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10.1 INTRODUCTION 

You have learnt about Fraunhofer diffraction produced by a sinale slit aperture. When a 
n'vrow vertical slit is illuminated by a distant point source, the Fraunhofer diffraction 
pattern consists of a series of spots situated symmetrically about a central spot, along a 
horizontal line. The intensity of the central spot is maximum and it decreases rapidly as 
we move away from the central spot. For a circular aperture, the diffraction pattern 
consists of concentric rings with a bright central disc. You might have learnt in your 
school physics that diffraction phenomenon limit the ability of optical devices to form 
sharp and distinct image? of distinct objects. This restriction at one time hampered the 
spectroscopic work particularly for substances whose spectrum consisted of doublets. The 
problem could be overcome by increasing the number of diffracting slits, that is, by using 
a diffraction grating. 

In Sec. 10.2 we have listed qualitative features of the observed double slit diffraction 
pattern and compared these with those ~f a single slit pattern. For this we will consider the 
source of light as a slit. A distinct feature of double slit pattern is that it consists of bright 
and dark fringes similar to those observed in interference experiments. In Sec. 10.3 we 
have derived the equation for the resultant intensity distribution. This mathematical 
analysis is extension of what you have already learnt for single slit. You will learn that the 

e intensity of the central maximum is four times the intensity due to eithcr slit at that point. 
However, the interference maxima are diffused (broader). These results are generalised for 
the case of N equally spaced, identical slits in Sec. 10.4. 

You will observe that as the number of slits increases, interference maxima get narrower 
(sharper). For sufficiently large value of N, interference maxima become narrow lines. For 
his reason, diffraction gratings are an excellent tool in spectral analysis. The occurrence of 
diffraction grating effects in nature is surprisingly common. Do you know that the green on 
the neck of a male mallard duck, blue appearance of wings of Morpho butterflies and the 
beautiful colours of the 'eye' pf the peacock's feathers are also due to diffraction grating 
effects? The layered structure in cat's retina acts as reflytion grating and is responsible for 
meltalic green reflection at night. 



Objectives 

After studying this unit, you should be able to 

e state salient features of the double slit diffraction pattern 

e qualitatively compare double slit and single-slit diffraction patterns 

e compare the double and N-slit patterns 

e derive equation for the intensity distribution for the double slit pattern 

e extend the double-slit calculation for N equally spaced slits 

e describe the use of a difhaction grating in specual analysis, and 

e solve numerical examples. 

10.2 OBSERVING DIFFRACTION PROM TWO 
VERTICAL SLITS 

Refer to Fig. 10.1. It shows the experimental arrangement for observing diffraction fkom 
two vertical parallel slit - apertures in an opaque screen. Both slits have the same width b 
and height h. The width of the intervening opaque space between the two slits is a. 
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Fig.lO.1: Experlmcntnl arrangement for observing diKkactlon from two identical vertical $Its 

Therefore, the distance between two similar points in these apertures d = b .c a. Have you 
noticed that diffracting apertures are illuminated by a slit source rather than a point source 
of light? We have used this arrangement because this corresponds more nearly to the 
actual conditions under which an experiment is performed. That is, the diffraction pattern 
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plg.lO.Z:'Ray geometry of cxperimenlnl arrangement shown fn Flg. 10.1 



In a well comded lens mnsider 
parallel beams of light travelling 
in a direction inclined to the axis 
and falling on different pans of 
ihe lens. They ate all brought to 
focus on the back focal plane at a 
point which is located by the 
beam passing through the optical 
centre of the lens. 

from a slit source is of greater practical importance than from a point source. The ray 
geometry of Fig. 10.1 for observing Fraunhofer diffraction from a double slit illuminated 
by a slit source is shown in Fig. 10.2. The length of the source slit in the arrangement 
should be adjusted to be parallel to the lengths of the diffracting slits. 

