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UNIT 4 FLOW THROUGH MOUTHPIECES 
AND MINOR LOSSES 
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4.8 Loss of Head due to Sudden Enlargement in a Pipe 

4.9 Loss of Head due to Sudden Contraction 

4.10 Loss of Head at Entrance to Pipe 

4.11 Loss of Head at Exit 

4.12 Loss of Head due to Obstruction 

4.13 Loss of Head at Bends 

4.14 Loss of Head in Pipe Fittings 

4.15 Measurement of Discharge through an Open Channel by a Weir, a 
Notch or a Venturi Flume 

4.16 Summary 

4.17 Answers to SAQs 

4.1 INTRODUCTION 

An orifice with prolonged sides is called a mouthpiece or tube. In other words, a 
mouthpiece is an attachment in the form of a small tube fixed to an orifice. When 
the tube is fixed externally, it is known as an external mouthpiece. If it is fixed 
internally (i.e. if it projects inside the vessel), it is called an internal mouthpiece. 
Depending on the shape, a mouthpiece can be cylindrical, convergent, divergent, 
convergent-divergent, or of any other form. 

Objectives 
After studying this unit, you should be able to 

• identify the different types of mouthpiece, e.g. external and internal 
mouthpiece, and 

• describe and calculate the loss of head due to shock, e.g. sudden 
enlargement, sudden contraction, entrance and exit, obstruction and 
bends, etc. 
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 4.2 EXTERNAL MOUTHPIECE  

An external mouthpiece consists of a small tube attached to the vessel such that it 
projects outside. Figure 4.1 shows a tank to which an external mouthpiece of 
internal diameter ‘d ’ is attached. Let the head over the axis of the mouthpiece be 
‘H ’. If the length of the mouthpiece is more than 2.5d to 3d, the jet after passing 
through the venacontracta expands and fills the tube. When the jet leaves the 
tube, it occupies the complete cross-section of the tube and the tube runs full. 

Taking datum through the axis of the mouthpiece, and applying Bernoulli’s 
equation to points 1 and 3, 

   L
aa H

g
VpHp

++
γ

=+
γ 2

2
3      . . . (a) 

where pa is the atmospheric pressure. (For mouthpieces, it is convenient to work 
in absolute pressures and not in the gauge pressures. The absolute pressure is 
measured with respect to complete vacuum.) 

1

H

 

 

 

 

 
 
 Datum  32

 

 
Figure 4.1 : Cylindrical Mouthpiece 

HL = loss of head due to sudden enlargement (see Section 4.8) 

    
g
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=  

There is practically no loss of head between points 1 and 2, as the streamlines are 
converging and the flow is accelerating. 

If ‘a’ is the cross-sectional area of the mouthpiece, a2 = Cc a 

From the continuity equation, 
          aVaVaV 33322 ==  

or       aVaCV c 32 =     or  
cC

VV 3
2 =  

Thus,  
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If    Cc = 0.62, 
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Substituting this value of HL in Eq. (a), 

  
g

V
g

V
g

VH
2

375.1
2

375.0
2

2
3

2
3

2
3 =+=  

or   gHV 2
375.1
1

3 =  

or  gHV 2853.03 =        . . . (b) 

Eq. (b) indicates that the coefficient of velocity is 0.853. Since the tube runs full, 
the coefficient of contraction is unity. Hence the coefficient of discharge Cd is 
given by 
   853.0== vd CC

Thus,   gHaQ 2853.0=                . . . (4.1) 

It may be noted that the coefficient of discharge of a mouthpiece is greater than 
that of a similar sharp-edged orifice. 

The pressure at the venacontracta may be obtained by applying Bernoulli’s 
equation to points 2 and 3, 

  
g

V
g

Vp
g

Vp a
2

375.0
2

0
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2
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2
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g
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V
g

Vpp

c

a
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3

2
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Taking   Cc = 0.62, 

  
g

V
g

Vpp a
2
1

62.02
375.1

2
3

2
32 ×⎟

⎠
⎞

⎜
⎝
⎛−+

γ
=

γ
 

or   
g

Vpp a
2

226.1
2

32 −
γ

=
γ

 

Substituting the value of 
g

V
2

2
3  from Eq. (b), 

  
375.1

226.12 Hpp a ×−
γ

=
γ

 

or   2 0.891app H= −
γ γ

             . . . (4.2a) 

Eq. (4.2a) indicates that the pressure at the venacontracta is less than the 
atmospheric pressure. In fact, a mouthpiece decreases the pressure at the 
venacontracta and thus increases the effective head causing flow, and hence it 
increases the discharge. 

