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1.1 INTRODUCTION 

The concepts of Strength of Material course involve finding various types of 
stresses in structural members (composing a structure, a machine, or any 
equipment) due to the action of external forces (loads) that it is supported to 
resist. For any design problem, analysis of internal effects, i.e. force, stress, strain 
and deformation etc. is a essential intermediate step. In fact, it is very first step 
towards studying the behaviour of material under the influence of external loads. 

In this unit, we will study the concepts of stress and strain which are of utmost 
importance for understanding the behaviour of materials. The unit includes 
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Strength of Materials description pertaining to various types of stress, deformation caused due to these 
stresses, composite bars and relationship between different elastic constants. 

Objectives 
After studying this unit, you should be able to 

• grasp the concepts of stress, strain and deformation, 

• elaborate the effect of forces on deformable solids and the 
relationship between stress and strain for typical materials, 

• explain the elastic properties of solids and their deformations due to 
direct forces, 

• explain the methods of analyzing composite bars, 

• explain the effect of temperature on bodies, 

• understand how thermal stresses are developed in materials, 

• determine thermal stresses in uniform, stepped, tapered and 
compound bars, and 

• define the elastic constants and their interrelationships. 

When you have clearly learnt these concepts, you will be able to use your 
knowledge to understand the behaviour of solids under simple loadings and will 
be able to design such members. You will also be able to verify whether such 
members are safe under the loads they are subjected to. In addition, you will also 
be able to find the load carrying capacity of members whose geometric and elastic 
properties are known. 

1.2 BASIC CONCEPTS 

1.2.1 Rigid and Deformable Solids 
The subject matter of Strength of Materials is also under the title Applied 
Mechanics, and Mechanics of Solids. Applied Mechanics is the general title in 
which Fluid Mechanics and Solid Mechanics are branches. What we study in 
Strength of Materials is the effect of forces acting on solids of different 
geometrical and elastic properties, and hence more people now choose to call it 
solid mechanics. 

Let us now learn two terms used to describe two types of solids. A rigid solid is 
one which does not undergo any change in its geometry, size or shape. On the 
other hand, a deformable solid is one in which change in size, shape or both will 
occur when it is subjected to a force. The geometrical changes produced are 
called deformations and hence the name deformable solid. Many of the common 
solid articles we handle in our day-to-day life exhibit perceptible deformations 
when subjected to loads. In many other solids, though we may not perceive any 
deformations with our naked eye, with measuring instruments of sufficient 
precision we can see that they also get deformed under applied forces. A more 
careful scrutiny will reveal that all solids are deformable and the idea of rigid 
solids is only a conceptual idealization. 

Look at the common swing shown in Figure 1.1, which you would have enjoyed 
playing with during your earlier days. When a child sits on the swing we may not 
perceive any appreciable deformations. But if the iron bars be replaced by 
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Stresses and Strainsbamboo sticks and the iron chain be replaced by rubber strings, we can observe 

considerable deformations as shown in Figure 1.2. We may then conclusively say 
that whenever forces are applied on solids, deformations are introduced in them. 
All solids are deformable solids; hence, the subject which once was called 
Mechanics of Deformable Solids is now simply called Mechanics of Solids. 

 

 

 

 

 

 

 

 

 

 
Figure 1.1 

 

 

 

 

 

 

 

 
 
 
 

Figure 1.2 

You may wonder as to why we should have the term rigid solid at all, if in reality, 
there are no such solids. It has been already mentioned that the term rigid solid is 
only a conceptual idealization. There are a few important uses for such 
idealization. Consider the analysis of forces in the members of some of the plane 
trusses. You were given the geometry of a structure (which in its totality may be 
considered as a solid of complex geometry), on which some forces have been 
presented to act. While analyzing these structures (solids) for finding out the 
member forces, the forces in the members have been resolved into their horizontal 
and vertical components, assuming that the member orientations have not 
changed due to the application of external forces. In reality, the orientations of 
most of the members change, as the structure deforms under the loads. However, 
these deformations and hence, the resulting changes in member orientations are 
so small that the error in computed member forces are negligibly small. You may 
think that even these errors may be eliminated by taking into account the 
deformations too. But an attempt to do so will reveal the complexity of the 
calculations involved. The corrections thus effected are called secondary effects 
and may be neglected in most of the cases. In the analysis of other types of 
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Strength of Materials structures also when the overall equilibrium is considered the entire structure or 
any part under consideration may be treated as a rigid solid. 
In many cases, known as determinate problems, the analysis of forces within a 
solid can be calculated treating it as rigid. 

1.2.2 Stresses and Strains 
When we apply forces on solids, deformations are produced if the solid is 
prevented from motion (with acceleration = force/mass of solid) either fully or 
partially. If the solid is not restrained, it may undergo displacements without 
change in shape or size and these displacements are termed as rigid body 
displacements. If the solid is restrained by some other force, known as reaction, 
which keeps the solid in equilibrium, the force will be transmitted through the 
medium of the solid to the restraining support. 
Consider the solid shown in Figure 1.3(a) which is pulled by the force P at the 
right hand side and restrained by a support at the left hand side end. If the solid is 
to remain in static equilibrium we know that the support should exert an equal 
pulling force in the direction opposite to that of force P. This restraining force, 
termed as support reaction, is shown as R in Figure 1.3(a). Now consider the solid 
being divided into a number of small bits or elements of different lengths as 
shown in Figure 1.3(b). The force P applied at the L.H.S. end of element 1 is 
transmitted to the support through the medium of elements 2, 3 and 4. The same 
thing is true even if you divide the solid into hundreds or even millions of 
elements. 

 

 

 

 

                                                                 
(a) 

 
 
 
 
 
 

(b) 

Figure 1.3 

Now, to keep the element 1 in static equilibrium, element 2 should exert a force  
R (= P) on element 1. At the same time, element 1 exerts a force P on element 2 
so that equilibrium exists at the point or surface of contact. The element 2 is again 
pulled by the equilibrant R exerted by element 3. Thus equilibrium exists at each 
and every point or surface of contact and each of the elements are kept in 
equilibrium. 
The force P (or R) shown in the figures is only the resultant of forces applied over 
some area (small or even full). On any area the force may not be distributed 
uniformly. However, we may consider an infinitesimally small area ΔA over 
which a small part of the total force ΔP may be considered to be uniformly acting.  
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Stresses and Strains
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compressive) at the point. Considering a small element having the area dA on one 
of its faces as shown in Figure 1.4, we realize that this pressure is accompanied 
by the equilibrium pressure on the opposite face of the element. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.4 

Such a set of internal pressures acting on solids is defined as stress. Depending on 
which set of planes such pressures are applied, there can be a number of such sets 
and they may be called stress components. (More about this we shall learn later.) 
To take the simplest case, if the total force P is uniformly distributed over the 
cross section A as shown in Figure 1.3 (a), then the magnitude of stress in the 
solid is P/A. This entity, stress is denoted by the symbol ‘σ’ and usually expressed 
in N/mm² units, also denoted as Mega Pascal (MPa) as both are numerically 
equal. 
Let us now turn our attention to deformations. The set of forces P and R  
(Figure 1.3(a)) are pulling the solid in opposite directions. Consequently the solid 
gets elongated and let this elongation be denoted by the symbol ‘δ’. If the forces 
be applied on the individual elements, each element will elongate (Figure 1.5(a)) 
and it has been experimentally established that 

(i) the magnitude of the individual elongations are proportional to the 
length of each of the elements, and 

(ii) the total elongation of all the elements add up exactly to δ. 

We may conclude that the ratio of elongation to length of the elements ...,
2

2

1

1
LL
δδ  

is invariable and equal to
L
δ . This ratio is defined as strain (more specifically as 

longitudinal strain) and denoted by ε. If the forces applied are in the opposite 
direction as shown in Figure 1.5 (b), the solid will get its length shortened and the 
deformation and strain in such a case are considered negative. 
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Strength of Materials  

 
(a) 

 

 
 
 
 

(b) 

 

 

 

 
(c) 

Figure 1.5 

1.2.3 Tensile, Compressive and Shear Stresses 
We have observed that forces produce elongations or contractions on solids 
depending on how they act. The forces that produce elongation on solids are 
called tensile forces and the stresses induced by them are called tensile stresses. 
Tensile forces and tensile stresses are both considered positive. Similarly, the 
forces which cause shortening of length are called compressive forces and the 
stresses induced by them are called compressive stresses. Both compressive 
forces and compressive stresses are considered negative. 

 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 1.6 

We may also observe that both tensile stresses and compressive stresses act 
normal to the surface on which they act. For this reason, they are both classified 
as normal stresses. However, there are many instances of load applications when 
the stresses are induced in directions other than that of the normal to the surface. 
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Stresses and StrainsA few such cases are shown in Figure 1.6. A small element is shown enlarged in 

scale. Beside the element the coordinate system is also given. The plane BEFC is 
normal to the x axis and is, hence, defined as x plane. Similarly, the planes DCFG 
and ABCD are defined as y and z planes respectively. 

