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10.1 INTRODUCTION

Yau have learnt about Fraunhofer diffraction produced by a single dlit aperture. When a
narrow vertical dit isilluminated by a distant point source, the Fraunhofer diffraction
pettern consigts of aseries of spots situated symmetrically about a central spot, dong a
horizontd line. The intensity of the central spot is maximum and it decreases rapidly as
we move away from the central spot. For acircular aperture, the diffraction pattern
consistisdf concentric rings with a bright central disc. Yau might have learnt in your
school physics that diffraction phenomenon limit the ability of optical devicesto form
sharp and distinct images of distinct objects. This restriction at one time hampered the
spectroscopic work particularly for substances whose spectrum consisted of doublets. The
problem could be overcomeby increasing the number of diffracting dlits, that is, by using
adiffraction grating.

In Sec. 102 we havelisted qualitativefeaturesof the observed double dlit diffraction
pattern and compared these with those of a single dlit pattern. For this we will consider the
sourced lightas adit. A distinct feature of doubledlit pattern isthat it consistsof bright
and dark fringes similar to those observed in interference experiments. In Sec. 10.3 we
have derived the equation for the resultant intensity distribution. This mathematica
anaysisis extension of what you have aready learnt for single dit. You will learn thet the
intensity of the central maximum is four times the intensity due to either slit at that point.
However, the interference maximaare diffused (broader). These results are generaised for
the caseof N equally spaced, identica ditsin Sec. 104.

Yau will observe that as the number of dlits increases, interference maxima get narrower
(sharper). For sufficiently large value of N, interference maximabecome narrow lines. For
this reason, diffraction gratingsare an excellent toal in spectral analysis. The occurrence of
diffraction grating effectsin nature is surprisingly common. Do you know that the green on
the neck of a mae malard duck, blue appearanceof wings of Morpho butterfliesand the
beautiful colours of the 'eye pf the peacock’s feathers are also due to diffraction grating
effects?The layered structure in cat’s retinaactsas reflection grating and is responsible for
mettalic green reflection at night.



Objectives

After sudying this unit, you should be gble to

state salient featuresof thedoubledlit diffraction pattern
qudlitatively comparedoubledit and single-dit diffraction patterns
comparethedoubleand N-dit patterns

deriveequation for the intensity distribution for thedoubledlit pattern
extend the double-dit caculation for N equaly spaced dits
describethe use of adiffraction gratingin spectral anaysis, and

solve numerica examples.

10.2 OBSERVING DIFFRACTION PROM TWO

VERTICAL SLITS

Refer to Fig. 10.1. It showsthe experimentd arrangement for obsarving diffraction from
two vertical pardld dit - aperturesin an opague screen. Both dits have the same width b
and height h. The width of the intervening opague space between the two ditsis a
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Fig.10.1: Experimental arrangement for observing diffraction from two identieal vertical slits

Therefore, the distance between two similar points in these gperturesd = b + a. Haveyou
naticed that diffracting aperturesare illuminated by a dit source rather then a point source
of light? We have used this arrangement because this corresponds more nearly to the
actud conditions under which an experiment is performed. That is, the diffraction pattern
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Flg.10.2:'Ray geometry of experimental arrangement shown in Fig. 10.1
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Diffraction

Inawel corrected lensconsider
paralld beamsaf light travdling
ina direction inclined to theaxis
and fallingon different pansof
ihe lens. They ateal brought to
focus on the badk focal planea a
point which islocated by the
beam passing through the optical
centre of thelens.
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from adit sourceis o greater practica importance than from a point source. The ray
geomery of FHg. 101 for observing Fraunhofer diffractionfrom a double dit illuminated
by a dit source is shown in Fig. 10.2. The length of the sourcedlit in the arrangement
should be adjusted to be pardld to the lengths of the diffracting dits.

Supposewe hlock oneof the diffractingdits, say dit 1, shown in Fig. 10.1 and observe
the diffraction pettern on the screen. Obvioudy, you should expect the singledlit
diffraction pattern (due to dlit number 2 which has not been blocked). Next, uncover slit 1
and block the other. Yau should again expect single dit diffraction pattern with exactly the
same intensity distribution. But what may surprise you & the first glance is that bath
diffraction patternsare not only identical, they arelocated at the same postion. Were you
not expecting these diffraction patterns 1o be laterdly displaced? These patterns are not
laterally shifted with respect to one another because of the (well corrected) lens L,. Thisis
true even for N identicdl vertical dits. The diffractedwavefrontsoriginating from any dit
ad travelling along the axis of lens L, are focussed at Py, which forms the peak o the
centrd spot. The diffracted wave ets originating from either dit and moving at an angle 8
ae focussed & Py,

l“'“lll.‘..l||H|I|.I..||||||I|.|
p=0 T 2 - 3

Fig.10.3: Observed double dit diffraction pattern

Now uncover bath the dits so that eech dlit gives its own diffraction pattern. The
sdient features of the resultant diffraction pattern, shown in Fig. 10.3, are summarised
bdow:

(i) Thedouble dit diffraction pattern condstsdf a number of equally spaced fringessmilar
to what isobsarved in interferenceexperiments.

(i) Theintendtiesdf al fringes are not equd . The fringes are the brightest in the central
part of the pattern.

(iii) Aswemove avay an either Sded thecentral fringe, theintensity gradually fdlsoff to zero.

(iv) Thefringesregppear with reduced intengity three or four timesand becometoo faint to
be obsarvable theredfter.

(v) The intensity at the maximum o doubleslit pattern is greater then the intensity of
principal meximumin singledlit pattern.

(vi) Thesingledit diffraction pattern actsas an envelope to the doubledlit pattern.