Eqs. (4.1) and (4.2a) have been derived on the assumption that the coefficient of 
contraction is 0.62. If its value is not 0.62, these equations will be modified 
accordingly. The reader should use the equations carefully. 
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Eq. (4.1) gives the theoretical value of Cd as 0.853. It has been found from 
experiments that because of the frictional resistance at the walls of the 
mouthpiece, the actual value of Cd is about 0.81. If this value of Cd is taken, 
Eq. (4.2a) becomes 

Fluid Mechanics 
 

   Hpp a 82.02 −
γ

=
γ

            . . . (4.2b) 

If the length of the mouthpiece is less than 2.5d to 3d, the jet after passing 
through the venacontracta does not occupy the tube fully and the mouthpiece acts 
as an orifice. On the other hand, if the length of the mouthpiece is much greater 
than 3d, the mouthpiece will act as a pipe, and owing to friction, the value of the 
coefficient of discharge will decrease. 
It may be mentioned that although a mouthpiece gives more discharge than a free 
orifice, it is not commonly used in practice. A mouthpiece creates the negative 
pressure at the venacontracta, given by Eqs. (4.2a and b). As soon as the absolute 
pressure at the venacontracta approaches the vapour pressure, cavitation occurs. 
Thus there is a limit on the head under which the mouthpiece can work properly. 
This drawback, along with practical difficulties in its construction, makes the 
mouthpiece unsuitable for the measurement of discharge, especially under large 
heads. 
 
 

Example 4.1 

Water is discharged through an external mouthpiece of 25 cm2 area, under a 
head of 3 m. Find the discharge through the mouthpiece and the pressure at 
the venacontracta. Take Cc = 0.62 and atmospheric pressure = 10.3 m of 
water. 

Solution  
As Cc = 0.62, Eqs. (4.1) and (4.2a) are applicable. 
From Eq. (4.1), 

  gHaQ 2853.0= 381.92)1025(853.0 4 ×××××= −  

     cumecs0164.067.7)1025(853.0 4 =×××= −Q

From Eq. (4.2a), 

  Hpp a 89.02 −
γ

=
γ

 

         = 10.3 – 0.89 × 3 = 10.3 – 2.67 = 7.63 m of water (absolute). 
 
 SAQ 1 
 

A 10 cm diameter external cylindrical mouthpiece discharges under a head 
of 4 m. Determine the discharge and the pressure at the venacontracta. Take 
Cc = 0.60 and atmospheric pressure as 10.3 m of water. 

4.3 INTERNAL MOUTHPIECE 

An internal mouthpiece consists of a tube projecting inside the tank. Internal 
mouthpieces are of two types : 
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(i) Mouthpiece running free, also called Borda’s mouthpiece, and 
(ii) Mouthpiece running full. 

In a mouthpiece running free, the jet after contraction does not touch the walls of 
the tube. In a mouthpiece running full, after contraction the jet occupies the full 
cross-sectional area of the tube. An internal mouthpiece is also called a 
‘re-entrant tube’. 

4.4 INTERNAL MOUTHPIECE RUNNING FREE 

Figure 4.2 shows an internal mouthpiece running free. Let V be the velocity of 
flow through the mouthpiece and p be the pressure intensity at Section 1 – 1. By 
the impulse momentum equation, the force acting on the mouthpiece must be 
equal to the change in momentum per second. Thus, 

   V
g

Vapa c
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ γ
=  

where  a = area of the mouthpiece, 
           ac =  area of the jet at the venacontracta. 
In Borda’s mouthpiece, the velocity along the walls of the vessel is almost zero, 
and the pressure distribution is hydrostatic. 
Thus     p = γ H. 

Therefore,        
2

g
ca VH a γ

γ =        . . . (a) 

Assuming the coefficient of velocity as unity, 

             H
g

V
=

2

2
 

H 

1

1

 
 
 
 
 
 
 

Figure 4.2 : Internal Mouthpiece Running Free 

Substituting this value of V in Eq. (a), 
  )2( HaHa cγ=γ  

or       
2
aac =  

The coefficient of contraction of an internal mouthpiece running free is, 
therefore, 0.50. 
Discharge  VaQ c=

or   gHaQ 250.0=                . . . (4.3) 
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Eq. (4.3) has been derived on the assumption that the coefficient of velocity is 
unity. It has been found from experiments that the practical value of this 
coefficient is 0.98 or so. Eq. (4.3) needs modification in the light of this change in 
the value of Cv. The value of the coefficient of contraction becomes 0.52, as 
derived below. 

Fluid Mechanics 
 

If          Cv = 0.98,   gHV 298.0=    

or       H
g

V 92.1
2
=  

Therefore,     )92.1( HaHa cγ=γ  or ac = 0.52 

The mouthpiece runs free when its length is less than the diameter (d). When the 
length of the mouthpiece is more than 2.5d, it runs full. 

4.5 INTERNAL MOUTHPIECE RUNNING FULL  

Figure 4.3 shows an internal mouthpiece running full. The jet first contracts at the 
venacontracta and then fills the tube. The loss of head occurs between points 2 
and 3 owing to sudden enlargement. From the continuity equation, aVaV c 32 =  

1

H 

 

 

 

 

 
2 3 

 

Figure 4.3 : Internal Mouthpiece Running Full 

Taking the coefficient of contraction as 0.50, 

      32 2and
2

VVaac ==                    . . . (a) 

Therefore, loss of head due to enlargement 

  
g

V
g
VVH L 22

)( 2
3

2
32 =

−
=  

Taking the datum level at the axis of the mouthpiece (Figure 4.3) and applying 
Bernoulli’s equation to points 1 and 3, 

  L
aa H

g
VpHp

++
γ

=+
γ 2

2
3  

               
g

V
g

Vpa
22

2
3

2
3 ++

γ
=  

or  
g

VH
2

3=         . . . (b) 
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or   gHV =3  

or  gHgHV 2707.02
2

1
3 ==  

The coefficient of velocity is, therefore, 0.707. Since the coefficient of 
contraction is unity, the coefficient of discharge is also 0.707. Thus 

   gHaQ 2707.0=               . . . (4.4) 

where a is area of the mouthpiece. 

