. 
Then      loge y = x loge a 
By the method of implicit differentiation, we get 

       a
dx
dy

y elog1
=  
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Therefore,       aaay
dx
dy

e
x

e loglog ==  

In particular if y = ex, then xe
dx
dy

=  

Inverse Function 

Let       y = sin– 1 x 

Then sin y = x 

Differentiating both sides w. r. t. x, we have 

   1cos =
dx
dyy  

i.e.          
ydx

dy
cos

1
=  

                 =
y2cos

1  

                
y2sin1

1

−
=  

     
21

1

x−
=  

As we know that the range of 
22

sin tois1 ππ
−− x , i.e. y lies between 

22
to ππ

− , so cos y is positive. 

Similarly, 
2

1

1

1cos
xdx

dyxy
−

−=⇒= −  

   2
1

1
1tan

xdx
dyxy

+
=⇒= −  

   2
1

1
1cot

xdx
dyxy

+
−=⇒= −  

 
 

Let 
44

,)(tancos 1 π
<<

π
−= − xxy  

Find 
dx
dy . 

Solution 

 x
x

x
dx
d

xdx
dy 2

22
sec

)tan1(

1)(tan
)tan1(

1

−
−=

−
−=  

      
xx 2coscos

1
−=  

 

Example 1.28 
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1.6.7 Derivatives of a Function Represented Parametrically Mathematics-II 
 

Sometimes we represent a function say y = f (x), a ≤ x ≤ b by its parametric 
equations, 

    β≤≤α⎥
⎦

⎤
ψ=
φ=

t
ty
tx

,
)(
)(

Let us assume φ (t), ψ (t) are differentiable and x = φ (t) has an inverse t = h (x). 
Then we can consider the equation of the function y = f (x) as a composite 
function. 

   )(),( xhtty =ψ=  

Using the differentiation rule for a composite function (chain-rule), we get 

   

dt
d
dt
d

dx
dh

dt
d

dx
dt

dt
dy

dx
dy

φ

ψ

=
ψ

== .  

Since t = h (x) is inverse of x = φ (t), we arrive at 

dt
d
dt
d

dx
dy

φ

ψ

= . 

 

 

The parametric equation of a semi-circular arc of radius ‘a’ with its centre 
at (0, 0) is 

   π≤≤⎥
⎦

⎤
=
=

t
tay
tax

0,
sin
cos

Find 
4

at π
=t

dt
dy . 

Solution 

  t
ta

ta

dt
dx
dt
dy

dx
dy cot

)sin(
cos

−=
−

==  

At 1
4

cot,
4

−=
π

−=
π

=
dx
dyt  

 

1.6.8 Logarithmic Differentiation 

Example 1.29 

In some problems, it is easier to find 
dx
dy  by first taking logarithmic and then 

differentiating. Such process is called logarithmic differentiation. This is usually 
done in two kinds of problems. First when the function is a product of many 
simpler functions. In this case logarithm converts the product into a sum and 
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Differential Calculusfacilitates differentiation. Secondly, when the variable x occurs in the exponent. 

In this case logarithm brings it to a simpler form. 

 

 
Example 1.30 

Differentiate sin x sin 2x sin 3x. 

Solution 

Let y = sin x sin 2x sin 3x 

Then log y = log sin x + log sin 2x + log sin 3x. 

Differentiating both sides, we have 

  33cos
3sin

122cos
2sin

1cos
sin

11 ..... x
x

x
x

x
xdx

dy
y

++=  

∴    ⎥
⎦

⎤
⎢
⎣

⎡
++=

x
x

x
x

x
xy

dx
dy

3sin
3cos3

2sin
2cos2

sin
cos  

           = sin x sin 2x sin 3x [cot x + 2 cot 2x + 3 cot 3x] 

 

 

Differentiate (sin x)x

Solution 

Let y = (sin x)x

Then log y = x log sin x 

Differentiating both the sides, we have 

  x
x

xx
dx
dy

y
cos

sin
1sinlog1 ..+=  

i.e.     ]cotsin[log xxxy
dx
dy

+=  

            = (sin x)x [log sin x + x cot x] 

 

1.6.9 Differentiation by Substitution 

Example 1.31 

Sometimes it is easier to differentiate by making substitution. Usually these 
examples involve inverse trigonometric functions. 

