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7.1 INTRODUCTION

An open channel is a duct or conduit in which the liquid flows with a free surface.

This is in contrast with pipe flow in which the fluid completely fills the pipe and
the flow is under pressure. The pipe flow takes place due to difference of
pressure, whereas in an open channel, it is due to the slope of the channel, i.e. due
to gravity. It follows that there can be flow in a pipe even with its axis horizontal.
But, in an open channel, there must be some slope in the bed of the channel for
flow to take place.

Two kinds of flow are compared in Figure 7.1. Figure 7.1(a) shows pipe flow.
The pressure at the two sections of the pipe is indicated by the piezometers. The
total energy with reference to a datum line is the sum of the elevation, pressure
and velocity heads. The loss of energy that occurs when the liquid flows from
section 1 to section 2 is represented by /. The diagram for open channel flow is
shown in Figure 7.1(b). The liquid surface also represents the hydraulic gradient
line as the depth of water correspond to the piezometric height. The energy
gradient line is at a vertical distance 7*/2g above the water surface. The loss of
energy from section 1 to section 2 is /.1t may be noted that for uniform flow in
an open channel, the drop in the energy line is equal to the drop in bed. In pipe
flow, there is no such relation between the drop of the energy line and the slope
of the pipe axis.

It may be noted that the flow in a closed conduit is not necessarily a pipe flow. It
must be classified as open channel flow if the liquid has a free surface. It follows
that open channel flow is always characterized by a free surface.
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Objectives
After studying this unit, you should be able to
. define open channel,
o describe different types of open channel and flow through open

channel,

o handle problems based on Chezy’s formula, Ganguillet Kutter
formula and Manning’s formula, and

o explain circular formula and conditions of maximum discharge and
velocity in a circular channel.

7.2 TYPES OF OPEN CHANNELS

An open channel can be natural or artificial. Natural open channels are streams,
rivers, etc. These are generally irregular in shape, alignment and roughness of the
surface. Artificial open channels are built for some specific purpose, such as
irrigation, water supply, water power development. They are regular in shape and
alignment. The roughness of the boundary surface is also uniform.

Depending upon the shape, a channel is either prismatic or non-prismatic. A
channel is said to be prismatic when the cross section is uniform and bed slope is
constant. In a non-prismatic channel, either the cross section or slope or both
change. It is obvious that only artificial channel can be prismatic. A prismatic
channel can be of any regular shape. The most common shapes are rectangular,
parabolic, triangular, trapezoidal and circular (Figure 7.2).
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7.3 TYPES OF FLOW Soon e

The flow in an open channel can be either uniform or non-uniform. The flow is
uniform when the depth of liquid is constant (Figure 7.3(a)). If the depth varies
along its length, the flow is non-uniform (Figure 7.3(b)). Non-uniform flow is
also called the varied flow.

Non-uniform can be further divided into two types :
(a) Gradually varied flow, and
(b) Rapidly varied flow.

In gradually varied flow, the variation of the depth of liquid along the length is
gradual (Figure 7.3(b)). In rapidly varied flow, the change in depth is sudden. For
example, when water flows over an over flow dam, there is a sudden rise of water
at the toe of the dam, and a hydraulic jump forms. This is a case of rapidly varied
flow (Figure 7.4(c)).
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(a) Uniform Flow (b) Gradually Varied Flow

(c) Rapidly Varied Flow
Figure 7.3

The flow in an open channel can either be laminar or turbulent. In practice,

however, the laminar flow occurs very rarely. The engineer is mainly concerned

with the turbulent flow. The flow is turbulent when the Reynold number Ny

p VR
n

exceeds 1000, where Ny = in which R is the hydraulic radius.

The flow in an open channel can either be steady or unsteady. The flow is steady
when, at a particular section, the depth of liquid and other parameters, such as
velocity, area of cross section, discharge, do not change with time. In any
unsteady flow, the depth of flow and other characteristics, such as velocity, area
of cross section, discharge, change with time.

The discussions in this unit will be limited to fundamentals of steady, uniform,
turbulent flow in open channels.

