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3.1 INTRODUCTION 

In the previous unit we elaborated on important processes involved in mathematical 
thinking, namely, working in a world of abstract objects, specialising and generalising. 
In this unit we focus on the use of these processes and other processes involved in 
'doing mathematics'. 

We start with a section in which we discuss the different thought processes involved in 
exploring mathematical problems. In the next two sections, we carefully observe 
these processes through exploring some mathematical problems in geometry. 
Finally, we look at the use of mathematical puzzles for developing these processes. 

While you are studying Sec. 3.3 and Sec. 3.4, we expect you to focus on the thought 
processes involved because these are the processes that your learners need to develop. 
Therefore, while studying this unit, keep thinking about how you can foster these 
processes in your learners' minds. 

After reading this unit, you should be able to 

explain the mathematical thinking involved in problem-solving, conjecturing 
and other mathematical explorations; 

suggest ways of generating mathematical thinking in your learners; 

design and carry out activities to help your learners investigate the polyhedra 
and tilings; 

create mathematical puzzles that challenge, but not over-challenge, your 
learners. 

.3.2 THE PROCESSES INVOLVED 

Let us start this section with a brief look at what 'doing mathematics' means to most 
children and teachers. The common view is that mathematics is 'done' only in the 
'maths class'. During this class, the children are expected to learn a concept by being 
given the definition and doing a few direct questions based on it. Then they are' 
expected to solve word problems related to the concept. The procedure involved is 
that first the teacher explains 'the way' to solve a particular kind of problem. 
Following this, she gives the children many problems of the same type to solve on 

I 
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exactly the same lihes. So, solving a problem is reduced to listening to the teacher, 
memorising certai solutions and mathematical facts and reproducing them 
appropriately. An algorithm is treated in the same manner. I 
Where is the math matical thinking being developed in the whole process outlined 
above? It is certai ly important to have basic computational skills and definitions, but 

in an algorithm. 

i 
not by rote. It is irhportant for a learner to understand the mathematics involved, even 

To understand any lmathematical concept or process, a child needs to be introduced to 
it through familiar ituations and experiences. In order to improve her understanding 
of the concept, it is important to use the concept on different occasions in as many 
ways as possible. Lh e exposure to a variety of problems related to the concept helps 
her to deepen her hderstanding of the concept. For the child (or for us) this helps to 
interlink the differqnt aspects of a concept, which, again, helps to strengthen 
conceptual underswding. When the child has to think about what to do and how to 
do it, she is forced to examine the concept seriously, and hence extend its meaning for 
her. For those whqse concepts are half-formed or are erroneous, solving different 
problems gives an pportunity to discover the errors and to reach a better 
understanding of t  $ e concept. For example, when helping a child to develop the idea 
of a function, we n ed to give her an opportunity to identify functions from non- 
functions, use func t 'ons in various ways, allow her a chance to use a variety of 
functions, etc. In dhort, concept formation is linked to the opportunities available 
to the learner to t$ink, apply her understanding and use her conceptual 
structures in variqus ways, finding relationships with other concepts. 

While you're thinking about the point just made, try the following exercises. 
I 

El)  Give an 
require them 

exarflple of a mathematics question given to children which does not 
to think mathematically. Also give your reasons for your choice. 

E2) Explain, with examples from your own learning of mathematics, how solving 
problems helps in concept formation. 

While trying these exercises, you must have focussed on the essential characteristics 
of doing mathemati s -it must be an opportunity for the learner to think 
mathematically, ch sing which step to take, based on what she knows and where she 
wants to reach. If s ! e is expected to solve a problem, it should not require her to 
merely reproduce idformation or mechanically apply algorithms. She needs to, 
gradually, be exposed to more and more complex problems built around the concep,t. 
A major part of thisprocess is the ability to build one or more representations of the. 
problem that is be iq  dealt with. We shall consider this, and other aspects in the next 
section. 

I 

3.3 SOLVIYG AND POSING PROBLEMS 

Try and recall the'lapt time you were required to do some mathematics - solve a 
problem based on data given to you, or asked to generalise some mathematical ideas. 
Did you start by making a representation'of the data or of the concepts involved? It 
may have been a mqntal or a visual picture of 'skew lines', or of a large number. 
Once you had this picture, what did you do next? Did you try to relate it to the 
knowledge you alreidy had and search for relevant pieces that could help in solving 
the problem? How 4ifferent is this from the steps your students go through? You may 
be able to answer this while observing the stages you, and your students, go through 
when solving the fol/lowing problem : 



How many different ways are there for seating 8persons at a round table? Exploring Mathematics 

See if your steps are similar to the steps I went through, which are: 

1) I first drew a circle and made 8 points on its circumference. 

