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2.1 INTRODUCTION I 
I 
I 

In the previous unit we have discussed ways ih which we can communicate better 
with our learners. Now, what do we want to dommunicate to them? I can hear you 
say, "Obviously, mathematics!" gut, the poidt is what is mathematics? And, what 
aspects of it do we want our learners to learn?/ 

In this unit we try to understand this. To we focus on the most important part of 
mathematics, which is the way it is it grows. That is, we explain what 
mathematical reasoning involves, particularly in the context of what abilities, 
therefore, need to be stressed while it to the c ildren. h 
What we find in the classrooms nowadays is that mathematics is reduced to 
calculations and applying algorithms mindlesbly. The procedure in the algorithms has 
become routine without the underlying logic being known or understood by many of 
us. Therefore, our students see an algorithm bs a set of rules to be followed 
mechanically. Through t i i s  unit, we aim to e courage you to think about the situation, 
and what aspects of mathematics really need be stressed when teaching any topic. 

We start with bringing out the essence of the abstraction of the objects and 
relationships in the world of mathematics. T h en we talk of the most important 
processes involved in understanding and developing this world, namely, generalising 
from observing particular instances and partibularising from general statements and 
conditions. Next, we discuss what a proof island why it is so important in the context 
of mathematics. I 

I 

And finally, we bring you a detailed exampl to show you that there is nothing 
sacrosanct or final about mathematics, as we 1 know it. This world is based on many 
axioms, and any growth needs to be consistqt with these axioms. So, if we remove or 
change some axioms, we get a new mathemdtical theory. The example we discuss is 

I 
of some non-Euclidean geometries. 

I I 

This unit is closely linked with the next one, and with your teaching practice, in general. 

I Therefore, please ensure that you have achieved the following objectives before going to the 
next block. I 

t . Objectives 

After studying this unit, you should be able ko 

I explain in what way 'thinking mathiematically' requires dealing with 
abstraction; 

I 



Encouraging Mathematical 
Thjakiig explain how the processes of particularisation and generalisation are essential 

for doing mathematics; 

describe what a mathematical proof is and its importance for mathematics; 

identify the thought processes that need to be developed in children when 
, teaching them mathematics; I 

.. 
help your students realise how any mathematical theory depends completely on 
the axioms that it assumes. 

ABSTRACTION 

The other day a teacher trainer, Aruna, was speaking to a group of school teachers who 
had gathered for a training session. They got talking about their views on mathematics 
teaching. Many of the teachers were complaining that the children don't bother 
learning mathematics. After a bit, Aruna asked them what mathematics meant to each 
of them. Let me ask you the same. 

. What do you think mathematics is? 

Do you agree with most of the teachers preseqt that day, who said that mathematics 
was about numbers and caliulations? If so, then does geometry and the study of form 
and space fit this definition? Aruna asked the teachers this too. So, after a bit of 
collective thinking, out came a 'definition' that 'mathematics is the study of numbers 
and space'. 

, 

Here Aruna changed track a bit, asking them what numbers are. Again, a lot more 
discussion took place in which comments like, "Numbers are . . . um.. . for example, 5 
is 5 people, 5 chairs, etc" were coming out. / 

/ 

Aruna: So, what you are saying is that all these things have a common property of 
how many of them there are. You call that 5. I 

A teacher: Yes, and all numbers are like that. 
Aruna: How would you then e'xplain -5? 
Another teacher: It would be 5 things missing. For example, if we owe someone 5 

rupees. 

The conversation continued in this manner for a bit, and then Aruna reminded the 
teachers of her original question. Everyone went back to a major discussion with each 
other, and with Aruna. Sometimes she caught a word here, and a word there, and 
wrote it on the board. After 10 minutes, she had 'logic', 'measurement', 'geometry', 
'definitions' on the board, and she asked the group as a whole to concentrate on these 
terms and her question, and give a final answer. At this point some teachers asked her 
to give the definition, which she demurred from, wanting them to do it. 

Finally, with some prodding, thinking and hints, the following understanding of 
mathematics was accepted by all. 

Mathematics consists of theories that have as a basis some undefined terms, and a self- 
consistent set of unproved statements (called axioms or postulates) about these terms. 
Once these terms and postulates are laid down the theory developsfurther by proving 
any proposition from these postulates according to clearly stated principles of logic. 
Also, every term of the theory is definable in terms of the given undefined terms. 

Aruna went on to give them an example - showing them how Peano's axiom system 
is the postulate system that the entire arithmetic of natural numbers is based on. 



Let us now go back to an earlier part of the interaction regarding our understanding of 
number, and look closely at what it tells us about our mathematical thinking. . 

The Essence of 
Mathema tics 

What is interesting in this part of the conversation is how clear it is that we abstract 
the notion of numbers from using them as adjectives. When we talk of a number, 
we are essentially refemng to a certain physical property of a set. Thus, when we talk 
of the number 'two', we could be refemng to gny collection of objects that can be put 
in one-to-one correspondence with, for example, the number of sleeves in a shirt. 
Thus, we say that a coin has two sides (each side corresponding to one sleeve), most 

a humans have two eyes, a line segment has two end points, and there are (usually!) two 
sides to an argument. We abstract a common property of these different concrete 
objects, namely the number of objects in each of them. This is the number that we call 
'two'. As in the previous case, having abstracted the property and understanding what 
'two' means, we can now think of the number two without refemng to the objects 
from which we derived the concept. It also has completely abstract and formal 
relationships with other numbers like 6,d2, 2i, etc., and with other abstract 
rratnematical objects (e.g., rectangles). 

So, abstracting a concept is the ability to look at several particular examples of the 
concept, find what is common to them, separate that common property from the 
objects and look at the property as something on its own, having an independent 
existence. This existence is in the world of mathematics. This world is made up of 
such abstract objects. These objects generate further abstract concepts and relations 
between such objects. 

We acquire our understanding of these abstract objects in two ways. One way is the Fig.l : Do all of us 
way we develop our concept of number or of shape. This consists of a process of have two faces? 
careful observation and analysis of different objects, noticing a certain property 
common to these objects and separating the property from the objects from which it 
was abstracted. This property, then, becomes an object of study as a concept. This is 

le of several non-mathematical concepts (like colour) too. In the following exercise 3 ask you to mull over this process. 

El) Identify two other concepts in mathematics and two from non-mathematicdl 
areas that arise through a process of abstraction. Explain how this abstraction 

I takes place. 

As we have just seen, several mathematical and other concepts are derived by 
I abstracting them from particular instances. Would you be able to abstract the notion 

of a point or a line by this process? To answer this, let us first consider a point. In 
school, we are told that a point marks a position in space and that it is dimensionless. 
How, then, do we represent a point? Even the tiniest dot in space has some dimension. 
So, we can't abstiact the concept from particular concrete instances of the concept, 
because ideally there cannot be any concrete representation of a point. There is no 
easy way out of this difficulty. The way out for mathematicians was to adopt the 
convention that a small dot would represent a point. Thus, on paper we often mark 

I points like the origin 0 ,  while in our minds we know that a point cannot exist in reality. 
It is an abstract entity present only in our minds. 

Similar situations arise with many other geometrical concepts as well, such as a line, a 
segment, or a ray. All these abstrhct concepts exist because of certain accepted rules 

1 and conventions in the world of mathematics. These rules are called axioms. And, to 
be able to deal with such abstract concepts, we choose conventions for representing 
them symbolically. Once we define one convention, we use it to define conventions 
for the other objects that exist only in our minds. This is another kind of abstraction. 
It is by this other form of abstraction that Euclid stated that "a point moves to describe 
a line". This line, an abstraction itself, moves to generatca surface, and so on. 



E~lcouraging Mathematical 
'~hinkin~ The essence of ma@ematics lies in dealing with these forms of abstraction. In the next 

few sections we sh$l talk about what we mean by 'dealing'. For now, try this exercise. 
I 

E2) Explain whad the difference is in the two forms of abstraction we have just 
discussed, wlth examples that haven't been given so far. 

In this section we have discussed a defining characteristic of mathematical thinking. 
, This thought process moves along a path of generalisation. In fact, generalisation is 
the way the world df mathematics grows. Let us see how. 

PARTICULARISING AND GENERALISING 

One of the most iml$ortant mathematical thought processes is that of generalisation. 
We do it in real life'all the time. For example, consider the way we formulate the 
concept of 'tail' in Our minds. The process involves observing the tails of some 
objects, such as a hbrse or a cow. We also notice that different tails may look 
different, but all of hem are called '$1~'. So. our initial concept of a tail may be 
that it is that part oflan animal that is seen at the back of the rest of the body. Then 
we extend this concept to the appendage at the rear end of a bird or a fish. We may 
extend this notion further and modify our image of a tail to include the tails of 
aeroplanes and kites, thus generalising our notion from living to non-living creatures 
also. As we exarnirle more objects that have a tail, we continue to generalise this 
notion. Ultimately, we arrive at an image of a tail that may not include some of the 
specific features of the tails of the different objects that we are considering, but will 
include common features of all of them. 

We engage in this kind of generalisation all the time in our daily lives in order to 
formulate a concepti The process is useful in extending our activities - for example, 
we can generalise our observations about plant growth in order to grow new plants;(;, 
and, we are able to generalise our experiences of a child's mental development in 
order to construct learning and teaching methodologies. In the study of mathematics, 
the process of geneqdisation assumes a special significance. It helps us to understand 
the structure of speqific mathematical objects and to build further knowledge upon 
existing structures. But what is even more significant i8 the fact that often such 
extension of knowlddge may become impossible without going through the process of 
generalisation. 

In mzithematics, we find generalisation occurs 9 different contexts -we generalise to 
arrive at definitions of new concepts, as in the case of the definition of quadrilaterals. 
We generalise procedures, for example, the procedure to add two polynomials. We 
generalise results to new sets of mathematical objects, such as extending the statement 
'the sum of the foylangles of a square is 360 degfees' to the statement 'the sum of the 
four angles of a qualateral  is 360 degrees'. And, of course, algebra is a 1 

generalisation of arithmetic, where the use of variables helps us to extend our study 
and use of numbers !in new ways. 

In this section, we study generalisation in different mathematical contexts. For 
instance, think about the way most of us develop the general concept of a polygon. 
We get fo know triagles of various shapes and sizes. We get to know rectangles, 
squares and other quadrilaterals. We look around us and see patterns having 
pentagons. We wodder - can we have figures having 20 sides, 50 sides, 77 sides, 
and so on? If so, what would their properties be? Is anything common to all these 
figures7 ' In this wdy we'develop our concept of a polygon as a closed figure having 

\ three 6r more sides. This is an example of generalisation. With such generalisation 
we alscgeneralise related notions like those of area, perimeter and othe# concepts 
associated with polygons. 



Usually, to understand what the general concept is, we begin learning about it by 
observing and studying properties of particular cases. For instance, by studying the 
areas of squares, parallelograms or triangles, we may naturally acquire the general 
concept of 'area of a polygon'. 

For another example, try and recall the way you acquired your understanding of 'place 
value'. Initially it developed in the context of 'base lo ' ,  i.e., in the decimal system. 
Then you may have heard that computers function with a binary system, i.e., base 2. 
Did this make you wonder: Given any number, can I write it in other bases, say base 5, 

I base 60, base 12, or for that matter, base n t/ n E N? This process of 'wondering' is 
I also called 'making a conjecture'. Since the conjecture is about a situation in greater 

and greater generality, we consider these tbught  processes as an example of 
generalisation from several particular cases. However, be warned that at present we 
do not know if our generalisation is mathematically acceptable or not. (This shall be 
discussed in the next section, and in the last block of this course.) 

Before going further, why don't you try some related exercises? 

I 
- - 

E3) How would you write 'hundred' in base 5, base 50, base 100 and base 101? 

E4) If 303 (in base 10) is written as 213 in base n, find n. 

Now suppose you have proved your conjecture. Then you know how to write any 
number in base n, where n E N. You have a generalised procedure. Therefore, if 
you are required to write a number in the hexadecimal (i.e., base 16) system, you 
apply your procedure for the particular case n=16. We call this proceis 
particularisation or specialisation. 

You could do this whole exercise of generalising and particularising for concepts or 
procedures that your students are learning. Such examples can be used to help your 
learners understand the processes of generalisation and particularisation while 
studying these concepts/processes/skills. In this way, they will realise that while 

erstanding or creating mathematics, we are moving from particular to general 
from general to particular all the time. 

In fact, to understand a concept, it helps the learner to gradually construct it in her 
mind. This is done through experiencing concrete examples, studying several 
particular cases and gradually grasping the generalised concept. Though many of us 
accept this fact in theory, how often do we find this happening in our c\assrooms? Not 
commonly. In fact, it is more common to find teachers introducing the students to a ' 

concept by giving them the definition in all generality, and expecting the children to 
1 remember it. Even when examples to illustrate the definition are given, they are not 

varied enough. Some teachers introduce the children to a concept by giving some 
particular examples in the textbook or on the board, quickly followed by the general 
definition. 

Neither kind of teaching helps the young minds in acquiring the concept because 
children require more opportunities to think about and use the concept concerned. 
They also need to think about examples and non-examples of the concept on their 
own. This gap between teaching and learning is very evident in geometry where, for 

I example, students learn about different polygons without building any links among 
them. This is one reason why so many people wrongly believe, for instance, that a 
square is not a rectangle! 

The point we are emphasising here is that, in most cases, the move from particular to 
general cases represents a move towards a higher cognitive plane. The children need 
to, first, become somewhat familiar with a concept in particular cases by dealing with 
plenty of concrete examples. They need to build links between these specific cbes  
and the essence that they have abstracted. Only then can they move towards 
understanding the concept in all its generality. We teachers need to understand this if 
we don't want concepts to be reduced to mere definitions, which are rote learnt. 

