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3.1 INTRODUCTION 

An orifice is an opening with a closed perimeter made in the wall or the base of a 
vessel through which the fluid flows. Orifices are used for the measurement of 
flow. The top edge of the orifice is always below the free surface. If the free 
surface is below the top edge of the opening, the orifice becomes a weir.  

Orifices are of various shapes; commonly used shapes are circular, square, 
triangular and rectangular. 

The upstream edge of the orifice may be rounded or sharp. The orifice with a 
sharp upstream level edge causes a line contact between the fluid and the edge. 
The rounded orifice has a surface contact. The orifice with a sharp upstream edge 
is commonly used, which is also known as a standard orifice. 

An orifice is termed small when its dimensions are small compared to the head 
causing flow. The orifice is termed large if its dimensions are comparable with 
the head causing flow. In a small orifice, the velocity does not vary appreciably 
from the top to the bottom edge of the orifice and is assumed to be uniform. In 
large orifices, the variation in the velocity from the top to the bottom edge is 
considerable, and is, therefore, accounted for. 

An orifice is said to be discharging free when it discharges into atmosphere. It is 
said to be submerged when it discharges into another liquid. The jet of the fluid 
coming out of the submerged orifice is not falling freely, as it is buoyed up by the 
surrounding liquid. 
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Objectives Fluid Mechanics 
 

After studying this unit, you should be able to 

• conceptualise the phenomena of discharge through a sharp-edged 
circular orifice, 

• explain the use and applications of different types of orifice, and 

• handle problems pertaining to time of emptying of tanks through an 
orifice. 

3.2 DISCHARGE THROUGH A SHARP-EDGED 
CIRCULAR ORIFICE 

Let us consider a small circular orifice with sharp edges in the side wall of a tank 
(Figure 3.1). Let the centre of the orifice be at a depth H below the free surface. 
Let us assume that the orifice is discharging free into atmosphere. As the fluid 
flows through the orifice, it contracts and attains a parallel form (i.e. streamlines 
become parallel) at a distance of about d/2 from the plane of orifice. This is due to 
the fact that the fluid particles in the tank cannot change their directions abruptly. 
The section at which the streamlines first become parallel is termed the 
venacontracta. The area of cross-section is minimum at the venacontracta. 
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Figure 3.1 

The cross-sectional area of the jet at the venacontracta is less than the area of 
cross-section of the orifice. The fluid particles before they reach the orifice have 
the velocity components parallel to the plane of the orifice and because of inertia, 
they cannot make abrupt changes in the direction, and they take curvilinear paths. 
This causes the contraction of the jet at the venacontracta. The ratio of the cross-
sectional area of the jet at the venacontracta (ac) to the cross-sectional area of the 
orifice (a) is called the coefficient of contraction and is usually designated by Cc. 

Thus   
a
aC c

c =  

Taking datum through the axis of the orifice and applying Bernoulli’s equation to 
points 1 and 2, 
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Flow through Orifices(Note : In the problems of orifices, it is convenient to work in terms of gauge 

pressures, i.e. the pressures are measured above the atmospheric 
pressure.) 

As the pressure at points 1 and 2 is atmospheric, p1 = p2 = 0. Further, if the 
cross-sectional area of the tank is very large, the liquid at point 1 is practically 
standstill and hence V1 = 0. 

Thus   H
g

V
=

2

2
2  

or      gHV 22 =        . . . (a) 

Eq. (a) is known as Torricelli’s theorem. This equation gives the theoretical (or 
ideal) velocity of efflux at the venacontracta. It may be noted that this velocity is 
also equal to the velocity of a particle falling under gravity through a height H. 
Owing to friction between the jet and the walls of the orifice, the actual velocity 
(V) is slightly less than the theoretical, and is given by  

   gHCV v 2=        . . . (b) 

in which Cv is a coefficient called the coefficient of velocity. The coefficient of 
velocity is defined as the ratio of the actual velocity to the theoretical velocity. 

 Thus   
gH

VCv 2
=  

At the venacontracta, the streamlines are straight and parallel and are 
perpendicular to the cross-section of the jet. The discharge (Q) may be obtained 
from the continuity equation 

     gHCaCVaQ vcc 2)(==  

   gHaCQ d 2=               . . . (3.1) 

in which Cd is a coefficient called the coefficient of discharge. The coefficient of 
discharge is equal to the product of the coefficient of velocity and the coefficient 
of contraction. 

Thus                  . . . (3.2) vcd CCC ×=

Theoretical discharge through the orifice is given by 

   gHaQ 2)ltheoretica( =      . . . (c) 

From Eqs. (3.1) and (c), it would be evident that the coefficient of discharge is 
also equal to the ratio of the actual discharge to the theoretical discharge. 