Suppose we block one of the diffracting slits, say slit 1, shown in Fig. 10.1 and observe 
the diffraction pattern on the screen. Obviously, you should expect the single slit 
diffraction pattern (due to slit number 2 which has not been blocked). Next, uncover slit 1 
and block the other. You should again expect single slit diffraction pattern with exactly the 
same intensity dislribution. But what may surprise you at the fmt glance is that both 
diffraction patterns ape not only identical, they are located at the same position. Were you 
not expecting these diffraction patterns to be laterally displaced? These patterns are not 
laterally shifted with respect to one another because of the (well corrected) lens 4. This is 
true even for N identical venical slits. The diffracted wavefronts originating from any slit 
and travelling along the axis of lens L, are focussed at Po, which forms the peak of the 
central spot. The diffracted wavelets originating from either slit and moving at an angle 8 
are focussed at Po. 

Fig.103: Obscrved double silt diffraction pattern 

Now uncover both the slits so that each slit gives its own diffraction pattern. The 
salient features of the resultant diffraction pattern, shown in Fig. 10.3, are summarised 
below: 

(i) The doublc slit diffraction pattern consists of a number of equally spaced fringes similar 
to what is observed in interference experiments. 

(ii) The intensities of all hinges are not equal. The fringes are the brightest in the central 
part of the pattern. 

(iii) As we movc away on either side of the cenaal fringe, the intensity gradually falls off to zero. 

(iv) The fringes reappear with reduced intensity Uuee or four times and become too faint to 
be observable thereafter. 

(v) Thc inlensity at the maximum of double slit pattern is greater than the intensity of 
principal maximum in single slit pattern. 

(vi) The single-slit diffraction pattern acts as an envelope to the double slit pattern. 

What is responsible for this pattern? How bright are double slit fringes compared to those 
in the single slit pattern? You will discover answers to these and other related questions in 
the following section. 

10.3 INTENSITY DISTRIBUTION IN DOUBLE SLIT 
PATTERN 

For calculating the intensity distribution for the arrangement shown in Fig. 10.1 it is 
sufficient for us lo consider a point source. This is because a point source gives the 
intensity dislribution along a section perpendicular to the vertical fringes formed from a 



slit source. For deriving the equation for intensity of double slit pattern, we extend the 
procedure used for the single slit (Unit 9). Slit 1 acts as a source of diffracted phne 
wavefronts originating from points A,, A,, A,, ... in it. We represent these by a, cos wt, 
a, cos (01 - 4 ), a. cos (01,-.24 ), ..., where $ is thc constant phase difference. The 
magnitude of field E,  produced by this slit at the point P, is given by (Eq. 9.6): 

El = .4 (y ) cos (01 - 8) 

n b sine 
where p = - 2. 

For every point like A, in slit 1, we have a corresponding point B ,  in slit 2 at a distance d. 
The phase difference between diffracted wavehonts reaching P, from A, and B ,  is given by 

27t 2~ 6 = - (a + b) sin 9 = - d sin 8 2. h (10.2) 
6 

Therefore, the diffracted plane wavefronts starting from points B,, B,, B,, ... may be 
represented as a. cos (at  - 6), a,  cos (wt - 6 - $), uo cos (01 - 6 - 2 $), ... And the field 
E, produced by slit 2 at Pe is given by 

E2 = A E@ cos [(at - , - ,I 
( 8  1 

Since h e  sources A,, A,, A,, .... and B , ,  B,, B,, ... are coherent, the magnitude of resultant 
field at P, due to the double-slit is obmiried by thc superposition of magnitudcs of 
individual fields: 

slnp 
= A  P 

[COS ( ~ t  - p) + cos (a t  - p - 6 )] 

Using the trigonomerric identity cos A + cos B = 2 cos - B, cos (71, we can 

rewrite the above expression as 

E = 24 (y) cos [(s - P) - :] cos (t) 
= 24 cos (, - , - , cosy 

l a )  
6 rc where y = - = - d sin 8. 
2 1  

The intensity is proportional to the square of the amplitude. So 

For 8 = 0, both and y vanish so that at the centre (bright fringe), the intensity is 

I ,  _, = 4A2 = 41, 

The expression for intensity of double slit diffraction pattern can be written as 

Since the maximum value of I, is 410, we see that the double slit provides four times as. 
much intensity in the central maximum as the single slit. This is exactly what you should 
have expected since the incident beams are in phase and amplitudes superpose. 