The Essence of 
Mathematics 



Encouraging Mathematical 
Thinking generalising algorithms. For example, the algorithm for adding 

but a generalised procedure for adding any two fractions. 
(In fact, we {an identify two levels of generalisation in this process. At one level, we 
have evolve9 a method that works for all rational numbers. At a different level, we 
are also gen4ralising the idea of addition - we are now adding not only integers, but 
also parts of (integers.) Think of any algorithm in mathematics -may be one for 
finding the rbots of a quadratic equation, or that of finding the solution set of a system 
of equations.~ Each of these algorithms is a generalised step-by-step procedure. 
Each such a1 orithm has an underlying logic. What we mean by generalisation in this 
case is that e logic of the algorithm is not restricted to just a few particular cases. It 
works in exa 4 tly the same way for any member of the class. You have already aeen 
this in the cade of the algorithm for writing a number in a system with any base. 
Your learneh also need to understand the logic behind the working of the 
algorithm, thje mathematics of it. Otherwise, the process will reduce to a meaningless 
mechanical ptocedure for your students. 

Why don't y e  try some exercises now? 

I 

justification, of a generalised procedure-in your students' 

E6) Give an\ example of movement 'from general to particular' taken from your 
daily li*. Also explain why you chose that example. 

E7) Not all eneralisations related to mathematical objects are valid. Give an 
exarnpl f to show this, taken from the secondary school level mathematics: 

We have seen (pat the world of mathematics grows through the process of 
generalisation j- of concepts and processes, and relations between them. When we 
are generalising concepts or algorithms, we need to ensure that the generalisation is 
valid. There broadly two forms of reasoning we use for this purpose, which we f 

shall discuss n a t .  ' I 

2.4 W H ~ T  IS A PROOF? 

In the previous $ection we noted that doing mathematics involves generalising on the 
basis of observqions of particular cases. Once we have noticed patterns in these 

We will discuss methods of instances, we mfike inferences based on these patterns. Thus, you may infer that June 
proof in detail in Block 5 of is the hottest mo/nth of the year (if you live in Punjab, say). Or you may infer what a 
this course. one-year-old chyd will look like based on your observations of severaI children of that 

age. You may sqe a cow iating grass, then another one doing the same thing and infer 1 

that all cows fee on grass. This form of drawing inferences based on repeated similar 
t! 

1 

experiences is c lled inductive logic. The form of this logic that we use in 
mathematics is cblled mathematical induction. This principle uses inductive logic 
to formulate a dpnjecture based pn observed patterns. For instance, you may 
observe that l3 + z3 = 9 = 32, l3 + 23 + 33 = 36 = 6', and so on. You may also notice 
thar 3 = 1+2,6 = 1 + 2 + 3, and so on. Based on these particular cases, you may 
conjecture that 1' + 23 +. . .+ n3 = (1+ 2 + . . .+nlZ. 

The other form o reasoning is deduction, that is, the use of deductive logic. 
According to this f logic, we use known facts to arrive at a conclusion. For instance, 
knowing that the+ is severe water shortage in a given town, you can deduce that the 
price of drinking pater will be high over there. In mathematics we apply deductive 
logic all the time - when we use known results,,definitions, axioms and rules of 
inference to prow or disprove a statement. 



You know that in mathematics when we claim that a statement is true in general, what 
we really mean is that it holds true, without exception, in all cases in yhich the 
conditions of the statement are satisfied. This means that mathematically speaking, it 
is not enough to show that the particular statement is true in several different cases 
(even if the number of such cases is very large); what we must be able to do is to 
actually-show, through a process of inductive and/or deductive reasoning, that the 
statement is valid in all the cases where the conditions of the statement are true. This 
'showing' constitutes a 'proof '. 

It is no exaggeration to say that the idea of proof is the single most important idea 
in all of mathematics. Consider any mathematical proof of a statement. It consists 
of one or more steps, deduced from earlier steps or accepted facts, which make up 
mathematically acceptable evidence to support that statement. Let us look at an 
example to see how inductive and deductive logic go hand in hand to give a proof in 
mathematics. 

Suppose I ask you to find the sum of the interior angles of any convex polygon. How 
do you go about trying to answer this question? You may already know that the sum 
of the interior angles is related to the number of sides of a polygon in some way. You 
would probably begin by looking at special cases. You already know that this sum is 
180" for a triangle and 360" for a quadrilateral. Suppose you also know that for a 
pentagon this sum is 540" and for a hexagon it is 720". You could try drawing a chart 
like the following one to find some pattern: 

I 

After a little thought, you may notice that each number in the second row is a multiple 
of, 180. You may then decide to write each number down as a multiple of 180. 

i 1. us, you will get: 180 = 1 x 180,360 = 2 x 180,540 = 3 x 180,720 = 4 x 180. Are 
th '3, e numbers related to the number of sides in each case? In other words, is there a 
common rule relating 3 to 1,4 to 2 ,5  to 3, and so on? Some reflection op this question 
may lead you to infer that the sum is [(n - 2) x 1 80Io, where n is the number of sides 

I of the polygon. But how would you check whether your guess (or conjecture) is 
right? After all, it may happkn that this result may not hold if you take a 20-sided 
polygon, or one with 62537 sides. You would need to find a proof to show that the 
statement 'the sum of the interior angles of an n-sided polygon is (n - 2) x 180 
degrees, for any n 2 3' is valid. You would do so through a series of steps, each of 
which is deduced logically from the previous ones. This would constitute the proof 
of the statement. There can be several proofs. Let us consider one of them. 

I As you may remember, to logically derive a result we must accept certain definitions 
and/or axioms andlor earlier proven statements. In this case, two statements that we 

It shall assume are 
' The sum of the interior angles of a triangle is 180°', and 
'The sum of the angles around a point is 360"' (as illustrated for one case in Fig.3); 

Number of sides of polygon 

Sum of the interior angles (in 
degrees) 

,Jence of 
Mathematics 

3 

180 

untidy 6 bwkieh. She must 

6 

720 

4 

360 . 

Making charts is 
often a good way 
of looking for 
patterns 

5 

540 



Thinking 

1 .  

Consider any n-sideb polygon and take any point, say 0 ,  inside it. Join this point to 
each of the vertices pf the polygon. AS there are n vertices, the interior of the polygon 
gets divided into n Qiangles. (In order to understand this picture more clearly, we 
could even draw a flolygon and make the necessary construction as in Fig.4. 
(However, we must, remember that this picture (or any) is only an aid to see the 
logic of the proof. Sometimes a picture could give you an incomplete or wrong 
understanding of tqe general situation.) 

B 

E Fig.4 
Now, for each ofthe n triangles, the sum of the angles in it is 180". Since there are n 
triangles, the total sum of all the angles inside this polygon is (n x 180)". 
But the total sum1 of the angles inside the polygon is the sum of the interior angles of 
the polygon plus the angles around the point 0. Since the sum of the angles around 0 
is 360°, tlie sum O f  the interior angles of the polygon is [(n x 180) - 3601" = 
[(n - 2) x 1801°. (Remember, in the picture n = 6, but we are actually dealing 
with any n 1 3 , )  

The series of statements above constitutes a ' mathematical proof ' for the stated result. 
In it, each step fbllows logically from the preceding step and/or one of the results that 
we assumed before we began this proof. This method of reasoning is what is called 
'deductive logid'. Thus, here, by a piece of deductive logic, we have actually shown 

' 

that what we hdd inferred through inductive logic is indeed true in each and every ,J  

case. i 
Here are some exercises for you now. 

E8) Go back to the conjecture made earlier, that 1 3+ 23 + . . .+ n3 = (I+ 2+ . . .+n12 
for every n 2 1. Give a proof by the principle of induction. While doing so, 
explaib which part is using inductive logic and which part is using deductive 
logic. , 

E9) Prove; that each interior angle of an n-sided regular polygon is 
f o r n 2  3. 

E10) What strategy would you use for inculcating in your students the ability to 
proveldisprove statements? 

Let us, now, lake a brief look at what we have just said about proofs, namely, proving 
a mathematical statement involves the following: 

A genbral statement about a certain class of objects that satisfy a set of 
conditions. This statement may be formulated on the basis of observation of 
patterns found in particular cases, or on the basis of mathematical intuition, or 
on some other basis. 

The objective is to show, through deductive reasoning, that the given statement 
is true in all cases where the conditions of the statement are valid. 



-. 

What we r n ~ ~ l d  I I S ~  tn achieve nllr nhiectives are orre nrmnre <t*ments whirh , . . . - - . . - - - - . - - - - - - - - . . . - . - - - . - -J - - - . . - - - - - - . - - . . . - - . - - - - - - . . . - 
we call pi-emises. These premises can be of four types : 

i >  a statement that has been proved earlier; 

ii) a statement that follows logically from the earlier statements 
the proof; 

iii) a mathematical fact that has never been proved, but is univer 
accepted as true, that is, an axiom.; 

given 

sally 

iv) the definition of a mathematical term 

The proof of the statement, then, consists of these premises. 

Once we successf~~lly show that the given statement is valid, we say that our 
statement has been proved. 

As we see above, proving any statement about a given collection of objects 

! mathematically involves proving it for each and every object in the collection. This 
means that a statement about a collection of objects is false if it does not hold !for even 
one case in the collection. So, one way to disprove a mathematical statement (i.e., 
prove that it is false) is to find one example of an object that satisfies the hypotheses 
but not the conclusions. 

For an example, considel. the statement: Every continuous function is derivable. To 
disprove this statement, we only have to find one example of a function that is 
continuous b ~ ~ t  not derivable. You know several such functions. 

L Try an exercise now. 

El I )  Give one example each of a true matliematical statement and a false 
related to 3D. Also prove that these statements are true and false, 
respectively. 

You may wonder whether the process df proving a stateme~it that we have outlined 
above is the only way of doing so. How about "visual proofs"? For example, 

i consider the following proof for the statement 1 + 3 + 5 + ... + (2n - 1) = n2 , where 
n is a natural number. 

I ne L S J C I ~ ~ ~  ,. 
Mathematics 



Encouraging Mathematicnl 
Thinking The truth is that thdugh such visual evidence can be useful as an aid for proving thk 

relevant statement qgorously, mathematicians do not accept it as proof. This is' 
because we have tolremember that in mathematics, what we demand of a proof is that 
it should be valid ib all situations where the conditions of the statement we are 
proving are valid. It wotrld often be quite impossible to visually consider all the 
possible situatioqs ii;l which the conditions of a statement are true. In fact, what is 
even worse is that y e  may draw a diagram in which a particular statement is true and 
not even realise that there are other possible situations where all the conditions of the 
statement are satisfi d and yet the statement is actually false. E 
For example, recall hat happens when children represent a rotation of three mutually 
perpendicular axes i i three-dimensional space on paper. Very often they show all 
three axes as having kotated through the same angle a (see ~ i ~ . 5 ) ;  something that is 
not possible (as will be stressed in Unit 7). 

If the lines are all in this is possible, but not otherwise. And this false 
generalisation has entirely because of the examples through which our 
mathematical 

We can find many otlier such examples related to functions and other topics. 
The other point that c$mes out from these examples is that if we find that we are 
arriving at a result thal appears to be going against our common (and mathematical) 
sense, then we probably need to pause and re-examine our work carefully. But, 
sometimes our intuiti n or common sense may be wrong because this may be limited 
by what one sees in a ew particular instances. That is, our generalisation from 4 particular instances mqy be wrong. 

Here's a related questibn for you. 

E12) Give an examflle of mathematical concepts or processes being understood by 
your students @ to excessive weightage given by them to visual aids. 

Let us end this section b ith a brief overview of what mathematics is. It is a world of 
abstract objects and re1 tionships between them, based on undefined terms and axiom 
about them. It is exten 1 ed further by the processes of generalisation, abstraction and 
some laid down rules 04 mathematical logic. What is very important is that everything 
has to be consistent wit$ what is known earlier. 

 hemf fire, if even one of the axioms is changed, the whole theory that is built &round 
it will change. A very @od example of this is given in the following section. 

I 

I 
I 

2.5 CHANGElA POSTULATE, AND THE WORLD 
CHANGE$!- 

"From nothing I have created(another new world". 
(Janos Bolyai in a letter to his father.) 

I 

Most people are unaware) that aroun 
in the field of geometry &at was as s ' revolution in astronomy d, in its i t Darwinian theory of evol tion. "The effect of the discovery of hyperbolic geometry 
on our ideas of truth and qeality has been so profound," writes the great Canadian 
geometer H.S.M. Coxeteq "that we can haidly imagine how shocking the possibility 
of a gecmetry different from Euclid's must have seemed in 1820." Today, however, 
when it is known that the /space-time continuum is closely related to the non-Euclidean 

I 
I 

I 
I 
I 



geometries, some knowledge of these geometries is an essential prerequisite for a 
proper understanding of relativistic cosmology. 

Mathematics is a deductive system in which one starts from some definitions, some 
undefined terms and some self-evident truths (which may be based on experience) 
called axioms. Using these as a basis, we move to further results by a process of 
deductive logic. This is perhaps most evident when we study Euclidean geometry, 
starting in high school. 

2.5.1 Euclid's Postulates 

As in all mathematical theories, Euclid built a theory involving some abstract objects 
and relationships between them. Some of the objects are undefined, for example, 
'point', 'line', etc. Others are defined in terms of these objects. Of course, the effort 
is to keep the number of undefined terms to a minimum. 

Each theorem in Euclid's geometry is proved from some preceding results. Of course, 
he started with a set of five assumptions about the undefined terms, which are the 
axioms or postulates of the theory. Any set of statements can be laid down as 
postulates so long as they do not lead to any logical contradictions or inconsistencies. 
Obviously, the fewer the postulates, the better. Mathematicians try to derive more and 
more theorems from fewer and fewer postulates. 