2) Looking at this, 1 searched through my memory to think of what I knew 
related to this problem, for instance, the permutations (1, 2, . . ., 8), (2, 3, 
. . ., 8, l), . . ., (8, 1, 2, . .., 7) represent the same seating in this case. 

3) Therefore, for solving the problem, I needed to find the number of distinct 
permutations, keeping Point (2) in mind. 

4) To check my understanding, I tried it for 3 people, instead of 8. f 2  t 
Breaking up the stages of solving the problem is not very easy because many of these 
steps get merged and many stages are repeated again and again. In fact, the stages 
given above are exactly those given by the educationists Davis and Mayer. Fig. 1 

According to them, in order to solve any mathematical problem, we need to go 
through some or all of the following steps sequentially (perhaps many times). 

1. Build,a representation for the known mathematical information. 

2. Use this representation, and search in our memory for knowledge that we 
consider relevant for solving the problem. 

3. Apply the retrieved knowledge to the input data and construct connections 
between them. 

4. Check these constructions to see if they seem to be reasonable and correct 

5. Use technical devices such as procedures or algorithms (or other information 
associated with the knowledge representation in order to 
solve the problem. 

As you can see, our ability to represent a problem situation is essential for solving it. 
In order to solve a problem, Step 2 would require "building a representation of what 
we consider relevant kndwledge". This may be sometirhes so quick that we fail to 
notice it. Children, however, are seen to do it much more often. For instance, 
consider the problem: "How many integers between 100 and 999 consist of distinct 
even digits?'You may see this almost immediately as "a problem of counting". But, 
when a child tries to solve it, there are two separate steps involved. Firstly, she needs 
to build a representation of the input data. Then she needs a representation of 
"possibly relevant knowledge", which would require her to put in some mental effort. 
She may try listing some of the numbers, and then pick out the required ones to 

r construct a numerical representation. Then she may use her earlier knowledge for the 
single-digit case and the 2-digit case to find a pattern. If she finds a pattern, she may 
generalise it to find the answer. 

1 As your learner does more problems in different contexts, these procedures 

1 become a part of her thinking and turn into an instantaneous strategy. However, 
we must remember that the learner needs opportunities and encouragement to tackle 
open-ended problems and problems with many solutions related to the concept. 
The problems can steadily become more challenging. At each stage, she should also 
be encouraged to talk about what she is doing and explain her line of reasoning. 

Let's see the abilities developed in the process, by asking your students to do some 
problem-solving. 



E3) Give {our students problems like the following one to do. 

A company makes 100 computers every month. Its employee union accused 
the company of discriminating against its female employees. The union said 
that &men were not being given the promotions due to them. The following 
table dives the data about the promotions in the company. 

Ifan em loyee who is promoted during these five years is selected at random, 
what is t 1 e probability that the employee is a woman? 1s this data enoughfor 
deciding \whether female employees are discriminated against? 

While thty are working on the problems, talk to them to try and separate out 
the vario$s thought processes they are using in the process. Also note down 
the stage4 you went through while solving the problem. 

~ e 4 r  

19% 

199p 

199b 

1994 

200d 

I alscneeded to G o w  which information, if any, was extra and not rekired. For 
instance, what the bompany produced is irrelevant to the problem. 

No. of women promoted 

5 

6 

10 

8 

8 

When I tried the problem given above, I first tried to understand the situation - what 

The next step was to write down the mathematical equivalent of the given problem : 

No. of men promoted 

15 

16 

8 

10 

10 

I knew, and what 
move from what I 

Total num er of women promoted from 1996 to 2000 = 37 
Total num er of people promoted in this period = 37 + 59 = 96 
To find P( ! ), where A is the event that a woman was promoted. 

1 

I needed to find out. Then 1 needed to think of the path to use to 
knew to what I needed to find out. 