You may also observe that the stress on x plane is normal (tensile), stress on y 
plane is inclined and that on z plane is parallel to the plane itself. The stresses that 
are acting parallel to the plane on which they are applied are called shear 
stresses. On further consideration we may resolve the stress on the y plane into 
components parallel and normal to the surface. Hence, on any plane, there may be 
normal stresses, shear stresses or both. Further, while the direction of normal to a 
plane is uniquely defined, there are infinitely large numbers of directions in 
which shear stresses may be applied on a plane. 

Whatever may be the direction of shear stress, it can be further resolved into 
components in two mutually perpendicular directions, and having done this, you 
would have completely defined the stresses acting on a plane. Defining such 
states of stress on all the planes will furnish the complete state of stress on the 
small element (or at a point). 

Let us now consider a few examples of solids in which shear stresses are induced. 
Figure 1.7 shows how two steel plates are connected together by a riveted joint. 
When the connected plates are pulled, the pull from plate A is transmitted to plate 
B through the rivet. The rivet may be considered to consist of two parts. Part C of 
the rivet carries the force P from plate A by diametric compression or bearing, 
while part D of the rivet transmits the load P to plate B by bearing. The transfer 
of force from part C to its counterpart D takes place at the common interface 
namely its cross sectional area at middle length. On this area, the force P is 
applied parallel and hence, the rivet is in shear. 

Again consider two wooden blocks connected together by some glue and also 
connected to a rigid base similarly, as shown in Figure 1.8. If a horizontal force P 
is applied on the x plane of the block A at the top, this force is transmitted to the 
base through a horizontal surface which is the common interface between the 
base and the block D. As the force is parallel to the surface on which it is acting, 
it is shear force and the stress induced by it also should be shear stress. On further 
scrutiny, you will find that the transmission of force from one block to another in 
the assembly is only as shear force and not only on interfaces between two 
adjacent blocks, but on any horizontal. 
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Figure 1.7 
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Figure 1.7 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

Figure 1.8 

1.2.4 Complementary Shear Stresses 
Consider the equilibrium of the solid element of dimensions l, b and h and acted 
upon by shear stress components τxy and τyx as shown in Figure 1.9. By inspection, 
we may recognize that the components τxy on a pair of vertical planes and the pair 
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Stresses and Strainsof τyx on two horizontal planes satisfy independently the force equilibrium 

equations : 

          Σ Fx = 0     and     Σ Fy = 0 

 

 

 

 

 

 

 

 
 
 
 

Figure 1.9 

Let us consider the moment equilibrium equations. τxy components on planes 
CDHG and ABFE have resultant forces Qxy = τxy  . b. h which form a couple equal 
to (τxy  . b . h) × l. Similarly, the moment of the couple formed by the shear stress 
component τxy = (τyx . l . b) h. For equilibrium, 

    (τxy . b . h) l + (τyx  . l . b) h = 0 

 or   τxy = – τyx. 

That is τxy is always accompanied by – τyx and this pair of shear stresses are called 
complementary shear stresses. 

When a piece of carrot is cut into two pieces, the force exerted by the knife acts 
on surface parallel to the force and hence the carrot is sheared into two. Likewise, 
you may think over the various cases of load applications in our day-to-day life 
and identify the cases in which shear stresses are involved. 

1.3 MECHANICAL BEHAVIOUR OF MATERIALS 

1.3.1 Stress-Strain Curves 
As we have earlier observed, the behaviour of solids, when subjected to loads, 
depends upon its geometrical and mechanical properties. The mechanical 
properties of solids have to be investigated through laboratory tests. Let us 
consider one such test which you might have conducted in the Strength of 
Materials laboratory. 

Tension Test on a Mild Steel Rod 

A mild steel rod of known diameter and length of about 400 mm to 500 mm 
is firmly gripped in a universal testing machine and a deformeter is fixed on 
the rod over a measured gauge of 150 mm to 200 mm. The rod is subjected 
to axial tensile load. The load at any instant is indicated by the load dial of 
the UTM while the elongation of the bar over the gauge length is measured 
through the deformeter. 
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Strength of Materials The load is gradually applied on the bar in suitable increments and the 
corresponding elongations of the bar are measured at each stage. The test is 
carried out until the specimen ultimately fails by rupture. The load values at 
each stage are divided by the cross sectional area of the bar to get the stress 
values and the corresponding elongations of the bar divided by the gauge 
length given the strain values. A graph is drawn relating stress and 
corresponding strain. A typical stress-strain curve for mild steel is shown in 
Figure 1.10. 

 

 

   

 

 

 

 

 

 
 

Figure 1.10  Stress-Strain Curve for Mild Steel 

1.3.2 Hooke’s Law and Elastic Limit 
From the stress-strain curve of a material, a number of essential mechanical 
properties of the material can be studied. When you look at the stress-strain curve 
(Figure 1.10), you can identify segments of different nature. The initial segment 
of the curve is steep and straight and the strain in this range is proportional to the 
stress. Hence, the terminal stage of this range is called proportional limit. At this 
stage, we find some small fluctuations followed by a horizontal segment, 
indicating that the strain in the solid is continuously increasing without any 
increase in stress. Here the material yields at the end of proportional limit and 
exhibits plasticity (i.e. being strained without increase in stress) on further 
pulling. This range of strain is called plastic range, and is about 12 to 13 times the 
proportional range of strain. The stage where proportional range ends and plastic 
range begins is called yield point. 

When the end of plastic range is reached, further loading results in increase of 
both stress and strain. But here the stress-strain curve is not as steep as in the 
initial range and is also non-linear. The material having exhibited plasticity once 
again hardens to take additional stress and hence this range is called strain 
hardening range. Straining further leads to ultimate failure by rupture. 

To understand the stress-strain relationship of the solid more clearly, further tests 
are carried out by loading, unloading and reloading of the solid at various stages 
and results of such an investigation are shown in Figure 1.11. 
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Stresses and Strains 

 

 
 

 

 

 

 

 

 

 

Figure 1.11 

From the results of such a study the following observations may be made. 

(i) When the loading is done within the proportional limit of the solid, 
the strain (deformation) caused is fully recovered when the stress is 
removed. (If the load is partially removed, a proportional amount of 
strain gets relieved.) 

(ii) When the solid is loaded beyond yield limit and then unloaded; only a 
part of the strain is relieved and a considerable part of strain still 
persist thus effecting permanent changes in the geometry of the solid. 
The strain remaining unrelieved is known as permanent set. 

(iii) When we reload a solid which is already subjected to permanent set, 
the stress-strain curve for reloading is linear up to the maximum stage 
to which it was subjected to earlier. 

From these observations, what does a designer learn? If a structure or any 
component is loaded beyond proportional limit, the geometry gets permanently 
changed and if repeatedly loaded beyond proportional limit, it will go completely 
out of shape after a few repetitions. On the other hand, you can load it within their 
proportional limit any number of times and the original geometry recover on the 
removal of the load. Hence, in any design, one has to be careful to avoid loading 
the component beyond the proportional limit. Within this limit the solid is said to 
be elastic. The property called elasticity consists of two aspects, normally 
complete removal of strains on unloading and linearity of stress-strain 
relationship. Hence, the part of stress-strain curve up to yield point is also called 
as elastic limit. To ensure that the solid is always within this elastic limit, 
designers permit stresses in solid much lower than the elastic limit. The ratio of 
the maximum stress a material can withstand to the maximum stress which a 
designer chooses to allow is called the factor of safety. In short, 

Factor of Safety = 
epermissibl stress Maximum

andcan withst material  thestress Maximum  

If the numerator is yield point stress, a factor of safety is 2 usually allowed and if 
it is ultimate stress, factor of safety may be 3 or more. 

All materials do not behave as mild steel. The stress-strain curves of a few 
materials are given in Figure 1.12. Irrespective of the variety of shapes seen in 
these curves, one can identify in each of them a segment where the curve may be 
considered linear. This limit is taken as the elastic limit for the material. 



 
 

 
16 

The overall behaviour of the material and its complete stress-strain relationship is 
discussed here only in order to caution the designer to keep the stress level well 
within the elastic limit. Hence, for practical purposes the stress-strain relationship 
is taken as linear and during the rest of this course you will not be dealing with 
nonlinearity of material behaviour. Hence, for a designer, stress is always 
proportional to the strain and the proportionality constant is defined as Elastic 
Modulus. 

Strength of Materials 

 

 

 

 

 
 

 
 

 

 

 

 
Figure 1.12 Stress-Strain Relationship for a Few Materials 

Thus,   Stress, σ = Elastic Modulus, (E) × Strain, (ε) 

or   σ = E . ε                . . . (1.1)  

From Eq. (1.1), we get 

   E =
ε
σ                 . . . (1.2) 

Eq. (1.2) indicates that the Elastic Modulus of a material may be calculated by 
measuring the slope of the stress-strain curve (within the elastic limit). The fact 
that Eq. (1.1) holds good within elastic limit which has already been taught to you 
as Hooke’s Law, which we may restate as follows : 

Within elastic limit the strain produced in a solid is always proportional to the 
stress applied. 