Euclid's five postulates are: 

1. Given two distinct points, there is a unique straight line that passes through 
them. 

2. A line segment can be prolonged indefinitely. 
3. . For every point 0 and every point A distinct from 0 a circle can be 

constructed with centre 0 and radius OA. 
4. All right angles are congruent to each other. 
5. The Parallel Postulate (sometimes called Playfair's axiom) : If a straight 

line falling on two straight lines makes the interior angles on the same side 
less than two right angles, then the two straight lines, if produced indefinitely, 
meet on that side on which the angles are less than two right angles. 

Remark: The fifth postulate can also be worded as: For every line I and for every 
. point P not lying on I, there exists a unique line rn through P that is parallel to I. 

4 

\$ 
r+ 

In the first of his thirteen books, Euclid made no use of parallel lines, defined as lines 
in a plane*that do not meet. He proved several theorems and propositions without 
using his fifth postulate. Later mathematicians have added to this number, and 
togetherhey are now known as absolute geometry, a term first used by Janos Bolyai. 

t It was almost as if Euclid sensed that his fifth postulate was on a different footing 
from the other four. He may have not been totally sure about whether or not it could '- be derived from the other four. In fact, Euclid himself proved that if AB is any 

I straight line and P is a point in the plane of AB but not on it, then at least one line 
parallel to AB can be drawn through P. However, he could not prove that there is only 
one such'line. Had he proved this, his fifth postulate would not have been required. 

I Why don't you try an exercise now? 

E13) Show that the two ways of presenting the 5'h postulate given above (Pt.5 and 
the remark) are equivalent. 

/ 

J 
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Fig.6: Euclid, who produced 
the definitive 
treatment of Greek 
geometry and 
number theory in his 
13-volume 'Elements' 
around W B C .  
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parallel line passkng through P using only the other four postulates and the theorems 
derived from them. But no one was successful.   ow ever, these efforts led to a great 
achievement - (he creation of several non-Euclidean geometries. This is considered 
a landmark in the history of thought because till then everyone had believed that 
Euclid's was the only geometry, and that the world itself was Euclidean. Now the 
geometry of the Universe we live in has been demonstrated to be non-Euclidean. 

In the process of creating different geometries, two important ideas have been 
established. Thdy are 

i) there is no single 'correct' geometry; and 
ii) mathematical theories are not necessarily real. 

Let us take a glimpse of some of these geometries. 

2.5.2. Non-Edclidean Geometries 

There are sever4 non-Euclidean geometries now. Each of them is built on Euclid's 
postulates, except for the second one or the fifth one. All these geometries fall into 
one of two categories: hyperbolic or elliptic. Hyperblic geometry was discovered by 

\ Gauss, J.Bolyai and Lobachevsky. Elliptic geometry was discovered by Riemann. 

Consider two straight lines drawn perpendicular to .another straight line AB at A and B 
N on the same side of AB. In Euclidean geometry, the mutual distance between the two 

straight lines will remain constant. In hyperbolic geometries, the two straight lines 
will grow furthet apart (as in Fig. 7(b)). In elliptic geometries they will come closer 
together (as in Fig. 7(c)). 

___.-- - - - - - - .___.  
. __.. A _ _ _ _ _ . . - . . _ _ . _  .-. - .:. 

.. 

(a) - I 

(a) (b) (c) 

Fig.?: 'Parallel lines' in a)Euclidean geometry, b) hyperbolic geometry, 
c) eliiptic geometry. 

A 

Fig.8: The sum of the interior 
nnglea of the triangle 
NAB 
(a) is greater than 

180' in elliptic 
geometry, 

(b) is less than 180' in 

In hyperbolic geometries, if the perpendicular at A is replaced by a straight line 
making a slightly smaller angle with AB, then this new straight line will at first 
converge towards the straight line perpendicular to AB at B, come to some minimum 
distance and th& diverge. Therefore, Euclid's fifth postulate is no longer valid in this 
case. 

In elliptic geometries, the parallel postulate (in the f o m  stated by Euclid) is satisfied 
trivially, but hi$ second postulate is violated because now every straight line closes 
on itself like a circle. Note that in any elliptic geometry, any two straight lines, both 
of which are perpendicular to a third straiat line, intersect. This means that 
these three straight lines form a triangle. Therefore, in elliptic geometry the sum of 
the interior a q e s  of a triangle must be greater than two right angles (see Fig.8). 



On the other hand in hyperbolic geometry the sum of the angles of the triangle 
will be less than two right angles. 

Why don't you try an exercise now? 

E14) What activities would you give your learners to help them see the differences 
pointed out between hyperbolic and Euclidean geometry? 

-. 
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As a concrete example of a non-Euclidean geometry, let us now consider the 
on the surface of a sphere, called spherical geometry. This is one example of an 
elliptic geometry. 

2.5.3. Spherical Geometry 

Let us imagine that the surface of the earth is a perfect sphere and we are restricted all 
the time to move only along this surface. If we take as our definition of a straight line 
that path which has the shortest distance between two points, then a straight line 
joining any two points on the surface of the sphere is an arc of the great circle passing 
through these points (see Fig.9). Thus, on the surface of a perfectly spherioal earth, 
the equator and all the lines of longitude are great circles, i.e., straight lines. Since 
these great circles are of finite circumference, the straight lines cannot be of infinite 
length. So, Euclid's second postulate is not valid for spherical geometry. 

A number of corollaries follow from these statements: - \ / 
1. Since all the lines of longitude are perpendicular to the line of the equator, 

they must all be parallel to each other. Yet they all intersect at the North and 
South poles. Therefore, an infinite number of parallel lines, all distinct from Fig.9 

each other, can pass through the poles. Similarly, they can pass through any 
point on the surface of a sphere. 

// 
2. Other than the equator, none of the lines of latitude are great circles. 

Therefore, none of these lines are straight lines. Consequently, they cannot be 
considered to be straight lines on the surface of the sphere. 

3. Since two lines of longitude intersect at the North and the South poles, 
between them they enclose a region. This shows that in spherical geometry, 
unlike in Euclidean geometry, two straight lines can enclose a region between 
them. 

4. Consider two lines of longitude NAS and NBS which are perpendicular to 
each other, i.e., LANB = 90'. Here A and B are the points of intersection of 

I these lines with the equator. Then LNAB = LNBA = 90'. Further each of 
the sides of the triangle NAB, namely, NA = NB = AB = 114" the 
circumference of a great circle. Thus, triangle NAB is an equilateral triangle 
on the surface of the sphere. So, we immediately have two results that are 
different from Euclidean geometry. 

i) , First, each angle of an equilateral triangle in spherical geometry is 90°, 
and not 60' as in plane geometry. An immediate consequence of this is 
that Pythagoras' theorem is not meaningful in spherical geometry. 

ii) Second, we have the result that the sum of the interior angles of a 
triangle on the surface of a sphere is greater than two right angles, 
instead of equal to two right angles, as in plane geometry. Incidentally, 
this second result establishes that spherical geometry is an example of 



Encouraging Mathematical 
Thinking ellidtic geometry since the sum of the angles of a spherical triangle has 

beeb shown to be greater than two right angles. 

Some more feadres are given in the following exercises. 
1 

the sum of the angles of aspherical triangle can vary between n and 
value depending on the triangle. 

E16) Show t h k  in spherical geometry the ratio of the circumference of a circle to 
its diamdter can vary between n and 2. 

E17) Imagine lyou are standing on the Earth, and you walk one mile due South, then 
one mila due east, then one mile due north and find yourself back at your 
starting point with a bear staring you in the face. What colour is the bear? 

With this we end our short discussion on one of the most exciting mathematical 
advances of the 49' century. We shall look into other aspects of mathematical 
thinking in some more detail in the next unit and Block 5. For now, let us summarise 
what we have dobe in this unit so far. 

I 

SUMMARY 
I 

In this unit we have covered the following points. 

1. We have s en that the world of mathematics is made up of abstract objects, and 
relations $ tween these objects. There are certain rules and conventions that we 
agree that these objects will follow. 

2. The essence of mathematical reasoning is generalising on the basis of patterns 
, observed ib particular instances. These generalisations should be valid. 

that they should hold true for every case that fits the conditions' 
generalisation is made. 

3. We have sten what a proof is in mathematics and what disproving a statement 
involves. 

4. . We have studied an example of the implications of changing the basis of a 
mathemati al theory, and hence developing new theories which are consistent 
within the k selves. The example presented here is that of Euclidean and non- 
Euclidean eometries. P 

I 

2.7 COMhWENTS ON EXERCISES 
I 

, 
El)  For exadple, mathematical concepts could be 'closed and open figures'. 

Example6 of non-mathematical ideas could be 'heat' or sharpness. 

Think a ut how each of these concepts develop in our minds. As infants, we 
don't kn w what 'heat' is. What kind of experiences gradually make us 

hotter? 

bg 
unders4d this concept? How we learn to compare and find out which is 

E2) One f o 4  of abstraction is abstracting from the concrete. For example, from 
pens, b q  pens, pencils, etc, the idea of things that write is abstracted. Think 
of more qxamples of this kind of abstraction. 
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The second kind of abstraction is abstraction from ideas that are not actually 
available in reality. For example, abstracting the concept of negative 
numbers and imaginary nhmbers. 

100(base10)=4x25+0x5+0  x 1=400(base5) 
= 20 (base 50) 
= 1 (base 100) 

For writing in base 101, you need to first have 101 symbols, say ao, a', ..., 
aloe. Then 
100 (base 10) = aloe (base 101). 

We know that 2n2 + n' + 3n0 = 3 x lo2 + 0 x 10' + 3 x lo0. Solving this for n, 
we get n = 12. 

For example, if one knows how to make one kind of 'daal', the same 
procedure of using a pressure cooker to cook, can be used for cooking other 
'dads' as well. The procedure for cooking a vegetable can also be similarly 
generally developed. You should think of more examples of procedures that 
are generalised, including some from mathematics. 

We know that, in general, people smile when they are pleased or when they 
want to be friends.  heref fore, in particular, when we meet a new person and 
helshe smiles at us, we assume thatihgperson wants to be friends. This is an 
example of barticularisation. 

There could be many examples in which the generalisation could be wrong. 
For example, since every linear polynomial has a real root, many children 
generalise this fact to quadratic and cubic polynomials wrongly. Give other 
examples of possible generalisations that are erroneous. 

b 

.The steps are 
1) Writing P(n) V n 2 1. 
2) Checking that P(l) is true. (This is called the basis of induction, 

though its proof is by deductive logic.) 
3) For some m 2 1, assuming P(m) is true, and then showing P(m+l) is 

true. (This is called the inductive step, and again, it is proved by 
deductive logic.) 

4) Hence, P(n) is true b' n 2 1. (Inductive logic) 

You know that each interior angle of an equilateral triangle is 60°, which is 
360 

[I80 - - 1". Now, use what you have proved earlier about the sum of the 
3 

interior angles of a polygon. Also, use the definition of a regular polygon - 
all its sides are of the same length, and hence, all its interior angles have the 

.same degree measure. Then see if you can prove the given statement. 

You need to give the activities you use for developing the abilities of using 
inductive and deductive logic. You also need to present the methods you use 
for helping them develop their mathematical intuition, particularly what kind 
of conjectures to make, and how to verify if they 'make sense'. 
The method thpt will not work is to give a series of proofs to be rote learnt, 
and coughed up at exam time. 

For example, consider the statement: Every planarsection of a sphere is a 
circle. Prove or disprove it. 
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this factor. ,Think of other examples. 

You need to show that Playfair's axiom implies the Remark, and vice versa. 

Can you think of some results in Euclidean geometry that are based on the 
parallel postulate? Ask them the results would alter if this postulate does not 
hold anylaore. 

You could! go further and ask them what would happen if the first postulate 
didn't hold, and so on. 

There are several websites on hyperbolic geometry that you can ask your 
students to access to visually see the difference triangles, perpendicular lines, 
etc., in this geometry and Euclidean geometry. 

Look again at Fig.a(a). In A NAB, what happens to LANB if we move the 
points A p d  B closer together? As these points approach each other, LANB 
will become smaller and smaller, nearer and nearer to zero, And then the sum 
of the interior angles of the triangle will become nearer and nearer t~ two 
right-angles. If, on the other hand, we move the points A and B further and 
apart, LANB will become larger and larger, with a maximum value of 360°, 
as the leqgth of the side AB approaches the circumference of the great circle. 
In such 4 situation, the sum of the interior angles of ANAB will approach six 
right-angles. 

Consider a sphere of radius R. Note that the diameter of any circle on the 
Sphere, k i n g  a straight line, has to be an arc of a great circle. Let A be a point 
on the sgrface of the sphere, which we shall take as the pole, and let 0 be the 
centre of the sphere (see Fig. lo). Consider a line of latitude with A as the 
pole and a as the co-latitude (angle between OA and a line joining 0 to any 
point B on the line of latitude). Then the diameter of the circle forming the 
latitude,is 2aR, since this is an arc of a great circle subtending an angle 
2 a  at the centre 0. On the other hand, the circumference of the circle of 
latitude1 is 2nRsin a (as this is also the circumference of a planar circle of 
diameter 2RSin a). 

Thus the ratio of the circumference of a spherical circle to its diameter is 
n, = 2xRsina / 2aR = n Sin &a. 

The largest circle that one can draw on the surface of the sphere is a great 
circle (like the equator) for which a d 2 ,  so that na = 2. 
The sNallept circle is one of radius 0, for which a = 0, so that n;, = n. 
Thus in spherical geometry, & varies between 2 and n. 

White, because you are near the North Pole, since no bear exists around the 
South Pole. But if the question had been 'where are we?', there are an 
infinite number of locations close to the South Pole which fit the bill! 
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3.1 INTRODUCTION 

In the previous unit we elaborated on important processes involved in mathematical 
thinking, namely, working in a world of abstract objects, specialising and generalising. 
In this unit we focus on the use of these processes and other processes involved in 
'doing mathematics'. 

We start with a section in which we discuss the different thought processes involved in 
exploring mathematical problems. In the next two sections, we carefully observe 
these processes through exploring some mathematical problems in geometry. 
Finally, we look at the use of mathematical puzzles for developing these processes. 