7.4 DEFINITIONS

Before we take up the derivations of formulae for open channel flow, it will be

worthwhile to define certain parameters related with it.
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Fluid Mechanics Wetted Perimeter (P)

The wetted perimeter is the length of the line (or curve) of inter-section of
the wetted surface with a cross-section normal to the direction of flow. It
follows that the wetted perimeter is equal to the length of base and sides up
to the liquid surface in a rectangular channel. It must be noted that the free
surface is not included in the wetted perimeter, as there is no boundary
surface to cause any friction. The wetted perimeter (P) for the trapezoidal
channel shown in Figure 7.2(d) is given by

P=B+2+D*+ (nD)* =B +2D 1+ n*

where 7 is the side slope (n horizontal, 1 vertical), B is the base width and D
is the depth.

Area of Cross Section (A)

The area of cross section is the area of the liquid surface of the channel cut
when a cross-section is taken normal to the direction of flow. For the
trapezoidal channel (Figure 7.2(d))

A=BD+2x%nD><D=BD+nD2

Hydraulic Radius (R)

It is the ratio of the area of cross-section to the wetted perimeter. Thus

rR=4
P
For the trapezoidal channel (Figure 7.2(d))
o BD+ nD?
B+2D \/ 1+n°
For a rectangular channel (Figure 7.2(a))
A=BxD; P=B+2D; R= BD
B+2D

Hydraulic Gradient Line (HGL)

The hydraulic gradient line is the line indicating the pressure at various
sections along the channel. In case of open channels, the hydraulic gradient
line coincides with the liquid surface. If a piezometer is inserted in an open
channel, the liquid will rise in the tube to the level of the liquid surface.

The liquid surface slope (S,,) is the slope of the liquid surface or hydraulic
gradient line (Figure 7.4).
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Energy Gradient Line (EGL)

The energy gradient line is the line indicating the total energy of the liquid
with respect to a selected datum. The energy gradient line is above the
hydraulic gradient. The vertical distance between the two lines is o V*/2g,
where a is the velocity distribution factor that takes into account the
non-uniform distribution of velocity across the section. The value of a
varies from 1.1 to 1.2 for the turbulent flow in open channels. However, for
simplicity, it is usually taken as unity.

Hydraulic Slope
Hydraulic slope () is the slope of the total energy line. It is given by

h.
§=-1
L

where L is the length of channel in which the drop of the total energy line is
equal to 4. For uniform flow, S = S,, = So; where S|, is the water surface
slope and S is the bed slope.

It will be assumed that the bed slope of the channel is small. The slope may
be taken either the tangent or the sine of angle 0. Strictly speaking, the
slope should be taken as the sine of the angle of inclination, but for small
angles, it can be taken as the tangent of the angle of inclination as well.

Pressure Distribution Coefficient

When the filaments of the stream are straight and parallel, the pressure at
any point at a depth d below the free surface is given by hydrostatic
equation,

p=vyd ...(a)

If the streamlines are curved, the flow is curvilinear. The pressure at a point
at a depth d will be more than or less than that given by Eq. (a) depending
upon whether the centre of curvature is upward or downward respectively.
It is given by

p=a (yd) ... (b)
where o' is the pressure distribution coefficient.

For uniform flow, o’ = 1; for upward centre of curvature (concave flow),
o' >1, and for downward centre of curvature (convex flow), o'< 1.

As the discussions in this unit are limited to uniform flow, the pressure
distribution coefficient will be taken as unity, i.e. the pressure will be
assumed to be hydrostatic.

7.5 CHEZY’S FORMULA

Figure 7.5 shows the longitudinal section of open channel in which the flow is
steady and uniform. Let us consider the forces acting on the liquid in the reach
between two sections 1-1 and 2-2. As the flow is steady and uniform, it is neither
accelerating nor decelerating. The body of the liquid between the sections must
be in equilibrium. Let us assume that the pressure distribution is hydrostatic.

Flow through
Open Channel

175



Fluid Mechanics

176

P W sin 6
F1 F2
l 0 /W
7 0

Figure 7.5

Summing up the forces acting on the mass of the liquid between the two sections
in the direction of flow and equating them to zero,

Wsinb+F —F,—t,PL=0 ... (a)
where W = weight of the liquid between sections 1-1 and 2-2 = yAL
in which v = specific weight of liquid, 4 = area of cross-section
and L = length of the channel between sections 1-1 and 2-2

F, = hydrostatic force on the section 1-1

ﬂ=yAZ=YA(§]

where # is the depth of the centroid (z g} and D is the depth of flow.

(Note : The hydrostatic force is equal to the product of the area and the pressure
intensity at the centroid of the area.)