For a sharp-edged orifice, the value of Cc varies from 0.61 to 0.69. Its theoretical 
value, obtained from classical hydrodynamics, is given by 

    611.0
2
=

+π
π

=cC  

For very small orifices under low heads, the effects of surface tension and 
capillary action increases the coefficient of contraction. On the other hand, the 
coefficient of contraction decreases with an increase in the diameter and the head. 

For a sharp-edged orifice, the value of the coefficient of velocity ranges from 0.95 
to 0.99; the smaller values are for small orifices under low heads. 
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The value of the coefficient of discharge (Cd) for a sharp-edged orifice ranges 
from 0.59 to 0.68. Its value depends upon the coefficients of velocity and 
contraction. It also depends on the nominal Reynolds number (NR) and is 
sometimes determined by the relation 

Fluid Mechanics 
 

   
R

d N
C 50.4592.0 +=  

where,  
fluidofviscosityKinematic 

icef the orifDiameter o2 ×
==

gH
v

VdNR  

 

 
Example 3.1 

A sharp-edged orifice of 5 cm diameter discharges water under a head of 
5 m. Find the values of the coefficients of velocity, contraction and 
discharge if the measured rate of flow is 0.012 cumecs. The diameter of the 
jet at the venacontracta is 4 cm. 

Solution 

From Eq. (3.1),  

   gHaCQ d 2=  

        581.92)05.0(
4

012.0 2 ××××⎟
⎠
⎞

⎜
⎝
⎛ π×= dC  

             Cd = 0.617 

Now,           64.0
5

4

4
4

2

2

=
×

π

×
π

==
a
aC c

c  

From Eq. (3.2), 

            964.0
64.0

617.0
===

c

d
v C

CC  

SAQ 1  

 

A sharp-edged orifice of 4 cm diameter discharges water under a head of 
3 m. Determine the discharge if the coefficients Cv = 0.98 and Cc = 0.63. 

3.3 EXPERIMENTAL DETERMINATION OF THE 
COEFFICIENTS OF CONTRACTION, VELOCITY 
AND DISCHARGE 

Coefficient of Contraction 

The coefficient of contraction may be determined experimentally by 
measuring the area of the jet at the venacontracta by an instrument called 
the micrometer contraction gauge (Figure 3.2). The instrument consists of a 
small ring having four radial screws which are equally spaced along the 
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Flow through Orificesperiphery. The ring is held at the venacontracta and adjusted so that the jet 

just passes through its centre. Then the screws are adjusted such that their 
points just touch the periphery of the jet. The instrument is then removed 
and the space between the screw points is measured by means of a 
micrometer screw gauge. The coefficient of contraction is calculated from 
the measured diameter (dc) of the cross-section of the jet and the diameter 
(d) of the orifice. Thus 

    2

2

d
d

a
aC cc

c ==  

The above method for the determination of coefficient of contraction is not 
very satisfactory, as the section of the jet is not absolutely regular. 
Moreover, it is difficult to adjust the screws accurately. A better method of 
finding the coefficient of contraction is to find the values of Cd and Cv 
experimentally and then calculate Cc from Eq. (3.2), 

    
v

d
c C

CC =  

Figure 3.2 

Coefficient of Velocity 

There are three methods as described below for the determination of the 
coefficient of velocity which are commonly used. 

(a) By measurement of coordinates (Trajectory Method). 

(b) By momentum method. 

(c) By pitot tube 

By Measurement of Coordinates (Trajectory Method) 

The coefficient of velocity for a vertical orifice may be determined 
experimentally by measuring the horizontal and vertical coordinates 
of the jet as it falls under gravity (Figure 3.3). 
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Figure 3.3 

As mentioned before, the jet contracts and forms the venacontracta at 
a distance of d/2 from the plane of the orifice. Beyond the 
venacontracta, the jet falls under gravity. This case is similar to 
motion of a particle with initial horizontal velocity and falling under 
gravity. 

Let V be the velocity of the jet at the venacontracta. This velocity is 
horizontal, as the streamlines are parallel. Let us take the origin at the 
venacontracta and let x and y be the coordinates of a point on the jet 
after time ‘t’. Now applying the equation of motion, 

    x = V t       . . . (a) 

and  2

2
10 gty +=       . . . (b) 

Eliminating ‘t’ between Eqs. (a) and (b), 

    
g
Vyx

22
=  

But             gHCV    (See Section 3.2) v 2=

Therefore,  yHC
g

gHCyx v
v 4)2(2 2

==  

or             
yH
xCv 4

2
=               . . . (3.3) 

By measuring the coordinates x and y, and the head H, the coefficient 
of velocity (Cv) may be obtained from Eq. (3.3). 