The pressure at the venacontracta may be obtained by applying Bernoulli’s 
equation to points 2 and 3. 

   L
a H

g
Vp

g
Vp

++
γ

=+
γ 22

2
3

2
22  

   
g

V
g

Vp
g

Vp a
222

2
3

2
3

2
22 ++

γ
=+

γ
 

From Eq. (a), V2 = 2V3

∴   
g

V
g

Vp
g

Vp a
222

4 2
3

2
3

2
32 ++

γ
=+

γ
 

or    
g

Vpp a
2

32 −
γ

=
γ

 

From Eq. (b),             H
g

V
=

2
3  

Therefore,           Hpp a −
γ

=
γ
2                . . . (4.5) 

As in the case of an external mouthpiece, a negative pressure is created at the 
venacontracta. This increases the discharge. To avoid cavitation, it is essential 
that the absolute pressure should not fall below about 2.5 m for water. 

 

 
Example 4.2 

An internal mouthpiece has a diameter of 4 cm. If the head above the 
mouthpiece is 1.5 m and the coefficient of velocity is 0.95, determine 

(a) The coefficients of contraction and discharge when the mouthpiece is 
running free, and 

(b) The discharge when the mouthpiece is running full. 

Solution  

(a) In this case, Eq. (4.3) cannot be directly used. 

From the impulse-momentum principle, 

   Force = Rate of change of momentum 

or   V
g

Vapa cγ
=        . . . (a) 
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where  p = pressure on the mouthpiece, a = cross-sectional area of the 
mouthpiece,  ac = cross-sectional area of the venacontracta, and 
V = velocity. 
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Substituting  p = γ H in Eq. (a), 

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ γ
=γ

g
VaHa c

2
       . . . (b) 

Also      gHCV v 2=  

or                HHHC
g

V
v 90.0)95.0(

2
22

2
===  

Substituting this value of 
g

V
2

2
 in Eq. (b), 

             HaHa c 80.1×γ=γ  

or  aaac 555.0
80.1

==  

Therefore, coefficient of contraction, Cc = 0.555 

And coefficient of discharge, Cd = Cc × Cv = 0.555 × 0.95 = 0.528 

(b) From the continuity equation (refer Figure 4.3), 
           32 VaVac =   

or   32 V
a
aV
c
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

Taking  Cc = 0.555, V2 = 1.80 V3  

Loss of head due to sudden enlargement = 
g
VV

2
)( 2

32 −  

or   
g

V
g

VH L 2
64.0

2
)180.1( 2

3
2

3
2

=
−

=  

Applying Bernoulli’s equation to points 1 and 3, 

  
γγ

a
L

a p
H

g
V

H
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++=+
2

2
3  

or  
g

V
g

V
g

VH
2
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2

64.0
2

2
3

2
3

2
3 =+=  

or   
64.1

2
3

gHV =  

or   secm/24.4
64.1

50.181.92
3 =

××
=V  

Discharge  aVQ 3=  

       cumecs1033.5)04.0(
4

24.4 32 −×=⎟
⎠
⎞

⎜
⎝
⎛ π×= . 
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SAQ 2 

 

An internal mouthpiece of 15 cm diameter discharges water under a head of 
3 m. Calculate the discharge and the diameter of the jet at the 
venacontracta. The mouthpiece is 12 cm long. Assume coefficient of 
velocity as 0.97. 

4.6 CONVERGENT MOUTHPIECE 

A convergent mouthpiece is a frustum of cone with the larger end attached to the 
tank wall (Figure 4.4). The jet first contracts and then expands in the mouthpiece. 
The coefficient of discharge varies with the angle of convergence θ. The 
coefficient of contraction (Cc) of the convergent mouthpiece, which is based on 
the area of the mouthpiece at the exit, decreases as the angle of convergence θ 
increases. On the other hand, the coefficient of velocity (Cv) increases as the 
angle of convergence increases. 

For a convergent mouthpiece, the maximum value of coefficient of discharge (Cd) 
is 0.946. This occurs when the angle θ is about 13.5˚. Thus 

   gHQ 2a946.0=               . . . (4.6) 

H 

where ‘a’ is the area of the mouthpiece at the exit. 

 

 

 

 

 
 

 
 

Figure 4.4 : Convergent Mouthpiece 

Table 4.1 gives the typical values of Cc, Cv and Cd for different orifices and 
mouthpieces.  