Then I solved this #oblem using the definition of probability of an event, that is, 

So, I concluded that\approxitnately 1 in 3 promotions is likely to be that of a female 
worker. However, probability gives us no indication of whether women workers 
are discriminated This is because we need some more information. For 
instance, we need how many men and women were eligible for promotion in 
this period. 

Should we note dowq the steps involved in solving this problem? 

1. Read the problem carefully to understand what it says -the information and 
assumptions in it, and what is to be found out, proved or examined. 



2. Represent it mathematically, clearly filtering out the irrelevant data in the 
problem. 

3. Gather other relevant information, axioms and earlier proved (or known) 
results. 

4. Look for a path for solving the mathematical equivalent of the problem. 

5 .  Interpret the solution in the problem situation. 

These steps may appear to be different from the stages given by Davis and Mayer. 
But, if you look carefully you'll find some of those stages clubbed in the broader 
stages we have just listed. 

Why don't you do an exercise related to this? 

E4) Give some children a problem to do. After they have solved it, talk to them to 
find out which of the stages above they went through. Note down what they 
articulate. If you can get them to discuss the stages, note down what comes 
out in their discussion. 

Problem-solving is one important part of doing mathematics. An equally important - 
part is what further questions open up in our minds while solving a,problem, that is, 
posing a problem. This requires us to use our abilities to generalise in many ways. 
For example, if I have proved that there are infinitely many primes, I may wonder if 
there are infinitely many primes of the kind 4m+3, where m E N. This process can 
continue for as long as our mathematical maturity and intuition allows us to. And, 
each time we pose a problem and try and solve it, we grow m?thematically. 

Our level of problem-solving and problem-posing reflects our level of mathematical 
thinking. So does our ability to use a variety of representations while dealing with 
problems. 

Being flexible in moving across representati6ns is a sign of competent 
mathematical thinking. Each type of representation brings out specific aspects of a 
concept. Flexibility could mean moving within one type of representation, for 
example, using one diagram with many different parts that highlight different aspects 
of a problem. Flexibility also involves moving between quite different 
representations, for example, between an equation and a graph. Solving multi-stage 
problems may need the use of several representations. 

In fact, we need to help our learners develop such a flexibility. They can have many 
different ways to represent the abstract concepts which they are in the process of 
learning. The representations can be in terms of known symbols, icons or concrete 
objects. Think about the various ways your students use to represent problems while 
trying the following exercise. 

E5) While your students were doing the problem in E4 above, what were the 
various ways of representation they used? 

Let us now gather the implications of what we have just discussed in this section for 
anyone teaching mathematics. A learner uses a variety of representations while 
trying to solve problems, particularly to relate it to the knowledge in her mind. The 
availability of these representations allows her to refer back and forth to her 
knowledge system. Further, if a child is given many different kinds of problems 
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representations and relating the concept to the knowledge base in her mind. 

Throughout the prbcess of problem-solving, the teacher needs to give the student 
several opportunities to explain the process she has followed. This would help her 
consolidate the strategies she has used. Given sufficient opportunity to deal with 
different kinds of problems and to articulate the strategies developed without fear of 
ridicule would help the child to develop more sophisticated problem representations. 
If the child has to learn to solve problems, this development is of great importance. 

You may have noted that the use of procedures, algorithms and shortcuts are only one 
step in solving a mathematir -1 problem. The first four steps where the problem is 
comprehended, represented suitably, related to the knowledge available and checked 
as being reasonable are extremely necessary before choosing an algorithm or 
procedure and applying it. Therefore, we need to give the student many tasks 
requiring her to build her ability to move flexibly across using various modes of 
representation. And, we must not just give her one particular procedure for 
solving a type of problem. 

While a child is solving problems, she also needs to be encouraged to explore further 
generalisations. Here the teacher could be a facilitator, suggesting certain conjectures, 
to start her off. The child should be given many opportunities, maybe prodded several 
times too, to think about and articulate more problems-some could be of the same 
kind, and some copld be of the kind 'What if ... ?'. 

Now f o r m  exercise! 
- 

E6) Give a detailed account of the teaching strategy you would use to develop the 
ability of children of Class 11 for using various representations for dealing 
with sets. 

To get more of an insight into the processes we have discussed in this section, here is 
an opportunity for you to investigate some mathematical areas. 

INVESTIGATING PLATONIC SOLIDS 

In this section we invite you to explore the processes involved in working 
mathematically, through a study of polygons and polyhedra. So, let's start with an 
exercise. 

