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3.1 INTRODUCTION 

In Unit 2, we have studied Electromagnetism. The practical useful mode of 
storage of electrical energy at the present time is through DC storage batteries 
(rechargeable DC cells) and are widely used in transport vehicles, electronic 
instruments and equipment, portable tools, etc. 
However, the bulk of electrical energy utilisation, whether in domestic 
installations, or in industry or in public service organisations is through 
alternating current (AC) systems involving sinusoidal voltages and currents. 
Strictly speaking, the adjective alternating indicates any signal whose direction 
alternates with time but in practice, it is invariably used to refer to sinusoidal 
signals. 
In this Unit, you will first learn about the characteristics and representation of 
sinusoidal voltages and currents. You will then get to know the types of response 
of standard circuit elements to sinusoidal excitation. This will be a prelude to the 
study of methods of analysis of circuits formed by various combinations of 
simple circuit elements and operating under the influence of AC sources. The 
phasor concept which simplifies the expression of steady-state response-
excitation relations in these circuits would be adopted as the framework for the 
development of the various techniques of analysis. You will also be introduced to 
the various ramifications of power in an AC circuit. 

Objectives 
After studying this unit, you should be able to  

• explain the reasons for the widespread use of sinusoidal signals in 
electrical engineering,  
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• deduce the different parameters of a sinusoidal waveform like peak 
value, phase, effective value, form factor etc.,  

• work with complex numbers as needed for the manipulation of 
phasors in AC circuit analysis,  

• express the steady state response both in time domain and in phasor 
domain of R, L, C elements to sinusoidal inputs,  

• calculate the impedance Z and admittance Y of simple elements and 
combinations thereof in 2-terminal networks,  

• explain the factors on which power in an AC circuit depends and 
distinguish between active power, apparent power and reactive power,  

• describe characteristics of a 3-phase system, 

• describe the features of a 3-phase system, 

• distinguish between delta and star-connections of sources and loads, 
and 

• distinguish between balanced and unbalanced systems. 

3.2 SINUSOIDAL SIGNALS 

Sinusoidal signals have a vital role both in electrical power engineering and in 
communication engineering. In power supply systems, the voltages and currents 
are invariably of this waveform with a frequency of 50 Hz in most countries 
including India. In the field of communication engineering, we have to deal with 
sinusoidal signals having wide frequency range extending from a few Hz to a few 
GHz (1 GHz = 109 Hz). 

Formally, a sinusoidal function of time is defined as one having the general form 
 and is characterised by three parameters viz., amplitude A, angular 

frequency ω and phase angle θ. The argument (angle) of the sine function viz., 
)(sin θ+ωtA

)( θ+ωt  is measured in radians and increases at the rate of ω radians per second. 
Since a sine function repeats itself at intervals of 2 π radians of its angle, we 
immediately see that the period T of the sinusoid is related to ω by 
   π=ω 2T  

We also know that the frequency f of the signal is the reciprocal of the period T. 
Therefore, we have  

   f
f

π=ωπ=×ω 2or21  

The parameters ω is, thus, a measure of the frequency of the signal and is called 
angular frequency. The phase angle θ is the value of the argument of the sine 
function at the origin of time and governs the instantaneous value at t = 0 of the 
sinusoidal signal of a given amplitude. Strictly speaking, θ should be expressed in 
radians as ωt is expressed in radians. However, since many of us have a better 
feel for angles measured in degrees, we often indulge in somewhat irregular 
practice of mixing up units by writing expressions like 325 sin (314 t + 60°) 

instead of the more proper 325 sin .
3

314 ⎟
⎠
⎞

⎜
⎝
⎛ π

+t  However, the actual evaluation of 
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AC Circuitsthe sine function is done only after expressing the two terms in its argument in the 

same units (radians or degrees) before their addition. 

Figure 3.1 shows the waveform of a general sinusoidal voltage of frequency f. As 
shown therein, the x-axis can be graduated either in terms of time t in the 
conventional manner or alternatively in terms of the angle ωt. The latter has the 
effect of normalizing the period of the waveform to 2 π radians irrespective of the 
actual value of frequency f. 

T/2

π

2π

T = 1fV
Vm

Vmsin θ
− θ
2πf 0

0

–Vm

π
2

− θ π−θ 2π−θ

π−θ
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f
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Figure 3.1 : Waveform of a General Sinusoidal Voltage v (t) = Vm sin (ωt + θ) 

 

 
Example 3.1 

 Express the following signals in the standard form, )(sin θ+ωtA . 

(a)  tv ω= cos201

(b)  ttv ω+ω= cos75sin1002

(c) 3 10 cos
2

v t t π⎛ ⎞= ω ω −⎜ ⎟
⎝ ⎠

 

Solution 

(a) ⎟
⎠
⎞

⎜
⎝
⎛ π

+ω=ω=
2

sin20cos201 ttv  

(b) 2 2
2 2 2 2

100 sin 75 cos100 sin 75 cos 100 75
100 75 100 75

t tt t
⎛ ⎞ω ω⎜ ⎟ω + ω = + +
⎜ ⎟+ +⎝ ⎠

 

         )sincoscos(sin125 θω+θω= tt  

where,  
2 2

100 100cos
125100 75

θ = =
+

 

   
2 2

75 75sin
125100 75

θ = =
+

 

and            tan 
θ
θ

=θ
cos
sin  

     75.0
100
75

==  
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 or,              radians64.037)75.0(tan o1 ===θ −

Hence,          2 125 sin ( ),v t= ω + θ  

or,                  2 125 sin ( 37 ) 125 sin ( 0.64)orov t t= ω + ω +

(c) ⎟
⎠
⎞

⎜
⎝
⎛ ω−

π
=⎟

⎠
⎞

⎜
⎝
⎛ π

−ω= ttv
2

cos10
2

cos103  

     tω= sin10  

3.2.1 Importance of Sinusoidal Signals 
A sinusoidal function of time represents the simplest periodic process that occurs 
in the physical world like the vibration of a tuning fork, the small amplitude 
oscillation of a pendulum, and the current in a simple LC (inductor-capacitor) 
circuit supplied with some initial energy. A superposition of such functions is the 
characteristic or natural behaviour of any non-dissipative linear system of 
arbitrary complexity, a network comprised pure inductors and capacitors being an 
example of such a system. 

A sinusoidal function has certain unique characteristics which no other periodic 
function can claim. If two sinusoids of the same frequency are added to or 
subtracted from each other, the result is another sinusoid of the same frequency. If 
a sinusoid is integrated or differentiated, once again a sinusoid of the same 
frequency arises. Therefore, when a sinusoidal voltage is applied to resistor, an 
inductor or a capacitor, the resulting current waveform is sinusoidal of same 
frequency and vice-versa. That the waveform and frequency are retained under 
the above four linear operations is a very significant and unique property. What is 
true of a single element, R, L or C, is also true of a complex interconnection of 
such elements. Thus, it turns out that if any arbitrary linear electric network (i.e. a 
network composed of linear elements like resistors, capacitors and inductors) is 
excited by a sinusoidal source A sin (ωt + θ), the resulting steady state 
current/voltage response in any element of the network is another sinusoid of the 
same frequency. The response can differ from the excitation only in its amplitude 
and phase but in no other characteristic, i.e. it should have the form B sin (ωt + 
α). This property leads to particularly simple techniques of AC circuit analysis 
using concepts like impedance and sinusoidal transfer function, which we shall 
get to know later on. 