F> = hydrostatic force on the section 2-2 = yAh=v4 (gj

and 1o = boundary shear stress

Substituting these values in Eq. (a)
(YyAL)sin0+ vy A4 [g) -v4 (%) -19PL=0
(yAL) sin 0 =ty PL
e hy
Substituting sin 6 = -

=
or To =Y RS ...(b)

T P

where S is the hydraulic slope.

According to Chezy, the shear stress Ty is proportional to the square of the
velocity.

Thus, T = kV? ...(c)
where £ is a constant of proportionality.
From Egs. (b) and (c¢),

V2 =9yRS

k
or sz/%\/RS



or vV =CRS ...(7.1)

where C is a coefficient equal to \/% and is known as Chezy coefficient. Eq. (7.1)
is the well-known Chezy’s equation. The same equation is also used for pipe
flow.

Many attempts had been made by various investigators to determine the value of
Chezy’s coefficient C as described below.

7.6 DETERMINATION OF CHEZY’S C BY
GANGUILLET-KUTTER FORMULA

Several investigators gave their own expressions for the Chezy coefficient C. In
1869, Ganguillet and Kutter published a formula expressing the value of C in
terms of slope S, hydraulic radius R and the coefficient of rugosity N, as

s 0.00155 1
C= ) N ...(12)
N ( 0.00155)
1+ =123+
VR S

The coefficient N is known as Kutter’s coefficient. Its value depends upon the
nature of surface of the channel. Table 7.1 gives the typical values of N for
various surfaces. These values are also equal to Manning’s N discussed later.
Once C has been estimated, Eq. (7.1) can be used for the computation of
velocity V.

7.7 MANNING’S FORMULA

In 1889, Manning proposed the following formula :
V:(i) R*3 g1/2 ... (13)
N

where V= mean velocity, R = hydraulic radius, S = slope,
N = Manning’s rugosity coefficient.

Table 7.1 : Kutter’s as well as Manning’s Coefficients

SI. No. Description of Channel Surface N
1 Well planned timber, glass or brass 0.009
2 Wood-stave flumes, finished concrete 0.010
3 Glazed tiles, vitrified sewers, concrete pipes 0.013
4 Bricks in cement mortar, ashlar 0.015
5 Rubble masonary in cement 0.025
6 Straight unlined canals in earth 0.020
7 Unlined canals in gravel, unlined canals in earth 0.0225
with some curves
8 Corrugated metal flumes, unlined canal winding 0.025
9 Canals with rough stony bed or weeds 0.030
10 Winding natural streams in good conditions 0.035
11 Rivers of irregular cross-section winding 0.04t0 0.10

Flow through
Open Channel
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Fluid Mechanics Owing to its simplicity and fairly good accuracy, the Manning formula is the
most commonly used formula for the computations of open channel flow. In the
normal range of slopes and hydraulic radii, the value of Manning’s N is equal to
Kutter’s N. Therefore, the values of N given in Table 7.1 may also be used in
Manning’s formula. The Manning formula is much simpler than the Ganguillet-
Kutter formula. For the same roughness of the channel surface, both formulae
give almost the same results, except for very flat slopes

The value of N can also be obtained from Strickler formula,
K16
T4
where £ is the average height of roughness projection in metres.

Comparing Manning’s formula with Chezy’s formula,
v —CJRS :(%] R2/3 12

(1) e
(1) e

Example 7.1 —

The cross-section of an open channel is a trapezium with a bottom width of
4 m and side slopes 1 vertical to 2 horizontal. Calculate the discharge if the

depth of wateris 1.5 mand S = ﬁ Use Chezy’s formula. C = 50.

Solution
For the trapezoidal section (see Figure 7.2 (d))

Sy (Base width ;‘ Top width) Depth
=(4 +(4+ 2; 1.50 2)j x1.50 =10.5 m?