E7) How many different regular polygons are there? How are these polygons 
related to a circle? Note down other questions that come to your mind while 
you are working on these questions. 

While you were doing E7, what did you notice about the way you deal with 
mathematical problems? Once you have solved it, do you think your understanding of 
'polygon' has improved? In what way? Did you think about other related 
mathematics questions that could be explored? One problem that you may have 
thought of exploring could be : Can what I have found true for 2D be generalised to 
3D? (problem-posing) 

When we go from Zdimensional figures to 3-dimensional objects, the concept of 
regular polygons generalises to regular polyhedra (the plural of polyhedron). 
Regular polyhedra are solids in which all angles and all sides are equal, for example 
a cube. 



Now, while doiug E7 you must have found that there are infinitely many regular 
polygons because there is no limit to the number of sides they can have. So, you may 
expect the same about the regular polyhedra. However, there are only five different 
regular polyhedra possible. These are the tetrahedron, the cube, the octahedron, the 
dodecahedron and the icosahedron (see Fig.2). These are also known as the Platonic 
solids, after the Greek philosopher Plato (see Fig. 3). They have fascinated 
mathematicians from the time of the ancient Greeks. The faces of the tetrahedron (4 
faces, from the Greek word 'tetra', meaning four), the octahedron (8 faces, from 'okto' 
meaning eight) and the icosahedron (20 faces, from 'eikosi' meaning twenty) are all 
equilateral triangles. As you know, the cube has 6 faces, all of which are squares. 
The 12 faces of the dodecahedron ('dodeka' meaning twelve) are regular pentagons. It 
is worth noticing that the faces of all the regular polyhedra are regular polygons. 
(Why ?) 

Tetrahedron Octahedron lcosa hedmn Cube Dodecahedrpn 

Fig. 2: The five regular polyhedra (the hidden edges are indicated by dashed lines) Fig.> : Bust of Plato 
(423-347 BC) 

What we have just dischssed is easy for your students to get interested in. To give 
them a feel for what the five Platonic solids actually look like, there is nothing better 
than having models of these solids for them to play around with. As solid models are 
not easy to come by, it is a good ldea to get your students to make models of these 
solids from paper. With this in mind, in Fig.4 we have given flat diagrams of the five 
regular polyhedra. 

These could be copied on to some stiff paper and cut out along the outer edges. The 
cut-outs can then be folded along the inner lines and the sides pasted with thin strips of 
paper to make three-dimensional models. Those comers of the regular polygons that 
make up the faces of the models and which meet at a common vertex of the 
polyhedron are labelled with the same letter in our figure. 

Now, getting back to exploring mathematics, here is an exercise for you. 

E8) Prove that there can only be 5 regular polyhedra. Also ask your students to 
prove it. The models may come in useful for this. 

How did you go about answering E8? Of course, you know that there are at least 5 
regular polyhedra, the ones made in Fig.2. But, how do you know that these are the 
only ones? That is, how did you go about proving that any regular polyhedron is 
forced to be one of the five you know? Did you try to use anything you already know 
or have observed? For instance, did you notice that at any vertex of a polyhedron 
there cannot be less than three faces? One face is clearly not enough and two 
would only givekise to an edge. 

Next, what do you know about the sum of the angles of all the faces at each vertex? 
Remember that each face has to be a regular polygon. Also, if you 'open up' the 
polyhedron, place all the adjacent faces in a plane, there need to be some gaps between 
thwedges. So, shouldn't the sum of the angles be less than 360°? If the sum were 

Exploring Mathematics 



Encournghg MatbemaUcnl 
Thlnldn.3 

exactly 360°, then all e faces would lie in one plane and there would be no corner of 
a 3D solid. 

A 
A - B I 

I 

Cube 
I 

I 
I 0 3 A 
I 

I 

C 
I 

0 C 

I 

Ch 
- 

I 

I 

#ig. 4: Cut-outs to make models of the five Platonic solids 
I 

Now, given the t w ~  facts we have just noted, can any regular polygon be a face of a 
polyhedron? ~ incd  the sum of the angles of the faces at each vertex of the polyhedron 
has to be less than B6O0, &d since there must be at least three faces at each vertex, the 
angle of a face at tbe vehex must be less than 120". This immediately restricts the 
regular polygons that can form faces of the regular polyhedra to be equilateral 
triangles, squares r regular pentagons (see E9 in Unit 2). Therefore, a regular 
polyhedron can o 3 y have these 3 types of polygons as faces. 