The voltage developed by a rotating electrical generator in a power station is 
necessarily periodic. Leaving aside the case where this voltage is converted to 
DC form through a commutator, the particular periodic form employed in a 
commercial electrical generator is the simplest form of alternating quantity, 
namely one which varies sinusoidally with respect to time. The preference for this 
form is obvious from what is stated in the previous paragraph. An electrical 
power system may be enormously complex, containing scores of generators, 
hundreds of kilometers of transmission lines and different kinds of motors and 
other user equipment. But as long as all the generators develop sinusoidal 
voltages of the same frequency, as indeed they do, and the system is linear, then 
the voltage available at every power outlet is a sinusoid of the same frequency. If 
the generator voltages are of any other waveform, the voltages at different 
locations could be a maddeling medley of complex waveforms with no easily 
recognizable relation between one and other. 
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AC CircuitsThe foregoing observations clearly highlight the importance of developing 

efficient techniques for analysis of circuits under sinusoidal excitation. Further, 
these can be extended to find effective solutions for the behaviour of circuits and 
systems working under non-sinusoidal periodic and aperiodic excitations. 

3.2.2 Effective Value and Form Factor 
The effective value of a periodic signal which counts power calculations are of 
concern and that for the particular case of a sinusoidal signal, the effective value 

is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

1  times the peak value. It is conventional to indicate the strength of a 

sinusoidal voltage or current in terms of its effective value or Root Mean Square 
value (RMS value) and to simply use the capital letter V or I as the symbol for 
this quantity, discarding the subscripts in the symbols Veff and Ieff . A 230 V AC 
voltage would mean a voltage having an effective value of 230 V. This point has 
to be clearly understood that, unless otherwise stated, any numerical value 
assigned to an AC signal implies that it is the rms value and not either its peak 
value or its absolute average value. A 5 Amp, 50 Hz AC current would have a 
time variation θ)π100(sin52 +× t  since the peak value is 2mI 5= ×  and 

 We hereafter indicate a general sinusoidal voltage and 
current as 

2 (50) 100 .ω = π = π

θ)(sin2θ)(sin2 and +ω+ω tItV  respectively, V and I being the 
corresponding effective values.  

The only meaningful average value that can be associated with a sinusoid is the 
absolute average value (also equal to the average over the positive half cycle and 
hence called half-cycle average) and that the latter is equal to (2/π) times the peak 
value. 

We now define the form factor of a symmetric periodic waveform as follows : 

  
ValueAverageAbsolute

ValueRMSfactorForm =             . . . (3.1) 

From the name of the term, it is clear that form factor gives an indication of the 
shape of the wave. The sharper is the peak of the waveform, the larger is the form 
factor. For a flat waveform like the symmetrical square wave the form factor has 
a value equal to 1, since the RMS and absolute average values of this wave are 
equal. For a sinusoid, we have  

 Form factor of a sinusoid = 11.1
22
π

)/π2(Value)(Peak
2/ValuePeak

==            . . . (3.2) 

The form factor is a parameter to be considered in certain applications like the 
determination of the effective value of voltage induced in a coil due to changing 
magnetic flux of a given amplitude. 

 

 
Example 3.2 

Find form factor of a symmetric triangular voltage waveform shown in 
Figure 3.2. 
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Figure 3.2 : Symmetric Triangular Waveform 

Solution 

To find (Vrms)2 we need to find the average of ν2. As the area under the 
curve of ν2 for the first quarter period is equal to the areas for the 
subsequent 3 quarter periods, we can find the required average of ν2 by 
considering only the interval 0 < t < T/4.  

Thus, 
24

2
rms

0

4 4( )
T

AtV
T T

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫  

          
32 2

3
64 1

3 4 3
A T Adt

T
⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

       
3rms

AV =  

Likewise,   
4

absav
0

4
T

AV t
T

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫  

            
2
Adt =  

Hence, form factor of the waveform = 154.1
3

2

2

3 ==A

A

. 

3.2.3 Phasor Representation  
If a point moves around a circle with uniform angular velocity, its projection on a 
straight line varies sinusoidally. By virtue of this property, a sinusoid permits an 
extremely simple graphical representation viz., a directed line segment P of 
magnitude A and indicating the position of the revolving point. 

Let the point P move around a circle of radius A in the anticlockwise direction 
with an angular velocity of ω rad/sec and pass through the angular position θ at 
t = 0, as shown in Figure 3.3(a). Its position at t = 0 and a general t are marked in 
the figure. 

The displacement from origin ‘O’ the projection of P on the vertical axis (viz., 
OM) clearly varies as A sin (ωt + θ) as shown in Figure 3.3(b), taking upward 
displacement as positive. 
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A

M0

M
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t = 0

P

ω

Y

X
θ

A
A sin θ

A sin ( t + ω θ)

0 t tT

– A

Projection OM

 

(a) Revolving Point P and its Projection M on Y-axis; (b) Variation of OM with Time 

Y

P

X
θ  

(c) Phasor Representation 

Figure 3.3 : Revolving Point, its Vertical Projection and Phasor Representation 

On this basis, we evolve a simple representation of a sinusoid A sin (ωt + θ) in the 
form of a directed line segment at an angle θ with respect to X-axis (i.e., directed 
towards the position of the revolving point at t = 0) and having a length equal to 

2
A  is dictated by convenience as we invariably deal with the RMS values of 

sinusoids rather than peak values. Such a representation is called the phasor of 
the particular sinusoid. For the sinusoidal signal A sin (ωt + θ), the phasor would, 

thus, be a directed line of length ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

A  at an angle θ relative to the horizontal as 

shown in Figures 3.3(c) and 3.4. The phasor of P is represented as θ∠=
2

AP , 

where 
2

A  is its RMS value and θ is the phase angle. If we imagine the phasor to 

rotate anticlockwise about the origin with an angular velocity ω, starting from the 
position shown at t = 0, then the projection of the phasor on the vertical axis at 

any time t has a length equal to ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

1  times the instantaneous value of the related 

sinusoid at that time. 

A
2

θ
 

Figure 3.4 : Phasor or a Sinusoid A sin (ωt + θ) 
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Any sinusoid is uniquely determined by three quantities viz., RMS value, 
frequency and phase. In AC circuit analysis, we normally deal with situations in 
which all currents and voltages have the same frequency and the value of this 
frequency is known. In this situation, one sinusoid differs from another only in 
respect of RMS value and phase, both of which are prominently displayed by a 
phasor. There is therefore a one-to-one correspondence between a sinusoid of a 
given frequency and its phasor and we can deduce one from the other. Different 
voltages and currents occurring in an AC circuit (operating with a single 
frequency excitation) can, therefore, be represented by an assembly of directed 
line segments having a common origin, a representation which is far more concise 
and clearer than a display of all the pertinent waveforms on a common time base. 
For example, the phase difference between two voltages is clearly visualized as 
the angle between the respective phasors. Several mathematical operations on 
phasors either graphically or analytically can be easily performed on phasors as 
we shall see in the subsequent sections. 

E/M Engineering 
 

As an example, consider two voltages νA = 220  sin (ωt + 30o) and 
)90(sin240 o+ω=υ tB  with VA = 20 and VB = 40, whose waveforms are shown 

in Figure 3.5(a). 
B

Vo
lts

60º

60º 60º

60º

330º

360º180º

60º

0º-30º 270º

90º
150º

ωt/(deg).

40   2

20   2

VB

VA 240º

60º

 

(a) Waveforms  

60º
30º

0
20 V

VB

40 V
VA

ωt

 

(b) Phasors 

Figure 3.5 : Two Sinusoids with a Phase Difference of 60o
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AC CircuitsThe phase difference between νA and νB at an angular interval of 60 . νB

o
B is said to 

lead νA by 60  as successive similar events (e.g. upward zero crossings, positive 
peaks, negative peaks, downward zero crossings) occur with ν

o

BB at an angular 
interval of 60o earlier than with νA (Figure 3.5(a)). By the same token, νA is said 
to lag νB by 60 . B

o

This relationship between νA and νB can also be represented very simply with the 
help of phasors V

B

A and VBB as shown in Figure 3.5(b), which are supposed to rotate 
in anticlockwise direction with an angular speed ω. Thus, VB, which is moving 
ahead of V

B

A by exactly 60  is said to lead Vo
A by 60 . Similarly, Vo

A is said to 
lagging VBB by 60o. Thus, oo 90403020 and ∠=∠= BA VV  and phase difference 

 .603090 ooo =−=

SAQ 1 
 

Sketch the phasors of the following sinusoidal signals : 
(a) – 100 sin (ωt + 30o) 

(b) )30(cos24 o+ωt  

3.3  IMPEDANCE CONCEPT 

In the previous section, we saw how the phasor concept provides an effective 
means of representing voltages and currents in AC circuits. In this section, we 
extend the application of this concept to characterisation of terminal relations of 
single elements and two-terminal networks. To this end, let us first examine the 
response of RLC elements to sinusoidal excitation. 

