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Principal StressesUNIT 2 PRINCIPAL STRESSES 

Structure 
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2.3 Normal and Shear Stresses 
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2.5 Principal Stresses and Principal Planes 
2.5.1 Expressions for Principal Planes and Principal Stresses 
2.5.2 Maximum Shear Stress 

2.6 Summary 

2.7 Answers to SAQs 

2.1 INTRODUCTION 

In Unit 1, you have already been introduced to simple states of stress. Stress 
Analysis is an essential requirement in the evaluation of strength, stiffness, 
deformations and safety of solids so that one may produce functionally efficient 
and economic designs. There is a large number of ways in which stresses are 
induced in solids (a few samples ones you have already learnt), which will engage 
your attention in the subsequent units. In this unit, we shall be concerned with the 
analysis of a given state of stress (expressed in terms of stress components on 
selected planes) which will have a bearing on the analysis of strength and safety 
of solid components. 

Objectives 

After studying this unit, you should be able to  

• define six stress components on mutually perpendicular planes at the 
requisite location, 

• describe the principal plane and principal stress, and 

• identify the plane of maximum shear stress. 

2.2 STATE OF STRESS 

From the point of functional utilization of a solid component we may determine 
the possible loads (forces) to which it may be subjected to, so that its equilibrium, 
compatibility and stability are satisfied on the whole. But a more critical analysis 
will imply the satisfaction of equilibrium at each and every point of the solid. The 
distribution of stresses over the volume of the solid is analyzed taking into these 
requirements. Once such a distribution has been arrived at it will give the state of 
stress at each and every point in the solid in terms of the stress components. Often 
one is not interested in the state of stress at each and every point in the solid, but 
is satisfied with the analysis of the state of stress at the critical locations of the 
solid. Description of the general state of stress involves the definition of six stress 
components namely, σx, σy, σz, τxy, τyz and τzx on the three mutually perpendicular 
planes of a small element at the requisite location. However, in the initial stages 
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of the course, it is sufficient to master the concepts with reference to the state of 
stress in two dimensions. The general state of stress at any point in a  
two-dimensional element is given by the stress components σx, σy and τxy as 
shown in Figure 2.2. Of course, any element could only be three-dimensional, but 
the state of stress is two-dimensional due to the absence of any stress components 
in the pair of z planes. Hence, in considering equilibrium of forces, the dimension 
of the element in z direction is taken as unity; in whatever units the other two 
dimensions are expressed. 

Strength of Materials 

2.3 NORMAL AND SHEAR STRESSES 

You have been already introduced to the concept, definition and description of 
normal stress and shear stress. In expressing shear stress components, we use two 
subscripts, such as τxy, τyz, τzx etc. Here, the first subscript denotes the direction of 
normal to the plane and the second subscript denotes the direction in which stress 
in y direction on x plane, i.e. plane normal to x direction. Logically, all the stress 
components should have double subscripts. However, as direction of the stress 
and direction of the normal to the plane are identically same in the case of normal 
stress component, only a single subscript is used, i.e. σx really represents σxx and 
so on. In the case of a shear stress component, two subscripts are necessary to 
define it correctly. The second subscript also indicates the plane on which its 
complementary component is acting. 

We have already stated that among normal stresses, tension is considered positive 
while compression is considered negative. In the case of shear stresses, one of the 
components tends to rotate the element in the positive, i.e. anticlockwise direction 
and is considered positive, while its complementary component which tends to 
rotate the element in the clockwise direction is considered negative. Accordingly, 
in the state of stress, described in Figure 2.2, τxy is positive, while τyx is negative. 
This definition helps us to determine the sign of the shear stress on inclined 
planes also. 

2.4 STRESS ON OBLIQUE SECTIONS 

We have already seen that the equilibrium of a rigid body should be satisfied 
overall and in addition if we divide it into a number of small rigid bodies each of 
these small elemental bodies should also be in equilibrium individually. The 
satisfaction of equilibrium does not depend on the way elements are divided. 
Even if the solid is divided by inclined or even curved surfaces, equilibrium must 
be satisfied for each of the elements thus divided. 