Once you reached h i s  stage, you probably thought about the various possibilities for 
the regular polyhe&a. The simplest case is that of a regular polyhedron whose faces 
are equilateral triNgles. We have already used the fact that the number of faces at 
each vertex must qe more than two. They must also be less than 6,  since each angle of 
the face is equal tq 60". The number of faces at each vertex of a regular polyhedron 
whose faces are equilateral triangles can therefore only be 3 ,4  or 5. These correspond 
to the regular tetr@dron, octahedron and icosahedron, respectively. 



Now consider the case of regular polyhedra whose faces are squares. The number of 
faces at each vertex can only be 3. (Why?) The corresponding solid is, of course, the 
cube. 

I By exactly the same arguments the number of faces at each vertex of a regular 
polyhedron whose faces are regular pentagons can only be 3. The corresponding solid 
is the regular dodecahedron. 

You should check your proof to see that you have not made any logical errors, and 
there are no other possibilities. Once this is done, you have proved that there can only 
be 5 kinds of regular polyhedra. 

Now try these exercises. 

E9) Go back to the discussion on ' proof ' in Unit i (following E10). Then, note 
down the mathematical thought processes and the kinds of statements used in 
the proof above. Under which of the four stages of a proof listed in Unit 2 do 
they come? Are there any other stages or categories in the proof above that 
are not mentioned in Unit 2? 

E10) We list some of the properties of the five regular solids in the table below. 
Ask your students to use the paper models to verify the entries in the table for 
each of the five reeular solids. " 

Table 1: Properties of the regular polyhedra 

I I I I I 

Icosahedron 3 . 20 12 30 5 

Then ask them if they see a relationship between F, V and E, and if so, to find 1 it. 

Let us now explore another area of spatial mathematics. While you are investigating 
it, keep thinking about the same broad questions that you kept in mind in the previous 

I section. 

, 

1 3.5 STUDYING TILINGS 

'Tiling' is the study of shapes that can be placed alongsideeach other to fill space 
comp,letely without leaving any gaps, like the tiles covering your floor. If you look 
around you, you will see a variety of tilings - on floors, on walls, decoration pieces, 
etc. An example is given in Fig.5. 

Exploring Mathematla 
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What are the shapes that are usual'ly used as tiles to fill the 
tilings? In two dimensions, we usually find squares or 
rectangles used as tiles. If a tiling is done by one kind of 

Yig. 5 

regular polygon of the same shape and size, it is called a 
regular tiling. Do you see regular tilings around you? The 
most common kind is the one made by squares. 

What are the other kinds possible? Here is an exercise about 
this now. 

E l  1) Prove that the only regular tilings are those made up of 
the equilateral triangle, the square and the regular I 

hexagon. Further, note down the points you reflect on, 
the questions you ask yourself and the different routes 
you may follow while finding the proof. 

How did you go about trying the exercise above? Did you 
physically take several equilateral triangles, say, and try to cover a 
surface with them? While doing so, did you notice that at any 
intersection in a regular tiling there must always be more than two 
tiles meeting? This concrete example may have also helped you 
realise that the sum of the angles of all the vertices meeting at an 
edge must be 180.  The sum of the vertices of the regular 
polygons meeting at other points will be 360". This means that we 
can only have three equilateral triangles (or two squares) meeting 
at an edge. Also, we can have 6 equilateral triangles, 4 squares or 
3 regular hexagons meeting vertex to vertex. This exhausts all 
possibilities for regular tilings. Therefore, there are only three 
regular tilings, all of which are shown in Fig.6. 

Fig. 6: The regular tilings 

If a mix of non-regblar polygons are used in any tiling, then of course the possibilities 
are endless. The Same is true if a mix of regular polygons of different sizes are used. 
In particular, the plane can be tiled completely by triangles or quadrilaterals of 
arbitrary shape. 

A tessellation is an~ther  name for a tiling, which is used by artists more than 
mathematicians. Tossellations use either a single shape which may or may not be 
regular, or at most a few shapes, to cover the plane. The emphasis is on using shapes 
which look natural like birds, fiqh, horses, people, etc.. Through the following 
activity, you and yaur students can pick up some basic principles involved in creating 
tessellations, and make some of your own tilings. 