Wha is respongible for this pattern? How bright are double dlit fringescompared to those

in the Sngle dit pattern? Yau will discover answers to these and other related questionsin
the following section.

10.3 INTENSITY DISTRIBUTION IN DOUBLE SLIT
PATTERN

For caculating the intengity distribution for the arrangement shown in Fg. 10.1it is
sufficient for us lo consider a point source. This is because a point source gives the
intensity didribution dong a section perpendicular to the vertica fringes formed from a




dit source. For deriving the equation for intensity of double dit pattern, we extend the Diffraction Grating s
procedure used for the single dlit (Unit 9). Slit 1 actsas a source of diffracted plane B
wavefronts originating from points A, A,, A,, ... in it. We represent these by a, cos w, i
a, cos (i — ¢ ), ay cos (w1 ~2¢ ), ..., where ¢ is the constant phase difference. The ‘
magnitudeof field £, produced by thisslit at the point P, isgiven by (Eq. 9.6):

E =A [E%E) cos (wr - B) (10.1)
7t b sind

where = "

For every point likeA, in dit 1, we have a corresponding point 8, in dlit 2 at a distanced.
The phase difference between diffracted wavefronts reaching P from A, and B, isgiven by

2 27” @+b)sn o = 2—fdsine (102)
o

Therefore, the diffracted plane wavefronts starting from points8,, B, B,, ... may be
represented as a,, cos (0 — 6), a, cos (wt = 6 - ¢), a, cos (Wt — & — 2 9),... And thefield
E, produced by dlit 2 at Pg isgiven by

B, = A (S—'B‘l@] cos[(ar - uy = Bl (103)

Since the sources A, A, A, ....and By, B,, B,, ... are coherent, the magnitude of resultant
field at P, due to the double-dlitis obtained by the superpositiondf magnitudes of
individud fields:

E=E +E,
= Aﬂ@[cos(mt—B)+cos(mt-B—6)]

P
Using the trigonometric identity cosA + cosB =2 cos(i;—é] cos [A;—B] we can

rewrite the above expression as
E=24 (%EJ cos[(s-p) -~ -g-] cos (—2—]

=24 [%E] cos (w¢ — § ~ g cosy (10.4)

The intengity is proportional to the square of the amplitude. So

I, = 442 [%ﬁ]l cos y (10.5)

For 8=0, both § and y vanish so that at the centre (bright fringe), the intensity is
|, oo =4A2=4],

The expression for intensity of double slit diffraction pattern can be written as

g =4I, [ﬂéﬁ]z cos® y (10.6)

Since the maximum value of |, is4/,, we see that the doubledlit provides four times as,
much intensity in the central maximum as the single dit. This is exactly what you should
have expected since the incident beams are in phase and amplitudes superpose.

If you closely examine Eq.(10.6) you will recognise thet the tam (sin? B)/B? represents the
diffraction pattern produced by a single dit of width b. The cos’y term representsthe

interferencepattern produced by two diffracted beams (of equal intensity) having phase ;
4
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difference 6. That is, the intensity of double dit diffraction pattern is product of the
irradiances observed for the double-dlit interference and single dit diffraction. For a > 4,
the cos? y factor will vary more rapidly than the (sin? B)/B? factor. Then we obtain
Young's interference pattern for dits of very small widths. In general, the product of
sine and cosine factors may be considered as a modulation of the interference pattern by a
single dlit diffraction envelope. We shall discussit in detail a little later.

Before we investigate the positions of maximaand minima, let us understand the physical
phenomenon that takes place. Diffracted light emerging from these two dlits congtitutes
two coherent beams. These interfere leading to the formationof fringes on the screen. But
the intensity of a fringe depends upon the intensities of interfering beams and the phase
difference between them when they reach the point under observation. We know that the
intensities of diffracted beams are controlled by the diffraction conditionsand the direction
of observation. Consequently, the intensities of interferencefringes are not the same at
different pointsof the screen. In particular, in those directions in which the intensitiesof
diffracted beams are large, the constructive interference will lead to brighter fringes
whereasin directions where the two diffracted beams themselves have lower intensities,
even their constructive interferencewill lead to faint fringes.

You should note that we have described the phenomenon as interference between two
diffracted beams. How do we distinguish between the two words interferenceand
diffraction which we have used? When secondary waveletsoriginating from different parts
of the same wavefront arc made to superimpose, we cal it diffraction. Such a case arises
when we consider dl the waveletsarising from the various points situates in the aperture
between the two jaws of a dit. But when two separate beams coming from two different
slits arc superimposed, wecall it interference. It should be clear that in all cases where we
apply the principle of superposition, the wavelets have to be coherent in nature to produce
an observable patiern,

Before you proceed, you may like to answer an SAQ.

SAQ 1

If instead of a monochromatic source of wavelength, we use a source emitting two
wavelenths, A, and A, (< A,), how will the double dit diffraction pattern get influenced?

10.3.1 Positionsof Minima and Maxima

To study the position of minima and maxima in the double slit pattern, we use the
equation

I, =4I, (SI—EEI cos?y

We note that the intensity 7, will be zero when either (sinf / B)? or cos?y is zero. From
Unit 9 you will recall that the diffraction factor (sinf3 / 3)2 will be zero for

B= Eiﬂ@ = {, 2n,3n,...mr (m#0)
or bsn6 = A, 2\, 34, ..., mA (107

This equation specifies the directionsalong which the available intensity of either beam is
zero by virtue d diffraction taking place a each dlit.

