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2.1 INTRODUCTION 

This unit introduces you to the basic concepts of flow of fluids. Various methods 
of the flow visualisation are given. The streamline and streamtubes are defined. 
Different types of flow, depending upon the variation of space and time, are 
described. 
Two basic equations of fluid mechanics, viz. the continuity equation and the 
Bernoulli’s equation are applied to various fluid flow problems. 
Basic equations are introduced in this unit. Application of these equation to 
flow-measuring devices are discussed. 
Further applications of the basic equations shall be discussed in the subsequent 
units. 

Objectives 
After studying this unit, you should be able to 

• explain the various types of fluid flow, 
• describe continuity, Euler’s and Bernoulli’s equation along with their 

areas of applications in day-to-day life, and 
• discuss the use and applications of orifice meter and different types of 

venturimeter. 
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Fluid Mechanics 
 2.2 VISUALIZATION OF THE FLOW PATTERN 

 It is a matter of common experience to observe the path taken by smoke 
emerging from a chimney on a windy day. The smoke gives a visual picture of the 
movement of the wind. To observe the path taken by a fluid particle in a 
laboratory, it is common practice to use droplets of oil or other shiny materials 
such as aluminum. Sometimes a visible agent, such as soot, silt, is also used to 
produce a visual picture of the flow phenomenon. 

 The motion of a fluid at any point is described in terms of velocity, which is 
defined as the rate of change of distance per unit time. The velocity differs from 
the speed in which no attention is paid to the change of direction. Velocity is a 
vector quantity as it has both magnitude and direction. It is commonly 
represented by an arrow. The length of the arrow is proportional to the magnitude 
of the velocity and the orientation of the arrow indicates the direction. If ∆s is the 
distance travelled by a particle along a path in time ∆t, the velocity ‘V’ is given 
by (Refer Figure 2.1). 

    
t
s V

t Δ
Δ

=
→Δ 0

Lim                . . . (2.1) 

The direction of velocity is along the tangent to the path of particle at that point. 

Pathline 

The path followed by a fluid particle is called the pathline. A pathline 
shows the direction of a particular particle as it moves ahead. In general, 
this is a curve in three-dimensional space. However, if the conditions are 
such that the flow is two-dimensional, the curve becomes two-dimensional. 
Figure 2.2 shows a pathline. Velocities at different points on the pathline 
are also shown. At a particular instant, the velocity is V1 which changes to 
V2 after sometime, and then to V3. 

 

 

 

 

 

 

 

Figure 2.1    Figure 2.2 

Streamline 

The above method of representing flow phenomenon is not satisfactory as 
the flow pattern becomes very confusing when pathlines are drawn for a 
number of particles. A more satisfactory representation of flow as a whole 
at any instant may be obtained by sketching a series of curves in such a way 
that the velocity vectors for different points lying on the curves would meet 
the curves tangentially. These curves are known as streamlines. Thus, a 
streamline may be defined as an imaginary line within the flow such that 
the tangent at any point on it indicates the velocity at that point. It may be 
noted that a pathline gives the path of one particular particle at successive 
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Flow of Fluidsinstants of time, whereas a streamline indicates the directions of a number 

of particles at the same instant. Streamlines are shown in Figure 2.3(a). 

 

 

 

 

 

 

(a) Stream Line            (b) Stream Tube 

Figure 2.3 

In steady flow of real fluids where there are no velocity fluctuations, or in 
an ideal frictionless fluid, a pathline also becomes a streamline because 
particles move tangentially to streamlines. In unsteady flow, pathlines and 
streamlines are different (for definitions of steady and unsteady flow, refer 
Section 2.3). 

Streakline 

A streakline is a curve that gives an instantaneous picture of the location of 
fluid particles which had passed through a given point some earlier time. 
The path taken by smoke coming out of a chimney is an example of a 
streakline. 

Streamtube 

As the direction of velocity is always tangential to the streamline, it is 
obvious that there cannot be any movement of fluid across the streamline. 
The same reasoning holds if we consider a number of streamlines. A 
streamtube is a fluid mass bounded by a group of streamlines 
(Figure 2.3(b)). Because a streamtube is completely bounded by streamlines 
on all sides (except at ends), there can be no velocity normal to its sides. 
The fluid can enter or leave the streamtube only at the ends. The concept of 
streamlines and streamtubes is extremely useful in problems of fluid flow. 

2.3 TYPES OF FLOW 

There are different types of flow as explained below : 

Laminar Flow and Turbulent Flow 

Laminar Flow 

Flow is said to be laminar when the paths taken by the individual 
particles do not cross one another. For example, in a pile flow, the 
fluid moves in the form of concentric cylinders sliding one within the 
other like the tubes of a telescope. These cylinders look like laminae 
rolled up into tubes. That is the reason why it is called laminar flow. 
In laminar flow the pathlines, which are also streamlines, are parallel. 
The streamtube is of constant cross-section and has the sides parallel 
to the walls of the conduit (Figure 2.4). 

Laminar flow occurs in viscous fluids or in fluid phenomena in which 
viscosity plays a predominant role. This is the case when the 



 
 

 
54 

Reynold’s number (NR) of the flow is low. The flow of thick oil 
through a small tube is an example of laminar flow. 

Fluid Mechanics 
 

Figure 2.4 : Laminar Flow 

Turbulent Flow 

Flow is said to be turbulent when its pathlines are irregular curves 
crossing one another. The fluid particles occupy successively 
different transverse positions. The paths are neither parallel nor fixed. 
A particle may be at the centre of the conduit at an instant and near 
the wall at the next instant. Figure 2.5(a) shows the erratic path 
followed by a single particle during an interval of time. Figure 2.5(b) 
shows the paths taken by a number of particles at any instant. 

 
(a)          (b) 

Figure 2.5 

In turbulent flow, there is an irregular, chaotic motion of fluid particles. 
However, it has been observed in practice that at any fixed point in 
turbulent flow, the instantaneous velocity fluctuates about a mean value. In 
the study of turbulent flow, it is convenient to split the velocity into a 
temporal mean value v  which is the average velocity at that point over a 
long period of time and a fluctuating component of the velocity v´ which 
fluctuates about the mean value. The streamline concept, although not 
strictly applicable in turbulent flow, can still be used. In turbulent flow, the 
streamlines indicate the temporal mean velocity. The general fluid motion is 
taken as the criterion of flow and the fluctuations of the velocity are 
neglected. 

The flow in rivers at the time of floods is turbulent. Turbulent flow is more 
common of the two types of flow. Generally, the flow in nature is turbulent. 

Steady and Unsteady Flow 

Steady Flow 

The flow is said to be steady when the flow characteristics, such as 
velocity, density, pressure, temperature, do not change with time. A 
flow is steady when the rate of change of these characteristics is zero. 
For example, if V is the velocity at any point, the flow will be steady 
if  

     0=
dt
dV  
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Flow of FluidsWater flowing through a tap at a constant rate is an example of steady 

flow. 

Unsteady Flow 

The flow is unsteady if the velocity and other hydraulic characteristics 

change with respect to time. Mathematically, 0≠
dt

dV . 

