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6.1 INTRODUCTION 
The results obtained during the study of shear enable us to pass over to the study 
of strength under torsion. Members in torsion are encountered in many 
engineering applications. The most common application is provided by 
transmission shafts, which are used to transmit power from one point to another, 
as from a steam turbine to an electric generator, or from a motor to a machine 
tool, or from the engine to the rear axle of an automobile. These shafts may either 
be solid or they may be hollow. In practice, we come across torsion very often; a 
turning force is always applied to transmit energy by rotation. This turning force 
is applied either to rim of a pulley, keyed to the shaft, or to any other suitable 
point at some distance from the axis of the shaft. The product of this turning 
force, and the distance between the point of application of the force and the axis 
of the shaft is known as torque, turning moment or twisting moment.   

This unit is devoted to the treatment of members with circular, cross-sectional 
areas. In practice, members that transmit torque, such as shafts of motors, torque 
tubes of power equipment, etc. are predominantly circular or tabular in cross-
section. 

Objectives 

After studying this unit, you should be able to 

• conceptualize the theory of torsion, 

• calculate the strength of the solid and hollow circular shaft, 
deformations and stresses developed in the shafts, 

• determine the power transmitted by the shafts in MKS and SI units, 

• design the shaft for the required torque as per the strength criteria and 
as per the stiffness criteria, and 

• determine the torque transmitted by the new shaft (should be equal to 
the torque transmitted by the replaced shaft) in replacing the shaft. 
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Strength of Materials 6.2 TORSION OF CIRCULAR SHAFTS 
A shaft of circular section is said to be in pure torsion when it is subjected to 
equal and opposite end couples whose axes coincide with the axis of the shaft. In 
other words, if the moment is applied in a vertical plane perpendicular to the 
longitudinal axis of the beam or a shaft, it will be subjected to a torque causing 
twist or torsion in the member. As the beam bends due to bending moment, the 
shaft twists due to twisting moment. Figure 6.1 shows a pulley of radius R 
subjected to a system of couple, i.e. equal and opposite force W. The couple 
attached to the shafts cause the turning effect on the pulley.   

∴   Twisting moment or torque, T = Force × Lever arm  

         T = W × R  

 

 

 

 

 

 
Figure 6.1 

In order that the body should remain in static equilibrium, it must exert an equal 
amount of resisting moment. 

At any point in the section of the shaft, a shear stress is induced or more exactly, 
the state of stress at any point in the cross-section of the shaft is one of pure shear, 
the direction of which is tangential at any point in the shaft. By the principle of 
complementary shear stresses, we know that in a state of simple shear there are 
two planes carrying the shear stress of the same intensity. These planes must be 
perpendicular to each other. 

In the case of the shaft in torsion, the planes of shear at a point are 

(a) the cross-section itself, and 

(b) the plane containing the point and the axis of the shaft. 

 

 

 

 

 
 

 
 
 

Figure 6.2 

To find internal torque or resisting moment, in statically determinate members, 
only one equations of statics, Σ Mz = 0, is required, where Z axis is directed along 
the member. As in the case of determination of twisting moment at any point 
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Torsionalong the length of the member, pass a plane at the desired section perpendicular 

to the longitudinal axis of the member and remove everything to either side of the 
cut. The internal or resisting torque necessary to maintain equilibrium of the 
isolated part is determined. 

Consider, for example, the system consisting of the turbine A and the generator B 
connected by the transmission shaft AB (Figure 6.2), and breaking the system 
into its three component parts (Figure 6.3), we note that the turbine exerts a 
twisting couple or torque T on the shaft, and that the shaft exerts an equal torque 
on the generator.    

The generator reacts by exerting the equal and opposite torque T′ on the shaft, and 
the shaft by exerting the torque T′ on the turbine. 

Assumptions 

Following assumptions are made, while finding out shear stresses and 
deformations in a circular shaft subjected to torsion. 

(a) The material of the shaft is homogeneous and isotropic. 

(b) The twist along the shaft is uniform throughout, i.e. all normal 
cross-sections which are at the same axial distance suffer equal 
relative rotation. 

