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7.1 INTRODUCTION 

An open channel is a duct or conduit in which the liquid flows with a free surface. 
This is in contrast with pipe flow in which the fluid completely fills the pipe and 
the flow is under pressure. The pipe flow takes place due to difference of 
pressure, whereas in an open channel, it is due to the slope of the channel, i.e. due 
to gravity. It follows that there can be flow in a pipe even with its axis horizontal. 
But, in an open channel, there must be some slope in the bed of the channel for 
flow to take place. 

Two kinds of flow are compared in Figure 7.1. Figure 7.1(a) shows pipe flow. 
The pressure at the two sections of the pipe is indicated by the piezometers. The 
total energy with reference to a datum line is the sum of the elevation, pressure 
and velocity heads. The loss of energy that occurs when the liquid flows from 
section 1 to section 2 is represented by hf. The diagram for open channel flow is 
shown in Figure 7.1(b). The liquid surface also represents the hydraulic gradient 
line as the depth of water correspond to the piezometric height. The energy 
gradient line is at a vertical distance V2/2g above the water surface. The loss of 
energy from section 1 to section 2 is hf .It may be noted that for uniform flow in 
an open channel, the drop in the energy line is equal to the drop in bed. In pipe 
flow, there is no such relation between the drop of the energy line and the slope 
of the pipe axis. 

It may be noted that the flow in a closed conduit is not necessarily a pipe flow. It 
must be classified as open channel flow if the liquid has a free surface. It follows 
that open channel flow is always characterized by a free surface. 
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Figure 7.1 

Objectives 
After studying this unit, you should be able to 

• define open channel, 
• describe different types of open channel and flow through open 

channel, 
• handle problems based on Chezy’s formula, Ganguillet Kutter 

formula and Manning’s formula, and 
• explain circular formula and conditions of maximum discharge and 

velocity in a circular channel. 

7.2 TYPES OF OPEN CHANNELS 

An open channel can be natural or artificial. Natural open channels are streams, 
rivers, etc. These are generally irregular in shape, alignment and roughness of the 
surface. Artificial open channels are built for some specific purpose, such as 
irrigation, water supply, water power development. They are regular in shape and 
alignment. The roughness of the boundary surface is also uniform. 
Depending upon the shape, a channel is either prismatic or non-prismatic. A 
channel is said to be prismatic when the cross section is uniform and bed slope is 
constant. In a non-prismatic channel, either the cross section or slope or both 
change. It is obvious that only artificial channel can be prismatic. A prismatic 
channel can be of any regular shape. The most common shapes are rectangular, 
parabolic, triangular, trapezoidal and circular (Figure 7.2). 
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Open Channel7.3 TYPES OF FLOW 

The flow in an open channel can be either uniform or non-uniform. The flow is 
uniform when the depth of liquid is constant (Figure 7.3(a)). If the depth varies 
along its length, the flow is non-uniform (Figure 7.3(b)). Non-uniform flow is 
also called the varied flow. 

Non-uniform can be further divided into two types : 

(a) Gradually varied flow, and 

(b) Rapidly varied flow. 

In gradually varied flow, the variation of the depth of liquid along the length is 
gradual (Figure 7.3(b)). In rapidly varied flow, the change in depth is sudden. For 
example, when water flows over an over flow dam, there is a sudden rise of water 
at the toe of the dam, and a hydraulic jump forms. This is a case of rapidly varied 
flow (Figure 7.4(c)). 
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Figure 7.3 

The flow in an open channel can either be laminar or turbulent. In practice, 
however, the laminar flow occurs very rarely. The engineer is mainly concerned 
with the turbulent flow. The flow is turbulent when the Reynold number NR 

exceeds 1000, where 
μ

ρ
=

VRNR  in which R is the hydraulic radius. 

The flow in an open channel can either be steady or unsteady. The flow is steady 
when, at a particular section, the depth of liquid and other parameters, such as 
velocity, area of cross section, discharge, do not change with time. In any 
unsteady flow, the depth of flow and other characteristics, such as velocity, area 
of cross section, discharge, change with time. 

The discussions in this unit will be limited to fundamentals of steady, uniform, 
turbulent flow in open channels. 

7.4 DEFINITIONS 

Before we take up the derivations of formulae for open channel flow, it will be 
worthwhile to define certain parameters related with it. 
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Wetted Perimeter (P) Fluid Mechanics 
 

The wetted perimeter is the length of the line (or curve) of inter-section of 
the wetted surface with a cross-section normal to the direction of flow. It 
follows that the wetted perimeter is equal to the length of base and sides up 
to the liquid surface in a rectangular channel. It must be noted that the free 
surface is not included in the wetted perimeter, as there is no boundary 
surface to cause any friction. The wetted perimeter (P) for the trapezoidal 
channel shown in Figure 7.2(d) is given by 

    222 12)(2 nDBnDDBP ++=++=  

where n is the side slope (n horizontal, 1 vertical), B is the base width and D 
is the depth. 