If the water is flowing at a changing rate, as is the case when the tap 
is just opened, the flow is unsteady. Similarly, in the case of a canal 
when the regulator is just opened, the flow is unsteady. After 
sometime the flow in the canal becomes constant and the flow 
becomes steady. 

A truly steady flow is possible only when the flow is laminar. 
However, even in the case of turbulent flow when mean velocity and 
mean values of other characteristics do not change with time, the flow 
is termed steady. 

Uniform and Non-uniform Flow  

Uniform Flow 

The flow is said to be uniform when the velocity and other 
characteristics are constant in a particular reach. In other words, a 
flow will be uniform if the rate of change of these characteristics with 
respect to distance along the path is zero. For example, if V is the 

velocity at any point, the flow will be uniform if 0=
dS
dV ; where S is 

the distance measured from some fixed point on the path of flow. In 
other words, the velocity is constant in the reach. 

A liquid flowing through a long straight pipe of uniform diameter at 
constant rate is an example of uniform flow, as the velocity is the 
same at all sections in reach as shown in Figure 2.6(a). 

 

v v v1 v2 
 

 

 
 (a) Uniform Flow       (b) Non-uniform Flow 

Figure 2.6 

Non-uniform Flow 
The flow is non-uniform when the flow characteristics change at 
various points along the path. For example, if V is the velocity at any 

point, the flow will be non-uniform if 0≠
dS
dV . 

If the diameter of the pipe changes, i.e., the pipe is either converging 
or diverging, the velocity at different sections in the reach is not 
constant (Figure 2.6(b)) and the flow is non-uniform. 
The reader should note that flow through a long uniform pipe, when 
the flow (discharge) is constant, is an example of uniform steady 
flow. If the pipe is non-uniform in diameter but the flow is constant, 
the flow is non-uniform steady flow. The varying flow, through a long 
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uniform pipe is unsteady uniform flow. This type of flow very rarely 
occurs in practice. If the flow is changing with time and the pipe is 
also non-uniform, the flow is unsteady non-uniform flow. Unless 
otherwise mentioned, the flow will be assumed to be steady and 
uniform. 

Incompressible and Compressible Flow 

Incompressible Flow 

A fluid is said to be incompressible if it cannot be compressed easily. 
The density of an incompressible fluid is almost constant. 
Incompressible fluid flow is flow of incompressible fluids. 

Compressible Flow 

A fluid is compressible if it can be easily compressed. Compressible 
fluids have variable density. 

In reality, there is no fluid which can be classified as perfectly 
incompressible. The term is used for the fluids in which the density 
changes are negligibly small. Almost all the liquids at ordinary 
temperature and pressure are incompressible. But when the pressure 
variations are very large, as in the case of water hammer in pipes, the 
liquids behave like compressible fluids. 

Almost all the gases behave like compressible fluids. However, when 
the pressure changes are very small, a gas may behave like an 
incompressible fluid. For example, in the case of flow of air in a 
ventilating system, the air is treated as an incompressible fluid. Thus 
the same fluid may be considered as compressible in one phenomenon 
and incompressible in another phenomenon. Unless otherwise 
mentioned, the fluid shall be assumed to be incompressible.  

Ideal and Real Fluids 

Ideal Fluids 

An ideal fluid is one which has zero viscosity. Since there is no 
viscosity, there is no shear stress between adjacent fluid layers and 
between the fluid layers and the boundary. Only normal stresses can 
exist in an ideal fluid. In reality, there is no fluid which is ideal. 
However, in certain cases the fluid is assumed to be ideal. The 
assumption of an ideal fluid allows a fluid to be treated as an 
aggregation of small particles which support forces normal to their 
surfaces but slide over one another without any resistance. The 
assumption simplifies the treatment of flow phenomena. This enables 
mathematical or graphical methods to be adopted in the solution of 
flow problems. In general terms, an ideal fluid has no viscosity, no 
surface tension, no vaporization and it is incompressible. 

Real Fluids 

A real fluid is one which possesses viscosity. As soon as motion takes 
place, shearing stresses come into existence in real fluids. These 
stresses oppose the sliding of one layer over the other. Thus a real 
fluid is characterized by its frictional resistance when it is in motion. 

Irrotational and Rotational Flow 
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Flow of FluidsIrrotational Flow 

A flow is said to be irrotational if the fluid elements do not rotate 
about their own mass centres. 

Rotational Flow 

In rotational flow, the fluid elements rotate about their mass centers. 

Figure 2.7(a) shows the velocity distribution adjacent to the straight 
boundary. As the velocity distribution is uniform, the fluid element 
shown does not rotate about its mass centre. Figure 2.7(b) shows the 
velocity distribution which is non-uniform. The velocity reduces as 
the boundary is approached. The fluid element shown suffers an 
angular deformation, and rotation occurs about an axis which passes 
through the mass centre and is normal to the plane of paper. 

 

+ + 

 

 

 

     (a) Irrotational Flow     (b) Rotational Flow 

Figure 2.7 

The flow is also irrotational if the average of the angular velocities of 
two mutually perpendicular axes of the element is zero. In this case, 
the element deforms in such a way that the clockwise rotation of the 
horizontal line is equal to the counter-clockwise rotation of the 
vertical line (Figure 2.8(a)). It may be noted that the velocity 
decreases as the distance from the centre of curvature increases as 
shown by the dotted line. On the other hand, if the velocity increases 
with the distance from the centre of curvature, the flow is rotational. 
In this case, the element rotates in such a manner that both the 
horizontal line and vertical lines rotate in the same direction as shown 
in Figure 2.8(b). 

 

+ + 

 

 

 

 

 (a) Irrotational Flow   (b) Rotational Flow 

Figure 2.8 

One-dimensional, Two-dimensional and Three-dimensional Flow 

One-dimensional Flow 

One-dimensional flow is represented by one dimension. Since a 
streamline has only one dimension (i.e., length), the flow along a 
streamline is one-dimensional. The flow is also called 
one-dimensional if there is no variation of pressure, velocity, etc., in 
the direction normal to the direction of flow. 
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If the flow is such that all streamlines are plane curves and are 
identical in parallel planes, it is called a two-dimensional flow. In 
this type of flow, the velocity vector has components in two 
directions, the component in the third direction is zero. Figure 2.9(a) 
shows the flow over a long weir. This is an example of a two-
dimensional flow. 

Three-dimensional Flow 

In three-dimensional flow, the streamlines are space curves. The 
velocity at any point has components in three dimensions. 
Figure 2.9(b) shows an example of three-dimensional flow through a 
converging pipe. The streamlines are in fact stream surfaces. The 
streamtubes are of annular cross section. This type of flow is very 
difficult to analyze. 

 

 

 
 
 
 

 
         (a) Two-dimensional Flow  (b) Three-dimensional Flow 

Figure 2.9 

Representation of Actual Flow as One-dimensional Flow 

If a three-dimensional flow is axisymmetric, it may be treated as 
one-dimensional flow. In this case, one dimension is taken along the central 
streamline of the flow. The velocity, pressure and elevation along the 
streamline are taken as the average values on the section normal to the 
streamline. For example, the flow in a pipe is actually three-dimensional, 
but it may be considered as one-dimensional taking the length of the pipe as 
one dimension. The velocity, pressure, etc., along the length are taken as the 
average values at various section. For correct representation of a 
three-dimensional flow by a one-dimensional flow, it is essential that the 
streamlines be straight and parallel. This method of considering a 
three-dimensional flow as a one-dimensional flow is very useful in flow 
problems. Because only one dimension is considered, the analysis is greatly 
simplified. 