(c) Normal cross-sections of the shaft, which were plane and circular 
before twist, remain plane and circular after twist, i.e. no warping or 
distortion of parallel planes normal to the axis of the member takes 
place. 

(d) All diameters of the normal cross-section which were straight before 
twist, remain straight with their magnitude unchanged, after twist. 

(e) Stress is proportional to strain, i.e. all the stresses are within the 
elastic limit. 

(f) Intensity of stress varies uniformly from zero at the centre to a 
maximum at the outside surface and hence the stress is proportional to 
the distance of that point from the centre.     

A little consideration will show that the above assumptions are justified, if the 
torque applied is small and the angle of twist is also small. 

6.2.1 Theory of Torsion 
For the purpose of developing the expressions for the torsional stress and strain, 
we shall assume that one end of the shaft is fixed and a moment is applied at the 
other end, the plane of application of moment being perpendicular to the 
longitudinal axis of the beam. This assumption is valid because whether it rotates 
at uniform speed to transmit the power or is at rest; the stress and strain due to 
equal and opposite couples at its ends will remain the same.   

Consider a shaft fixed at one end, and subjected to a torque (T) at the other end as 
shown in Figure 6.3. 

Let  T = Torque in kg cm, 

 l  = Length of the shaft, and   

 R = Radius of the shaft. 

A balancing torque of equal magnitude and opposite in direction will be induced 
at the fixed end. 
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Figure 6.3 

Let the line CA on the surface of the shaft be deformed to CA′ and OA to OA′ as 
shown in Figure 6.3. 

Let  ∠ACA′ = φ and ∠AOA′ = θ. 

As a result of the torque applied, every cross-section of the shaft will be subjected 
to shear stresses. 

Let fs = shear stress induced at the outermost surface, and 

 C = modulus of the rigidity of the shaft material. 

We know that 

 Shear strain = Deformation per unit length 

          = 
l
AA ′  

          = tan φ 

          = φ (φ being very small) 

We also know that the length of the arc AA′ = Rθ 

∴        φ = 
l

R
l
AA θ

=
′                . . . (6.1) 

Moreover, deformation = 
RigidityofModulus

ssShear Stre
  

 

             
C
fs=φ                 . . . (6.2) 

Now from Eqs. (6.1) and (6.2), we find that 

          
l

R
C
fs θ

=  

or,          
l

C
R
fs θ

=  

The shaft may be taken to consist of an infinite number of elemental hollow 
shafts, one surrounding the other. 

If the deformation of a line on the surface of any such interior cylinder, at a radius 
r be considered, the shear stress intensity ‘q’ at the radius ‘r’ is given by the 
relation, 

     
l

C
r
q θ
=  
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Torsion

∴      
l

C
r
q

r
fs θ

==  

Thus, it can be stated that the intensity of shear stress at any point in the cross-
section of a shaft subjected to pure torsion is proportional to its distance from the 
centre. 

This means that the shear stress is maximum on the outside surface and variation 
of shear stress with radius is linear.    

6.2.2 Resisting Torque 
From conditions of equilibrium the external torque T must be balanced by 
resisting torque, i.e. by moments of tangential shearing stresses acting on any 
transverse section. Consider a solid circular shaft subjected to some torque.  

Let  R = Radius of the shaft, and 

 fs  = Maximum shear stress developed in the outermost layer of the shaft 
material. 

Now, consider an elementary ring of thickness dx at a distance x from the centre 
as shown in Figure 6.4.  