3.3.1 Response of Single Element to Sinusoidal Excitation 
Resistance 

Consider a resistor of R ohms connected to a sinusoidal voltage source of 
)(sin2 θ+ω= tVv  volts as shown in Figure 3.6(a). From the fundamental 

terminal relationship v = Ri of a resistor it follows that 

i = (v/R) = )(sin)(2 θ+ωtV/R  or )(sin2 θ+ω= tIi , where 
R
VI = . 

R

v+ –

i
T

i, v

2 V 2 i

V
i

V/R

θ

V

IV

 

          (a) Circuit   (b) Waveform     (c) Phasor Representation of IV and  

Figure 3.6 : Response of a Resistor to Sinusoidal Excitation 

We note the following : 
(a) The current and voltage are in phase (i.e., they have zero phase 

difference). Both vary in step. The positive peaks, negative 
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peaks, zero crossing etc. occur in both at the same time as 
shown in Figure 3.6(b). 
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(b) RMS value of 
R
VI =  and, thus, the RMS values of voltage and 

current are related by 
V = RI              . . . (3.3) 

a formula identical to Ohm’s law in DC domain. 

(c) The voltage and current phasors being V V= ∠θ  and 
VI
R

⎛ ⎞= ∠θ⎜ ⎟
⎝ ⎠

, as shown in Figure 3.6(c), they are related by 

     IRV =              . . . (3.4) 

Note that the above relationship is independent of ω and θ. 
Inductance 

Now, let an inductor of L henrys have a voltage θ)(sin2 +ω=υ tV  
applied across it as shown in Figure 3.7. From the fundamental terminal 
relationship of an inductor, we have 

   dt
L

i
dt
diL υ==υ ∫

1or  

or  dttV
L

i )(sin21
θ+ω= ∫  

     ⎟
⎠
⎞

⎜
⎝
⎛ π

−+ω
ω

=+ω
ω

−=
2

θsin2θ)(cos2 t
L
Vt

L
V  

   ⎟
⎠
⎞

⎜
⎝
⎛ π

−+ω=
2

θsin2 tI , 

where           
L

VI
ω

=  

R

v+ –

i

 
(a) Circuit 

i, v

2 V 2I

t

T/4

T/4

θ

V

I

V

90º
V

Lω

 
(b) Waveform     (c) Phasor IV and  

Figure 3.7 : Response of an Inductor to Sinusoidal Excitation 
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AC CircuitsWe take the constant of integration in the above to be zero as for the AC 

circuits of concern to us, there cannot be a DC or constant current in any 
element. 

The main characteristics of this response are :  
(a) The current has phase difference of 90o with respect to the 

voltage and lags behind it. Similar events (positive peaks, 
negative peaks, upward zero crossings, downward zero 
crossings etc.) occur in the voltage wave a quarter-period 
(equivalent to 90o of the angle ωt) earlier than the current wave, 
as shown in Figure 3.7. 

(b) RMS value of 
L

VI
ω

= , and, thus, the RMS values of voltage 

and current are related by 
     V = (ωL) I             . . . (3.5) 

(c) The phasors of v and i being ⎟
⎠
⎞

⎜
⎝
⎛ −∠=∠=

2
πθandθ IIVV  

They are related by 

   ILjV )( ω=              . . . (3.6) 

where, j is 90o operator. 
Capacitance 

Figure 3.8 shows a capacitor of C farads applied with a voltage 
).(sin2 θ+ω=ν tV  The current through the capacitor would, therefore, 

be 

   ( 2 sin )dv di C C V t
dt dt

= = ω + θ  

      ⎟
⎠
⎞

⎜
⎝
⎛ π

+θ+ωω=θ+ωω=
2

sin2)(cos2 tCtVC  

      ⎟
⎠
⎞

⎜
⎝
⎛ π

+θ+ω=
2

sin2 tI , 

where  VCI ω=

The main characteristics of this response are : 
(a) The current has a phase difference of 90o with respect to the 

voltage and leads the latter. Similar events occur in the current 
wave a quarter-period (equivalent to 90o) earlier than the 
voltage wave as shown in Figure 3.8. 

(b) Since RMS value of current VCI ω= , the RMS values of 
voltage and current are related by 

     I
C

V ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω

=
1              . . . (3.7) 

(c) The phasors V and I  being and
2

V CV π⎛ ⎞∠ θ ω ∠ θ +⎜ ⎟
⎝ ⎠

 

respectively, they are related by 

     I
Cj

V
ω

=
1              . . . (3.8) 
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The properties derived earlier are characteristic of the three elements in 
AC circuits and hold irrespective of where they are connected in a circuit. A 
little reflection will show that item (c) in each case is a complete statement 
of the relevant properties and incorporates in itself the properties 
specifically stated under (a) and (b). 
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C

ν+ –

i

2 V
2I

t

T/4

T/4

i V

I

90º
V

V

θωCV

 

  (a)   (b)     (c) 

Figure 3.8 : Response of a Capacitor to Sinusoidal Excitation 

To summarise, the three elements R, L and C respond differently to 
sinusoidal excitations (current or voltage). The current and voltage in a 
resistor are in phase, while they are in quadrature (i.e., have a phase 
difference of 90o) in an inductor or a capacitor. In an inductor, the 
voltage leads the current by 90o while in a capacitor, the current leads 
the voltage by 90o. The RMS values of the voltage across and the current 
through the element satisfy the proportionality relationship given in each 
case by Eqs. (3.3), (3.5) and (3.7) respectively. For a given value of current 
to be driven through it, an inductor requires more voltage as the frequency 
increases. The capacitor on the other hand, needs only a smaller voltage as 
the frequency increases. 

 

 
Example 3.3 

A capacitor draws a current of 5 mA from 200 V, 50 Hz AC supply. What 
current does it draw from 40 V, 400 Hz supply? 

Solution  

As mentioned earlier, all values relating to voltages and currents in AC 
circuit are to be taken as RMS values unless specifically stipulated 
otherwise, we have  

     VCI ω=  

for a given C,  

   6.1
200
40

50
400.

1

2

1

2 =×=
ω
ω

=
1

2
V
V

I
I  

or  mA8mA56.16.1 12 =×== II  

Hence, the current with 40 V, 400 Hz supply = 8 mA. 
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(a) Fill in the blanks : 

In a capacitor the current . . . . . . . . . . . . . . . . . . . . . . . . the voltage by 
. . . . . . . . . . . . . . . . . . . . degrees, while in a . . . . . . . . . . . . . . . . . . . . .  
it is in phase with voltage. For a given applied voltage an inductor 
permits a . . . . . . . . . . . . . . . . . . . . . current as the frequency is raised. 

(b) Find the inductance of an inductor which draws a current of 1.1A 
when connected to 230 V, 50 Hz voltage. What current will it draw if 
the supply voltage is changed to 150V, 25 Hz? 

 

 

3.3.2 Concept of Impedance and Admittance 
We note from Equations that the ratio of V  and I  each of the three cases 
considered is a constant which is a function of only the element value and 
frequency and is independent of the value of the applied voltage or current. These 
relations are reminiscent of Ohm’s law, except that now the quantities involved 
are complex constants. The differentiation in time domain is equivalent to 
multiplication by jω in the phasor domain and integration in time domain is 
equivalent to division by jω in the phasor domain. Thus if i (t) transforms into I , 
then di/dt transforms into jω I  and idt transforms into ∫ I / jω. We shall now 
develop this theme for a more general situation. To this end, consider a 2-terminal 
network N comprising linear circuit elements and let v and i be its terminal 
voltage and current when connected in an AC circuit, as shown in Figure 3.9. 