Area of Cross Section (A) 
The area of cross section is the area of the liquid surface of the channel cut 
when a cross-section is taken normal to the direction of flow. For the 
trapezoidal channel (Figure 7.2(d))  

   2

2
12 nDBDDnDBDA +=××+=  

Hydraulic Radius (R) 
It is the ratio of the area of cross-section to the wetted perimeter. Thus  

    
P
AR =  

For the trapezoidal channel (Figure 7.2(d)) 

    
2

2

12 nDB

nDBDR
++

+
=  

For a rectangular channel (Figure 7.2(a)) 

    
DB

BDRDBPDBA
2

;2;
+

=+=×=  

Hydraulic Gradient Line (HGL) 
The hydraulic gradient line is the line indicating the pressure at various 
sections along the channel. In case of open channels, the hydraulic gradient 
line coincides with the liquid surface. If a piezometer is inserted in an open 
channel, the liquid will rise in the tube to the level of the liquid surface. 

The liquid surface slope (Sw) is the slope of the liquid surface or hydraulic 
gradient line (Figure 7.4). 
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Energy Gradient Line (EGL) 

The energy gradient line is the line indicating the total energy of the liquid 
with respect to a selected datum. The energy gradient line is above the 
hydraulic gradient. The vertical distance between the two lines is α V2/2g, 
where α is the velocity distribution factor that takes into account the 
non-uniform distribution of velocity across the section. The value of α 
varies from 1.1 to 1.2 for the turbulent flow in open channels. However, for 
simplicity, it is usually taken as unity. 

Hydraulic Slope 

Hydraulic slope (S) is the slope of the total energy line. It is given by  

    
L

h
S f=  

where L is the length of channel in which the drop of the total energy line is 
equal to hf. For uniform flow, S = Sw = S0; where Sw is the water surface 
slope and S0 is the bed slope. 

It will be assumed that the bed slope of the channel is small. The slope may 
be taken either the tangent or the sine of angle θ. Strictly speaking, the 
slope should be taken as the sine of the angle of inclination, but for small 
angles, it can be taken as the tangent of the angle of inclination as well. 

Pressure Distribution Coefficient 

When the filaments of the stream are straight and parallel, the pressure at 
any point at a depth d below the free surface is given by hydrostatic 
equation,  

    dp γ=       . . . (a) 

If the streamlines are curved, the flow is curvilinear. The pressure at a point 
at a depth d will be more than or less than that given by Eq. (a) depending 
upon whether the centre of curvature is upward or downward respectively. 
It is given by 

    )( dp γα′=       . . . (b) 

where α  is the pressure distribution coefficient. ′

For uniform flow, α  = 1; for upward centre of curvature (concave flow), 
 >1, and for downward centre of curvature (convex flow), 

′
α′ α′< 1. 

As the discussions in this unit are limited to uniform flow, the pressure 
distribution coefficient will be taken as unity, i.e. the pressure will be 
assumed to be hydrostatic. 

7.5 CHEZY’S FORMULA 

Figure 7.5 shows the longitudinal section of open channel in which the flow is 
steady and uniform. Let us consider the forces acting on the liquid in the reach 
between two sections 1-1 and 2-2. As the flow is steady and uniform, it is neither 
accelerating nor decelerating. The body of the liquid between the sections must 
be in equilibrium. Let us assume that the pressure distribution is hydrostatic. 
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Figure 7.5 

Summing up the forces acting on the mass of the liquid between the two sections 
in the direction of flow and equating them to zero, 
   0θsin 021 =τ−−+ PLFFW      . . . (a) 

where   W = weight of the liquid between sections 1-1 and 2-2 = γAL 
in which    γ = specific weight of liquid, A = area of cross-section  
and    L = length of the channel between sections 1-1 and 2-2   
   F1 = hydrostatic force on the section 1-1  

   ⎟
⎠
⎞

⎜
⎝
⎛γ=γ=

21
DAhAF  

where h is the depth of the centroid ⎟
⎠
⎞

⎜
⎝
⎛=

2
D  and D is the depth of flow. 

(Note : The hydrostatic force is equal to the product of the area and the pressure 
intensity at the centroid of the area.) 

F2 = hydrostatic force on the section 2-2 ⎟
⎠
⎞

⎜
⎝
⎛γ=γ=

2
DAhA  

and   τ0 = boundary shear stress 
Substituting these values in Eq. (a) 

  0
22

θsin)( 0 =τ−⎟
⎠
⎞

⎜
⎝
⎛γ−⎟

⎠
⎞

⎜
⎝
⎛γ+γ PLDADAAL   

  PLAL 0θsin)( τ=γ  

Substituting sin 
L

h f=θ , 

  P
L

Ah f
0τ=

γ
   

or  RSγ=τ0         . . . (b) 

where S is the hydraulic slope. 
According to Chezy, the shear stress τ0 is proportional to the square of the 
velocity. 