Activity 1 (Making tessellations) : You need to start by establishing a regular grid 
on the plane. You can use triangles, squares, rectangles, parallelograms, hexagons, 



etc., to create a grid which covers the whole area you wish to work with. Suppose 
you start with a grid of squares. You can choose as your unit a 3 x 3 square. We 

i know that periodic repetitions of this unit will tile the plane. (Why?) 

L Now. the secret of a tessellation is to remove  arts of this square from one side and 

Exploring Mathematics 

add it in a corresponding position on the oppoiite side of thd square. In this way, 
although the shape of the unit changes, its total area remains. the same. In the process 
you create cuts and wedges that fit into each other. (Why does this happen?) 

1 
I 

So, suppose you,a'emove a small square from the top left-hand comer of the unit figure 
(see Fig. 7(a)) and add it to the top right-hand comer. Similarly, remove another 
small square from the middle of the bottom of the figure and add it to the middle of 
the top. This, then, produces your basic motif shown on the left-hand side of Fig. 
7(b). 

Consider your original grid to be tiled by a set of the basic32 3 squares and replace 
I each suchsquare by the-motif you have just created. This will the 

shqwn on the right of Fig. 7(b). Stretch your imagination a little, and you can consider 
L this to be a tessellation of a horse and rider! 

Fig. 7 : (a) Creating the motif. 
(b) Tesselleting the plane with the motif to get a tessellation of a horse and rider. 

To make a tessellation, we can add and remove any shape from the basic unit we 
choose. For example, starting with the same basic 3 x 3 tile, we can addlremove 
shapes as shown in Fig. 8(a). Then we get a basic motif that gives us the tessellation 
in Fig. 8(b). 

I 

- 
' (a) (b) 

Fig. 8 : (a) A basic motif for a tessellation, (b) The tessellation of horses 

The important thing to remember about creating a motif is 

I i) decide on the grid and the basic unit, 
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unit at the correspbding place on the opposite side to give rise to the new shape. 

This can be done as mdny times as you please. The skill lies in creating a natural 
looking shape at the en'/d. For example, in Fig.9 we show how, starting from a grid of 
parallelograms, you cab proceed step by step to create a tessellation of roosting birds 

I 

Rg. 9 : A tessslletlon of roostlng blrds 

Why don't you try somd exercises now? 

E12) Create at least tho tessellations using the steps we have just discussed. Also 
try out what welhave said in this section with your students. What were their 
reactions? 1 

B13) Ask children oflclasses 9 or 10 to tile a plane with squares and regular 
pentagons, respectively. Note down the discussions that take place amongst 
them during thib activity. What understanding does this give you of their 
mathematical thbught processes? 

I 

The tessellations that wk have considered so far make repeated use of just one basic 
form. This need not be o, We can always take our repeating motif and divide it into i two parts such that eachpart looks like a separate natural shape. Escher, who was an 
acknowledged master, has used many basic shapes to give all kinds of tessellations of 
the plane (see Fig. lo). 

While creating tessellatipns, there is a notion of symmetry that is involved. We shall 
study this notion in detajl in the next unit. 

I 

I 



- - --- 

E14) While solving the problem above, what were the different aspects of 
mathematical thinking you applied? 

E15) Find the operations K and K' and the K digits represented by the letters in 

ABKAB = ACC and FG K'FH = DE 

E16) Try the following problems. Also give your students these problems to do. 
What problem-solving abilities were the childreo using in the process, and 
how did you find out? How different were they from the processes you used 
for solving them? 

i) There is a sequence of 16 numbers which reads the same from left to 
right as well as from right t~ left. Also, the sum of any 7 consecutive 
numbers in the sequence is -1, and the sum of any I 1  consecutive 
terms is +I. Fhd the numbers. 

