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5.1 INTRODUCTION 

A pipe is a closed conduit through which fluids can flow. The flow in a pipe is 
termed pipe flow only when the fluid completely fills the cross-section and there 
is no free surface of fluids. Pipes flowing partially full, with a free surface, are not 
having pipe flow hydraulically. Such pipes come under the category of open 
channel flow. The pipe running partially full behaves like an open channel. You 
will be introduced to the open channel flow in Unit 7. 

Pipes most commonly used in engineering practice are of circular cross-section in 
this unit, most of the discussion is limited to pipes of circular cross-section. This 
is an introductory unit on pipe flow. For further details, refer to Unit 6. 

Since the fluid in a pipe is in motion, it has to overcome the frictional resistance 
between the adjacent fluid layers and that between the fluid layers and the pipe 
walls. Figure 5.1 shows a pipe of uniform cross-section with its axis horizontal. 
As the fluid flows from point 1 to point 2, there is a loss of head due to friction. 
Thus, there is drop of the energy gradient line. Because the pipe is of uniform 
cross-section, the velocity remains constant. The hydraulic gradient line is 

parallel to the energy gradient line (total energy line) and at a distance of 
g

V
2

2
, 

where V is the velocity in the pipe. The loss of head between two points is 
represented by hf. 

Besides the loss of head due to friction, there are losses due to shock resistance. 
The shock resistance in pipe flow occurs whenever there is a disturbance in the 
normal flow. The disturbance may occur due to changes in the cross-section, 
bends, obstruction etc. In long pipes, the losses due to shock resistance are small 
compared to frictional losses and may be neglected. The losses due to shock 
resistance are usually called the minor losses or secondary losses (refer Unit 4). 
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Figure 5.1 

Objectives 
After studying this unit, you should be able to 

• explain Reynold’s experiment on flow through pipes and 
conceptualise, its outcome pertaining to Reynold’s Number, 

• discuss the use and application of Darcy-Weisbach equation, and 

• handle the problems of flow through simple pipes more efficiently. 

5.2 REYNOLD’S EXPERIMENT ON FLOW 
THROUGH PIPES   

Reynolds estimated the loss of head in a pipe by measuring the difference of 
pressure over a known length l of the pipe. Figure 5.2 shows the apparatus used 
by Reynolds for this purpose. The velocity of water in the pipe was determined by 
measuring the volume of water collected in the tank over a known period of time. 
By changing the velocity of flow, the corresponding values of the loss of head  hf 
were obtained. 

 

 

 

 

 
Figure 5.2 

Reynolds obtained a plot between V and hf (Figure 5.3(a)). The curve obtained is 
not a continuous one. At low velocities, the curve is a straight line, indicating that 
the loss of head is directly proportional to the velocity. The flow is laminar. At 
higher velocities, the flow becomes turbulent and the curve is parabolic. In this 
range, the loss of head (hf ) varies as V n, where the value of n lies between 1.75 to 
2.0. In the intermediate region, there is a transition zone. This is shown by a 
dotted line. The loss of head in this region varies in an erratic manner. Three 
regions of flow become more distinct when hf and V are plotted on logarithmic 
scale (Figure 5.3(b)). All the regions are represented by three straight lines. The 
laminar region is represented by the lower line, and the turbulent region by the 
upper line. The intermediate line represents the transition in which the flow is 
neither laminar nor turbulent. 
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         (a)          (b) 

Figure 5.3 

A visual picture of the flow phenomena as the velocity is increased was first 
obtained by Reynolds with the apparatus shown in Figure 5.4(a). The apparatus 
consists of a supply tank, a dye container and a transparent glass tube with a 
valve. After the water level in the supply tank comes to rest, the outlet valve is 
gradually opened. A fine thread of dye appears in the glass tube, indicating that 
the flow is laminar. As the rate of flow is gradually increased, the thread of dye 
suddenly breaks up and mixes with the surrounding water. The flow becomes 
ill-defined. When the velocity is increased further, the dye mixes completely with 
the water and the whole of water becomes coloured. The flow becomes turbulent. 
Three stages are shown in Figure 5.4(b), in which the top sketch shows the 
laminar flow, and the bottom sketch shows the turbulent flow. 