Table 4.1 : Coefficients of Various Types of Mouthpiece 

Sl. No. Type Cc Cv Cd

1 External cylindrical mouthpiece 1.00 0.81 0.81 

2 Internal mouthpiece running free 0.52 0.98 0.51 

3 Internal mouthpiece running full 1.00 0.71 0.71 

4 Convergent mouthpiece, θ = 13.5˚ 1.00 0.946 0.946 
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 4.7 MINOR LOSSES  

Minor losses are the secondary losses due to shock in a pipe. These losses occur 
whenever there is a sudden change in the area of flow and/or the direction of 
flow. 

The following minor losses usually occur in a pipe. (Pipe flow is discussed in 
Unit 5.) 

(a) Loss of head due to sudden enlargement 

(b) Loss of head due to sudden contraction 

(c) Loss of head at the entry 

(d) Loss of head at the exit 

(e) Loss of head due to obstruction 

(f) Loss of head at bends 

(g) Loss of head due to fittings. 

4.8 LOSS OF HEAD DUE TO SUDDEN 
ENLARGEMENT IN A PIPE  

Whenever there is a sudden change in the cross-section of a conduit carrying a 
fluid, eddies are formed and there is a loss of head. The impulse-momentum 
equation may be used to find the loss of head due to sudden enlargement in the 
cross-section of a pipe. 

Let us consider a pipe of the cross-sectional area A1 which suddenly enlarges to 
the cross-sectional area A2 (Figure 4.5). The velocity and pressure at section 1 are 
V1 and p1 and those at section 2 are V2 and p2 respectively. 

 2

 

P1 

P1 

P1 

V1 

B 

A 

A1 

1 

1 

 

 

 

 

 
Figure 4.5 

Backwash of eddies is formed in the corners of the pipe. These eddies are 
responsible for the loss of energy. It has been experimentally found that the 
pressure in the annular ring at section AB of cross-sectional area (A1 – A2) is equal 
to the pressure p1. Let us consider the control volume ABCD. The discharge 
through the control volume is given by  

   2211 VAVAQ ==       . . . (a) 

Applying the impulse-momentum equation to the fluid in the control volume, 
ABCD, 

P2 V2 

C 

D 

A2 

2
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  ][)( 122212111 VV
g
QApAApAp −
γ

=−−+  

Substituting the values of Q from Eq. (a),  

  ][)( 12
22

212 VV
g

VAppA −
γ

=−   

or   
g

VVVpp ][ 12221 −
=

γ
−        . . . (b) 

Applying the Bernoulli equation to sections 1 and 2 

  Lh
g

Vp
g

Vp
++

γ
=+

γ 22

2
22

2
11  

where hL is the loss of head due to sudden enlargement. 

Substituting the value of 
γ
− 21 pp  from Eq. (b), 

  Lh
g

V
g

V
g

VVV
=−+

−
22

)( 2
2

2
1122  

or  
g

VVVV
g
VV

g
V

g
VhL 2

2
22

21
2

2
2

121
2

2
2

1 −+
=−+=  

or  
g
VVhL 2

][ 2
21 −=                . . . (4.7) 

Eq. (4.7) is the well-known Borda-Carnot equation for the loss of head due to 
sudden enlargement. 

 

 
Example 4.3 

A pipe carrying water suddenly enlarges from a diameter of 40 cm to 60 
cm. If the discharge is 0.615 cumecs, calculate the loss of head due to 
sudden enlargement. 

Solution  

From the continuity equation, 
    2211 VAVAQ ==

or   secm/89.4
40.0

4

615.0
21

1 =
×

π
==

A
QV  

   secm/18.2
60.0

4

615.0
22

2 =
×

π
==

A
QV  

From Eq. (4.7), 

   
81.92

)18.289.4(
2

][ 22
21

×
−

=
−

=
g
VVhL  

         = 0.374 m of water. 
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SAQ 3 

 

At a sudden enlargement of a pipeline from 240 to 480 mm diameter, the 
hydraulic gradient line rises by 10 mm. Determine the discharge. 

4.9 LOSS OF HEAD DUE TO SUDDEN 
CONTRACTION 

Figure 4.6 represents a pipeline in which sudden contraction occurs. The 
streamlines are converging from sections A-A to section 1-1, and there is very 
little loss of head between these sections. At section 1-1, the diameter of the jet is 
minimum. This section forms the venacontracta. The loss of head occurs mainly 
between sections 1-1 and 2-2. Thus the loss of head is not actually due to 
contraction, but it is due to enlargement which takes place from section 1-1 to 2-
2. 

Let the cross-sectional area of pipe at section A-A and 2-2 be a1 and a2 
respectively. The cross-sectional area of the jet at the venacontracta is given by, 
ac = Cc a2, where Cc is the coefficient of contraction. 