P = Base width + 2 x Side length
=4+2x1504/1+2%=10.71m

R:£:£:0.98m
P 10.71

From Chezy’s formula Eq. (7.1),

V =CA«RS
1

or V' =50,/0.98 x
1600

j =1.24 m/sec

Discharge = V'x 4 = 1.24 x 10.50 = 13.02 cumecs

Example 7.2 —

A rectangular channel has a base width of 2.5 m and a slope of 1 in 400.
Find the depth of flow if the discharge is 10 cumecs. Use Chezy’s formula.
C=50.
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Solution Flow through
Open Channel
Let D be the depth of flow (Figure 7.2 (a))
Area (4) = Width x Depth

or A=2.50D
Wetted perimeter (P) = Width + 2 x Depth=2.50 +2 x D
Hydraulic radius (R) = A_ 230D
P 250+2D

From Chezy’s formula (Eq. (7.1)),

V=C+RS
And QO=VA=CA~RS

Substituting the values,

2.50D 5 1
2.50+2D 400

10 = 50 x (2.50D) \/

D) D2

250D (1.6)  2.56
2.50 + 2D

or D?-2.05D-256=0 ... (a)

Solving Eq. (a), by trial and error, D =1.85 m

Example 7.3 —

A trapezoidal canal has a bottom width of 3 m and side slopes 1 vertical to
2 horizontal. If the slope of the bed is 1 in 5000 and the depth of water is
1.5 m, calculate the discharge using (a) Ganguillet-Kutter formula, (b) the
Manning formula. Take N = 0.025.

Solution
(a) According to Ganguillet-Kutter formula (Eq. (7.2))
5y, 000155 1
C- S N
N 0.00155
1+—=|23+
JR ( S j

A=03+2x15)x1.50=9 m?

P=3+2x15041+2%=3+3x224=972

R= 4 = 2 =0.926
P 972
23+ 0.00155 N 1

- 0.025 (23+0.00155j

40.926 0.0002

V=393 1/0.926 X ! =0.53m/s
5000

0 =0.53x9=4.77 cumecs
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(b)

Using Manning’s formula (Eq. (7.3))

% z(i) R2/3 12
N

1 1 1/2
V=|——1(0.926)*" | ——| =0.537 m/sec
0.025 5000

0=0.537 x 9 =4.83 cumecs

(a)
(b)

(©)

(d)

A rectangular channel 5.5 m wide and 1.25 depth has a bed slope of
1 in 900. Determine the discharge. Manning’s N = 0.015.

An open channel has trapezoidal section with a base width of 2 m and
side slopes of 1 : 1. If the depth is 1.50, determine the required slope
for a discharge of 5 m*/s. Take N=0.015.

An open channel of trapezoidal section carries 1.50 m®/s of water at a
depth of 1.0 m. If the mean velocity of flow is 0.5 m/s and the side
slopes of 1 V': 1 H, find the base width and bed slope. Take Chezy’s
C=60.

The cross-section of an open channel consists of a rectangle of size

I m x 0.5 m placed over a semi-circle of diameter 1.0 m (Figure 7.7).
If the bed slope is 1 in 2500, calculate the value of Chezy’s C if the
discharge is 0.50 m’/s.

7.8 CIRCULAR CHANNELS

For circular channels, it is convenient to express the depth of flow (D), wetted
perimeter (P) and the area of cross-section (4) in terms of the angle subtended by
the free surface at the centre. Figure 7.6 shows a circular channel of diameter d
with the depth of flow D. From geometry of the figure,

D=%+%cos(l80°—a) ...(7.5

where 2 a is the angle (in degrees) subtended by the free surface at the centre.

Figure 7.6

The wetted perimeter (P) is equal to

Also,

nd and

—x 20 =

360 180

P=ad ...(7.6)

where o is in radians.



The area of cross-section (4) is given by glow éhhrougf:
pen anne

A = area ‘ach’ + area ‘oab’

T2 o 25 L D sinax 2 cos (180° — o
4 2n 2 2 2
d>o d* .

=—— — —sin a cos o
4 4
2 2

=d—a—d—(25inacosa)
4 8
2 2

or A=%—%sin2a (7.7

Egs. (7.5), (7.6) and (7.7) can be used to solve problems on circular channels.

The velocity of flow by Chezy’s formula can be expressed as

V:C\/E:C\/E(%Jm

d?a 2 2
—— — —sin 20
v=cJs|—4+—38 ...(78)
ad

The discharge Q can be expressed as

cVs [dz d? f

— o ——sin 2a

0 4

...(79)
For any depth of flow D, the value of a can be computed from Eq. (7.5) and then
the corresponding velocity and discharge can be found from Eqgs. (7.8) and (7.9),
respectively.