2.4 CONTINUITY EQUATION 

The continuity equation is based on the principle of conservation of mass. Let us 
consider a small streamtube shown in Figure 2.10(a). If the cross-sectional area of 
the tube is small, the velocity at the centre of the tube will be the average velocity 
over the section. Let dA1 and dA2 be the cross-sectional areas of the tube at 
sections 1 and 2, respectively. If v1 and v2 are the average velocities and ρ1 and ρ2 
are the mass densities at these two sections, then 

 Volume of fluid passing at section 1 per unit time =  11dAv
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Flow of Fluids Mass of fluid passing at section 1 per unit time = 111 dAvρ  

Similarly, mass of fluid passing at section 2 per unit time = 222 dAvρ  

 

V2 

A2 

V2 

A1 

V1 

V2 

V1 

(1) 

(2) 

(1) 
(2) 

 

 

 

 

  (a)                  (b) 

Figure 2.10 

According to the law of conservation of mass, the mass of fluid entering section 1 
must be equal to mass of fluid leaving section 2, if there is no storage of mass in 
the tube between sections 1 and 2. No storage of mass is possible in steady flow. 
If any mass were stored in the tube, the mass would go on changing with time, 
which is impossible in steady flow. Therefore, 

   constant222111 =ρ=ρ dAvdAv     . . . (a) 

In words, the mass of fluid per unit time passing through any section of a 
streamtube is constant. 

It may be noted that velocities v1 and v2 are normal to the respective area dA1 
and dA2. 

Let us now consider a conduit shown in Figure 2.10(b). The conduit may be 
considered as an assemblage of a number of small streamtubes. The mass flow 
rate in the conduit may be obtained by integration of Eq. (a), 

        . . . (b) 222111

21

dAvdAv
AA
∫∫ ρ=ρ

where v1 and v2 are the velocities normal to the small areas dA1 and dA2 . 

If the mass density is constant over cross-sections, Eq. (b) becomes 

    222111

21

dAvdAv
AA
∫∫ ρ=ρ

or                 . . . (2.1) 1 1 1 2 2 2V A V Aρ = ρ

in which V1 and V2 are the mean velocities over the entire sections 1 and 2, 
respectively, and A1 and A2 are the cross-sectional areas of  the conduit at these 
sections. The quantity ρVA is known as mass rate of flow or mass flow rate (M). It 
is measured in kg/s. 

If the fluid is incompressible, the mass density is constant, and ρ1 = ρ2. Therefore, 

   2211 AVAV =                . . . (2.2) 

The product V × A is known as discharge. Discharge is the volume rate of flow at 
any section.  It is expressed in cubic metres per second (cumecs) or litres per 
second. 

  1 cumec = 1 m3/s = 1000 litres per second  

Discharge is usually represented by the letter Q. 



 
 

 

Eq. (2.2) indicates that for a steady incompressible flow, velocity is inversely 
proportional to area of cross-section. In other words, where the cross-sectional 
area decreases, the velocity increases and vice-versa. 

Fluid Mechanics 
 

For compressible fluids, Eq. (2.1) is sometimes written in a slightly modified 
form. Multiplying both sides of Eq. (2.1) by ‘g’ 

   1 1 1 2 2 2 1 1 1 2 2 2orgV A g V A V A V Aρ = ρ γ = γ

The quantity γVA is known as the weight rate of flow or weight flow rate (G). It is 
measured in N/s or kN/s. 

2.5 MEAN VELOCITY 

Mean velocity is the average velocity over the section. It is also defined as the 
ratio of discharge Q to the cross-sectional area A of the conduit. If the velocity 
distribution over the cross-section is uniform, mean velocity is also equal to the 
velocity at any point. If the velocity distribution is non-uniform, mean velocity 
may be computed as follows. 

Let us consider an elementary area dA in the cross-section of the pipe 
(Figure 2.11). Discharge dQ through this area is given by 

   vdAdQ =  

where v is the velocity over the elementary area and is normal to it. Total 
discharge Q may be obtained by integration, 

   ∫= vdAQ        . . . (a) 

From the definition of mean velocity, the discharge must be equal to the product 
of the mean velocity (V) and the cross-sectional area A, i.e. 

   VAQ =        . . . (b) 

From Eqs. (a) and (b), 

   ∫= vdAVA   

or   ∫= vdA
A

V 1                . . . (2.4) 
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Figure 2.11 

The mean velocity may be obtained from Eq. (2.4) if the velocity distribution 
over the section is known. 

The concept of mean velocity is quite useful in flow problems. 

 

 
Example 2.1 

v dA 
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Flow of FluidsTwo and a half cumecs of water (2500 litres/second) flows through a 50 cm 

diameter pipe. Calculate the mean velocity. If the diameter is reduced to 
25 cm, what would be the mean velocity? 

Solution   

    s/m73.12
)50.0()4/(

50.2
2 =

×π
==

A
QV  

In the second case,        s/m93.50
)25.0()4/(

50.2
2 =

×π
=V  = 50.93 m/s 

 

 
Example 2.2 

The velocity distribution in a circular pipe of radius R is given by 

   ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= 2

2

max 1
R
rVv  

where v is the velocity at radius r and Vmax is the velocity at the centre. 
Calculate the mean velocity. 

Solution 

From Eq. (2.4),  

    ∫= vdA
A

V 1       . . . (a) 

Let us consider a small annular ring of thickness dr at a radius ‘r’. 
Therefore, 

     dA = 2π r dr 

Substituting the values of v and dA in Eq.(a), 

   drr
R
rV

R
V

R

π
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

π
= ∫ 211

2

2

0
max2  

or   
R

R
rr

R
VV

0
2

42

2
max

42
2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

π

π
=  

      
2

max max
2

2
4 2

V VR
R

⎡ ⎤π
= =⎢ ⎥

π ⎢ ⎥⎣ ⎦
 

The mean velocity is one-half of the maximum velocity. This type of 
velocity distribution occurs in laminar flow. 

 

 
Example 2.3 

Oil flows through a pipe of 45 cm diameter at point A to 30 cm diameter at 
point B. At point B, it bifurcates into two branches consisting of pipes of 
20 cm and 15 cm diameters (Figure 2.12). If the velocity at A is 2 m/sec, 
calculate the discharge at A and the velocities at B and C. The velocity at D 
is 4 m/sec. 

Solution 
(Refer Figure 2.12) 

C 
15 cm Dia. 

A B
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Figure 2.12 

Discharge at A = A × V = π/4 × (0.45)2 × 2 = 0.318 cumecs. 

From the continuity of flow, 

Discharge at B = Discharge at A = 0.318 cumecs 

Velocity at B = 2)30.0()4/(
318.0

π
 = 4.5 m/sec 

Discharge at A = Discharge at C + Discharge at D 

If V1 is the velocity at C, 

     4)20.0()4/()15.0()4/(318.0 2
1

2 ×π+π= V

   = 0.0177 V + 0.126 

or        V1 = 0.192 / 0.0177 = 10.85 m/s. 