Momentum Method 

A triangular beam is passed through the tank and is supported on the 
knife-edges on either side of the tank. A lever arm carrying a load P 
at its one end is attached to the triangular beam (Figure 3.4). 

The jet issuing from the orifice has a rate of change of momentum in 
horizontal direction given by (W/g) V, where W is the weight of liquid 
issuing from the orifice per second, and V is the velocity of the jet. 

According to the impulse-momentum equation, the force is equal to 
the rate of change of momentum. Therefore,  
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Flow through Orifices

    V
g

WF ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

a 
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Figure 3.4 

The reaction will act backward and try to tilt the tank as soon as the 
liquid starts discharging through the orifice. The weight P will exert a 
balancing moment and the tank will remain in the vertical position. 
For equilibrium, the tilting moment of F about the knife edge will just 
be equal to the balancing moment of the weight P. 

Thus   F × b = P × a 

or   aPbV
g

W
×=××  

or    
b
ag

W
PV ××=      . . . (a) 

But velocity, gHCV v 2=   (See Section 3.2) 

Therefore,   
gH

b
ag

W
P

Cv 2

××
=              . . . (3.4) 

By Pitot Tube 

The coefficient of velocity (Cv) may also be determined by measuring 
the actual velocity (V) at the venacontracta by means of a pitot tube.  

In this case 
gH

VCv 2
=  

However, this method is not convenient because of practical 
difficulties in the measurement of actual velocity. 

Coefficient of Discharge 

The coefficient of discharge of an orifice is determined by measuring the 
volume of liquid which has actually come out of the orifice in a known 
interval of time. The actual discharge Q is equal to the measured volume of 
the liquid divided by time. The coefficient of discharge Cd is obtained from 
the relation : 

     
gHa

QCd 2
=               . . . (3.5) 

where Q is the actual measured discharge. 
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Example 3.2 

A circular orifice, 3.5 cm diameter, is made in the vertical wall of a tank. 
The jet falls vertically through 0.5 m while moving horizontally through a 
distance of 1.5 m. Calculate the coefficient of velocity if the head causing 
flow is 1.2 metres. If the discharge is 2.80 × 10− 3 cumecs, calculate Cc and 
Cd. 

Solution  
From Eq. (3.3),  

           97.0
20.15.04

5.1
4

22
=

××
==

yH
xCv  

From Eq. (3.5),   
gHa

QCd 2
=  

       60.0
20.181.92)035.0(

4

1080.2
2

3
=

×××⎟
⎠
⎞

⎜
⎝
⎛ π

×
=

−
 

From Eq. (3.2),  62.0
97.0
60.0

===
v

d
c C

CC  

 
 

Example 3.3 

A circular sharp-edged orifice, 6 cm2 in area, is made in the vertical side of 
a tank, which is suspended, from knife-edges 1.65 m above the level of the 
orifice. If, when the head of water is 1.215 m, the discharge is 1079.1 N/m, 
while the weight of 48.17 N at a leverage of 30 cm is required to keep the 
tank vertical, determine the coefficients of velocity, contraction, and 
discharge of the jet. 

Solution  
From Eq. (3.4), 

   
gH

b
ag

W
P

Cv 2

××
=  

Substituting the values, 

   978.0
215.181.92

65.1
30.081.9

1.1079
17.4860

=
××

⎟
⎠
⎞

⎜
⎝
⎛××⎟

⎠
⎞

⎜
⎝
⎛×

=vC  

     Actual discharge = cumecs108333.1
609810

11.1079 3−×=
×
×  

From Eq. (3.5),  626.0
215.181.926

1010833.1
2

43
=

×××
××

==
−

gHa
QCd  

From Eq. (3.2), 64.0
978.0
626.0

===
v

d
c C

CC  
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Flow through Orifices

SAQ 2 
 

 

(a) A sharp-edged circular orifice of 4 cm diameter projects a jet 
horizontally under a head of 2 m. If the jet shrikes at a point 1.36 m 
horizontally and 0.24 m vertically from the venacontracta, calculate 
the coefficient of velocity Cv. 

(b) If the diameter of the jet at the venacontracta is 3.2 cm, calculate the 
coefficients of contraction and discharge. 

3.4 COEFFICIENT OF RESISTANCE 

The walls of the orifice cause resistance to the fluid as it comes out. It is because 
of this resistance that the actual velocity is less than the theoretical value. The 
loss of head may be obtained from the head causing flow and the velocity head at 
the exit. 