1.3.3 Elastic Constants 
As there are different types of stresses possible, such as linear (normal) stress, 
shear stress, volumetric (bulk) stress, and correspondingly different modulii of 
elasticity namely Young’s modulus, shear modulus and bulk modulus are defined 
as elastic constants of a material. The term E is used in Eqs. (1.1) and (1.2) in the 
context of normal stresses and corresponding strains is known as Young’s 
Modulus. 

In addition to the three modulii of elasticity an important elastic constant, used in 
defining the mechanical properties of a solid, is known as Poisson’s ratio. While 
testing the material for stress-strain relationship, you observe that strains are 
produced not only in the direction of the applied stress, but also in direction 
perpendicular (lateral) to it. On further investigations, you will find that the 
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Stresses and Strainslateral strain is always proportional to the longitudinal strain and the 

proportionality constant is negative. This proportionality constant is defined as 
Poisson’s Ratio and denoted by υ. 

∴   Poisson’s Ratio, υ = 
StrainalLongitudin

StrainLateral−  

While applying tensile force on a rod we found that the deformations produced 
involved change of volume of the solid as well as its shape. Such deformations 
may be found in many other cases of loading. Deformations involving change of 
volume and shape are more common. However, we may identify two special 
cases of deformations, dilatation and distortion. 
Dilatation is defined as change in volume (bulk) of the solid without change of 
shape. If normal stress components of equal magnitude and same nature (all 
tensile or all compressive) are applied on all the three mutually perpendicular 
planes of a solid element as shown in Figure 1.13, the solid will undergo only 
volume change without any change in shape. Such a state of stress (as may be 
obtained in the case of solid subjected to hydrostatic pressure) is called 
volumetric stress and the change of volume produced per unit volume of the solid 
is called the volumetric stress. The ratio between volumetric stress and 
volumetric strain is defined as Bulk Modulus. 

 

 

 

 

 

 

 

 
 

 
Figure 1.13 Bulk Stress and Dilatation 

Thus,   Bulk Modulus, K = 
StrainVolumetric
StressVolumetric
 
              . . . (1.3) 

in which Volumetric strain =  
VolumeOriginal
VolumeofChange

 
                       . . . (1.4) 

The state of stress, with equal values of stress components in all the direction is 
also known as spherical state of stress. 
The state of deformation involving change of shape without any change of 
volume is defined as Distortion. Though distortion may be introduced in many 
ways let us consider a simple case. When shear stresses are applied on a solid as 
shown in Figure (1.14), we find that angular deformations are introduced. The 
angular strain or change in angle produced is called shear strain denoted by γ 
(Greek gamma) and its magnitude is expressed in radians. The ratio of the applied 
shear stress and the shear strain produced by it is defined as Rigidity Modulus or 
Shear Modulus of the material, i.e. 
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Strength of Materials 
Rigidity Modulus, G = 

)(StrainShear
)(StressShear

γ
τ

 
                      . . . (1.5) 

We have so far defined four elastic constants, namely, Young’s Modulus, (E), 
Poisson’s Ratio (υ), Bulk Modulus (K), and Shear Modulus (G). Later on we shall 
learn that these four are not independent constants, but are related to each other. 
We can show that there are only two independent elastic constants and the other 
two are dependent on them. 

 

 

 

 

 

 
Figure 1.14 Shear Stress and Shear Strain 

1.4 DEFORMATION OF BARS 

1.4.1 Bars of Uniform Section  
With the knowledge gained already, you will now be able to learn calculation of 
deformations in solids due to applications of simple stresses. Let us start with the 
example of a prismatic bar of length ‘L’, uniform cross section of area A carrying 
an axial load ‘P’ as shown in Figure 1.15. 

 

 
 

 
 

 
Figure 1.15 

Stress in the solids is in the longitudinal direction and its magnitude may be 
calculated as 

A
P

==σ
Area
Load  

If the Young’s Modulus of the material, E, is known, the strain induced may be 
calculated as 

AE
P

E
=

σ
=ε   

As strain is only deformation per unit length, the total elongation of the bar is 
calculated as 

δ = ε. L = L
AE
P  

Thus,       Elongation δ = 
AE
PL                . . . (1.6) 
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Stresses and StrainsYou may please note that the strain, ε, calculated here is in the longitudinal 

direction and is accompanied by strains in the lateral directions also whose 
magnitude is given by − υε. Let us now consider a few numerical examples. 

 

 Example 1.1 

If the bar shown in Figure 1.15 is 2 m long with rectangular cross section of 
300 mm deep and 400 mm wide, calculate the change in volume of the solid 
due to a longitudinal compressive force of 720 kN/mm², if the elastic 
constants E and υ for the material are known as 120 kN/mm2 and 0.2 
respectively. 

Solution 

Area of cross section of the member = 300 × 400 = 120000 mm² 

Longitudinal strain ε = 
AE
P  = 310120120000

1000720
××

×− = − 0.00005 

(Note that all the values have to be converted to consistent units; here, it is 
N for forces and mm for length.) 

∴ Total change in length δ = 1000 × (− 0.00005) = − 0.05 mm. 

Lateral strain εl = −υε = − 0.2 × (− 0.00005) = 0.00001 

Change in depth = 0.00001 × 300 = 0.003 mm  

Change   in width = 0.00001 × 400 = 0.004 mm 

∴  Change in volume of the solid, 

  = (1000 − 0.05) (300 + 0.003) (400 + 0.004) − (1000 × 400 × 300) 

  = 999.95 × 300.003 × 400.004 − (1000 × 400 × 300) 

  = − 3600.109 mm³ 

Let us consider an alternate approximate method also. 

Change in volume, dV = V + dV − V 

             = (l + Δl) (b + Δb) (d + Δd) − l . b . d 

where Δl, Δb, and Δd are changes in length, breadth and depth of the solid. 

i.e.  dV = l (1 + ε1) × b (1 + ε2) × d (1 + ε3) − l . b . d 

where ε1, ε2 and ε3 are the strains in the three mutually perpendicular 
directions. 

∴ dV = l bd × (1 + ε1) (1 + ε2) (1 + ε3) − l bd 

        = l bd × (1 + ε1 + ε2 + ε3 + ε1 ε2 + ε2 ε3 + ε3 ε1 + ε1 ε2 ε3) − l bd 

        = l bd × (ε1 + ε2 + ε3 + ε1 ε2 + ε2 ε3 + ε3 ε1 + ε1 ε2 ε3) 

Neglecting the second order products, 

dV = V × (ε1 + ε2 + ε3)               . . . (1.7) 

Now let us calculate the change in volume of the given solid using Eq. 
(1.7). 

Change in volume, dV = V × (ε1 + ε2 + ε3) 
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Strength of Materials                        = 1000 × 300 × 400 (− 0.00005 + 0.00001 + 0.00001) 

       = 3600 mm³ 

 

Though there is a small error, the approximation is quite satisfactory. (As an 
exercise you may calculate the percentage error in the value.) If you are very 
particular about accuracy, you use the following formulation: 

dV = V × (ε1 + ε2 + ε3 + ε1 ε2 + ε2 ε3 + ε3 ε1 + ε1 ε2 ε3) 

 SAQ 1 
 

(a) Taking the dimensions of the solid in Example 1.1 as same, calculate 
the change in volume of the solid if additional tensile forces of  
1200 kN, and 2000 kN are applied in the lateral directions namely 
horizontal and vertical respectively. 

(b) A concrete cylinder of height 300 mm and diameter 150 mm is tested 
for compression in a Universal Testing Machine. Within the elastic 
limit, the cylinder was found to be shortened by 0.12 mm and its 
diameter was found to be increased by 0.01 mm under an axial load of 
90 kN. Calculate the Young’s Modulus, E, and Poisson’s Ratio, υ, for 
the specimen. 

 

 

 

1.4.2 Bars of Varying Cross Section 
Let us now consider a few cases of a little more complexity. To give you a feeling 
of solid reality all solids have so far been represented by pictorial views.  
Figure 1.16 represents the projected view of a bar whose cross sectional area 
differs in different segments. Taking the elastic modulus of the material as  
60 kN/mm², let us evaluate the total elongation of the bar. 

 

 

 

 

 
 

Figure 1.16 

Although the bar has no uniform cross-section, it consists of segments of uniform 
cross section. Hence, the total elongation of the bar can be calculated as a sum of 
the elongations of individual segments. 