 
SAQ 1 

 

(a) A pipe of 20 cm diameters carries water with a mean velocity of 
3 m/s. Calculate the discharge. 

(b) If the pipe is bifurcated into two pipes of 10 cm diameter each, find 
the velocity in each pipe. 

2.6 GENERAL ENERGY EQUATION 

A dynamic equation describing fluid motion may be obtained by applying 
Newton’s second law to a fluid particle. Applying the law in x-direction, 

   xx maF =∑        . . . (a) 

where Σ Fx is the resultant net force acting on the particle, m is the mass and ax is 
the acceleration. 

The forces may be due to gravity (Fg)x, pressure (Fp)x, viscosity (Fv)x, turbulence  

(Ft)x, and compressibility (elasticity) (Fe)x. However, when the volume changes 
are small, the last force may be neglected. Thus  

  xxtxvxpxg maFFFF =+++ )()()()(      . . . (b) 

Similar equations can be written for y and z directions. 

When the values of various quantities are substituted in Eq. (b), the equations 
obtained are known as Reynolds equations. For low Reynolds number, the force 
due to turbulence can be neglected. Thus, 

   xxvxpxg maFFF =++ )()()(       . . . (c) 
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Flow of FluidsIf the flow is assumed to be ideal, the force due to viscosity is omitted. Thus, 

          . . . (d) xxpxg maFF =+ )()(

The energy equations which take into account only the gravity forces and the 
pressure forces are known as Euler’s equations. The Euler equation for 
one-dimensional flow is derived in the following section. 

2.7 EULER’S EQUATION 

Let us consider a streamtube of differential cross-section dA shown in 
Figure 2.13(a). The external forces acting on the free body of the fluid element, 
shown in Figure 2.13(b), are : 

(i) The pressure force due to pressure ‘p’ at one end and ⎟
⎠
⎞

⎜
⎝
⎛ + ds

ds
dpp at 

the other end. 

(ii) The component of the fluid weight in the direction of flow. 

Weight of the fluid element = dAdsgρ   

 Stream Line 

Datum Line 

2 

1 
P 

ds
ds
dpP +  dAds

ds
dpP ⎟

⎠

⎞
⎜
⎝

⎛ +  
ds 

p dA

θ 

dw = ρ g ds dA z 

 

 

 

 

 

 
   (a)      (b) 

Figure 2.13 

Component of the weight in the direction of flow θcos)( dAdsgρ− . 

Applying Newton’s second law of motion to the element, 
 onAcceleratiMass ×=∑ F  

or    tadAdsdAdsgdAds
s
ppdAp )(θcos)( ρ=ρ−⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

+−   

where at is tangential acceleration given by 

     
ds
dVVat =  

Taking  
ds
dz

=θcos , 

 p
s

dz dVds dA g ds dA ds dA V
ds ds

∂ ⎛ ⎞ ⎛− − ρ = ρ⎜ ⎟ ⎜∂ ⎝ ⎠ ⎝
⎞
⎟
⎠

 

Dividing both sides by , dAdsρ

1 0p dz dVg V
s ds ds

∂ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ρ ρ ∂ ⎝ ⎠ ⎝ ⎠
=      . . . (a) 
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 Putting ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

2

2V
ds
d

ds
dVV , Eq. (a) can be written as  

21 0
2

p dz d Vg
s ds ds

⎛ ⎞∂ ⎛ ⎞+ + =⎜ ⎟⎜ ⎟ ⎜ ⎟ρ ρ ∂ ⎝ ⎠ ⎝ ⎠
             . . . (2.5) 

Eq. (2.5) is the Euler’s equation for one-dimensional flow. 

2.8 DERIVATION OF BERNOULLI’S EQUATION 
FROM EULER’S EQUATION 

Integrating Eq. (2.5), 

   constant
2

2
=++

ρ
Vgzp      . . . (b) 

Each term of Eq. (b) represents energy per unit mass (N-m/kg). 

For incompressible fluids, Eq. (2.5) is written in a slightly modified form which is 
obtained by dividing both sides of Eq. (2.5) by g 

   0
2γ

2
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

g
V

ds
d

ds
dz

ds
dp      . . . (c) 

Integrating Eq. (c) with respect to ‘s’, 

   constant
2

2
=++

γ g
Vzp              . . . (2.6) 

Each term of Eq. (2.6) represents the energy per unit weight (N-m/N). 

Eq. (2.6) is the well-known Bernoulli equation. It may be mentioned that the 
following assumptions have been made in the derivation of Bernoulli’s equation : 

(a) The fluid is ideal and incompressible. 

(b) The flow is steady and continuous. 

(c) The flow is along the streamline, i.e. it is one-dimensional. 

(d) The velocity is uniform over the section and is equal to the mean 
velocity. 

(e) The only forces acting on the fluid are the gravity forces and the 
pressure forces. 

The accuracy of the results obtained by the application of the Bernoulli equation 
to a particular problem will depend upon the extent to which these assumptions 
are justified. 

In Bernoulli’s equation, the terms  are respectively the pressure 
head, elevation (or datum) head and velocity head. All these terms have the 
dimension of length [L] and may be expressed in metres of the fluid. Hence the 
Bernoulli equation states that in an ideal, incompressible fluid when the flow is 
steady and continuous, the sum of the pressure head, elevation head and velocity 
head is constant along a streamline. The Bernoulli equation may be visualized by 
means of an apparatus shown in Figure 2.14. It is a conduit, which first converges 
and then diverges. As the liquid flows from A to B, the velocity head increases 

gVzp 2 2/,/ andγ
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Flow of Fluidsand the pressure head decreases. The velocity head at B may be calculated if the 

diameter at B is known. The pressure head can be measured by means of a 
piezometer. As the liquid flows from B to C, the velocity head decreases and the 
pressure head increases. It is observed that the total head remains practically 
constant. 
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Figure 2.14 

2.9 BERNOULLI’S EQUATION AS AN ENERGY 
EQUATION 

In the foregoing section, the Bernoulli equation was derived from Euler’s 
equation. The Bernoulli equation may also be derived from the energy 
consideration. The reader is familiar with the kinetic energy and potential energy. 
The kinetic energy of the unit weight of liquid is V2 / 2g and the potential energy 
is z where V is the velocity of the fluid and z is the vertical distance of the point 
above the datum line. 

 Free Surface 

Piston 
H 

P 
ds 

 

 

 
 

Figure 2.15 

The pressure energy differs from kinetic energy and potential energy. An 
independent fluid mass can have kinetic energy and potential energy, but it will 
have pressure energy only when it is in contact with other masses of fluid. For 
getting insight into the pressure energy, let us consider the vessel shown in 
Figure 2.15. On one side of the vessel, there is a very small horizontal cylinder 
with a piston. Because the pressure intensity (p) at the piston is γ H, where H is 
the head and γ is the specific weight, a force P = pa must be applied to the piston 
to hold it in position where a is the cross-sectional area of the piston. If the piston 
is now permitted to move through a small ds, the work done against the force P is 
P.ds. To do this work, the liquid of weight (γ.a.ds) has entered the cylinder. The 
energy given up by this liquid must be equal to the work done. Hence the energy 
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 lost per unit weight of the liquid is 

γ
==

p
dsa
dsap

dsa
dsP

γγ
. The energy per unit 

weight expressed as p/γ is termed the pressure energy of the liquid. 
Derivation of the Bernoulli Equation 

Let us consider the flow through the streamtube shown in Figure 2.16. The 
fluid enters the tube at the end A and leaves at the end B in a small interval 
dt of time, the weight of the fluid entering the tube at A is equal to 

)( 11 dAdsγ  where dA1 is the differential area of the tube at A. In the same 
interval of time, the weight of the liquid leaving the tube at B is )( 22 dAdsγ  
where dA2 is the differential area of the tube at B. The movement of the 
fluid between AA to BB ′′  is equivalent to moving the fluid between AA 
and AA ′′  to the new position between BB and BB ′′ . The remainder of the 
fluid (between AA ′′  and BB) may be looked upon as stationary. 