Dlffradlon Grating 

If you'~losely examine Eq(10.6) you will recognise that the term (sin2 P)/P2 represents the 
diffraction pattern produced by a single slit of width b. The cos2 y term represents the 
interference pattern produced by two diffracted beams (of equal intensity) having phase 



Diffraction difference 6. That is, the intensity of double slit diffraction pattern is product of the 
irradianccs observed for the double-slit interference and single slit diffraction. For a > 6, 
the cos2 y factor will vary more rapidly than the (sin2 P)/PZ factor. Then we obtain 
Young's interference pattern for slits of very small widths. In general, the product of 
sine and cosine factors may be considered as a modulation of the interference pattern by a 
single slit diffraction envelope. We shall discuss it in detail a little later. 

Before we investigate the positions of maxima and minima, let us understand the phisical 
phenomenon that takes place. Diffracted light emerging from these two slits constitutes 
two coherent beams. These interfere leading to the formation of fringes on the screen. But 
the intensity of a fringe depends upon the intensities of interfering beams and the phase 
difference between them when they reach the point under observation. We know that the 
intensitics of diffracted beams are controlled by the diffraction conditions and the direction 
of observation. Consequently, the intensities of interference fringes are not the same at 
different points of the screen. In particular, in those directions in which the intensities of 
diffracted beams are large, the constructive interference will lead to brighter fringes 
whereas in directions whtre the two diffracted beams themselves have lower intensities, 
even thcir conslructivc interference will lead to faint fringes. 

You should nolc that we havc described the phenomenon as interference between two 
diffracted beams. How do we distinguish between the two words interference and 
diffraction which we have used? When secondary wavelets originating from different parts 
of thc same wavcrront arc made to superimpose, we call it diffraction. Such a case arises 
whcn we considcr all thc wavelets arising from the various points situated in the aperture 
between thc LWO jaws of a slit. But when two separate beams coming from two different 
slits arc superimposed, we call it interference. It should be clear that in all cases where we 
apply thc principle of superposition, h e  wavelets have to be coherent in nature to produce 
an observable paucrn. 

Bcfore you proceed, you may like to answer an SAQ. 

Spend SAQ 1 

rnin If inslead of a monochromatic source of wavelength, we use a source emitting two 
wavelenlhs, h, and & (< h,), how will the double slit diffraction pattern get influenced? 

10.3.1 Positions of Minima and Maxima 

To study the position of minima and maxima in the double slit pattern, we use the 
equation 

We note that the intensity I, will be zero when either (sin(3 / P)2 or cosZ is zero. From 
Unit 9 you will recall that the diffraction factor (sinp / P)2 will be zero for 

or b sin 0 = h. 2h, 3?,, ..., mh (10.7) 

This equalion specifies the directions along which the available intensity of either beam is 
zero by virtue of diffraction taking place at each slit. 

The second factor (cos2y.) is an interference term and will be zero when 

C 
This gives the angles for the intensity to be zero by virtue of destructive interference 
between two beams. You may recall that this is the same as the condition for the 



minimum of the interference pattern between two point sources. Eqs. (10.7) and (10.8) 
specify the direction when the intensity is zero. 

Dlffractlon Grating 

We cannot obtain the exact positions of the maxima by any simplc rclntion. This is 
because we have to find the maximum of a function which is product of two terms. But 
we can find their approximate positions if we assume hat (sinp / P) docs not vary 
appreciably over a given region. We are quite justified in making this approximation if 
the slits are very narrow. Note that we observe Ihc maxima nwr Ihc ccnwc of the pattern. 
Under these conditions, the positions of maxima arc solcly dctcrmincd by thc cos2y factor. 
You know that this factor defines maxima for 

d sin 8 = 0, h, 2h, ..., nh (10.9) 

We know that d sine represents thc path diffcrcnce bclwccn 1hc corresponding points in 
the two slits. When this path difference is a whole number of wavclcnglhs, cons~uctive 
interference occurs between the two beams. Thcn wc gcl a maximum which lcads to the 
formation of a series of bright fringes. The ccnlral liingc corrcsponds LO d sin0 = 0. The 
nth fringe (on either side) occur: whcn d sine = nh. Wc Lhcrcrorc say ~ h n l  tr rcprcscnts the 

. order of interference. 