N
Linear

Network

+
v

i

α I

V

 

Figure 3.9 : A General Linear 2-terminal Network in an AC Circuit 

The relation between v and i would, in general, be an involved differential 
equation with time as the independent variable. But under sinusoidal regime with 
an angular frequency ω, the phasors V and I  would have a proportionality 
relationship independent of time. This proportionality constant is termed the 
impedance Z  of the network N. Thus 

   α∠== Z
I
VZ               . . . (3.9) 

The following are the characteristics of Z . 

• Z  is a function only of ω and the values of elements in N. It is 
independent of time and the value of IV or . You will learn later how 
to compute Z  for any given N. 
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• Z  has the same dimensions as resistance and is measured in Ω. 

• From the definition of Z , we have  
IZV =             . . . (3.10) 

which plays the same role in AC circuits as Ohm’s law in DC circuits. 

• The magnitude Z for the impedance is the ratio of the effective values 
of voltage and current. Sometimes, Z itself is referred to as the 
impedance instead of Z . 

• α is called the angle of the impedance Z  and denotes the phase angle 
by which V leads I . 

• In rectangular coordinate form, Z  can be expressed as  
XjR +=Z , 

where the real and imaginary components R and X are respectively 
called the effective resistance and reactance of N, the latter may, in 
general, be positive or negative, but for a network N comprising no 
active elements (e.g., dependent sources), R is always non-negative  

• Z  is to be viewed purely as a complex number and cannot be 
associated with any sinusoidal signal as its phasor. 

Note : We should distinguish between a physical element and its circuit 
parameter. But expressions like a resistor having a resistance of 20 Ω is 
connected in parallel with a capacitor of 1 μF capacitance are not only 
inconvenient but may even sound pedantic. Hence, you often find in 
literature an element itself being referred to by its circuit parameter – 
resistance, inductance or capacitance. Thus, the previous expression 
would usually be rewritten “a 20 Ω resistance is connected in parallel with 
a 1 μF capacitance”. We may call the two-terminal network N itself as the 
impedance Z . 

As a dual concept to impedance, we define the admittance Y of the network N as  

   β∠== Y
V
IY              . . . (3.11) 

Obviously Y is reciprocal to Z , is measured in Siemens and enables 
determination of current for a given applied voltage by  

  VYI =              . . . (3.12) 

also, Y = Z − 1 and β = − α. 

In rectangular coordinate form, Y may be expressed as  
  ,jBGY +=  

where G and B are referred to as the effective conductance and susceptance of N. 
Let us now discuss the behaviour of single elements. 

From Equation and the definition of Z , we deduce the following expressions for 
the impedance. 

Element Resistance 
(R) 

Inductance 
(L) 

Capacitance 
(C) 

Impedance Z  R jωL = jXL 1/jωC = − j/ωC = − jXC
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AC CircuitsThe impedance of a resistor is purely real, equal to its resistance R and has no 

imaginary component. It is in anticipation of this that we have used the symbol R 
for the real part of Z . On the other hand, inductors and capacitors have purely 
imaginary impedances, inductive reactance XL being positive and capacitive 
reactance (− XC) being negative. 

How does one calculate the impedance of a network with several elements? To 
obtain a clue, let us consider a series combination of several sub-networks with 
impedances nZZZ ,...,, 21 as shown in Figure 3.10. 

When an AC current having I for its phasor passes through the series 
combination, we have 

  IZVIZVIZV nn === ,...,, 2211  

V
+

a

b

V1

Z1

V2

Z2

V3

Z3

Vn

Zn

I

+ + + +

–

– – – –

 

Figure 3.10 : Series Combination of Impedances 

Using KVL in phasor form, the terminal voltage of the combination is 

 IZZZIZIZVVVV nnn )...(...... 21121 +++=++=+++=  

Thus, the equivalent impedance of the series combination is 

  1 2 . . .s nZ Z Z Z= + + +             . . . (3.13) 

In a similar fashion, it is left to the reader to show using KCL that the equivalent 
impedance and admittance of the parallel combination shown in Figure 3.11 are 
given by  

  
np ZZZZ

1...111

21

+++=        . . . (3.14(a)) 

or  nP YYYY +++= ...21         . . . (3.14(b)) 

I

V

+

–

I1

Y1 Y2
I2

Yn
In

 

Figure 3.11: Parallel Combination of Admittances 
Eqs. (3.13) and (3.14) are similar to rules for combining resistors in series and in 
parallel. We will encounter a similar pattern in future. All the techniques that we 
have learnt for DC circuit analysis can be applied to AC circuits as well with 
certain modifications. The techniques include finding series-parallel equivalents, 
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current and voltage division rules, star-delta conversions, loop circuit and node 
voltage analyses etc. The departure from DC methods are : 
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• KVL and KCL relations are expressed in phasor form. 

• Impedance Z (or admittanceY ) is used in place of resistance (or 
conductance), 

• Terminal relations VYIIZV == and are used instead of V = RI 
and I = GV in DC domain. 

This is the power and beauty of the phasor concept. Essentially, the same methods 
and formulations applicable to circuits with constant currents and voltages are 
made applicable to circuits with currents and voltages varying in time 
sinusoidally. The price we have to pay for this simplification, namely dealing 
with complex numbers, is indeed less taxing than the alternative of working in 
time domain with trigonometric functions and carrying out differentiation and 
integration operations thereof. 

 

 
Example 3.4 

Find the impedance of the element combinations shown in Figure 3.12, 
taking the frequency to be 400 Hz. 

20 Ω 10 Fμ 10 mH100 Ω

(a) (b)

40 Ω

5 Fμ

(c)

60 Ω

20 mH

(d)  

Figure 3.12 

Solution 
(a) The impedance of the series combination is the sum of the two 

impedances. 

   1 2 6
120

2 400 10 10sZ Z Z
j −

= + = +
π × × ×

 

                    = 20 – j 39.8 Ω 

(b) 3
1 2 100 2 400 100 10sZ Z Z j −= + = + π × × ×  

                    = 100 + j 251 Ω 
(c) Alternative I 

 1 2 6
140 ; 79.6

2 400 5 10
Z Z j

j −
= Ω = = −

π × × ×
Ω  

The two impedances being in parallel, 

 
o

1 2
o

1 2

40 ( 79.6) 3184 90
40 79.6 89.1 63.3

r
Z Z jZ

Z Z j
− ∠

= = =
+ − ∠ −

−  

   = 35.7∠ – 26.7o = 31.9 – j 16.0 Ω 

 Alternative II 
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 6
1 2

1 0.02 ;  2 400 5 10 0.0126 .
40

Y S Y j C j j−= = = ω = π × × × = S  

The two admittances being in parallel, 

  o
P jYYY 7.26028.00126.0025.021 ∠=+=+=  

Then 

 Ω−=−∠=∠== −− 0.169.317.267.35)7.26028.0()( 11 jYZ oo
PP  

(d) Ω+=∠=
∠
∠

= 5.297.24505.38
403.78
903018 jZ o

o

o

P  

 
 

Example 3.5 

When the element combination in Figure 3.12(a) is connected to 200 V, 
400 Hz supply, what would be the current drawn? What would be the 
voltage across the resistance and capacitance? 

Solution 
As the phase of the supply voltage is not specified, we need to compute 
only the RMS value of the current. 
    Z = (202 + 39.82)1/2 = 44.54 Ω 
     I = V/Z = 200 / 44.54 = 4.49 A 
  VR = IR = 4.49 × 20 = 89.8 V 
  VC = (I / ωC) = 4.49 × 39.8 = 178.7V 

 
 

Example 3.6 

If a voltage of 200 V, 400 Hz is applied across the element combination in 
Figure 3.12(c), find the total current taken by the combination. 