Thus,          . . . (c) 2
0 kV=τ

where k is a constant of proportionality. 
From Eqs. (b) and (c), 

     RSkV γ=2

or   RS
k

V γ
=  
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Open Channelor    RSCV =                . . . (7.1) 

where C is a coefficient equal to 
k
γ  and is known as Chezy coefficient. Eq. (7.1) 

is the well-known Chezy’s equation. The same equation is also used for pipe 
flow. 
Many attempts had been made by various investigators to determine the value of 
Chezy’s coefficient C as described below. 

7.6 DETERMINATION OF CHEZY’S C BY 
GANGUILLET-KUTTER FORMULA 

Several investigators gave their own expressions for the Chezy coefficient C. In 
1869, Ganguillet and Kutter published a formula expressing the value of C in 
terms of slope S, hydraulic radius R and the coefficient of rugosity N, as 

   
⎟
⎠
⎞

⎜
⎝
⎛ ++

++
=

SR
N

NSC
00155.0231

100155.023
             . . . (7.2) 

The coefficient N is known as Kutter’s coefficient. Its value depends upon the 
nature of surface of the channel. Table 7.1 gives the typical values of N for 
various surfaces. These values are also equal to Manning’s N discussed later. 
Once C has been estimated, Eq. (7.1) can be used for the computation of 
velocity V. 

7.7 MANNING’S FORMULA 

In 1889, Manning proposed the following formula : 

   2/13/21 SR
N

V ⎟
⎠
⎞

⎜
⎝
⎛=               . . . (7.3) 

where  V = mean velocity, R = hydraulic radius, S = slope, 

 N = Manning’s rugosity coefficient. 

Table 7.1 : Kutter’s as well as Manning’s Coefficients 

Sl. No. Description of Channel Surface N 
1 Well planned timber, glass or brass 0.009 
2 Wood-stave flumes, finished concrete 0.010 
3 Glazed tiles, vitrified sewers, concrete pipes 0.013 
4 Bricks in cement mortar, ashlar 0.015 
5 Rubble masonary in cement 0.025 
6 Straight unlined canals in earth 0.020 
7 Unlined canals in gravel, unlined canals in earth 

with some curves 
0.0225 

8 Corrugated metal flumes, unlined canal winding 0.025 
9 Canals with rough stony bed or weeds 0.030 

10 Winding natural streams in good conditions 0.035 
11 Rivers of irregular cross-section winding 0.04 to 0.10 
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Owing to its simplicity and fairly good accuracy, the Manning formula is the 
most commonly used formula for the computations of open channel flow. In the 
normal range of slopes and hydraulic radii, the value of Manning’s N is equal to 
Kutter’s N. Therefore, the values of N given in Table 7.1 may also be used in 
Manning’s formula. The Manning formula is much simpler than the Ganguillet-
Kutter formula. For the same roughness of the channel surface, both formulae 
give almost the same results, except for very flat slopes 

Fluid Mechanics 
 

The value of N can also be obtained from Strickler formula, 

   
24

6/1kN =  

where k is the average height of roughness projection in metres. 
Comparing Manning’s formula with Chezy’s formula, 

   2/13/21 SR
N

RSCV ⎟
⎠
⎞

⎜
⎝
⎛==  

   6/11 R
N

C ⎟
⎠
⎞

⎜
⎝
⎛=                . . . (7.4) 

 
 

Example 7.1 

The cross-section of an open channel is a trapezium with a bottom width of 
4 m and side slopes 1 vertical to 2 horizontal. Calculate the discharge if the 

depth of water is 1.5 m and 1
1600

S = . Use Chezy’s formula. C = 50. 

Solution 
For the trapezoidal section (see Figure 7.2 (d)) 

  DepthTop width)width(Base
2

×=
+A   

         = 2m5.1050.1
2

)250.124(4
=×⎟

⎠
⎞

⎜
⎝
⎛ ××++  

  P = Base width + 2 × Side length 

     m71.102150.124 2 =+×+=    

  m98.0
71.10
5.10
===

P
AR  

From Chezy’s formula Eq. (7.1), 

  RSCV =  

or secm/24.1
1600

198.050 =⎟
⎠
⎞

⎜
⎝
⎛×=V  

Discharge = V × A = 1.24 × 10.50 = 13.02 cumecs 
 
 

Example 7.2 

A rectangular channel has a base width of 2.5 m and a slope of 1 in 400. 
Find the depth of flow if the discharge is 10 cumecs. Use Chezy’s formula. 
C = 50. 



    

179

 
Flow through 

Open Channel
Solution  

Let D be the depth of flow (Figure 7.2 (a))  

  Area (A) = Width × Depth 
or            A = 2.50 D 

Wetted perimeter (P) = Width + 2 × Depth = 2.50 + 2 × D 

  Hydraulic radius (R) 
D

D
P
A

250.2
50.2
+

==  

From Chezy’s formula (Eq. (7.1)), 

   RSCV =  

And  RSCAVAQ ==  

Substituting the values, 

   
400
1

250.2
50.2)50.2(5010 ×
+

×=
D

DD  

            2

2 56.26.1
250.2

50.2
DDD

D
=⎟

⎠
⎞

⎜
⎝
⎛=

+
   

or        . . . (a) 056.205.23 =−− DD

Solving Eq. (a), by trial and error, D = 1.85 m 
 
 

Example 7.3 

A trapezoidal canal has a bottom width of 3 m and side slopes 1 vertical to 
2 horizontal. If the slope of the bed is 1 in 5000 and the depth of water is 
1.5 m, calculate the discharge using (a) Ganguillet-Kutter formula, (b) the 
Manning formula. Take N = 0.025. 