Since  
gH

VCv 2
=  

or    ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

g
V

C
H

v 2)(
1 2

2        . . . (a) 

Since the velocity of the jet at the venacontracta is V, the velocity head at that 
point is V2/2g. 

Therefore, loss of head, ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=−=

g
V

g
V

Cg
VHh

v
L 22)(

1
2

22

2

2
 

or     
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= 1

)(
1

2 2

2

v
L

Cg
Vh            . . . (3.6a) 

This loss of head can also be written in terms of H  

      2)( vL CHHh −=

or                . . . (3.6b) ]1[ 2
vL CHh −=

Loss of power,   P LQhγ=    

                             . . . (3.6c) kW)1( 2
vCQH −γ=

where γ is in kN/m3, Q in m3/s and H in metres. 
The coefficient of resistance (Cr) is defined as the ratio of the loss of head in the 
orifice to the head available at the exit of the orifice. Thus 

   

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

g
V

hC L
r

2

2
 

or    

g
V

Cg
V

C v
r

2

1
)(

1
2

2

2

2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

=  
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 Also    ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

−
= 111

22

2

vv

v
r

CC
CC              . . . (3.7) 

3.5 SUBMERGED ORIFICE 

A submerged orifice discharges into another liquid instead of discharging into 
atmosphere. Figure 3.5 shows a submerged orifice. The orifice discharges into 
another tank containing a liquid with its free surface above the orifice. For the 
orifice to act as a submerged orifice, the free surface of the liquid on the 
downstream must be above the orifice; otherwise the orifice will act as a free or a 
partially submerged orifice. 

Taking datum through the axis of the orifice and applying Bernoulli’s equation to 
points 1 and 2, 

   0
2

00 2

2
2

1 ++=++ H
g

VH  

or   HHH
g

V
=−= 21

2
2

2
 

where H is the difference of levels on the two sides. 

[It may be noted that the pressure head (gauge pressure) at point 2 is H2 and not 
zero.] 

Thus   gHV 22 =  

 

 

 

 

 

 

 
 

Figure 3.5 

1 

The velocity through a submerged orifice depends upon the difference of liquid 
levels on the two sides of the orifice, irrespective of the position of the orifice. 
This equation is identical to the equation for the ideal velocity through a free 
orifice. The only difference is that in a submerged orifice, the head H is the 
difference of liquid levels on two sides, whereas it is the head on the orifice in the 
case of a free orifice. 

The actual velocity will be slightly less than the theoretical value because of 
frictional resistance at the walls of the orifice. 

Therefore,  gHCV v 2=   

where Cv is the coefficient of velocity. 

The area of the jet as the venacontracta (ac) is given by, 

H1 

2 

H 

H2 

Datum Line 

Venacontracta 
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   aCa cc = Flow through Orifices

Thus, discharge 

  gHaCCVaQ vcc 2==  

or  gHaCQ d 2=   (same as Eq. (3.1)); 

where Cd is the coefficient of discharge. 

The coefficient of discharge Cd for a submerged orifice is slightly less than that 
for a similar orifice discharging free. This is due to the interference of the liquid 
on the downstream side. It may be remembered that H is the difference of levels 
on the two sides. 

 

 
Example 3.4 

A 2.5 cm diameter orifice connects two tanks. Water levels on the two sides 
are 2 m and 1 m above the axis of the orifice. Calculate the discharge. 
Cd = 0.60 

Solution  

From Eq. (3.1) gHaCQ d 2=  

               )12(81.92)025.0(
4

60.0 2 −××⎟
⎠
⎞

⎜
⎝
⎛ π×=  

        = 0.0013 cumecs. 

3.6 VELOCITY OF APPROACH 

So far the discussions were limited to the case when the velocity of the liquid in 
the tank was either zero or negligibly small. When the velocity in the tank is 
considerable, it must be taken into account for more accurate results. Let us 
consider a small orifice discharging free from the walls of a small vessel. As the 
surface area of the vessel is small, the velocity at the free surface is not 
negligible. Let the velocity of the liquid at point 1 in the vessel be V1. The head 
due to this velocity is V1

2/2g. This head is known as the head due to the velocity 
of approach and is represented by Ha (Figure 3.6). 

Applying Bernoulli’s equation to points 1 and 2, with datum at the axis of the 
orifice, 

  00
2

0
2

2
2

2
1 ++=++

g
VH

g
V       . . . (a) 

or,   
g

VHHa 2

2
2=+  

or,    )(22 aHHgV +=  

Thus the effect of the velocity of approach is to increase the effective head and 
hence to increase the discharge. 