10.3.2 Missing Orders 

IT b sin 8 
In the intensity expression J ,  = 4J0 

R d sin 8 (YJ cos2 y , wc 11avc v = - mcl y = - 
h  h  

Thus we see that P and yare not indcpcndcnt. Thcsc nrc corincclcd lo cach ohcr through 
the relation 

Cases of special interest arise when d is an inlcgral mul~iplc ol' 0, say il is iln intcgcr p so 
that d = pb. This will happen whcn Lhc opaquc portion (1 is an intcgral mulliplc or lhc 

. transparent part b. The possibilities are: a = h, a = 21) or (1 = 30 ctc. so 1hol dlb = p = 2 ,  3, 
4 ,  ,.. in Lhese cases. Under these conditions, thc directions ol'dil'l'roction mi~~imum and 
interference maximum will necessarily coincide. To show his, ICL us assume thnl a 
direction of diffraction minimum is givcn by 

b sin 8 = mh 

We will automatically have the interfcrcncc maximum in lhis tlircction wlncn d = pb since 

d sine = (ph) sine = p (b sin0) 

where n = pm. The possible values of p are 2 , 3 , 4 ,  ... iund Ihosc ol ' t~  arc I,?, 3, ... Thus thc 
nth order interference fringes for which n = ptn will li:~vc zcro inlcnsily sincc lhc inlcnsity 
of both beams is zero by virtue of diffraction condilion. As a result lhcir cornslructivc 
interference also leads to net zero intensity. Thcsc arc usually known ns missing orders. 
For example, when p = 2, we will have 2 , 4 , 6 , 8  ... ordcrs missing Ib m valucs or 1,2, 3 ,... 
etc. Similarly, when p = 3, we will have 3 , 6 ,  9... ordcrs missing iuvl so on. 

The special case when dlb = 1 means that the opaquc part a = 0 and thc two sli1.5 cxactly 
join one another. Then we find that all thc intcrrcrcncc ordcrs arc rnissir~g. Aclually [his 
means that we now have a single slit of doublc widlh and conscquailly wc gcl a singlc slit 
diffraction pattern (with no inkrfcrence fringes). 

Thcx idcas are illustrated in the following examplc. 



Example 1 

Consider a double slit arrangement with b = 7.0 x 10-3cm, d = 3.5 x 1e2crn and 
7c = 6300A. How many interference minima will occur between the diffraction minima on 
either side of the central maximum? If a screen is placed at a distance of 5m from the 
diffracting aperture, what is the fringe width? 

Solution 

The first diffraction minima on either side of central maximum 0 = 0 will occur when b 
sin0 = + h .That is, for sin8 = +_ h / b  = 9 ~ 1 0 - ~ .  The interference minima will occur when 
Eq. (10.8) is satisfied, i.e. when 

On substituting the given values, we find that 

sin 8 = 0.9 x 2.7 xIO-~,  4.5 xl0". 6.3 x and 8.1 x 10" 

Thus there will be ten minima between the two fust order diffraction minima. If 8 is small 
we may write 8, = 0.9 x 10" rad, O2 = 2.7 x 10 -3 rad, 83 = 4.5 x 10" rad, 
8, = 6.3 x 10" rad, 0, = 8.1 x rad and the angle between successive interference 
minima is 1.8 x l o 5  rad. 