Solution 
(a) According to Ganguillet-Kutter formula (Eq. (7.2)) 

  
⎟
⎠
⎞

⎜
⎝
⎛ ++

++
=

SR
N

NSC
00155.0231

100155.023
 

   2m950.1)5.123( =××+=A

  72.924.2332150.123 2 =×+=+×+=P  

  926.0
72.9
9

===
P
AR  

Thus, 3.39

0002.0
00155.023

926.0
025.01

025.0
1

0002.0
00155.023

=
⎟
⎠
⎞

⎜
⎝
⎛ ++

++
=C  

  s/m53.0
5000

1926.03.39 =×=V  

   cumecs77.4953.0 =×=Q
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(b) Using Manning’s formula (Eq. (7.3)) Fluid Mechanics 
 

  2/13/21 SR
N

V ⎟
⎠
⎞

⎜
⎝
⎛=  

  sec/m537.0
5000

1)926.0(
025.0
1 2/1

3/2 =⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=V  

  Q = 0.537 × 9 = 4.83 cumecs 
 
SAQ 1  

(a) A rectangular channel 5.5 m wide and 1.25 depth has a bed slope of 
1 in 900. Determine the discharge. Manning’s N = 0.015. 

(b) An open channel has trapezoidal section with a base width of 2 m and 
side slopes of 1 : 1. If the depth is 1.50, determine the required slope 
for a discharge of 5 m3/s. Take N = 0.015. 

(c) An open channel of trapezoidal section carries 1.50 m3/s of water at a 
depth of 1.0 m. If the mean velocity of flow is 0.5 m/s and the side 
slopes of 1 V : 1 H, find the base width and bed slope. Take Chezy’s 
C = 60. 

(d) The cross-section of an open channel consists of a rectangle of size 
1 m × 0.5 m placed over a semi-circle of diameter 1.0 m (Figure 7.7). 
If the bed slope is 1 in 2500, calculate the value of Chezy’s C if the 
discharge is 0.50 m3/s. 

7.8 CIRCULAR CHANNELS 

For circular channels, it is convenient to express the depth of flow (D), wetted 
perimeter (P) and the area of cross-section (A) in terms of the angle subtended by 
the free surface at the centre. Figure 7.6 shows a circular channel of diameter d 
with the depth of flow D. From geometry of the figure, 

   α)180(cos
22

o −+=
ddD              . . . (7.5) 

where 2 α is the angle (in degrees) subtended by the free surface at the centre. 
 

d 
D 

a  b 

c 

O 
α α 

 

 

 

 

 
Figure 7.6 

The wetted perimeter (P) is equal to 

    
180

2
360

dd πα
=α×

π  

Also,   P = α d               . . . (7.6) 
where α is in radians. 
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The area of cross-section (A) is given by 
  A = area ‘acb’ + area ‘oab’ 

     = ⎟
⎠
⎞

⎜
⎝
⎛ α−×α××+α×

π
×

π o2 180(cos
2

sin
22

122
2
1

4
ddd  

     αα−
α

= cossin
44

22 dd  

     )cossin2(
84

22
αα−

α
=

dd  

or   α−
α

= 2sin
84

22 ddA                . . . (7.7) 

Eqs. (7.5), (7.6) and (7.7) can be used to solve problems on circular channels. 
The velocity of flow by Chezy’s formula can be expressed as 

  
2/1

⎟
⎠
⎞

⎜
⎝
⎛==

P
ASCRSCV  

  

2
1

22
α2sin

84

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

α

−
α

=
d

dd

SCV              . . . (7.8) 

The discharge Q can be expressed as 

  
2
3

22

2/1 α2sin
84)( ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−α

α
==

dd
d

SCAVQ             . . . (7.9) 

For any depth of flow D, the value of α can be computed from Eq. (7.5) and then 
the corresponding velocity and discharge can be found from Eqs. (7.8) and (7.9), 
respectively. 

Table 7.2 gives the values of 
fff R

R
A
A,

P
P and  for different values of 

d
D  ratio, 

where suffix f denotes the value for the same channel when running full. The 
table is quite useful for the computation of velocity and discharge at any depth D 
in a channel of diameter d. 