The second factor (cos®y.) is an interference teem and will be zero when

_mdsin® _ m 3n n + 1
T T2t To"
or d sinf = % %’i %(n + %Jx (108)

This gives the angles for the intensity to be zero by virtue of destructiveinterference
between two beams. Yau may recall that this is the same as the condition for the



minimum of the interference pattern between two point sources. Egs. (10.7) and (10.8) Diffraction Grating
specify the direction when the intensity is zero.

We cannot obtain the exact postions of the maximaby any simple relation: Thisis
because we have to find the maximum of a function which is product o two terms. But
we can find their approximate pogtions if we assume that (sinf3 / 8) docs not vary
gppreciably over a given region. We are quite justified in meking this goproximation if
the dits are very narrow. Note that we observe the maxima near the centre of the pattern.
Under these conditions, the positions of maxima arc solely dctcrmined by the cos?y factor.
You know that this factor defines maxima for

y =0,n2m..nn

or
dsne = 0,A, 24, ... ik (109)

We know that d sine represents the path diffcrencebetween the corresponding pointsin
the two dits. When this path difference is a whole number of wavelengths, constructive
interferenceoccurs between the two beams. Then we get @ maximum which Ieads to the
formation of aseriesd bright fringes. The central fringe corresponds 10 d sin6 = 0, The
nth fringe (on either side) occur: when d sine = #A. e therefore say that # represonts the
order of interference.

10.3.2 Missing Orders

_Rdsn#®
B A R
Thuswe see thet f and yare not indcpendent. These are connected 10 cach other through
the relation

PR :
In the intendty expression fg = 4/, [M] 00?2y, WC have B = zbanb and vy

Y _ Kdsin8 d_ a+b
B~ mbsin®@ b b (10.10)
Cases of specid interest arise when d isan integral multiple ol' O, sy il is an integer p so
that d = pb. This will happen whmn the opaque portion « is an integral multiple of the
. trangparent part b. The possibilities are: a = b,a=2bor a = 30¢clc. OV that dib = p=2,3,
4, ...in these cases. Under these conditions, the dircctions of diffraction minimum ad
interference maximum will necessarily coincide. To show this, Iet Us assumc that @
direction of diffraction minimum is given by

bsn 6=mh
We will automatically have the interfcrence maximum in this direction when d = pb since
d sin® = (pb) sind = p (b sin)
=pmA=nA

wheren = pm. The possible vauesof p are 2, 3, 4,... and those of s ac 1, 2, 3,.. Thusthe
nth order interference fringesfor which n= pm will have zero intensity since Ihc intensity
of bath beamsis zero by virtue of diffraction condition. Asaresult their constructive
interferenceal so leads to net zero intensity. Thesc arc usudly known as missing or ders.
For example, when p = 2, we will have 2, 4, 6. 8... ordcrs missng [or m valucs of 1, 2, 3,...
etc. Smilarly, when p = 3, we will have3, 6, 9... ordcrs missing and so on.

The specid case when dib = 1 means that the opaguc part a= () ad the two slits cxactly
join one ancther. Then wefind thet al the interference orders arc missing. Actually this
means that we now have a single dit of double width and conscquently we gel a single slit
diffractionpattern (with no interference fringes).

These ideas areillugrated in the following example:
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Example 1

Consider a double dlit arrangement with b = 7.0 x 10-%cm, d = 35 x 10-2cm and

A = 6300A. How many interferenceminima will occur between the diffraction minimaon
ether side of the central maximum? If ascreen is placed at a distance of 5m from the
diffracting gperture, what is the fringe width?

Solution

The firgt diffraction minima on either side of central maximum 0 = 0 will occur when b
sin@ =+ A Tha is, for Sn8 =z A /b = 9x10-3. The interference minima will occur when
Bq. (10.8) is satisfied, i.e. when

dsin 8 = (n +-;—]X

On substituting the given values, we find that

. 1A _ 1 3 _
sm9-(n+ 2]d—-[rz+ 2] 1.8 x 10~ n=0,1,2,..

ie.
Sn8=09 x 103,27 x10-3, 45x10-3,6.3 x 103 and 8.1 x 103

Thus there will be ten minima between the two first order diffraction minima. If 6 is smal
we may write8, = 09 x 10-3 rad, 8, = 2.7 x 10 rad, 6, = 45 x 10" rad,

8 =6.3x 103 rad, 0 = 81 X 103 rad and the angle between successive interference
minima is 1.8 x 103 rad.

Thusthe fringe widthf A6 is
(500cm) x 1.8 x 103 = 0.9 cm

10.3.3 Graphical Representation

We will now plot cos? y, (sin® B/ %), and their product separately to study the doubledlit
pattern. Before doing that we must decide on the relative scale of the abscissasy and
since the shape of the pattern will depend upon this choice. We have already shown that

y /B isequd d/b. Let issay thet in a particular casey/ B = d/b = 3. We must then plot the
proposed curves for Y= 3P. In Fg. 10.4, the curves (a) and (b) are plotted to the same

o

End
8
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scale of 9, Fig. 10.4(a) depictsthe curve for cos?y which gives a set of equidistant maxima Diffractionrating

of equal intcnsity located at B =0, £ &, £ 2m, * 3r, ... In Fig. 10.4(b) we have plotted
(sinB/B)? which givesa maximumat P =0 and minimaa B = t =, £ 2, ... In Fig. 10.4(c) we
have plotted their product. What do you observe? The intensity of the fringesin the resuliant
N2
pattern is not the same as it was in Fig.10.4(a). It is modulated (reduced) by the factor 5”[1_2[3
This means that the central fringe or the zeroth fringeis the brightest and the successive two
fringesare of decreasingintensity until we reach the point § = © where the intendty is z¢ro, i
Thus the third fringe corresponding to cos®y = + 3r fdlsa B == or - n and their product is L
zero. Therefore, thethird fringe on either side of the centrd maxima haes zero intendity and its
locetion at the angle © satisfiessmultaneoudy i
B=zxnandy=%3n ‘

or
bsin= tAanddsinf==%3 %

This third fringe will therefore be missing. We will observe the 4th and 5th fringes. We
can argue in a similar manner that for 6th fringe

B=x2nandy=+6n
which will thereforc have zero intensity and thus be missing.