Thus the fringe widlh f A0 is 

(500 cm) x 1.8 x 10 -3 = 0-9 cm 

10.3.3 Graphical Represen tation 

We will now plo~ cos2 y , (sin2 P/ P3, and their product separately to study the double slit 
pattern. Before doing that we must decide on the relative scale of the abscissas y and P 
since the shape of the pattern will depend upon this choice. We have already shown that 
y /p is equal dlb. Let us say that in a particular case y/ P = dl6 = 3. We must then plot the 
proposed curves for Y = 3P. In Fig. 10.4, the curves (a) and (b) are plotted to the same 

46 1:ie. 10.4: lntensitv curves for dw~hle dlt. Wc have takcn !n = 330 



scale of 8. Fig. 10.4(a) depicts thc curvc for cosy which gives a sct of uluidistant maxima 
of equal intcnsity located at P = 0, + x, + 2n, + 3n, ... In Fig. 10.4(b) we have ploltcd 
(sinp/P)2 which gives a maximum at = 0 and minima at P = + n, + 2n, ... In Fig. 10.4(c) wc 
have plotted heir product. ,mat  do you observe? The intensity of thc fringes in h c  resultant 

Diffraction Grating 

sin2 p 
pattern is not the same as it was in Fig.lOA(a). It is modukled (reduced) by h c  factor - o2 
This mcans that he  central fringc or the zeroth fringe is he  brightest and the successive iwo 
fringes are of decreasing intensity until we reach the point P = n wherc the intensity is zero. 
Thus the third fringe corresponding to cos2y = rt 3n falls at P = n or - n and their product is 
zero. Therefore, the third hinge on either side of the central maxima has zero intensity and its 
location at he  angle 9 satisfies simultaneously 

p = +n:andy=rt3x 

This third fringe will therefore be missing. We will observe the 4th and 5th fringes. We 
can arguc in a similar manncr that for 6th fringe 

which will thcreforc havc zcro intensity and thus bc missing. 

You may now like to answcr the following SAQ. 

SAQ 2 Spend 

2 min 
Writc clown thc gcneral condition for missing ordcrs in tcrms of thc ratio dlh. 

- 

10.4 FRAUNHQFER PATTERN FROM N IDENTICAL 
SLITS 

You now know that intcrl'crcncc of wavcs diffracted by individual slits determines Lhc 
intcllsily distribution in thc doublc slit pattcm. Let us now consider the tiiffrdction pattern 
produccd by N vcrtical slits. Wc usc thc same cxpcrimcntal arrangement, as shown in 
Fig. 10.1 for two slits. For simplicity wc"assume that (i) cach slit is of width b and has 
the samc length (ii) all slits arc parailcl to cach othcr and (iii) the intervening opaque 
s p i e  bctwccn any two successive slits is the samc, equal to a. Therefore the distance 
bctwccn any two equivalent points in two consecutive slits is a + b. Let us denote it by d 
which wc call thc grating element. As before, we take Lhe source of light to be in the 
form of a slit and adjust thc lcngth of this source slit to bc verlical and parallcl to the 
lcngh of N s l i ~ ~ .  An arrangcment consisting of a largc number of parallel-equidistant 
narrow rectangular slits of the samc width is called diffraction grating. As discussed in 
the double slit pattern, the diffraction pattcrn will consist of vertical fringes parallel to Lhe 
slit sourcc. Wc now wish to study thc intensitv distribution in this pattern. 

8ig.  10.5: Praunhofer dlffrnctlon of a plan0 wauc incldent normally on a multlplc slit aperture 



10.4.1 Pwteaasity Distribution 

In complex notarion. 

cxp (i8) = cos8 + i sin6 0) 
so h a t  

Kc ( cxp (i8) I = msH (ii) 

To dcrivc an cxprcssion for lhc inlcnsily disuibution we will follow the procedure and 
argurncnts similar lo lhosc uscd Tor Ole double slit. Considcr a point source of light which 
scnds out planc waves. Thal is, a planc wavcfront is incident on the arrangement shown h 
Fig. 10.5. (Speaking in lcr111s ol'ray-o])lics, we may say that light rays Fdalil normally on the 
grating.) You lnay rccall dial ~ h c  irrlcrlsity disuibution along any section pcrpcndicular U, me 
vertical fringcs forlncd Trom a slit sourcc will bc L%lc same as obtained from a point sokce. 
Physically, ligtir clricging from N slits aficr diffraction at each slit resulls in N diffracted 
barns. Sincc lhcsc arc cohcrc~il, intcrfcrcnce ltlkes place between them resulting in h e  
formalion of liingcs. I1 is imporl.\nl w note that diffraction controls thc intensity from each 
slit in a givcn direction. 
As bcforc, wc considor hat llic diffracted rays proceed towards Po, whcre 0 is the 
anglc bctwccn tlic diffractct! rays and lhc normal to the grating. Let El ,  E2, E3 ..., EN 
dcnotc thc ficlds produced by tlic first,  he second, the third ... and the r'!th slit at the 
point P O .  Then wc havc 

