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1.1 INTRODUCTION 

Matter exists in two states, viz., the solid state and the fluid state. The fluid state 
is further divided in two states : (i) the liquid state, and (ii) the gaseous state. 
Fluid Mechanics is the science dealing with the behaviour of fluids at rest and in 
motion. The fundamental principles employed in fluid mechanics are the same as 
that used in the mechanics of solids. But fluid mechanics is somewhat more 
difficult than solid mechanics, because in the mechanics of solids we deal with 
separate, tangible entities, whereas in fluid mechanics we deal with a continuous 
mass. 

A fluid is a substance which deforms continuously when subjected to a shear 
stress. Even the slightest shear force will cause the fluid to flow. The behaviour 
of fluid is different from that of solids. A solid always requires a certain amount 
of shear stress before it yields. The difference in fluids and solids is due to their 
molecular structure. In solids, the position of molecules is fixed in space. 
Individual molecules in solids are very close to one another and the 
inter-molecular forces are rather large. In fluids, the molecules can move and 
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their position is not fixed in space. The spacing between molecules of fluids is 
very large and the inter-molecular forces are relatively small. A fluid is 
characterized by the relative ease of the mobility of molecules. 

A further difference between solids and fluids is their relative ability to resist 
external forces. A solid can withstand tensile, compressive and shearing forces. A 
fluid can sustain only compressive forces and that too when it is confined in a 
container. In certain cases, a fluid may sustain a small amount of tensile stress, 
but its tensile strength is usually neglected. When a fluid is subjected to a 
shearing force, it deforms continuously as long as the force acts. Thus, the 
shearing stress exists in a fluid when it is in motion. When the motion ceases, the 
shearing stress disappears. 

Compressibility is the property, which distinguishes a liquid from a gas. Gases 
are extremely compressible and expand indefinitely when all external forces are 
removed. Thus, a gas can remain in equilibrium only when it is completely 
confined in a container. Liquids are relatively incompressible. The cohesion 
between particles in liquids holds them together due to which they cannot expand 
indefinitely. Consequently, a liquid may have a free surface, whereas a gas does 
not have a free surface. A vapour is gaseous in form but its temperature and 
pressure are such that it is close to the liquid phase in characteristics. 

Objectives 
After studying this unit, you should be able to 

• refresh the basic concepts of mechanics, i.e. dimensions and units, 
mass density, specific weight, specific gravity, viscosity, bulk 
modulus, surface tension, pressure, forces, laws of motion etc., 

• describe the core concepts of statics and dynamics, and 

• build over the concepts refreshed in this unit during the journey of 
further units of the course. 

1.2 DIMENSIONS AND UNITS 

Dimensions 

Physical quantities used in fluid mechanics are expressed in five 
fundamental dimensions, viz, length (L), mass (M), force (F), time (T) and 
temperature (t). Temperature is important only in compressible flow 
problems and is not of frequent occurrence in fluid mechanics. Thus, there 
are four dimensions that are commonly used in fluid problems. However, 
only three fundamental dimensions are sufficient to describe any fluid 
phenomenon. Either force (F) or mass (M) can be taken as an independent 
dimension. These two dimensions are interrelated by Newton’s second law 
of motion : 

  Force [F] = Mass [M] × Acceleration [L/T2] 

If mass [M] is taken as an independent dimension, force [F] is a derived 
dimension and vice-versa. Thus there are two systems of dimensions : 
(i) M-L-T system, (ii) F-L-T system, depending upon whether M or F is 
taken as a fundamental dimension. The dimension of any physical quantity 
may be derived in terms of fundamental dimensions. For example, the 
dimensions of velocity, acceleration and mass density are respectively 
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Basic Concepts[L/T], [L/T2], and [M/L3]. The dimensions are obtained from the definition 

of the quantity. For example, velocity is define as distance per unit time, 
therefore its dimension is [L/T]. Likewise, the dimensions of acceleration 
and mass density are obtained. Dimensions are written in square brackets. 

Units 

Various physical quantities are measured in different standards called units. 
There are basically two systems of units, viz. (i) Absolute system and 
(ii) Gravitational system. In the absolute system, the unit of mass is chosen 
and the unit of force is derived. It is thus based on M-L-T system. On the 
other hand, in the gravitational system, the unit of force is chosen, and the 
unit of mass is derived. It is, therefore, based on F-L-T system. 

SI Units 

System International d’ Unites (abbreviated as SI units) has been adopted 
by most of the countries, including India. This is an absolute system of 
units. In this system, the unit of mass is chosen as kilogram (kg). The 
derived unit of force is Newton (N). 

One Newton (N) is the force which imparts an acceleration of 1 m/sec2 to a 
mass of 1 kg. Thus, 

   1 N = 1 kg × 1 m/sec2 

Sometimes, larger units of force are used. 

   1 kilo Newton (1 kN) = 103 N 

   1 mega Newton (1 mN) = 106 N 

 The length unit is metre (m) and the unit for time is second (s). 

When it is impractical to use N and m themselves then the use of prefix is 
convenient. The prefix is representing 10 raised to a power which is a 
multiple of 3 is recommended in SI units. For example, the distance may be 
measured in mm (m × 10− 3) or km (m × 103). 

In SI units, the units kg, metre and seconds are used. 

The derived unit N or kN are also commonly used in engineering practice. 

[Note : 1 N is also equal to 105 dynes in C.G.S. units.] 

1.3 MASS DENSITY, SPECIFIC WEIGHT AND 
SPECIFIC GRAVITY 

Mass Density 

Mass Density is defined as the mass per unit volume. It is usually 
represented by Greek letter ρ (rho). It is measured in kg/m3. 

A molecule has a certain mass regardless of its state. The mass density is 
proportional to the number of molecules in a unit volume of fluid. Mass 
density is independent of gravitational pull. It has a fixed value at a constant 
temperature and pressure. It increases with increase in pressure, but 
decreases with increase in temperature, which is mainly due to change in 
the spacing of molecules. 

Mass density of water at 4o C is 1000 kg/m3. 
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Specific weight is defined as the weight per unit volume. It is usually 
represented by Greek letter γ (gamma). The unit of its measurement is 
N/m3. [Note : In some texts, the specific weight is expressed as w]. 
Specific weight represents the force exerted by the gravity on a unit 
volume. It depends on both mass density and the acceleration due to 
gravity. The specific weight changes from one place to another, depending 
upon the changes in the acceleration due to gravity. As in the case of mass 
density, the specific weight changes with change in temperature and 
pressure. 
Specific weight and mass density are related by the equation : 
    γ = ρg                . . . (1.1) 
where g is the acceleration due to gravity. The value of ‘g’ will be taken 
9.81 m/sec2, unless otherwise mentioned. 
Specific weight of water is generally taken as 9810 N/m3 (9.81 kN/m3), 
unless mentioned otherwise. 

Specific Volume 
Specific volume is the volume occupied by a unit mass of the fluid. It is 
represented by Vs. Specific volume is reciprocal of mass density. It is 
measured in m3/kg units. Thus  

    Vs = 1/ρ              . . . (1.2) 
Specific Gravity 

Specific gravity is the ratio of the mass density of the fluid to the mass 
density of a standard fluid. It is represented by S. It is also known as relative 
density. 
For liquids, the standard fluid is water at 4oC. For gases, the standard fluid 
is taken either air free from carbon dioxide at 0oC or hydrogen at the same 
temperature. The standard fluid must be mentioned if it is different from 
water. 
Specific gravity is dimensionless and has no units. 

Obviously, for any fluid    ρ = ρw S   or     γ = γw S 

where γw is the specific weight of water, ρw is the mass density of water and 
S is specific gravity. 
 

 
Example 1.1 

(a) 10 m3 of kerosene oil weighs 78.48 kN. Calculate its specific weight, 
mass density and specific gravity. 

(b) The specific volume of a certain gas is 0.70 m3/kg. Determine its 
specific weight and mass density. 

Solution 

(a) Specific weight,
10

48.78
=γ  = 7.848 kN/m3  (7848 N/m3) 
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Mass density,    
81.9

7848
=

γ
=ρ

g
 = 800 kg/m3 

Specific gravity, 80.0
1000
800

==S  

(b) Mass density,    3m/kg43.1
70.0
1

olumeSpecific v
1

===ρ  

 Specific weight, γ = ρg = 14.03 N/m3 

SAQ 1  
 

If 10 m3 of mercury weighs 1329 kN, calculate its mass density, specific 
weight and specific gravity. 

1.4 VISCOSITY 

Viscosity is a property of fluid which determines its resistance to shearing 
stresses. An ideal fluid has no viscosity. In reality there is no fluid which can be 
classified as a perfectly ideal fluid. However, the fluids with very little viscosity 
are sometimes considered as ideal fluids. Viscosity of fluids is due to cohesion 
and interaction between particles. 

An expression for viscosity may be obtained by considering two large plates 
which are placed at a small distance Y apart (Figure 1.1). The space between 
plates is filled with a fluid. The lower plate is stationary, whereas the upper plate 
is moving with a velocity V. Particles of the fluid in contact with each plate would 
adhere to the surface and there would be no slip. Thus the velocity of the fluid 
particles adjacent to the upper plate would be V and that adjacent to the lower 
plate would be zero. If the distance Y is small, the velocity gradient will be a 
straight line. Experiments indicate that the force (P) is proportional to the area of 
the plate (A) and the velocity V, and is inversely proportional to the distance Y, 
i.e., 

   P ∝ A (V/Y) 

If the constant of proportionality is taken as μ 

   P = μ A (V/Y) 

The shearing stress (τ) may be written as  

   τ = P/A = μ (V/Y) 

 V 
P 

Y 

y 

dy 

dv v Moving Plate 

Stationary Plate 

 

 

 
 

 

 
Figure 1.1 
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The above equation can be expressed in differential form. Let us consider a fluid 
layer of thickness dy at a distance y. Let us assume that velocity v changes by dv 
in thickness dy. Then by similar triangles 

Fluid Mechanics 
 

   V/Y =  (dv/dy) 

Therefore,       τ = μ (dv/dy)              . . . (1.3) 

Eq. (1.3) is known as Newton’s equation of viscosity. The ratio dv/dy is known as 
the velocity gradient. The constant μ (mu) is called the coefficient of dynamic 
viscosity or simply the coefficient of viscosity. The coefficient of viscosity may 
be defined as the amount of tangential stress required to maintain unit relative 
velocity between two parallel layers of fluid at unit distance. Fluids which obey 
Eq. (1.3), are known as Newtonian Fluids. The fluids which do not obey this law 
are Non-Newtonian Fluids. Figure 1.2 also shows ideal fluids which have zero 
shear stress. The discussions herein would be confined to Newtonian Fluids only. 
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Figure 1.2 

Eq. (1.3) may be used to derive the dimensions of μ. Substituting the dimensions 
of τ, dv and dy. 