Yas may now like to answer the following SAQ.

SAQ 2 Spend
2 min

Writc doan the general condition for missing orders in terms of the ratio d/b.

104 FRAUNHQFER PATTERN FROM & IDENTICAL
SLITS

Yau now know that intcrl'crence of waves diffracted by individud dlits determines the
intensity distribution in the double dit pattern. Let us now consider the diffraction pattern
produced by N vertical dlits. We usc the same cxperimental arrangement, as shown in

Fig. 101 for two dlits. For simplicity weassume that (i) cach dit is of width b and hes
the samc length (i) al dlits arc parallel to each other and (iii) the intervening opague
space between any two succeessive dits is the samc, equal to a. Therefore the distance
bctween any two equivalent points in two consecutive slitsisa + b. Let us denote it by d
which we cdl the grating element. As before, we take the source of light to bein the
form of a dit and adjust the Iength of this source dit 10 be vertical and parallet to the
length of N slits. An arrangement consisting of alarge number of parallel-equidistant
narrow rectangular slits of the samc width is caled diffraction grating. As discussed in
the doubledlit pattern, the diffraction pattern will consist of vertica fringes paralld to the
dit source. We now wish to study the intensitv distribution in this pattern. .

ba— f

Fig. 105 Fraunhofer diffraction of a plane wave incident NOMMElly on a muitiple gt gperture 47




Diffraction

In complex notation,

cxp (i6) = cosd * i sin6 i)
D that
Kc F cxp (i8) | = cos8 (i)
It means that
cos(at —B) = Re { e @ -P)
cos (e - 8- 6)

- RC[EA‘((N»[I b} 1

and cos (- B-(N-1) )

= Re [¢ ot —B-N-1 8

cos (or = @) +

cos (@t —fi—- )+ ....=
Re | e"(lﬂl~ﬁ) . ei(lul B-8.

o+ of (0 fA-(N- 1)&5)l (iii)
The RHS can bc writen as
RHS = i@ =M [y + -8+ , 28

4o+ NS0 {iv)
Thisisa geomeiri¢ scrics with
common factor e and can be
summed up easily using the formula

1"
§= 1-7r"
-iN§
v RHS = gifoe-B, 1 =&
i 1-¢79
=gl w-P o

o iNB2 (iN&2 _ -iNEn2
82 | B S

____E:'(uv—ﬂ-(N—l)M)

sin (N 8/2)
sin (6/2)

Hence LHS of (iii) is recovered by
the Real part, which is Eq. (10.12).

48

10.4.1 Imtensity Distribution

To derive an cxpression for the intensity distribution we will follow the procedureand
arguments similar o those used for ihe double dit. Consider a point source of light which
sends out plane waves. That is, a plane wavcfront isincident on the arrangement shown ip
Fig. 10.5. (Speaking in enns of ray-optics, wemay say that light rays fail normally on the
grating.) You may recall that the intensity distribution aong any section perpendicular (o the
verticd fringes formed from aslit source will be the same as obtained from a point soirce.
Physicaly, light cinerging trom N stits afier diffractionat each dit results in N diffracted
beams. Since these arc coherent, interference takes place between them resultingin the
formation of fringes. It isimportant 1o note that diffractioncontrolsthe intensity from each
dit in a given direction.

As bcforc, we consider that the diffracted rays proceed towards P, where 6 is the
angle bctween the diffracied rays and the normal to the grating. Let Ey, E,, E, ..., E),
denote the ficlds produced by the first, the second, the third ... and the #th dlit at the
point Pg. Then wc have

E = Aﬂg—@ cos (ot — B)

E,= ASi—EEcos(wt -B -9

Ly= Aﬁgjcos((m ~ B - 29

Ey = Aim—ﬁcos[mt -B-WN-18]

B

where varioussymbols have the same meaning as in See. 10.3. Also, we have assumed
that the phase changes by equal amount 8 from one dlit to the next.

The ficld Z at P isobtained by sumnming these N terms :

E = A%ﬁcos(mt-B)+A§i%ﬁcos((m—ﬁ—8)

+AL'%E cos (or — B -28) + ...

+ASi—BEcos {0 —B-(N-1)5) (10.11)

You can wrile it as

E=A~S%E[cos(mt - By +cos (or =B -6)+...+cosfex — B - VW - 1]

Yau havc learnt 1o sum the series given here [Unit 2, B ock 1 of the PHE-02 courseon
Oscillations and Waves; Eq. (2.38)]. Wc have reproduced it in the margin. The result is

~_ 4[sinB) sinNy e Ll
E= A( B | siny cos|wt — f§ N 1aé (10.12)
wherey = —g- = %dsine.

The intensity of the resullant pattern is obtained by squaring the amplitude of the resubtant
ficld in this cxpression. Therefore

I = A2 sin® B sin® Ny
o B> sin?y
Let us pause forawhile and ask: What have wc achicved S0 far? We haveobtained an

expression for the resultant intensity of diffraction pauern from A- dlits. Weexpect it to be
true for any number o slits.