 

 

 

 

 

 

 

 

 

(a)     (b) 

Figure 5.4 

When the velocity is gradually decreased, the flow changes back from turbulent 
to laminar. There is again a fine thread of dye at low velocity. It is found that the 
velocity at which the flow changes from laminar to turbulent is higher than the 
velocity at which the flow changes from turbulent to laminar. The velocity at 
which the flow changes from laminar to turbulent is called the upper critical 
velocity. The velocity at which the flow changes from turbulent to laminar is 
called the lower critical velocity. Points B and A represent the upper and the 
lower critical velocity respectively (Figure 5.5). 

Flow in a pipe will be laminar or turbulent, depending upon the Reynolds number 
(NR). The Reynolds number corresponding to the upper critical velocity does not 
have a fixed value. This depends upon initial disturbance, the shape of entry to 
the pipe and several other factors. Ekman was able to obtain laminar flow even up 
to NR = 5 × 104. However, the practical value of the Reynolds number 
corresponding to the upper critical velocity is between 2,700 and 4,000. The 

Supply Tank 

Dye 

Valve 



 
 

 
136 

Reynolds number corresponding to the lower critical velocity is more or less 
fixed. It is about 2,000. (Note : Some authors take this value as 2,100.) 
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Figure 5.5 

The Reynolds number corresponding to the lower critical velocity is much more 
important than that corresponding to the upper critical velocity. The Reynolds 
number corresponding to the lower critical velocity indicates that the flow will 
always be laminar if the Reynolds number is less than this value. The flow above 
this value of Reynolds number may be laminar or turbulent depending upon 
whether the velocity is increasing or decreasing and upon other flow conditions. 
When the Reynolds number is between 2000 and 4000, the transition stage exists. 
The flow is generally turbulent when the Reynolds number is greater than 4000. It 
is to be noted that above values of NR are for pipe, with diameter D as the 

characteristic length (i.e.
μ

ρ
=

VDNR ). 

5.3 DARCY-WEISBACH EQUATION 

Froude estimated the frictional resistance of different surfaces by moving wooden 
boards in water. He towed several thin boards, made of wood, in a tank 
containing water, by connecting them to a side carriage. The carriage was made 
to run on rails at the sides of the tank. The carriage was hauled at various speeds 
by means of a wire rope. The force required to tow the wooden boards was 
measured. Boards of different length and coated with different material were 
used. Froude came to the following conclusions : 

(a) The frictional resistance of the boards varies as the square of the 
velocity. 

(b) The frictional resistance depends upon the nature of the surface. 

(c) The frictional resistance per unit area of the surface decreases as the 
length of the board increases but is constant for large lengths. This is 
due to the fact that the effect of ends is more pronounced in small 
length but is negligible when the board is very long. 

A formula for the frictional resistance in a pipe may be obtained on the 
assumption that above results hold good for the interior surface of the pipe. Let us 
consider a uniform horizontal pipe through which a liquid flows with a velocity 
V. Let the cross-sectional area of the pipe be A and the pressure be p1 and p2 at 
two points at a distance L apart (Figure 5.6). If f ′ is the frictional resistance per 
unit area at unit velocity, the total frictional resistance over the length L is given 
by  
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where P is the wetted perimeter. 
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Figure 5.6 

The wetted perimeter (P) of a conduit is the length of the curve of intersection of 
its wetted surface with the cross-section of the pipe. Thus, for a circular pipe 
running full, the wetted perimeter is equal to the circumference πD, where D is 
the diameter of the pipe. 

The pressure force acting at the ends of the pipe is given by 

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ π
−=

4
)(

2
21

DppF       . . . (b) 

Since the fluid is moving at a constant velocity, the acceleration is zero. 
According to Newton’s second law of motion, the net force on the fluid must be 
zero. Therefore, 

  
2

21 2( ) (
4

p p D f PL) V
⎛ ⎞ ′− π

= × ×⎜ ⎟⎜ ⎟γ γ⎝ ⎠
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⎠
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or              
g

V
D
Lfh f 2

2
⎟
⎠
⎞

⎜
⎝
⎛=               . . . (5.1) 

where   )2(4 gff
γ
′

=  

Eq. (5.1) is known as Darcy-Weisbach equation. In this equation, f is a 
dimensionless coefficient known as the friction factor. 