   ⎥⎦
⎤

⎢⎣
⎡=μ⎥⎦

⎤
⎢⎣
⎡ ×μ=⎥⎦

⎤
⎢⎣
⎡

22 or1
L
FT

LT
L

L
F  

As mentioned before, square brackets indicate that only dimensions are being 
considered. The dimensions of μ in M-L-T can be obtained from Newton’s second 
law of motion, namely, 

   [F] = [M][L/T2] 

Therefore,                    [μ] = [M][L/T2][T/L2] = [M/(LT)] 

In SI units, the unit of dynamic viscosity is N-s/m2 (kg m− 1s− 1). The unit N-s/ m2 
is also called Pascal-second (Pa-s). 

In CGS (Centimetre-Gram-Second) units, viscosity is measured in poise which is 
equal to one dyne-sec/cm2 or one gm (mass)/cm-sec. The unit is named after 
Poiseuille, a pioneer in the field. Sometimes, a smaller unit centipoise, which is 
equal to one-hundredth of poise, is used. The viscosity of water at 20oC is 
approximately equal to one centipoise. 

Obviously, 1 N-s/ m2 = 10 poise    or  1 poise = 0.1 N-s/m2
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Basic ConceptsIn fluid problems, the coefficient of dynamic viscosity μ usually occurs together 

with mass density ρ in the form μ/ρ. In such problems, it is convenient to use 
coefficient of kinematic viscosity ν (nu). It is the ratio of the coefficient of 
dynamic viscosity to mass density. 

Thus,    ν = μ /ρ              . . . (1.4) 

The dimensions of ν can be obtained from Eq. (1.4) 
   [ν] = [M/(LT)] [L3 /M] = [L2/T]  
Thus, ν is a kinematic term as it does not involve forces. In CGS units, it is 
measured in stoke, which is equal to one cm2/sec. The unit is named after Stoke. 
A smaller unit centistoke, which is one-hundredth of a stoke, is sometimes used. 
In SI units, the unit is one m2/sec. Obviously, 1 stoke = 10− 4 m2/sec. 
Viscosity is practically independent of pressures at ordinary pressures. But at 
very high pressures, it increases with pressure. The viscosity of liquids decreases 
with increase in temperature. (The reader might have observed that when a 
viscous oil is heated, it flows easily). On the contrary, the viscosity of gases 
increases with an increase in temperature. This behaviour of gases is because of 
different intermolecular characteristics of gases. In liquids, the viscosity is mainly 
due to cohesion, which decreases with increase in temperature. In gases, the 
viscosity is due to molecular activity. As the molecular activity increases with 
temperature, the viscosity of gases also increases with rise in temperature. 
The effect of viscosity on a fluid phenomenon is usually expressed in terms of a 
non-dimensional parameter called Reynolds Number (NR) given by 

   
v

VdVdNR =
μ

ρ
=  

where V is the velocity and d is any characteristic length. The Reynolds number is 
also abbreviated as Re. 

 

 
Example 1.2 

A fluid has a dynamic viscosity of 0.50 poise. Calculate the velocity 
gradient and the intensity of shear stress at the boundary if the fluid is filled 
between two parallel plates 5 cm apart and one plate is moving at a velocity 
of 1 m/sec, other plate is stationary. Assume distribution of velocity as 

   v = 1.0 − k (0.05 − y)2, where y is in metres. 

Solution 

 The equation of the parabola given is v =1.0 − k (0.05 − y)2

 1 m / sec 

5 cm 

v 

y 

 

 

 

 

 

 
Figure 1.3 

Obviously, v = 0 when y = 0 
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Therefore, k = 400, and the equation becomes v = 1.0 − 400 (0.05 − y)2Fluid Mechanics 
 

or 
dy
dv = 800(0.05 − y) 

From Eq. (1.3), since  μ = 0.5 × 0.1 N-s/m2,  

   τ = μ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
dy
dv  = (0.5 × 0.1) 800 (0.05 − y) 

The maximum shear stress occurs at the lower plate where y = 0.  
  τ max = (0.5 × 0.1) (800) (0.05) = 2 N/m2 

 
 SAQ 2 
 

A cubical block weighing 196.2 kN and having a 200 mm edge is allowed 
to slide down on an inclined plane surface making an angle of 20º with the 
horizontal on which there is a thin film of liquid having a viscosity of 2.158 
N-s/m2. What terminal velocity will be attained by the block if the film 
thickness is 0.025 mm. 

1.5 BULK MODULUS 

All fluids can be compressed by the application of pressure. However, gases are 
more compressible than liquids. Liquids are compressed by so little an amount 
that in most of the cases, they are assumed to be incompressible. Owing to 
elasticity, strain energy is stored in fluids as they are compressed. Elasticity of 
fluids is measured in terms of bulk modulus of elasticity (K). 

The mechanics of elastic compression of fluids may be demonstrated by means of 
a cylinder and piston [Figure 1.4(a)]. Let the initial volume of the fluid be V. If a 
force P is now gradually applied, there will be an increase in pressure. This 
increase is given by p=P/A, where A is the area of cross-section of cylinder. The 
volumetric strain is given by dV/V, where dV is the change in volume. A plot can 
be obtained between P/A and dV/V for different value of P as shown in 
Figure 1.4(b). 

 

 

 

 
 

 

(a)     (b) 
Figure 1.4 

The bulk modulus of elasticity is defined as the slope of the stress-strain curve 
[Figure 1.4(b)] at the point under consideration. Thus, 

   
VdV

dpK
/−

=                . . . (1.5) 

P P 

V A
P k 

1 

Strain
V

dV
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Basic ConceptsThe bulk modulus K is always a positive quantity. The negative sign indicates a 

decrease in volume with an increase in P. Steepening of the curve with increasing 
pressure shows that as fluids are compressed, it becomes increasingly difficult to 
compress them further. In other words, the bulk modulus of elasticity increases 
with an increase in pressure. 
Compressibility is inversely proportional to bulk modulus (K). 

Bulk modulus of elasticity K is expressed in kN/m2. Bulk modulus of elasticity of 
water is approximately 2.1 × 106 kN/m2 and that of air is 105 kN/m2. This 
indicates that air is 20,000 times more compressible than water. However, water 
is about 80 times more compressible than steel (K = 170 × 106 kN/m2). 

 

 
Example 1.3 

Find the change in volume of 1 m3 of water when it is subjected to an 
increase in pressure of 1962 kN/m2. Take K = 2.16 × 106 kN/m2. 

Solution 

From Eq. (1.5),   
VdV

dpK
/−

=   

or    2.16 × 106 = 
VdV /

1962  

or   dV = (− 9.17 × 10− 4) × V = − 9.17 × 10− 4 m3 

SAQ 3 
 

 

At a depth of 6.8 km in an ocean, the pressure is 68.67 MN/m2 above the 
atmospheric pressure. Assuming that the specific weight of water at the 
surface is equal to 10 kN/m3, calculate the specific weight of water at 
6.8 km depth. Assume bulk modulus of water as 2.453 × 103 MN/m2. 

1.6 VAPOUR PRESSURE 

All liquids have a tendency to vaporize. They tend to change from the liquid to 
the gaseous state. Molecules of liquids are continuously projected from the free 
surface of liquids to the atmosphere. These ejected molecules are in gaseous state 
and exert their own partial vapour pressure on the liquid surface. This pressure is 
known as the vapour pressure of the liquid (pv). 

As the molecular activity increases with temperature, the vapour pressure also 
increases with a rise in temperature. Boiling of the liquid occurs when the 
external pressure imposed on the liquid is equal to or less than the vapour 
pressure of the liquid at that temperature. Consequently, the boiling point of a 
liquid depends upon both the temperature and the ambient pressure. 
If the space above the liquid is confined, the partial vapour pressure exerted by 
the molecules increases till the rate at which the molecules re-enter the liquid is 
equal to the rate at which they leave the surface. When this equilibrium condition 
is reached, the vapour pressure is called the saturation vapour pressure. If the 
pressure on the liquid surface is lower than or equal to the saturation vapour 
pressure, boiling occurs. 
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The saturation vapour pressure is of great practical use in fluid problems. If the 
pressure at any point in a fluid phenomenon approaches the vapour pressure, the 
liquid starts vaporizing. Vapour bubbles which are created in the region of low 
pressure are carried with the liquid to the region of high pressure. These bubbles 
collapse in the region of high pressure and explosion of bubbles takes place. This 
explosion causes damage of the walls of the conduit and also creates air pockets 
in the flow. The phenomenon is known as cavitation. Because of the destructive 
nature of cavitation, its occurrence in flow problems should be avoided. This is 
possible if the pressure at any point in the fluid phenomenon is not permitted to 
fall below the saturation vapour pressure. 

Fluid Mechanics 
 

As the temperature increases, the vapour pressure increases till the boiling point 
is reached for the ambient pressure. Water boils at 100oC at which temperature 
the vapour pressure 101.03 kN/m2 is equal to the atmospheric pressure. Water 
will boil at 20oC if the ambient pressure is reduced to 2.35 kN/m2. In problems of 
flow of water, in order to avoid cavitation, pressure is usually not permitted to fall 
below 24.5 kN/m2. 