The work done associated with the displacement of the fluid mentioned 
above may be computed from the products of the forces p1 dA1 and p2 dA2 
and the displacements ds1 and ds2. 

  Work done per unit weight at A = 
γ

=
γ

1

11

111 p
dAds
dsdAp   

  Work done per unit weight at B = 
γ

=
γ

2

22

222 p
dAds
dsdAp  

The law of conservation of energy states that energy entering the control 
volume + work done = energy leaving the control volume. 

or  
⎥
⎥
⎦
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Vppz
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where subscripts 1 and 2 refer to ends A and B respectively. 

Simplifying,  2

2
22

1

2
11

22
z

g
Vpz

g
Vp

++
γ

=++
γ

 

or  constant
2

2
=++

γ
z

g
Vp  [same as Eq. (2.6)] 

 

 

 

 

 

 

 

Figure 2.16 

This is the Bernoulli equation as derived before. The equation states that 
the sum of the pressure, potential and kinetic energy per unit weight 
remains constant. Energy has the dimension of [FL]. The energy per unit 
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Flow of Fluidsweight has the dimension [L]. Therefore, the energy per unit weight has the 

unit of N-m per N or simply metre. 

2.10 BERNOULLI’S EQUATIONS FOR REAL FLUIDS 

The Bernoulli equation was derived on the assumption that the fluid is ideal. 
However, the equation may be used even for real fluids, provided it is modified to 
take into account the frictional resistance caused due to viscosity. The modified 
equation for real fluid is given below 

  LHz
g

Vpz
g

Vp
+++

γ
=++

γ 2

2
22

1

2
11

22
             . . . (2.7) 

where HL is the loss of energy (or head) from section 1 to 2. 

Further, in real fluids, the velocity is not uniform over the cross-section, and 
consequently the velocity head expressed in terms of the mean velocity is not 
correct. To take into account the non-uniformity of velocity, the velocity head 
calculated on the basis of the mean velocity must be multiplied by a correction 
factor known as the kinetic energy correction factor. 

Let us consider an element of fluid of differential area dA (Figure 2.11). Let the 
velocity of flow at the element be v. The discharge through the element is given 
by dQ = v dA. 

Kinetic energy of the fluid = 
g

vdAv
2

)(
2

γ  

Total kinetic energy at the section = ∫
γ dAv
g

3

2
     . . . (a) 

Total kinetic energy on the basis of mean velocity = 
g

VVA
2

)(
2

γα    . . . (b) 

From Eqs. (a) and (b),  ∫∫ ⎟
⎠
⎞

⎜
⎝
⎛==α dA

V
v

AAV

dAv 3

3

3
1             . . . (2.8) 

The value of the energy correction factor α may be obtained from Eq. (2.8) if the 
expression for the velocity distribution across the section is known. The value of 
α is always greater than unity. For laminar flow in pipes, its value is 2, whereas 
for turbulent flow in pipes, its value ranges from 1.01 to 1.10, depending upon the 
velocity distribution. The value of α is usually assumed to be unity, unless 
mentioned otherwise. 

The modified form of the Bernoulli equation, taking into account the energy 
correction factor α, is  

  LHz
g

Vpz
g

Vp
++α+

γ
=+α+

γ 2

2
2

2
2

1

2
1

1
1

22
            . . . (2.9) 
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 2.11 APPLICATION OF THE BERNOULLI 

EQUATION TO SIMPLE PROBLEMS 

Figure 2.17 shows a typical example of steady flow of an ideal fluid from a large 
reservoir through a system of pipes varying in size and terminating in a nozzle. 
As the fluid is assumed to be ideal, there is no loss of head due to friction and 
Eq. (2.6) is, therefore, applicable. In dealing with problems based on the 
application of the Bernoulli equation, it is convenient to plot the energy gradient 
line and the hydraulic gradient line. 

The energy gradient line (EGL)  [also known as the total energy line (TEL)] is the 
line which represents the total head above the datum line. The energy gradient 
line shows the variation of the total energy along the axis of the conduit. It is, 
therefore, a graphical representation of the total head or total energy with respect 
to the datum line.  

The hydraulic gradient line (also known as the pressure gradient line) shows the 
variation of pressure head in the conduit. The hydraulic gradient line joins the 
points to which the liquid would rise in the piezometers inserted at these points. It 
is also known as piezometric head line. This line is a graphical representation of 
the piezometric head (i.e., the sum of the pressure and elevation head) with 
respect to any selected datum. The hydraulic gradient line is always below the 
total energy line, the vertical distance between the two being equal to the velocity 
head at that point. 

In Figure 2.17, the energy gradient line is horizontal, as there is no loss of energy. 
Because the surface area of the reservoir is very large, the velocity in reservoir 
will be very small and the velocity head may be neglected. Thus, the energy 
gradient line and the hydraulic gradient line coincide with the free surface of 
liquid in reservoir. If the discharge is known, velocities at various sections may 
be obtained from the continuity equation and the velocity head calculated. The 
hydraulic gradient line is plotted below the energy gradient, keeping the vertical 
intercept between the two equal to the corresponding velocity head. 

The vertical intercept between the hydraulic gradient line and the centerline of the 
pipe is the pressure head at that section. When the hydraulic gradient line is above 
the centerline of the pipe, the pressure head is positive. On the other hand, if the 
hydraulic gradient line is below the centerline of the pipe, the pressure head is 
negative. The pipeline in which the hydraulic gradient line is below the centerline 
of the pipe is known as a siphon or syphon. 
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Figure 2.17 
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Flow of FluidsAt the end point 3, there is a nozzle with a very small cross-sectional area. The 

velocity and hence the velocity head is very large at point 3. The pressure at this 
point reduces to the atmospheric pressure. 
(Note : Vertical scale in Figure 2.17 is exaggerated.) 
The foregoing treatment is based on the assumption that the fluid is ideal, and 
there is no loss of energy (or head) due to friction. In real fluids, there will be a 
loss of head due to friction, and the energy gradient line will slope downward 
from the reservoir to the nozzle. In addition to the frictional loss, there will be 
losses due to sudden changes in cross-section of the pipe. These losses would 
cause sudden drops in the energy gradient line at those points. 
 
 

Example 2.4 

Oil of specific gravity 0.75 flows through a 15 cm diameter pipe under a 
pressure of 98.1 kN/m2. If the datum is 3 m below the centre of the pipe and 
the total energy with respect to the datum is 20N-m/N, calculate the 
discharge. 