 

 

 
 
 

 
Figure 6.4 

We know that the area of the ring, da = 2πxdx 

Shear stress at this section, (fx) would be as follows: 

R
f

x
f sx =  

∴  x
R
ff s

x ×=  

∴  Turning Force = Stress × Area 

       = fx × da 

       = da
R
xfs  

       = dx x π 
R
xfs 2  

       = dx x 
R

f π s 22  

We know that turning moment of this element, or moment of resistance offered 
by the elemental ring, 

dT = Turning force × Distance of the element from the axis of the shaft 

dT = x dx x 
R

f s 2π2  
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       = dx x 
R

f s 3π2  
Strength of Materials 

∴  Total moment of resistance offered by the whole shaft is 

    dx x 
R

f T s
R

3

0

π2
∫=  

       dx x x 
R
fs

R
2

0
π2∫=  

       dx x x 
R
f R
s 2

0
π2∫=  

       J
R
fs=                 . . . (6.3) 

where,     2

0

2

0
π2 x dadxxx J

RR

∫∫ ==

Here, J represents the moment of inertia of the shaft section about the axis of the 
shaft. The moment of inertia of a plane area, with respect to an axis perpendicular 
to the plane of the figure is called polar moment of inertia with respect to the 
point, where the axis intersects the plane. In a circular plane, the point is always 
the centre of the circle. Therefore, J is known as polar moment of inertia, i.e. 
moment of inertia about ZZ axis. 

As per perpendicular axis theorem, 

    Izz = Ixx + Iyy

From a circular section, 4
64

DII yyxx
π

==  

where D is diameter of the circular shaft. 

∴     
6464

44 DDJI zz
π

+
π

==  

       
32

4DJ π
=  

The term 
R
J is known as torsional section modulus or polar modulus, denoted  

by Zp. It is similar to section modulus, Z, which is equal to
I

M . 

Thus, polar modulus for a solid shaft 

16
2

32

34 D
D

DZ p
π

=×
π

=  

The resisting torque or torsional moment of resistance is given by 

32

4D
R
fJ

R
fT ss π

==  
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   3
4

1632
2 DfD
D

fT ss
π

=
π

=  

This resisting torque is also known as strength of the shaft. Strength of the shaft is 
defined as the maximum torque or power the shaft can transmit from one pulley 
to another. 

Connecting Eqs. (6.1), (6.2) and (6.3), we get 

   
l

C
J
T

R
f

r
q s θ

===               . . . (6.4) 

which is called the torsion equation. 

Eq. (6.4) can be compared with equation of bending 
R
E

y
f

I
M

== . 

The expression 
r
q corresponds to 

y
f , 

J
T corresponds to 

I
M  and 

l
Cθ corresponds  

to 
R
E . The expression CJ corresponds to expression EI. 

The term CJ is called torsional rigidity and the term EI is called flexural rigidity. 

It may be noted that : 

(a) 
θ
T , i.e. torque required for unit twist, is called the torsional stiffness 

of the shaft. 

(b) 
L

T
θ

, i.e. torque divided by the angle of twist per unit length, is called 

the torsional rigidity CJ. 

6.2.3 Deformations in a Circular Shaft 
Consider a circular shaft, which is attached to a fixed support at one end. If a 
torque T is applied to the other end, the shaft will twist with its free end rotating 
through an angle θ called the angle of twist. Observation shows that within a 
certain range of values of T, the angle of twist θ is proportional to T. It also shows 
that θ is proportional to the length of the shaft. In other words, the angle of twist 
for a shaft of the same material and same cross-section, but twice as long, will be 
twice as large under the same torque T.  

When a circular shaft is subjected to torsion, every cross-section remains plane 
and undistorted. In other words, while the various cross-sections along the shaft 
rotate through different amounts, each cross-section rotates as a solid rigid slab. 
When a bar of square cross-section is subjected to torsion, its various  
cross-sections are warped and do not remain plane. 

The fact that the cross-section of a circular shaft remains plane and undistorted is 
due to the fact that the circular shaft is axisymmetric, i.e. its appearance remains 
the same when it is viewed from a fixed position and rotated about its axis 
through an arbitrary angle. Square bar, on the other hand, retains the same 
appearance only if they are rotated through 90° or 180°. 

If all sections of the shaft, from one end to the other, are to remain plane and 
undistorted, we must make sure that the couples are applied in such a way that the 
ends of the shaft themselves remain plane and undistorted. This may be 
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accomplished by applying the couples T and T ′ to rigid plates, which are solidly 
attached to the ends of the shaft. We may then be sure that all sections will remain 
plane and undistorted when the loading is applied, and that the resulting 
deformation will occur in a uniform fashion throughout the entire length of the 
shaft. 