Solution 
Since the phase of the supply voltage has not been specified, let us take it 
as 0o. That is, we are taking the applied voltage phasor as the so-called 
reference phasor. 
   oV 0200 ∠=  

Now   540/200/0200 o ==∠= RIR  

and   52.2)900126.0()0200( oo jCjVIC =∠∠=ω=  

   A6.5)52.25(52.25 2/122 =+=⇒+=+= IjIII CR  

The phasor diagram showing the relative positions of the different phasors 
is given in Figure 3.13. 

I

IR

IC

+ V

IC I

IR

V  
Figure 3.13 
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If V has any other phase angle say αo it only means that the entire figure 
will rotate by αo.  There will be no change in the magnitudes of the voltages 
and currents and in their phase differences. This is an important point to 
note. When no contrary information is specified, we are at liberty to 
arbitrarily assume one convenient quantity as the reference phasor. 
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3.3.3 Mutual Inductance 
The property of an inductance coil is to set up a magnetic field when carrying a 
current. Some of the magnetic flux lines so set up may also link with another coil 
(inductor) in its proximity. In such an event, the two coils are said to be 
magnetically coupled. When the current in the first coil changes, not only do its 
self flux linkages change but also the flux linkages (called mutual flux linkages) 
produced by it in the second coil. Consequently, there is a voltage induced in the 
second coil due to a change of current in the first coil. The action described above 
is reciprocal in that a change of current in the second coil would also induce a 
proportionate voltage in the first coil. The induced voltage in each coil is 
produced due to per unit rate of change of current in the other and is defined 
to be the mutual inductance M between the coils. M is another passive circuit 
parameter like R, L and C that we discussed in Unit 1 and arise whenever two 
inductors are coupled magnetically. It is measured in the same units as L viz., 
henrys. The principle of mutually induced voltage forms the basis of transformer 
action. 

Figure 3.14 shows two coils of N1 and N2 turns having inductances L1 and L2 
(called self inductances) coupled through a mutual inductance M. The self and 
mutually induced voltages when either coil carries a current are illustrated 
therein. φ2 represents that part of the flux produced by coil 1 which is linked with 
coil 2 and vice-versa. 

i1 = 0
M =

φ21 2N

i2
+ v1 = M1

di
dt

2

ρ
φ12

i2

N1 N2

+ v2 = L
di
dt

2

ρ
φ22

M =
φ12 1N

i2

N1

ρ
φ11

ρ
φ21

i1

+ v1 = L1
di
dt

1 + v2 = M
di
dt

1

N2

i  2 = 0

––  
(a) When Coil 1 Only is Carrying Current       (b) When Coil 2 Only is Carrying Current 

Figure 3.14 : Self and Mutually Induced Voltage 

In the event when the two carry currents i1 and i2 simultaneously as in 
Figures 3.14(a) and (b) seen together each coil has both self and mutually induced 
voltage components. The terminal voltages of the coils are then given by 

   
dt
diM

dt
diLv 21

11 +=  

   
dt
diL

dt
diMv 2

2
1

2 +=             . . . (3.15) 

 SAQ 3 

(a) “If a sinusoidal voltage ν(t) applied to a circuit element delivers a 
current i(t), then the impedance of the element is ν(t) / i(t)”. Comment 
on the above statement. 
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AC Circuits(b) Fill up the following table 

Element Resistance 
(R) 

Inductance 
(L) 

Capacitance
(C) 

Admittance Y     

 

 

SAQ 4 

(a) In Example 3.5, VR and VC do not add up to the magnitude of the 
supply voltage. Is this not a violation of KVL? 

(b) If a current i (t) = 2  sin (400 t + 30o) mA passes through the 
element combination in Figure 3.12(b), find an expression for the 
voltage across the combination. 

 
 

SAQ 5 

 
(a) A resistance of 20 Ω and an impedance 40 + j 60Ω are connected 

across an AC supply source as shown in Figure 3.15. If the voltage 
across the resistor is 50 V, find the source voltage. Draw a phasor 
diagram. 

40 + j60 Ω20 Ω

 

Figure 3.15 

(b) A fluorescent lamp may be considered to be a pure resistance. A 40 
W lamp is designed to operate at a voltage of 130 V at 50 Hz. This 
lamp, in series with a choke coil (which may be considered a pure 
inductor), is connected across 220 V, 50 Hz supply. Calculate the 
required value of inductance of the choke coil. 

 
 

3.4 CONCEPTS RELATING TO POWER 

Since AC circuits have periodically varying voltages and currents, the power 
delivered to an element or a section of a circuit is also a periodically varying 



 
 

 
86 

quantity p(t). A meaningful measure of power in such situations is the average 
power over a cycle. The term power when used in the context of an AC circuit 
without any additional qualification means this average value and is denoted by 
the symbol P. In a DC circuit, the power delivered to a 2-terminal network is 
equal to VI, the product of the terminal voltage and current. In what follows, we 
develop the corresponding formula applicable to AC circuits. 

E/M Engineering 
 

3.4.1 Power, Apparent Power and Power Factor 
Consider the circuit given in Figure 3.16, where sinusoidal voltage 

2 V sin ( t )v = ω + θ supplies power to a 2-terminal network N having an 
equivalent impedance .jXRZZ +=∠= α  In this context, N is also referred to as 
a load and Z as the load impedance. 

i

~
+

v =    2 V sin ( t + )ω θ

N

Z  ∠ α θ
α

I

V

 

Figure 3.16 

The phasor I of the resultant current I in this circuit is 

  α)(θ −∠⎟
⎠
⎞

⎜
⎝
⎛=⎥

⎦

⎤
⎢
⎣

⎡
α∠
θ∠

=
Z
V

Z
VI  

Thus  )(sin2)(sin2 α−θ+ω=α−θ+ω⎟
⎠
⎞

⎜
⎝
⎛= tIt

Z
VI  

The instantaneous power supplied by the source to the load is  

     )(sin2.)(sin2)( α−θ+ωθ+ω=υ= tItVitP  

  )(sin)(sin2 α−θ+ωθ+ω= ttIV  

  )]22(cos[cos α−θ+ω−α= tIV  

The variation of p(t) is shown in Figure 3.17. 

α

θ

v, i, p

VI

p
v

i

P = Avg. of p(t) = VI cos α

ωt
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AC CircuitsFigure 3.17 : Instantaneous Power p(t) Delivered to N 

It is seen from Figure 3.17 (hatched portion) that p(t) consists of a constant 
component V I cos α second component of peak value V I varying sinusoidally at 
a frequency 2ω. As the average of the second component over a period of the 
input voltage or current is zero, the average of p(t) is equal to the first component 
itself. Thus, 

   P = V I cos α Watts             . . . (3.16) 

The above formula is of great significance. It indicates that the power received by 
a load is not merely the product of the RMS values of its terminal voltage and 
current but includes an additional multiplicative factor cos α, called the power 
factor of the load. Power factor is the cosine of the impedance angle α and hence 
is a property of the concerned load. Formally, power factor (p.f.) may be defined 
as 

 Power deliver to loadp.f.
Product of effective values of terminal voltage and current of the load

=  

           p.f. P
VI

=                 . . . (3.17) 

The power factor is said to be of the leading type if I  leads V  (i.e., X < 0) and of 
the lagging type if I  lags V (i.e. X > 0). 

In contrast to power P, the product VI is termed apparent power S and is indicated 
in units of volt-amperes (abbreviated VA). Though dimensionally 1 VA equals 
1 Watt, two different names of the unit are adopted to emphasize the distinct 
between apparent power S and P. Apparent power is an important parameter in 
the specifications of electrical equipment, as the size and cost of many electrical 
machines depend on their VA rating rather than wattage rating. For instance, a 
500 kVA distribution transformer is rated in terms of its ability to handle S up to 
500 kVA level which determines maximum current at rated voltage rather than 
power P it can deliver to a load which in dependent on load power factor. 

Table 3.1 gives the particular forms of the relations discussed above for special 
categories of loads. Note that a pure inductor and capacitor have zero p. f. since 
they are only energy storage elements and not energy dissipating elements. 