 

 
Example 1.32 

Differentiate ⎟
⎠
⎞⎜

⎝
⎛ −+− xx21 1tan  

Solution 

Put x = tan θ 

Then 1 + x2 = sec2 θ 
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 ∴ θ−θ=−+ tansec1 2 xx  

                      =
θ
θ

−
θ cos

sin
cos

1  

          
θ
θ−

=
cos

sin1  

          

2
sin

2
cos

2
cos

2
sin2

2
sin

2
cos

22

22

θ
−

θ

θθ
−

θ
+

θ

=  

          
⎟
⎠
⎞

⎜
⎝
⎛ θ

+
θ

⎟
⎠
⎞

⎜
⎝
⎛ θ

−
θ

⎟
⎠
⎞

⎜
⎝
⎛ θ

−
θ

=

2
sin

2
cos

2
sin

2
cos

2
sin

2
cos

2

 

         ⎟
⎠
⎞

⎜
⎝
⎛ θ

−
π

=
θ

+

θ
−

=
θ

+
θ

θ
−

θ

=
24

tan

2
tan1

2
tan1

2
sin

2
cos

2
sin

2
cos

 

∴          ⎟
⎠
⎞

⎜
⎝
⎛ θ

−
π

=
24

tantan y  

i.e.    
24
θ

−
π

=y  

∴  )(tan
2
1

2
1 1 x

dx
d

dx
d

dx
dy −−=

θ
−=  

        
)1(2

1
2x+

−
=  

 SAQ 8 
 

(a) A particle moves along a straight line. At any time t the distance s 
travelled by the particle is given by the formula : s = 32t2 + 9. Find 
the velocity and acceleration of the particle at time, t = 2 units. 

 

 

 

(b) Use the method of implicit differentiation to calculate 
dx
dy , if 

    84x32 22 =+− yyx
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Differential Calculus(c) Differentiate the following  

(i) x2 ex sin x 

(ii) (x + 1)2 (x + 2)3 (x + 3)4 

(iii) 2
1

1
2tan

x
x

−
−  

(iv) 2

2
1

1
1cos

x
x

+
−−  

 

 

 

1.7 SUMMARY 

In this unit, we have covered the following points : 

• The absolute value of a real number x, written as | x |, is defined as 

⎩
⎨
⎧

<−
≥

=
0
0

||
if
if

xx
xx

x  

• Various types of intervals in R are : 

open : (a, b) {x ∈ R : a < x < b} 

closed : [a, b] = {x ∈ R : a ≤ x ≤ b} 

semi-open : (a, b] = {x ∈ R : a < x ≤ b} 

semi-closed : [a, b) = {x ∈ R : a ≤ x < b} 

• A function of f : x → y is said to be onto (or surgective) if range  
of f = y. 

• A function of f : x → y is said to be one-one (or injective) if 
 f (x1) = f (x2) ⇒ x1 = x2. 

• A function f is said to be even if f (− x) = f (x), and odd if  
f (− x) = − f (x). 

• , if and only if, lxf
ax

=
→

)(lim )(lim)(lim xflxf
axax −+ →→

== . 

• f is continuous at x = a if, and only if, )()(lim afxf
ax

=
→

. 

• f (x) has the derivative at x if 
x

xfxxf
x Δ

−Δ+
→

)()(lim
0

 exists. 

• )()()]()([ xg
dx
dxf

dx
dxgxf

dx
d

β+α=β+α . 

• )()()()()]()([ xf
dx
dxgxg

dx
dxfxgxf

dx
d

+= . 

• 2)]([

)()()()(

)(
)(

xg

xg
dx
dxfxf

dx
dxg

xg
xf

dx
d −

=⎥
⎦

⎤
⎢
⎣

⎡ . 
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 • If )()( and xguufy == , then 

dx
du

du
dy

dx
dy .= . 

• 
dx
dynyy

dx
d nn 1)( −= . 

• If 
)(
)(),(),(
tf
tg

dx
dytgytfx

′
′

=== . 

• If f (x) is differentiable at x = c, then it is continuous at x = c. 

1.8 ANSWERS TO SAQs 

SAQ 1 

(b) (i) False 

(ii) True 

(iii) True 

(iv) False 

SAQ 2 

(b) (ii) and (iii). 

(c) (i) and (iv). 

(d) 
1
1

−
+

=
y
yx  is the inverse. 