Table 7.2 gives the values of i A and R for different values of 3 ratio,

Py Ay Ry
where suffix f/'denotes the value for the same channel when running full. The
table is quite useful for the computation of velocity and discharge at any depth D
in a channel of diameter d.

Table 7.2 : Values of i, A and R for different b ratio
P:  As R d
D/d P/P¢ AlA; R/R¢
0.10 0.205 0.052 0.254
0.20 0.295 0.142 0.482
0.30 0.369 0.252 0.684
0.40 0.436 0.374 0.857
0.50 0.500 0.500 1.000
0.60 0.564 0.626 1.110
0.70 0.631 0.748 1.185
0.80 0.705 0.858 1.217
0.90 0.795 0.948 1.192
1.00 1.00 1.00 1.000
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Example 7.4 —

Water flows through a circular channel of diameter 600 mm at the rate of
0.142 m’/s. If the slope of the channel is 1 in 500 and the depth of water is
450 mm, calculate Chezy’s coefficient and the velocity of flow.

Solution
From Eq. (7.5),

Dziﬁticos(ligoO - 0)
2 2

or 0.45 = 060 + 0.60 cos (180° — a)
2 2

or cos (180° — a) =0.50 = cos 60°
or o=120°= % radians
From Eq. (7.7),

2 2
Area of flow, 4= d”o _d- sin 20

4 8

21
(0.60)% x == 2
- 3 0007 400

4
=0.188 +0.039 = 0.227 m’
From Eq. (7.6), Wetted perimeter,
P=ad

=2_3T‘x 0.60=1.257 m

Hydraulic radius, R = 0.227 _ 0.181 m
1.257
Velocity of flow, V = %
_0142 0.626
0.227
Now from Chezy’s formula,
V=C+RS
1
0.626 =C 1{0.181 X ——
500

Cc=329

A circular sewer of 500 mm diameter has a slope of 1 in 144. Find the depth
of flow for a discharge of 0.30 m*/s. Chezy’s C = 50.



7.9 CONDITIONS FOR MAXIMUM DISCHARGE
AND MAXIMUM VELOCITY IN A CIRCULAR
CHANNEL

Figure 7.6 shows the cross-section of a circular channel. Let D be the depth of
liquid for the maximum discharge. The diameter of the channel is d. In circular
channels, it must be noted that the cross-sectional area 4 and the wetted perimeter
P both depend on the angle a, where 2 a is the angle subtended by the free
surface at the centre. For circular sections, the angle a is the most suitable
variable for the determination of conditions for the maximum discharge. For
rectangular and trapezoidal channels, the depth D is most suitable parameter.

Using the Chezy’s formula,
0= AC VRS

For the discharge to be a maximum, e 0

o
3
or i A =0 as C and S are constant.
do| P
or 3Pd—A—Ad—P:O ... (a)
do do.

Substituting these values of P and 4 from Egs. (7.6) and (7.7) in Eq. (a)

2 2 2 2
3aloci o 0L—d—sin2ot i a—d—SiI’IZOL dmd):o
4 8 4 8

do do
2 2 2 2
or 3da. d——d—COSZOL - d—a—d—SiIlZOL d=0
4 4 4 8

3 3
or éowl3—ial30Lcos20(—61]—-|r—sir12(x=0
4 4 4 8

or 4o — 60l cos 20 + sin 2a =0
The solution of this equation is (by trial and error),

o = 2.68 radians or o =154°

Therefore, the depth of flow,

D=1+£cos(1800 —a)
2 2
or D=§+(1—cosa)
Substituting o =154°, D = % (1 —cos 154°)

or D=%(1+0.90):0.95d ...(7.10)

Thus the maximum discharge in a circular channel occurs when the depth of flow
is 0.95 times the diameter. This condition holds good when the Chezy’s formula is

Flow through
Open Channel
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used. If any other formula is used, the depth of flow will be different. If
Manning’s formula is used, the maximum discharge occurs when the depth is
0.94 d (a=151°).

7.9.1 Conditions for Velocity in a Circular Channel

The condition for the maximum velocity is different from the condition for
maximum discharge. The condition for the maximum velocity may be obtained as
follows :

From the Chezy formula,

V=C+RS =C (%js

For the velocity to be a maximum, Z—V =0

or
da

or Pﬁ—Ad—on
da da

Substituting the values of P and 4,

or 20— 20 cos 200 — 2o + sin 2o =0
or 20 cos 20 = sin 20
or tan 20 = 20 ...(a)

The solution of Eq. (a) is (by trial and error),

o = 2.25 radians or o =128.75°

Depth of flow, D= a_ (i) cos o = d (1-cos a)
2 2 2
d
=2 (1+0.62) = 081 . (7.12)

Thus, the maximum velocity occurs when the depth of flow is 0.81 times the
diameter.