Solution  
Total energy per N of oil with respect to the datum  
        = Pressure Energy + Kinetic Energy + Elevation Energy 

or  z
g

Vp H ++
γ

=
2

2
 

or  3
2

33.133
275.081.9

1.9820
22

++=++
×

=
g

V
g

V  

or    V = 8.48 m/sec 
Discharge  VAQ =

         = 8.48 × π/4 × 0.15 × 0.15 = 0.15 cumecs. 
 
 

Example 2.5 

In the pipe shown in Figure 2.18, 0.5 cumecs of water flows from point A to 
B. The diameters of the pipe at A and B are respectively 30 cm and 60 cm. 
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Figure 2.18 
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If the pressure head at A is 7 m of water, find the pressure head at B. 
Neglect losses. 

Fluid Mechanics 
 

Solution 
The energy gradient line (abbreviated as EGL) is horizontal. The hydraulic 
gradient line (HGL) slopes upward as the velocity head decreases from 
A to B. 

  V1 = velocity at secm/07.7
30.04/

50.0
2 =

×π
==

A
QA  

  V2 = velocity at secm/77.1
60.04/

50.0
2 =

×π
==

A
QB  

Applying Bernoulli’s equation to points A and B 

  2

2
22

1

2
11

22
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g
Vpz

g
Vp

++
γ
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γ

 

or 8
62.19

)77.1(3
62.19

)07.7(7
2

2
2

++
γ

=++
p  

  7 + 2.55 + 3 = 
γ
2p + 0.16 + 8 

or 
γ
2p  = 4.39 m of water 

or        = 4.39 × 9.81 = 43.07 kN/m2 

 
 

Example 2.6 

Figure 2.19 shows a pipe of 8 cm diameter working as a syphon. 
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Figure 2.19 

Find the velocity of flow, discharge, and the absolute pressure at B if the 
atmospheric pressure is equivalent to 10 m of water. Neglect losses. 

Solution 

Taking the datum line at the level of point C, and applying Bernoulli’s 
equation to points A and C, 

   C
CC

A
AA z

g
Vpz

g
Vp

++
γ

=++
γ 22

22
 

The pressure at points A and C is atmospheric, which is taken as zero. Since 
the area of the vessel is very large, the velocity VA may be taken as zero. 
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Thus  0
2

0400
2

++=++
g

VC  

or  sec/m86.881.924 =××=CV  

Discharge    AVQ =

      cumecs0445.086.808.008.0
4

=×××
π

=  

Pressure at B can be obtained by applying Bernoulli’s equation to points A 
and B, taking VB = VB C. 

   
g

Vpz
g

Vpz BB
B
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A 22

22
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γ
+=+

γ
+  

   
62.19

)86.8(6004
2

+
γ

+=++ Bp  

or  )vacuum(m6−=
γ
Bp  

Absolute pressure at B = Atmospheric pressure – Vacuum pressure 
             = 10 – 6 = 4 m of water 
             = 4 × 9.81 = 39.24 kN/m2 absolute. 

SAQ 2 
 
 

 
An inclined pipe carrying water gradually changes in diameter from 15 cm 
at A to 40 cm at B at a height of 4.5 m above A. If the pressures at A and B 
are respectively 68.67 kN/m2 and 49.05 kN/m2 and the discharge is 
0.150 m3 /s, determine 

(a) the direction of flow, and 
(b) the head loss between A and B. 

2.12 HORIZONTAL VENTURIMETER 

The venturimeter was invented by Herschel in 1887, but he named it in honour of 
Venturi who did pioneering work in flow through convergent tubes. A 
venturimeter consists of a converging cone, a throat section and a diverging cone, 
all combined in one unit (Figure 2.20). As the flow takes place in the converging 
cone, the velocity increases, and there is a fall in the pressure, according to the 
Bernoulli equation. The velocity and hence discharge can be calculated from the 
measurement of difference of pressure at the two ends of the converging cone, i.e. 
at the inlet and the throat. 
 

 

 

 

 
Figure 2.20 : Venturimeter 
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In the converging cone, as the fluid is being accelerated, there is no appreciable 
loss of energy. Therefore, the converging cone may have a sharp angle of 
convergence (upto 20°). In the diverging cone, there is deceleration of flow with 
considerable loss of energy due to formation of eddies. In order to avoid 
separation and consequent excessive energy loss, it is essential to keep the angle 
of divergence very small. The most efficient conversion of the kinetic energy to 
the pressure energy occurs when the angle of divergence is about 7°. The usual 
lengths of the converging and diverging cones are 2.5 d and 7.5 d respectively 
where d is the diameter of the pipe. 

Fluid Mechanics 
 

When the pressure difference at the inlet and the throat is small and the fluid 
flowing in the venturimeter is a liquid, piezometers may be used to measure the 
difference of pressure. Usually the difference of pressure is measured by means of 
a differential manometer. Pressure chambers, which are hollow rings, are 
generally fitted at the inlet and the throat. The pressure chambers are also called 
the piezometric rings. These chambers communicate with the manometer through 
a number of holes in the periphery of pipe. The pressure connections are taken 
from the pressure chambers for accurate measurement of pressure. 
For satisfactory working of the venturimeter, the flow must be fully established 
before it enters the converging cone. The flow is fully established if the meter is 
preceded by a straight and uniform length of pipe equal to 30 d or more. 
Rotational motion occurs in curved pipes. Straightening vanes are placed in the 
curved pipe to reduce the rotational motion of the fluid before it enters the meter. 
Working Principle 

As the fluid passes from point 1 (inlet) to point 2 (throat), there is an 
increase in the velocity and corresponding fall in pressure (Figure 2.21).  

 

 

 

 

 

Figure 2.21 

Applying Bernoulli’s equation to points 1 and 2, with datum at the axis, 
considering horizontal venturimeter (for inclined venturimeter, ref. 
Section 2.13) 
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Representing the theoretical pressure difference by H, 
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From the continuity equation, 2211 VaVa = , where a1 is the area at inlet and 
a2 at throat. 
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Substituting this value of V1 in Eq. (a), 
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Because of the loss of head from section 1 to 2, the actual measured 
difference of head (h) will be greater than the thoeretical difference (H). 
Thus 

   2

1

2
2

1

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

a
a

hgCV       . . . (b) 

where C is the coefficient of the meter. 

Discharge,   22 VaQ =
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For a given venturimeter, the quantity 
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is constant and may be represented by k. Thus, Eq. (2.11) may be written as 

   hCkQ =              . . . (2.12) 

The coefficient C may be omitted if we make allowance for the loss of head 
(hf) due to friction. 
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Equating two values of V2 from Eqs. (b) and (c), Fluid Mechanics 
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Eq. (2.13) gives the loss of head in the converging cone. 

Substituting the value of h from Eq. (b), 
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The ratio of the throat diameter (d2) to the diameter of the pipe  (d1) ranges 
from 1/4 to 3/4, usually the ratio is kept 1/2. The smaller the ratio, the 
greater would be the difference of pressure, and hence the more accurate 
would be the measurement. 