Exploring Mathematics 

Rrcuun DIVISION or m r  PLANS I (DETAIL). ~ ~ ~ ~ ~ ' W O O D C U T .  9'/1 x 7'/e IN 

Fig. 10 : A tessellation by M.C.Escher 

3.6 WORKING OUT PUZZLES 

If you are given a problem like 12345 - 3249, you are likely to do it in a flash. This 
is because you have acquired the ability to apply a subtraction algorithm. Now, see 
how long you take to do the following subtraction : 

In the problem below, each letter has been assigned one digit from 0 to 9. Find the 
numbers involved in the subtraction 

A B C B  
- E B E B  

E D E B  

How have you gone about finding the digits involved? For instance, you may start 
with the possibility that D = 6, B = 3. Then D-B = B. But then, D and B are 
occumng'again in the 'hundreds' column. And 3 - 3 # 6. So, you would need to try 
another possibility for D and B. In this way, using logical arguments, what solution 
did you get? Note that there may be more than one solution to this problem. 

Try these exercises now. 



Encouraging Mathematical 
Thinking 

ii) Ashrafil was convinced that her key had been hidden by one of her 
friends FAar t i ,  Birla, Kalyan or Megha. Each of these friends 
made a statement about this matter. But only one of these four 
statemebts was true. 

Aarti said, "I didn't take it. " 
I Birla said, "Aarti is lying. " 
, Kalyan said, "Birla is lying. " 
Megha said, "Birla has taken it. " 

Who todd the truth? 

E17) Ask your learners to think of more problems like the ones mentioned above. 
What were the puzzles/problems they came out with? 

The purpose of asking ylou to engage with the problems above was two-fold. Firstly, 
we wanted you to have fun. We also wanted to help you focus on the processes that 
are used for solving them. If you are aware of these abilities being used, then you 
would agree that these are the abilities to be fostered in your learners. One way is to 
give them problems that they would enjoy and that would challenge them a bit. We 
end this unit with leavinlg you to think of various ways in which this can be done. 

But first, let us see what'we have covered ih this unit. 

In this unit we have focussed on the thought processes involved in learning and doing 
mathematics, particularly while solving and creating problems. More specifically, we 
covered the following points. 

1. Exploring any npathematical concept involves considering it in different ways. 
Solving a variety of problems related to this concept helps to build and 
consolidate one'ls understanding of the concept. 

2. We stressed the importance of using a variety of ways for representing a 
problem situation. Developing mathematical maturity requires the learner to, 
among other things, move comfortably from one form of representation to 
another. 

3. We looked at why there are only 5 types of regular polyhedra though there q e  
infinitely many iegular polygons. 

4. We discussed what a tiling is, how many regular tilings there can be and how 
to create tessellations. 

5 .  The point of studying polyhedra and tilings was to consider the processes 
involved in investigating mathematics. 

6.  We looked at interesting non-routine mathematics problems that entertain us 
and keep the brain ticking. The idea was to focus on the directions in which 
the thought processes were moving. 

7. We asked you to work with your .learners on the same lines and analyse their 
reactions. Through this, you would be able to gauge their use and 
understanding of mathematical thought processes. 
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3.8 COMMENTS ON EXERCISES 

El)  While thinking of an example, remember the essence of a problem - it 
should force the learner to think mathematically. This does not mean merely 
retrieving learnt facts or applying algorithms unthinkingly. 

E2) Pick an example of a concept or process you learnt, for example, the concept 
of limit. Note down what kind of exercises, activities and problems helped 
you to, develop your understanding of the concept, and in what way. Does 
'limit' mean more to you than merely applying the algorithm for finding it? 
What visual aid did you need to understand when a limit exists, or otherwise? 
Which practical situations require you to use it? Did finding the answers to 
these questions help you understand this concept better? In what way? 

Similarly, how would solving real-life and other problems related to a concept 
help your students to learn the concept? 

E3) See material following the exercise. 

E4) Pick up a problem that requires plenty of thinking. Do not hassle the children 
when you ask them how they have done the problenl. They may not be very 
clear in remembering or explaining how they solved it. You could also have 
them sit in a group and try to work out a solution together. Their conversation 
while they think about the question would help you to understand the 
processes that they are going through. 

If you discuss the stages with them, be sure to use simple language and small 
logical steps so that they can understand what you are talking about. 

E5) Was their ability to use a variety of representations linked with their ability to 
articulate their thought processes? If so, in what way? What was the 
relationship, if any, between the child's ability to build representations and 
being comfortable with mathematics? Note down the other points that you 
find important. 

E6) Here the focus is on helping children develop their ability to use a variety of 
representations. Accordingly they would need several opportunities to use the 
concept in different situations. Note down the kind of learning opportunities 
you can think of for these children. 