The maximum velocity will occur at the same depth even if Manning’s formula is
used.

It may be noted that the procedure adopted for circular sections may also be used
for other shapes with gradually closing tops.

Example 7.5 —

An open channel has a diameter of 1.68 m. If the channel slope is 1 in 5000,
calculate the maximum discharge which the channel can carry. Use Chezy’s
formula, C = 70.



Flow through

Solution
Open Channel

For the maximum discharge, a = 154°
d? d*
Area of cross-section, 4= e o — < sin 2o

Substituting o = 154° = 2.68 radians,

d? d’) . . 5
A= e (2.68) — < |sin 308° = 0.768 d

Substituting d=1.68 m, 4 =0.768 (1.68)*=2.17 m”
Wetted perimeter, P=a d =2.68 d=4.50 m

Hydraulic radius, R = A4_217_ 0.482 m
P 450
Discharge Q=AV = ACNRS

or 0=217%70 /0.482{ ! j =1.49 m’/s
5000
Example 7.6 —

A circular sewer with diameter 0.5 m is laid at a slope of 1 in 225. What is
the maximum velocity of flow that can occur? What would be the discharge
at that velocity? Take C = 60.

Solution

For the maximum velocity, o =128.75° = 2.25 radians

2 2 2 2
Area of flow, A= a o — a sin 20 = 057 (2.25) + 057 (0.975)
4 8 4 8
=0.171 m’
Wetted perimeter, P=a d =2.25 x 0.50 =1.125m
R= é = —0'171 =0.152m
P 1.125

Velocity, V =C+RS =60 1/0.152 X %25 =1.56 m/sec

O=A4V=0.171 x 1.56 = 0.267 cumecs

Example 7.7 —

For flow in open channels, derive continuity equation in differential from.
Reduce it for case of a rectangular channel of constant width (Figure 7.7).

Solution
Discharge coming in high section 1 = Q0

Discharge coming out through section 2 = Q + aa—Q Ox
X
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Figure 7.7 : Definition Sketch

If there is net inflow, then liquid volume within sections 1 and 2 must
increase. Liquid within the two sections = 4 6x.

Its rate of increase 2 (A4 ox) = ox oA
ot ot

Equating the two, one gets ox od + o9 ox=0
ot Ox
or a—A+@=0 ... (7.13)
ot Ox

For rectangular channel 4 = By where B is the channel width. If B is
constant, the above equation can be written as

0 0
— (BY) + — (gB) =0
at(y) ax(q)

a_y+a_q:()
ot Ox

where ¢ is the discharge per unit width. If ¢ = Uy is substituted in the above
equation, one gets

or

8_y+U8_y+y8_U:O .. (7.14)
ot ox ox

If flow is steady oA =0 and o4 + Y = 0 reduces to Y =0 or
ot ot  Ox ox

Q = const. .. Ul Al = U2 A2

Example 7.8 —

Show that for narrow deep rectangular channels, hydraulic radius R is

B
nearly equal to ER

Solution

A=By, P=B+ 2y

_A__B _ B

P B+2y B
y

R

+ 2



B Flow through
Now as y becomes large, for small B, — — 0. Open Channel

y

Hence for large y values R — g .

Example 7.9 —

Develop the following set of conditions for the maximum discharge through
a channel of trapezoidal section for a given cross-sectional area and a fixed

bed slope.
\ 4 /
S [ — 1
___i _______ s
< b »
d \/(1+T)Z= b +22nd
1
and n=-—
3
d
or w=—
2

Simplify these conditions for a rectangular channel and for a triangular
channel.

Solution
For a trapezoidal section as shown,

b+ (b+ 2nd)

Area of flow 4 = d=0b+nd)d ... (7.15)

Wetted perimeter P =b + 2 «/(al2 +n? dz)
or P=b+2d+1+n% ... (7.16)

Eliminating b by using Eq. (7.15)

P=§—nd+2d«/(l+n2)

Discharge Q=AU = AC \mi

e [Bie L
P P

If 4, C and i are otherwise fixed, as is implied in the problem.
Maximum Q corresponds to minimum P. The condition requires that

8_P=0 and 6_P=0
od on
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(a) Z—SzOz—d—é—n+2\/(l+n2)

Substituting 4 = (b + nd) d and simplifying,

d i+ a2y = bt2md .(117)

2
which shows that the sloping side equals half the top width.