But the large pressure difference produces a very low pressure at the throat 
which may cause separation of gases and cavitation. The lowest pressure, 
for water flowing in the venturimeter, is about 20.6 kN/m2 (2.1 m of water). 
This fixes the limit of reduction of the throat diameter. 

 

 

 

 

 

 

 
 

Figure 2.22 

The value of the coefficient C varies from 0.97 to 0.99 provided the flow is 
occurring at a high Reynold number. Increased roughening of the surface, 
with the passage of time, reduces the coefficient. Figure 2.22 shows the 
variation of C with the Reynold number (NR) and the size of the 
venturimeter. The diagram is valid for ratio , but is reasonably 
valid for smaller ratios as well. For larger ratios, however, the value of C 
decreases slightly. As is evident, the coefficient increases with the size, for 
the same  ratio. 

2/1/ 12 =dd

21 / dd

 

 

Water flows through a horizontal venturimeter, 30 cm × 15 cm diameter, at 
the rate of 0.039 cumecs. If the difference of pressure is 0.25 m of water, 
calculate the coefficient of the venturimeter. 

Example 2.7 

         
         
         
         
         
         
 

1.00 
0.99 
0.98 
0.97 
0.96 
0.95 

0.94 
104 2 5 105 2 5 106 2 5 107 

 5 × 2.5 cm 
 500 × 250 cm 

2

22
μ

2ρ=
vNR

d



    

75

 
Flow of FluidsSolution  

From Eq. (2.11), 
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Substituting these values in equation, 

          25.081.92
1164
30.0039.0

2
××

−
×π×

=
C  

or   C = 0.965. 

2.13  INCLINED VENTURIMETER 

Upward Flow 

Figure 2.23 shows a venturimeter with its axis inclined. Let us first consider 
the case when the flow is upward. In this case the throat is at a higher level 
than the inlet. 
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Figure 2.23 : Inclined Venturimeter 

Applying Bernoulli’s equation to points 1 and 2, 
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From the continuity equation, 
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Substituting the value of V1 in Eq. (a), 
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where ⎟⎟
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− 21 pp  is the difference of pressure head at the inlet and the 

throat. Representing this head by H, 
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Taking the losses in the converging cone into account, 

   2

1

2
2

1

)(2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

a
a

ZhgCV  

where ‘h’ is the actual measured difference of head and C is a coefficient 
less than unity. 

Now discharge Q =  22Va
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or             ZhCkQ −=             . . . (2.16) 

where k is the constant of the venturimeter, given by 
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Downward Flow 
Likewise, it can be proved that when the throat is at a level lower than the 
inlet, i.e. flow is downward, 

   ZhCkQ +=             . . . (2.17) 

Vertical Venturimeter 
The equation derived for the inclined venturimeter may also be used for the 
vertical venturimeter. 

2.14  USE OF DIFFERENTIAL MANOMETERS IN 
VENTURIMETERS 

The difference of pressure between the inlet and throat is usually measured with a 
differential manometer. The difference of head can be easily calculated if the 
deflection of the liquid in the manometer is known. We shall consider separately 
the manometers for the horizontal and the inclined venturimeter. 
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Flow of FluidsHorizontal Venturimeter 

Figure 2.24(a) shows a differential manometer used for a horizontal 
venturimeter. In this case, points 1 to 2 are at the same level. From the 
principle of manometer, the pressures at the same level AA in a continuous 
liquid are equal. 

Thus  211 )( pyssxsxyp www +γ+γ=γ++  

where s is the specific gravity of the fluid in venturimeter, s1 is the specific 
gravity of the liquid in manometer and x is the deflection of the liquid in the 
manometer. 
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Figure 2.24 

Simplifying,  s
s
sxpp wγ⎥
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⎛=− 11

21  

The difference of head h between the inlet and the throat can be expressed 
as 

   ⎟
⎠
⎞

⎜
⎝
⎛ −=

γ
−

= 1121
s
sx

s
pph

w
 

Therefore,              . . . (2.18) )1( −= rxh

where r is the ratio of the specific gravity of the liquid in the manometer to 

that in the venturimeter, i.e. 
s
sr 1= . 

Substituting the value of h in Eq. (2.12), 

   )1( −= rxCkQ             . . . (2.19) 

Inclined Venturimeter 

Figure 2.24(b) shows the differential manometer which is connected to an 
inclined venturimeter with the direction of flow upward. Thus, point 2 is at 
a higher level. Using the principle of manometer, 
   211 )( pzsysxssxyp wwww +γ+γ+γ=γ++  

or  211 pzsysxsxsysp wwwww =γ−γ−γ−γ+γ+  

or  www zsxsxspp γ+γ−γ=− 121  

or  z
s
sx

s
pp

w
+⎟

⎠
⎞

⎜
⎝
⎛ −=

γ
− 1121  

Thus, the difference of head h between the inlet and the throat is given by, 
    zrxh +−= )1(
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or  )1( −=− rxzh  Fluid Mechanics 
 

Substituting this value of (h – z) in Eq. (2.14) 

   )1( −= rxCkQ   (same as Eq. (2.19)) 

Hence Eq. (2.19) is a general equation which can be used for both the 
horizontal and inclined venturimeter. 

 
 

Example 2.8 

A liquid, with a specific gravity 1.25, flows upward through a vertical 
venturimeter 50 cm × 25 cm. If the mercury manometer (S = 13.6) shows a 
deflection of 0.1m, find the discharge. Assume C = 0.98. 

Solution 
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⎛
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224.0
116

43.450.0)4/( 2
=

−
××π

=k  

From Eq. (2.18), )1( −= rxCkQ  

                  )125.1/6.13(1.0224.098.0 −××=  

               = 0.218 m3/s 
 SAQ 3 
 

(a) Gasolene flows through an inclined venturimeter in the upward 
direction at the rate of 0.22 m3/s. The venturimeter is inclined at 30º 
to the horizontal and has the inlet and throat of diameters 30 cm and 
15 cm, respectively. If the throat is 0.60 m above the inlet and the 
pressure gauges at the entrance and throat show pressures of 
141.26 kN/m2 and 75.54 kN/m2, respectively, calculate the coefficient 
C of the venturimeter. Take specific gravity of gasoline as 0.82. 

(b) A venturimeter having a throat diameter of 100 mm is fitted in a pipe 
of diameter 250 mm through which oil of specific gravity 0.85 is 
flowing. The pressure difference between the entry is measured by a 
U-tuble manometer containing mercury (S = 13.6) and the deflection 
of the manometer is 0.60 m. Calculate the discharge. Assume 
coefficient C = 0.97. 

2.15  ORIFICE METER 

An orifice meter consists of a thin plate with a central hole. The plate is clamped 
between pipe flanges. The fluid flows through the hole (orifice). The orifice 
causes the flow to accelerate, as does the throat in a venturimeter. The orifice 
meter, like a venturimeter, is used to measure discharge in a pipe. 
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Flow of FluidsHorizontal Orifice Meter 

Figure 2.25 shows an orifice plate inserted in a pipe line. As the fluid passes 
through the orifice, it contracts in area. The section of the stream where the 
cross-sectional area is minimum is called the venacontracta. The 
venacontracta forms at a distance of about d1/2 from the plane of the plate, 
where d1 is the diameter of pipe. Pressure connections are made at sections 
1 and 2; section 1 is at a distance of 1.5 d1 from the orifice and section 2 is 
at the venacontracta. At the venacontracta, the cross-sectional area is 
minimum and velocity is maximum and hence the pressure is minimum. By 
measuring the pressure difference between points 1 and 2, discharge may be 
calculated, as in the case of a venturimeter. 