 

 
Example 1.4 

A vertical cylinder 30 cm diameter is fitted at the top with a tight but 
frictionless cylinder and is completely filled with water at 20oC. The 
outside of the piston is exposed to atmospheric pressure of 98.1 kN/m2. 
Calculate the minimum force applied to the piston which will cause the 
water to boil if pv at 20oC = 2.35 kN/m2. 

Solution 

As water cannot expand, a space filled with vapours is obtained as soon as 
the piston is moved upwards. Boiling will occur when the net downward 
pressure is equal to vapour pressure. Let P be the force applied in upward 
direction. Therefore,  

  98.1 × (π/4) × (0.3)2 − P = 2.35 × (π/4) × 0.32  

                P = (98.1 − 2.35) (π/4) × 0.32

          = 6.76 kN. 

1.7 SURFACE TENSION 

Liquids have properties of cohesion and adhesion. Both these properties are forms 
of molecular attraction. Cohesion enables a liquid to resist small amount of 
tensile stresses, whereas adhesion enables it to adhere to another body. Surface 
tension is caused by the forces of cohesion at the free surface. A liquid molecule 
in the interior of the liquid mass is surrounded by other molecules all around it 
and is in equilibrium. At the free surface of the liquid, there are no liquid 
molecules above the surface to balance the forces of the molecules below it 
(Figure 1.5). Consequently, there is a net inward force on the molecule. This 
force is normal to the liquid surface. At the interface between a liquid and a gas 
(i.e. at free surfaces), a thin layer of molecules is formed because of the difference 
of forces above and below the layer. It is because of this film that a thin small 
needle can float on the free surface. The layer acts as a membrane. 
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Basic ConceptsSurface tension is the force required to maintain the film of the liquid. The 

surface tension σ (sigma) is defined as the force in the liquid surface normal to a 
line of unit length drawn on the surface. It has the dimension [F/L] and is 
measured in N/m. For water at 20oC, the value of σ is approximately 0.0735 N/m. 
For mercury, its value is 0.51 N/m. 
[Note : As the surface tension is also a measure of energy per unit area, it can 

also be expressed as J/m2 or N-m/m2.] 

 
Figure 1.5 

Surface tension decreases with an increase in temperature. It depends upon the 
type of fluid in contact with the liquid surface. It is usually quoted in contact with 
air. 
Expression for Pressure Difference 

Let us consider a small element of the liquid. The surface of the element is 
of double curvature, with radii R1 and R2 (Figure 1.6).  

 
σ dy σ dy R1 

Pi 

P0 

α 

dx 

dy P0 Pi 

σ dx 

σ dx 

R2 

β 

 

 

 

 

 

 

 
Figure 1.6 

The pressure inside and outside the element are pi and p0 respectively. The 
element must be in equilibrium under the pressures and the surface tension 
forces σ dx and σ dy. Resolving the forces in the direction normal to the 
element 
  βσ+ασ=− sin2sin2)( 0 dxdydydxppi  

or ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
σ=−

21
0 2

2
2

2)(
R
dydx

R
dxdydydxppi  

or ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+σ=−

21
0

11)(
RR

dydxdydxppi  
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 or ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+σ=−

21
0

11)(
RR

ppi               . . . (1.6) 

This is the general expression giving the pressure difference between the 
inside and outside of the surface. 

For a spherical surface,    R1 = R2 = R 

Thus,   
R

ppi
σ

=−
2)( 0              . . . (1.7) 

Eq. (1.7) can be modified for soap bubbles. Soap bubbles have both inside 
and outside surfaces on which surface tension acts. Therefore, R. H. S. is 
doubled. 

Thus,   
R

ppi
σ

=−
4)( 0               . . . (1.8) 

For a cylindrical surface, R1 = R (say) and R2 = ∞  

Thus   
R

ppi
σ

=− )( 0                 . . . (1.9) 

1.8 CAPILLARITY 

Capillary action is due to both cohesion and adhesion. If the effect of cohesion is 
less significant than the effect of adhesion, the liquid will wet the solid surface 
with which it is in contact and will rise at the point of contact. On the other hand, 
if the cohesion predominates, the liquid will not wet the surface and the liquid 
surface will be depressed at the point of contact. That is the reason why water 
rises in a small glass tube placed in water. If the same tube is placed in mercury, 
the level of mercury is depressed in the tube. 

If a liquid wets the solid boundary, there is a decrease of pressure within the 
liquid (as pi > p0). This causes the liquid to rise in a small glass tube 
[Figure 1.7(a)]. For a cylindrical capillary tube, taking atmospheric pressure as 
zero,  
   hppi γ−== 0and0  

The pressure pi is zero because the inner surface is exposed to atmosphere. It may 
be noted that the inner surface is always towards the centre of curvature. From 
Eq. (1.7), assuming the liquid surface to be spherical,  

   
R

h σ
=γ+

20  

[Note : The pressures with the atmospheric pressure as zero are called gauge 
pressures. The gauge pressure can be negative. The negative gauge 
pressure is also called vacuum pressure (see Section 1.10).] 

But 
R
r  = cos θ, where θ is the angle of contact, and r is the radius of tube. 

Therefore,  
r

h )cos2( θσ
=γ  

     
dr

h
γ

θσ
=

γ
θσ

=
cos4cos2            . . . (1.10) 
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Basic Conceptswhere d = diameter of the tube. 

Eq. (1.10) gives the capillary rise in a small tube provided both the liquid and the 
tube are perfectly clean. If they are not clean, the value of h will be less than that 
given by Eq. (1.10). For water with clean glass surface tube, the angle θ is usually 
assumed to be zero. 

 

 

 

 

 
 

(a)           (b) 

R 

r h 

θ 

Figure 1.7 

If the liquid does not wet the solid surface, the liquid level in the tube is 
depressed [Figure 1.7(b)]. There is an increase in the internal pressure. In this 
case, 
Eq. (1.10) gives the fall of the liquid surface in tube below the liquid surface 
outside the tube. Mercury behaves in this fashion. The value of θ for mercury in 
contact with glass is about 140o. 

For tubes of radius 6 mm or more, the capillary action is negligibly small. To 
minimize the effect of capillary action in pressure measurement by piezometers 
and manometers, tubes of radius of 6 mm or more should be used. 

 

 
Example 1.5 

Estimate the height to which water column at 20oC will rise in a capillary 
tube 3 mm diameter. Take σ = 0.0735 N/m. 

 Solution 

From Eq. (1.10), 
r

h
γ

θσ
=

cos2  

Assuming  m01.0
0015.09810

10735.02,0 =
×

××
==θ h  = 10 mm. 

 

 
Example 1.6 

A small drop of water at 20oC is in contact with air and has a diameter of 
0.5 mm. If the pressure within the droplet is 0.59 kN/m2 greater than the 
atmospheric pressure, calculate the value of the surface tension (σ). 

Solution 

From Eq. (1.7), 
R

ppi
σ

=−
2

0    

           3
3

1025.0
21059.0 −×

=×
σ  
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or               σ = 0.074 kN/m Fluid Mechanics 
 

or   σ = 74 N/m. 

Table 1.1 gives the properties of some common fluids at 20º and atmospheric 
pressure. 

 

Table 1.1 : Properties of Common Fluids at 20o and Atmospheric Pressure 
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Water 998.00 9.80 2.16 0.073 2.35 1.0 × 10−2 1.0 × 10−3 1.00 × 10−6

Gasoline 680.00 6.67 0.96 0.022 55.00 2.9 × 10−3 2.9 × 10−4 4.28 × 10−7

Mercury 13540.00 132.83 26.24 0.510 1.73 × 10−4 1.6 × 10−2 1.6 × 10−3 1.18 × 10−7

Glycerine 1268.40 12.44 4.35 0.064 1.37 × 10−5 8.35 0.835 6.63 × 10−4

Carbon 
Tetra 
Chloride 

1594.00 15.64 1.10 0.026 12.75 1.0 × 10−2 1.0 × 10−3 6.40 × 10−7

Kerosene 799.50 7.84 - 0.024 3.20 2.0 × 10−2 2.0 × 10−3 2.50 × 10−6

Benzene 880.94 8.64 1.03 0.026 10.00 7.0 × 10−3 7.0 × 10−4 7.95 × 10−7

Castor oil 959.42 9.41 1.44 0.039 - 9.8 0.98 1.02 × 10−3

Ethyl 
Alcohol 788.72 7.74 121 0.022 5.78 1.2 × 10−2 1.2 × 10−3 1.53 × 10−6

 

 
SAQ 4 

 

For measuring the surface tension of a mineral oil by the bubble tube 
method, a tube having an internal diameter of 1.5 mm is immersed to a 
depth of 12.5 mm in the oil. Air is forced through the tube forming a bubble 
at the lower end. What magnitude of the surface tension will be indicated by 
a maximum bubble-pressure intensity of 147.15 N/m2? 

Take specific gravity of oil as 0.85. 

1.9 PRESSURE 

When a fluid is contained in a vessel, it exerts forces on the surface of the vessel. 
Since the fluid is at rest, there is no relative motion between the layers of the 
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Basic Conceptsfluid. The velocity gradient is zero, and hence there is no shear stress in the fluid. 

Consequently, there is no force component acting tangentially to the walls of the 
container. The force exerted by the fluid on the surface of the vessel is always 
normal to the surface. Intensity of pressure (or simply pressure) is the normal 
force per unit area of the surface. In general,  

   
dA
dPp =  

where,   p = pressure intensity, 

 dP = force acting on a small area dA, and   

 dA = small differential area. 

If the total force P acts uniformly over the entire area A, 

   
A
Pp =  

The dimension of pressure are [F/L2]. This is measured in N/m2 or kN/m2. The 
unit N/m2 is also known as Pascal (Pa), and kN/m2 as kilo Pascal. 