 A 

A 

(1) 

(1) 

(2) 

(2) 

 

 

 

 
Figure 4.6 

The loss of head from sections 1-1 to 2-2 is due to sudden enlargement 
(Eq. (4.7)), 

   
g
VVH c

L 2
)( 2

2−
=       . . . (a) 

From the continuity equation,  

   
c

ccccc C
VVVCaVaVa 2

222 or ===  

Substituting the value of Vc in Eq. (a), 
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2
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11
22 ⎟⎟
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⎜⎜
⎝

⎛
−=
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⎠
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L Cg

V
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V
C
V

H              . . . (4.9) 

Assuming Cc = 0.62, 

  
g

V
g

VH L 2
375.01

62.0
1

2

2
2

22
2 =⎟

⎠
⎞

⎜
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In general, 
g

kVH L 2

2
2=         

The constant ‘k’ depends upon the ratio a2 / a1. In practice, the loss of head due to 

sudden contraction is found to be 
g
V

2
5.0 2

2 . Unless otherwise mentioned, the value 

of k will be taken as 0.50. 

 
 

Example 4.4 

A pipe carrying 0.05 cumecs of water suddenly contracts from 20 cm to 
15 cm diameter. Calculate the coefficient of contraction if the loss of head 
is 0.5 m. 

Solution  

From Eq. (4.9) 
22

2 11
2 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

c
L Cg

VH  

From the continuity equation, 

   
15.015.0

4

05.0

2
2

××
π

==
A
QV =  2.83 m/sec 

   
22

11
81.92

83.2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

×
=

c
L C

H  

or   
2

11408.05.0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

cC
 

or   11.1226.111
2

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

cC
 

    Cc = 0.475 
 SAQ 4 
 

A 150 mm diameter pipe reduces in diameter abruptly to 100 mm diameter. 
If the pipe carries water at 0.03 m3/s, calculate the loss of head across the 
contraction. Take the coefficient of contraction as 0.60. 

4.10 LOSS OF HEAD AT ENTRANCE TO PIPE 

The loss of head at the entrance where the fluid enters the pipe from the reservoir 
is similar to that in sudden contraction. As the fluid enters, it first contracts and 
then expands in the pipe. The loss of head is caused mainly by the turbulence 
created by the sudden enlargement of the jet after it has passed through the 
venacontracta. 
The loss of head depends on the condition at the inlet. If the entrance to the pipe 
is well-rounded, with a bell-mouth, the loss of head is very small and is about 

g
V
2

04.0
2

, where V is the velocity in the pipe. 
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If the entrance is conical, with included angle between 30˚ and 60˚, the loss of 

head is about 
g

V
2

18.0
2

. 
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For a flush entrance, as in the case of an external cylindrical mouthpiece, the loss 
of head is given by, 

   
g

VkH L 2

2
=  

in which ‘k’ varies from 0.485 to 0.56. 
In the re-entrant (internal) mouthpiece, the value of ‘k’ varies from 0.62 to 0.93. 
Usually, an average value of k = 0.5 is taken. 

Thus,    
g

VH L 2
5.0

2
=              . . . (4.10) 

4.11 LOSS OF HEAD AT EXIT 

When a pipe carrying a fluid discharges into a reservoir, the entire velocity is 
dissipated. If V is the velocity in the pipe, the loss of head at the exit is given by 

   
g

VH L 2

2
=  

The loss of head may also be obtained from the Borda-Carnot equation. In this 
case as A2 is very large, the velocity V2 may be neglected. Hence 

  
g

V
g

V
g
VVH

22
)0(

2
)( 222

21 =
−

=
−

=  

If a pipe discharges into atmosphere, the velocity V is dissipated in air and the 

loss of head is 
g

V
2

2
. 

4.12 LOSS OF HEAD DUE TO OBSTRUCTION  

The loss of head due to an obstruction placed in a pipe may be looked upon as the 
loss due to sudden enlargement beyond the obstruction. Figure 4.7 represents the 
conditions when an obstruction, such as a diaphragm, is inserted. 
Let the cross-sectional area of the pipe be A. If the cross-sectional area of the 
opening in the diaphragm is ‘a’, the area at the venacontracta ac = Cc a. The loss 
of head due to enlargement from sections 1-1 to section 2-2 is given by 

   
2

21

2
)(

g
VV

H L
−

=       . . . (a) 

From the continuity equation, 

   
aC

AVVAVaCV
c

c
2

121 or ==  

Substituting this value of V1 in Eq. (a), 

   
g

V
aC

AH
c

L 2
1

2
2

2

⎥
⎦

⎤
⎢
⎣

⎡
−=             . . . (4.11) 
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Figure 4.7 

The loss of head due to obstruction may be obtained from Eq. (4.11) if the 
coefficient of contraction (Cc) is known. In general, 

   
g

kVH L 2

2
=            . . . (4.11a) 

The value of k depends upon the type and shape of obstruction. 