While you are studying Sec. 3.3 and Sec. 3.4, we expect you to focus on the thought 
processes involved because these are the processes that your learners need to develop. 
Therefore, while studying this unit, keep thinking about how you can foster these 
processes in your learners' minds. 

After reading this unit, you should be able to 

explain the mathematical thinking involved in problem-solving, conjecturing 
and other mathematical explorations; 

suggest ways of generating mathematical thinking in your learners; 

design and carry out activities to help your learners investigate the polyhedra 
and tilings; 

create mathematical puzzles that challenge, but not over-challenge, your 
learners. 

.3.2 THE PROCESSES INVOLVED 

Let us start this section with a brief look at what 'doing mathematics' means to most 
children and teachers. The common view is that mathematics is 'done' only in the 
'maths class'. During this class, the children are expected to learn a concept by being 
given the definition and doing a few direct questions based on it. Then they are' 
expected to solve word problems related to the concept. The procedure involved is 
that first the teacher explains 'the way' to solve a particular kind of problem. 
Following this, she gives the children many problems of the same type to solve on 

I 
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exactly the same lihes. So, solving a problem is reduced to listening to the teacher, 
memorising certai solutions and mathematical facts and reproducing them 
appropriately. An algorithm is treated in the same manner. I 
Where is the math matical thinking being developed in the whole process outlined 
above? It is certai ly important to have basic computational skills and definitions, but 

in an algorithm. 

i 
not by rote. It is irhportant for a learner to understand the mathematics involved, even 

To understand any lmathematical concept or process, a child needs to be introduced to 
it through familiar ituations and experiences. In order to improve her understanding 
of the concept, it is important to use the concept on different occasions in as many 
ways as possible. Lh e exposure to a variety of problems related to the concept helps 
her to deepen her hderstanding of the concept. For the child (or for us) this helps to 
interlink the differqnt aspects of a concept, which, again, helps to strengthen 
conceptual underswding. When the child has to think about what to do and how to 
do it, she is forced to examine the concept seriously, and hence extend its meaning for 
her. For those whqse concepts are half-formed or are erroneous, solving different 
problems gives an pportunity to discover the errors and to reach a better 
understanding of t  $ e concept. For example, when helping a child to develop the idea 
of a function, we n ed to give her an opportunity to identify functions from non- 
functions, use func t 'ons in various ways, allow her a chance to use a variety of 
functions, etc. In dhort, concept formation is linked to the opportunities available 
to the learner to t$ink, apply her understanding and use her conceptual 
structures in variqus ways, finding relationships with other concepts. 

While you're thinking about the point just made, try the following exercises. 
I 

El)  Give an 
require them 

exarflple of a mathematics question given to children which does not 
to think mathematically. Also give your reasons for your choice. 

E2) Explain, with examples from your own learning of mathematics, how solving 
problems helps in concept formation. 

While trying these exercises, you must have focussed on the essential characteristics 
of doing mathemati s -it must be an opportunity for the learner to think 
mathematically, ch sing which step to take, based on what she knows and where she 
wants to reach. If s ! e is expected to solve a problem, it should not require her to 
merely reproduce idformation or mechanically apply algorithms. She needs to, 
gradually, be exposed to more and more complex problems built around the concep,t. 
A major part of thisprocess is the ability to build one or more representations of the. 
problem that is be iq  dealt with. We shall consider this, and other aspects in the next 
section. 

I 

3.3 SOLVIYG AND POSING PROBLEMS 

Try and recall the'lapt time you were required to do some mathematics - solve a 
problem based on data given to you, or asked to generalise some mathematical ideas. 
Did you start by making a representation'of the data or of the concepts involved? It 
may have been a mqntal or a visual picture of 'skew lines', or of a large number. 
Once you had this picture, what did you do next? Did you try to relate it to the 
knowledge you alreidy had and search for relevant pieces that could help in solving 
the problem? How 4ifferent is this from the steps your students go through? You may 
be able to answer this while observing the stages you, and your students, go through 
when solving the fol/lowing problem : 



How many different ways are there for seating 8persons at a round table? Exploring Mathematics 

See if your steps are similar to the steps I went through, which are: 

1) I first drew a circle and made 8 points on its circumference. 

2) Looking at this, 1 searched through my memory to think of what I knew 
related to this problem, for instance, the permutations (1, 2, . . ., 8), (2, 3, 
. . ., 8, l), . . ., (8, 1, 2, . .., 7) represent the same seating in this case. 

3) Therefore, for solving the problem, I needed to find the number of distinct 
permutations, keeping Point (2) in mind. 

4) To check my understanding, I tried it for 3 people, instead of 8. f 2  t 
Breaking up the stages of solving the problem is not very easy because many of these 
steps get merged and many stages are repeated again and again. In fact, the stages 
given above are exactly those given by the educationists Davis and Mayer. Fig. 1 

According to them, in order to solve any mathematical problem, we need to go 
through some or all of the following steps sequentially (perhaps many times). 

1. Build,a representation for the known mathematical information. 

2. Use this representation, and search in our memory for knowledge that we 
consider relevant for solving the problem. 

3. Apply the retrieved knowledge to the input data and construct connections 
between them. 

4. Check these constructions to see if they seem to be reasonable and correct 

5. Use technical devices such as procedures or algorithms (or other information 
associated with the knowledge representation in order to 
solve the problem. 

As you can see, our ability to represent a problem situation is essential for solving it. 
In order to solve a problem, Step 2 would require "building a representation of what 
we consider relevant kndwledge". This may be sometirhes so quick that we fail to 
notice it. Children, however, are seen to do it much more often. For instance, 
consider the problem: "How many integers between 100 and 999 consist of distinct 
even digits?'You may see this almost immediately as "a problem of counting". But, 
when a child tries to solve it, there are two separate steps involved. Firstly, she needs 
to build a representation of the input data. Then she needs a representation of 
"possibly relevant knowledge", which would require her to put in some mental effort. 
She may try listing some of the numbers, and then pick out the required ones to 

r construct a numerical representation. Then she may use her earlier knowledge for the 
single-digit case and the 2-digit case to find a pattern. If she finds a pattern, she may 
generalise it to find the answer. 

1 As your learner does more problems in different contexts, these procedures 

1 become a part of her thinking and turn into an instantaneous strategy. However, 
we must remember that the learner needs opportunities and encouragement to tackle 
open-ended problems and problems with many solutions related to the concept. 
The problems can steadily become more challenging. At each stage, she should also 
be encouraged to talk about what she is doing and explain her line of reasoning. 

Let's see the abilities developed in the process, by asking your students to do some 
problem-solving. 



E3) Give {our students problems like the following one to do. 

A company makes 100 computers every month. Its employee union accused 
the company of discriminating against its female employees. The union said 
that &men were not being given the promotions due to them. The following 
table dives the data about the promotions in the company. 

Ifan em loyee who is promoted during these five years is selected at random, 
what is t 1 e probability that the employee is a woman? 1s this data enoughfor 
deciding \whether female employees are discriminated against? 

While thty are working on the problems, talk to them to try and separate out 
the vario$s thought processes they are using in the process. Also note down 
the stage4 you went through while solving the problem. 

~ e 4 r  

19% 

199p 

199b 

1994 

200d 

I alscneeded to G o w  which information, if any, was extra and not rekired. For 
instance, what the bompany produced is irrelevant to the problem. 

No. of women promoted 

5 

6 

10 

8 

8 

When I tried the problem given above, I first tried to understand the situation - what 

The next step was to write down the mathematical equivalent of the given problem : 

No. of men promoted 

15 

16 

8 

10 

10 

I knew, and what 
move from what I 

Total num er of women promoted from 1996 to 2000 = 37 
Total num er of people promoted in this period = 37 + 59 = 96 
To find P( ! ), where A is the event that a woman was promoted. 

1 

I needed to find out. Then 1 needed to think of the path to use to 
knew to what I needed to find out. 

Then I solved this #oblem using the definition of probability of an event, that is, 

So, I concluded that\approxitnately 1 in 3 promotions is likely to be that of a female 
worker. However, probability gives us no indication of whether women workers 
are discriminated This is because we need some more information. For 
instance, we need how many men and women were eligible for promotion in 
this period. 

Should we note dowq the steps involved in solving this problem? 

1. Read the problem carefully to understand what it says -the information and 
assumptions in it, and what is to be found out, proved or examined. 



2. Represent it mathematically, clearly filtering out the irrelevant data in the 
problem. 

3. Gather other relevant information, axioms and earlier proved (or known) 
results. 

4. Look for a path for solving the mathematical equivalent of the problem. 

5 .  Interpret the solution in the problem situation. 

These steps may appear to be different from the stages given by Davis and Mayer. 
But, if you look carefully you'll find some of those stages clubbed in the broader 
stages we have just listed. 

Why don't you do an exercise related to this? 

E4) Give some children a problem to do. After they have solved it, talk to them to 
find out which of the stages above they went through. Note down what they 
articulate. If you can get them to discuss the stages, note down what comes 
out in their discussion. 

Problem-solving is one important part of doing mathematics. An equally important - 
part is what further questions open up in our minds while solving a,problem, that is, 
posing a problem. This requires us to use our abilities to generalise in many ways. 
For example, if I have proved that there are infinitely many primes, I may wonder if 
there are infinitely many primes of the kind 4m+3, where m E N. This process can 
continue for as long as our mathematical maturity and intuition allows us to. And, 
each time we pose a problem and try and solve it, we grow m?thematically. 

Our level of problem-solving and problem-posing reflects our level of mathematical 
thinking. So does our ability to use a variety of representations while dealing with 
problems. 

Being flexible in moving across representati6ns is a sign of competent 
mathematical thinking. Each type of representation brings out specific aspects of a 
concept. Flexibility could mean moving within one type of representation, for 
example, using one diagram with many different parts that highlight different aspects 
of a problem. Flexibility also involves moving between quite different 
representations, for example, between an equation and a graph. Solving multi-stage 
problems may need the use of several representations. 

In fact, we need to help our learners develop such a flexibility. They can have many 
different ways to represent the abstract concepts which they are in the process of 
learning. The representations can be in terms of known symbols, icons or concrete 
objects. Think about the various ways your students use to represent problems while 
trying the following exercise. 

E5) While your students were doing the problem in E4 above, what were the 
various ways of representation they used? 

Let us now gather the implications of what we have just discussed in this section for 
anyone teaching mathematics. A learner uses a variety of representations while 
trying to solve problems, particularly to relate it to the knowledge in her mind. The 
availability of these representations allows her to refer back and forth to her 
knowledge system. Further, if a child is given many different kinds of problems 
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representations and relating the concept to the knowledge base in her mind. 

Throughout the prbcess of problem-solving, the teacher needs to give the student 
several opportunities to explain the process she has followed. This would help her 
consolidate the strategies she has used. Given sufficient opportunity to deal with 
different kinds of problems and to articulate the strategies developed without fear of 
ridicule would help the child to develop more sophisticated problem representations. 
If the child has to learn to solve problems, this development is of great importance. 

You may have noted that the use of procedures, algorithms and shortcuts are only one 
step in solving a mathematir -1 problem. The first four steps where the problem is 
comprehended, represented suitably, related to the knowledge available and checked 
as being reasonable are extremely necessary before choosing an algorithm or 
procedure and applying it. Therefore, we need to give the student many tasks 
requiring her to build her ability to move flexibly across using various modes of 
representation. And, we must not just give her one particular procedure for 
solving a type of problem. 

While a child is solving problems, she also needs to be encouraged to explore further 
generalisations. Here the teacher could be a facilitator, suggesting certain conjectures, 
to start her off. The child should be given many opportunities, maybe prodded several 
times too, to think about and articulate more problems-some could be of the same 
kind, and some copld be of the kind 'What if ... ?'. 

Now f o r m  exercise! 
- 

E6) Give a detailed account of the teaching strategy you would use to develop the 
ability of children of Class 11 for using various representations for dealing 
with sets. 

To get more of an insight into the processes we have discussed in this section, here is 
an opportunity for you to investigate some mathematical areas. 

INVESTIGATING PLATONIC SOLIDS 

In this section we invite you to explore the processes involved in working 
mathematically, through a study of polygons and polyhedra. So, let's start with an 
exercise. 

E7) How many different regular polygons are there? How are these polygons 
related to a circle? Note down other questions that come to your mind while 
you are working on these questions. 

While you were doing E7, what did you notice about the way you deal with 
mathematical problems? Once you have solved it, do you think your understanding of 
'polygon' has improved? In what way? Did you think about other related 
mathematics questions that could be explored? One problem that you may have 
thought of exploring could be : Can what I have found true for 2D be generalised to 
3D? (problem-posing) 

When we go from Zdimensional figures to 3-dimensional objects, the concept of 
regular polygons generalises to regular polyhedra (the plural of polyhedron). 
Regular polyhedra are solids in which all angles and all sides are equal, for example 
a cube. 



Now, while doiug E7 you must have found that there are infinitely many regular 
polygons because there is no limit to the number of sides they can have. So, you may 
expect the same about the regular polyhedra. However, there are only five different 
regular polyhedra possible. These are the tetrahedron, the cube, the octahedron, the 
dodecahedron and the icosahedron (see Fig.2). These are also known as the Platonic 
solids, after the Greek philosopher Plato (see Fig. 3). They have fascinated 
mathematicians from the time of the ancient Greeks. The faces of the tetrahedron (4 
faces, from the Greek word 'tetra', meaning four), the octahedron (8 faces, from 'okto' 
meaning eight) and the icosahedron (20 faces, from 'eikosi' meaning twenty) are all 
equilateral triangles. As you know, the cube has 6 faces, all of which are squares. 
The 12 faces of the dodecahedron ('dodeka' meaning twelve) are regular pentagons. It 
is worth noticing that the faces of all the regular polyhedra are regular polygons. 
(Why ?) 