[Note : In some texts, especially in the British books, the Darcy-Weisbach 

equation is written as  
g

V
D
Lfh f 2

4
2

⎟
⎠
⎞

⎜
⎝
⎛′= . It is obvious that f in the 

standard equation (Eq.5.1) has been replaced by 4f′. Unless otherwise 
mentioned, the Darcy-Weisbach equation in the form of Eq. (5.1) shall 
be used.] 

The Darcy-Weisbach equation is a general equation which holds good for all 
types of flow, provided a proper valve of f is chosen. The details of the estimation 
of the value of f for laminar and turbulent flow are outside the scope. For the 
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present, it may be assumed that the value of f is given for the pipe under 
consideration. 
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Example 5.1 

Find the loss of head due to friction in a pipe carrying water. The pipe is 
300 m long and 15 cm in diameter. The discharge through the pipe is 
0.04 cumecs. Take f = 0.04. 

Solution 

     secm/265.2
15.015.0

4

04.0
=

××
π

==
A
QV  

From Eq. (5.1),  
g

V
D
Lfh f 2

2
=  

        waterofm92.20
81.92
)265.2(

15.0
30004.0

2
=

×
××=  

 SAQ 1 
 

A pipeline 22.5 cm diameter and 1580 m long has an up slope of 1 in 200 
for the first 790 m and an up slope of 1 in 100 for the next 790 m. If the 
pressure at the upper end of the pipeline is 107.91 kN/m2 and that at the 
lower end is 53.96 kN/m2, determine the discharge. Take Darcy’s f = 0.04. 

5.4 DEFINITIONS 

Wetted Perimeter, Area of Flow, Hydraulic Radius 

Before taking up the empirical formulae, we must define certain parameters. 
The wetted perimeter was defined in the preceding section. It is the curve of 
intersection of the wetted surface with the cross-section of the pipe. 
Another important parameter is the hydraulic mean depth (m) or the 
hydraulic radius (R). The hydraulic radius is the ratio of the area of cross-
section of the flow to the wetted perimeter, i.e. R = A/P. 

For a circular pipe running full, 
4

4
2

D
D

D
R =

π

π

=  

Energy Gradient Line 

Total head (which is also equal to total energy per unit weight) with respect 
to any arbitrary datum is the sum of the elevation (potential) head, pressure 
head and the velocity head, i.e. 

   Total head = 
2

2
p VZ

g
+ +
γ

 

As the fluid flows along the pipe, there is a loss of head (energy) and the 
total energy decreases in the direction of flow. If the total energy at various 
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points along the axis of the pipe is plotted and joined by a line, the line so 
obtained is called energy gradient line, abbreviated as EGL. This line is 
also known as the total energy line (TEL). 

Hydraulic Gradient Line 
The sum of the potential head and the pressure head (Z + p/γ) at any point is 
called the piezometric head. If a line is drawn joining the piezometric levels 
at various points, the line so obtained is the hydraulic gradient line (HGL). 
If we insert piezometers, the liquid level in the piezometers would rise up to 
the level of HGL. The vertical intercept between the HGL and the pipe axis 
is equal to the pressure head (p/γ). 
It is to be noted that EGL (TEL) always drops in the direction of flow 
because of loss of head, whereas HGL may rise or fall depending upon the 
pressure changes. Moreover, HGL is always below the EGL (TEL) and the 
vertical intercept between the two is equal to the velocity head (V 2/2g). 
[Note : In case a pump is provided on the pipe, the total energy line will 

rise at that point.] 
In the empirical formulae that follow, we shall be using the term ‘slope of 
the energy gradient line’. The slope of the energy gradient line (S) is given 
by 

    
L

h
S f=  

where hf is  the loss of head due to friction in metres of the fluid and L is the 
length of pipe in meters. For a pipe of uniform cross-section, the slope of 
the hydraulic gradient line is equal to the slope of energy gradient line. It 
must be noted that there is no relation whatsoever between the slope of the 
energy gradient line and the slope of the axis of the pipe. 