Further, for this section,
A (b+nd)d

m=—=
Ppy2d 1 +n?)

= (b +nd)d _i
b+b+2nd 2

or ...(7.18)

implying that the hydraulic mean depth equals half the actual depth.
oP

(b) - = (0 for constant or optimum depth, requires that
n

d+2d.%(1+n2)1/3x2n=0

or 2n:—«/1+n2
1

or 4n® =1+n* n=— ... (7.19)

NG

which corresponds to a side slope of 60° with the horizontal.

An important comment here is that the ultimate maximum discharge
through a trapezoidal channel demands the fulfillment of both the above
conditions but in practice, only one of the two conditions may be invoked,
the other being assigned by the design and feasibility considerations.

It is easy to visualize a rectangular channel as a special case of the
trapezoidal channel when n = 0.

From conditions (7.17) and (7.18)

i=2
2
d
and m = 3 for a rectangular channel.

Another special case of the trapezoidal channel is a triangular channel,
when b=0
Then A=nd

2
and P=2d 1+n2=2\/2,/1+2”

2
P:2\/2 sec 6_2\/Zse06

tan 0 m

or



o P Flow through
For minimum P, E =0 Open Channel

sec O tan O B sec O
Jtan®  2(tan0)"

or =0

Rearranging and simplifying the terms,

2tan’ 0 = sec’ O

or sin 0 =

Sl-

and 0 = 45°

for the maximum discharge through a triangular channel.

Determine the diameter of an open channel of circular section required to
carry a maximum discharge of 0.30 m*/s. The bed slope is 1 in 2500.
N=0.0125.

7.10 SUMMARY

o Pipe flow and open channel flow are compared. For open channel to occur,
there should be free liquid surface and slope of the bed of the channel.

. Different types of open channels are outlined. Simple theories of open
channel flow are considered only for prismatic channels.

o Depending on the variation of depth, the open channel flow can be uniform
or non-uniform. In this unit, only steady uniform flow has been discussed.

o Various parameters are defined. The parameters are somewhat different
from those in pipe flow because there is no boundary at the free surface.

o Empirical formulae such as Chezy’s formula, Ganguillet-Kutter formula
and Manning’s formula are discussed. In practice, generally Manning’s
formula is used these days.

o Circular channels are commonly used for sewers. For circular channels, it is
convenient to express the various parameters in terms of the angle 2 o
subtended by the free surface at the centre.

o In a circular channel, the maximum discharge occurs when the depth of
flow is 0.95 times the diameter if the Chezy formula is used and 0.94 times
the diameter if Manning’s formula is used.

o The conditions for the maximum velocity are given. The maximum velocity
occurs when the depth of flow is 0.81 times the diameter.

7.11 ANSWERS TO SAQs

SAQ 1

(a) A4=5.5%x1.25=6.875m>
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or

P=55+2x125=8.0m

P 8.0

Q=A4AxV

= 6.875 x [i R*3 S”Zj
N

1 1 1/2
= 6.875 x x (0.859)2"3 | —
0.015 900

0=13.86 m’/s

(b) A=Q2+1x15)x15=525m’

or

or

or

(©)

Now

or

or

or

or

150
0.5

P=2+2x15y{1)*+1)? =624m

R= 525 =0.841m
6.24

1 23 o172
=Ax—R S
Q N

5.0=525% L (0.84123 (512

015
sY2 =0.016

§=256%x10"* (=1in 3906)
3.0 m?
A=(B+nD)D
3.0=(B+1.0x1.0)x1.0
B=2.0m

P=B+2D1+n?