(10.13)

For a single dit. Eq. (11.13) reduces to

sin®
B‘Z
which isthe same asEq. (9.7).

ly= A?
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SAQ 3 Spend

2 min
Show that for N = 2, Eq. (10.13) reduces to Eq. (10.6) for the double dlit. "

10.4.2 Postionsdf Principal Maxima

For obtaining the positions of maxima (as wel as minima), let us rc-cxamine Eq. (10.13).
We note that the intensity distribution is a product of two terms; the first tenn (sin? p/p?)
represents the diffraction term produced by a single it whereas the sccond tem
(IM2Ny/sir?y) represents the interference term (for N dits). The interference tam controls
the width o interferencefringes, while the diffractiontcnn governs their intengtics.

Asin case d thedoubledlit, we cannot locate Uc exact positionsof maxima; their
approximate positions can however be obtained by ncglecting the variation of sin? § / 32,
Thisis quite judtified for very narrow dlits. Therefore, for obtaining the postions of
maxima we consider only the interferenceterm.

—_ ..2
We will now show that the maximum value of S;.I—nz)\:? is N2 which occurs for y=0, x,

2z, ..., NX. At the first glance, you will note thet the quoticnt becomes indeterminate at
these values. To overcome such a situation, we compute the firg derivative of the
numerator & well as the denominator separately before inserting the value of argument.
Following this procedure you will reedily obtain

lim sinNy _ lim NoosMNy _ 4 n
Y- AT giny T Yoo cos Y -

sotha fory =0, m, ..... nx We have

. 2
siny
Theexpression for intensity for y* = nx takes the form
Y 12
I, = AZ—SILBZENQ = N2 A “EZB (10.14)
_ mhbsne
wherep = T

We therefore conclude that the positionsdf maxima arc obtained when
Y =0, mn,2n, ..nnor Ny = 0, Nn, 2N~, ..., Nan (10.15)

Physicaly, at thcsc maxima the fields produced by cach of the slits arc in phase and the
resultant field is N times the ficld duc to cach of the slits.

When N is large, the intensity, being proportiond to N2, is very large and we will obtain
intense maxima, if only sin? B / B is not oo small. Such maxima arc known as principal
maxima.

The condition of principa maxima (y = ar) can be rewritten as

ddre, =ni (10.16)
which is identical 1o Eq. (10.9). It implies that
1. The principa maximain N-dit pattern correspond in postion o those of the double dlit.

2. Therddiveintensitiesd diffcrent orders arc modulated by the single dlit diffraction
envclope.

3. ncannot be greater than d/A Sincelsin 61 < 1. Can you imagine the implicationsd this
condition?If you ponder for awhile, you will realise that this condition suggests
existence of only afinite number of principal maxima, which arc designated asthe first,
second, third, ... order of diffraction. Morcovcr, there will be asmany first order

principal maxima as the number of wavelengths in the incident wave, 49
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4. The relation between  and y obtainedfor doubleslit in termsof slit widthand slit
separation does not change. That is, Eq. (10.10) holds for N-ditsas well.

104.3 Minimaand Secondary Maxima

Asdiscussedin locating the positionaf maxima, tobe ableto find the minimain the
diffraction pattern, we locate the minima of the interferenceterm. We note that thenumerator
insin? Ny /Sin? y will becomezero moreoften than the denominator. The numerator becomes
zerofor Ny=0,m, 2x, ..., pr, Oy = % . Therefore, siny = sm%— will not become zero for
all integral valuesd p. It will become zeroonly for specid caseswhenp = 0, N, 2V, ... SO
that y assumesvaues0, «, 21, ... But you will recal that for thesespecial valuesd ¥, both
sin Nyand sn y vanish and theinterferencet@mdefinesthe positionsof principal maxima
aready discussed. However, for al other valuesof p, the numerator vanishesbot not the
denominator. That is, intensity vanisheswhenp, though an integer, is not an integral multiple
of N. Hence, the condition for nhni numisy = pn/N except when p= n.N; n beingthe order.
Thesevalues correspond to

Ny =([m, 2%, ..., N-1) x], [N + Dr, N+ 2, ..., @N-Dx], [N+, ........ ]
it 2t (N-Dr||N+Dr (N+2n (IN-Dn| [N+ n
'Y - N ] N 3 ewy N ’ N ? N 3 evey N 3 N g ese

(10.17)
Thesevaluesaf Y correspond to path difference

dsinp . = | X 2R N-DAT[N+DA N+ (N — 13
min — N, N, ......... ) N » N ) N yiresesenn ) N s

[M , } (10.18)

N
We might write thiscondition in thegenera form that

dsine,m-,, = 'qN_l

whereq takesall theintegral vauesexcept 0, N, 2V, ......
In other words, g =(1,2, ..., (N-1)) ,(NT L, N+ 2,.....2V-1), 2N 1, .....) elC.

You should note that whenq =0, N, 2V, ..., Nn wesee that d sin § becomesequal to0, A, 24,
..., A S0 that dsin § becomesequal to nAwhich represent the principal maximaand are
omittedin the valuesof mimina.

Let us summarise wha you have learnt in thisunit so far.