Consider the solid shown in Figure 2.1 where the solid is divided into small 
elements by inclined planes. The inclination (or orientation) of a plane is defined 
by its aspect angle, defined as the angle made by its normal to the longitudinal 
axis of the original bar. Let the aspect angle of the plane be θ. Since the width of 

the plane b is unaltered and length of the plane h is increased to
θcos

h , the area of 

the inclined plane is
θcos

A , where A is area of cross section of the original solid. 
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Figure 2.1 

If σx be the stress acting on the plane normal to x axis (longitudinal axis), then the 
axial force P = σx × A. This force acting on the inclined plane may be resolved 
into normal and tangential components. 

Normal component on the plane = P cos θ 

         = σx × A cos θ 

Tangential component        = − P sin θ 

         = − σx × A sin θ 

Normal stress on the plane       = 

θ

θ×σ

cos

cos
A
Ax  = σx × cos2θ           . . . (2.1) 

Shear stress on the plane      = 

θ

θ×σ−

cos

sin
A
Ax  = σx × cos θ sin θ           . . . (2.2) 

If on the cross sectional area of the original solid shear stress τxy is applied, its 
components on the inclined plane may be evaluated as, 

Normal stress component = τxy cos θ sin θ             . . . (2.3) 

Shear stress component    = τxy cos2θ              . . . (2.4) 

By a similar analysis (your exercise), you may verify the following: 

If a normal stress of σy is applied on the solid, then the stress components on a 
plane whose normal is inclined at θ to the x axis are given by 

Normal stress = σy sin2θ                . . . (2.5) 

Shear stress    = σy sin θ cos θ              . . . (2.6) 

If a shear stress of τyx is applied on the solid, the stress components on the 
inclined plane are given by (with τyx = τxy). 

Normal stress = τxy sin θ cos θ              . . . (2.7) 

Shear stress    = τxy sin2θ               . . . (2.8) 
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Figure 2.2 : General State of Stress in Two Dimensions 

Since a general state of stress in two dimensions is defined by the stress 
components σx, σy and τxy, as shown in Figure 2.2, general expressions for normal 
and shear stress components may be obtained by algebraic sum of the respective 
components from Eqs. (2.1) to (2.8), as given below : 

σn = σx cos2 θ + σy sin2 θ +2 τxy cos θ sin θ 
 τnt = − σx cos θ sin θ + σy cos θ sin θ + τxy (cos2 θ  − sin2 θ) 
On further simplification, we obtain 

σn = 22
yxyx σ−σ

+
σ+σ

cos 2θ + τxy sin 2θ             . . . (2.9) 

 τnt = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ−σ

2
xy sin 2θ + τxy cos 2θ            . . . (2.10) 

Application of Eqs.(2.9) and (2.10) will be elaborately dealt with in this unit. 
However, the significance of the equations should be stressed at this stage. When 
we are carrying out stress analysis on solids, we may be evaluating stress 
components on a set of mutually perpendicular planes, such as σx, σy and τxy. The 
magnitudes of these components may not always be sufficient to decide whether 
the solid is safe or not, and we require evaluation of stress components on other 
specific planes, or determination of planes on which the stress components have 
extreme value. Such an analysis can be easily carried out with the help of  
Eqs. (2.9) and (2.10). 
    

 Example 2.1 

Figure 2.3 shows the projection of a rectangular prism ABCD, formed by 
adhesive bonding of two triangular prisms ABC and ACD. The state of 
stress in the prism is given by the components σx = 40 N/mm², σy = 0  
and τ = 0. 