5.5 EMPIRICAL FORMULAE 

A general formula for the loss of head due to friction in a pipe may be written as 

        b
cf V

D
LKh =       . . . (a) 

where K, c and b are constants, L= length of the pipe, D = diameter of the pipe. 

Eq. (a) may be written in terms of the hydraulic radius (R). 

      b
af V

R
LKh 1=       . . . (b) 

in which D has been expressed in terms of R as such that  Dc = Ra. 

(Note : The hydraulic radius R is not equal to the radius of the pipe (r). The 
reader must note this carefully.) 

Eq. (b) may be transformed as  

   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

L
h

RKV fab
2  

Denoting 
L

h f  by the slope of the energy gradient line S, 

    )(2 SRKV ab −=
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 or     bbab SkRV /1/ )(−=

or         . . .  (c) yx SkRV =

where k, x and y are constants to be determined experimentally. 

Eq. (c) is an important form of the general formula for the loss of head in pipes. 
Several investigators performed experiments on the pipe flow and gave their own 
values of the constants k, x and y. Chezy’s formula is given below: 

Chezy’s Formula 

On the basis of results obtained from experiments, Chezy gave the 
following formula : 

   SRCV =                . . . (5.2) 

in which C is a coefficient known as Chezy’s coefficient. 

The relation between Chezy’s and Darcy’s f can be obtained as under. 

 From Eq. (5.1),  

            
g

V
D
Lfh f 2

2
⎟
⎠
⎞

⎜
⎝
⎛=  

or          ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

L
h

D
f
gV f)(22  

But  R = D/4 or D = 4R. 

Therefore,       )()(8
4

82 SR
f
g

L
hD

f
gV f =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=  

             RSCRS
f
gV ==

8  

Thus,           
f
gC 8

=                . . . (5.3) 

Eq. (5.3) gives the relation between the Chezy C and the Darcy f. Since g, 
the acceleration due to gravity, has dimension [L/T2], the Chezy coefficient 
C is not a dimensionless coefficient, although f is dimensionless. The value 
of C ranges from 55 to 75 in most of the pipe used in practice. 

The Darcy-Weisbach equation is very popular. These days the trend is 
towards a rational approach, in which the value of the friction factor f’ is 
estimated, considering the flow characteristics, such as the Reynolds 
number and the roughness of the pipe surface. In this rational approach, the 
value of f can be estimated accurately if the properties of the fluid and the 
type of pipe surface are known. The empirical formulae are not used as 
extensively these days as they were used some time ago. 

 

 
Example 5.2 

Find the loss of head due to friction in a pipe 8 cm diameter and 30 m long 
if the mean velocity of flow is 2 m/sec. Use Chezy’s formula. Take C = 55. 
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Solution 

From Chezy’s formula, RSCV =  

or   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×⎟

⎠
⎞

⎜
⎝
⎛=

L
hDCV f

4
  

or   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×⎟

⎠
⎞

⎜
⎝
⎛=

L
hDCV f

4
22  

or   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

304
08.0)55()2( 22 fh

 

or     hf  = 1.98 m 

 
SAQ 2 

 

A town having a population of 1 lakh is to be supplied water from a 
reservoir 4750 m away. It is stipulated that one half of the daily supply of 
130 litres per head is required in 8 hours. What must be the size of the pipe 
to furnish the water supply if the head available is 12 m. Take Chezy’s 
C = 43. 

5.6 TRANSMISSION OF POWER 

Power is transmitted through pipes by means of liquid under pressure. This 
method of transmission is commonly used for hydraulic turbines. The power 
supplied at the exit of the pipe is proportional to the quantity of liquid and the 
head at the point. The maximum power is transmitted by a pipe when the 
frictional loss is a certain fraction of the total head. 

Let hf and H be the loss of head due to friction and the head supplied at inlet 
respectively. 

Let V be the velocity in pipe, and D and L be the diameter and length of the pipe 
respectively. 

Head available at the exit, h = H – hf

              
g

V
D
LfH

2

2
−=  

Available power, P = W h Watts 

or    kW
1000

hWP =                . . . (5.4) 

where W is weight of liquid passing per second in Newtons (N/s) and h is the 
available head in meters. 