 

 
Example 4.5 

A diaphragm with a central hole 8 cm in diameter is placed in a 15 cm 
diameter pipe. If the velocity of water in the pipe is 0.3 m/sec, find the loss 
of head. Take Cc = 0.60 

Solution  

From Eq. (4.11), 
g

V
aC

AH
c

L 2
1

2
2

2

⎥
⎦

⎤
⎢
⎣

⎡
−=  

or   
62.19
)3.0(1

08.008.0
4

60.0

15.015.0
4

2

2

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
××

π
×

××
π

=LH   

or     = 0.108 m. LH

4.13 LOSS OF HEAD AT BENDS 

When a fluid flows around a bend or an elbow, it has to overcome additional 
resistance. The loss of head depends upon the ratio of the radius of curvature (R΄) 
of the bend to the diameter of the pipe (D). The loss of head is expressed as 

   
g

VkH L 2

2
=              . . . (4.12) 

where k is the coefficient depending upon the ratio R΄/D. The value of k ranges 
from 0.19 to 0.42, the larger values being for low R΄/D ratio. For a circular 
right-angled bend the value of k varies from 0.1 to 1.20, and an average value of 
0.50 is usually taken. 

4.14 LOSS OF HEAD IN PIPE FITTINGS 

Pipe fittings when inserted in a pipe cause obstruction to flow and the loss of 
head occurs. The loss of head may be expressed as  
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g
kVH L 2

2
=              . . . (4.13) 

in which the coefficient k depends upon the size, shape and type of fitting. The 
value of k for various types of valves ranges from 0.2 to 24. A reference may be 
made to the tables provided by the manufacturer to get an accurate value of k. Its 
value may also be determined experimentally by actual measurement of loss of 
head HL. 
It may be mentioned that for very long pipes the minor losses are relatively 
insignificant as compared to the loss of head due to friction and are usually 
neglected. 
Table 4.2 gives the typical values of losses for different types of fitting. 

Table 4.2 : Approximate Values of the Minor Losses Coefficient k for 
Different Types of Fitting 

Valve/Fitting K 

Globe valve, fully open 10.00 

Angle valve, fully open 10.00 

Gate valve, fully open 0.20 

Gate valve, Half open 5.60 

Pump foot valve 1.50 

Standard 90˚ elbow 0.90 

Standard 45˚ elbow 0.40 

Standard 90˚ bend 0.10 

Return bend 2.20 

Standard T, line flow 0.90 

Standard T, branch flow 1.80 

 
 
SAQ 5 

 

Water is discharged from a tank through a pipe of 300 mm diameter at the 
rate of 0.18 m3/s. Calculate the loss of head at 

(a) the entry of the pipe if it is short-edged, 

(b) the exit of the pipe, and 

(c) the gate valve. 

Assume k = 0.20. 

4.15 MEASUREMENT OF DISCHARGE THROUGH 
AN OPEN CHANNEL BY A WEIR, A NOTCH OR 
A VENTURI FLUME 

Flow through an open channel occurs under atmospheric pressure. The motive 
force to create the flow is derived from the slope of the bed and the kinetic energy 
possessed by the liquid. Mechanics of flow through open channels will be 
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presented at a later stage; the purpose here is to study the common methods of 
discharge measurement. 

A weir is an obstruction placed in an open channel over which the flow occurs. 
The weir is generally in the form of a vertical wall with a sharp edge at the top, 
running all the way across the open channel. When the liquid flows over the weir, 
the height of the liquid above the tip of the sharp edge bears a relationship with 
the discharge across it. 

A notch is a sharp-edged device which permits the liquid to go through it, the 
liquid being exposed to the atmospheric pressure. Notches may be rectangular, 
triangular, circular or trapezoidal in shape. A triangular notch, for example, has a 
sharp-edged base and sharp-edged vertical-end walls. A triangular notch, also 
called V-notch consists of a V-cut sharp-edged passage through which the liquid 
passes. The only difference between a weir and a rectangular notch is that a weir 
runs all the way across the channel whereas a rectangular notch may be as wide 
as the channel. 
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    (a) Flow Through a Rectangular Notch          (b) End View of the Idealised Flow 
                              Through a Rectangular Notch 

 

 

 

 

 
      (c) V or Triangular Notch           (d) Circular Notch 

 

 

 

 

(e) Trapezoidal Notch or Weir 

Figure 4.8 : Various Shapes of Notches 

Consider the flow through a notch of a given shape and dimensions. The flow in 
the open channel far upstream approaches the notch with a velocity U1 and while 
crossing over the notch, the total height H and the velocity distribution must be in 
accordance with the continuity principle and the Bernoulli equation. Consider a 
horizontal strip of depth dh located at a depth h below the liquid level. If the 
width of the strip is b, the area is b dh. The velocity of the liquid at a point on the 
strip must be given by 

    2U g= h  
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Figure 4.9 : Flow Through a Notch 

The flow rate across the strip is 

  2dQ u dA g h b dh= =  

The total discharge across the notch must be given by 

  
0

2
H

Q dQ g h b d= =∫ ∫ h  

The expression for the discharge is evaluated with the knowledge of the shape 
and dimensions of the notch. 