Thus,  δ = Σδi = ......
22

22

11

11 +++
ii

ii
EA
LP

EA
LP

EA
LP  

In the numerical example under consideration 
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  δ =
60100

4

500750

6060
4

200750

60135
4

400750

60200
4

300750
2222 ××

π
×

+
××

π
×

+
××

π
×

+
××

π
×  

     = ⎟
⎠
⎞

⎜
⎝
⎛ +++

×
π 2222 100

500
60
200

135
400

200
300

60
4

750  = 2.14865 mm 

In the bar, shown in Figure 1.16, the axial pull is applied at the ends and hence 
the axial force in all the members is same. In the bar, shown in Figure 1.17(a), the 
external forces are applied at intermediate sections also. In such cases, the axial 
force in each member should be evaluated first, before any deformation 
calculations. This can be accomplished by considering equilibrium of each of the 
sections where external loads are applied. Though no external load has been 
prescribed at the LHS end, the support reaction has to be calculated and taken as 
the external load. Equilibrium analysis can be easily carried out by treating each 
segment as a free body as shown in Figure 1.17(b). 
For example, consider the equilibrium of the segment 4 in Figure 1.17(b). At the 
RHS end of the member a point load of 60 kN is applied. Hence, for the member 
to be in equilibrium a force of – 60 kN should be applied at the RHS end of the 
member. Hence, the member is subjected to a tensile force of 60 kN which is 
represented by the internal arrows in accordance with the sign conventions you 
have already learnt. Member 3 is pulled with a tensile force of 60 kN exerted by 
member 4 and in addition the external force of 80 kN also pulls the member in the 
same direction, resulting in the member carrying a total tensile force of 140 kN. 
Proceeding thus, the axial forces in all the members can be calculated. To 
simplify the graphical representation we may show the member forces along with 
external forces as shown in Figure 1.17(c). 
Now let us calculate the total elongation of the bar, taking the elastic modulus, E, 
as 200 kN/mm².  

 
 

 

 
 

(a) 

 

 

 
(b) 

Figure 1.17 

 

 
 

 
(c) 

Figure 1.17 



 
 

 
22 

δ = ∑ δi = ∑
ii

ii
EA
LP  

Strength of Materials 

    = 
200150
50060

200600
800140

200200
800100

200800
600160

×
×

+
×
×

+
×
×

+
×
×            

       = 0.6 + 2.0 + 0.9333 + 1.0 

       = 4.53333 mm. 

Now, let us consider the case of a bar whose cross section is varying continuously 
as shown in Figure 1.18. The bar of (truncated) conical shape is subjected to an 
axial force of P. As in the case of stepped bars, here also, we may apply the 

equation δ = ∑δi = ∑
ii

ii
EA
LP , if we recognize that Li is sufficiently small and Ai 

may be taken as uniform over the length of the small segment. That is, the 

expression∑
ii

ii
EA
LP  now becomes

ii

ii
L

EA
LP

∫
0

. 

 

 

 

 

 

 
Figure 1.18 

 

 

 
 
 
 

 
Figure 1.19 

However, to simplify the expression for A, the origin may be conveniently be 
shifted to the apex of the produced cone as shown in Figure 1.21. Thus, 

  
E

H
D  

PdxH

H
2

2x
4

0 ⎟
⎠
⎞

⎜
⎝
⎛π

=δ ∫  

The integral in above equation may be evaluated for solids having stepped as well 
as continuous variation in cross section. Stepped bars require no special treatment 
except that the equilibrium and deformations of each segment may be analysed 
separately and added wherever necessary. Even a prismatic segment of the bar 
may have to be considered as two or more members, if external loads are applied 
at interior points of the segment. 
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SAQ 2 
Stresses and Strains 

 

(a) Taking the Elastic modulus, E = 80kN/mm² and Poisson’s ratio of the 
bar as 0.24, calculate the change in volume of the bar shown in 
Figure 1.16. 

(b) Calculate the total elongation (or shortening) of the non-uniform bars 
(with loads) shown in Figures 1.20 and 1.21. 

 

 
 
 
 

Figure 1.20   (E = 180 GPa) 

 

 

 

 

 

Figure 1.21  (E = 200 GPa) 

(c) Taking the Young’s Modulus, E, as 120 kN/mm², find the total 
elongation of the bar shown in Figure 1.22. 

 

 

 

 
 
 

Figure 1.22 

 

 

 

 
 

 

1.4.3 Bars of Uniform Strength 
If we calculate the stresses induced in the various segments of the bar, shown in 
Figure 1.17(a), we get the following results:  

  σ1  =  
800

1000110 × = 137.5 N/mm²     

  σ2  =  
200

100050 ×  =  250 N/mm² 
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  σ3  = 
600

1000120 ×  = 200 N/mm² 
Strength of Materials 

    σ4 =  
150

100030 ×   = 200 N/mm² 

The results show that the bar should be made of a material with permissible stress 
not less than 250 N/mm². Such a material (should be specially manufactured, if 
required) is wasted in segments where the stress induced is much less. For 
instance, in segment 1, the stress induced is only 137.5 N/mm². If we reduce the 
cross sectional area of segment 1, 3 and 4 to 440 mm², 480 mm² and 120 mm² 
respectively, the stress in all segments will be uniformly 250 N/mm2, the bar 
would be safe and we would have effected considerably economy of material. 
Such a bar is called a bar of uniform strength. A designer will strive to achieve a 
bar of uniform strength, whenever possible. However, due to other constraints 
and variations in loadings, it may not always be possible to provide a bar of 
uniform strength. Thus, the concept of bar of uniform strength is a design ideal 
aiming to effect maximum saving in the material. 

1.5 COMPOSITE BARS 

So far we have considered the cases of solids made of a single material. However, 
in a number of engineering applications we use components made of two or more 
materials. Bars made of two or more materials are called composite bars. This 
section will introduce to you basic principles applied in analyzing such bars. 

1.5.1  Modular Ratio 
Consider the composite bar shown in Figure 1.23 in which an aluminum bar is 
encased just snug in a Copper tube which in itself is encased just snug in a steel 
tube. Let us analyze how the three different components of the composite bar 
share the load applied axially on the composite bar. 

 

 
 

 
 
 
 

 
Figure 1.23 

The basic requirement in such a case is that all the three components of the bar 
should undergo the same amount of deformation while carrying the load. 
Otherwise, the bar which shortens the least alone will be in contact with the load 
which is physically impossible, since a component which looses its contact will 
not be carrying any load and hence there can be no shortening of that component 
which contradicts the assumption that it shortens more. Hence, it is logically 
necessary that all the three bars should undergo the same amount of deformation. 
This condition is called the compatibility condition or condition of consistent 
deformation. Satisfaction of this condition is the basis on which the problem of 
composite bars is analysed. 
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Stresses and StrainsLet the total axial force applied on the composite member P be shared by the 

different members as P1, P2 and P3. If the deformations produced are δ1, δ2 and δ3, 
then we get, 

   δ1  = 
11

11
EA
LP   

   δ2  = 
22

22
EA
LP   

   δ3  = 
33

33
EA
LP   

The compatibility condition requires that 

      
11

11
EA
LP  = 

22

22
EA
LP  = 

33

33
EA
LP               . . . (1.8) 

Let the elastic modulii of the materials be redefined as E1, m2 E1 and m3 E1, where 

m2 = 
1

2
E
E       and      m3 = 

1

3
E
E  

Eq. (1.8) may be rewritten as follows 

  
3

3

13

3

2

2

12

2

1

1

1

1
A
P

Em
L

A
P

Em
L

A
P

E
L

×=×=×              . . . (1.9)    

Recognizing that L1 = L2 = L3, we may rewrite Eq. (1.9) as  

         
33

3

22

2

1

1
Am

P
Am

P
A
P

==             . . . (1.10)     

From which, we get P2 = 
1

1
A
P  m2 A2 and  

           P3 = 
1

1
A
P  m3 A3                . . . (1.11) 

The equilibrium condition required to be satisfied is 

  P1 + P2 + P3 = P 

or   P1  +  
1

1
A
P  m2 A2  + 

1

1
A
P  m3 A3 = P 

or   P1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

1

33

1

221
A

Am
A

Am  = P 

  P1 = 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

1

33

1

221
A

Am
A

Am
P             . . . (1.12) 

After calculating P1 using Eq. (1.12), the loads shared by other members P2 and 
P3 may be calculated using the Eq. (1.11). 
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In the process of the above solution, we have introduced two terms, namely, m2 

and m3 whose values are the ratios 
1

2
E
E

 and 
1

3
E
E

 respectively. These ratios are the 

ratios of Elastic modulii of two different materials and, hence, are called 
Modular Ratios. 

Strength of Materials 

Let us now solve the problem of load sharing in the composite member shown in 
Figure 1.23. 