Tetrahedron Octahedron lcosa hedmn Cube Dodecahedrpn 

Fig. 2: The five regular polyhedra (the hidden edges are indicated by dashed lines) Fig.> : Bust of Plato 
(423-347 BC) 

What we have just dischssed is easy for your students to get interested in. To give 
them a feel for what the five Platonic solids actually look like, there is nothing better 
than having models of these solids for them to play around with. As solid models are 
not easy to come by, it is a good ldea to get your students to make models of these 
solids from paper. With this in mind, in Fig.4 we have given flat diagrams of the five 
regular polyhedra. 

These could be copied on to some stiff paper and cut out along the outer edges. The 
cut-outs can then be folded along the inner lines and the sides pasted with thin strips of 
paper to make three-dimensional models. Those comers of the regular polygons that 
make up the faces of the models and which meet at a common vertex of the 
polyhedron are labelled with the same letter in our figure. 

Now, getting back to exploring mathematics, here is an exercise for you. 

E8) Prove that there can only be 5 regular polyhedra. Also ask your students to 
prove it. The models may come in useful for this. 

How did you go about answering E8? Of course, you know that there are at least 5 
regular polyhedra, the ones made in Fig.2. But, how do you know that these are the 
only ones? That is, how did you go about proving that any regular polyhedron is 
forced to be one of the five you know? Did you try to use anything you already know 
or have observed? For instance, did you notice that at any vertex of a polyhedron 
there cannot be less than three faces? One face is clearly not enough and two 
would only givekise to an edge. 

Next, what do you know about the sum of the angles of all the faces at each vertex? 
Remember that each face has to be a regular polygon. Also, if you 'open up' the 
polyhedron, place all the adjacent faces in a plane, there need to be some gaps between 
thwedges. So, shouldn't the sum of the angles be less than 360°? If the sum were 
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exactly 360°, then all e faces would lie in one plane and there would be no corner of 
a 3D solid. 

A 
A - B I 

I 

Cube 
I 

I 
I 0 3 A 
I 

I 

C 
I 

0 C 

I 

Ch 
- 

I 

I 

#ig. 4: Cut-outs to make models of the five Platonic solids 
I 

Now, given the t w ~  facts we have just noted, can any regular polygon be a face of a 
polyhedron? ~ incd  the sum of the angles of the faces at each vertex of the polyhedron 
has to be less than B6O0, &d since there must be at least three faces at each vertex, the 
angle of a face at tbe vehex must be less than 120". This immediately restricts the 
regular polygons that can form faces of the regular polyhedra to be equilateral 
triangles, squares r regular pentagons (see E9 in Unit 2). Therefore, a regular 
polyhedron can o 3 y have these 3 types of polygons as faces. 

Once you reached h i s  stage, you probably thought about the various possibilities for 
the regular polyhe&a. The simplest case is that of a regular polyhedron whose faces 
are equilateral triNgles. We have already used the fact that the number of faces at 
each vertex must qe more than two. They must also be less than 6,  since each angle of 
the face is equal tq 60". The number of faces at each vertex of a regular polyhedron 
whose faces are equilateral triangles can therefore only be 3 ,4  or 5. These correspond 
to the regular tetr@dron, octahedron and icosahedron, respectively. 



Now consider the case of regular polyhedra whose faces are squares. The number of 
faces at each vertex can only be 3. (Why?) The corresponding solid is, of course, the 
cube. 

I By exactly the same arguments the number of faces at each vertex of a regular 
polyhedron whose faces are regular pentagons can only be 3. The corresponding solid 
is the regular dodecahedron. 

You should check your proof to see that you have not made any logical errors, and 
there are no other possibilities. Once this is done, you have proved that there can only 
be 5 kinds of regular polyhedra. 

Now try these exercises. 

E9) Go back to the discussion on ' proof ' in Unit i (following E10). Then, note 
down the mathematical thought processes and the kinds of statements used in 
the proof above. Under which of the four stages of a proof listed in Unit 2 do 
they come? Are there any other stages or categories in the proof above that 
are not mentioned in Unit 2? 

E10) We list some of the properties of the five regular solids in the table below. 
Ask your students to use the paper models to verify the entries in the table for 
each of the five reeular solids. " 

Table 1: Properties of the regular polyhedra 

I I I I I 

Icosahedron 3 . 20 12 30 5 

Then ask them if they see a relationship between F, V and E, and if so, to find 1 it. 

Let us now explore another area of spatial mathematics. While you are investigating 
it, keep thinking about the same broad questions that you kept in mind in the previous 

I section. 

, 

1 3.5 STUDYING TILINGS 

'Tiling' is the study of shapes that can be placed alongsideeach other to fill space 
comp,letely without leaving any gaps, like the tiles covering your floor. If you look 
around you, you will see a variety of tilings - on floors, on walls, decoration pieces, 
etc. An example is given in Fig.5. 

Exploring Mathematla 
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What are the shapes that are usual'ly used as tiles to fill the 
tilings? In two dimensions, we usually find squares or 
rectangles used as tiles. If a tiling is done by one kind of 

Yig. 5 

regular polygon of the same shape and size, it is called a 
regular tiling. Do you see regular tilings around you? The 
most common kind is the one made by squares. 

What are the other kinds possible? Here is an exercise about 
this now. 

E l  1) Prove that the only regular tilings are those made up of 
the equilateral triangle, the square and the regular I 

hexagon. Further, note down the points you reflect on, 
the questions you ask yourself and the different routes 
you may follow while finding the proof. 

How did you go about trying the exercise above? Did you 
physically take several equilateral triangles, say, and try to cover a 
surface with them? While doing so, did you notice that at any 
intersection in a regular tiling there must always be more than two 
tiles meeting? This concrete example may have also helped you 
realise that the sum of the angles of all the vertices meeting at an 
edge must be 180.  The sum of the vertices of the regular 
polygons meeting at other points will be 360". This means that we 
can only have three equilateral triangles (or two squares) meeting 
at an edge. Also, we can have 6 equilateral triangles, 4 squares or 
3 regular hexagons meeting vertex to vertex. This exhausts all 
possibilities for regular tilings. Therefore, there are only three 
regular tilings, all of which are shown in Fig.6. 

Fig. 6: The regular tilings 

If a mix of non-regblar polygons are used in any tiling, then of course the possibilities 
are endless. The Same is true if a mix of regular polygons of different sizes are used. 
In particular, the plane can be tiled completely by triangles or quadrilaterals of 
arbitrary shape. 

A tessellation is an~ther  name for a tiling, which is used by artists more than 
mathematicians. Tossellations use either a single shape which may or may not be 
regular, or at most a few shapes, to cover the plane. The emphasis is on using shapes 
which look natural like birds, fiqh, horses, people, etc.. Through the following 
activity, you and yaur students can pick up some basic principles involved in creating 
tessellations, and make some of your own tilings. 

Activity 1 (Making tessellations) : You need to start by establishing a regular grid 
on the plane. You can use triangles, squares, rectangles, parallelograms, hexagons, 



etc., to create a grid which covers the whole area you wish to work with. Suppose 
you start with a grid of squares. You can choose as your unit a 3 x 3 square. We 

i know that periodic repetitions of this unit will tile the plane. (Why?) 

L Now. the secret of a tessellation is to remove  arts of this square from one side and 
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add it in a corresponding position on the oppoiite side of thd square. In this way, 
although the shape of the unit changes, its total area remains. the same. In the process 
you create cuts and wedges that fit into each other. (Why does this happen?) 

1 
I 

So, suppose you,a'emove a small square from the top left-hand comer of the unit figure 
(see Fig. 7(a)) and add it to the top right-hand comer. Similarly, remove another 
small square from the middle of the bottom of the figure and add it to the middle of 
the top. This, then, produces your basic motif shown on the left-hand side of Fig. 
7(b). 

Consider your original grid to be tiled by a set of the basic32 3 squares and replace 
I each suchsquare by the-motif you have just created. This will the 

shqwn on the right of Fig. 7(b). Stretch your imagination a little, and you can consider 
L this to be a tessellation of a horse and rider! 

Fig. 7 : (a) Creating the motif. 
(b) Tesselleting the plane with the motif to get a tessellation of a horse and rider. 

To make a tessellation, we can add and remove any shape from the basic unit we 
choose. For example, starting with the same basic 3 x 3 tile, we can addlremove 
shapes as shown in Fig. 8(a). Then we get a basic motif that gives us the tessellation 
in Fig. 8(b). 

I 

- 
' (a) (b) 

Fig. 8 : (a) A basic motif for a tessellation, (b) The tessellation of horses 

The important thing to remember about creating a motif is 

I i) decide on the grid and the basic unit, 
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unit at the correspbding place on the opposite side to give rise to the new shape. 

This can be done as mdny times as you please. The skill lies in creating a natural 
looking shape at the en'/d. For example, in Fig.9 we show how, starting from a grid of 
parallelograms, you cab proceed step by step to create a tessellation of roosting birds 

I 

Rg. 9 : A tessslletlon of roostlng blrds 

Why don't you try somd exercises now? 

E12) Create at least tho tessellations using the steps we have just discussed. Also 
try out what welhave said in this section with your students. What were their 
reactions? 1 

B13) Ask children oflclasses 9 or 10 to tile a plane with squares and regular 
pentagons, respectively. Note down the discussions that take place amongst 
them during thib activity. What understanding does this give you of their 
mathematical thbught processes? 

I 

The tessellations that wk have considered so far make repeated use of just one basic 
form. This need not be o, We can always take our repeating motif and divide it into i two parts such that eachpart looks like a separate natural shape. Escher, who was an 
acknowledged master, has used many basic shapes to give all kinds of tessellations of 
the plane (see Fig. lo). 

While creating tessellatipns, there is a notion of symmetry that is involved. We shall 
study this notion in detajl in the next unit. 

I 

I 



- - --- 

E14) While solving the problem above, what were the different aspects of 
mathematical thinking you applied? 

E15) Find the operations K and K' and the K digits represented by the letters in 

ABKAB = ACC and FG K'FH = DE 

E16) Try the following problems. Also give your students these problems to do. 
What problem-solving abilities were the childreo using in the process, and 
how did you find out? How different were they from the processes you used 
for solving them? 

i) There is a sequence of 16 numbers which reads the same from left to 
right as well as from right t~ left. Also, the sum of any 7 consecutive 
numbers in the sequence is -1, and the sum of any I 1  consecutive 
terms is +I. Fhd the numbers. 
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Fig. 10 : A tessellation by M.C.Escher 

3.6 WORKING OUT PUZZLES 

If you are given a problem like 12345 - 3249, you are likely to do it in a flash. This 
is because you have acquired the ability to apply a subtraction algorithm. Now, see 
how long you take to do the following subtraction : 

In the problem below, each letter has been assigned one digit from 0 to 9. Find the 
numbers involved in the subtraction 

A B C B  
- E B E B  

E D E B  

How have you gone about finding the digits involved? For instance, you may start 
with the possibility that D = 6, B = 3. Then D-B = B. But then, D and B are 
occumng'again in the 'hundreds' column. And 3 - 3 # 6. So, you would need to try 
another possibility for D and B. In this way, using logical arguments, what solution 
did you get? Note that there may be more than one solution to this problem. 

Try these exercises now. 



Encouraging Mathematical 
Thinking 

ii) Ashrafil was convinced that her key had been hidden by one of her 
friends FAar t i ,  Birla, Kalyan or Megha. Each of these friends 
made a statement about this matter. But only one of these four 
statemebts was true. 

Aarti said, "I didn't take it. " 
I Birla said, "Aarti is lying. " 
, Kalyan said, "Birla is lying. " 
Megha said, "Birla has taken it. " 

Who todd the truth? 

E17) Ask your learners to think of more problems like the ones mentioned above. 
What were the puzzles/problems they came out with? 

The purpose of asking ylou to engage with the problems above was two-fold. Firstly, 
we wanted you to have fun. We also wanted to help you focus on the processes that 
are used for solving them. If you are aware of these abilities being used, then you 
would agree that these are the abilities to be fostered in your learners. One way is to 
give them problems that they would enjoy and that would challenge them a bit. We 
end this unit with leavinlg you to think of various ways in which this can be done. 

But first, let us see what'we have covered ih this unit. 

In this unit we have focussed on the thought processes involved in learning and doing 
mathematics, particularly while solving and creating problems. More specifically, we 
covered the following points. 

1. Exploring any npathematical concept involves considering it in different ways. 
Solving a variety of problems related to this concept helps to build and 
consolidate one'ls understanding of the concept. 

2. We stressed the importance of using a variety of ways for representing a 
problem situation. Developing mathematical maturity requires the learner to, 
among other things, move comfortably from one form of representation to 
another. 

3. We looked at why there are only 5 types of regular polyhedra though there q e  
infinitely many iegular polygons. 

4. We discussed what a tiling is, how many regular tilings there can be and how 
to create tessellations. 

5 .  The point of studying polyhedra and tilings was to consider the processes 
involved in investigating mathematics. 

6.  We looked at interesting non-routine mathematics problems that entertain us 
and keep the brain ticking. The idea was to focus on the directions in which 
the thought processes were moving. 

7. We asked you to work with your .learners on the same lines and analyse their 
reactions. Through this, you would be able to gauge their use and 
understanding of mathematical thought processes. 
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3.8 COMMENTS ON EXERCISES 

El)  While thinking of an example, remember the essence of a problem - it 
should force the learner to think mathematically. This does not mean merely 
retrieving learnt facts or applying algorithms unthinkingly. 

E2) Pick an example of a concept or process you learnt, for example, the concept 
of limit. Note down what kind of exercises, activities and problems helped 
you to, develop your understanding of the concept, and in what way. Does 
'limit' mean more to you than merely applying the algorithm for finding it? 
What visual aid did you need to understand when a limit exists, or otherwise? 
Which practical situations require you to use it? Did finding the answers to 
these questions help you understand this concept better? In what way? 

Similarly, how would solving real-life and other problems related to a concept 
help your students to learn the concept? 