  

 
 

 

 
 
 

Figure 2.3 
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Principal StressesIf the tensile and shear strengths of the adhesive are 10 N/mm² and  

12 N/mm², verify the safety of the joint and find out the value of σx at which 
the joint will fail. 

Solution 

The aspect angle θ of the bonding plane AC 

    = 90º + tan− 1 ⎟
⎠
⎞

⎜
⎝
⎛

75
50  = 90°+ 33.69º = 123.69º 

Known stress components are as follows: 

σx = 40 N/mm², σy = 0 and τxy = 0 

Stress components on plane AC, 

Normal stress, σn = σx cos² θ 

     = 40 cos² 123.69º 

     = 12.3076 N/mm²  

Shear stress     τnt = −
2
xσ

sin 2θ 

     = − 
2
40  sin (2 × 123.69º)  

     = −18.462 N/mm² > 12 N/mm² 

The tensile stress on plane AC is well within the tensile strength of the 
bond. But the shear stress on the plane exceeds the shear strength of the 
bond and hence, the bond will fail in shear. 

Let us find the normal stress σx that may be safely applied. 

Shear strength of the bond = 12 N/mm² 

Shear stress on bonding plane = −
2
xσ sin 2θ  

∴     − 12 = −
2
xσ  sin 247.38º 

                      σx = 
°

×
38.247sin
212  = 26 N/mm² 

So the maximum stress we may apply on the plane CB is 26 N/mm². Here, 
you may note that in strength analysis the sign of the shear stress has no 
significance, while the sign of the normal stress is important, since the 
tensile and compressive strengths may differ considerably. 

SAQ 1  
 

If the prism shown in Figure 2.3 is bonded along the diagonal DB, instead 
of AC, verify the safety of the joint and calculate the magnitude of σx at 
which the joint will fail. 
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Strength of Materials 2.5 PRINCIPAL STRESSES AND PRINCIPAL PLANES 

In Section 2.4, we have seen that for a given state of stress at a point, the 
magnitude of normal stress and shear stress may vary with respect to the 
inclination of planes. If we are concerned with the safety of solids under stress, 
we are required to find on which planes extreme values of normal and shear stress 
components are present. Hence, it is essential to know,  

(i) Maximum tensile stress, 

(ii) Maximum compressive stress, and 

(iii) Maximum shear stress. 

In addition, we may also require to know the planes on which these values occur. 
The extreme values of normal stresses are called the Principal Stresses and the 
planes on which the principal stresses act are called the principal planes. In two-
dimensional problems, there are two principal stresses, namely the major 
principal stress and the minor principal stress which are defined as the 
maximum and minimum values of the normal stresses respectively. Here, the 
maximum or minimum is to be considered algebraically. For example, if the 
principal stresses happen to be 20 N/mm² tensile and 75 N/mm² compressive, the 
tensile stress of 20 N/mm² is to be taken as the major principal stress denoted by 
the symbol σ1 and the compressive stress of 75 N/mm² is to be taken as the minor 
principal stress (algebraically −75 N/mm²) and denoted by the symbol σ2 . The 
corresponding planes are defined as major and minor principal planes. 

2.5.1 Expressions for Principal Planes and Principal Stresses 
In calculus, you have learnt that when a function reaches maximum or minimum 
its derivative with respect to the independent variable becomes zero. Since the 
normal stress on an arbitrary plane is a function of the aspect angle θ as given by 

the expression, σn = 2
yx σ+σ

 = 
2

yx σ−σ
 cos 2 θ + τxy sin 2 θ, the maxima and 

minima of σn occur on the planes for which 
θ

σ
d

d n becomes zero, (similarly, τnt will 

be maximum on planes where
θ

τ
d

d nt = 0). 

Let us now derive the expression, 

 
θ

σ
d

d n  = 
2

yx σ−σ
 (− 2 sin 2 θ) + τxy 2 cos 2 θ 

         ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θ

σ−σ
+θτ= 2sin

2
2cos2 xy

xy      

          = 2 τnt

i.e.  
θ

σ
d

d n = 2 τnt                . . . (2.11) 

Eq. (2.11) gives an important characteristic of the principal plane, namely, the 
absence of shear stress components on the plane. We can, therefore, alternatively 
define a principal plane as a plane on which only a normal stress component is 
acting. When dealing with a three-dimensional state of stress you will find that 
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Principal Stressesthe third principal plane is neither maximum nor minimum. Hence, we will define 

principal planes as planes on which shear stresses are zero. 