Here, we have 

  P = 60 kN 

  L = 400 mm 

  A1 = 
4
π × 50² = 1963.5 mm² 

  A2 = 
4
π  × (90² − 50²) = 4398.23 mm² 

A3 = 
4
π × (120² − 90²) = 4948 mm² 

Elastic modulii for the materials, namely aluminium, copper and steel may be 
taken as 80 kN/mm², 120 kN/mm² and 200 kN/mm² respectively. 

  m1= 
80

120

1

2 =
E
E  = 1.5   

  m2 = 
80
200

1

3 =
E
E  = 2.5   

Substituting these values in Eq. (1.12),  

  P1 = 
⎟
⎠
⎞

⎜
⎝
⎛ ×+×+

5.1963
49485.2

5.1963
23.43985.11

60  

    = 5.6285 kN  

Now, using Eq. (1.11), 

  P2 = 
5.1963

62852.5  × 1.5 × 4398.23 = 18.912 kN 

 P3 = 
5.1963

62852.5  × 2.5 × 4948 = 35.4595 kN 

1.5.2 Equivalent Area of a Composite Section 
On reconsideration, we may rewrite Eq. (1.12) as follows : 

    P1 ...][ 3322

1

1 +++
=

AmAmA
PA  

or   
...][ 33221

1

1 +++
=

AmAmA
P

A
P             . . . (1.13) 
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In Eq. (1.13), we recognize that 
1

1
A
P

 is the stress induced in material 1 and hence,  

  σ1 ...][ 33221 +++
=

AmAmA
P             . . . (1.14) 

The denominator in Eq. (1.14) has Area unit and is called the equivalent area of 
the composite bar, as if composite bar entirely made of material 1 alone. In other 
words, if the composite bar in Figure 1.23 is entirely made of aluminum, then the 
equivalent area is given as 

Aeq = A1 + m2 A2 + m3 A3

       = 1963.5 + (1.5 × 4398.23) + (2.5 × 4948) 

         = 20930.86 mm² 

That is, the composite bar, shown in Figure 1.23, is equivalent to an aluminium 
bar of cross sectional area 20930.86 mm², in resisting axial forces. (An 
aluminium bar of 163.25 mm diameter will give this area.) 

One of the practical examples of composite bars is the R.C.C. column, a typical 
cross section of which is shown in Figure 1.24. Here, a 400 mm × 400 mm square 
cross section of a R.C.C. column is reinforced with 8 numbers of 32 mm diameter 
mild steel bars. Taking the Elastic modulii of steel and concrete as Es and Ec and 

the modular ratio, m = 
C

S
E
E as 18, let us find the loads shared by steel and concrete 

when an axial load of 600 kN is applied on the column.  

Area of steel bars, As = 8 × 
4
π  × 32² = 6434 mm²  

Area of concrete,  Ac = (400 × 400 − 6434) = 153566 mm² 

Modular Ratio,      m = 18  

Equivalent Area of Concrete = (153566 + 18 × 6434) = 269378 mm² 

Total axial load = 600 kN. 

Load shared by concrete = 
269378

600 ×153566 = 342.046 kN 

 Load shared by steel = 
269378

600 × 18 × 6434 = 257.954 kN 

 

 

 

 

 
 
 

 
 

Figure 1.24 
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Strength of Materials  SAQ 3 

 

(a) Show that the composite bar in Figure 1.23 is equivalent to a steel bar 
of cross sectional area 8372.344 mm². 

(b) If the composite bar shown in Figure 1.23 is to be replaced by a 
copper bar, calculate the equivalent area of cross section of the copper 
bar.  

 

 

 

 

1.5.3 Stresses in Composite Bars and Load Carrying Capacity of 
Composite Bars 

You have learnt how a total load applied on a composite bar is shared by different 
components of a composite. Though this is certainly enlightenment on the 
behaviour of composite bars, we need to learn more in order to apply the concept 
in practically more useful way. That is, we need to learn 

(i) what will be the total load that a composite bar can carry, and 

(ii) to carry a given load, how should a composite bar be proportioned. 

For this purpose, we should know the strength of each material and also we 
should be able to calculate the stresses induced in the various components of a 
composite bar. 

We have already learnt the compatibility condition that the axial deformations 
undergone by all the components of a composite bar should be equal. 

As the lengths of components are also equal, the strain in each component should 
also be equal. Taking the strain of the composite bar as ε, stress in any component 
may be expressed as  

σi = Ei  × ε              . . . (1.15) 

or  σi = 
1E

Ei  × E1  × ε    

or     = mi   × E1  × ε 

Since,  E1 × ε = σ1, then we can write 

  σi = mi  × σ1                . . . (1.16) 

Eq. (1.16) expresses the relationship that the stress induced in any component of a 
composite bar should be proportional to its elastic modulus or modular ratio. For 
example, in the R.C.C. column shown in Figure 1.24, the stress in steel, σs, will be 
18 times the stress in concrete. You could have seen this by yourself, if you had 
divided the load shared by each member by its area of cross section. Use of  
Eq. (1.16) saves some computational effort. 

We can get stress in concrete = 
153566

1000046.342 ×  = 2.227355 N/mm². 
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Stresses and StrainsThus,  Stress in steel = 18 × 2.227355 

              = 40.0924 N/mm². 
In order to calculate the load carrying capacity, we need to know the strength 
(allowable stress) of all the components. For example, let the allowable stress in 
concrete be 4 N/mm² and the allowable stress in steel be 120 N/mm². There is 
another restriction, you can notice, that even though the strength of steel is  
120 N/mm², we cannot stress it to the full, because if we stress steel to its full 
strength, i.e. 120 N/mm², then concrete will be stressed to 6.667 N/mm², i.e. 
120/18, which is not permissible. Hence, the maximum stress that may be induced 
in steel is only 72 N/mm², i.e. 4 × 18. 
Now, we can calculate the maximum load the column can support or the load 
carrying capacity of the column as follows : 

 P = σs × As + σc × Ac

    = 72 × 6434 + 4 × 153566 
     = 1077512 N or 1077.512 kN.  
Another type of problem that a designer faces is to decide the amount of steel 
required if the column is to support a magnitude of load. For instance, if the 
column is required to carry an axial load of 960 kN, let us calculate the steel 
requirement. 
 Maximum stress in steel = 72 N/mm² 
 Maximum stress in concrete = 4 N/mm² 
Let the area of steel be As. 

Area of concrete = 160000 − As. 

∴   72 × As + 4 (160000 − As) = 960 × 1000 

(72 − 4) As + 640000 = 960000 

∴  As = ( )
472

640000960000
−
−  = 4706 mm² 

This may be provided suitably (say, 8 nos of 28 mm dia bars, which will be a 
little more than sufficient). 

SAQ 4 
 

 
(a) Evaluate the stress induced in each component of the composite bar 

shown in Figure 1.23. 
(b) In the case of composite bar shown in Figure 1.23, if the permissible 

stresses in aluminium, copper and steel respectively are 50 N/mm2, 
60 N/mm2 and 120 N/mm2, calculate the load carrying capacity of the 
composite bar. 

(c) If the column shown in Figure 1.24 is required to carry an axial load 
of 880 kN, find the requirement of steel, with mechanical properties 
as given in worked example. 

(d) Provide a graphical chart to relate the strength of column shown in 

Figure 1.24 to the percentage ratio of 
A

AS where A + AS + AC. Take  

σC = 4 MPa, σS = 140 MPa and m = 18. 
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(e) If the column, shown in Figure 1.24, is cast with higher quality of 
concrete with a permissible stress of 5 N/mm2 and EC = 0.06 ES, what 
is its load carrying capacity and what is the quantity of steel required 
if the column has to carry an axial load of 1200 kN? 

Strength of Materials 

 

 

 

 

 

1.6 THERMAL STRESSES AND STRAINS 

1.6.1 Effect of Temperature on Bodies 
It is a common observation and experience that the size of a body increases as the 
temperature increases while it decreases as the temperature decreases. Thus, 
temperature rise results in expansion, i.e. increase in linear dimensions of the 
body, and temperature fall results in contraction, i.e. reduction in the linear 
dimensions of the body. The magnitude of the changes brought in linear 
dimensions of the body by temperature is defined through an intrinsic property of 
the material, of which the body is made of, called coefficient of linear thermal 
expansions or contraction. 

The coefficient of linear thermal expansion or contraction of a material is defined 
as the change in length per unit length per degree change in temperature of the 
body which is made of the material. The values of this coefficient, α of some of 
the common engineering materials are listed in Table 2.1. 

From the definition, α can be written as,  

   α = 
TL

L
Δ

×
Δ 1  

where, ΔL is the change in length over a total length L when the temperature is 
changed by ΔT. Thus, 

ΔL = α × L × ΔT 

Table 2.1 

              Material α, Coefficient of Linear 
Thermal Expansion (k¯¹)  

     Low carbon (mild) steel         11.7 × 10− 6

  Cast Iron : Gray Malleable             12 × 10− 6

        Nickel-chrome steel          11.7 × 10− 6

             Aluminium             23 × 10− 6

                  Brass         18.9 × 10− 6

                 Bronze            18 × 10− 6

             Magnesium          28.8 × 10− 6
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Stresses and Strains1.6.2 Thermal Stresses in Bodies 

In the earlier section, we had seen that if the temperature of a body is increased 
by ΔT, there will be an expansion ΔL over a length L. However, this expansion 
occurs only if the body is free to expand. During this free expansion, the body is 
stressed. But, if this free expansion is restrained either fully or partially, forces of 
restraint are generated and the body develops internal strain resulting in internal 
stresses. These stresses are called thermal stresses. A similar situation arises if 
the body is restrained against contraction and the temperature is reduced. When 
expansion is restrained, compressive stresses will be generated because the 
restraint is equivalent to applying a compressive force. Similarly, when 
contraction is restrained, tensile stresses will be generated. 