E3) See material following the exercise. 

E4) Pick up a problem that requires plenty of thinking. Do not hassle the children 
when you ask them how they have done the problenl. They may not be very 
clear in remembering or explaining how they solved it. You could also have 
them sit in a group and try to work out a solution together. Their conversation 
while they think about the question would help you to understand the 
processes that they are going through. 

If you discuss the stages with them, be sure to use simple language and small 
logical steps so that they can understand what you are talking about. 

E5) Was their ability to use a variety of representations linked with their ability to 
articulate their thought processes? If so, in what way? What was the 
relationship, if any, between the child's ability to build representations and 
being comfortable with mathematics? Note down the other points that you 
find important. 

E6) Here the focus is on helping children develop their ability to use a variety of 
representations. Accordingly they would need several opportunities to use the 
concept in different situations. Note down the kind of learning opportunities 
you can think of for these children. 

E7) For each n 2 3, we can define a regular n-gon. Draw them and see what 
happens as n becomes larger and larger. As n +=, the n-gon tends to a circle. 

What questions regarding relationships between different mathematical 
objects, pattern finding and generalisation did you think of in the process? 

E8) Think of what a proof involves - first gather together what is known and 
what is assumed. Then see how you can use this to prove your result. The 
discussion following E8 will, of course, lead you there. 

It may be useful, while you think, to try to actually make these polyhedra and 
see the implications of this concrete activity. 

Ask your students to study these models and try and prove the statement. 
Were they able to do it? What did they say about this exercise, while 
discussing amongst themselves as well as with you? Which aspects of 
mathematical thinking were coming out through their remarks? 
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E9) For inst&ce, there have to be 3 or more faces at any vertex of a polyhedron. 
Is this stdement an axiom? Or is it based on assumptions? This statement 
follows lqgically from the definition. 

'Each face has to be a regular polygon' also follows from the definition. 

In this wa), consider all the other steps in the proof. 

E10) The numbtr of faces F, the number of vertices V and the number of edges E 
of a regular polyhedron are connected by Euler's famous formula F + V - 
E = 2 .  ' 

E l  1) One route is given in the discussion following E l  1. Think of other routes. 
Compare the thought processes and steps in the different solutions. In fact, 
think of all the regular tilings. Is the list very long? Try covering a book (any 
surface) wi all these tilings one by one. Did you find a problem with some 
of them? 4 hile doing so, remember that you cannot change a shape of the tile 
in between. 

Is the statement true for tilings which are not regular? 

E13) Divide the cbildren into groups of 6-8, depending upon the space available 
Explain to them what tiling means and let them 

tiling exercises. Do not interfere in their thinking. Observe 
them as they do this activity. 

Andyse the /iscussions for their notions regarding symmetry, angles, vertex, 
etc. What other mathematical thought process can you study in this exercise? 

E14) You probably first assembled various single-digit subtraction facts. Then, 
from them yoiu chose the ones that may fit. Then, moving step by step, you 
would eliminhte the non-possibilities, based on contradictions you yot. 

One solution 4s (A, B, C, D, E) = (2,5,3,0,  1). 

E15) Consider the qrst problem. Note down why the operation can't be 
subtraction. If it is addition, what value of A would give you A in the 
hundreds place in the answer? 

If the operatio* is multiplication, what could A, B and C be? One solution is 
A = 1, B = 2 , o  = 4. Think of others. 

You can try thi second problem similarly. 

E16) i) How arte you going about this one? I started by tqing out the 
sequence 

1, -1, 1, -1, ... 

This mqt the second condition, but not the first or the third. In this 
way, I tSied a few more sequences till I decided to use algebra for 
dealin,g pith this problem. So, using the first condition, my sequence 
became 

a ,b ,c ,d ,e , f ,g ,h ,h ,g , f , e ,d ,c ,b ,a .  

Then I used the second and third conditions to reduce the sequence to 
%,a,c ,a ,a ,a ,c ,a ,a ,c ,a ,a ,a ,c ,a ,a  



Now, can you guess how 1 got a and c? Why don't you try and find 
the sequence? Maybe your solution agrees with mine. An answer I 
got was a = 5 ,  b = -13. Are there any other possibilities? 

What were the mental processes the children went through while 
reaching a solution? 

ii) This problem can be solved in various ways. Of course, each way 
requires the use of mathematical logic. 

So, let me begin by assuming that Aarti is telling the truth. Then 
Birla's statement is false, so that Kalyan's statement is true. But we 
have assumed that both Aarti and Kalyan can't give true statements. 
So, Aarti must be lying. 

Now, let me assume that Birla is telling the truth. See if you find any 
contradictions with this assumption. 

In this way, checking the various possibilities, moving logically step 
by step, I arrived at the solution. Can you see the mathematical 
thinking involved in this problem? 

E17) Did your learners come out with other kinds of conditions to determine a 
sequence? Did they come out with minor generalisations, or radically 
different conditions? Whqt kind of other problems like E16(ii) did they 
create? Did you ask other studznts to solve them to see if the newly posed 
problems made sense? What was the general reaction in the classroom to this 
exercise? 
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Let us now go back to an earlier part of the interaction regarding our understanding of 
number, and look closely at what it tells us about our mathematical thinking. . 

The Essence of 
Mathema tics 

What is interesting in this part of the conversation is how clear it is that we abstract 
the notion of numbers from using them as adjectives. When we talk of a number, 
we are essentially refemng to a certain physical property of a set. Thus, when we talk 
of the number 'two', we could be refemng to gny collection of objects that can be put 
in one-to-one correspondence with, for example, the number of sleeves in a shirt. 
Thus, we say that a coin has two sides (each side corresponding to one sleeve), most 

a humans have two eyes, a line segment has two end points, and there are (usually!) two 
sides to an argument. We abstract a common property of these different concrete 
objects, namely the number of objects in each of them. This is the number that we call 
'two'. As in the previous case, having abstracted the property and understanding what 
'two' means, we can now think of the number two without refemng to the objects 
from which we derived the concept. It also has completely abstract and formal 
relationships with other numbers like 6,d2, 2i, etc., and with other abstract 
rratnematical objects (e.g., rectangles). 

So, abstracting a concept is the ability to look at several particular examples of the 
concept, find what is common to them, separate that common property from the 
objects and look at the property as something on its own, having an independent 
existence. This existence is in the world of mathematics. This world is made up of 
such abstract objects. These objects generate further abstract concepts and relations 
between such objects. 

We acquire our understanding of these abstract objects in two ways. One way is the Fig.l : Do all of us 
way we develop our concept of number or of shape. This consists of a process of have two faces? 
careful observation and analysis of different objects, noticing a certain property 
common to these objects and separating the property from the objects from which it 
was abstracted. This property, then, becomes an object of study as a concept. This is 

le of several non-mathematical concepts (like colour) too. In the following exercise 3 ask you to mull over this process. 

El) Identify two other concepts in mathematics and two from non-mathematicdl 
areas that arise through a process of abstraction. Explain how this abstraction 

I takes place. 

As we have just seen, several mathematical and other concepts are derived by 
I abstracting them from particular instances. Would you be able to abstract the notion 

of a point or a line by this process? To answer this, let us first consider a point. In 
school, we are told that a point marks a position in space and that it is dimensionless. 
How, then, do we represent a point? Even the tiniest dot in space has some dimension. 
So, we can't abstiact the concept from particular concrete instances of the concept, 
because ideally there cannot be any concrete representation of a point. There is no 
easy way out of this difficulty. The way out for mathematicians was to adopt the 
convention that a small dot would represent a point. Thus, on paper we often mark 

I points like the origin 0 ,  while in our minds we know that a point cannot exist in reality. 
It is an abstract entity present only in our minds. 

Similar situations arise with many other geometrical concepts as well, such as a line, a 
segment, or a ray. All these abstrhct concepts exist because of certain accepted rules 

1 and conventions in the world of mathematics. These rules are called axioms. And, to 
be able to deal with such abstract concepts, we choose conventions for representing 
them symbolically. Once we define one convention, we use it to define conventions 
for the other objects that exist only in our minds. This is another kind of abstraction. 
It is by this other form of abstraction that Euclid stated that "a point moves to describe 
a line". This line, an abstraction itself, moves to generatca surface, and so on. 



E~lcouraging Mathematical 
'~hinkin~ The essence of ma@ematics lies in dealing with these forms of abstraction. In the next 

few sections we sh$l talk about what we mean by 'dealing'. For now, try this exercise. 
I 

E2) Explain whad the difference is in the two forms of abstraction we have just 
discussed, wlth examples that haven't been given so far. 

In this section we have discussed a defining characteristic of mathematical thinking. 
, This thought process moves along a path of generalisation. In fact, generalisation is 
the way the world df mathematics grows. Let us see how. 

PARTICULARISING AND GENERALISING 

One of the most iml$ortant mathematical thought processes is that of generalisation. 
We do it in real life'all the time. For example, consider the way we formulate the 
concept of 'tail' in Our minds. The process involves observing the tails of some 
objects, such as a hbrse or a cow. We also notice that different tails may look 
different, but all of hem are called '$1~'. So. our initial concept of a tail may be 
that it is that part oflan animal that is seen at the back of the rest of the body. Then 
we extend this concept to the appendage at the rear end of a bird or a fish. We may 
extend this notion further and modify our image of a tail to include the tails of 
aeroplanes and kites, thus generalising our notion from living to non-living creatures 
also. As we exarnirle more objects that have a tail, we continue to generalise this 
notion. Ultimately, we arrive at an image of a tail that may not include some of the 
specific features of the tails of the different objects that we are considering, but will 
include common features of all of them. 

We engage in this kind of generalisation all the time in our daily lives in order to 
formulate a concepti The process is useful in extending our activities - for example, 
we can generalise our observations about plant growth in order to grow new plants;(;, 
and, we are able to generalise our experiences of a child's mental development in 
order to construct learning and teaching methodologies. In the study of mathematics, 
the process of geneqdisation assumes a special significance. It helps us to understand 
the structure of speqific mathematical objects and to build further knowledge upon 
existing structures. But what is even more significant i8 the fact that often such 
extension of knowlddge may become impossible without going through the process of 
generalisation. 

In mzithematics, we find generalisation occurs 9 different contexts -we generalise to 
arrive at definitions of new concepts, as in the case of the definition of quadrilaterals. 
We generalise procedures, for example, the procedure to add two polynomials. We 
generalise results to new sets of mathematical objects, such as extending the statement 
'the sum of the foylangles of a square is 360 degfees' to the statement 'the sum of the 
four angles of a qualateral  is 360 degrees'. And, of course, algebra is a 1 

generalisation of arithmetic, where the use of variables helps us to extend our study 
and use of numbers !in new ways. 

In this section, we study generalisation in different mathematical contexts. For 
instance, think about the way most of us develop the general concept of a polygon. 
We get fo know triagles of various shapes and sizes. We get to know rectangles, 
squares and other quadrilaterals. We look around us and see patterns having 
pentagons. We wodder - can we have figures having 20 sides, 50 sides, 77 sides, 
and so on? If so, what would their properties be? Is anything common to all these 
figures7 ' In this wdy we'develop our concept of a polygon as a closed figure having 

\ three 6r more sides. This is an example of generalisation. With such generalisation 
we alscgeneralise related notions like those of area, perimeter and othe# concepts 
associated with polygons. 



Usually, to understand what the general concept is, we begin learning about it by 
observing and studying properties of particular cases. For instance, by studying the 
areas of squares, parallelograms or triangles, we may naturally acquire the general 
concept of 'area of a polygon'. 

For another example, try and recall the way you acquired your understanding of 'place 
value'. Initially it developed in the context of 'base lo ' ,  i.e., in the decimal system. 
Then you may have heard that computers function with a binary system, i.e., base 2. 
Did this make you wonder: Given any number, can I write it in other bases, say base 5, 

I base 60, base 12, or for that matter, base n t/ n E N? This process of 'wondering' is 
I also called 'making a conjecture'. Since the conjecture is about a situation in greater 

and greater generality, we consider these tbught  processes as an example of 
generalisation from several particular cases. However, be warned that at present we 
do not know if our generalisation is mathematically acceptable or not. (This shall be 
discussed in the next section, and in the last block of this course.) 

Before going further, why don't you try some related exercises? 

I 
- - 

E3) How would you write 'hundred' in base 5, base 50, base 100 and base 101? 

E4) If 303 (in base 10) is written as 213 in base n, find n. 

Now suppose you have proved your conjecture. Then you know how to write any 
number in base n, where n E N. You have a generalised procedure. Therefore, if 
you are required to write a number in the hexadecimal (i.e., base 16) system, you 
apply your procedure for the particular case n=16. We call this proceis 
particularisation or specialisation. 

You could do this whole exercise of generalising and particularising for concepts or 
procedures that your students are learning. Such examples can be used to help your 
learners understand the processes of generalisation and particularisation while 
studying these concepts/processes/skills. In this way, they will realise that while 

erstanding or creating mathematics, we are moving from particular to general 
from general to particular all the time. 

In fact, to understand a concept, it helps the learner to gradually construct it in her 
mind. This is done through experiencing concrete examples, studying several 
particular cases and gradually grasping the generalised concept. Though many of us 
accept this fact in theory, how often do we find this happening in our c\assrooms? Not 
commonly. In fact, it is more common to find teachers introducing the students to a ' 

concept by giving them the definition in all generality, and expecting the children to 
1 remember it. Even when examples to illustrate the definition are given, they are not 

varied enough. Some teachers introduce the children to a concept by giving some 
particular examples in the textbook or on the board, quickly followed by the general 
definition. 

Neither kind of teaching helps the young minds in acquiring the concept because 
children require more opportunities to think about and use the concept concerned. 
They also need to think about examples and non-examples of the concept on their 
own. This gap between teaching and learning is very evident in geometry where, for 

I example, students learn about different polygons without building any links among 
them. This is one reason why so many people wrongly believe, for instance, that a 
square is not a rectangle! 