 

 

1 

g2

2v  

HBa 
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Figure 3.6 

Let A1 be the surface area of the tank, and ac be the cross-sectional area at the 
venacontracta. For the continuity of flow, 

  2
1

1211 or V
A
aVVaVA c

c ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==  

Substituting this value of V1 in Eq. (a), 

  
g

VH
g

V
A
ac

22
1 2

2
2

2
1

=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛  

or  H
A
a

g
V c =

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

2

1

2
2 1

2
 

or  22
1

2
1

2 2
caA

AgHV
−

=               . . . (3.8) 

where V2 is the theoretical velocity at the venacontracta. This expression indicates 

that the velocity is increased in the ratio 
22

1

1
22

1

2
1

cc aA

A
aA

A

−
=

−
 due to velocity 

of approach. 

Evidently, the discharge is also increased in the same ratio. It may be noted that if 
the surface area A1 of the tank is very large compared with ac, the above ratio 
becomes approximately unity and the effect of the velocity of approach may be 
neglected. Unless otherwise mentioned, the velocity of approach will be 
neglected. 

3.7 LARGE VERTICAL RECTANGULAR ORIFICE 

When the dimensions of the orifice, as compared to the head causing flow, are 
large, the velocity through the orifice can no longer be regarded as uniform since 
the effective head on various laminae in the orifice is different. Therefore, the 
variation of head in the orifice must be taken into account. 

Figure 3.7 shows a large rectangular orifice of width b in the sidewall of a tank. 
The side view of the orifice is also shown. Let the height of the liquid above the 
top edge and the bottom edge be respectively H1 and H2. Assuming that all points 
at the same depth have the same velocity, the expression for discharge can be 
obtained. Let us consider a horizontal strip of the orifice of thickness dH at a 
depth H below the free surface. 
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Flow through OrificesArea of flow of the strip at the venacontracta = Cc b dH. 

where Cc is the coefficient of contraction. 

Since the area of strip is small, the small orifice formula is applicable. 

Thus, velocity of flow through the strip = gHC  v 2

 Discharge through the strip, ( ) ( 2c vdQ C b dH C gH= )  

or,    dHgHbCdQ d 2=  

where Cd is the coefficient of discharge which is equal to the product of Cc 

and Cv. 

 

H2 

H1 H 
b 

dH 

Side View 

 

 

 

 

 

 
 

Figure 3.7 : Large Vertical Orifice 

Total discharge through the orifice,  ∫= dQQ

  ∫= 2

1
2

H

H d dHgHbCQ  

  
2

1

2/3
3
22

H

H
d HgbCQ  ⎥⎦

⎤
⎢⎣
⎡=

  )(2
3
2 2/3

1
2/3

2 HHgbCQ              . . . (3.9) d −=

Submerged Large Orifice 

If a large orifice is completely submerged at the exit, discharge may be 
obtained, as in the case of a small submerged orifice by considering the 
difference of liquid levels on the two sides. 

Thus, gHaCQ d 2=              . . . (3.10) 

where  a = area of orifice, and 

  H = difference of liquid levels on the two sides. 

Partially Submerged Large Orifice 

Let us consider the case when the liquid surface on the exit side is below 
the top edge of the orifice but above the bottom edge (Figure 3.8). This 
liquid level divides the orifice in two portions. The lower portion of the 
orifice acts as a submerged orifice and the upper portion as an orifice 
discharging free. Total discharge may be obtained by adding the discharges 
in two portions. 

 

HB1 
HB2 
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Figure 3.8 : Partially Submerged Orifice 

From Eq. (3.9), discharge through the portion treated as free, 

   ][2
3
2 2/3

1
2/3

21 1
HHgbCQ d −=  

From Eq. (3.10), discharge through the submerged portion 

   22 2
2

gHbdCQ d=  

where  is coefficient of discharge for free portion and , for submerged 
portion. 

1dC
2dC

Total discharge, Q = Q1+ Q2 2
2/3

1
2/3

2 2][2
3
2

21
gHbdCHHgbC dd +−=  

If , ddd CCC ==
21

    2
2/3

1
2/3

2 2][2
3
2 gHbdCHHgbCQ dd +−=           . . . (3.11) 

 

 
Example 3.5 

A reservoir discharges water through a large orifice 1 m wide and 1.5 m 
deep. The top of the orifice is 0.80 m below the water level in the reservoir. 
Assuming that the downstream water level is below the bottom of the 
orifice, calculate 

(a) The discharge through the orifice if Cd = 0.60, and 
(b) The percentage error if the orifice is treated as small. 