If W is in kN/s, P the power 

          . . . (b) kWWhP =

Eq. (5.4) for P can be written as  
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1
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2
2 ×⎟
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⎠

⎞
⎜
⎜
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⎠
⎞
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D
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⎠
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⎜
⎜
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V

D
LfHVDP

24000

32
 

The power will be maximum when 

  
3

0
2

d L VHV f
dV D g

⎛ ⎞
− =⎜ ⎟⎜ ⎟

⎝ ⎠
 

or  0
2

3
2
=−

g
V

D
LfH  

or  fh
g

V
D
Lf

g
V

D
LfH 3

2
3

2
3

22
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
==  

or   
3
Hhf =  

Thus the power transmitted through a pipe is a maximum when the head loss due 
to friction is one-third of the head supplied, 

From Eq. (5.4), Maximum power, 

  kW
3000
2

1000
3

max
WH

HHW
P =

⎟
⎠
⎞

⎜
⎝
⎛ −

=  

Efficiency of transmission, 

  %)67.66(
3
2

1000

3000
2

Input
Outputη ==== WH

WH

 

Thus for the power to be a maximum, the efficiency is only 66.67%. In practice, 
however, power is seldom transmitted at the maximum power conditions as 
derived above. The condition for the maximum power requires a head loss of one-
third of the total head, which is not permitted in practice. The reduced head at the 
exit would necessitate a bigger and costlier machine to use the power than that 
would be necessary if the loss of head is small. Moreover, there are difficulties in 
regulation if the machine is working at the maximum power conditions. 

Horse Power 

Sometimes, the power is expressed in (metric) horse power (hp) 

   1 hp = 735.75 N-m/s 

Thus   1 hp = 0.736 kW 

or   1kW = 1.36 hp. 

 
 

Example 5.3 

A hydraulic machine is supplied with water through a pipe 1000 m long. 
Gauges fitted to the supply pipe show pressure of 5886 kN/m2 at the 
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upstream end and a pressure of 5395.5 kN/m2 at the machine. If the power 
supplied to the machine is 44.145 kW (60 hp), determine the diameter of 
the supply pipe. Take f = 0.03. 
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Solution   

Power supplied, from Eq. (5.4), 

   kW145.44
1000

=
Wh       . . . (a) 

where         81.91000
44

22
×××

π
=γ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ π
= VDVDW  N/s 

Also        m550
81.9

5.5395
==h  

Substituting these values in Eq. (a), 

   145.44550
4

81.9 2 =×⎟
⎠
⎞

⎜
⎝
⎛ π× VD  

or   D2 V = 1.04 × 10− 2    

or                   2

21004.1
D

V
−

×=       . . . (b) 

 Head loss due to friction, 

       
g

V
D
Lfh f 2

2
=  

or         
81.92

100003.0
81.9

5.53955886 2

×
××=

− V
D

 

or                7.32
2
=

D
V        . . . (c) 

From Eqs. (b) and (c), 

   7.32)1004.1(
5

22
=

× −

D
 

or   D = 0.08 m = 80 mm  

 
SAQ 3 

 

One hundred litres per second of water is to be pumped into a pipe 25 cm 
diameter and 5 km long. If the static lift from the sump to the supply point 
is 16 m, what will be the power required? Assume the overall efficiency of 
the pump as 70% and f = 0.02. 

5.7 PIPE DISCHARGING FROM A RESERVOIR  

Figure 5.7 shows a pipe of uniform cross-section leading from a reservoir and 
discharging free into atmosphere. As the fluid enters the pipe, there is a loss of 
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head at the entrance (hL). Consequently, there is a drop in the energy gradient line 
at point A. The hydraulic gradient line is at a distance of V 2/2g below the energy 
gradient line. As the liquid flows from A to B, there is a loss of head due to 
friction. The loss due to friction occurs uniformly along the pipe. Loss due to 
friction in the entire length is hf. The loss of head at the exit is V 2/2g. 
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Figure 5.7 
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HGL 

Applying Bernoulli’s equation to points A and B in Figure 5.7, 

   
g

VhhH fL 2

2
++=               . . . (5.5) 

If the entrance to the pipe is flush with the reservoir, 

   
g

VhL 2
5.0

2
= , 

and Eq. (5.5) becomes 

   
g

Vh
g

VH f 22
5.0

22
++=  

Substituting the value of 

   
g

V
D
Lfh f 2

2
= , 

   ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+=

D
Lf

g
VH 50.1
2

2
             . . . (5.6) 

For long pipes the term ⎟
⎠
⎞

⎜
⎝
⎛

D
Lf  is very large compared to 1.50. In such cases, the 

loss of head at the entrance and exit may be neglected. When the length of pipe is 
greater than 1000 D, only the frictional loss need be considered. 
 