The resultant pressure on any plane due to a fluid is always normal to that plane. 
This fact can be demonstrated as follows : Let us suppose that the resultant 
pressure P on a plane AB is inclined to the surface (Figure 1.8). This pressure can 
be resolved into components P1 and P2 parallel and perpendicular to AB 
respectively. The component P1 can be resisted only by a shearing stress. Since a 
fluid at rest cannot resist a shearing stress, the pressure must be normal to the 
plane and there should be no P1 component. This proves that the pressure must be 
normal to the plane. 

 
 
 
 

B 
P2 

P1 

P 

 

 

 
Figure 1.8 

1.9.1 Pressure Variation with Depth of Liquid 
The intensity of pressure varies with the depth of liquid. The relation between 
pressure variation and the depth of liquid can be obtained as follows : Let us 
consider an inclined prism of liquid of length l and cross-sectional area dA 
(Figure 1.9). The cross-sectional area dA being small, the pressure intensity at the 
end faces may be assumed to be uniform. If the pressure at the ends A and B are 
respectively p1 and p2, the forces acting on the ends are p1 dA and p2 dA. The 
forces on the inclined sides of the prism balance themselves. The prism is in 
equilibrium under the pressure forces at the ends and the self-weight. Resolving 
these forces along the axis of the prism, 

     0cos21 =θγ−− dAldApdAp  

Since  , hl =θcos 021 =γ−− dAhdApdAp  

or   hpp γ=− 21             . . . (1.11a) 
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Alternatively,  hgpp ρ=− 21            . . . (1.11b) Fluid Mechanics 
 

Eq. (1.11a) shows that the difference in pressure between two points depends 
solely upon the difference in elevation between the points and the specific weight 
of the fluid. If the points lie in the same horizontal plane (i.e. h = 0), the pressures 
are equal. In other words, the pressures at two points at the same level in a 
continuous fluid are equal. 

 

 

 

 

 
 
 
 

 

 

Figure 1.9 

The variation in pressure with depth from one point to another point in a body of 
fluid at rest may also be determined from the free-body concept. Let us consider a 
cylindrical element of fluid of cross-sectional area dA and height dz (Figure 1.10). 
The element is in equilibrium under the pressure forces and the self weight. 

Therefore, 0=γ−⎟
⎠
⎞

⎜
⎝
⎛ +− dAdzdAdz

dz
dppdAp  

  dAdzdAdz
dz
dp

γ−=  

                        dp = − γ dz           . . . (1.12a) 

 

 

 

 
 

 

 

 

Figure 1.10 

Alternatively,             dp = − ρg dz           . . . (1.12b) 
Eq. (1.12a) indicates that the pressure intensity decreases as the height  increases. 
The difference in pressure between two points 1 and 2 may be obtained from 
Eq. (1.12a) by integration, 

Z2 

Z1 

h 

 B

P2 dA 

l 

θ 

W = γ l dA A 
P1 dA 

2
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Z1 

Z

Z2 

dZ h

1

dz
dz
dpP +

W = γ dz dA 

P 

dz 
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Basic Concepts

   ∫∫ −=
γ

2

1

2

1

z

z

p

p
dzdp  

If γ is assumed to be constant (i.e. the fluid is incompressible), 

  2112
21 )( zzzzpp

−=−−=
γ
−  

  p1 – p2 = γ (z2 – z1) = γ h, same as Eq. (1.11a) 
If point 2 is taken at the free surface of the liquid, p2 = 0 (taking the local 
atmospheric pressure as zero). Therefore, 
   p1 = γ h 
or, in general,   p = γ h           . . . (1.13a) 
The pressure intensity (p) at a depth ‘h’ below the free surface is equal to the 
product of the specific weight γ of liquid and the depth ‘h’. 
Further, p may be expressed in terms of the height h of column of a liquid of 
specific weight γ as 

   
γ

=
ph             . . . (1.13b) 

When the pressure at a point is expressed in units of length, it is commonly called 
pressure head. It is measured in metres or mm of liquid column. For example, the 
atmospheric pressure of 101.3 kN/m2 may be expressed as 10.3 m of water or 
760 mm of mercury. Atmospheric pressure is also expressed as 1.013 bar, where 
1.0 bar = 105 N/m2. 
1.9.2 Absolute, Gauge and Vacuum Pressures 
If pressure intensity is expressed with respect to complete vacuum, it is called the 
absolute pressure. When it is measured above the local atmospheric pressure, it is 
called the gauge pressure. For example, if the absolute pressure at a point A is 
150 kN/m2 and the atmospheric pressure is 101.0 kN/m2, the gauge pressure at 
that point is 49 kN/m2. If the pressure intensity is greater than the local 
atmospheric pressure, the difference of these two pressures is called the positive 
gauge pressure or simply gauge pressure. However, if the pressure intensity at a 
point is less than the local atmospheric pressure, the difference of these two 
pressures is called the negative gauge pressure or vacuum pressure. For example, 
if the absolute pressure at point B is 53 kN/m2, the vacuum pressure at that point 
is 48 kN/m2. These definitions of absolute, gauge and vacuum pressures are 
represented diagrammatically in Figure 1.11. 
 A 

B 

PA (Gauge) 
Local Atmospheric Pressure 

PA (Absolute) 

PB (Vacuum) 

PB (Absolute) 

Absolute Zero 

 
 
 
 
 

Figure 1.11 

It may be noted that high vacuum pressure means a very low absolute pressure. A 
perfect vacuum means zero absolute pressure. 

SAQ 5 

(Note : In all problems the mass density of water is taken as 1000 kg/m3 and its 
specific weight as 9.81 kN/m3 unless mentioned otherwise.) 
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 Fluid Mechanics 
 

At the inlet of a pump, the negative pressure is 7 m of water and at the exit 
of the pump, there is a gauge pressure of 25 m of water. Calculate the 
pressure developed by the pump in kN/m2. Also calculate the absolute 
pressures at the inlet and exit of the pump if the atmospheric pressure is 
10.3 m of water. 

1.10  BASIC DEFINITIONS OF MECHANICS 

System of Forces 

A force is an action which changes or tends to change the state of rest or the 
state of uniform motion of a body. A force has a magnitude and direction 
and hence it is a vector. Graphically, a force is represented by a straight line 
to scale where length of the line indicates the magnitude and the arrow head 
indicates the direction. A force is fully specified if its magnitude, direction 
and the point of application are known. 

The forces may be classified as : 

(a) Coplanar or non-coplanar. 

(b) Concurrent or non-concurrent. 

(c) Parallel or non-parallel. 

Coplanar or Non-coplanar Forces 

If all the forces lie in the same plane, they are called coplanar forces; 
on the other hand, if all the forces do not lie in the same plane, they 
are termed the non-coplanar forces (Figure 1.12). 

 

 

 

 

(a) Coplanar Forces   (b) Non-coplanar Forces 

Figure 1.12 

Concurrent or Non-concurrent Forces 

If all the forces pass through a common point, they are known as 
concurrent forces. In contrast, if all the forces do not pass through a 
common point, they are called non-concurrent forces (Figure 1.13). 

 

 

 

 

    (a) Concurrent Forces        (b) Non-concurrent Forces 
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Basic ConceptsFigure 1.13 

Parallel or Non-parallel Forces 

If the lines of action of all the forces are parallel to one another, they 
are called parallel forces. However, if the lines of action of all the 
forces are not parallel to one another, they are known as non-parallel 
forces (Figure 1.14). 

 

 

P1 P2 P3 P1 P3 

P2 

 

 
         (a) Parallel Forces          (b) Non-parallel Forces 

Figure 1.14 

Various combinations based on above three classifications are possible. The 
following 4 combined systems are quite common. 
Coplanar Concurrent Forces 

In this system, all the forces lie in one plane and they also pass 
through a common point (Figure 1.15a). 

Coplanar Non-concurrent Forces 
In this system, all the forces lie in one plane but they do not pass 
through a common point (Figure 1.15b). The non-concurrent forces 
may be parallel or non-parallel. 

Non Coplanar-concurrent Forces 
In this system, all the forces do not lie in one plane but they pass 
through a common point (Figure 1.15c). 

Non-coplanar Non-concurrent Forces 
In this system, all the forces do not lie in one plane. Moreover, they 
do not pass through a common point (Figure 1.15d). The non-
concurrent forces may be parallel or non-parallel. 

(Note :  In the following discussions, non-coplanar forces are not discussed 
further.) 
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             (c)                     (d)  
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Figure 1.15 Fluid Mechanics 
 

Composition of Forces 

If a system of forces is acting on a body, their total effect can be expressed 
in terms of their resultant force. Thus, a resultant force is a single force 
which can replace two or more forces acting on a body, and has the same 
effect on the body as all the forces. Since a force is a vector quantity, the 
resultant of a number of forces can be found out by using vector algebra. 
The method of determination of the resultant of a system of forces acting 
simultaneously on a body is known as the composition of forces. 

Resolution of Forces 
A single force can be replaced by two parts acting in different directions 
which will produce the same effect on the body as the given force has. This 
process of splitting a force into two parts is called the resolution of forces. 
The force which is broken into parts is called the resolved force and the 
parts are called resolved parts, component forces or the resolutes. 
A force can be resolved either into two mutually perpendicular parts or into 
two mutually non-perpendicular parts. Generally, the force is resolved into 
two mutually perpendicular parts. Figure 1.16 shows a force F inclined at 
an angle θ with x-axis. The force is represented by an inclined OA. The 
component Fx of the force in x-direction is equal to OB. Thus, 
    θ= cosFFx             . . . (a) 

Likewise, the component Fy of the force in y-direction is equal to OC. 
Thus,   θ= sinFFy       . . . (b) 
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0 F
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Figure 1.16 

Moment of a Force 
The moment of a force on a body is defined as the tendency of the force to 
produce rotation about a point. The point need not be the actual pivot point. 
It may be any other point on the body or even may be elsewhere. The 
moment of a force about a point is equal to the product of the magnitude of 
the force and the perpendicular distance between the line of the force and 
the axis of rotation through the point. For example, the moment of force F 
about point O is given by 
    M = F x 
where x is the perpendicular distance OC of point O from AB as shown in 
Figure 1.17. 