Solution  
(a) In this case (refer Figure 3.7), H1  = 0.80, H2  = 2.30, 

From Eq. (3.9), 

  ][2
3
2 2/3

1
2/3

2 HHgbCQ d −=  

 or  )80.030.2(81.92160.0
3
2 2/32/3 −×××=Q  

or   Q = 4.91 cumecs 

(b)  Considering the orifice as small, head at the centre of the orifice,  

  m55.1
2

30.28.0
=

+
=H   
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Flow through OrificesTherefore from Eq. (3.10), 

  gHaCQ d 2=  

  /sm96.455.181.92)150.1(60.0 3=×××××=Q  

Percentage error, %02.1100
91.4

91.496.4
=×

−
=  

It may be noted that the percentage error is not large even if the 
orifice is considered as small. 

 
SAQ 3  

 

Water is discharged from a tank through a rectangular orifice 1m wide and 
2 m deep. The top edge of the orifice is 1.0 m below the water level in the 
tank. If the coefficient of discharge is 0.60, determine the discharge when 
the downstream water level is 

(a) below the bottom edge of the orifice, 

(b) 1 m above the bottom edge of the orifice, and 

(c) 2.5 m above the bottom edge of the orifice. 

3.8 BELL-MOUTHED ORIFICE 

A bell-mouthed orifice is of the shape of a horizontal bell. In this type of orifice, 
the curvature of its walls conforms to the curvature of the streamlines of the jet 
coming out of the orifice (Figure 3.9). 

1 

H1 

Datum Line 
2 

 

 

 

 

 

 
 
 
 

Figure 3.9 : Bell-Mouthed Orifice 

Since no further contraction of the jet is possible, the coefficient of contraction of 
the orifice is unity. The coefficient of velocity, as well as the coefficient of 
discharge, ranges from 0.95 to 0.995, i.e. Cv = Cd = 0.95 to 0.995. 

Because of practical difficulties in its construction, a bell-mouthed orifice is 
seldom used in practice. 
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 3.9  TIME OF EMPTYING A TANK THROUGH AN 

ORIFICE 

The discussions so far were limited to the case when the head causing flow was 
constant. Occasionally, we come across problems in which the head causing flow 
does not remain constant. In this case, the orifice discharges under a varying 
head. 

(Note : Strictly speaking, the flow is unsteady. However, if the head changes 
gradually, the flow is termed quasi-steady, and the equations of steady 
flow are applied to obtain approximate results.) 

Let us consider the vessel of an arbitrary shape with an orifice at the base as 
shown in Figure 3.10. At any instant when the head over the orifice is H, let A be 
the surface area of the liquid. If ‘a’ is the cross-sectional area of the orifice, 
discharge through the orifice at that instant is given by 

   gHaCQ d 2=  

 

 

H2 

H1 
H 

dH 

 

 

 

Figure 3.10 

In a small interval of time dt, the volume of liquid which flows out of the orifice 
is given by   

  Volume = ( 2 )dQ dt C a gH dt=      . . . (a) 

If the head over the orifice falls by a height dH during this time, then 
  Volume of liquid withdrawn = − A dH    . . . (b) 
The minus sign has been taken as H decreases with time. Equating these two 
volumes, 
  dHAdtgHaCd −=2  

or   
gHaC

dHAdt
d 2
−

=              . . . (3.12) 

If the area of the vessel (A) can be expressed in terms of H, the time required to 
lower the liquid level from the head H1 to H2 can be determined by integrating 
Eq. (3.12). The integration is much simplified if the area of the vessel is constant. 
Time required to lower the liquid from H1 to H2 if the area of the vessel is 
constant is given by  

     
12 2

12
H

H
d

At H
C a g

− dH−
= ∫  

or   ][
2

2 2
1

2
1

21 HH
gaC

AT
d

−
+

=           . . . (3.12a) 

For a rectangular vessel of the length L and width B, Eq. (3.12a) becomes 
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   ][
2

2 2
1

2
1

21 HH
gaC

BLT
d

−=           . . . (3.12b) 

3.10 TIME OF EMPTYING A CIRCULAR 
CYLINDRICAL HORIZONTAL TANK 
THROUGH AN ORIFICE 

Figure 3.11 shows a cylindrical tank with its axis horizontal. In this case, the 
horizontal cross-sectional area A of the tank varies with head H over the orifice. 

 2 x 

H 

dH 

R 

 

 

 

 

 
Figure 3.11 

From geometry, 

   )2()( 222222 RRHHRRHRx +−−=−−=

or    22 2 HRHx −=

where R is the radius of the tank. 
The width of the liquid surface is equal to 2x. 
Therefore, surface area of liquid, 

xLA 2=  where L is the length of the tank 

or  LHRHA )22( 2−=       . . . (a) 

From the continuity of flow, 
   volume of liquid discharged ==− dtQdHA

where Q is the instantaneous discharge when the head causing flow is H and there 
is a drop of dH in time dt. 