Strength of Materials 

We shall now determine the distribution of shearing strains in a circular shaft of 
length L and radius R, which has been twisted through an angle ‘θ’. Detaching 
from the shaft a cylinder of radius ‘h’, we consider a small square element formed 
by two adjacent circles and two adjacent straight lines traced on the surface of the 
cylinder before any load is applied. As the shaft is subjected to a torsional load 
the element deformed into a rhombus as shown in Figure 6.5. 

 

  

 

 

 

 

 

 

 

 
 
 

 
Figure 6.5 

The shearing strain ‘φ’ in a given element is measured by the change in the angles 
formed by the sides of that element. Since the circles defining two of the sides of 
the element remain unchanged, the shearing strain ‘φ’ must be equal to the angle 
between line AB and A′B. 

As we discussed in the preceding section, 

L
r θ

=φ  

The above equation shows that the shearing strain ‘φ’ at a given point in a shaft 
subjected to torsion is proportional to the angle of twist θ. It also shows that φ is 
proportional to the distance ‘r’ from the axis of the shaft to the point under 
consideration. In other words, the shearing strain in a circular shaft varies linearly 
with the distance from the axis of the shaft.  

The shearing strain is maximum on the surface of the shaft, where r = R. 

Thus, we have, 
L

Rθ
=φmax  

Eliminating θ from above two equations, we may express the shearing strain φ at 
a distance r from the axis of the shaft as  
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Torsion

maxφ=
R
rQ  

6.2.4 Stresses in a Circular Shaft 
No particular stress-strain relationship has been assumed so far in the discussion 
of circular shafts in torsion. We shall now consider the case when the torque T is 
such that all shearing stresses in the shaft remain below the yield strength fsy. For 
all practical purposes, this means that the stresses in the shaft will remain below 
the proportional limit and below the elastic limit as well. Thus, Hooke’s law will 
apply and there will be no permanent deformation. 

As per Hooke’s law for shearing stress and strain, 

fr  = C φ 

where, 

 C = Modulus of rigidity or shear modulus of the material, and 

  fr = Shear stress at a radius r from the axis of the shaft. 

We know that 

maxφ=φ
R
r  

Multiplying by C on both sides, we get 

maxφ=φ C
R
rC  

or,   sr f
R
rf =  

where,   = Shear stress at a radius R from the axis of the shaft. sf

The equation obtained shows that as long as the yield strength (or proportional 
limit) is not exceeded in any part of a circular shaft, the shearing stress in the 
shaft varies linearly with the distance r from the axis of the shaft. Figure 6.6 
shows the stress distribution in a solid circular shaft of radius R.  

 

 

 

 

 

 
 
 
 

 
Figure 6.6 

From the discussion we had in the theory of torsion, we have,
R

J fT s=  

or  R
J
T fs =  
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Strength of Materials 
and  r

J
T fr =  

If T is expressed in Nm, R or r in meters and J in m4, the resulting shearing stress 
will be expressed in N/m2, that is Pascal (Pa). 

Up to this point, our analysis of stresses in a shaft has been limited to shearing 
stresses. This is due to the fact that the element we had selected was oriented in 
such a way that its faces were either parallel or perpendicular to the axis of the 
shaft. We know that the normal stresses, shearing stresses or a combination of 
both may be found under the same loading condition, depending upon the 
orientation of the element which has been chosen. Consider the two elements a 
and b located on the surface of a circular shaft subjected to torsion, as shown in 
Figure 6.7. Since the faces of element a are parallel and perpendicular to the axis 
of the shaft, the only stresses on the element will be the shearing stresses given 

by R
J
T fs = , i.e. the element a is in pure shear. On the other hand, the faces of 

element b, which form arbitrary angles with the axis of the shaft, will be 
subjected to a combination of normal and shearing stresses. 

We also note that all the stresses involved have the same magnitude,
J
TR . 