The point we are emphasising here is that, in most cases, the move from particular to 
general cases represents a move towards a higher cognitive plane. The children need 
to, first, become somewhat familiar with a concept in particular cases by dealing with 
plenty of concrete examples. They need to build links between these specific cbes  
and the essence that they have abstracted. Only then can they move towards 
understanding the concept in all its generality. We teachers need to understand this if 
we don't want concepts to be reduced to mere definitions, which are rote learnt. 

The Essence of 
Mathematics 



Encouraging Mathematical 
Thinking generalising algorithms. For example, the algorithm for adding 

but a generalised procedure for adding any two fractions. 
(In fact, we {an identify two levels of generalisation in this process. At one level, we 
have evolve9 a method that works for all rational numbers. At a different level, we 
are also gen4ralising the idea of addition - we are now adding not only integers, but 
also parts of (integers.) Think of any algorithm in mathematics -may be one for 
finding the rbots of a quadratic equation, or that of finding the solution set of a system 
of equations.~ Each of these algorithms is a generalised step-by-step procedure. 
Each such a1 orithm has an underlying logic. What we mean by generalisation in this 
case is that e logic of the algorithm is not restricted to just a few particular cases. It 
works in exa 4 tly the same way for any member of the class. You have already aeen 
this in the cade of the algorithm for writing a number in a system with any base. 
Your learneh also need to understand the logic behind the working of the 
algorithm, thje mathematics of it. Otherwise, the process will reduce to a meaningless 
mechanical ptocedure for your students. 

Why don't y e  try some exercises now? 

I 

justification, of a generalised procedure-in your students' 

E6) Give an\ example of movement 'from general to particular' taken from your 
daily li*. Also explain why you chose that example. 

E7) Not all eneralisations related to mathematical objects are valid. Give an 
exarnpl f to show this, taken from the secondary school level mathematics: 

We have seen (pat the world of mathematics grows through the process of 
generalisation j- of concepts and processes, and relations between them. When we 
are generalising concepts or algorithms, we need to ensure that the generalisation is 
valid. There broadly two forms of reasoning we use for this purpose, which we f 

shall discuss n a t .  ' I 

2.4 W H ~ T  IS A PROOF? 

In the previous $ection we noted that doing mathematics involves generalising on the 
basis of observqions of particular cases. Once we have noticed patterns in these 

We will discuss methods of instances, we mfike inferences based on these patterns. Thus, you may infer that June 
proof in detail in Block 5 of is the hottest mo/nth of the year (if you live in Punjab, say). Or you may infer what a 
this course. one-year-old chyd will look like based on your observations of severaI children of that 

age. You may sqe a cow iating grass, then another one doing the same thing and infer 1 

that all cows fee on grass. This form of drawing inferences based on repeated similar 
t! 

1 

experiences is c lled inductive logic. The form of this logic that we use in 
mathematics is cblled mathematical induction. This principle uses inductive logic 
to formulate a dpnjecture based pn observed patterns. For instance, you may 
observe that l3 + z3 = 9 = 32, l3 + 23 + 33 = 36 = 6', and so on. You may also notice 
thar 3 = 1+2,6 = 1 + 2 + 3, and so on. Based on these particular cases, you may 
conjecture that 1' + 23 +. . .+ n3 = (1+ 2 + . . .+nlZ. 

The other form o reasoning is deduction, that is, the use of deductive logic. 
According to this f logic, we use known facts to arrive at a conclusion. For instance, 
knowing that the+ is severe water shortage in a given town, you can deduce that the 
price of drinking pater will be high over there. In mathematics we apply deductive 
logic all the time - when we use known results,,definitions, axioms and rules of 
inference to prow or disprove a statement. 



You know that in mathematics when we claim that a statement is true in general, what 
we really mean is that it holds true, without exception, in all cases in yhich the 
conditions of the statement are satisfied. This means that mathematically speaking, it 
is not enough to show that the particular statement is true in several different cases 
(even if the number of such cases is very large); what we must be able to do is to 
actually-show, through a process of inductive and/or deductive reasoning, that the 
statement is valid in all the cases where the conditions of the statement are true. This 
'showing' constitutes a 'proof '. 

It is no exaggeration to say that the idea of proof is the single most important idea 
in all of mathematics. Consider any mathematical proof of a statement. It consists 
of one or more steps, deduced from earlier steps or accepted facts, which make up 
mathematically acceptable evidence to support that statement. Let us look at an 
example to see how inductive and deductive logic go hand in hand to give a proof in 
mathematics. 

Suppose I ask you to find the sum of the interior angles of any convex polygon. How 
do you go about trying to answer this question? You may already know that the sum 
of the interior angles is related to the number of sides of a polygon in some way. You 
would probably begin by looking at special cases. You already know that this sum is 
180" for a triangle and 360" for a quadrilateral. Suppose you also know that for a 
pentagon this sum is 540" and for a hexagon it is 720". You could try drawing a chart 
like the following one to find some pattern: 

I 

After a little thought, you may notice that each number in the second row is a multiple 
of, 180. You may then decide to write each number down as a multiple of 180. 

i 1. us, you will get: 180 = 1 x 180,360 = 2 x 180,540 = 3 x 180,720 = 4 x 180. Are 
th '3, e numbers related to the number of sides in each case? In other words, is there a 
common rule relating 3 to 1,4 to 2 ,5  to 3, and so on? Some reflection op this question 
may lead you to infer that the sum is [(n - 2) x 1 80Io, where n is the number of sides 

I of the polygon. But how would you check whether your guess (or conjecture) is 
right? After all, it may happkn that this result may not hold if you take a 20-sided 
polygon, or one with 62537 sides. You would need to find a proof to show that the 
statement 'the sum of the interior angles of an n-sided polygon is (n - 2) x 180 
degrees, for any n 2 3' is valid. You would do so through a series of steps, each of 
which is deduced logically from the previous ones. This would constitute the proof 
of the statement. There can be several proofs. Let us consider one of them. 

I As you may remember, to logically derive a result we must accept certain definitions 
and/or axioms andlor earlier proven statements. In this case, two statements that we 

It shall assume are 
' The sum of the interior angles of a triangle is 180°', and 
'The sum of the angles around a point is 360"' (as illustrated for one case in Fig.3); 

Number of sides of polygon 

Sum of the interior angles (in 
degrees) 

,Jence of 
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180 

untidy 6 bwkieh. She must 

6 

720 

4 

360 . 

Making charts is 
often a good way 
of looking for 
patterns 

5 

540 



Thinking 

1 .  

Consider any n-sideb polygon and take any point, say 0 ,  inside it. Join this point to 
each of the vertices pf the polygon. AS there are n vertices, the interior of the polygon 
gets divided into n Qiangles. (In order to understand this picture more clearly, we 
could even draw a flolygon and make the necessary construction as in Fig.4. 
(However, we must, remember that this picture (or any) is only an aid to see the 
logic of the proof. Sometimes a picture could give you an incomplete or wrong 
understanding of tqe general situation.) 

B 

E Fig.4 
Now, for each ofthe n triangles, the sum of the angles in it is 180". Since there are n 
triangles, the total sum of all the angles inside this polygon is (n x 180)". 
But the total sum1 of the angles inside the polygon is the sum of the interior angles of 
the polygon plus the angles around the point 0. Since the sum of the angles around 0 
is 360°, tlie sum O f  the interior angles of the polygon is [(n x 180) - 3601" = 
[(n - 2) x 1801°. (Remember, in the picture n = 6, but we are actually dealing 
with any n 1 3 , )  

The series of statements above constitutes a ' mathematical proof ' for the stated result. 
In it, each step fbllows logically from the preceding step and/or one of the results that 
we assumed before we began this proof. This method of reasoning is what is called 
'deductive logid'. Thus, here, by a piece of deductive logic, we have actually shown 

' 

that what we hdd inferred through inductive logic is indeed true in each and every ,J  

case. i 
Here are some exercises for you now. 

E8) Go back to the conjecture made earlier, that 1 3+ 23 + . . .+ n3 = (I+ 2+ . . .+n12 
for every n 2 1. Give a proof by the principle of induction. While doing so, 
explaib which part is using inductive logic and which part is using deductive 
logic. , 

E9) Prove; that each interior angle of an n-sided regular polygon is 
f o r n 2  3. 

E10) What strategy would you use for inculcating in your students the ability to 
proveldisprove statements? 

Let us, now, lake a brief look at what we have just said about proofs, namely, proving 
a mathematical statement involves the following: 

A genbral statement about a certain class of objects that satisfy a set of 
conditions. This statement may be formulated on the basis of observation of 
patterns found in particular cases, or on the basis of mathematical intuition, or 
on some other basis. 

The objective is to show, through deductive reasoning, that the given statement 
is true in all cases where the conditions of the statement are valid. 



-. 

What we r n ~ ~ l d  I I S ~  tn achieve nllr nhiectives are orre nrmnre <t*ments whirh , . . . - - . . - - - - . - - - - - - - - . . . - . - - - . - -J - - - . . - - - - - - . - - . . . - - . - - - - - - . . . - 
we call pi-emises. These premises can be of four types : 

i >  a statement that has been proved earlier; 

ii) a statement that follows logically from the earlier statements 
the proof; 

iii) a mathematical fact that has never been proved, but is univer 
accepted as true, that is, an axiom.; 

given 

sally 

iv) the definition of a mathematical term 

The proof of the statement, then, consists of these premises. 

Once we successf~~lly show that the given statement is valid, we say that our 
statement has been proved. 

As we see above, proving any statement about a given collection of objects 

! mathematically involves proving it for each and every object in the collection. This 
means that a statement about a collection of objects is false if it does not hold !for even 
one case in the collection. So, one way to disprove a mathematical statement (i.e., 
prove that it is false) is to find one example of an object that satisfies the hypotheses 
but not the conclusions. 

For an example, considel. the statement: Every continuous function is derivable. To 
disprove this statement, we only have to find one example of a function that is 
continuous b ~ ~ t  not derivable. You know several such functions. 

L Try an exercise now. 

El I )  Give one example each of a true matliematical statement and a false 
related to 3D. Also prove that these statements are true and false, 
respectively. 

You may wonder whether the process df proving a stateme~it that we have outlined 
above is the only way of doing so. How about "visual proofs"? For example, 

i consider the following proof for the statement 1 + 3 + 5 + ... + (2n - 1) = n2 , where 
n is a natural number. 

I ne L S J C I ~ ~ ~  ,. 
Mathematics 



Encouraging Mathematicnl 
Thinking The truth is that thdugh such visual evidence can be useful as an aid for proving thk 

relevant statement qgorously, mathematicians do not accept it as proof. This is' 
because we have tolremember that in mathematics, what we demand of a proof is that 
it should be valid ib all situations where the conditions of the statement we are 
proving are valid. It wotrld often be quite impossible to visually consider all the 
possible situatioqs ii;l which the conditions of a statement are true. In fact, what is 
even worse is that y e  may draw a diagram in which a particular statement is true and 
not even realise that there are other possible situations where all the conditions of the 
statement are satisfi d and yet the statement is actually false. E 
For example, recall hat happens when children represent a rotation of three mutually 
perpendicular axes i i three-dimensional space on paper. Very often they show all 
three axes as having kotated through the same angle a (see ~ i ~ . 5 ) ;  something that is 
not possible (as will be stressed in Unit 7). 

If the lines are all in this is possible, but not otherwise. And this false 
generalisation has entirely because of the examples through which our 
mathematical 

We can find many otlier such examples related to functions and other topics. 
The other point that c$mes out from these examples is that if we find that we are 
arriving at a result thal appears to be going against our common (and mathematical) 
sense, then we probably need to pause and re-examine our work carefully. But, 
sometimes our intuiti n or common sense may be wrong because this may be limited 
by what one sees in a ew particular instances. That is, our generalisation from 4 particular instances mqy be wrong. 

Here's a related questibn for you. 

E12) Give an examflle of mathematical concepts or processes being understood by 
your students @ to excessive weightage given by them to visual aids. 

Let us end this section b ith a brief overview of what mathematics is. It is a world of 
abstract objects and re1 tionships between them, based on undefined terms and axiom 
about them. It is exten 1 ed further by the processes of generalisation, abstraction and 
some laid down rules 04 mathematical logic. What is very important is that everything 
has to be consistent wit$ what is known earlier. 

 hemf fire, if even one of the axioms is changed, the whole theory that is built &round 
it will change. A very @od example of this is given in the following section. 

I 

I 
I 

2.5 CHANGElA POSTULATE, AND THE WORLD 
CHANGE$!- 

"From nothing I have created(another new world". 
(Janos Bolyai in a letter to his father.) 

I 

Most people are unaware) that aroun 
in the field of geometry &at was as s ' revolution in astronomy d, in its i t Darwinian theory of evol tion. "The effect of the discovery of hyperbolic geometry 
on our ideas of truth and qeality has been so profound," writes the great Canadian 
geometer H.S.M. Coxeteq "that we can haidly imagine how shocking the possibility 
of a gecmetry different from Euclid's must have seemed in 1820." Today, however, 
when it is known that the /space-time continuum is closely related to the non-Euclidean 

I 
I 

I 
I 
I 



geometries, some knowledge of these geometries is an essential prerequisite for a 
proper understanding of relativistic cosmology. 

Mathematics is a deductive system in which one starts from some definitions, some 
undefined terms and some self-evident truths (which may be based on experience) 
called axioms. Using these as a basis, we move to further results by a process of 
deductive logic. This is perhaps most evident when we study Euclidean geometry, 
starting in high school. 

2.5.1 Euclid's Postulates 

As in all mathematical theories, Euclid built a theory involving some abstract objects 
and relationships between them. Some of the objects are undefined, for example, 
'point', 'line', etc. Others are defined in terms of these objects. Of course, the effort 
is to keep the number of undefined terms to a minimum. 