Table 3.1 

Load Z 
(Ω) 

α Apparent Power (S) 
(VA) 

Power Factor Power (P) 
(W) 

Resistor R 0o VI = I 2 R = V 2/R 1.0 (unity) VI = I 2 R = (V 2/R) 
Inductor j ω L 90o VI = I 2 ω L = (V 2/ω L) Zero (lagging) Zero 

Capacitor 1/j ω C − 90o VI = I 2 / ω C = (V 2 ω C) Zero (leading) Zero 

3.5 THREE-PHASE CIRCUITS  

A sinusoidal voltage source with 2 terminals having a single voltage output is 
termed a single-phase source. Circuits incorporating such sources are called 
single phase (1-phase) circuits and formed the subject of our study uptil now in 
this unit. In contrast, a poly-phase system contains sources each of which has 
several voltage outputs with a fixed phase difference between them. The three-
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phase 
(3-phase) system is the most common example of a poly-phase system. 

E/M Engineering 
 

The generation and transmission of electrical energy and its utilization in bulk 
form is effected through 3-phase systems. You will learn about the precise nature 
of a 3-phase system and the advantages it provides relative to a single-phase 
system. 

3.5.1 Nature of a 3-Phase System 
A single phase AC generator consists of a rotating magnet driven by a prime 
mover and a winding embedded in the stationary part of the machine called the 
stator. Figure 3.18 shows an elementary form of the generator with a single turn 
coil AA′ on the stator. As the magnet rotates, the flux lines linking with the coil 
undergo a periodic variation and hence induce a periodic emf in the latter. The 
frequency of this emf is fixed by the speed of rotation of the magnet. Special 
steps are taken in the design and construction of the machine to make the 
waveform of the induced voltage sinusoidal. Thus, the coil functions as a single-
phase AC voltage source with terminals A1 and A2, to which a load may be 
connected. 

N

S

A

A'

Stator

~

A1

A2

eA

+

–

N

S
e A

2–
+

A 2

e A

A 1
+

–

e A

A

A'

 

Figure 3.18 : Elementary Single Phase Generator and its Circuit Representation  
Figure 3.19 illustrates the construction of an elementary 3-phase generator. Here, 
we have 3 identical coils AA′, BB′, CC′ placed on the stator with a displacement 
of 120o from one another. The three emfs eA, eB, eB C generated in the coils, 
therefore, have the same RMS value but have a phase difference of 120  from one 
another as shown in Figures 3.20(a) and (b). 

o
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N
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~
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+
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Figure 3.19 : Elementary 3-phase Generator and its Circuit Representation AC Circuits

0

eA eB eC

ωt8
3
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(a) Waveforms 

EA

EB

EC

120º

120º

120º

 
(b) Phasors 

Figure 3.20 : Voltages Produced in a 3-phase Generator 

3-phase generator can, therefore, be viewed as a composite unit comprising 
3-single-phase voltage sources with a fixed phase difference of 120o between any 
two of them. In practice, it is rare for a 3-phase generator to have all the six 
terminals brought out. The three coils are connected either in star or delta and 
only 3 or 4 terminals are brought out, as we shall see later. 

A 3-phase system contains 3-phase sources besides 3-phase load impedances and 
feeder lines interconnecting them.  
The three individual sections which constitute a 3-phase source besides 3-phase 
arrangement are referred to as Phase A, Phase B, and Phase C respectively. 
Another common practice is to label them as R (red), Y (yellow) and B (blue) 
phases. We shall follow the former convention in our work. 
3.5.2 Merits of a 3-Phase System 
Let us now look at the advantages provided by 3-phase systems relative to 
single-phase systems. 
A 3-phase AC generator utilises the available space on the stator more effectively 
than 1-phase generator and has 50% more kVA rating for the same physical size. 
All commercial power stations, therefore, employ 3-phase generators as they cost 
less than single-phase generators for the same kVA rating. 
The cost of electrical transmission and distribution lines used to carry bulk power 
from generating stations to receiving substations and distribute power from the 
substations to different load centres depends substantially on the volume of 
conducting material (usually aluminium) required for constructing these lines. It 
turns out that a 3-phase arrangement for transmission and distribution requires 
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less conductor material for the lines and is, therefore, less expensive than a 
1-phase system for handling the same amount of power at a given system voltage. 
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In power utilization, a 3-phase motor develops essentially a constant output 
torque whereas a single-phase motor can inherently provide only a pulsating 
torque. Not only is the three-phase motor consequently quieter in operation but it 
also provides better starting characteristics, higher efficiency of power conversion 
from electrical to mechanical form and better p. f. It is also, in general, cheaper 
than a 1-phase motor of the same power rating. 

The foregoing economic and technical advantages have led to the universal 
adoption of the 3-phase system for the generation, transmission and utilization of 
bulk power. Small electrical loads, of typically less than 3 kW power rating, are, 
however, designed and built for single-phase operation. These include electric 
lights, fans, heaters and small motors needed for various domestic appliances, 
machines tools, pump sets and the like. The benefits that may stem from 3-phase 
operation of these loads are not commensurate with the additional cost of 
manufacturing them to be suitable for 3-phase use and of running the additional 
cost of manufacturing them to be suitable for 3-phase use and of running 3-phase 
lines to each individual item. In practice, these small loads are fed from 
single-phase supplies available from a 3-phase distribution system. 

 SAQ 6 
 

(a) Distinguish between a 3-phase generator and a single-phase 
generator. 

(b) Fill up the blanks : 

A 3-phase generator has more . . . . . . . . .  . . . . . . . . . . .. . than 1-
phase generator of the same physical size. A 3-phase transmission 
line employs less . . . . . . . . .  than a 1-phase transmission line for the 
same power transmitted and the same system voltage. The torque 
developed by a 3-phase motor is . . . . . .  . . . . .  . .  . .  while the 
torque developed by a 1-phase motor is . . . . . . . . . . . . . . . . . . . . 

 
 
 
 
 
 

3.5.3 Characteristics of a 3-phase System 
After having been acquainted with the nature of 3-phase systems and their 
advantages, you will study in this section the characteristics of 3-phase sources, 
loads and associated systems in greater detail.  

Balanced Sets of Voltages and Currents  
At any section of the circuit representing a 3-phase system, there exist three 
voltages and three currents which constitute the variables of interest. Three 
such voltages or currents are said to form a balanced set if they have 
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AC Circuitsequal effective values and if the phase difference between any two is 

120o. A balanced set of three voltages CBA VVV and,  is depicted 
in Figure 3.21. 

0

VA VB VC

ωt2π − θ

VA

−θ

 
(a) Waveforms 

VA

120º

120º

120º

VC

VB

θ

 
(b) Phasors 

Figure 3.21 : A Balanced Set of Three Voltages with ABC Phase Sequence 

Note that similar events in the three waveforms (e.g., positive peak values) 
occur in the sequence ABCABC . . . for this reason, the three voltages are 
said to have the ABC phase sequence. (We could as well have called it the 
BCA or CAB phase sequence but, by convention, choose the natural 
alphabetical order). Referring to the phasor diagram in Figure 3.21(b), if 
one were to imagine the three phasors to rotate in the anticlockwise 
direction, they sweep past a stationary point in the sequence ABC. This 
alternative way of judging the phase sequence from a phasor diagram would 
be useful when the waveforms are not explicitly plotted. 

There exists a second possible phase sequence for a balanced voltage set, as 
depicted in Figure 3.22. Here, similar events in the three signals occur in 
the sequence ACBACB . . . This sequence is called the ACB phase 
sequence (it could as well have been called CBA or BAC phase sequence). 
Note that the three related phasors now sweep past a stationary observer in 
the  
order ACB. 
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Figure 3.22(a) : Waveforms 

VA
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120º

120º

VB

VC

θ

 

(b) Phasors 

Figure 3.22 : A Balanced Set of Three Voltages with ACB Phase Sequence 

In normal practice, the individual phases are so labelled as to correspond to 
the ABC phase sequence. We shall assume this to be the phase sequence in 
all our further work unless the contrary is specifically indicated. What has 
been discussed above with respect to a set of balanced voltages holds 
equally well with respect to a set of 3 currents. A set of balanced 3-phase 
voltages or currents would then have the following expressions (with ABC 
phase sequence assumed). 