 

 

 

 
 
 
 

Figure 6.7 

Ductile materials generally fail in shear. Therefore, when subjected to torsion, a 
specimen made of a ductile material breaks along a plane perpendicular to its 
longitudinal axis. On the other hand, brittle materials are weaker in tension than 
in shear. Thus, when subjected to torsion, a specimen made of brittle material 
tends to break along surfaces which are perpendicular to the direction in which 
tension is maximum, i.e. along surfaces forming a 45° angle with the longitudinal 
axis of the specimen. 

 

 Example 6.1 

Find the torque which a shaft of 25 cm diameter can safely transmit, if the 
shear is not to exceed 460 kg/cm2. 

Solution 

Diameter of shaft, D = 25 cm 

Maximum shear stress, fs  = 460 kg/cm2

Let T is the torque transmitted by the shaft.  

   3

16
D fT s

π
=  
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      325460
16

××
π

=  = 1411262.33 kg cm = 14112.62 kg m. 

 
 

Example 6.2 

A bar of magnesium alloy 28 mm in diameter was tested on gauge length of 
25 cm in tension and in torsion. A tensile load of 5 tonnes produced an 
extension of 0.4 mm and a torque of 1250 kg cm produced a twist of 1.51°. 
Determine  
(a) the Young’s modulus, 
(b) the modulus of rigidity, 
(c) the bulk modulus, and 
(d) the Poisson’s ratio for the material under test. 

Solution 
Diameter of bar, D = 28 mm = 2.8 cm 

Area of bar, A = 2)8.2(
4
π = 6.1575 cm2

Length of bar, l = 25 cm 
Load on the bar, P = 5 t = 5000 kg 

Extension of the bar, δ l = 0.4 mm = 0.04 cm 
Torque, T = 1250 kg cm 

Angle of twist, θ = 1.51° = 0.02635 radian   

   
AE
Pll =δ  

          
E1575.6

25500004.0
×
×

=  

    E = 0.5075 × 106 kg/cm2  

Young’s modulus for the alloy, E = 0.5075 × 106 kg/cm2. 

   4
4

)8.2(
3232

D π
=

π
=

 J = 6.034 cm4

   
l

C
J
T θ
=  

        
25
02635.0

034.6
1250 ×

=
C  

    C = 0.1965 ×106 kg/cm2

Modulus of rigidity for the alloy, C = 0.1965 ×106 kg/cm2  

                
)1(2 +

=
m
MEC  

                          0.1965 ×106  = 
)1(2
105075.0 6

+
××

m
m  

    2 × 0.1965 × 106 × (m + 1) = m × 0.5075 × 106
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                   0.1145 m = 0.393 Strength of Materials 

           m = 3.43 

                   
m
1 = 0.29 

Poisson’s ratio for the alloy, μ = 0.29 

        K =
)2(3 −m

ME  

           =
)243.3(3
105075.043.3 6

−
××  

           = 0.4058 × 106 kg/cm2. 

Bulk modulus for the alloy, K = 0.4058 ×106 kg/cm2. 

 
SAQ 1 

 

Find the maximum torque, which can be applied safely to a shaft of 300 mm 
diameter. The permissible angle of twist is 1.5° in a length of 7.5 m and the 
shear stress is not to exceed 42 N/mm2. Take C = 84.4 kN/mm2. 

 

 

 

 

 

6.3 POWER TRANSMISSION BY SHAFTS 
We have already discussed that the main purpose of a shaft is to transmit power 
from the shaft to another in factories and workshops. Power is the time rate of 
doing work. 

Consider a shaft of radius R subjected to end couples which cause turning effect. 

∴  Work done in revolution = Work done by each force 

          = P × 2π R + P × 2π R 

          = 2π × 2PR 

          = 2π T        (∴  2PR = T ) 

If the shaft rotates at N-rpm, the work done per minute = 2π nT, 

where,     N = Number of revolutions per minute (rpm), and 

     T = Average torque in kg m. 