1.6.3 Thermal Stresses and Strains in Uniform Bars 
In this section, we shall discuss the problem of thermal stresses in bars of uniform 
cross-section when they are partially or totally restrained against change in length 
due to temperature changes. Since the area of cross-section is the same over the 
entire length, the stress will be the same over each cross-section. 

Fully Restrained Bar 

Let us consider a bar of uniform cross-sectional area A and length L and 
constrained at both ends as shown in Figure 1.25(a) and (b). 

 

 
 

 

 

 
(a) (b) 

Figure 1.25 

Let us increase the temperature of the bar by ΔT. If the bar were free to 
expand, it would have increased to a length L + ΔL as in Figure 1.25 (b). 
However, this increase in length, ΔL, is completely restrained. Hence, the 
restraining force, P, will be equivalent to a force which would have 
produced the same change in length. Following these arguments 

  ΔL = αL ΔT = 
AE
PL   or   P = AE α ΔT 

Therefore, Thermal Strain =
L
LΔ = α ΔT 

Thermal Stress in the bar = Strain × E = E α ΔT   

Which is the same as
A
P . Since the force P is compressive, the stress 

developed is also compressive in nature. 

(b) Partially Restrained Bar 

Now, let us assume that one of the supports of the bar in Figure 1.25 (a) can 
move by a distance ΔL′ (ΔL′ < ΔL) while the bar is expanding. In this case, 
the bar is free to expand by an amount ΔL′ but is restrained in expanding 
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further by rest of the amount (ΔL − ΔL′). Thus, the force of restraint, P, is 
now a force which would produce a change in length (ΔL − ΔL′) in the bar. 

Strength of Materials 

Thus,      

         P =
L

AELTL
L

AELL )()( ′Δ−Δα
=

′Δ−Δ  

Strain = 
L

LTL )( ′Δ−Δα = ⎟
⎠
⎞

⎜
⎝
⎛ ′Δ

−Δα
L
LT  

Thermal Stress = Strain × E = E ⎟
⎠
⎞

⎜
⎝
⎛ ′Δ

−Δα
L
LT  

 

 
Example 1.2 

Two parallel walls are stayed together by a steel rod of 5 cm diameter 
passing through metal plates and nuts at both ends. The nuts are tightened, 
when the rod is at 150ºC, to keep the walls 10 m apart. Determine the 
stresses in the rod when the temperature falls down to 50º C, if  

(a) the ends do not yield, and 

(b) the ends yield by 1 cm. 

Take E = 2 × 105 N/mm2 and α = 12 × 10− 6 K− 1. 

Solution 

Given Length of the rod, L = 10 m =104 mm 

Diameter of the rod, d = 5 cm = 50 mm 

Change in temperature, ΔT = 150 − 50 = 100ºC 

  E = 2 × 105 N/mm2  

  α = 12 × 10− 6 K− 1

(a) When the ends do not yield (let the stress be σ1) 

Thermal stress, σ1, in the rod = E α ΔT 

                = 2 ×105 × 12 × 10-6 × 100 = 240 N/mm2 

(b) When the ends yield by 1 cm (let the stress be σ2) 

Thermal Stress, σ2 = ⎟
⎠
⎞

⎜
⎝
⎛ ′Δ

−Δα
L
LT  × E 

  = ⎟
⎠
⎞

⎜
⎝
⎛ −×× −

4
6

10
101001012  × 2 × 105  

  = (0.0012 − 0.001) × 2 × 105 = 40 N/mm2

 
SAQ 5 

 

Two parallel walls 6 m apart are stayed together by a steel rod 20 mm 
diameter, passing through metal plates and nuts at each end. The nuts are 
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Stresses and Strainstightened, when the rod is at a temperature of 100ºC. Determine the stress 

in the rod, when the temperature falls down to 20ºC, if     

(a) the ends do not yield, and 

(b) the ends yield by 1 mm. 

Take E = 2 × 105 N/mm2 and α = 12 × 10− 6 K− 1. 

 

 

 

 

 

1.6.4 Thermal Stresses and Strains in Stepped Bars 
In this section, we shall discuss the determination of thermal stresses in bars 
whose cross-sectional area changes in steps over the length. 

Fully Restrained Stepped Bar 

Consider a bar of length L which has a uniform cross-sectional area A1 over 
length L1 while in the rest of the length L2 the cross-sectional area is A2. Let 
the Young’s Modulus and the coefficient of linear expansion for the two 
parts be E1, α1 and E2, α2 respectively. The ends of the bar are fully 
restrained. The bar is shown in Figure 1.26. Let the temperature of the bar 
be raised by ΔT. 

 

 
 
 
 

 

 
Figure 1.26 

If the bar were free to expand, it would have extended by a length ΔL given 
by 

  ΔL = L1 α1 ΔT + L2 α2 ΔT  

        = (L1 α1 + L2 α2) ΔT 

Hence,     σ1 = )(
)(

122211

2211221
LEALEA
LLAETE

+
α+αΔ , and 

∴   σ2 = )(
)(

122211

2211121
LEALEA
LLAETE

+
α+αΔ  

Herein, we have assumed that the two parts of the bar are made of two 
different materials. Instead, if the entire bar is of a single material of 
Young’s Modulus E and coefficient of linear expansion α, 

E1 = E2 = E and α1 = α2 = α 

Then α1 and α2 reduce to 
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σ1 =
1221

2
LALA
LTEA

+
αΔ and 

Strength of Materials 

  σ2 =
1221

1
LALA
LTEA

+
αΔ and 

Partially Restrained Stepped Bar 
Let us now consider the case of a stepped bar as in Figure 1.26, but which is 
free to extend by an amount ΔL´ (ΔL´ < ΔL) but restrained thereafter. In this 
case, during the free expansion of ΔL´ the bar remains unstressed but 
thereafter develops the stresses σ1 and σ2 whose values will now be 
different than those of fully restrained stepped bar above. 

From the above two expressions, the thermal stresses σ1 and σ2 can now be 
written as 

σ1 = )(
])([

122211

2211221
LEALEA

LLLTAEE
+

′Δ−α+αΔ  

     σ2 = )(
])([

122211

2211121
LEALEA

LLLTAEE
+

′Δ−α+αΔ  

In the case of a single material bar 

   σ1 =
1221

2 ][
LALA

LLTEA
+

′Δ−αΔ , and 

   σ2 =
1221

1 ][
LALA

LLTEA
+

′Δ−αΔ  

 
 

Example 1.3 

A stepped bar made of aluminum is held between two supports. The bar is 
900 mm in length at 38ºC, 600 mm of which is having a diameter of 50 mm, 
while the rest is of 25 mm diameter. Determine the thermal stress in the bar 
at a temperature of 21ºC, if  
(a) the supports are unyielding, and 
(b) when the supports move towards each other by 0.1 mm. 
Given E for aluminum = 74 kN/mm2

  α for aluminum = 23.4 × 10−6 K−1

Solution 
When the Supports are Unyielding 
We have, L1 = 600 mm; diameter d1 = 50 mm 

Thus,  A1 = 
4

)50( 2π mm2 

Also, L2 = 300 mm; diameter d2 = 25 mm 

Therefore, A1 = 
4

)25( 2π mm2 

and   ΔT = 38 − 21 = 17ºC 
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Therefore, free contraction, ΔT = L α ΔT = 900 × 23.4 × 10− 6 × 17  
= 0.358 mm. 

Stresses and Strains

Let σ1 be the stress in 50 mm φ part and σ2 be the stress in 25 mm φ part. 

Then, 

σ1 =
1221

2
LALA
LTEA

+
αΔ  = 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

×π
+×

×π

×π×××××× −

600
4

)25(300
4

)50(4

)25(107417104.23900
22

236
 

    = 14.72 N/mm2

σ2 = σ1
2

1

A
A

 = 14.72 × 2

2

)25(
)50(   = 58.88 N/mm2 

These stresses are tensile in nature. 

When the Supports Move towards Each Other by 0.1 mm 

Here,   ΔL´ = 0.1 mm. 

∴ σ1 = 
1221

2 ][
LALA
LLEA

+
′Δ−Δ  = 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

×π
+×

×π

−××π××

600
4

)25(300
4

)50(4

)1.0358.0()25(1074
22

23
 

    = 10.61 N/mm2  

∴ σ2 = 10.61 ×  2

2

)25(
)50(  =   42.44 N/mm2 

Both these stresses are tensile. 

 SAQ 6 
 

A bi-metallic rod of length 450 mm is mounted horizontally between rigid 
abutments. The rod has a uniform circular cross-section and is made up of a 
150 mm length of steel and a 300 mm length of copper coaxial with each 
other. If the rod is initially stress-free, determine the stress in the rod caused 
by a temperature rise of 100 K. 