 

Water is discharged from a large reservoir to atmosphere through a 10 cm 
diameter and 500 m long pipe. Find the discharge if the outlet is 15 m 
below the free surface of water in the reservoir. Assume the entry to the 
pipe as sharp. Take f = 0.04. 

Solution 
From Eq. (5.6), 

   ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+=

D
Lf

g
VH 50.1
2

2
 

Example 5.4 

hf 

B 

g2
v2

g2
v2
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⎛ ×+=

10.0
50004.050.1

2
15

2

g
V  

or  V = 1.21 m/sec 

Discharge,  Q = AV 

or  cumecs0095.021.11.01.0
4

=×××
π

=Q . 

5.8  PIPE CONNECTING TWO RESERVOIRS 

Figure 5.8 shows a pipe of uniform cross-section connecting two reservoirs with 
liquid surfaces at different elevations. The liquid flows from the higher reservoir 
to the lower reservoir. At point A, there is a loss of head at entrance (hL). The loss 
of head due to friction hf takes place throughout the length of the pipe. At the exit, 
there is a loss of head of V 2/2g. If H is the difference of liquid levels in the two 
reservoirs, 

  
g

VhhH fL 2

2
++=  

  
g

V
g

V
D
Lf

g
VH

222
5.0

222
++=  

or   ⎥⎦
⎤

⎢⎣
⎡ +=

D
Lf

g
VH 50.1
2

2
               . . . (5.7) 
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Figure 5.8 

It may be noted that the velocity V is independent of the location of either end of 
pipe so long as the difference of liquid levels in two reservoirs is constant. 

5.9 TIME OF EMPTYING A TANK THROUGH A 
LONG PIPE 

Figure 5.9 shows a tank to which a long pipe of length L and diameter D is 
connected. Let the surface area of the liquid surface be A and the head of water 
above the outlet of the pipe be initially H1. 

Let at any instant t the liquid level be H above the outlet of the pipe when the 
velocity through the pipe is V. If the liquid drops by a small amount dH in time dt, 
then from the continuity equation, the volume of the liquid flowing out from the 
tank is equal to the volume of the liquid flowing out of the pipe. 
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 Thus,   dtDVdHA ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ π
=−

4

2
     . . . (a) 

The negative sign indicates that the liquid level decreases with an increase in 
time. V is the velocity through the pipe. 

 

 

 

 

 
 
 

Figure 5.9 

Now H = Loss of head at entry + frictional loss + loss of head at exit 

or  
g

V
g

V
D
Lf

g
VH

222
5.0 222

++=  

or  

D
Lf

gHV
+

=
5.1

2         . . . (b) 

Substituting the value of V from Eq. (b) in Eq. (a), 

  dt

D
Lf

gHDdHA

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛ +

π
=−

5.1

2
4

2
 

or          
H

dH
D

D
LfA

dt
g2

5.14

2π

+
−=    

The time required for the liquid level to fall from H1 to H2, assuming A as 
constant, is given by 

          
H

dH
D

D
LfA

t
H

H∫π

+
−= 2

1g2

5.14

2  

          1/ 2 1/ 2
2 12

8 1.5
[ ]

2

LA f
Dt H

D g

+
= − −

π
H  

or           1/ 2 1/ 2
1 22

8 1.5
[ ]

2

LA f
Dt H

D g

+
= −

π
H  

If the tank is to be completely emptied, H2 = 0. 

Therefore,           2/1
12 g2

5.18
H

D
D
LfA

t
π

+
=               . . . (5.7) 

H 

dH 

Pipe 

Tank 

L , D 

H1 
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Example 5.5 

Determine the time required to empty a vertical tank of diameter 1 m by a 
pipe 100 m long and 0.15 m diameter if the initial head of water above the 
outlet of the pipe is 9 m. Assume f = 0.03. 