Table 7.2 : Values of 
fff R

R
A
A

P
P and,  for different 

d
D  ratio 

D/d P/Pf A/Af R/Rf

0.10 0.205 0.052 0.254 
0.20 0.295 0.142 0.482 
0.30 0.369 0.252 0.684 
0.40 0.436 0.374 0.857 
0.50 0.500 0.500 1.000 
0.60 0.564 0.626 1.110 
0.70 0.631 0.748 1.185 
0.80 0.705 0.858 1.217 
0.90 0.795 0.948 1.192 
1.00 1.00 1.00 1.000 
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SAQ 2 

 
Example 7.4 

Water flows through a circular channel of diameter 600 mm at the rate of 
0.142 m3/s. If the slope of the channel is 1 in 500 and the depth of water is 
450 mm, calculate Chezy’s coefficient and the velocity of flow. 

Solution  

From Eq. (7.5), 

   α)180(cos
22

o −+=
ddD  

or   )180(cos
2
60.0

2
60.045.0 o α−+=  

or   cos (180° − α) = 0.50 = cos 60° 

or   radians
3

2120o π
==α  

From Eq. (7.7), 

Area of flow,    α2sin
84

22 ddA −
α

=  

     o
2

2

240sin
8

)60.0(
4

3
2)60.0(

−

π
×

=  

     = 0.188 + 0.039 = 0.227 m2

From Eq. (7.6), Wetted perimeter, 
               dP α=  

       60.0
3

2
×

π
= = 1.257 m 

Hydraulic radius,
257.1
227.0

=R  = 0.181 m 

Velocity of flow, 
A
QV =  

        626.0
227.0
142.0

==  

Now from Chezy’s formula, 

     RSCV =  

          
500
1181.0626.0 ×= C  

     C = 32.9 

 

 

A circular sewer of 500 mm diameter has a slope of 1 in 144. Find the depth 
of flow for a discharge of 0.30 m3/s. Chezy’s C = 50. 
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Open Channel7.9 CONDITIONS FOR MAXIMUM DISCHARGE 
AND MAXIMUM VELOCITY IN A CIRCULAR 
CHANNEL 

Figure 7.6 shows the cross-section of a circular channel. Let D be the depth of 
liquid for the maximum discharge. The diameter of the channel is d. In circular 
channels, it must be noted that the cross-sectional area A and the wetted perimeter 
P both depend on the angle α, where 2 α is the angle subtended by the free 
surface at the centre. For circular sections, the angle α is the most suitable 
variable for the determination of conditions for the maximum discharge. For 
rectangular and trapezoidal channels, the depth D is most suitable parameter.  
Using the Chezy’s formula, 

  RSACQ =  

or  S
P
ACS

P
AACQ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎠
⎞

⎜
⎝
⎛=

3
  

For the discharge to be a maximum, 0
α
=

d
dQ  

or   0
3

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

α P
A

d
d  as C and S are constant. 

or   03 =
α

−
α d

dPA
d
dAP        . . . (a) 

Substituting these values of P and A from Eqs. (7.6) and (7.7) in Eq. (a) 

 0)(2sin
84

2sin
84

3
2222

=
α
α

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
α−

α
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
α−

α
α

α
d

dddddd
d
dd  

or  02sin
84

2cos
44

3
2222

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
α−

α
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
α−α dddddd  

or  02sin
84

2cos
4
3

4
3 33

33 =α+
α

−αα−α
dddd   

or   02sin2cos64 =α+αα−α

The solution of this equation is (by trial and error), 

      o154αorradians68.2 ==α

Therefore, the depth of flow, 

  )180(cos
22

o α−+=
ddD  

or   )cos1(
2

α−+=
dD  

Substituting α = 154°, )154cos1(
2

o−=
dD  

or   ddD 95.0)90.01(
2

=+=             . . . (7.10) 

Thus the maximum discharge in a circular channel occurs when the depth of flow 
is 0.95 times the diameter. This condition holds good when the Chezy’s formula is 
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used. If any other formula is used, the depth of flow will be different. If 
Manning’s formula is used, the maximum discharge occurs when the depth is 
0.94 d (α = 151o). 

Fluid Mechanics 
 

7.9.1 Conditions for Velocity in a Circular Channel 
The condition for the maximum velocity is different from the condition for 
maximum discharge. The condition for the maximum velocity may be obtained as 
follows : 
From the Chezy formula, 

  S
P
ACRSCV ⎟
⎠
⎞

⎜
⎝
⎛==  

For the velocity to be a maximum, 0=
αd

dV  

or   0
α

=
⎟
⎠
⎞

⎜
⎝
⎛

d
P
Ad

 

or   0
αα
=−

d
dPA

d
dAP  

Substituting the values of P and A, 

  02sin
84

2cos
44

)(
2222

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
α−

α
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
α−α dddddd  

or   02sin22cos22 =α+α−αα−α  

or   α=αα 2sin2cos2  

or    α=α 22tan         . . . (a) 

The solution of Eq. (a) is (by trial and error), 

   o75.128αorradians25.2 ==α

Depth of flow,  )cos1(
2

cos
22

α−=α⎟
⎠
⎞

⎜
⎝
⎛−=

dddD  

              dd 81.0)62.01(
2

=+=            . . . (7.12) 

Thus, the maximum velocity occurs when the depth of flow is 0.81 times the 
diameter. 
The maximum velocity will occur at the same depth even if Manning’s formula is 
used.   
It may be noted that the procedure adopted for circular sections may also be used 
for other shapes with gradually closing tops. 
 