Given E, copper = 105 GNm− 2

  E, steel = 210 GNm− 2 

  α, copper = 18 × 10− 6 K− 1

  α, steel = 12 × 10− 6 K− 1

 

 

 

 

 

 



 
 

 
36 

1.6.5 Thermal Stresses and Strains in Tapered Bars Strength of Materials 

In this section, we shall study the problem of thermal stresses in gradually 
tapering bars. Because the cross-sectional area is varying along the length of the 
bar, so does the stress. Herein, we shall derive expression for thermal stress in 
bars with circular cross-section. For other cross-sections, like square etc., 
expressions for stresses can be derived in a similar fashion. 

Fully Restrained Tapered Bar 

Consider the bar shown in Figure 1.27, which is circular in cross-section 
but tapering from a diameter d2 to d1 over the length L. The bar is 
completely restrained at its ends. Now, let the temperature of the bar 
increased by ΔT.  

 

 

 

 

 
 
 

Figure 1.27 

If the bar were not restrained but free to expand it would have extended by 
an amount ΔL, given by  

ΔL = α L ΔT 

Due to the restraint, a compressive force P would have developed in the bar 
whose effect is to produce a contraction equal to ΔL. Under this force, a 
cross-section at a distance x from the larger end would have developed a 

stress, σx, equal to 
xA

P , where Ax is the area of that cross-section. 

∴ σx = 
xA

P  = 2

211 )(

4

⎟
⎠
⎞

⎜
⎝
⎛ −−π

=

dd
L
xd

P  

The strain at that cross-section, εx, can be written as 

εx = 
E

xσ  
21

4
dEd

PL
π

=  

            
4
21 TdEdP Δαπ

=   

Hence, the thermal stress, σx, at a cross-section with an area of Ax is given 
as 

              
2

1
max d

TEd Δα
=σ  

where x is measured from the end with diameter d1 which is the larger end. 
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Stresses and StrainsThe maximum stress, σmax, in the bar occurs at the smaller end with  

diameter d2. 

Partially Restrained Tapered Bar  

Let us consider the bar of Figure 1.27, but now let it be free to extend by an 
amount . By following similar arguments as in the previous 
section, now the compressive load P developed in the bar will be given by 

)( LLL Δ<′Δ′Δ

 L
LLdEdP

4
)(21 ′Δ−Δπ

=
 

    
L

LT LdEd   
4

)(21 ′Δ−Δαπ
=  

and hence, 
2)(

)(

21
1

21

⎟
⎠
⎞

⎜
⎝
⎛ −

−

′Δ−Δα
=σ

x
L

dddL

LT LdEd
x  

          
2

1
max

)(
Ld

LT LEd ′Δ−Δα
=σ  

 

 
Example 1.4 

A circular bar rigidly fixed at both ends is 1 m long and tapers uniformly 
from 20 cm diameter at one end to 10 cm diameter at the other end. Find the 
maximum stress in the bar, if its temperature is raised through 50oC.  
E = 2 × 105 N/mm2 and α = 12 × 10−6 K−1.    

Solution 

Here, 

d1 = 20 cm = 200 mm 

  d2 = 10 cm = 100 mm 

  L = 1 m = 1000 mm 

  ΔL = 50°C 

∴ 
100

501012200102 65

2

1
max

×××××
=

Δα
=σ

−

d
T Ed  

SAQ 7 

           = 240 N/mm2. 

 
 

A straight bar has a circular cross-section, the radius of which varies 
linearly from 30 mm diameter at one end A to 15 mm at the other end B. 
The bar is 1 m long and is fixed rigidly at A, but longitudinal movement is 
possible at B against a spring which opposes movement with a constant 
stiffness of  
20 kN/mm. Initially, there is no longitudinal stress in the bar. The 
temperature of the bar then falls by 100 K. Determine the change in the bar 
length if E = 69 GN/m2, and α = 23 × 10−6 K−1. 
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1.6.6 Thermal Stresses and Strains in Composite Bars  
In Sub-section 1.6.4 on stepped bars, we have seen one type of composite bar 
where bars of different materials are joined serially. In this section, we shall 
consider another type of compound bar, a bar constructed from two different 
materials rigidly joined together as shown in Figure 1.28(a), or two bars of 
different materials but of equal length held between two rigid plates as shown in  
Figure 1.28(b). 

 

 

 

 

 
(a)      (b) 

If the individual bars were free to expand (or contract) due to temperature 
changes, they would do so to different amounts (for the same change in 
temperature), as shown in Figure 1.28(c) and Figure 1.28(d), due to the difference 
in the coefficients of linear expansion of the two materials.    

 

 

 

 

 

 
(c)      (d) 

 

 
 
 
 

 
(e)      (f) 

Figure 1.28 

However, since the two materials are rigidly joined as a compound bar and 
subjected to the same temperature rise, each material will attempt to expand to its 
free length position but each will be affected by the movement of the other. The 
higher coefficient of expansion material will try to pull the lower expansion 
material to its free length, but will be held back by the latter to its own free length 
position. In practice, a compromise will be reached with both extending to a 
common position in between the individual free length positions. This, in effect, 
is equivalent to a contraction in bar 2 from its free length position and an 
expansion of bar 1 from its free position. Thus, the higher coefficient of 
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Stresses and Strainsexpansion material develops tensile stresses, when the temperature of the 

compound bar increases. It will be vice-versa when the temperature decreases. 
From Figure 1.28(c) to 1.28(f), it is clear that extension of bar 1 + contraction of 
bar 2 = difference in free lengths    

Let the stresses in bars 1 and 2 be σ1 and σ2 due to the temperature change. Then 
the above rule can be written as 

TL
E

L
E

L
Δα−α=

σ
+

σ )( 12
2

2

1

1  

Since there are no external forces acting on the compound bar, for equilibrium, 
the compressive force in bar 2 should be equal to the tensile force in bar 1. This 
means that 

σ1 A1 = σ2 A2

From the above two expressions, σ1 and σ2 can be written as    

2211

12212
1

)(
EAEA

T EEA
+

Δα−α
=σ , 

and  
2211

12211
2

)(
EAEA

T EEA
+

Δα−α
=σ  

The extension of the compound bar, i.e. ΔL is given as 

ΔL 
2211

222111 )(
EAEA

TLEAEA     
+

Δα+α
=  

 

 
Example 1.5 

A compound bar is constructed from three bars 50 mm wide by 12 mm 
thick fastened together to form a bar 50 mm wide by 36 mm thick. The 
middle bar is of aluminum alloy for which E = 70 GN/m2 and the outside 
bars are of brass with E = 100 GN/m2. If the bars are initially fastened at 
18°C and the temperature of whole assembly is then raised to 50°C, 
determine the stresses set up in the brass and the aluminium. 

For computation purposes, take following values : 

αbrass = 18 × 10−6 K−1 , and αaluminium = 22 × 10−6 K−1 

Solution 

Let the stress in aluminium bar be σa and that in each brass bar be σb. Then 
for equilibrium 

Force in brass = Force in aluminium 

σb × 50 × 12 × 2 = σa × 12 × 50 

or          2 σb = σa

and from extension considerations, we get 

TLL
E

L
E ba

b

b

a

a Δα−α=
σ

+
σ )(  
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∴ )1850(10)1822(
101001070

2 6
99 −××−=

×

σ
+

×

σ −bb  
Strength of Materials 

or 27σb = 4 × 10-6 × 32 × 700 ×  109

or     σb = 3.32 N/mm2   (T) 

and     σa = 6.64 N/mm2   (C) 

 

 Example 1.6 

A steel bolt of diameter 12 mm and length 175 mm is used to clamp a brass 
sleeve of length 150 mm to a rigid base plate as in Figure 1.29. The sleeve 
has an internal diameter of 25 mm and a wall thickness of 3 mm. The 
thickness of the base plate is 25 mm. Initially, the nut is tightened until 
there is tensile force of 5 kN in the bolt. The temperature is now increased 
by 100°C. Determine the final stresses in the bolt and the sleeve. 

For computation purposes, take following values : 

Eb = 105 GNm−2 ; Es = 210 GNm−2

  αb = 20 × 10 –6 K−1 ; αs = 12 × 10 –6 K−1

 

 

 

 
 
 
 
 

Figure 1.29 

Solution 

Let the free thermal expansions of steel and brass be Δs and Δb and Δ be the 
common expansion. Then 

Δs = (175) (12 × 10−6) (100) = 0.21 mm 

  Δb = (150) (22 × 10−6) (100) = 0.3 mm 

If the initial stresses in steel and brass due to 5 kN load are σs1 and σb1, then 

σs1 = 21.44  
)12(

4105
2

3

+=
π

××
+  N/mm2      (Tensile) 

σb1 = 95.18  
)2531(

4105
22

3

−=
−π

××
+  N/mm2      (Compressive) 

Equilibrium of thermal stresses σs2 and σb2 requires that 

0
4

)2531(
4

)12( 22

2

2

2 =
−π

×σ+
π

×σ bs  
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Stresses and Strainsor 3 σs2 + σb2 = 0 

The thermal strains are as follows : 

150
)(

175
and b

b
s

s      
Δ−Δ

=ε
Δ−Δ

=ε  

Thus, the thermal stresses are as follows : 

310)(
175
210

2 ×Δ−Δ=σ ss  N/mm2

and 310)(
150
105

2 ×Δ−Δ=σ bb  N/mm2

Substituting these in the equilibrium equation, 

010)30.0(
150
105710)21.0(

175
2103 33 =×−Δ×+×−Δ×  

Hence, Δ = 0.262 mm 

Thus, 

  σs2 = 310)21.0262.0(
175
210

×− = + 62.26 N/mm2     (Tensile) 

  σb2 = 310)3.0262.0(
150
105

×− =   − 26.28 N/mm2     (Compressive) 

Total stresses are therefore as follows : 

σs = σs1 + σs2 = − 106.5 N/mm2       (Tensile) 

  σb = σb1 + σb2 = − 45.23 N/mm2       (Compressive) 

SAQ 8 
 

 

(a) A steel rod of cross-sectional area 600 mm2 and a coaxial copper tube 
of cross-sectional area 1000 mm2 are firmly attached at their ends to 
form a compound bar. Determine the stress in the steel and in copper 
when the temperature of the bar is raised by 80°C and an axial tensile 
force of 60 kN is applied. 