Equating 
θ

σ
d

d n to zero, we get 

τxy cos 2θ + 
2

xy σ−σ
sin 2θ = 0 

or  
yx

xy

xy

xy

σ−σ

τ
=

σ−σ

τ−
=

θ
θ 22

2cos
2sin  

Denoting the specific angles defining principal planes by φ1 and φ2, 

or  tan 2φ =
yx

xy

σ−σ

τ2
                . . . (2.12) 

Eq. (2.12) gives a condition for the determination of principal planes. Eq. (2.12) 
will have two solutions within the range −π/2 < φ < π/2 and they will give the 
orientation of principal planes. 

Further, the second derivatives, 2

2

θ

 σ

d
d n , will be negative for the solution φ1 (aspect 

angle of the major principal plane) and positive for the solution φ2 (aspect angle 
of the minor principal plane). Let us obtain these expressions too. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θτ−θ

σ−σ
−=⎟

⎠
⎞

⎜
⎝
⎛

θ
σ

θ
=

θ

σ 2sin22cos2
2

22

2

xy
xynn

d
d

d
d

d
d  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θτ−θ

σ−σ
−=

θ

σ 2sin22cos
2

42

2

xy
xyn

d
d

           . . . (2.13) 

After obtaining the solutions φ1 and φ2 of Eq. (2.12), their values may be 

substituted in the expression for 2

2

θ

σ

d
d n given in Eq. (2.13) and the major and 

minor principal planes may be identified. But in practical solutions this step is 
rarely required. 

Instead, substitute the two solutions φ1 and φ2 in the expression for normal stress 
and obtain the values of principal stresses σ1 and σ2 and corresponding principal 
planes may be identified. 
Now, let us derive the general expressions for the principal stresses. Since, we 

know that tan 2φ = 
yx

xy

σ−σ

τ2
on a principal plane, we may write as  

sin 2φ =
2

2

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ−σ
+τ

τ

yx
xy

xy             . . . (2.14) 

and  cos 2φ =
2

2

2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ−σ
+τ

σ−σ

yx
xy

yx

            . . . (2.15) 

Substituting Eqs. (2.14) and (2.15) in the expression for σn, we obtain  
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σn = 
2

2
2

2

22

2
22

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ−σ
+τ

ττ
+

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ−σ
+τ

σ−σ
σ−σ

+
σ+σ

yx
xy

xyxy

yx
xy

yx
yxyx  

     = 
2

2

2

2
2

2

22

2
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ−σ
+τ

τ
+

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ−σ
+τ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ−σ

+
σ+σ

yx
xy

xy

yx
xy

yx

yx   

      = xy
yxyx 2

2

22
τ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ σ−σ
+

σ+σ
 

Since xy
yx 2

2

2
τ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ σ−σ
will have two roots namely ± xy

yx 2
2

2
τ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ σ−σ
, we 

may write the final expression for major and minor principal stresses as follows : 

 σ1, 2 = xy
yxyx 2

2

22
τ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ σ−σ
±

σ+σ
            . . . (2.16) 

Eqs. (2.2) and (2.6) may be used to readily determine the principal planes and 
principal stresses. 
Let us now have an example for determination of principal stress and principal 
planes, given the state of stress. 

  

 Example 2.2 

Evaluate the principal stresses and principal planes for the state of stress 
shown in Figure 2.4. 

 

 

 

 

 
 

 
 
 

Figure 2.4 

Solution 
Given σx = 60 N/mm² 

        σy = 20 N/mm² 

       τxy = − 26 N/mm² 
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Principal StressesOn substituting in Eq. (2.6), we get 

σ1, 2 = ( )2
2

26
2

2060
2

2060
−+⎟

⎠
⎞

⎜
⎝
⎛ −

+
+  = 40 ± 32.8 

∴    σ1 = 72.8 N/mm² and  σ2 = 7.2 N/mm² 

Again substituting the values σx, σy and σxy in Eq. (2.2). 

tan 2φ = 
yx

xy

σ−σ

τ2
 = 

2060
)26(2

−
−×  = − 1.3 

Since θ is general angle, the specific angles representing the principal 
planes are designated as φ1 and φ2. 