 A 

C 

F 
0 

x 
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Basic Concepts 

 
 

 
Figure 1.17 

Point O is known as the moment centre (or fulcrum) and the distance x is 
called the moment arm. 

Equilibrium of Forces 

If a body is subjected to a number of forces and it does not move or 
accelerate, it is said to be in equilibrium or static equilibrium. All external 
forces acting on a body in equilibrium must have a resultant equal to zero. 
Moreover, the algebraic sum of the moment caused by these forces about 
any point must also be equal to zero. 

   R = 0  00 =∑ M  

where R is the resultant force and  is the algebraic sum of the moment 
of all the forces about any convenient point O. 

0M∑

1.10.1 Coplanar Concurrent Forces 
Laws of Forces 

The following laws of forces are used for the determination of the resultant 
of forces acting on a body. 

Parallelogram Laws of Forces 

According to this law, if two forces on a body are represented in 
magnitude and direction by the two adjacent sides of a parallelogram, 
then their resultant is represented in magnitude and direction by the 
diagonal of the parallelogram which passes through their point of 
intersection. In Figure 1.18, the two forces F1 and F2 acting on a body 
are represented by sides AB and AD, respectively, of a parallelogram 
ABCD. According to the parallelogram law of forces, their resultant R 
is represented by the diagonal AC. 

 D C 

A B 

R 

F1 

F2 

θ 

α 
α 

 

 

 

 

 
Figure 1.18 

The value of R can be determined graphically by drawing the 
parallelogram to the scale and measuring the diagonal AC and angle 
θ. The value of R can also be determined analytically from the 
trigonometric relation. 

  αcos2 21
2

2
2

1 FFFFR ++=            . . . (1.14) 

where α is the angle between F1 and F2.  
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The angle θ which the resultant R makes with the force F1, is 
computed from the relation  

Fluid Mechanics 
 

  
α+

α
=θ

cos
sintan
21

2
FF

F             . . . (1.15) 

Triangle Law of Forces 

According to this law, if two forces acting an a body are represented 
in magnitude and direction by the two sides of a triangle, taken in 
order, then their resultant is represented in magnitude and direction by 
the third side of the triangle, taken in opposite direction. 

Figure 1.19 shows two forces F1 and F2 represented by two sides AB 
and BC respectively of a triangle ABC. Their resultant R is 
represented by the side AC, with the direction from A to C. 

The resultant can be determined graphically by drawing the triangle to 
the scale and measuring the angle θ and the length AC. 

The resultant can also be determined analytically from the 
trigonometric relation. 

  
θsinθ)(αsinαsin

21 FFR
=

−
=            . . . (1.16) 
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Figure 1.19 

Polygon Law of Forces 

According to this law, if a number of coplanar concurrent forces 
acting on a body are represented in magnitude and direction by the 
sides of an open polygon, taken in order, then their resultant is 
represented in magnitude and direction by the closing side of the 
polygon, taken in the opposite order. 

In Figure 1.20, the forces F1, F2, F3 and F4 are represented by the 
sides AB, BC, CD and DE of an open polygon ABCDE. Their 
resultant R is represented by side AE, which is in opposite order (i.e. 
not in the same sense as the forces F1, F2, F3 and F4. 

The polygon law of forces is an extension of the triangle law of 
forces. According to which R1 is the resultant of forces F1 and F2 and 
R2 is the resultant of R1 and F3, and finally R is the resultant of R2 and 
F4. In other words, R is the resultant of all forces. 
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Basic Concepts 

 

Figure 1.20 

The resultant R can be determined by drawing the polygon ABCDE to 
scale and measuring the side AE and angle θ. However, for the 
determination of resultant R the analytical method by using the 
resolved parts of forces is more convenient. The resolved parts of the 
resultant R in x and y directions are obviously equal to the algebraic 
sum of the resolved parts of all the forces in x and y directions. Thus, 

  44332211 coscoscoscoscos θ+θ+θ+θ=θ FFFFR  

or   HR ∑=θcos               . . . (1.17a) 

and 44332211 sinsinsinsinsin θ+θ+θ+θ=θ FFFFR  

  VR ∑=θsin            . . . (1.17b) 

where θ1, θ2, θ3, and θ4 are the angles which F1, F2, F3 and F4 make 
with the x-axis, respectively.  

From Eqs. (1.17a) and (1.17b) 

  22 )()( VHR ∑+∑=          . . . (1.17c) 

and 
H
V

∑
∑

=θtan              . . . (1.18) 

While computing the resolved parts, proper signs must be considered. 
The resolved parts in the upward direction (+ y) and that in the left to 
right direction (+ x) are taken positive. 

Equilibrium Conditions for Coplanar Concurrent Forces 

A body subjected to coplanar concurrent forces will be in equilibrium if the 
resultant of all the forces is zero. The body will, therefore, be in equilibrium 
if the force polygon of forces closes, i.e. when the last force vector ends at 
the starting point. 

Equilibrium conditions for coplanar concurrent forces may also be written 
as  

                . . . (1.19) 0=∑ H

where  indicates the algebraic sum of the components of all the forces 
in the horizontal direction (or along x- axis). 

H∑

Also               . . . (1.20) 0=∑ V

where  indicates the algebraic sum of the components of the forces in 
the vertical direction (or along y-axis). 

V∑

Obviously, when the above two conditions are satisfied, the resultant will 
be zero,  

   0)()( 22 =∑+∑= VHR            . . . (1.21) 

 
Example 1.7 
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A force of 20 kN acts in x-direction and another force of 16 kN acts at an 
angle of 60o with the x-axis. Determine the resultant of the two forces. 

Solution 

From Eq. (1.14), αcos2 21
2

2
2

1 FFFFR ++=  

                   o22 60cos16202)16()20( ××++=  = 31.24 kN 

 From Eq. (1.15), θ = 1 2

1 2

sintan
cos

F
F F

− α
+ α

 = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

o

o
1

60cos1620
60sin16tan  

      θ = 26.33o 

The resultant force is 31.24 kN acting at an angle of 26.33o with the x-axis. 

 

 
Example 1.8 

Determine the resultant of the following four coplanar concurrent forces. 

(a) Force of 15 N acting along x-axis. 

(b) Force of 20 N acting at an angle of 30° with x-axis. 

(c) Force of 10 N acting at an angle of 60° with x-axis. 

(d) Force of 25 N acting in the y-direction. 

Solution 

 From Eq. (1.17a) 

   oooo 90cos2560cos1030cos200cos15 +++=∑ H

                   = 15 + 17.32 + 5 + 0  = 37.32 N 

From Eq. (1.17b) 

   oooo 90sin2560sin1030sin200sin15 +++=∑ V

          = 0 + 10 + 8.66 + 25 = 43.66 N 

From Eq. (1.17c) 

  2222 )66.43()32.37()()( +=∑+∑= VHR  

   N44.5720.190678.1392 =+=  

From Eq. (1.18),
H
V

∑
∑

=θ −1tan  

    o1 48.49
32.37
66.43tan =⎟

⎠
⎞

⎜
⎝
⎛= −  

The resultant force is 57.44 N acting at an angle of 49.48° with x-axis. 
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Basic ConceptsA weight of 10 kN is suspended by two cords AC and BC as shown in 

Figure 1.21. Determine the tension in the cords if the system is in 
equilibrium. 

 A B 

C 

30o 40o

130o

110o

120o 

T1 T2 T2 

W 
10 kN 

 

 

 

 
 

 
Figure 1.21 

Solution 
At point C, three forces T1, T2 and W are acting where T1 is the tension in 
the cord AC, T2 is the tension in the cord BC and W is the weight. 
From Eq. (1.19), for equilibrium 
   0=∑ H  

or   090cos30cos40cos oo
1

o
2 =+− WTT

or   00866.0766.0 12 =+− TT           . . . (1) 

From Eq. (1.20) 

     030sin40sin o
1

o
2 =−+ WTT

or   0105.0643.0 12 =−+ TT       . . . (2) 

Solving simultaneous Eqs. (1) and (2), 
   T1 = 8.15 kN  T2 = 9.21 kN 

SAQ 6 
 
 

(a) Two forces 1F and 2F act at a point O. The force 1F has a magnitude of 
10 kN and is inclined at 45º to positive x-axis, whereas the 
force 2F has a magnitude of 20 kN and is inclined at 120o to positive x-
axis. Determine the resolved parts of the two forces in x and y-
directions and hence determine the resultant. 

(b) Four coplanar forces F1, F2, F3 and F4 acting at a point are in 
equilibrium. If the magnitudes and inclinations of the forces F1, F2, 
and F3 are as given in the following table, determine the magnitude 
and inclination of the force F4. 

Force Magnitude Inclination with + x-axis 

1F  5 kN 30º 

2F  10 kN 90º 

3F  20 kN 150º 

1.10.2 Coplanar Non-Concurrent Forces 
Resultant of Coplanar Non-concurrent Forces 
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In this case, in addition to the magnitude and direction of the resultant 
force, the third unknown; namely, the point of application of the resultant 
force is required. 

Fluid Mechanics 
 

The magnitude of the resultant can be found by resolving all the forces 
horizontally and vertically. Thus 

   22 )()( VHR ∑+∑=  

where = algebraic sum of the components of all the given forces in 
the horizontal direction. 

H∑

  = algebraic sum of the components of all the given forces in 
the vertical direction. 

V∑

The direction of the resultant is determined using Eq (1.18) 

   
H
V

∑
∑

=θtan  

where θ is the angle which the resultant makes in the horizontal axis. 