Substituting gHaCQ d 2=  from Eq. (3.10) and the value of A from Eq. (a),     

          dtgHaCdHLHRH a )2()22( 2 =−−  

or   dH
gHaC

HRH
dt

d ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ ⎟
⎠
⎞⎜

⎝
⎛ −

−=
2

L22 2

 

or   dHHR
gaC

Ldt
d

)2(
2

2
−

−
=  

The time of emptying when the liquid level falls from H1 to H2 is given by 

  ])2()2[(
23

4 2/3
1

2/3
2 HRHR

gaC
Lt

d
−−−=           . . . (3.13) 
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If the tank is initially full of liquid, H1 = 2R and if the tank is to be completely 
emptied, H2 = 0. 

Fluid Mechanics 
 

Therefore, 
gaC

LRR
gaC

Lt
dd 23
28])2[(

23
4 2/3

2/3 ==           . . . (3.14) 

 
SAQ 4 

 

A cylindrical boiler of diameter 2 m and length 10 m is lying in the 
horizontal position with its axis horizontal. The boiler is half full of water 
and is to be emptied through an orifice at the bottom by an orifice of 
44.2 cm2 and coefficient of discharge of 0.62. How long will it take to 
empty the boiler? 

3.11  TIME OF EMPTYING A HEMISPHERICAL 
TANK THROUGH AN ORIFICE 

Figure 3.12 shows a hemispherical tank with an orifice at its bottom. Let the 
radius of the tank be R. At any instant, let H be the head over the orifice. 

From geometry, 

   222 )( HRRx −−=

or    22 2 HRHx −=

Surface area of the vessel at that instant  2xA π=

or    ]2[ 2HRHA −π=

From Eq. (3.12), 

  
gHaC

dHAdt
d 2
−

=  

      dHH
gaC
HRH

d

2/1
2

2
]2[ −−π−

=  

 R 

R 
H 

 x R 
dH 

 

 

 

Figure 3.12 

Time required for the water level to drop from H1 to H2, 

  ∫ ∫ −
π−

== 2

1
)2(

2
2/32/1H

Hd
dHHRH

gaC
dtt  
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2

1

2/52/3

5
2

3
4

2

H

Hd
HRH

gaC ⎥⎦
⎤

⎢⎣
⎡ −

π−
=  

  ⎥⎦
⎤

⎢⎣
⎡ −−−

π
= )(

5
2)(

3
4

2
2/5

2
2/5

1
2/3

2
2/3

1 HHHHR
gaCd

        . . . (3.15) 

If the vessel is full at the beginning, H1 = R; and if it is to be completely emptied, 
H2 = 0. Substituting these values in above equation,  

 2/52/52/3
215

14
5
2)(

3
4

2
R

gaC
RRR

gaC
t

dd

π
=⎥⎦

⎤
⎢⎣
⎡ −

π
=            . . . (3.16) 

 
SAQ 5 

 

Calculate the time required to empty a hemispherical vessel of radius 1 m 
full of water by an orifice at the bottom with a cross-sectional area of 
50 cm2 and coefficient of discharge of 0.60. 

3.12  TIME OF FLOW FROM ONE TANK TO 
ANOTHER TANK 

Figure 3.13 shows two tanks connected by an orifice. Let H1 be the initial 
difference of head and H2 be the final difference of head. At any instant, let the 
difference of head on the two sides of the orifice be H. In a small interval of time 
dt, let us assume that the level of the liquid in the vessel 1 drops by x. The level of 
the liquid in vessel 2 rises by y. 

 

H1 H 

H2 

y 

x 

(1) (2) 

 

 

 

 

 

Figure 3.13 

From continuity, x
A
AyyAxA ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

2

1
21 or  

where A1 is the area of the tank with higher liquid level and A2 is the surface area 
of the tank with lower liquid level. 

Net difference of head after time dt 

               ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=−−=−−=

2

1

2

1 1
A
AxHx

A
AxHyxH  

Therefore, change of difference of head, 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

2

1

2

1 1
A
Ax

A
AxHHdH     . . . (a) 
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Equating the volume of liquid discharged from vessel 1 to vessel 2 to the volume 
of liquid discharged through the orifice, 

Fluid Mechanics 
 

          dtgHaCxA d )2(1 =−   

or     2/11

2
−−

= H
gaC

xAdt
d

 

Substituting the value of x from Eq. (a) 

    2/1

2

1

1

12
−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

−
= H

A
A

dH
gaC

Adt
d

 

Time required to bring the difference of levels from H1 to H2, 

     dHH

A
AgaC

Adtt
H

H
d

2/1

2

1

1 2

112

−∫∫
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
==  

Interchanging, 

   dHH

A
AgaC

AT
H

H
d

2/1

2

1

1 1

212

−∫
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=  

or   
1

2

2/1

2

1

1
1
2

12

H

H
d

H

A
AgaC

AT ⎥⎦
⎤

⎢⎣
⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=  

   ][
12

2 2/1
2

2/1
1

2

1

1 HH

A
AgaC

A

d

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=            . . . (3.17) 

If the surface areas of the vessels are not constant, the integration procedure 
becomes difficult. In such cases, the numerical integration methods may be used. 