∴  2φ = − 52.43º, 127.57º 

using  2φ = − 52.43º 

  σn =
2

2060 +  + 
2

2060 −  cos (− 52.43º) − 26 sin (− 52.43º) 

         = 72.8 N/mm² 

Hence, we recognize that φ1 =
2

43.52 °−  defines the major principal plane 

and therefore, φ2 =
2
57.127 °  should define the minor principal plane. 

SAQ 2 
 

 

(a) Derive an expression for the maximum shear stress in a general two 
dimensional state of stress and also an expression for the aspect angle 
of the corresponding plane. 

(b) Evaluate the principal stresses and principal planes for the state of 
stress shown in Figure 2.5. 

 

 

 

 

 

 
 
 
 

Figure 2.5 

(c) Also find the normal and shear stress components on the planes 
whose aspect angles are given as 30º, 45º and 75º. 
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2.5.2  Maximum Shear Stress  Strength of Materials 

We have the general expression for shear stress as 

τnt = τxy cos 2θ − ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ−σ

2
yx  sin 2θ  

Differentiating w.r.t. θ, and equating the derivative to zero, 

θ
τ
d

d nt = −2 τxy sin 2θ − (σx − σy) cos 2θ = 0  

∴  tan 2θ = 
xy

yx

τ

σ−σ−

2
)(

             . . . (2.17) 

Since the planes on which maximum shear stresses occur are specific set of 
planes we may denote them distinctly by Ψ (instead of general aspect angle θ).  
Comparing Eqs. (2.12) and (2.17), we conclude that 2Ψ = 2φ ± 90º as 
tan 2φ. tan 2Ψ = − 1. 
∴  Ψ = φ ± 45º              . . . (2.18) 
Eq. (2.18) indicates that the planes of maximum shear stress bisect the right 
angles between the major and minor principal planes. 
The normals to the major and minor principal planes may now be defined as the 
major and minor principal axes. Once the principal stresses and principal planes 
are known, further analysis may be simplified by expressing the state of stress 
w.r.t. a new coordinate system with major and minor principal axes as coordinate 
axes themselves. These axes are usually called axes 1 and 2 respectively. 
The general expressions for stress components on arbitrary planes whose aspect 
angle θ  may now be measured with axis-1 as reference axis.   

Hence,  σn =
2

21 σ+σ
 + 

2
21 σ−σ

 cos 2 θ            . . . (2.19) 

τnt = 
2

21 σ−σ
 sin 2 θ              . . . (2.20) 

Eq. (2.8) already defines that θ should be ± 45º for τnt to be maximum. 

Thus,  τmax, min =
2

21 σ−σ
 sin (± 90º) 

∴       τmax =
2

21 σ−σ
, and            . . . (2.21) 

    τmin = − 
2

21 σ−σ     

Since the sign of maximum shear stress is not significant, expression for τmin is 
not generally used. Let us have a few examples. 
 

 Example 2.3 

The state of stress at a critical point of a strained solid is given by  
σx = 70 kN/mm², σy = − 50 kN/mm² and τxy = 45 kN/mm². If the strength of 
the solid in tension, compression, and shear are given as 120 kN/mm²,  
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Principal Stresses90 kN/mm² and 75 kN/mm² respectively, verify the safety of the 

component.    
Solution  

Given   σx = 70 kN/mm² 
    σy = − 50 kN/mm²  
   τxy = 45 kN/mm²      

∴ σ 1, 2 = ( )2
2

45
2

)50(70
2

)50(70
+⎟

⎠
⎞

⎜
⎝
⎛ −

±
−+  

         = 56.09, − 36.09 N/mm² 

Maximum shear stress, τmax = 
2

21 σ−σ
= 

2
)09.36(09.56 −− = 46.09 N/mm²

      
             = 46.09 N/mm² 

All the stresses are within the strength limits of the solid and hence, the 
solid is safe. 