 

 

 

 

 
 
 

Figure 2.25 : Orifice Meter 
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Applying the Bernoulli equation to points 1 and 2 assuming that the meter 
is horizontal. 
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From the continuity equation, 
   2211 VaVa =  
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where H is the theoretical difference of head between points 1 and 2 . 
Because of loss of head due to friction, the measured difference of head ‘h’ 
will be more than H. 

Thus  2

1

2
2

1

2'

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

a
a

ghCV  

where C' is a coefficient. 

Now   22 VaQ =
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80 

It will be noted that Eq. (2.20) is similar to Eq. (2.10) of the venturimeter.  Fluid Mechanics 
 

The jet contracts to a minimum area at the venacontracta. The area is 
less than the area of orifice a. 

2a 2a

   aCa 22 =  

where = coefficient of contraction, less than unity. Because it is more 
convenient to measure the area of the orifice than the area at the 
venacontracta, Eq.(2.20) is generally written in a modified form 

cC

   gh

a
aC

aCCQ
c

c 2

1
2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

′=          . . . (2.21a) 

or  gh

a
a

aCQ 2

1
2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=          . . . (2.21b) 

where the coefficient C is such that  
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Eq. (2.21b) may also be written as 
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where,   
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If the manometer deflection x is known, 

   )1( −= rxCkQ           . . . (2.22a) 

Eq. (2.22a) is the same as Eq. (2.19) of the venturimeter. 

Inclined Orifice Meter 

If the orifice meter is inclined, use Eq. (2.16) for the upward flow and 
Eq. (2.17) for the downward flow. Alternatively, use Eq. (2.22a). 

Eq. (2.21b) is similar to Eq. (2.10) of the venturimeter. However, it must be 
noted that the expression for k contains ‘a’ and not . The coefficient C 
for the orifice meter has much lower value than that for the venturimeter. Its 
value ranges from 0.60 to 0.75, depending upon the ratio (d/d

2a

1) and the 
Reynolds number. The value of C also depends upon the shape of the 
orifice and the location of the pressure connections. Figure 2.26 shows the 
variation of C with the ratio (d/d1) and the Reynolds number. 
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Flow of Fluids 

 

 

 

 

 

 
Figure 2.26 
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Comparison of Orifice Meter with Venturimeter 
As stated above, the coefficient of an orifice meter is lower than that of a 
venturimeter. Another drawback of the orifice meter is that, because of 
excessive eddies, it is not suitable for measuring high rate of flow in large 
size pipes. 
However, the orifice meter is cheaper than a venturimeter and is very 
convenient to use. An orifice plate can be inserted between two flanges of 
the pipe without any difficulty. 
The comparison may be summarized as under : 

Orifice Meter 
Merits 

(i) It requires less space. 
(ii) It is cheaper. 

Demerits 
(i) Head loss is large ; C is low. 
(ii) Not suitable for large discharges. 

Venturimeter 
Merits 

(i) Head loss is small; The value of coefficient C is high. 
(ii) It can be used for large size pipes and for large discharges. 

Demerits 
(i) It is very long and inconvenient to use. 
(ii)  It is costly. 

 
 

Example 2.9 

An orifice meter is fixed in a pipe 25 cm diameter conveying oil of specific 
gravity 0.90. If the diameter of the orifice is 10 cm, calculate the discharge 
when a mercury differential manometer shows a deflection of 80 cm. 
C = 0.65.   

Solution  

From Eq. (2.22a), 

   )1( −= rxCkQ  
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Fluid Mechanics 
 

Therefore,   .s/m077.01
90.0
60.138.00352.065.0 3=⎟

⎠
⎞

⎜
⎝
⎛ −×=Q  

 
SAQ 4 

 

Water flows through a 200 mm diameter pipe fitted with a 100 mm 
diameter horizontal orifice meter at the rate of 0.015 m3/s. Determine the 
difference of pressure head between the upstream and the venacontracta. 
Take coefficient C = 0.61. 

2.16  SUMMARY 

• Different lines of the flow pattern are defined. Generally, streamlines are 
used in practice. A streamline is an imaginary line such that the tangent at 
any point on it indicates the velocity at that point. 

• Different types of flow are defined. In practice, generally the flow is 
assumed to be steady and uniform. 

• The continuity equation is derived from the principle of conservation of 
mass. 

• The mean velocity of flow (V) and discharge (Q) are explained. 

• The Bernoulli equation is derived from the principle of conservation of 
energy. The assumptions made in the derivation are discussed. The 
modified Bernoulli equation for real fluids is given. 

• The energy gradient line, also called total energy line, and the hydraulic 
gradient line are plotted from simple flow problems. 

• The equation for discharge through a venturimeter is derived using the 
continuity equation and the energy equation. 

• The use of differential manometers for the measurement of the difference of 
pressure is explained. 

• The discharge equation for an orifice meter is derived. 

• The relative advantages and disadvantages of venturimeters and orifice 
meters are discussed. Although a venturimeter is more accurate, it is not as 
convenient as an orifice meter. 

2.17  ANSWERS TO SAQs 

SAQ 1 
(a) Q = A × V 

   /sm094.03)20.0(
4

32 =××
π

=  
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(b) Discharge in each pipe /sm
2
094.0 3=  

        m/s98.5
)1.0(
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2
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2
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×
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==
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QV  

SAQ 2 

(a) Pressure head at m0.7
81.9
67.68

==A  

Velocity at  m/s49.8
)15.0(

4

150.0
2
=

×π
=A  

Pressure head at  m0.5
81.9
05.49

==B  

Velocity at  m/s19.1
)4.0(

4

150.0
2
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×π
=B  

Total head at A, assuming datum at A 

                    0
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                67.30.7
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2
+=
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+=  

       = 10.67 m 

Total head at       50.4
81.92
)19.1(0.5

2
+

×
+=B  

      = 9.57 m  
Since the total head A is greater than that at B, the flow is from A 
to B. 

(b) Loss of head = 10.67 – 9.57 = 1.10 m 

SAQ 3 

(a) For an inclined venturimeter with upward flow, 

  )( zhCkQ −=  
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a
a

ak 2

1
2

2

1

1

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

        81.92

1
15.0
30.0

)30.0(
4

4

2

××

−⎟
⎠
⎞

⎜
⎝
⎛

×
π

=  

or    k = 0.0808 

81.982.0
54.7526.14121

×
−

=
γ
−

=
s

pph  



 
 

 
84 

                     = 8.17 m of gasoline Fluid Mechanics 
 

Since  Z = 0.60 m, 

  60.017.80809.0 −××= CQ  

Substituting     Q = 0.220, 
         0.220 = C × 0.0808 × 2.751 
or          C = 0.989 

(b) )1( −= rxCkQ  
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     = 0.1024 m3/s. 
SAQ 4 

hCkQ =  

where  g
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or   k = 0.036 

Therefore,    h036.061.0015.0 ×=  

or   h = 0. 467 m of water. 
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