   2 sin ( )Av V t= ω + θ  

   22 sin
3Bv V t π⎛ ⎞= ω + θ −⎜ ⎟

⎝ ⎠
           . . . (3.18) 

   22 sin
3Cv V t π⎛ ⎞= ω + θ −⎜ ⎟

⎝ ⎠
 

   2 sin (Ai V t )= ω + β  

   22 sin
3Bi V t π⎛ ⎞= ω + β −⎜ ⎟

⎝ ⎠
           . . . (3.19) 

   22 sin
3Ci V t π⎛ ⎞= ω + β −⎜ ⎟

⎝ ⎠
 

The corresponding phasors would be  

  ; ( 2 / 3); ( 2 / 3)A B CV V V V V V= ∠θ = θ − π = ∠ θ + π     . . . (3.20) 
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AC Circuits  ; ( 2 / 3); ( 2 / 3)A B CI I I I I I= ∠ β = β − π = ∠ β + π        . . . (3.21) 

The following properties of balanced voltages (or currents) are noteworthy : 

With ABC phase sequence, vA leads vB by 120 , vB

o
BB leads vC by 120o and vC 

leads vA by 120o. With ACB phase sequence, vA leads vC by 120o, vC leads 
vB by 120  and vB

o
BB leads vA by 120o. 

If the set of voltages (or currents) is known to be balanced and the phase 
sequence is fixed, the data pertaining to one voltage or current would 
suffice to deduce the other two. For example, if it is known that 

o30100 ∠=BV  and that the phase sequence is ABC, it follows that 
o150100 ∠=AV  and o90100 −∠=CV . 

The sum of three balanced quantities is identically zero in time domain. 

 vA + vB + vB C = 0            . . . (3.22) 

  iA + iB + iB C = 0             . . . (3.23) 

The above results can be proved through manipulation of the trigonometric 
expressions in Eqs. (3.18) and (3.19). They can also be verified by 
observing that the ordinates of the three pertinent waveforms like those in 
Figure 3.22(a) add up to zero at every instant of time. 

The equivalent results in phasor domain are 

   0=++ CBA VVV             . . . (3.24) 

  0=++ CBA III             . . . (3.25) 

To check the validity of Eq. (3.24) refer to Figure 3.23(a) since AV and BV  
have equal magnitudes and are 120o apart, their resultant R AV V V= + B  is at 
60o from AV  and has same magnitude. A BV V+  is, therefore, equal and 
opposite to CV . Hence 0R C A B CV V V V V+ = + + = . If drawn from end to 
end, the three directed line segments AV , AV  and CV  add up to zero 
(Figure 3.23(b)). 

60º

60º

120º
VC

VB

VA + VB

VC VB

VA

VA

 
(a)     (b) 

Figure 3.23 : Balanced Set of 2-Phase Voltages Add up to Zero 

Finally, you should note that three voltages/currents are unbalanced if their 
effective values are not equal or their phase differences are not 120o or 
both. Figure 3.24 gives examples of sets of unbalanced voltages. 
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    (a)     (b)        (c) 

Figure 3.24 : Examples of Sets of Unbalanced Voltages 

 

  
Example 3.7 

At a certain section in a 3-phase circuit, o120 60BV = ∠ and 
o4 180CI = ∠ . If the voltages and currents are balanced and the phase 

sequence is ABC, deduce AV , BV , AI  and BI . 

Solution 
 With ABC sequence, BV  leads CV  by 120o. Thus, 

  o o120 180 ; 120 60A CV V= ∠ = ∠ −  

CI   leads AI  by 120o and lags BI  by 120o  

        o o4 60 ; 4 60A BI I⇒ = ∠ = ∠ − . 

3.5.4 Star and Delta Connections 
You would recall that a 3-phase generator essentially consists of 3 single-phase 
sources, having output voltages say, eA, eB and eB C. A balanced 3-phase source is 
one in which these three voltages form a balanced set. All commercial 3-phase 
generators are built in this manner. The three single-phase sources are connected 
internally either in delta or in star as shown in Figure 3.25 and terminals brought 
out for connection to external loads. 

Note the symmetrical way of connecting the three single-phase sources. In the 
delta connection, A2 is connected to BB1, B2 is connected to C1 and C2 is connected 
to A1. In the star connection, A2, B2 B and C2 are joined together. Such an orderly 
method of connections is needed to ensure the balanced condition of the voltages 
available between the terminals A, B and C of the 3-phase generator. 

In the delta connection, the effective emf of the three series connected sources 
around the closed circuit is eA + eB + eB C. If the three voltages do not add up to 
zero there would be a large circulating current in the delta even with no load 
connected to terminals A, B, C and this is clearly an undesirable situation. 
However, for a balanced source this contingency does not arise as eA + eBB + eC = 
0. It is this fact which makes the delta connection of a 3-phase source feasible. 
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C1
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B2 B1eB

– +

A2

eC
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+
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–
eA

C2 A1
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~
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B1

eC
+

A2
B2

A

B
~ +

eB

A1

~ +
eA

C2 ~

C
C1

B1

eC
+

A2
B2

A

B
~ +

eB

A1

~ +
eA

C2

N

B

 

  (a)        (b)    (c) 

Figure 3.25 : Source Connections (a) Delta Connection; (b) 3-wire Star Connection; and 
(c) 4-wire Star Connection 

In the star connection, the common terminal of the 3 sources (star point) is called 
the neutral point. Here, there exist two possible arrangements. Where a separate 
terminal is not provided for the neutral point as in Figure 3.25(b), the generator 
forms part of what is known as a 3-wire 3-phase system. On the other hand, the 
arrangement shown in Figure 3.25(c) permits connection of the generator in a 
4-wire 3-phase system. The terminals A, B, C are called the line terminals and N 
is called the neutral terminal. 
A 3-phase load generally comprises three impedances in a configuration suitable 
for connection in a 3-phase circuit. Similar to the connections in a 3-phase 
generator, here, also we have 3 possible connections as shown in Figure 3.26. 
Notice that the configuration in Figure 3.26 is suitable for connection only in a 
4-wire 3-phase system. 

A

ZCA ZAB

ZBC

C

B

A

C

B

C

B

A

N

ZC ZB

ZA ZA

ZBZC

 

  (a)          (b)    (c) 

Figure 3.26 : 3-phase Connections (a) Delta; (b) 3-wire Star; and (c) 4-wire Star 

A 3-phase load is balanced if the three complex impedances are equal, i.e. 

  A B CZ Z Z= =  for a star-connected load 

and  AB BC CAZ Z Z= =  for a delta-connected load 

Not only the magnitudes but also the angles of the impedances should be equal 
for a 3-phase load to be balanced. We can, therefore, use a common symbol YZ  
for the three impedances in star and AZ  for the three impedances in delta. 

For balanced loads, the formulas for star-delta, and vice-versa, conversion is 

    1
3

YZ Z Δ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

            . . . (3.28) 

A 3-phase circuit is formed through the interconnection of 3-phase sources and 
3-phase loads. If all the sources are balanced and have the same phase sequence 
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and all the loads are also balanced, then the 3-phase circuit is said to be balanced. 
A characteristic of a balanced 3-phase circuit is that the voltages and currents at 
any arbitrary location are balanced. In our study, we shall be concerned only with 
balanced systems. 

E/M Engineering 
 

 

SAQ 7 (a) Fill u

The ________________________1 connection of sources/impedances 
is suitable either for 3-wire or for 4-wire three-phase systems but the  
____________________2 connection of sources/impedances is 
suitable only for ________________________3  three-phase systems. 

(b) State if the following assertions are true or false. 