  Factor of safety in tension =
09.56

120 = 2.139 

  Factor of safety in compression = 
09.36

90  = 2.494 

  Factor of safety in compression = 
09.46

75  = 1.6273 

Here, maximum tensile and compressive stresses are well within strength 
limits, maximum shear stress has reached the strength limit and therefore if 
the state of stress is proportionally raised the solid will fail in shear. 

 
 Example 2.4 

A machine component is made of a material whose ultimate strength in 
tension; compression and shear are 40 N/mm², 110 N/mm² and 55 N/mm² 
respectively. At the critical point in the component the state of stress is 
represented by 

σx = 25 kN/mm² and σy = −75 kN/mm². 
Find the maximum value of the shear stress τxy which will cause failure of 
the component and also specify the mode of failure. 

Solution 
Given state of stress : σx = 25 kN/mm²  

σy = −75 kN/mm². 
We have to find what τxy is safe, if σ1   ≤ 40 kN/mm², σ2 ≥ −110 kN/mm² and 
τmax > 40 kN/mm². 
The above three conditions are to be independently satisfied. 

Now,  σ1 = 
2

yx σ+σ
+ xy

yx 2
2

2
τ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ σ−σ
 ≤ 40 

In the limiting case, 
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40 =
2

)75(25 −+ + xy
2

2

2
)75(25

τ+⎟
⎠
⎞

⎜
⎝
⎛ −−  

   40 = −25 + xy
2250 τ+  

or  τ²xy = [ 40− (−25) ]²  − 50² = 1725 
∴  τxy  = ± 41.533 N/mm² 
Note that the limiting case of σ1 = 40 N/mm² will occur for both the τxy 

values of 41.533 N\mm² and − 41.533 N/mm². But the planes of failure will 
be different. 

σ2 = 
2

yx σ+σ
+ xy

yx 2
2

2
τ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ σ−σ
≥ 110 

In the limiting case, 

− 110 = 
2

)75(25 −+ + xy
2

2

2
)75(25

τ+⎟
⎠
⎞

⎜
⎝
⎛ −−  

    − 110 = − 25 − xy
2250 τ+  

       − 85 = − xy
2250 τ+   

− (85)² = − 50² + τ²xy

τxy  = 222 mm/N7386.685085 ±=+±  

τmax = xy
yx 2

2

2
τ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ σ−σ
≤ 55 

i.e.  50² + τ²xy  = (55)²   

   τxy = ± 22 5055 − =  ± 22.91 N/mm² 

The permissible value of τxy is different for different limiting criteria, 
namely 

      | τxy | ≤ 41.53 if σ1 ≤ 40 
    ≤ 68.74 if σ2 ≥ − 110 
    ≤ 22.91 if τmax ≥ 55 

Hence, we find that the maximum safe value of τxy is only 22.91 N/mm² and 
the material will fail in shearing mode. 

 
SAQ 3 

 

If the state of stress at a point is defined by the stress component  
σx = 9 MPa, σy = −7 Mpa, τxy = 5 MPa, find the principal stresses and 
principal planes. Also find the plane on which normal and shear stress 
components are equal in magnitude. 



    

59

 
Principal Stresses2.6 SUMMARY 

This unit is a vital link in the analysis of solids so as to ensure safe design of 
different components of structures or machines or other systems. Here, you were 
exposed to a deeper insight into the implications of a given state of stress. You 
have learnt how to evaluate the stress components on different planes and also to 
find the extreme values of stress components. 

2.7 ANSWERS TO SAQs 

SAQ 1 

On plane DB, σn = 12.31, τnt = 18.462 both unsafe; when σx = 32.494, the 
joint will fail in tension.  

SAQ 2 

(a) Tan 2ψ = 
xy

yx

τ

σ−σ

2
 

 τmax = xy
yx τ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ σ−σ 2

2
 

(b) σ1,2 = 49, − 41 

φ1,2 = 71.565°, −18.435°  

(c) For θ = 30°, σn = 9.3827 and τnt = 44.677 

For θ = 45°, σn = 31 and τnt = 36 

For θ = 75°, σn = 48.677 and τnt = − 5.383 

SAQ 3 

σn = 93.57 and τnt ≤  42.93 
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