Each theorem in Euclid's geometry is proved from some preceding results. Of course, 
he started with a set of five assumptions about the undefined terms, which are the 
axioms or postulates of the theory. Any set of statements can be laid down as 
postulates so long as they do not lead to any logical contradictions or inconsistencies. 
Obviously, the fewer the postulates, the better. Mathematicians try to derive more and 
more theorems from fewer and fewer postulates. 

Euclid's five postulates are: 

1. Given two distinct points, there is a unique straight line that passes through 
them. 

2. A line segment can be prolonged indefinitely. 
3. . For every point 0 and every point A distinct from 0 a circle can be 

constructed with centre 0 and radius OA. 
4. All right angles are congruent to each other. 
5. The Parallel Postulate (sometimes called Playfair's axiom) : If a straight 

line falling on two straight lines makes the interior angles on the same side 
less than two right angles, then the two straight lines, if produced indefinitely, 
meet on that side on which the angles are less than two right angles. 

Remark: The fifth postulate can also be worded as: For every line I and for every 
. point P not lying on I, there exists a unique line rn through P that is parallel to I. 

4 

\$ 
r+ 

In the first of his thirteen books, Euclid made no use of parallel lines, defined as lines 
in a plane*that do not meet. He proved several theorems and propositions without 
using his fifth postulate. Later mathematicians have added to this number, and 
togetherhey are now known as absolute geometry, a term first used by Janos Bolyai. 

t It was almost as if Euclid sensed that his fifth postulate was on a different footing 
from the other four. He may have not been totally sure about whether or not it could '- be derived from the other four. In fact, Euclid himself proved that if AB is any 

I straight line and P is a point in the plane of AB but not on it, then at least one line 
parallel to AB can be drawn through P. However, he could not prove that there is only 
one such'line. Had he proved this, his fifth postulate would not have been required. 

I Why don't you try an exercise now? 

E13) Show that the two ways of presenting the 5'h postulate given above (Pt.5 and 
the remark) are equivalent. 

/ 

J 
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Encouraging Mathematical 
~hinking Several mathemt(ticians, since Euclid, have tried to prove the uniqueness of the 

parallel line passkng through P using only the other four postulates and the theorems 
derived from them. But no one was successful.   ow ever, these efforts led to a great 
achievement - (he creation of several non-Euclidean geometries. This is considered 
a landmark in the history of thought because till then everyone had believed that 
Euclid's was the only geometry, and that the world itself was Euclidean. Now the 
geometry of the Universe we live in has been demonstrated to be non-Euclidean. 

In the process of creating different geometries, two important ideas have been 
established. Thdy are 

i) there is no single 'correct' geometry; and 
ii) mathematical theories are not necessarily real. 

Let us take a glimpse of some of these geometries. 

2.5.2. Non-Edclidean Geometries 

There are sever4 non-Euclidean geometries now. Each of them is built on Euclid's 
postulates, except for the second one or the fifth one. All these geometries fall into 
one of two categories: hyperbolic or elliptic. Hyperblic geometry was discovered by 

\ Gauss, J.Bolyai and Lobachevsky. Elliptic geometry was discovered by Riemann. 

Consider two straight lines drawn perpendicular to .another straight line AB at A and B 
N on the same side of AB. In Euclidean geometry, the mutual distance between the two 

straight lines will remain constant. In hyperbolic geometries, the two straight lines 
will grow furthet apart (as in Fig. 7(b)). In elliptic geometries they will come closer 
together (as in Fig. 7(c)). 

___.-- - - - - - - .___.  
. __.. A _ _ _ _ _ . . - . . _ _ . _  .-. - .:. 

.. 

(a) - I 

(a) (b) (c) 

Fig.?: 'Parallel lines' in a)Euclidean geometry, b) hyperbolic geometry, 
c) eliiptic geometry. 

A 

Fig.8: The sum of the interior 
nnglea of the triangle 
NAB 
(a) is greater than 

180' in elliptic 
geometry, 

(b) is less than 180' in 

In hyperbolic geometries, if the perpendicular at A is replaced by a straight line 
making a slightly smaller angle with AB, then this new straight line will at first 
converge towards the straight line perpendicular to AB at B, come to some minimum 
distance and th& diverge. Therefore, Euclid's fifth postulate is no longer valid in this 
case. 

In elliptic geometries, the parallel postulate (in the f o m  stated by Euclid) is satisfied 
trivially, but hi$ second postulate is violated because now every straight line closes 
on itself like a circle. Note that in any elliptic geometry, any two straight lines, both 
of which are perpendicular to a third straiat line, intersect. This means that 
these three straight lines form a triangle. Therefore, in elliptic geometry the sum of 
the interior a q e s  of a triangle must be greater than two right angles (see Fig.8). 



On the other hand in hyperbolic geometry the sum of the angles of the triangle 
will be less than two right angles. 

Why don't you try an exercise now? 

E14) What activities would you give your learners to help them see the differences 
pointed out between hyperbolic and Euclidean geometry? 

-. 
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As a concrete example of a non-Euclidean geometry, let us now consider the 
on the surface of a sphere, called spherical geometry. This is one example of an 
elliptic geometry. 

2.5.3. Spherical Geometry 

Let us imagine that the surface of the earth is a perfect sphere and we are restricted all 
the time to move only along this surface. If we take as our definition of a straight line 
that path which has the shortest distance between two points, then a straight line 
joining any two points on the surface of the sphere is an arc of the great circle passing 
through these points (see Fig.9). Thus, on the surface of a perfectly spherioal earth, 
the equator and all the lines of longitude are great circles, i.e., straight lines. Since 
these great circles are of finite circumference, the straight lines cannot be of infinite 
length. So, Euclid's second postulate is not valid for spherical geometry. 

A number of corollaries follow from these statements: - \ / 
1. Since all the lines of longitude are perpendicular to the line of the equator, 

they must all be parallel to each other. Yet they all intersect at the North and 
South poles. Therefore, an infinite number of parallel lines, all distinct from Fig.9 

each other, can pass through the poles. Similarly, they can pass through any 
point on the surface of a sphere. 

// 
2. Other than the equator, none of the lines of latitude are great circles. 

Therefore, none of these lines are straight lines. Consequently, they cannot be 
considered to be straight lines on the surface of the sphere. 

3. Since two lines of longitude intersect at the North and the South poles, 
between them they enclose a region. This shows that in spherical geometry, 
unlike in Euclidean geometry, two straight lines can enclose a region between 
them. 

4. Consider two lines of longitude NAS and NBS which are perpendicular to 
each other, i.e., LANB = 90'. Here A and B are the points of intersection of 

I these lines with the equator. Then LNAB = LNBA = 90'. Further each of 
the sides of the triangle NAB, namely, NA = NB = AB = 114" the 
circumference of a great circle. Thus, triangle NAB is an equilateral triangle 
on the surface of the sphere. So, we immediately have two results that are 
different from Euclidean geometry. 

i) , First, each angle of an equilateral triangle in spherical geometry is 90°, 
and not 60' as in plane geometry. An immediate consequence of this is 
that Pythagoras' theorem is not meaningful in spherical geometry. 

ii) Second, we have the result that the sum of the interior angles of a 
triangle on the surface of a sphere is greater than two right angles, 
instead of equal to two right angles, as in plane geometry. Incidentally, 
this second result establishes that spherical geometry is an example of 
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beeb shown to be greater than two right angles. 

Some more feadres are given in the following exercises. 
1 

the sum of the angles of aspherical triangle can vary between n and 
value depending on the triangle. 

E16) Show t h k  in spherical geometry the ratio of the circumference of a circle to 
its diamdter can vary between n and 2. 

E17) Imagine lyou are standing on the Earth, and you walk one mile due South, then 
one mila due east, then one mile due north and find yourself back at your 
starting point with a bear staring you in the face. What colour is the bear? 

With this we end our short discussion on one of the most exciting mathematical 
advances of the 49' century. We shall look into other aspects of mathematical 
thinking in some more detail in the next unit and Block 5. For now, let us summarise 
what we have dobe in this unit so far. 

I 

SUMMARY 
I 

In this unit we have covered the following points. 

1. We have s en that the world of mathematics is made up of abstract objects, and 
relations $ tween these objects. There are certain rules and conventions that we 
agree that these objects will follow. 

2. The essence of mathematical reasoning is generalising on the basis of patterns 
, observed ib particular instances. These generalisations should be valid. 

that they should hold true for every case that fits the conditions' 
generalisation is made. 

3. We have sten what a proof is in mathematics and what disproving a statement 
involves. 

4. . We have studied an example of the implications of changing the basis of a 
mathemati al theory, and hence developing new theories which are consistent 
within the k selves. The example presented here is that of Euclidean and non- 
Euclidean eometries. P 

I 

2.7 COMhWENTS ON EXERCISES 
I 

, 
El)  For exadple, mathematical concepts could be 'closed and open figures'. 

Example6 of non-mathematical ideas could be 'heat' or sharpness. 

Think a ut how each of these concepts develop in our minds. As infants, we 
don't kn w what 'heat' is. What kind of experiences gradually make us 

hotter? 

bg 
unders4d this concept? How we learn to compare and find out which is 

E2) One f o 4  of abstraction is abstracting from the concrete. For example, from 
pens, b q  pens, pencils, etc, the idea of things that write is abstracted. Think 
of more qxamples of this kind of abstraction. 
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The second kind of abstraction is abstraction from ideas that are not actually 
available in reality. For example, abstracting the concept of negative 
numbers and imaginary nhmbers. 

100(base10)=4x25+0x5+0  x 1=400(base5) 
= 20 (base 50) 
= 1 (base 100) 

For writing in base 101, you need to first have 101 symbols, say ao, a', ..., 
aloe. Then 
100 (base 10) = aloe (base 101). 

We know that 2n2 + n' + 3n0 = 3 x lo2 + 0 x 10' + 3 x lo0. Solving this for n, 
we get n = 12. 

For example, if one knows how to make one kind of 'daal', the same 
procedure of using a pressure cooker to cook, can be used for cooking other 
'dads' as well. The procedure for cooking a vegetable can also be similarly 
generally developed. You should think of more examples of procedures that 
are generalised, including some from mathematics. 

We know that, in general, people smile when they are pleased or when they 
want to be friends.  heref fore, in particular, when we meet a new person and 
helshe smiles at us, we assume thatihgperson wants to be friends. This is an 
example of barticularisation. 

There could be many examples in which the generalisation could be wrong. 
For example, since every linear polynomial has a real root, many children 
generalise this fact to quadratic and cubic polynomials wrongly. Give other 
examples of possible generalisations that are erroneous. 

b 

.The steps are 
1) Writing P(n) V n 2 1. 
2) Checking that P(l) is true. (This is called the basis of induction, 

though its proof is by deductive logic.) 
3) For some m 2 1, assuming P(m) is true, and then showing P(m+l) is 

true. (This is called the inductive step, and again, it is proved by 
deductive logic.) 

4) Hence, P(n) is true b' n 2 1. (Inductive logic) 

You know that each interior angle of an equilateral triangle is 60°, which is 
360 

[I80 - - 1". Now, use what you have proved earlier about the sum of the 
3 

interior angles of a polygon. Also, use the definition of a regular polygon - 
all its sides are of the same length, and hence, all its interior angles have the 

.same degree measure. Then see if you can prove the given statement. 

You need to give the activities you use for developing the abilities of using 
inductive and deductive logic. You also need to present the methods you use 
for helping them develop their mathematical intuition, particularly what kind 
of conjectures to make, and how to verify if they 'make sense'. 
The method thpt will not work is to give a series of proofs to be rote learnt, 
and coughed up at exam time. 

For example, consider the statement: Every planarsection of a sphere is a 
circle. Prove or disprove it. 
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this factor. ,Think of other examples. 

You need to show that Playfair's axiom implies the Remark, and vice versa. 

Can you think of some results in Euclidean geometry that are based on the 
parallel postulate? Ask them the results would alter if this postulate does not 
hold anylaore. 

You could! go further and ask them what would happen if the first postulate 
didn't hold, and so on. 

There are several websites on hyperbolic geometry that you can ask your 
students to access to visually see the difference triangles, perpendicular lines, 
etc., in this geometry and Euclidean geometry. 

Look again at Fig.a(a). In A NAB, what happens to LANB if we move the 
points A p d  B closer together? As these points approach each other, LANB 
will become smaller and smaller, nearer and nearer to zero, And then the sum 
of the interior angles of the triangle will become nearer and nearer t~ two 
right-angles. If, on the other hand, we move the points A and B further and 
apart, LANB will become larger and larger, with a maximum value of 360°, 
as the leqgth of the side AB approaches the circumference of the great circle. 
In such 4 situation, the sum of the interior angles of ANAB will approach six 
right-angles. 

Consider a sphere of radius R. Note that the diameter of any circle on the 
Sphere, k i n g  a straight line, has to be an arc of a great circle. Let A be a point 
on the sgrface of the sphere, which we shall take as the pole, and let 0 be the 
centre of the sphere (see Fig. lo). Consider a line of latitude with A as the 
pole and a as the co-latitude (angle between OA and a line joining 0 to any 
point B on the line of latitude). Then the diameter of the circle forming the 
latitude,is 2aR, since this is an arc of a great circle subtending an angle 
2 a  at the centre 0. On the other hand, the circumference of the circle of 
latitude1 is 2nRsin a (as this is also the circumference of a planar circle of 
diameter 2RSin a). 

Thus the ratio of the circumference of a spherical circle to its diameter is 
n, = 2xRsina / 2aR = n Sin &a. 

The largest circle that one can draw on the surface of the sphere is a great 
circle (like the equator) for which a d 2 ,  so that na = 2. 
The sNallept circle is one of radius 0, for which a = 0, so that n;, = n. 
Thus in spherical geometry, & varies between 2 and n. 

White, because you are near the North Pole, since no bear exists around the 
South Pole. But if the question had been 'where are we?', there are an 
infinite number of locations close to the South Pole which fit the bill! 