It must be noted that H1 and H2 represent the difference of heads, and not the 
heads. Also note that A1 is the surface area of the vessel with higher liquid level. 

 

 
Example 3.6 

A tank 4 m long and 2 m wide is divided into two parts by a partition so 
that the area of one portion is twice the area of the other. The partition 
contains an orifice of 50 cm2 area through which the water may flow from 
one part to the other. If the initial difference of level is 4 m, find the time 
required to reduce the difference to 1 m. Cd = 0.60. Water level in the larger 
portion is higher. 

Solution 

2
1 m

3
16)24(

3
2

=×=A ;  2
2 m

3
8)24(

3
1

=×=A  

where A1 and A2 are areas of the larger and smaller portions respectively. 
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Flow through OrificesSubstituting the values in Eq. (3.17), 

  ][
12

2 2/1
2

2/1
1

2

1

1 HH

A
AgaC

AT

d

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=  

     ]14[
)21(43.4)1050(60.0

3
162

2/12/1
4 −

+××××

×
= −

 

       = 267.5 seconds = 4 minutes 27.5 secs. 

3.13  SUMMARY 

• An orifice is a small opening in a vessel through which the liquid can flow. 
Different types of orifices are explained. In practice, generally a sharp-
edged small orifice is used. It is also known as a standard orifice. 

• The basic equation for discharge through a sharp-edged circular orifice is 
derived. The coefficients Cc, Cv, Cd and Cr are explained. The discharge 
coefficient (Cd) generally varies between 0.59 to 0.68 for most orifices. 

• Experimental methods for the determination of Cc, Cv and Cd are discussed. 

• In a submerged orifice, there is a liquid on the downstream of the orifice 
which affects discharge. The effective head is equal to the difference of 
liquid levels. 

• The effect of the variation of head on a large orifice is discussed and the 
discharge equation of a rectangular large orifice is derived. 

• The time of emptying a tank through an orifice can be determined 
considering the continuity of flow and the discharge equation. 

• The equations for time of emptying a tank of a constant cross-sectional 
area, circular cylindrical horizontal tank, and hemispherical tank have been 
derived. 

• The time of flow from one tank to another connected tank is explained. 

3.14  ANSWERS TO SAQs 

SAQ 1 
Coefficient of discharge,  cvd CCC ×=

                     62.063.098.0 =×=  

Now gHaCQ d 2=  

      s/m1098.5381.92)04.0(
4

62.0 332 −×=××××
π

×=  

SAQ 2 

(a) 
224.04

)36.1(
4

22

××
==

yH
xCv  

or            Cv = 0.981 
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 (b) 641.0

)4(
)2.3(

)(
)(

2

2

2

2
====

d
d

a
aC cc

c  

981.0641.0 ×=×= vcd CCC  

or              Cd = 0.629 

SAQ 3 

(a) The orifice is discharging free. 

  )(2
3
2 2/3

1
2/3

2 HHgbCQ d −=  

         s/m436.7)13(81.920.169.0
3
2 22/32/3 =−××××=  

(b) The orifice is partially submerged. 

2
2/3

1
2/3

2 2)(2
3
2 HgbdCHHgbCQ dd +−=  

  281.920.10.160.0)12(81.920.169.0
3
2 2/32/3 ××××+−××××=  

   s/m999.6759.3240.3 3=+=

(c) The orifice is fully submerged 

  gHaCQ d 2=  

        s/m759.350.081.92)0.20.1(60.0 3=××××=  

SAQ 4 

For a cylindrical tank, the time of emptying is given by 

  ])2()2[(
23

4 2/3
1

2/3
2 HRHR

gaC
Lt

d
−−−=  

      ])12()02[(
81.92102.4462.03

0.104 2/32/3
4 −−−

×××××
×

= −
 

      = 1098.3 (2.828 – 1) = 2008 s (33 min 28 s). 

SAQ 5 

For a hemispherical tank, the time of emptying is given by 

gaC
Rt

d 215
14 2/5π

=  

    )s6.40min3(s6.220
81.92105060.015

)1(14
4

2/5
=

×××××
×π×

= − . 
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