The position of the resultant is determined by taking moments of the forces 
(or their components) about any point in their plane and equating the 
algebraic sum of moments of all the given forces to that of the resultant by 
using the following relation. 

Moment of resultant R about that point  

  = algebraic sum of all the given forces about the same point 

  = algebraic sum of the rectangular components of all the forces 
                  about the same point. 

or 0MdR ∑=×               . . . (1.22) 

where R is the resultant force, d is the perpendicular distance of R from any 
point O, and 0M∑  is the algebraic sum of the moments of all the given 
forces about O. 

Note : 

(i) While computing the algebraic sum of the moments, a suitable 
sign convention is taken. Generally, clockwise moments are 
taken as positive. 

(ii) If all the given forces are parallel, their resultant will also be 
parallel to the forces. Hence, angle θ is not required for the 
determination of the direction of the resultant. 

Equilibrium Conditions for Coplanar, Non-concurrent Forces 

If a body is subjected to a number of coplanar, non-concurrent forces, the 
body will be in equilibrium if their resultant is equal to zero and the 
algebraic sum of moments of all the forces about any point in their plane is 
also equal to zero. 

For equilibrium, the following three conditions must be satisfied: 

The algebraic sum of the components of all the forces in the horizontal 
direction is equal to zero, i.e.  
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     0=∑ H Basic Concepts

The algebraic sum of the components of all the forces in the vertical 
direction is equal to zero, i.e.  
     0=∑ V

The algebraic sum of moments of all the forces about any point O in their 
plane must be equal to zero, i.e.  

                . . . (1.23) 00 =∑ M

 

 
Example 1.10 

Four forces equal to 5 kN, 10 kN, 20 kN and 40 kN respectively acting 
along the four sides of a square ABCD of side 2 m each, taken in order as 
shown in Figure 1.22. Find the magnitude, direction and the position of the 
resultant. 

 10 kN 

20 kN 

40 kN 

5 kN 

2 m 

2 m 

2.4 m 

R 

A 

D C 

B 

 

 

 

 

 

 

Figure 1.22 

Solution 

From Eq. (1.17a), 
   kN15205 −=−=∑ H  

From Eq. (1.17b), 
    10 40 30 kNV∑ = − = −

From Eq. (1.17c), 

   22 )()( VHR ∑+∑=  

   2 2( 15) ( 30)R = − + −  

          = 33.54 kN 

From Eq. (1.18), 

         
H
V

∑
∑

=θtan  

                    
o30

15
−

=
−

 

          θ = 63.43° or 243.43° 

Since both and H∑ V∑  are negative, angle θ must be 243.43°. 
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From Eq. (1.22), Fluid Mechanics 
 

         0MdR ∑=×  

Taking moments of all forces about point A, 

        33.54 10 2 20 2d× = − × − ×  

or               d = − 1.79 m 

The resultant acts at a perpendicular distance of 1.79 m from A. The 
resultant is shown by the dotted line in Figure 1.22. 

 

 
Example 1.11 

Determine the reaction components R1, R2 and R3 for the beam shown in 
Figure 1.23. 

 

 

 

 
 

Figure 1.23 

10 kN 
5 kN 

45o

R1 

R2 

2m 2m 2m 

R3 

20 kN 

A B 

2m 

Solution  

  0=∑ H  

or 045cos101 =°−R  

or  (towards right) kN07.71 =R

  0=∑ V  

or 02045sin105 32 =+−°−− RR  

or 07.3232 =+ RR         . . . 
(i) 

From Eq. (1.23), 

   00 =∑ M  

Taking moments of all forces about point A, with clockwise moments as 
positive, 

   086204)45sin10(25 3 =−×+×°+× R  

or  0812028.2810 3 =−++ R  

or   8 R3 = 158.28  

or   R3 = 19.79 kN 

Substituting the value of R3 in Eq. (i), 
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Basic Concepts    07.3279.192 =+R

   R2 = 12.28 kN 

SAQ 7 
 

 

(a) Determine the support reactions R1, R2 and R3 of the beam shown in 
Figure 1.24. 

 

2 m 2 m 4 m 

7 kN5 kN 

R1 R2 

A B 
30o 

R3  

 

 

 
Figure 1.24 

(b) Determine the resultant of the four coplanar non-concurrent forces 
shown in Figure 1.25. 

 

15 kN 

4 kN 

10 kN 

5 kN 

145o 

30o

A B C D

3m 2m 4m

 

 

 

 

 

 
Figure 1.25 

1.11 LAWS OF MOTION 

The following three laws were enunciated by Sir Issac Newton in 1686 and are 
known as Newton’s laws of motion : 
First Law of Motion 

It states that a body continues in the state of rest or in the state of uniform 
motion in a straight line unless it is acted upon by some external force to 
change its state. 
We know from our experience that if a body is at rest, it will remain in that 
condition unless some external force is applied to move it. Similarly, if a 
body is moving at a uniform velocity in a straight line, it will continue its 
motion unless some external force is applied to it. 

Second Law of Motion 

It states that the rate of change of momentum of a body is directly 
proportional to the impressed force and takes place in the direction of the 
straight line in which the force acts. 
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Momentum of a body is equal to the product of its mass and velocity. 
Because velocity is a vector, momentum is also a vector. If the mass is 
expressed in kg and velocity in m/s, the momentum is in kg m/s. 

Fluid Mechanics 
 

Thus,  Momentum = Mass × velocity = m v 

where m is mass and v is the velocity. 

If the velocity changes from v1 to v2 in time t, 

Rate of change of momentum 
t

mvmv 12 −
=  

     
t

vvm )( 12 −
=  

Rate of change of momentum = m a 

where a is acceleration (i.e. rate of change of velocity). 

Now according to Newton’s second law of motion, 

Impressed force ∝ rate of change of momentum 

or   F ∝ ma       . . . 
(i) 

where F is the impressed force. 

or    kmaF =  

where k is a constant of proportionality. 

If we take m = 1 kg, a = 1 m/s2, and F = 1 Newton, k = 1. Thus 

    maF =      . . . (ii) 

Thus, a force of one Newton when acting upon a mass of 1 kg produces an 
acceleration of 1 m/s2. 

It is useful to express Newton’s second law of motion as given in Eq. (ii). 

Third Law of Motion 

According to this law, to every action there is an equal and opposite 
reaction. 

We know from our experience that when we push a body, the body pushes 
us back with an equal force. When we pull a block by a rope, the block 
pulls us back with an equal force. Similarly, if a block of weight W is lying 
on the ground, a reaction R acts upward on the block and R = W. 

 
 

 
 

Figure 1.26 

R 

W T 
P P T 



    

35

 
Basic Concepts1.12 IMPULSE-MOMENTUM EQUATION 

Impulse of a force F applied over a time t is equal to the product F × t. If the force 
is expressed in Newtons and t in seconds, the unit of impulse are N-s. Impulse is a 
vector. 

According to Newton’s second law of motion, 
  Force = Mass × Acceleration 

or       
Time

velocityinChange
×= mF  

If the velocity changes from v1 and v2 in time t, 

      
t

vvmF )( 12 −
=  

or            )( 12 vvmtF −=×  

               12 mvmv −=  

        Impulse = Final momentum – Initial momentum 
In words, the impulse of a force in any direction is equal to change in momentum 
in that direction. This is known as Impulse-momentum equation and is very 
useful in the study of fluid mechanics. 
If the force varies over the time t, the impulse of the force is obtained by 
integration. 

  = Final momentum – Initial momentum ∫ Fdt

 
 

Example 1.12 

If a body has a mass of 100 kg, what is the force required to produce an 
acceleration of 2 m/sec2. 

Solution 
From Newton’s second law, 
   maF =

or  = 200 N 2100×=F
 
 

Example 1.13 

A person weighs 981 N on the earth. What will be his weight on the moon 
where acceleration is 1.4 m/sec2. Assume acceleration due to gravity on the 
earth as 9.81 m/sec2. 

Solution 
The mass of the person is found from Newton’s second law of motion. 
   maF =

  981 = m × 9.81 
or m = 100 kg 
The weight on the moon is given by 

  F = 100 × 1.4 = 140 N 
 Example 1.14 
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The velocity of a body of mass 100 kg changes from 2 m/s to 4 m/s in the 
same direction in a time of 25 seconds. Determine the applied force and the 
impulse. 

Solution 

According to Newton’s second law, 

  Force = Rate of change of momentum 

            = 
Time

mentum Initial momomentumFinal −  

            =
25

200
25

21004100
=

×−× = 8 N 

  Now Impulse = Change of momentum 

            = 100 × 4 – 100 × 2 = 200 N-s 

 

 
Example 1.15 

A mass of 10 kg is subjected to a varying force expressed as F = 2 t + 4. 
Determine the velocity of mass after 4 seconds if its initial velocity is 
10 m/s 

Solution 

In this case, 

  Final momentum – Initial momentum  ∫ =dtF

or  
4

2 10
(2 4)t dt mv m+ = −∫ v

or )10(104
2
2

2

4

0

2 −=⎥⎦
⎤

⎢⎣
⎡ + vtt  

or   [ ] )10(104416 2 −=×+ v  

or              3.2  = v2 – 10 

or      v2 = 13.2 m/s 

 
SAQ 8 

 

The velocity of a body of mass 10 kg changes from 4 m/s to 12 m/s in 
10 seconds. Determine the applied force in that direction and the impulse. 
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Basic Concepts1.13 PRINCIPLE OF CONSERVATION OF ENERGY 

The energy of a body is its capacity of doing work. The units of energy are the 
same as that of work. 

The work done by a force is equal to the product of the force and the 
displacement in the direction of force. Work is said to be done by a force in any 
direction when the point of application of the force moves in that direction. For 
example, if a force F is applied on the body and the force is inclined at an angle 
of θ with 
x-axis, then work done by force is given by 
   cosW F= θ s×

where s is the distance moved in x-direction (Figure 1.27). 