 Solution 

From Eq. (5.7), 

   2/1
2

2

)9(
81.92)15.0(

15.0
10003.05.1)1(

4
8

×
×××π

×+×
π

×
=t  

        = 279.1 s = 4 min 39.1 seconds. 

 
SAQ 4 

 

A vertical cylindrical tank 4.8 m diameter has a pipe at its bottom. The pipe 
is vertical and 90 m long and of 225 mm diameter. Find the time taken to 
lower the water level in the tank from 2.7 m to 1.2 m above its bottom. 
Assume f = 0.04. Neglect loss of head at entrance. 

5.10 TIME OF EMPTYING A TANK TO ANOTHER 
TANK THROUGH A PIPE 

Figure 5.10 shows two tanks connected with a long pipe of diameter D and length 
L. The liquid flows from the higher tank A to lower tank B through the pipe. Let 
H1 be the initial difference of the liquid levels in the two tanks. The time required 
to reduce the difference of the liquid levels to H2 can be computed using the same 
procedure as discussed in the preceding section remembering that the head 
causing flow is the difference of levels in the two tanks. 

 
dH 

H H1 

H2 

x 
A 

B 
L , D 

 

 

 
 
 

 
Figure 5.10 

Let us consider the instant when the difference of the liquid levels in the two 
tanks is H. In time dt, the liquid level in the tank A drops by an amount dh and 
rises by an amount x given by 
   xAdhA 21 =  

where A1 and A2 are the cross-sectional areas of the tanks A and B, respectively. 

Thus,    dh
A
Ax

2

1=   

The difference in the head causing flow is given by  
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           ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

2

1
A
AdhdhdH   

or           ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

2

11
A
AdhdH        . . . 

(i) 
From the continuity consideration, 
Volume of liquid flowing from the tank = Volume of liquid flowing in the pipe 

or     dtDVdhA ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ π=− 2

1 4
      . . . (a) 

But           
g

V
D
Lf

g
V

g
V H

222
5.0

222
++=  

or            

D
Lf

gHV
+

=
5.1

2       . . . (b) 

From Eqs. (a) and (b), 

   dt

D
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⎟
⎟
⎟
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⎜
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⎠
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2
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Substituting the value of dh from Eq. (i), 

  dt
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⎜
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)(
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The time t required for the difference of liquid levels to drop from H1 to H2 is 
obtained by integration as 

  ∫+π

+
−= 2

12)(

5.14

21
2

21 H

H H
dH

gAAD
D
LfAA

t  

    ][
2)(

5.18
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2
2/1

1
21
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D
LfAA

−
+π

+
=              . . . (5.8) 

 

 
Example 5.6 

A pipe of 150 m length and 200 mm diameter connects two tanks of the free 
surface areas of 2 m2 and 1 m2. If the initial difference of liquid levels in the 
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two tanks is 4 m, determine the time required when the difference of levels 
becomes zero. Take f = 0.03. 

Solution 

 In this case, A1 = 2 m2, A2 = 1 m2, 

  L = 150 m, D = 0.2 m, H1 = 4 m    and    H2 = 0 

Substituting the values in Eq. (5.8), 

   2/1
2 )4(

81.92)12()2.0(
2.0

15003.05.1128

×+×π

×+××
=  

   
43.4304.0

224128
×××π

××××
=  

    = 93.9 s 

 SAQ 5 
 

Two reservoirs A and B are connected by a pipe 60 cm diameter and 300 m 
long. The surface areas of reservoirs A and B are respectively 9000 m2 and 
4500 m2. Find the time taken to lower the level of the upper reservoir A by 
60 cm if the original difference of levels of the two reservoir is 6 m. 
Assume f = 0.03. 

5.11 SUMMARY 

• The difference between pipe flow and open channel flow is explained. Pipe 
flow occurs in a conduit under pressure when there is no free surface in the 
liquid. 

• Reynolds experiment is described to differentiate between the laminar flow 
and the turbulent flow. The importance of the Reynolds Number is 
discussed. 

• In practice, the Reynolds Number is generally greater than 4000, and the 
flow is turbulent. 

• The Darcy-Weisbach equation for the loss of head is derived. The 
importance of the friction factor f  is outlined. 