The condition for principal maxima
v =0,m2%, .., 101

and therefore

Ny = O,N=, 2Nz, .., nNn
We may write y = %sinem,u:nn wheren=0,1,2, ..
In termsof path difference  dsin,,,, = nA

The conditions for minima:
Ny = [, 2R, wey W=1)7; [N+ D), N+ 7, ..., QN =D ],

|lr 2= N-D1H)x
TEN N N ,
[§N+l)n: WADT, e GN=1) 7 QN+
N » N | N 3 e

In terms of pathdifference

A 224 3A (N—l)k][(N+l)k WN+DA }

dsing,,;, = [7\’-’ N’ N N N N

If you writeall possible valuesof vy, you will find that we have (N - 1) positionsaf minima
between any twosuccessiveprincipd maxima. In Eq. (10.17) thefirst square bracket lists



the positionsof (V~1) minima between the central and first principal maximum. Similariy Diffraction Grating

the second square bracket lists the positionsof (¥—-1) minima between the Jirst ad second i
principal maxima. In other words, the first minimum oncither side of the nth principd ;
[

maximum given by dsine,, =nAwill be a dsin6,;, = nA i% . ‘

f
Further, we know that between any two consecutive minima, there hesto be amaxima Such {
maximaare said to besecondary maxima. There will be (N - 2) postionsdf secondary maxima |
between two consecutive principa maxima. Asin single dit diffraction pattern thesecondary |
maximaarc not symmetrical, and theintensity of secondary maximaisvery small. There are |
thereforc of littlc practical importance. Fig. (10.6) showstheintensity pattern for N=8. Here we :
have shown principa maximacorresponding t0 n=0, 1,2, 3 and SX secondary Maxima between
adjacent principa maxima.

RERRERRRNRR A
11n)13n’15n 17n|19n|21n 230 25m ”
187 20m 22nm

v=0|f|!|!|“|
’2n’4n‘6n’ on

NYy= n 3x 51 7= 10 12n 14n

Fig.10.6: Intensity pattern for a diffraction grating d 8 dits

Example 2
Calculate the maximum number of principal maxima that can be formed with a grating
5000 lines per cm for light of wavelength 5000 A.
Solution :
lcm

1 - L - ~4
Graingelementd = 5000 =2x10"%cm |

The condition for the formation of principa maximais d sin@,,,, = #A. Sincelsin | < 1,

we cannot have n greater than % In this specilic case

g —2x10%cm
~ 5000 x 108¢em

Therefore, it will be able to show 1st, 2nd, 3rd and 4th orders o principal maxima

If, on the other hand, we have a grating with 15000 linesper cm

_ (1715000 em™) _ 6.6 x 10 5cm

T 5%x10%m  5x10%cm
which islessthan 2. Such agratingwill show only 1st order spectrumwith A, = 5000 A. Yau
can verify this result while observing grating spectrum in your second level physics
laboratory course.

ey
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10.4.4 Angular Half -width of Principal Maxima

Yau now know that for N dits
1. Theprincipa maximaoccur when = nnand thereforeNy= nNr, i.e. d sin@_,, = nA
2. On either side of the principal maxima, we have @ minimum when Ny=~Nnm £ or

e s et B e
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Diffraction

You may now question asto why is
89 called angular half width? Tt is
quite simple. You know that the
principal maximum extends from
minimum on one side to minimum on
theother side and &9 is half of it. If
we consider the caseof 6 slitsthe
first principa maximum extends from
Ny = SntoNy="Tx
or

You must note that the term half
width of aspectrum line(or a
diffraction curve) has aslightly
different meaning. Thediagram
shown below represents the intensity
vs8curve. Thehaf width givesthe
,llld.!
2
toAC in thediagram. Theangular
half width on the other hand, is equal
to 8D. Obviously you can convince
yourself that A Cis not equal to BD.
Only in the extreme case when the
curveisatriangleis AC = 8D,

width of the curve at . Itisequal

52

wheny = nre i% . In 1erms of path diffcrenceand angle of diffraction, the conditions for
principal maxima and the adjacent minimum are

dsin,,,, = nh (10.19a)

and

1

ni 2 {10.19b)

d sin6,,;, +

The angle between 6, and 8, is called the angular half-width of principal maxima. Let
us denote it by 86. Wc now proceed to calculate thisangle. Wce can calculate

80 (=160, —6,;, | by computing 6,,,, and 6,,,, from these equations. Alternatively, by
choosing 6,,;, > 8,.,,,, WC substitute 6., = 6,,,. + 86 in Eq. (10.19b) to obtain

d sin(9,,,, + 86) = nA +%

or d sinb,,,, cos 69 + d cosB,,,, Sn 86 = nA +$
For 86 — O, cos 68 — 1 and sin 68 — 68. Hence
d sin@,,,, + d cos6,,,, 66 = nA + A

N

Using Eq. (10.19a), wefind that it takes a compact form:

d cos6,,. 80 = %
so that
_ A

which shows that the principd maximum becomessharper as N increases. It isfor this
reason that grating spectrum is so sharp.  You will now learn about it in detail.

10.5 DIFFRACTION GRATING

You have learnt about the dilfraction pattern produced by a system of parallel equidistant
dlits. An arrangement of a large number of equidistant narrow vertical ditsisknown &
diffraction grating. The first gratings were made by Fraunhofer. He stretched finesilver
wireon a frame. Hisgrating had nearly 200 wiresto acentimeter. Afterwardsgratings
were made by ruling fine lincs with adiamond pen on a glass plate. The transparent part
between the lincs acted as a dlit while the ruling itsdf acted effectively as the opaque part.
Rowland was among the first to rule gratings on a metallic surface. He produced plane as
well as concave gratings with nearly 5000 lincs per centimcter. These gratings are difficult
to makeand arc expcnsive but celluloid replicas can be made fairly cheaply and are
commonly used in the physics laboratory for spectral analysis. You can make asimple
coarse grating for demonstration purposes on a plate by drawing equidistant and parallel
scratcheson the photographic emulsion. Now-a-daysit is possibleto produce gratings
holographically. Holographic gratings have greater rulings per cm and are definitely better
than ruled gratings. You will get an opportunity to learn details about holography in
Block-4.