 

Example 7.5 

An open channel has a diameter of 1.68 m. If the channel slope is 1 in 5000, 
calculate the maximum discharge which the channel can carry. Use Chezy’s 
formula, C = 70. 
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Solution 

For the maximum discharge, α = 154° 

Area of cross-section, α⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−α⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 2sin

84

22 ddA  

Substituting α = 154° = 2.68 radians, 

       2o
22

768.0308sin
8

)68.2(
4

dddA =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  

Substituting   d = 1.68 m, A = 0.768 (1.68)2 = 2.17 m2

Wetted perimeter, P = α d = 2.68 d = 4.50 m 

Hydraulic radius, m482.0
50.4
17.2

===
P
AR  

Discharge  RSACAVQ ==  

or   ⎟
⎠
⎞

⎜
⎝
⎛××=

5000
1482.07017.2Q  = 1.49 m3/s 

 

 
Example 7.6 

A circular sewer with diameter 0.5 m is laid at a slope of 1 in 225. What is 
the maximum velocity of flow that can occur? What would be the discharge 
at that velocity? Take C = 60. 

Solution 

For the maximum velocity,  radians25.275.128α o ==

Area of flow,  )975.0(
8

)5.0()25.2(
4

)5.0(α2sin
84

2222
+=−α=

ddA  

       = 0.171 m2 

Wetted perimeter, P = α d = 2.25 × 0.50 = 1.125 m 

     m152.0
125.1
171.0

===
P
AR  

Velocity,   secm/56.1
225
1152.060 =×== RSCV  

     Q = AV = 0.171 × 1.56 = 0.267 cumecs 

 Example 7.7 

For flow in open channels, derive continuity equation in differential from. 
Reduce it for case of a rectangular channel of constant width (Figure 7.7). 

Solution 

Discharge coming in high section 1 = Q 

Discharge coming out through section 2 QQ x
x

∂
= + δ

∂
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∴ Net rate of inflow Q QQ Q x
x x

∂ ∂⎛ ⎞Fluid Mechanics 
 x= − + δ = − δ⎜ ⎟∂ ∂⎝ ⎠

 

 

 

 

 
 

Figure 7.7 : Definition Sketch 

1 2 

Q 

If there is net inflow, then liquid volume within sections 1 and 2 must 
increase. Liquid within the two sections A x= δ . 

∴ Its rate of increase ( ) AA x x
t t
∂ ∂

δ = δ
∂ ∂

 

∴ Equating the two, one gets 0A Qx x
t x

∂ ∂
δ + δ =

∂ ∂
 

or  0A Q
t x

∂ ∂
+ =

∂ ∂
            . . . (7.13) 

For rectangular channel A = By where B is the channel width. If B is 
constant, the above equation can be written as 

   ( ) ( ) 0By qB
t x
∂ ∂

+ =
∂ ∂

 

or  0y q
t x

∂ ∂
+ =

∂ ∂
 

where q is the discharge per unit width. If q = Uy is substituted in the above 
equation, one gets 

   0y y UU y
t x x

∂ ∂ ∂
+ + =

∂ ∂ ∂
           . . . (7.14) 

If flow is steady 0A
t

∂
=

∂
 and 0A Q

t x
∂ ∂

+ =
∂ ∂

 reduces to 0Q
x

∂
=

∂
 or 

   1 1 2 2const.Q U A U A= ∴ =  

 

 

Show that for narrow deep rectangular channels, hydraulic radius R is 

nearly equal to 
2
B . 

Solution 
   , 2A By P B y= = +  

   
2 2

A By BR BP B y
y

= = =
+ +

 

Q
Q x

Q
∂

+ δ
∂

xδ

A 

Example 7.8 
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Flow through 

Open ChannelNow as y becomes large, for small B, 0B
y
→ . 

Hence for large y values 
2
BR → . 

 

 
Develop the following set of conditions for the maximum discharge through 
a channel of trapezoidal section for a given cross-sectional area and a fixed 
bed slope. 

Example 7.9 

 

 

 

b 

d 1 

∩ 

 

   2 2(1 )
2

b nd+  d n+ =

and  1
3

n =  

or  
2
dw =  

Simplify these conditions for a rectangular channel and for a triangular 
channel. 

Solution 

For a trapezoidal section as shown, 

Area of flow ( 2 ) . ( )
2

b b ndA d b nd+ +
= = d+           . . . (7.15) 

Wetted perimeter 2 2 22 ( )P b d n d= + +  

or    22 (1 )d n= + +P b            . . . (7.16) 

Eliminating b by using Eq. (7.15) 

     22 (1A )d d n
d

= − + +P n  

Discharge   Q A  U AC mi= =

         1AAC i
P P

= α  

If A, C and i are otherwise fixed, as is implied in the problem. 