For steel, E = 200 GNm−2   and α = 11 × 10−6 K−1

For copper, E = 100 GNm−2   and α = 16.5 × 10−6 K−1

(b) Steel rod of 20 mm diameter passes centrally through a tight fitting 
copper tube of external diameter 40 mm. The tube is closed with the 
help of rigid washers of negligible thickness and nuts threaded on the 
rod. The nuts are tightened till the compressive load on the tube is 
50 kN. Determine the stresses in the rod and the tube, when the 
temperature of the assembly falls by 50°C. 

For steel, E = 200 GNm−2   and α = 12 × 10−6 K−1

For copper, E = 100 GNm−2   and α = 18 × 10−6 K−1

(c) A rigid slab weighing 600 kN is placed upon two bronze rods and one 
steel rod each of 60 cm2 cross-sectional area at a temperature of 15°C. 
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The bronze rods are 25 cm while the steel rod is 30 cm long. Before 
the slab was placed, the top of all the three rods are level. Find the 
temperature, at which the stress in the steel rod will be zero. 

Strength of Materials 

E of steel = 200 GNm−2   and   E of bronze = 80 GNm−2

α of steel = 12 × 10−6 K−1 and α of bronze = 18 × 10−6 K−1

 

 

 

 

 

1.7 RELATIONSHIP BETWEEN ELASTIC 
CONSTANTS 

In Section 1.3.3, we have defined the four Elastic Constants E, υ, K and G and 
also stated that they are not independent. Now, we shall establish the relationship 
between them. 

1.7.1 Relationship between E and K 
Figure 1.13 shows the spherical state of stress in which the normal stress 
component is the same, σ0 in any direction and shear stress components are zero 
on any plane. Such a state of stress is also called as volumetric stress. If the 
Young’s Modulus and Poisson’s Ratio of the solid are known as E and υ, the 
strain components are given by  

  εx = 
E

xσ  − υ
E

yσ
 − υ

E
zσ             . . . (1.17) 

Since,  σx = σy = σz = σ0

  εx = 
E

0σ (1 − 2υ)             . . . (1.18) 

Similarly, εy = 
E

0σ (1 − 2υ) and  εz = 
E

0σ  (1 − 2υ) 

From Eq. (1.7), we can express the change in volume of the solid as 

    dV = V (εx + εy + εz ) 

Volumetric strain, εv = 
V
dV = εx + εy + εz

Bulk Modulus,      K = 
strainVolumetric
stressVolumetric  

            = 
zyx ε+ε+ε

σ0 = 
xε

σ
3

0  

          = 
)21(30

0

υ−×
σ

σ

 
E
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        K = 
)21(3 υ− 

E                      . . . (1.19) 

1.7.2 Relationship between E and G  
Figure 1.30(a) shows what is known as the state of pure shear. 

The deformation of the body due to the shear is shown in Figure 1.30(b) 
(projected view). 

 

 

 

 

 

 

 

 
 
 

 
(a)        (b) 

Figure 1.30 

Normal stress component, σ = τ sin 2θ 

             = τ sin 
4

2π  = − τ 

Shear stress component        = τ cos 2θ 

              = τ cos 
4

2π  = 0 

Normal stress component      = τ sin 2θ = − τ 

 

Shear stress component         = τ cos 2θ = 0 

   

or shear strain            γ = 
E

)1(2 υ−τ  

Rigidity Modulus  G = 
)1(2strainShear

stressShear

υ−
τ

τ
=

E
 
    

     G = 
)1(2 υ−

E              . . . (1.20) 

1.7.3 Significance of the Relationships  
We have already mentioned that there are only two independent elastic constants. 
But this is true only in the case of isotropic solids. The term isotropy means same 
property in all directions. We have defined Elastic Modulus as ratio between 
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stress and strain and implied (without stating) that the ratio holds good for all 

directions, i.e. 
z

z

y

y

x

x
ε
σ

=
ε

σ
=

ε
σ . 

Strength of Materials 

Materials for which this is true are called isotropic materials and throughout this 
course you will be learning only about isotropic solids. 

When any two of the elastic constants are known, the other two may be calculated 
using Eqs. (1.19) and (1.20). Let us have an example. 

 

 
Example 1.7 

In separate experiments, Young’s Modulus and Rigidity Modulus of a 
material have been determined as 120 GPa and 50 GPa respectively. 
Calculate the Poisson’s Ratio and Bulk Modulus of the material. 

Solution 

Here, Young’s Modulus, E = 120 GPa. 

Let Poisson’s ratio be υ. 

Rigidity Modulus, G = 
)1(2 υ+

E  = 50 GPa  

                  (1 + υ) = 
502

120
2 ×

=
G
E  = 1.2 

∴ Poisson’s Ratio, υ = 1.2  − 1 = 0.2 

Bulk Modulus, K = 
)21(3 V

E
−

 

     = 
)2.021(3

120
×−

 

     = 66.667 GPa. 

 
SAQ 9 

 

(a) Through separate experiments the elastic constants of a material, 
namely, E, υ, G and K were determined as 75 GPa, 0.247, 30 GPa and 
49.2 GPa respectively. Taking the values of E and G as correct, find 
the percentage errors in the values of Poisson’s Ratio and Bulk 
Modulus. 

(b) The values of Young’s Modulus and Rigidity Modulus of a material 
are known to be 20.8 GPa and 8 GPa respectively. If a spherical ball 
of diameter 150 mm made of the material is immersed in water to a 
depth of 120 meters, find the change in volume of the ball. 

(c) By eliminating Poisson’s ratio υ from Eqs. (1.19) and (1.20), show 

that G =
EK

KE
−9

3 . 
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Stresses and Strains1.8 SUMMARY 

In this unit you have learnt the concepts of stress, strain, elastic modulus and the 
basic concepts in application to analysis of stresses and deformation in simple 
solids. Any designer of engineering systems has to have a clear perception of how 
forces are resisted by solids and the effects produced in solids so as to enable him 
to produce designs with safety and stability. The study of these aspects will 
require learning further new concepts and methods, understanding of which will 
require the knowledge you acquired in this unit. This unit is, therefore, like the 
first step in a full flight of stairs climbing which will provide you with a powerful 
tool of engineering. 

1.9 ANSWERS TO SAQs 

SAQ 1 

(a) Change in volume = − 1800 mm3 

(b) Young’s Modulus E = 12.7324 kN/mm2 

Poisson’s Ratio, υ = 0.16667. 

SAQ 2 

(a) dv1 = 1462.5 mm2, dv2 = 1950 mm3, dv3 = 975 mm2, 
dv4 = 2437.5 mm3 

Total change in volume dv = 6825 mm3

(b) For bar given in Figure 1.20, δ = 24.92 mm 

For bar given in Figure 1.21, δ = 0.0268 mm 

SAQ 3 

(b) Equivalent area of copper bar = 13953.91 mm2

SAQ 4 

(a) Stress in steel = 7.16645 N/mm2 

Stress in copper = 4.3 N/mm2

Stress in aluminium = 2.8666 N/mm2

(b) Load carrying capacity of bar = 837.23 kN. 

(c) Area of reinforcement steel required = 3529.4 mm2 

(d) The chart will be straight line with the equation  

P = 640 (1 + 17
A

AS ) kN 

(e) Load carrying capacity of given column = 1305 kN. 

Area of steel required = 5106.4 mm2 if P = 1200 kN. 

SAQ 5 

(a) 9.192 N/mm2, 

(b) 158.7 N/mm2 
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201.6 MPa 

SAQ 7 

− 1.26 mm 

SAQ 8 

(a) 94.6 N/mm2, 3.3 N/mm2 

(b) σs = 123.15 N/mm2

(c) 188.6°C 

σc = 41.05 N/mm2

SAQ 9 

Error in Poisson’s Ratio = 1.2% 

Error in Bulk Modulus = 1.6% 

Change in volume of Spherical ball = 122341 mm3 or 6.823%. 
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