• The definitions of the basic parameters such as wetted perimeter, area of 
flow, hydraulic radius, total energy line and hydraulic gradient line are 
given. 

• The empirical formulae for the determination of the velocity of flow are 
described. The Chezy formula is explained. The value of Chezy’ C 
generally varies between 55 and 75. 

• Transmission of power by pipes is discussed. The efficiency of transmission 
is the maximum when the loss of head is a significant portion of the head 
supplied. In practice, the power is generally not transmitted at the maximum 
efficiency condition. 
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• The discharge through a pipe connected to a reservoir can be determined by 
the application of the Bernoulli equation and 
Darcy-Weisbach equation. 

• The discharge equation for a pipe connecting two reservoirs is derived. 

• Time of emptying a tank through a long pipe is determined from the 
continuity consideration. 

• Time of emptying a tank to another tank through a pipe depends upon the 
difference of liquid levels and can be determined considering the difference 
of liquid levels. 

5.12 ANSWERS TO SAQs 

SAQ 1  
Taking the datum at the lower end, and applying Bernoulli’s equation to the 
lower end (say, point 1) and the upper and (say, point 2),  

   ⎟
⎠
⎞

⎜
⎝
⎛ +++

γ
=+++

γ 100
790

200
790

2
0

2

2
22

2
11

g
Vph

g
Vp

f  

(Note : The flow is downward, because piezometric pressure at 2 is 
greater.) 

Substituting the values, 

  85.11
281.9

91.107
281.9

96.53 22
++=++

g
Vh

g
V

f  

or  85.110.1150.5 +=+ fh  

or            m35.17=fh  

From Darcy-Weisbach equation, 

      
g

V
g

V
D
Lfh f 2225.0

158004.0
2

22
××==  

or   2316.1435.17 V=

or       s/m10.1=V  

                   10.1)225.0(
4

2 ××
π

=Q  

or       s/m0438.0 3=Q

SAQ 2 

Total water required per day  35 m130001013.0 =×=

Water required in 8 hr 3m6500
2

13000
==  

Discharge s/m226.0
36008

6500 3=
×

=  

Now from Chezy’s formula, 

           RSACQ =  
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4750
12

4
43

4
226.0 2 ××⎟

⎠
⎞

⎜
⎝
⎛ ×
π

=
DD  

or    2663.02/5 =D

or         D = 0.59 m  
SAQ 3 

    s/m04.2
)25.0(

4

1010
2

32
=

π
×

==
−

A
QV  

Loss of head, 
g

V
D
Lfh f 2

2
=  

       m84.84
81.92
)04.2(

25.0
10502.0

23
=

×
×

×
×=  

Total head = Static Head + Loss of Head 
       = 16 + 84.84 = 100.84 m 

Power required = 
1000
WH  

         kW92.98
1000

84.100)981010101( 32
=

××××
=

−
 

Power supplied to the pump kW32.141
70.0
92.98

EfficiencyOverall
92.98

===  

SAQ 4 
Let the depth of water at any instant be H. The head causing flow will be 
(H + 90). Now applying Bernoulli’s equation, 

  
g
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22
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+=+  

            
g

V
g
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17
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222

=+××=  
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=

HgV  

From the continuity of flow, 
       dtVadtQdHA ==−

or   dtHgdH
⎥
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or   dH
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164.423
+

=−  

Integrating,  dH
H

t
90

164.423
2.1

7.2 +
−= ∫  

     [ ] 7.2
2.1

2/1)90(
1
264.423 +××= H  

     = 847.27 [9.63 – 9.55] = 67.78 s 
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Final difference of level ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

2

1160.06
A
A  

      m20.4
4500
9000160.06 =⎟

⎠
⎞

⎜
⎝
⎛ +−=  

The time required is given by 

        ][
2)(

5.18
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2
2/1

1
21

2

21
HH

gAAD
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fAA

t
L

−
+π

+
=  

               ]2.46[
43.4)45009000()6.0(

60.0
30003.05.1450090008

2/12/1
2 −

×+×π

×
+××

=  

           = 19458 (2.449 – 2.049) 
                = 7783 s (2 hr 9 min 43 sec) 
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