 
 
 

F 

x θ 

Figure 1.27 

The SI unit of work as well as energy is Joule (J), where 
  1 Joule = 1 Newton × 1 metre 
or         1 J = 1 N-m 
Power is the rate of doing work. In SI system of units, the unit of power is Watt 
(W), where 
  1 Watt = 1 Joule per second 
or      1 W = 1 J/sec 
The power is usually expressed in kW. 
Different Forms of Energy 

The energy may exist in various forms such as : 
(a) Mechanical energy 
(b) Electrical energy 
(c) Light energy 
(d) Heat energy 
(e) Sound energy 
(f) Chemical energy 
(g) Magnetic energy 
(h) Nuclear energy 

Principle of Conservation of Energy 
According to the principle of conservation of energy, the energy can neither 
be created nor it can be destroyed. It can, however, change from one form 
to another form. 
For example, electrical energy is transformed into heat energy in an electric 
oven and into light energy in an electric bulb. However, the total energy 
contained in a given system of bodies remains constant. 
It may be noted that according to the principle of conservation of energy if 
some work is done on a body, the energy content of the body is increased 
by the amount of work done. On the other hand, if some work is done by a 
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body, the energy content of the body is reduced by the amount of work 
done. Thus, 

Fluid Mechanics 
 

  Final energy = Initial energy ± Work done 
This equation is also known as Work energy equation. 
In mechanics, we are generally concerned with only mechanical energy. In 
fluid mechanics, we also consider pressure energy. In thermodynamics, we 
are also concerned with heat energy. The following discussion is limited to 
mechanical energy only. 

Mechanical Energy 
The mechanical energy of a body consists of potential energy and kinetic 
energy. 
Potential Energy (PE) 

It is the energy possessed by a body by virtue of its position or 
configuration. 
If a body of weight W is located at a height of h above an arbitrary 
datum, the body has a potential energy equal to W h stored in it. If the 
body comes to the datum, it will do a work equal to W h. Thus, 

  Potential Energy = Weight of the body × h 
       = m g h 
where m is the mass of the body, g is the acceleration due to gravity 
(9.81 m/sec2), h is the height above the datum. 

Kinetic Energy (KE) 
It is the energy possessed by a body by virtue of its motion. 
If a body of weight W has a velocity of v, it has a kinetic energy equal 

to 2

2
1 Wv
g

. The kinetic energy can also be expressed as 2

2
1 mv , 

where m is the mass of the body. The amount of work required to be 
done on the body to bring it to rest is equal to the kinetic energy of the 
body. 

Total Energy (TE) 
The total energy in a body of weight W and having velocity v is equal 
to the sum of the potential energy and the kinetic energy. Thus, 
  Total Energy = Potential Energy + Kinetic Energy 

             = 2

2
1 Wv
g

Wh +  

                          = 2

2
1 mvmgh +  

According to the law of conservation of energy, the total energy of a 
body is a constant. If a body of weight W falls from rest position at a 
height of h above the datum (say, ground level), its kinetic energy will 
increase but potential energy will decrease and the sum of its potential 
energy and kinetic energy remains constant. 
Thus,  Potential Energy  + Kinetic Energy = Constant 
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Basic ConceptsNote : In actual practice, because of friction and other losses of 

energy, the total energy may change. However, in the 
following discussions, it is assumed that there is no loss of 
energy from one position to the other. 

 

 
Example 1.16 

If a body of mass of 10 kg falls from a height of 5 m, what will be the 
velocity of the body when it strikes the ground. 

Solution 

Potential energy of the body when at a height of 5 m is equal to (10 × g) 5. 

According to the principle of conservation of energy, the total energy 
remains constant. 

Therefore, kinetic energy when the body strikes the ground is also equal to  
(10 × g) 5. 

Thus 510
2
1 2 ××= gmv  

or 581.91010
2
1 2 ××=×× v  

or v2 = 98.1 or   v = 9.90 m/s 

 

 
Example 1.17 

One thousand litres of water is lifted to a height of 25 m and delivered with 
a velocity of 4 m/s to consumers. If the operation takes 15 seconds, 
determine the amount of work done on water and the power used. 

Solution 

We know that the work done on water is equal to the change in the potential 
energy and kinetic energy of water when it is lifted and delivered. 

One litre of water has a mass of 1 kg (i.e. a weight 9.81 N) 

Potential Energy = mgh 

      = 103 × 9.81× 25 

     = 245.25 × 103 Nm 

   Kinetic Energy = 21
2

mv  

                   = 3 21 10 4 8000 Nm
2

= × × =  

 Work done = 245.25 × 103 + 8000 = 253.25 × 103 Nm 

Power used = Work done per second 

               
3

3253.25 10 25.325 10 W 25.325 kW
10

×
= = × = . 
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Fluid Mechanics 
 1.14 HYDROSTATIC FORCE ON A SUBMERGED 

PLANE SURFACE 

Let a plane surface of area A with its centroid at C be placed at an angle ‘α’ with 
respect to the free surface of a liquid. 

Let us consider an elementary shaded strip at a depth z as in Figure 1.28(a). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.28(a) : A Submerged Plane Surface 

We know that the pressure p on the strip = ρ g z 
Force on the strip, δF = p δA = ρ g z δA = ρ g y sin α δA 

Force on the entire surface, F dF p d= = A∫ ∫  

                sin sing y dA g y dA= ρ α = ρ α∫ ∫  

     sing y A g z A= ρ α  = ρ

or            .F g z A= ρ        . . . 
(i) 
This equation may be interpreted by stating that the hydrostatic force on a plane 
surface equals the pressure g zρ  at the centroid of the area times the submerged 
area A of the surface and acts normal to it. 
It is interesting to arrive at the same result by looking at the pressure distribution 
over the surface. The pressure at any point on the surface must act normal to the 
surface and the intensity of pressure is given by 
   p g z= ρ  

where z is the depth of the liquid at that point. The pressure distribution is 
consequently linear, i.e. trapezoidal as shown in a typical end view in 
Figure 1.28(b). Volume under the pressure plot should represent the hydrostatic 
force acting on the surface. Utilizing the fact that the volume under the pressure 
plot must be given by 

   .V g z dA g z dA g z A= ρ = ρ = ρ∫ ∫  

O 

P 
C 

P 
Zp

Z Z 

δy

y 

C 

P 

A 

α 

y
Yp 



    

41

 
Basic Concepts O 

Z2 

C 
P ρgz2 

F Z Z1 

Pgz1 g zρ

Z

ρgz 

 

 

 

 

 
Figure 1.28(b) : Pressure Distribution and Force on an 

Inclined Plane Surface Submerged in a Liquid 

The force F on the surface is given by 
   F g z= ρ A       . . . (ii) 

 Example 1.18 

A tank contains water of density 1000 kg/m3 up to a height of 3 m above the 
base. An immiscible liquid of specific gravity 0.8 is filled on top of that 
over 2 m depth. Calculate the pressures at a point 1.5 m below the free 
surface, at the interface and at another point 2.5 m below the free surface. 
Calculate also the force on a vertical wall, 6 m wide. 

Solution 
The pressure at a point A, 1.5 m below the free surface must be given by 

   2(0.8 1000) 9.81 1.5 11770 N/mAp = × × × =

        = 11.77 kN/m2

Similarly, the pressure at a point B at the interface of the two liquid is 

             2(0.8 1000) 9.81 2 15700 N/mBp = × × × =

                   = 15.70 kN/m2

The pressure at a point C, 2.5 m below the free surface may be determined 
by either of the following considerations : 
By considering that a liquid of specific gravity 0.8 acts over the 2.5 m depth 
and, in addition, liquid of differential specific gravity (1.0 – 0.8), i.e. 0.2 
over the 0.5 m below the interface; 

 
 
 
 
 
 
 

 
Figure 1.29 

2.5 m 
1.5 m 

2 m 

3 m 

A x 

 x 
B 

D  
x 

x 
C 

ρ = 800 kg/m3

ρ = 1000 kg/m3 

1.14.1 Forces on Immersed Plane Surfaces 
Sometimes, it is essential to find out the location of the line of application of the 
hydrostatic force and the point of action on a plane submerged surface. 
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The point of action of the total hydrostatic force on the surface is called the centre 
of pressure, P, and it is not necessary that it should coincide with the centroid. We 
now find out the location of P by equating the moment of the resultant acting at P 
to the summation of the moments due to the elementary forces on the small strips. 

Fluid Mechanics 
 

  . .pF y F= δ y∫  

              2 sing y A= ρ αδ∫  

or       2sin sinpy g y dA g y dρ α = ρ α A∫ ∫  

or       
2

p
y dA

y
y dA

= ∫
∫

 

We can also write 

       Second moment of area about O
First moment of area about Opy =  

             0I
y A

=  

According to parallel axis theorem, 

        2
0 CI I A y= +  

Hence,       
2

C
p

I A yy
y A
+

=  

This relation locates the centre of pressure P in relation to the centroid of the 
submerged surface. It may be observed that each of the quantities 
IC, sin2 α, A and z may either by positive or zero. This means that zp must be more 
than or at most equal to z. In other words, the centre of pressure must be below C 
or at most coincide with C. This fact can be appreciated by observing the pressure 
distribution on a plane surface as well. Since the intensity of pressure increase as 
depth increases, the point of application of the total force due to the pressure must 
lie below the centroid of the area on which it acts. 

Let us examine the action of hydrostatic force and the location of centre of 
pressure for the special cases of horizontal and vertical surfaces : 
 
 
 
 
 

 

 
Figure 1.30(a) : Pressure Distribution and Force on a 

Horizontal Submerged Plane Surface 
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(b) Pressure Distribution and Force on a Horizontal Submerged Plane Surface 

Figure 1.30 

Submerged Horizontal Surface, α = 0. 
The pressure distribution on a submerged horizontal surface must be 
uniform over the entire area because every point on the surface is at a depth 
z below the free level of the liquid as shown in Figure 1.30(a). 
The hydrostatic force F on it must be 
   F g z= ρ A  
where z = z , the depth of the centroid of the area A of the surface. 
The centre of pressure P must be located on the surface at the centroid 
   pz z z= =  

as is also seen by examining Eq. (2.5), by substituting 
sin α = 0 for α = 0. 