(i) Three impedances ,A BZ Z  and CZ  form a balanced 
3-phase load if 0A B CZ Z Z+ + = . 

(ii) The neutral point is not available in a 3-phase 
delta-connected source. 

 
 
 
 
 
 

 
Example 3.8 

A balanced 3-phase load is formed by three impedances of 60 + j90 ohms 
each, connected in delta. If this load is equivalent to a star-connected load 
having YZ  in each leg of the star, calculate YZ . 

Solution 

  1 1 (60 90) 20 30
3 3

YZ Z j jΔ= = + = + Ω  

Relations between Line and Phase Quantities  

In 3-phase circuits, one distinguishes between line voltages and currents on 
one hand and phase voltages and currents on the other. Phase quantities are 
the internal voltages or currents associated with the single phase sources 
constituting a 3-phase source or the three impedances constituting the 
3-phase load. Line quantities, on the other hand, are those which can be 
measured at the 3-external terminals. These are the voltages between and 
the current in the external supply lines connected to the terminals. 

Star Connection 

The line and phase quantities for star connected balanced 3-phase system 
are shown in Figure 3.27. 
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(a)      (b) 

Figure 3.27 

– VAN

– VBN VABVCNVCA

VAN

30º
30º

VBC

– VCNVBN

 
(c) 

Figure 3.27 : Phase and Line Quantities in a Star-connected (a) Source; (b) Load; and 
(c) Deduction of Line Voltages from Phase Voltages in a Balanced Star Configuration 

A balanced star configuration has the following important characteristics : 
• Phase currents and line currents have the same effective value 

(IL = IP). 
• Line voltages have 3  times the effective value of phase 

voltage ( 3L PV V= ). 

• The line voltages and phase voltages have the same phase 
sequence and the set of line voltages phasors is displaced by 30o 
from the set of phase voltage phasors. 

Delta Connection 
Line and phase quantities for delta connected source and load are shown in 
Figure 3.28. 
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+
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              (a)       (b) 
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30º 30º

60º 60º

30º
30º

30º
30º

IC

IAIB

ICA

ICA

IAB

IBC

−IBC

−IAB

 
(c) 

Figure 3.28 : Phase and Line Quantities in a Delta-Connected (a) Source; (b) Load and 
(c) Deduction of Line Currents from Phase Currents in a Balanced Delta Configuration 

A balanced delta configuration has the following important characteristics : 
• Phase voltages and line voltages have the same effective value 

(VL = VP). 

• Line currents have 3  times the effective value of phase 
currents ( 3L PI I= ). 

• The line currents and phase currents have the same phase 
sequence and the set of line current phasors is displaced by 30o 
from the set of phase current phasors. 

SAQ 8 
 

 
 

(a) State if the following assertions are true or false. 
(i) Three currents in a 3-phase system are balanced if their 

phasors are equal. 
(ii) In a set of balanced 3-phase voltages with ABC phase 

sequence AV  leads the other two voltages BV  and CV . 

(iii) If ,0=++ CBA iii  then , andA Bi i iC  form a balanced set 
of 3-phase currents. 

(b) Taking vA and iA as in Eqs. (3.18) and (3.19), write the expressions for 
the other quantities if phase sequence is ACB. 

(c) Taking following to be balanced sets of voltages/currents with ABC 
phase sequence, fill the blanks  

(i) .);..(sin...2 +ω×= tvA  

.)..(sin1002 +ω×= tvB  

).45(sin...2 o+ω×= tvC  

(ii) ...4;60...;...... o ∠=∠=∠= CBA III  
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AC Circuits3.6 SUMMARY 

In this unit, the main emphasis was on the study of single-phase AC circuits and 
the concepts of three phase systems. 

Sinusoidal voltages and currents called AC voltages and currents play a key role 
in the theory and practice of electrical engineering. Here, you have learnt how to 
calculate response of R, L, C elements to sinusoidal excitation and also how to 
calculate power. 

You have also been introduced to the basic features of a 3-phase voltages and 
currents. 

In the next unit, the electrical machines and power distribution will be discussed. 

3.7 ANSWERS TO SAQs 

SAQ 1 

(a)  o100 sin ( 30 )t− ω +

  o100 sin ( 150 )t= ω −

150o

100/ 2√

 
(b) o4 2 cos ( 30 )tω +  

 o4 2 cos ( 120 )t= ω +  

120o

 
SAQ 2 

(a) (i) leads 

(i) 90 

(ii) resistor 

(iii) smaller 

(b) 230 = (2π × 50) L × 1.1 ⇒ L = 0.666 H 

Changed current = 1.435A
25
50

230
1501.1 =××  

Also, A435.1
666.0502

150
=

××π
=

ω
=

L
VI  

SAQ 3 

(a) The statement is false. It is the ratio of phasors of v(t) and i(t), which 
is equal to the impedance. 

(b) R-1,  1/jωL,      jωC 

SAQ 4 



 
 

 
100 

(a) No. vR and vc have a phase difference of 90o since one is in phase with 
the current and the other lags the current by 90o. The magnitude of 

their phasor sum is 
1 1

2 2 2 22( ) (89.8 178.7 )R cV V+ = +

E/M Engineering 
 

2 , which is indeed the 
RMS value of the supply voltage vs. KVL implies that 
vs = vR + vc or equivalently CRS VVV += and not Vs = VR + Vc. 

(b) oo jZI 3.68270251100;3010 3 ∠=+=∠= −  

o 3 o[270 68.3 ][10 30 ] 0.27 98.3V ZI −= = ∠ ∠ = ∠ o  

Hence, )3.98400(sin227.0)( o+= ttv  

SAQ 5 

(a) We have ZRS VVV += . Let us take RV  as reference. 

RV  = 50 ∠ 0o

5.205.20)20/50( =∠=∠= ooI  

1501005.2)6040( jjIZVZ +=+==  

15015015010050 jjVVV ZRS +=++=+=  

V212150150 22 =+=SV  

VzVs

VR

50

50 100  

Figure for Answers to SAQ 5(a) 

(b) We know power, P, in a resistor equals 
R

VP
2

eff= . 

Here,    . V130eff =V

  Rlamp = 1302/40 = 422.5 Ω 

   Ilamp = 130/422.5 = 0.308 A 

Impedance of the combination = 220/0.308 = 714.3 Ω 

Thus, we must have 

  R2
lamp + ω2 L2 = 714.32

        
π

−
=

100
)5.4223.714( 2

1
2

L  = 1.83 H. 

SAQ 6 
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AC Circuits(a) A single-phase generator has two terminals and produces a single 

output voltage between the two terminals. A 3-phase generator is a 
composite unit comprising 3-single-phase generators, each generator 
producing a voltage which has fixed phase difference with the other 
two. The three 1-phase generators are connected internally in star or 
delta and the resulting 3-phase generator has 3 or 4 external terminals. 

(b) (i) kVA rating 

(ii) conductor material 

(iii) constant 

(iv) pulsating 

SAQ 7 

(a) Star1, Delta2, and  3-wire3

(b) (i) False 

 (ii) True 

SAQ 8 

(a) (i) False 

 (ii) False. CV  leads AV  by 120o (angle of lag/lead is limited 
to 180o). 

 (iii) False. The converse of the statement above Eq. (3.23) is not 
necessarily true. For example, iA, iB and iB C with iA = − iBB and 
iC = 0 do not form a balanced set. 

(b) ⎟
⎠
⎞

⎜
⎝
⎛ π

+θ+ω=
3

2sin2 tVvB  

⎟
⎠
⎞

⎜
⎝
⎛ π

−θ+ω=
3

2sin2 tVvC  

⎟
⎠
⎞

⎜
⎝
⎛ π

+β+ω=
3

2sin2 tIiB  

⎟
⎠
⎞

⎜
⎝
⎛ π

−β+ω=
3

2sin2 tIiB  

(c) (i) 100, 285o, 165o, 100. 

(ii) 4, 180o, 4, – 60o. 
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