=20+2x1.0,414+1=483m

439 _o6m

P 483
y=CJRS

0.50 =60 ,/0.62 x S

S =1.12x10"* (=11n 8928)

(d) A=1x05 +§>< (1) =0.893 m?
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ntx1.0

P=2x0.50+ =257m




=285 _ 0347 m
2.57
Q= AC RS
or 0.50 = 0.893 x C ,/0.347 L
2500
or C=4752
SAQ 2
2 2
A= d"a - d— sin 2o
4 8
P=ad
Q= AC RS
or 0°=4°C? [lj S
P
2 d2 a d2 ’ 2 1 1
or (0.30)° = ——sin 2a | % (50)° x — x —
4 8 ad 144
or (20— sin 200 = (0.30) x (8)* x (0.5) x 144 x o 8490 o
(0.5)° x 2500
or 20, — sin 2a = 4.396 a!/3

Solving by trial and error, a. = 2.5 radians (= 143.24°)

Depth of flow, D= % (1 — cos 143.24°)

= @ (1+0.801)
2
or D=045m
SAQ 3
A 213 G172
=— RS
0 N
2/3 1/2
or 0.30 = A ﬁ ;
0.0125\ P 2500
PRE
or W =0.1875

Substituting values of 4 and P in terms of diameter d,

5
d? d? 3
— o ——sin 2o
4 8

2
(ad)’

=0.1857

For the discharge to be a maximum,

.(a)

Flow through
Open Channel
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o do
or 2.5Pd—A—Ad—P=O
do do
2 2 2 2
or 2.5(da) d——d—cos20c - d—oc—d—sin2a d=0
4 4 4 8
or 30 — S0 cos 2a0 + sin 200 =0

By trial and error, o = 2.63 radians (= 151.0°)
From Eq (a),

2 2 3
{d x2.63- " gin (3020)}
4 8

=0.1875

(2.63 d)*"?
or d=0.80 m.
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FLUID MECHANICS

The subject matter of Fluid is concerned with the study of fluids under all
conditions of rest and motion. Almost every branch of engineering requires a
good understanding of the basic principles of Fluid Mechanics in dealing with the
diverse problems of flow of fluids encountered in practice. In addition, engineers
and those aspiring to be engineers, like you, need to master the fundamentals as
well as application of Fluid Mechanics, in order to be able to effectively practice
the engineering profession.

A fluid can be defined as a substance which deforms or yields continuously when
shear stress is applied to it, no matter how small it is. Fluids can be sub-divided
into liquids and gases. We are living in an environment of air and water, i.e.
fluids and therefore, whatever we do, it is connected to some extent with the
concepts of Fluid Mechanics. Fluid Mechanics is the study of forces and motions
on fluids, and is based on the basic principles of conservation of mass,
momentum, energy and laws of thermodynamics.

The present course introduces you to the principles of Fluid Mechanics and is
presented in seven units. We start the course with Unit 1, where you will be
introduced to the various fluid properties, principles of hydrostatics leading to
computation of forces on plane and curves surfaces.

In Unit 2, we present a discussion on flow of fluids. In this unit, you will be
introduced to the concepts of flow of fluids through Euler’s and Bernoulli’s
equations and their applications.

Orifices are used for the measurement of flow. Flow through orifices is presented
in Unit 3. the unit describes different types of orifice and other relevant details.

In Unit 4, you will study flow through mouthpiece and minor losses. The unit also
discusses the measurement of discharge through as open channel by a weir, notch
and a venturi flume.

There are many situations in which a fluid is transported through pipes from one
place to another. Water, for example, is an extremely essential fluid for us and it
has to be brought to the place of our need. Therefore, we must have knowledge of
mechanics of flow through simple pipes. The concept of flow through simple
pipes has been introduced in Unit 5. In Unit 6, you will be introduced to flow
through complex pipes. The unit deals with flow through pipes in series, pipes in
parallel, branch pipes connecting three reservoirs, siphons, etc.

A liquid flowing with a free surface exposed to a constant pressure throughout
constitutes an important class of flows with numerous applications in
engineering. This is known as open channel flow irrespective of the fact whether
the channel is open or closed as along as its surface is exposed to constant
pressure. In Unit 7, you will be introduced to the flow through open channel.

During the course of study, you will observe that the course lays emphasis on the
concepts, the basic principles leading to the development of governing equations
of flow. The application and utility of these principles are demonstrated through
illustrative examples at the end of each section. The Self Assessment Questions
(SAQ) are intended to help you in verifying whether you have grasped the
concept presented and provides the needed feedback about your progress. You are
advised to study the text and illustrative examples very carefully. Try to solve the
SAQs on your own and verify your answers with those given at the end of each



unit. This will, definitely develop your confidence in analysing and solving the
practical problem.
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