Maximum Q corresponds to minimum P. The condition requires that 

     0 and 0P P
d n
∂ ∂

= =
∂ ∂

 



 
 

 
188 

(a) 2
20 2 (1P A n n

d d
∂

= = − − + +
∂

Fluid Mechanics 
 )  

Substituting ( )A b nd d= + and simplifying, 

  2 2(1 )
2

b nd n d+
+ =            . . . (7.17) 

which shows that the sloping side equals half the top width. 
Further, for this section, 

  
2

( )

2 (1

A b nd dm
P b d n )

+
= =

+ +
 

or  ( )
2 2

b nd d dm
b b nd

+
= =

+ +
           . . . (7.18) 

implying that the hydraulic mean depth equals half the actual depth. 

(b) 0P
n

∂
=

∂
 for constant or optimum depth, requires that 

  2 1/312 . (1 ) 2 0
2

d d n n+ + × =  

or  22 1n n= − +  

or  2 2 14 1 ;
3

n n n= + =            . . . (7.19) 

which corresponds to a side slope of 60o with the horizontal. 
An important comment here is that the ultimate maximum discharge 
through a trapezoidal channel demands the fulfillment of both the above 
conditions but in practice, only one of the two conditions may be invoked, 
the other being assigned by the design and feasibility considerations. 
It is easy to visualize a rectangular channel as a special case of the 
trapezoidal channel when n = 0. 
From conditions (7.17) and (7.18) 

   
2
bd =  

and   
2
dm =  for a rectangular channel. 

Another special case of the trapezoidal channel is a triangular channel, 
when   b = 0 
Then   A = nd2

and   
2

2 12 1 2
2
nP d n A +

= + =  

or   
2sec 2 sec2

tan tan
AP A θ θ

= =
θ θ
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Open ChannelFor minimum P, 0P∂
=

∂θ
 

or   
3

1.5
sec tan sec 0

tan 2(tan )
θ θ θ

− =
θ θ

 

Rearranging and simplifying the terms, 

    2 22 tan secθ = θ

or   1sin
2

θ =  

and    o45θ =

for the maximum discharge through a triangular channel. 

SAQ 3 
 

 

Determine the diameter of an open channel of circular section required to 
carry a maximum discharge of 0.30 m3/s. The bed slope is 1 in 2500. 
N = 0.0125. 

7.10 SUMMARY 

• Pipe flow and open channel flow are compared. For open channel to occur, 
there should be free liquid surface and slope of the bed of the channel. 

• Different types of open channels are outlined. Simple theories of open 
channel flow are considered only for prismatic channels. 

• Depending on the variation of depth, the open channel flow can be uniform 
or non-uniform. In this unit, only steady uniform flow has been discussed. 

• Various parameters are defined. The parameters are somewhat different 
from those in pipe flow because there is no boundary at the free surface. 

• Empirical formulae such as Chezy’s formula, Ganguillet-Kutter formula 
and Manning’s formula are discussed. In practice, generally Manning’s 
formula is used these days. 

• Circular channels are commonly used for sewers. For circular channels, it is 
convenient to express the various parameters in terms of the angle 2 α 
subtended by the free surface at the centre. 

• In a circular channel, the maximum discharge occurs when the depth of 
flow is 0.95 times the diameter if the Chezy formula is used and 0.94 times 
the diameter if Manning’s formula is used. 

• The conditions for the maximum velocity are given. The maximum velocity 
occurs when the depth of flow is 0.81 times the diameter. 

7.11 ANSWERS TO SAQs 

SAQ 1 

 (a)  2m875.625.15.5 =×=A
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  m0.825.125.5 =×+=P  Fluid Mechanics 
 

  m859.0
0.8

875.6
===

P
AR  

  VAQ ×=  

     ⎟
⎠
⎞

⎜
⎝
⎛×= 2/13/21875.6 SR

N
 

     
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛××=

2/1
3/2

900
1)859.0(

015.0
1875.6  

or       Q = 13.86 m3/s  

(b)  2m25.55.1)5.112( =××+=A

  m24.6)1()1(5.122 22 =+×+=P  

  m841.0
24.6
25.5

==R  

  2/13/21 SR
N

AQ ×=  

or  )()841.0(
015.0
125.50.5 2/13/2 S××=  

or   016.02/1 =S

or   )3906in1(1056.2 4 =×= −S

(c) 2m0.3
5.0

50.1
===

V
QA  

Now     A = (B + nD) D 

or  0.1)0.10.1(0.3 ××+= B  

or  B = 2.0 m 

  212 nDBP ++=  

         m83.4110.120.2 =+×+=  

              m62.0
83.4
0.3

===
P
AR  

  RSCV =  

or  S×= 62.06050.0  

or   )8928in1(1012.1 4 =×= −S

(d) 22 m893.0)1(
8

5.01 =×
π

+×=A  

  m57.2
2

0.150.02 =
×π

+×=P  
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Open Channel  m347.0
57.2
893.0