E7) For each n 2 3, we can define a regular n-gon. Draw them and see what 
happens as n becomes larger and larger. As n +=, the n-gon tends to a circle. 

What questions regarding relationships between different mathematical 
objects, pattern finding and generalisation did you think of in the process? 

E8) Think of what a proof involves - first gather together what is known and 
what is assumed. Then see how you can use this to prove your result. The 
discussion following E8 will, of course, lead you there. 

It may be useful, while you think, to try to actually make these polyhedra and 
see the implications of this concrete activity. 

Ask your students to study these models and try and prove the statement. 
Were they able to do it? What did they say about this exercise, while 
discussing amongst themselves as well as with you? Which aspects of 
mathematical thinking were coming out through their remarks? 
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E9) For inst&ce, there have to be 3 or more faces at any vertex of a polyhedron. 
Is this stdement an axiom? Or is it based on assumptions? This statement 
follows lqgically from the definition. 

'Each face has to be a regular polygon' also follows from the definition. 

In this wa), consider all the other steps in the proof. 

E10) The numbtr of faces F, the number of vertices V and the number of edges E 
of a regular polyhedron are connected by Euler's famous formula F + V - 
E = 2 .  ' 

E l  1) One route is given in the discussion following E l  1. Think of other routes. 
Compare the thought processes and steps in the different solutions. In fact, 
think of all the regular tilings. Is the list very long? Try covering a book (any 
surface) wi all these tilings one by one. Did you find a problem with some 
of them? 4 hile doing so, remember that you cannot change a shape of the tile 
in between. 

Is the statement true for tilings which are not regular? 

E13) Divide the cbildren into groups of 6-8, depending upon the space available 
Explain to them what tiling means and let them 

tiling exercises. Do not interfere in their thinking. Observe 
them as they do this activity. 

Andyse the /iscussions for their notions regarding symmetry, angles, vertex, 
etc. What other mathematical thought process can you study in this exercise? 

E14) You probably first assembled various single-digit subtraction facts. Then, 
from them yoiu chose the ones that may fit. Then, moving step by step, you 
would eliminhte the non-possibilities, based on contradictions you yot. 

One solution 4s (A, B, C, D, E) = (2,5,3,0,  1). 

E15) Consider the qrst problem. Note down why the operation can't be 
subtraction. If it is addition, what value of A would give you A in the 
hundreds place in the answer? 

If the operatio* is multiplication, what could A, B and C be? One solution is 
A = 1, B = 2 , o  = 4. Think of others. 

You can try thi second problem similarly. 

E16) i) How arte you going about this one? I started by tqing out the 
sequence 

1, -1, 1, -1, ... 

This mqt the second condition, but not the first or the third. In this 
way, I tSied a few more sequences till I decided to use algebra for 
dealin,g pith this problem. So, using the first condition, my sequence 
became 

a ,b ,c ,d ,e , f ,g ,h ,h ,g , f , e ,d ,c ,b ,a .  

Then I used the second and third conditions to reduce the sequence to 
%,a,c ,a ,a ,a ,c ,a ,a ,c ,a ,a ,a ,c ,a ,a  



Now, can you guess how 1 got a and c? Why don't you try and find 
the sequence? Maybe your solution agrees with mine. An answer I 
got was a = 5 ,  b = -13. Are there any other possibilities? 

What were the mental processes the children went through while 
reaching a solution? 

ii) This problem can be solved in various ways. Of course, each way 
requires the use of mathematical logic. 

So, let me begin by assuming that Aarti is telling the truth. Then 
Birla's statement is false, so that Kalyan's statement is true. But we 
have assumed that both Aarti and Kalyan can't give true statements. 
So, Aarti must be lying. 

Now, let me assume that Birla is telling the truth. See if you find any 
contradictions with this assumption. 

In this way, checking the various possibilities, moving logically step 
by step, I arrived at the solution. Can you see the mathematical 
thinking involved in this problem? 

E17) Did your learners come out with other kinds of conditions to determine a 
sequence? Did they come out with minor generalisations, or radically 
different conditions? Whqt kind of other problems like E16(ii) did they 
create? Did you ask other studznts to solve them to see if the newly posed 
problems made sense? What was the general reaction in the classroom to this 
exercise? 
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