4.15.1 Flow Through a Rectangular Notch 
The expression for the discharge through a notch; 

  
0

2
H

Q g h= ∫ b dh  

may be evaluated for flow through a rectangular notch by taking 
    b = constant 

  1/ 2

0

2
H

Q g b h= ∫ dh  

or   3/ 22 2
3

Q g b H=            . . . (4.14a) 

Taking note of the fact that the minimum area of cross-section, i.e. the vena 
contracta is less than the area of flow across the notch and these are some 
real-flow effects such as side-wall boundaries and eddy formation and the 
three-dimensional nature of flow, a factor called the coefficient of discharge Cd is 
introduced. The Actual discharge is, therefore, expressed as, 

  3/ 22 2
3 dQ C g b H=           . . . (4.14b) 

This expression takes no note of the fact that the liquid approaches the notch with 
an initial velocity U1 and that the liquid possesses kinetic energy per unit weight 

given by 
2
1

2
U

g
. In order to take the velocity of approach into account, the limits of 

integration in the expression for Q should be 

  
2
1

2
U

g
 to 

2
1

2
U H

g
⎛ ⎞

+⎜ ⎟⎜ ⎟  
⎝ ⎠
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instead of 0 to H. with this correction, the improved expression for the discharge 
through a rectangular notch becomes, 

 
3/ 2 3/ 22 2

1 12 2
3 2d

U UQ C g b H
g g

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢= + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
2

⎥         . . . (4.14c) 

When the flow occurs over a rectangular notch, the nappe of flow is contracted at 
the ends and an area of minimum cross-section called vena contracta occurs at a 
short distance from the notch as shown in Figures 4.9(a) and 4.10. The effect of 
the end contraction is that the effective width of flow is reduced. According to 
Francis, each end contraction is of the order of 10 per cent of head over the notch, 
i.e. 0.1 H. For a rectangular notch with two end contractions, 

  Effective width = b – 0.2 H 

and the expression for the distance becomes 

  3/ 22 2 ( 0.2 )
3 dQ C g b H H= −          . . . (4.14d) 

which implies that the end contractions reduce the discharge by 

  3/ 22 2 (0.2 )
3 dq C g H H=  

      5 / 22 2
15 dC g H=  

Comparison of this expression with the expression for discharge for a triangular 
notch (Figure 4.11) shows that, for an equivalent triangular weir, 

    5 / 2 5/ 22 82 2 tan ; t
15 15 2 2 4d dC g H C g H 1anθ θ

= =         . . . (4.15) 
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End view showing the side 
contractions of the nappe 

 
 
 
 
 
 

 
 

Figure 4.11 : Flow Over a Rectangular Weir 

If the rectangular weir is enlarged to become a trapezoidal weir with the side 
slopes ‘1 horizontal to 4 vertical’ it would give the discharge that an uncontracted 
rectangular weir would have given. This was first discovered by Cippoleti and the 
compensated weir is called Cippoleti weir. 

It may also be noted that the lower surface of the nappe rises by 10% of the head 
over the notch as also shown in Figure 4.10. This however does not change the 
width of flow. Effect of the rise of the nappe is included in the coefficient of 
discharge Cd for the notch. 
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Consider a triangular or V-notch with an included angle θ and semi-angle 
2
θ . Let 

the liquid flow through it with the level H above the base point. Consider the flow 
through an elementary strip of depth dh located at a depth h below the level of the 
liquid. The discharge through it must be 

   2dQ g h b dh=  

and the discharge through the entire notch should be 

  
0

2
H

Q dQ g h b d= =∫ ∫ h  

For a triangular notch, 

  2 ( ) tan
2

b H h θ
= −              . . . (4.16) 

Substituting this relation in the expression for Q, 

  1/ 2

0

2 tan 2 ( )
2

H
Q g H h hθ
= −∫ dh  

or   3/ 2 5/ 2

0

2 22 tan 2
2 3 3

H
Q g H h hθ ⎡ ⎤= −⎢ ⎥⎣ ⎦

 

      5 / 28 tan 2
15 2

g Hθ
=           . . . (4.17a) 

 
 
 
 
 
 

Figure 4.12 : Flow Through a Triangular Notch 

Introducing the efficient of discharge Cd in order to provide an expression for the 
actual flow through V notch, 

  5 / 28 tan 2
15 2dQ C g Hθ

=           . . . (4.17b) 

In particular, for a right-angled V notch, 

  o o90 , 45 ; tan 1
2 2
θ θ

θ = = =  

the expression for the actual discharge becomes 

  5/ 28 2
15 dQ C g H=           . . . (4.17c) 

A word of comparison between the accuracy of measurement by a rectangular 
and for a V notch is worthwhile. For a rectangular notch, 

    3/ 2Q K H=

b 

dh 

h 

θ/2 

H
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and for V notch  5/ 2Q C H=

where K and C are appropriate constants. 
The accuracy of measurement of the discharge depends upon the accuracy of 
measurement of the head H. A small error dH in H would correspond to an error 
dQ in Q. 
For a rectangular notch, 

  1/ 23
2

dQ K H dH=  

and   3 1.5
2

dQ dH dH
Q H

= =
H

          . . . (4.18a) 

Similarly, for a V notch 

  3/ 25
2

dQ C H dH=  

and   5 2.5
2

dQ dH dH
Q H

=
H

          . . . (4.18b) 

It is seen that a 1% error in the measurement of the head result in 1.5% error in 
discharge measured by a rectangular notch and 2.5% error in discharge measured 
by a V notch. 