MKS Unit 

1 hp = 75 kg m/sec = 4500 kg m/min 

Work done per minute = 2π NT 
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Torsionwhere, N = Number of revolutions per minute, and 

T = Average torque in kg m. 

Since there are 4500 kg m per minute in one horsepower, 

Power, P = hp
4500

min/mkgindoneWork      

    P = hp
4500

2 NTπ  

 Angular displacement in radians = 2πN 

SI Unit 

In SI system, power (P) is measured in watts (W).  

1 W = 1 Joule/sec = 1 N m/sec = 60 N m/min 

Work done per minute = 2π NT 

where, N = Number of revolutions per minute, and 

  T = Average torque in N m. 

Since there are 60 N m/min in one watt, 

Power,  P = watts
60

minin N m/doneWork     

  P = watts
60

2 NTπ  

     = Tω watts 

where, ω = Angular displacement in radians/sec = ⎟
⎠
⎞

⎜
⎝
⎛ π

60
2 N  

Design of Shafts 

The principal specifications to be met in the design of transmission shaft are 
the power to be transmitted and the speed of rotation of the shaft. The role 
of the designer is to select the material and the dimensions of the cross-
section of the shaft, so that the maximum shearing stress allowable in the 
material will not be exceeded when the shaft is transmitting the required 
power at the specific speed. 

We know that, 

Power,   P = Tω 

   = T ⎟
⎠
⎞

⎜
⎝
⎛ π

60
2 N = T × 2π f 

where, f = Frequency of the rotation, i.e. number of revolutions per 
                    second. 

The unit of frequency is thus 1 s− 1 and is called a Hertz (Hz). 
∴    P = 2π f T 

  P = 
60

2 NTπ watts (in SI units) 

     P = 
4500

2 NTπ hp (in MKS units) 
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After having determined the torque T from the above equations, and having 
selected the material to be used, the designer will carry the values of T and 
of the maximum allowable stress into the elastic torsion formula. 

Strength of Materials 

 
R
JfT s=  

              
sf

T
R
J
=  

The torsional section modulus 
R
J can be calculated from the above 

equation. 

Knowing
R
J , the diameter of the shaft can be easily calculated  

Thus, we get 

3
s16

DfT π
=  

 
 

Example 6.3 

Calculate the diameter of a solid shaft transmitting 150 kW at 25 rpm, if the 
maximum shear stress in the shaft is not to exceed 70 MPa. Compare this 
with the shaft delivering same power at 25000 rpm. 

Solution 
Power transmitted, P = 150 kW = 150 × 103  watts 
Number of revolutions, N = 25 rpm 
Since, 1 Pa = 1 N/m2 and 1 Mega Pascal = 106 N/m2 = N/mm2

Then, maximum shear stress, fs  = 70 MPa = 70 N/mm2  
Let T be the torque transmitted in N m. 

60
2 NTP π

=  

 T××π
=×

60
25210150 3  

            T = 57.28 × 103 N m 
              T = 57.28 × 106 N mm 

             
R
f

J
T s=  

          
⎟
⎠
⎞

⎜
⎝
⎛

=
π
×

2

70

32

1028.57
4

6

DD
 

D = 160.9 mm 

If  N = 25000 rpm, then
60

2 NTP π
=   

                         
60

25000210150 3 T××π
=×   

              T = 57.28 N m = 57.28 ×103 N mm 
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R
f

J
T s=  

        
⎟
⎠
⎞

⎜
⎝
⎛

=
π

×

2

70

32

1028.57
4

3

DD
 

            D = 16.09 mm 
It is seen from this example that the size of the shaft is reduced very much if 
the power is transmitted at high speed. That is the reason for the modern 
tendency to use high speed machines, which results in considerable saving 
in the material cost. 

 
 Example 6.4 

A steel shaft transmits 105 kW at 160 rpm. If the shaft is 100 mm diameter, 
find the torque on the shaft and the maximum shear stress induced. Find 
also the twist of the shaft in a length of 6 m. 
Take C = 8 × 104 N/mm2. 