10.5.1 Formation of Spectra

We have seen that for a monochromatic light of wavelength A, the principal maximaare
given by the grating equation

dsind; = n A, n=0,1273,..



With the experimental arrangement described above we will get these principal maxima as
one line in each order. Using another source of light which emitsa longer wavelength A,

we will get a corresponding line in each ordcr at a larger angle 6,

dsing, =n A,

n=01,2,3, ..

Diffraction Grating

However if the same source of light emits bolh the colours corresponding to wavelengths
A, ad A,, we will get two lines smultaneoudly in cach ordcr. These two lineswill ke
seen as two spectrum lines separated from each other, This is because cxccpt the central
maximum (zeroth order). the angles of diffraction for A, and A, arc different in various
other orders. In the central maximum 6 = 0 for dl wavelengths and therelore different
coloursare not scparated from each other. What do you cxpcct 1o obscrve when we have
a white light source? The central image will bc white while al other orders will show
colours and we will see a continuous spectrum,

We note that in the grating equation, if we know d, 8 and #, wc can caculate the
wavelength of light. Since the grating ctement (d) is known for a grating and 8 can be
measured. this arrangement providesa simpleand accuraic rcthod ol ineasuring A. This
is discussed in the following section.

105.2 Observing Grating Spectra

In your second level physics laboratory course, you must have obscrvetl grating spectra
using a simple spcctromcter. This arrangement is depicted in Fig. 10.7. The light from
the given source is focussed (with the help of alcns) on the dit ol the collimator which
sendsout a parallel beam of light.

Tomount a grating for normal
incidence, you should follow he
steps given below :

" Telescope

Source .

1. Take the reading of the mmtablc
) when the telescope arm isin line

\;\, = with the collimator . Let it be ¢.

I/ \ T~ 2, Rotate the telescope 10 position

\ 0190,
3. Mount the gratingon the wm

Fig.10.7: A schematic diagram of experimental arrangement for observing grating spectra tableand rotate the tum table 1ill

you see the image of the dit after

The telescope arm is rotated and brought in linc with the collimator, This ¢nsurcs that the  reflection from the grating. Athis
paralle beam of light falling on the objcctive of Lelcscope is focussed at the crosswires, F’OSI‘.“ZQ‘*‘Z;‘,,"‘““;\O‘( the oS
which is in the focal plane of the cyc picce. The position ol the source of light should be 'J}‘i;':m c?rilcrgintgofmcrnptaf]:le o
adjusted to get the brightest image. Wc mount the diffraction grating on the turntable and collimator.
aj] ust ". o that ﬂe “ghl IS |nC| dent norma“y on UIC gl'{lling. NCX[ WC routte lhc lclcscopc 4. Obviougyturning the graﬁng
amto the left or right to get the first order spectrum in the licld of view. 11 the seurce of through 45 in the proper direction
light is a discharge tube containing sodium, mercury or argon, the spectrum Will consist of ~ Will make the light fall nomally
ascries of spectrum lincs. Each spectrum lincis a diffracted image of the slit, formed by onthe grating surface.
different wavelengths prescnt in the source. To get sharp line images, WC adjust the grating
so that the diffracting dlits are parallel to the collimator slit, This can be done by rotating
the grating in itsown plane.

Light emitted by an atom consists of
To measure the wavelength of cach line, we sct the vertical crosswires at the centre of sharp spectrum lines. Light emitted by
cach speclrum linc and note the position of the telescope in cach case. The difference a m;"::’}:zm;?;;l‘\’/‘;g‘ gi'\?gl;g‘;:gcs
between this position of the tclcscope and the dircet position gives the angle of diffraction g %o rance and is -yl
for cach of the lincs. To reducc error, the position of the telescope is noted on both sides  pand spectrum, whilean incandescent

of the direct position and half of this anglc gives the angle ol diffraction. lamp or similar sources will give a
continuousspectrum, where various

Yau must have observed that coloursmerge into onc another.

1. The spectrum exists on both sides of the direct beam.,
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2. Apart from the first order, the second or even third order spectrum (dependingon the
grating element) are al so present.

3. Different spectrum linesare not equally brightor sharp. Thisdepends on theenergy
levelsand the transitionsof the atom giving the spectrum. Theseconceptsare further
illustrated in the following example.

Example 3

Rowland ruled 14438 lines per inch in hisgrating. (i) Calculate the angles of diffraction
for violet (‘A = 4000 A) and red (A = 8000 A) colours in the first order of spectrum.
(if) What is the largest wavelength which can be seen with thisgratingin the third order?

Solution
() Thegratingelement d = 2_'1%144%?’ 0.0001759cm
= 1.759 X 10 cm

Suppose that the violet colour (A = 4000 A) is diffracted through angle 6,. Recdl the
condition For maximum;

d sinB, = nA

For first ordcr, on substituting the given values, you will get

. _ _4 %X jp0-5cm
S8, = 1759 x 10 cm = 0:2274
Therefore 0, = 13°

Similarly, for red colour ( X = 8000 A), we have

5
§no, = 8 X 10P%cm

= — =04
1759 X 10%cm 04548

S0 that
8 =27°

This means that the entire visible spectrum in the first order extends from nearly 0 = 13°
to 8 = 27°, ie. covers an angle ol about 14°,

(ii) dsin0 =3 A,
According to the given condition, © =90° sothat sSin0 = 1and d= 3,

or

This calculation suggests that in die third order spectrum, the sodium doublet consisting of
5890 A and 5896 k will not bc vishle. Do you recall thisfrom your observationson
spectral analysis using a diffraction grating? If you have so far not opted for the second
level physics, it will bc worthwhile to verify this result.