Submerged Vertical Surface, oπα = = 90
2

 

The pressure distribution on a submerged vertical surface must be such that, 
in the end view as shown in Figure 1.30(b), pressure increases linearly with 
the depth z, according to the relation 
    P g= ρ z
The hydrostatic force F on it must be 
   F g z= ρ A  
where z =  depth of the centroid of the area A of the surface. 
Since the pressure increases with the depth, the centre of pressure P must 
lie-below the centroid of the area of the surface. From Eq. (2.5), for 
α = 90o sin α = 1, 

    c
p

Iz z
A z

= +  

In particular, if the surface is rectangular, with dimensions l × b, and its one 
edge is placed immediately beneath the free level of the liquid as shown in 
Figure 1.30(b) the centroid is located at l/2 below the free level of the 
liquid, 

   
2
lz =  

Also,  21 and
12cI b l A bl= =  

which yield 
21 2

2 12 3. .
2

p
l b lz llb l

= + =  
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and  
6p
lz z− =  

Fluid Mechanics 
 

In other words, the centre of pressure of a rectangular surface lies at a depth 
equal to two-third the length of the surface below the free level of the 
liquid; the distance between the centroid C and the centre of pressure P is 
one sixth the length of the surface. It may be noted that this criterion does 
not hold good if one edge of the rectangular surface does not coincide with 
the free level. In that case, 

   2
3pz z< < l  

 Example 1.19 

A box of rectangular base 3 m × 4 m contains gasoline (specific gravity 0.8) 
up to a height of 5 m. Calculate the force on the base and on each of the 
vertical faces and locate their lines of action. 

Solution 

The base is a horizontal surface at 5 m.z =  The force acting on it 
31000 0.8 9.81 5 (3 4) 470.88 10 N 470.88 kNg z A= ρ = × × × × × = × = . 

Since the pressure is uniform over the base, the resultant must pass through 
the centroid of the base and is directed vertically downwards. 

Each vertical face has the centroid at depth 

   5 2.5 m
2

z = =  

Force on each 3 m × 5 m face is given by 

  31000 0.8 9.81 2.5 (3 5) 294.3 10 N 294.3 kNF = × × × × × = × =

and on a 4 m × 5 m face 

  31000 0.8 9.81 2.5 (4 5) 392.4 10 N 392.4 kNF = × × × × × = × =

1.14.2 Total Force on Immersed Curved Surfaces 
Evaluation of total force R on a curved immersed surface can be made by 
determining the horizontal component Rx and the vertical component Ry of this 
force. 

As regards the curved surface ABC, principles of statics yield the following 
relations : 

         . . . (i) 0x x xF F R∑ = − =

       . . . (ii) 0y y yF F W R∑ = + − =

Σ moments of all forces about axis passing through O = 0.             . . . (iii) 

 Water Surface 

 

 
A 
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FY 
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Figure 1.31 : Forces on a Curved Immersed Surface 

Solution of these equations will give Rx, Ry and point of application of resultant 
force R. It can be seen from Eq. (ii) that Ry, the vertical component of the force on 
the curved surface is equal to weight of water above it. One can also consider a 
free body of fluid AOC and consider external force on it and write the condition 
of equilibrium. In that case Rx and Ry will be the components of the force exerted 
by the surface ABC on the free body. Such analysis leads to the same equations 
viz., Eqs. (i), (ii) and (iii). 

1.14.3 Floating Bodies 
Basic principles of buoyancy and flotation were first established by Archimedes 
(287-212 BC). These principles can be stated as follows. A body completely 
immersed in a fluid is acted upon by an upward buoyant force equal to the weight 
of fluid displaced by the body and it acts through the centre of gravity of 
displaced fluid. When the body is floating in a liquid, the weight of the body is 
equal to the buoyant force on the immersed part of the body. Therefore, 

   Buoyant force yF = γ ∀

where ∀ is the volume of immersed part of the body and γ is the specific weight 
of the liquid. 

1.15 SUMMARY 

• A fluid is a substance which deforms continuously when subjected to a 
shear stress. Thus the shearing stress exists in a fluid only when it is in 
motion. 

• A brief introduction to SI units is given. The basic properties of a fluid such 
as mass density, specific weight, specific volume and specific gravity are 
defined. 

• Newton’s law of viscosity is explained. 

• The importance of vapour pressure and cavitation is discussed. 

• The effects of surface tension and capillarity are outlined. 

• The basic equation of the hydrostatic pressure is derived. 

• The difference between the absolute pressure and gauge pressure is 
explained. 

• Basic definitions in mechanics are given. 

• The composition and resolution of coplanar concurrent and non-concurrent 
forces are discussed. 
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• The parallelogram law of forces, triangle law of forces and polygon law of 
forces are explained. 

• The equilibrium condition for coplanar forces are discussed. 

• A brief introduction to Newton’s law of motion and the impulse-momentum 
equation is given. 

• The principle of conservation of energy is introduced. 

• Computation of hydrostatic force on submerged plane surfaces as given. 

1.16  ANSWERS TO SAQs 

SAQ 1 

Specific weight, 
10

1329
=γ  

               )m/N109.132(m/kN9.132 333 ×==

Mass density, 
g
γ

=ρ  

    33
3

m/kg10547.13
81.9

109.132
×=

×
=  

Specific gravity, 
w

S
ρ
ρ

=  

           547.13
10

10547.13
3

3
=

×
=  

SAQ 2 
Component of the weight in the direction of plane  
        = 196.2 cos 70o = 67.104 kN 

Shear stress 
Area

ForceSliding
=  

        2m/kN61.1677
2.02.0

104.67
=

×
=  

Now     
dy
dvT μ=  

        
dy
dv

××= −310158.261.1677  

or        
y
v

dy
dv

≈×= 31039.777  

Therefore,       33 10025.01039.777 −×××=v

             = 19.435 m/s. 
SAQ 3 

Mass density at the surface 3
3

m/kg1020
81.9
1010

=
×

=  
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Specific volume at the surface, 
ρ

=
1

sV  

        kg/m1098.0
1020

1 33−×==  

We know   

V
dV
dpK −=  

or   

V
dV

67.6810453.2 3 −=×  

or   028.0−=
V
dV  

Change in specific volume 3 30.028 0.98 10 0.027 10− −= − × × = − ×  

Specific volume at 6.8 km depth  310)027.098.0( −×−=

                33 m/kg10953.0 −×=

Mass density  33
3 m/kg10049.1

10953.0
1

×=
×

= −  

Specific weight  333 m/kN291.101081.910049.1 =×××= −

SAQ 4 

Pressure at a depth of 12.5 mm in oil 
   hp γ=0   

                3105.1281.985.0 −×××=

                22 m/N23.104m/kN10423.0 ==

Bubble pressure,  2m/N15.147=ip

Now        
R

ppi
σ

=−
2

0  

or  3105.15.0
225.10415.147 −××

σ×
=−  

or   .m/N1009.16 3−×=σ

SAQ 5 
Pressure developed by the pump 
     = Exit Pressure – Inlet Pressure 
     = 25 – (– 7) = 32 m of water 

Now  p = γ h 

     2m/kN92.3133281.9 =×=

Absolute pressure at inlet = 10.3 – 7 = 3.3 m of water 
Absolute pressure at exit = 10.3 + 25 = 35.3 m of water. 

SAQ 6 
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(a) Resolved parts of 1,F  Fluid Mechanics 
 

    kN07.745cos10 o
1

+==xF

    kN07.745sin10 o
1

+==yF

Resolved parts of 2 ,F  

    kN0.10120cos20 o
2

−==xF

    kN32.17120sin20 o
2

+==yF

   kN93.20.1007.7 −=−+=∑ H  

   kN39.2432.1707.7 +=++=∑ V  

Resultant    2222 )39.24()93.2()()( +−=∑+∑= VHR  

         kN57.2484.59458.8 =+=   

            
H
V

∑
∑

=θtan  

          32.8
93.2
39.24

−=
−

=  

        o85.96=θ

(b) Resolved parts of F1, F2 and F3, are given in table  

Force Magnitude θ Fx Fy

F1 5 30º 4.33 2.50 
F2 10 90º 0 10 
F3 20 150º − 17.32 10 

   Σ = − 12.99 Σ = 22.50 

If and are the resolved parts of F
4xF

4yF 4, then  0=∑ H

or   kN99.12or099.12
44

==− xx FF  

and  0=∑ V  

or   kN5.22or050.22
44

−==+ yy FF  

Therefore, 2222
4 )5.22()99.12()()(

44
−+=+= yx FFF  

        kN98.2525.50674.168 =+=  

          
4

4tan
x

y

F
F

=θ  

       732.1
99.12

5.22
−=

−
=  

    θ = 120o

SAQ 7 
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Basic Concepts(a) For equilibrium,  0=∑ H

or    030cos5 3
o =− R

or    kN33.43 =R

Also  0=∑ V  

or    0730sin5 21
o =++−− RR

or          . . . (a) 5.921 =+ RR

Taking moments of all the forces about A, 

   08472)30sin5( 2
o =−×+× R

or          . . . (b)   125.42 =R

From Eq. (a), 

   kN375.5125.45.91 =−=R

(b)  oo 30cos10145cos15 +=∑ H

         kN63.366.829.12 −=+−=

  530sin104145sin15 oo ++−=∑ V

      kN6.1450.5460.8 =++−=  

     2222 )6.14()63.3()()( +=∑+∑= VHR  

        kN04.1516.21318.13 =+=  

022.4
63.3
6.14tan −=

−
=θ  

       o96.103−=θ

SAQ 8 

Force = Rate of Change of Momentum 

         N8
10

)412(10
=

−
=  

Impulse = Force × Time 

             N-s 80108 =×=
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