There is one more point to it. For low discharge, the reading ‘H’ for a V notch is 
greater than the reading ‘H’ for a rectangular notch for the same discharge. This 
is obvious because the width of a rectangular notch is b everywhere whereas the 
width at the base of a V notch is zero. A notch is, therefore, preferred for low 
discharge. For high discharge, a rectangular notch is preferred because the 
incremental head is more for an increment in discharge than that for a V notch. 

If it is required to have a single notch suitable for a large range of discharge, a 
combination of ‘V notch and rectangular notch’ may be used. 

 
Rectangular notch 
for High Discharge 

V notch for Low 
Discharge 

 

 

 

 

 

 
Figure 4.13 : A Combination Notch 

4.15.3 Venturi Flume 
A device called venturi flume is also useful for estimating the flow rate through 
an open channel. The width of the channel b1 is reduced to b2 to create a throat 
section. Higher velocity at the throat results in a drop of the depth of the liquid as 
shown in Figure 4.14. 
 
 

U1 
d1 

h 

d2 U2  
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Figure 4.14 : Venturi Flume 

By continuity,  1 1 2 2A U A U=  

By the energy equation, 
2 2
1 2

1 22 2
U Ud d+ = +  

Combining and simplifying these, using 1 2h d d= −  

   1 2
2 2
1 2

2
( )

dC A AQ g
A A

=
−

h  

which bears a similarity with the expression for flow through a 
venturimeter. 

 
 

Example 4.6 

A reservoir having a surface area of 800 m2 is emptied by a 0.5 m wide 
rectangular weir. How long should it take to empty the reservoir from a 
height 0.3 m to 0.2 m above the sill? Take Cd = 0.65. 

Solution 
With reference to a rectangular weir, 
   A dh Q dt= −  

The negative sign appears because h decreases as t increases. 
For a rectangular weir, 

   3/ 22 2
3 dQ g h= C  

Hence  
3/ 2

2 2
3 d

A h dhdt
g b C

−
=  

After integrating, we get 

   
2 10

3 1
2

T

d

AT dt
g b C H H

⎛ ⎞
= = −⎜ ⎟⎜ ⎟

⎝ ⎠
∫

1  

       800 1 13
(4.43 0.5 0.65) 0.2 0.3

⎛ ⎞= × × −⎜ ⎟× × ⎝ ⎠
 

       = 684 s = 11 minutes and 24 seconds. 
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4.16 SUMMARY 

• The difference between an orifice and a mouthpiece is explained. The 
monthpieces can be of different shapes. They may be fitted either externally 
or internally to vessel. 

• The discharge equation for an external mouthpiece is derived. The 
importance of the negative pressure at the venacontracta is emphasized. 

• The discharge equations for internal mouthpiece running free and running 
full are developed. The mouthpiece runs free if it is of small length. 

• In general, the coefficient of discharge of a mouthpiece is greater than that 
for a similar orifice, but it is not commonly used as it is not convenient to 
construct and there is a possibility of cavitation under large heads. 

• A brief introduction is given to convergent mouthpieces. 

• The typical coefficients of various types of mouthpieces are given. 

• The difference between minor losses and the major loss due to friction in 
pipes is explained. 

• The minor losses are important for pipes of small lengths. For long pipes, 
these losses are usually negligible as compared to the loss due to friction. 

• The loss of head due to sudden enlargement, sudden contraction, at the 
entry, at the exit, at the bends and at the obstruction can be determined from 
the equations given. 

• The loss of head at the pipe fittings can be determined using the values of 
the coefficient supplied by the manufacturers or by actual measurement. 
The typical values for different types of fitting are given. 

• The measurement of discharge through an open channel by a view, a notch 
or a venturi flume is explained. 

4.17 ANSWERS TO SAQs 

SAQ 1  

Loss of head, 
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Pressure at the venacontracta, 
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g
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⎠
⎞

⎜
⎝
⎛×−=

444.1
334.13.10 H  

          m605.6
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4334.13.10 =
×

−=  (absolute) 

SAQ 2 
Since the length of mouthpiece is less than its diameter, it runs free. 

Now     hgV ××= 297.0  

or   H
g

V 88.1
2
=  

From the impulse-momentum equation, 

   
g

Vaha c

2
γ=γ  

         )88.1( Hacγ=  

or   aac 53.0=  

or    53.0=cC  

                   53.0
2
=⎟

⎠
⎞

⎜
⎝
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d
dc  

or    ddc 53.0=  

           cm92.101553.0 =×=  

             51.097.053.0 =×=×= vcd CCC  

                gHaCQ d 2=  

           381.92)15.0(
4

51.0 2 ×××
π

×=  

            = 0.0718 m3/s 

SAQ 3 

The rise in pressure is given by 
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Therefore,             
81.9

)4(01.0 222 VVV −
=  

or      s/m181.02 =V

         s/m0327.0181.0)48.0(
4

32 =××
π

=Q  

SAQ 4 

Loss of head at sudden contraction, 
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SAQ 5 
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