Solution 
P = 105 kW = 105 × 103 W 
N = 160 rpm 
D = 100 mm 
l  = 6 m = 6000 mm 
C = 8 × 104 N/mm2  

We know, 
60

2 NTP π
=   

T
60

160210105 3 ×
×π

=×   

           T = 6266 N m = 6.266 ×106 N mm 

    T = 3

16
D fs

π  

         36 )100(
16

10266.6  f s
π

=×      

    fs = 31.19 N/mm2

             
l

C
J
T θ
=  

         θ
×

=
×

π
×

6000
108

)100(

10266.6 4

4

6

32

 

θ = 0.04786 radian = 2° 45′ 

 

 

 

 
Example 6.5 
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Find the diameter of the shaft required to transmit 60 kW at 150 r.p.m., if 
the maximum torque is likely to exceed the mean torque by 25% for a 
maximum permissible shear stress of 60 N/mm2. Find also the angle of twist 
for a length of 2.5 metres. 

Strength of Materials 

Take C = 8 × 104 N/mm2. 
Solution 

Here,      P = 60 kW = 60 × 103 W 
    N = 150 rpm 

  Tmax = 1.25 Tmean

      fs  = 60 N/mm2 

          l = 2.5 m  
       C = 8 × 104 N/mm2  

We know, 
60

2 NTP π
=   

     
60
15021060 3 T××π

=×   

    T = 3819.7 N m = 3.8197 ×106 N mm 
          Tmax = 1.25 Tmean

       = 1.25 × 3.8197 × 106 = 4.746 ×106 N mm 

           Tmax = 3

16
D fs

π  

         36 60
16

107746.4 D××
π

=×  

                       
60

16107746.4 6
3

×π
××

=D   

 ∴      D = 74 mm 

              
l

C
J
T θ
=  

        θ×
×

=
×

π
×

2500
108

)74(

107746.4 4

4

6

32

 

                           θ = 0.0507 radians = 2° 54′ 
 

 
Example 6.6 

Show that for a given maximum shear stress the minimum diameter 
required for a solid circular shaft to transmit P kW at N rpm can be 
expressed as 

d = Constant 
3

1

⎟
⎠
⎞

⎜
⎝
⎛×

N
P  

What value of the maximum shear stress has been used if the constant 
equals 84.71, being in millimeters? 

Solution 
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Torsion

We know,  
60

2 NTP π
=  watts 

    
60

2103 NTP π
=×   

   
N

PT
π
×

=
2

1060 3
N m  

     1000
2

1060 3
×

π
×

=
N

P N mm  

      ⎟
⎠
⎞

⎜
⎝
⎛
π

×=
N
P7103 N mm  

          3

16
D fT s

π
=  

                 
sf

TD 
π

=
163  

          
N

P
f

D 
s π

×××
π

= 73 10316  

          
N
P

f
D 

s
×

π×
××

= 2

7
3 10316  

∴            
3

1

⎟
⎠
⎞

⎜
⎝
⎛×=

N
PKD  

where,             3
2

710316
π
××

=
 f

K
s

 

when             K = 84.71, we obtain, 

         3
2

71031671.84
π
××

=
 f s

 

      2

7
3 10316)71.84(

π
××

=
 f s

 

   
( ) 2371.84

10316 7

π×

××
= f s = 80 N/mm2. 

SAQ 2 
 

 

(a) A solid shaft made of steel and of 2 m length is to transmit 50kW at 
150 rpm. If the shear stress in the shaft material is not to exceed 
50 MPa and maximum allowable twist in the shaft is 1º, calculate the 
shaft diameter. Take C = 80 GPa. 

(b) What must be the length of a 5 mm diameter aluminium wire be so 
that it can be twisted through one complete revolution without 
exceeding a shearing stress of 42 N/mm2. Take C = 2.7 × 104 N/mm2. 
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(c) Find the power that can be transmitted by a shaft 60 mm diameter at 
180 rpm, if the permissible shear stress is 85 N/mm2. 