==R  

  RSACQ =  

or  
2500

1347.0893.050.0 ××= C  

or  C = 47.52 

SAQ 2 

  α−
α

= 2sin
84

22 ddA  

   dP α=

  RSACQ =  

or S
P

CAQ ⎟
⎠
⎞

⎜
⎝
⎛=

1232  

or 
144

11)50(2sin
84

)30.0( 2
322

2 ×
α

××⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
α−

α
=

d
dd  

or α=
×

α××××
=α−α 90.84

2500)5.0(
144)5.0()8()30.0()2sin2( 6

32
3  

or  3/1396.42sin2 α=α−α

Solving by trial and error, α = 2.5 radians (= 143.24o) 

Depth of flow,  )24.143cos1(
2

o−=
dD  

     )801.01(
2
50.0

+=  

or         D = 0.45 m 

SAQ 3 

  2/13/2 SR
N
AQ =  

or 
2/13/2

2500
1

0125.0
30.0 ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

P
AA  

or 1875.03/2

3/5
=

P
A  

Substituting values of A and P in terms of diameter d, 

  1857.0

)(

2sin
84

3
2

3
5

22

=

α

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
α−α

d

dd

     . . . (a) 

For the discharge to be a maximum, 
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      03/2

3/5
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

α P
A

d
d  

   0
2
3

3/2

3/5
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

α P
A

d
d  

   0
2/5

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

α P
A

d
d  

   05.2 2/52/3 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α

−
α

×
d
dPA

d
dAAP  

or  05.2 =
α

−
α d

dPA
d
dAP  

or  02sin
84

2cos
44

)(5.2
2222

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
α−α−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
α−α dddddd  

or  02sin2cos53 =α+αα−α  

By trial and error, α = 2.63 radians (= 151.0o) 

From Eq (a), 

  1875.0
)63.2(

)302(sin
8

63.2
4

3/2

3
5

o
22

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−×

d

dd

 

or d = 0.80 m. 
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Flow through 

Open ChannelFLUID MECHANICS 
The subject matter of Fluid is concerned with the study of fluids under all 
conditions of rest and motion. Almost every branch of engineering requires a 
good understanding of the basic principles of Fluid Mechanics in dealing with the 
diverse problems of flow of fluids encountered in practice. In addition, engineers 
and those aspiring to be engineers, like you, need to master the fundamentals as 
well as application of Fluid Mechanics, in order to be able to effectively practice 
the engineering profession. 

A fluid can be defined as a substance which deforms or yields continuously when 
shear stress is applied to it, no matter how small it is. Fluids can be sub-divided 
into liquids and gases. We are living in an environment of air and water, i.e. 
fluids and therefore, whatever we do, it is connected to some extent with the 
concepts of Fluid Mechanics. Fluid Mechanics is the study of forces and motions 
on fluids, and is based on the basic principles of conservation of mass, 
momentum, energy and laws of thermodynamics. 

The present course introduces you to the principles of Fluid Mechanics and is 
presented in seven units. We start the course with Unit 1, where you will be 
introduced to the various fluid properties, principles of hydrostatics leading to 
computation of forces on plane and curves surfaces. 

In Unit 2, we present a discussion on flow of fluids. In this unit, you will be 
introduced to the concepts of flow of fluids through Euler’s and Bernoulli’s 
equations and their applications. 

Orifices are used for the measurement of flow. Flow through orifices is presented 
in Unit 3. the unit describes different types of orifice and other relevant details. 

In Unit 4, you will study flow through mouthpiece and minor losses. The unit also 
discusses the measurement of discharge through as open channel by a weir, notch 
and a venturi flume. 

There are many situations in which a fluid is transported through pipes from one 
place to another. Water, for example, is an extremely essential fluid for us and it 
has to be brought to the place of our need. Therefore, we must have knowledge of 
mechanics of flow through simple pipes. The concept of flow through simple 
pipes has been introduced in Unit 5. In Unit 6, you will be introduced to flow 
through complex pipes. The unit deals with flow through pipes in series, pipes in 
parallel, branch pipes connecting three reservoirs, siphons, etc. 

A liquid flowing with a free surface exposed to a constant pressure throughout 
constitutes an important class of flows with numerous applications in 
engineering. This is known as open channel flow irrespective of the fact whether 
the channel is open or closed as along as its surface is exposed to constant 
pressure. In Unit 7, you will be introduced to the flow through open channel. 

During the course of study, you will observe that the course lays emphasis on the 
concepts, the basic principles leading to the development of governing equations 
of flow. The application and utility of these principles are demonstrated through 
illustrative examples at the end of each section. The Self Assessment Questions 
(SAQ) are intended to help you in verifying whether you have grasped the 
concept presented and provides the needed feedback about your progress. You are 
advised to study the text and illustrative examples very carefully. Try to solve the 
SAQs on your own and verify your answers with those given at the end of each 
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unit. This will, definitely develop your confidence in analysing and solving the 
practical problem. 
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