IT you calculate Sin 8, and sin 0, for 1st, 2nd and 3rd orders, you will find that for

Istorder sn6, = 02274 =0 ~13°
= 14° goread
sne, =04548 =8, =27

r

2ndorder sn@, = 04548 =0, ~27°
= 38" spread

sin 8 0.909%6 = 6, ~65°

3rd order  sin 9,
sin 0

I o

ax

0.6822 = 0, = 43°
{ for A, =5860A |= 47°for4000 A - 5860 A
and 6,,, = 90°

sin 6, > 1 cannot be observed. = entire visible spectrum is not
availablein 3rd ordcr.



Schematically it is shown below for the spectrum on the left side of the centre, A Smilar
spectrum Will be observed on the right side of the centrd order.

Y
Grating
L et m—

13°
27°
o 3rd order s —> 43°
- / 0, / 65°
3]
*-_ / v *
9, 6, 9
Le »le >|
" 2nd order i
order

Fig. 10.8:; Over-all anpular spread of varlous ovders of spectram

Thuswec find that in 1st order red just touches sccond ordcr violel, {This is because we
have selected A = 4000 A and A = 8000 A.) It means that there iS esseatially no
overlapping of first and second ordcr spectra. In third order A, begins at 6 = 43°. If you
caculate wavelength A, o 2nd ordcr present at 8 = 43° you will find that

dsind® =3}, = 24, = A, =3—x%’(—’5 = GOODA.

Therefore A = 6000 A of the 2nd order occurs at the same place as A = 4000 A of third
order. Therefore, from 6000 A to 8000 A will have overlapping colours. This difficulty is
usualy avoided by using suitable colour filters.

We now summarise what you have learnt in this unit.

106 SUMMARY

a Thedoubledlit diffraction pattern consistsof anumber of equally spaced fringes
similar to what is observed in intcrfercnceexperiments. Tlicsc [ringes are the
brightestin the central part of the pattern.

a Indoubledlit pattern fringesreappear three or four times before they become too
faint to observe.

a Thecentra maximum in double dit pattcrn isTour times brighter than that insingle
dit pattern.

a Theintensity of doubledlit diffraction pattcm at an angle 6 isgiven by

in2
Ig = 41, sin” B cos®y

BZ
H 2 b sing . e -
erely =A% B = . andy = Y d'sin®, wherel isslit width and d is distange

between two similar pointsin theseapertures. 1tiscqual toa+ b, where aisthe
width of the intervening opagque spacc between two slits.

a Theintensity of doubledlit diffraction pattcm is product of the irradiances observed
for the doublc dlit interfercnce and single slit diffraction. Physically, it arisesdueLo
interferencebetween two diffracted beams

Diffraction Grating
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e Forditsd very smdl widths, the doubledlit diffraction pattern reducesto Y oung's

interference paucm.

e The conditionsof maximaand minimain doublcdlit (equally spaced) interference

palicm arc:
d sinf= sd (maxima)

d sinb= [n + %]x (minima)

and the condition for minima for diffraction intcnsily is
b sn0= mh (minima)

e The intensity distribution in N-dit diffraction pattern is given by

[ = A2 sin? B sin? Ny
<] BZ Sin2ﬁY

e The conditions for maximaand minimain N-dit pattern are given in the box on

page 50.

e Asthenumber of ditsincreasss, the maximaget narrower and for sufficiently large

values Of N, they become very sharplines. Theangular half-width of principa
maximum &6 isgiven by
A

%= Voot

The principal maximum is sharp for large vaues of N.

10.7 TERMINAL QUESTIONS

1.

If we use a whilelight sourcein the arrangementshown in Fig. 10.2, how will it affect
the fringes?

Can there be principa maximaof zerointensity because of diffraction at each dit? If
yes, discuss.

10.8 SOLUTIONS AND ANSWERS

SAQs

1

Ay will give its diffraction paltcm within which we will get the interference fringes. The
pattern for A, will besmaller if A3 < A4. They will both be superimposedon oneanother

coincidinga 6 = 0.
The general conditionsfor missing ordersin terms of yand p arc:y=4nxor dsin0 = £
nA and B = £ mm or bsin® =+ mh.
Therefore when n = pm (n, m,p arcal intcgers) we get
d
b
The missing ordcrsoccur when d/b isan integer. Whend/b = 1, i.e. the two ditsexactly
join, al the interfcrenccorders aremissng. Physically it meansthat we have asingle

dit of double width and consequently no interference.

= _
m p

For‘—; = 2, socond, fourth, sixth, .. orders will be missing. What do you say abot

d
Z=3?
b3'



3

For N = 2, Eq. (10.13) lakes the form

A2 sin? B sin?2y
Bz  sin?y

A2 sin?B (2siny cosy?
p2 sin2y

4 A? %ﬁ cos? y

which is the required result for the double dlit.

Iy

TQs

1.

As before, each wavelength will giveits interferencefringes. The central fringe for dl
wavelengthswill coincideand hence the central fringe will be white. Fringesof order
n = 1, 2,3,... located on either sideof the central fringe, at different 6 vauesgiven by

dsin 8= n for different wavelengthswill be coloured.

There can be a principal maximawhose intensity iszero because of thediffraction a
each dit. Theseare called missing orders or absent spectra. We know that the
relationship between B and y in termsof slit width and slit separation for N ditsisthe
sameasfor thedoubledit. Therefore, the conditionsfor missing ordersremain
unaltered. And a particular maximum will be absent if it isformed at thesameangleas
the minimum of single dlit diffraction pattern. Thisoccursat an angle which satisfics
Eq, (10.19a) and (10.19b).

Diffraction Grating
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