cos (01 - p - 6) 

:. cos (or - p) + whcrc various sylrbols Iluvc tl~c same nlwning as in Scc. 10.3. Also, wc llavc assumed 

cos (01 - 11 - 6) + .... = that hc phasc changcs by cclual arnount 6 from one slit to ~ h c  ncxt. . . 
I<c ei (w-  6) + ei(~u 6-61 + 

+ci( i~ P-(N-I)s)  Thc I'icld E al P, is ol~~~~inct l  by sulnn~ing hcsc N tcms : ... I (iii) 
'I'hc KIIS can bc wril~cn as 
K)[S = ei(w - 11) 1 + -is + -xi 

B = A 2!!-k! cos ((IN - p) + A a cos (a1 - - 8) D B 
+ .., + e-i(N-U6 I (iv) sill fi +A-- cos(u1-p-26)+ ... 

This is il gcomctri~ scrics wilh 
common factor e-"and can bc 

P 
sununed up easily using Lhc formula + A W c 0 s  l ~ l - p - ( N - 1 ) 8 ]  P (10.11) 

1 - r n  
s=- .  

I - r '  Yo'u can wrilc il as 1 - ,-iN6 . RyS =eifw-PJx . . 
1 - e-i6 sm 3 

- ,i (w- P) - C =  ~ l l r n s ( w r  - + cos (or - p - 6) +...+ cos[or - p - (N - 1)6]1 B 
You havc Icwnl lo sum thc scrics given hcre [Unit 2, Block 1 of tllc PHE-02 course on 
(ascillations and Wavcs; Eq. (2.38)]. Wc have reproduced it in the margin. The result is 

sin (N 612) 
sin (6/2) 

The inlcnsity of thc rcsulhnl pnltcrn is obtained by squaring the amplitude of thc resultant 
ficld in this cxprcssion. ThcrcTorc 

Let us pausc for a whilc and ask: Whal have wc achicvcd so far? We have obtained an 
expression for tlic rcsullltnt intensity of diffracuon paltcm from N- slits. We expect it to be 
true for any numbcr of sliLs. 

Forasinglc slit. Eq. (1 1.13) rcduccs to 

which is thc smc as Eq. (9.7 ). 



SAQ 3 Spend 
2 rnin 

Show that for N = 2, Eq. (10.13) reduces to Eq. (10.6) for the double slit. 

10.4.2 Positions of Principal Maxima 
For obtaining the positions of m ~ ~ i m a  (as well as minima), lct us rc-cxaminc Eq. (10.13). 
We note that the intensity distribution is a product of two tcnns; ~lrc rust tcnn (sin2 plp2) 
represents the diffraction term produced by a single slit whcrcas hc scconrl term 
(sin2 N y / sin2 y ) represents the interference term (for N slits). The intcrfcrcnce term controls 
the width of interference fringes, while the diffraction tcnn governs thcir intcnsitics. 

As in case of the double slit, we cannot locate Urc exact positions of maxima; thcir 
approximate positions can however be obtained by ncglccting the variation of sin2 P / P2. 
This is quite justified for very narrow slits. Thcrebre, for oblair~ing thc positions of 
maxima we consider only the interference term. 

sin2 N we will now show that the maximum valuc of - is IV which occurs for y = 0, n. 
sin2 y 

2n, ..., nx. At the first glance, you will note that thc iuoticnt bccomes indc~cnninate at 
these values. To overcome such a situation, wc colnputc thc first dcrivativc of the 
numerator as well as the denominalor separately bclbre iliscrling lhc villuc of argument. 
Following this procedure you will readily obhin 

lirn sinN y - lim N cos Ny - = r tN 
Y -P nn sin y Y + fin COSY 

so that for y = 0, x, ..... nn we have 

( = .. 
I 

The expression for intensity for y' = nn lakes thc Sorm 

.rc b sine where p = --- 
h . 