SAQ 3 

(c) (i) even 

(ii) even 

(iii) even 

(iv) even 

(v) neither even nor odd. 

SAQ 4 

(i) 
2
3

)2(
)2()3(

)2(
6

22

2

+
−

=
+

+−
=

+
−−

x
x

x
xx

x
xx , so the limit does not exist. 

(ii) The limit does not exist. 

(iii) Limit is 0 as 2
22

)4()3(
3

)12(
+−=

−
−− xx

x
xx . 

(iv) Limit is 1 as 
xx

x
x

x
cos

1sintan .= . 

(v) Limit 
3
2

−= . 

(vi) Limit does not exist. 

(vii) Limit does not exist. 
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(viii) Limit 
32

1
= . 

(ix) Limit 
β
α

= . 

SAQ 5 
(a) (i) Not continuous at x = 0 and continuous at all other points. 

(ii) Not continuous. 
(b) b = 4. 

SAQ 6 
(c) (i) 2x 
 (ii) 6x + 5 

SAQ 7 

(a) (i) 2)52(
17
−

−
x

 

(ii) 23

2

)83(
33
−+
+

−
xx

x  

(iii) (x2 + x + 6) cos x  −  (2x + 1) sin x 
(iv) x2 + 1 + 2x (x + 1) – sin x 

(b) (i) 22

2

)5(
1062

−
−−−

x
xx  

(ii) sec2 x 

(iii) 22

2

)cos1(
)sincos2()sin1()cos1(cos

x
xxxxx

+
−−−+−  

(c) (i)  )cos(sin2 22 xx −

(ii) 6ax + 2b 
SAQ 8 

(a) Velocity = 128 
Acceleration = 64 

(b) 
yx
yx

dx
dy

83
34

−
−

=  

(c) (i) ⎟
⎠
⎞

⎜
⎝
⎛ ++ x

x
xex x cot12sin2  

(ii) ⎥
⎦

⎤
⎢
⎣

⎡
+

+
+

+
+

+++
3

4
2

3
1

2)3()2()1( 432

xxx
xxx  

(iii) 21
2

x+
 

(iv) 21
2

x+
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Differential CalculusMATHEMATICS-II 

The knowledge and concepts of mathematics help in handling any engineering 
problem. In Mathematics-I, you have studied some topics on Algebra, 
Trigonometry, Coordinate Geometry and Vector Algebra. In Mathematics-II, 
which is in your hands, you will be studying some more concepts of mathematics 
which are a must for you. Mathematics-II will be dealing with the concepts of 
Differentiation, Integration, Complex Numbers, Matrices, Determinants and 
Statistics and consists of seven units. 

Units 1 and 2 are devoted to Differential Calculus. In fact, calculus was created to 
meet the pressing mathematical needs of 17th century for solving problems in 
Science and Technology. 

In Unit 1, the concept of function has been introduced and different types of 
functions and inverse functions have been discussed. This unit also lays the 
foundations of calculus in terms of definitions and theorems centering around 
limit and continuity of functions and algebra of derivatives. 

In Unit 2, we will be dealing with some of the applications of the derivatives to 
geometry and maxima and minima of functions. Some important theorems 
namely Rolle’s Theorem and Lagranges Mean-value Theorem have also been 
discussed to understand the concept of increasing and decreasing functions. 

Unit 3 and 4 deal with the concept of integrals and its applications. 

In Unit 3, indefinite integral of a function as an antiderivative has been defined 
and deals with the different techniques for finding integrals of functions. 

In Unit 4, the concept of definite integral has been introduced and some 
applications have been dealt such as finding the area of a curved surface. 

Unit 5 deals with the concept of complex numbers and its properties. The 
important De-Moiver’s theorem has also been discussed. 

Unit 6 deals with the algebra of matrices and the properties of determinants. 
Inverse of a matrix has been discussed and how it is used to solve a system of 
linear equations. 

In Unit 7, statistics, methods for collection of data, construction of frequency 
tables have been discussed. Mean and median measures of location and standard 
and mean deviation have been defined to analyse the information collected. 

For the want of clarity in concepts, number of solved examples have been 
introduced in each unit. To help you check your understanding and to assess 
yourself, each unit contains SAQs. The answers to these SAQs are given at the 
end of each unit. We suggest that you look at them only after attempting the 
exercises. 

At the end, we wish you all the best for your all educational endeavours. 
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