Strength of Materials 

 

 

 

 

6.4 SUMMARY 
• A shaft of circular section is said to be in pure torsion when it is subjected 

to equal and opposite end couples whose axes coincide with the axis of the 
shaft. 

• The product of the turning force and the distance between the point of 
application of the force and the axis of the shaft is known as torque, turning 
moment or twisting moment. 

• When a shaft is subjected to a torque, then  

    
l

C
R
f

r
q s θ

==  

where, q = Intensity of shear stress on a layer, at a distance r from the 
                     centre of the shaft, 

 fs = Intensity of shear stress on the outermost layer of the shaft, i.e. 
a 
      distance R from the centre of the shaft, 

 C = Modulus of rigidity of the shaft material, 

  θ = Angle (in radius) through which the cross-section of the shaft 
       has been twisted as a result of the torque, and 

   l = Length of the shaft. 

• Polar moment of inertia, denoted by J, is the moment of inertia of a plane 
area with respect to an axis perpendicular to the plane of the figure, i.e. 
moment of inertia about ZZ axis. For shaft section, J is moment of inertia 
about the axis of the shaft. 

    
32

4DJ π
=  (For solid shaft) 

• The term 
R
J is known as torsional section modulus or polar modulus, Zp. 

Thus, polar modulus for a solid shaft, Zp = 16

3Dπ . 

• Strength of the shaft is defined as the maximum torque or power the shaft 
can transmit from one pulley to another. It is also known as resisting torque 
or torsional moment of resistance.  

For solid shaft, T = 3
16

Dfs
π  

where, fs = Maximum shear stress at the outermost layer. 
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Torsion• The torsion equation is 

    
J
T

l
C

R
f

r
q s ===

θ  

• The torque required for unit twist ⎟
⎠
⎞

⎜
⎝
⎛
θ
T  is called the torsional stiffness of the 

shaft. 

• Torque divided by the angle of twist per unit length 
L

T
θ

is called the 

torsional rigidity. It is also equal to C × J. 

• The shearing strain is maximum (φmax) on the surface of the shaft where 
r = R. 

    
L

Rθ
=φmax  

• The shearing strain φ at any distance r from the axis of the shaft as 

    maxφ=φ
R
r  

• Power transmitted by the shaft is as follows : 

    
4500
2 NTP π

=  hp      (in MKS Units) 

    
60

2 NTP π
=  watts  (in SI Units) 

        = T ω watts  

 where, =
π

=ω
60

2 N Angular displacement in radians/sec. 

               N = Number of revolution per unit. 

6.5 ANSWERS TO SAQs 
SAQ 1 

Torque based on shear stress, 

T = 3)300(42
16

××
π  = 222.7 × 106 N mm 

Torque based on angle of twist, 

   T = 3

36

105.7
180

5.1104.84102.795

×

π
××××

  

   T = 234.6 × 106 N mm 

The maximum torque that can be applied safely to the shaft is smaller of the 
above two values, i.e. 222.7 × 106 N mm. 

SAQ 2 

(a) We know, 
60

2 NTP π
=  
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60
15021050 3 T××π

=×  
Strength of Materials 

   T = 3.183 × 103 N m = 3.183 × 106 N mm 

 Diameter of the shaft based on its strength, i.e. stress, 

⎟
⎠
⎞

⎜
⎝
⎛

=
π
×

2

50

32

10183.3
4

6

DD
 

       D = 68.7 mm 

Diameter of the shaft based on its stiffness, i.e. angle of twist, 

   
2000

80
11080

32

10183.3
3

4

6
π

×××
=

π
×

D
 

       D = 82.55 mm 

The required shaft diameter will be larger of the above two values,  
i.e. 82.55 mm. 

(b) We have, 
l

C
R
fs θ

=  

             
l

π××
=

2107.2
5.2

42 4
 

       
42

2107.2 4 π××
=l  

        l = 10098 mm = 10.098 m 

(c) We have, 3
16

DfT s
π

=  = 3605 N m 

   
60

36051802
60

2 ××π
=

π
=

NTP  = 67950 watts 

    kW95.67  P =  
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