We therefore conclude that the positions of maxima urc obuincd whcn 

Physically, at thcsc maxima thc ficlds produccd by cxh  ol' drc sli~s arc in phase and the 
resultant field is N timcs thc ficld duc to cach of thc slits. 

Whcn N is large, the intensity, bcing proportional to N2, is vcry k~rgc i11ic1 wc will obtain 
intense maxima, if only sin2 P / P2 is not loo s~ni~ll. Such n1;lsinln arc k~lown as principal 
maxima. 

Thc condition of principal maxima (y = nx) call bc rcwrittc~l 11s 

d sine,, = nh (10.16) 

which is idcntical to Eq. (10.9). It implies thiit 

1. Thc principal maxima in N-slit pattcm corrcspond in position to thosc ol' Urc doublc slit. 

2. The relative intensities of diffcrent ordcrs arc modulatd by tllc singlc slit diffraction 
envclopc. 

3. n cannot bc grcatcr than d/A since lsin 81 ,< 1. Ciin you imaginc thc implications of this 
condition? If you pondcr for a while, you will rcalisc tlri~t Ulis contlition suggc:csts 
cxistcncc of only a finitc numbcr of principal ninxima, wl~iclr arc dcsignatcd as thc rust, 
second, third, ... order of diffraclion. Morcovcr, thcrc will Ix: as many firs1 ordcr 
principal maxima as thc numbcr of wavclcnglhs in h c  incidclrt wavc. 

Dlfhction Grating 



4. The relation between P and y obtained for double slit in terms of slit width and slit 
separation does not change. That is, Eq. (10.10) ho!ds for N-slits as well. 

10.4.3 Minima and Secondary Maxima 
As discussed in locating the position of maxima, to be able to find the minima in the 
diffraction pattern, we locate the minima of the interference term. We note that the numerator 
in sin2 Ny /sin2 y will become zero more often than the denominator. The numerator becomes 

zero for Ny= 0, n, 27c. .... p, or y == . Therefore, sin y = sinm will not become zero for 
N N 

all integral values of p. It will become zero only for special cases whenp = 0, N, 2N, ... so 
...... that y assumes values 0, x, ~ Y C ,  But you will recall that for these special values of y, both 

sin Ny and sin y vanish and the interference term defines the positions of principal maxima 
already discussed. However, for all other values of p, the numerator vanishes bot not the 
denominator. That is, intensity vanishes whenp, though an integer, is not an integral multipIe 
of N. Hence, the condition for minimum is y = p n/N except when p = n N ;  n being the order. 
These values correspond to 
Ny = [x, Zx, ....I (N- 1) zc], [(N t l)x, (N + 2 ) ~ ,  ........ (2N-l)zc], [(;?N+l)x, ........ 1 

These values of y correspond to path difference 

We might write this condition in the general form that 
L -1 

d sine, = !@ 
N 

where q takes all the integral values except 0, N, 2N, ...... 
..... In other words, q = (1,2, ......, (N-1)) , (N + 1, N + 2, 2N-I), (2N + 1, .....) etc. 

You should note that when q = 0, N, 2N, ..... Nn we see that d sin 0 becomes equal to 0, X, 2X, 
.... nh so that d sin 0 becomes equal todwhich represent the principal maxima and are 
omitted in the values of mimina. 
Let us summarise what you have learnt in this unit so far. - 

The condition for principal maxima: 
y = 0,n,2x ,..., nn 

and therefore 
Ny = 0, Nn, 2Nn, ..., nNn 

We may write mi y = - ~ i n 0 ~ = n ~ w h e r e n = O ,  1 ' 2  .... 
h 

In terms of path difference d sine, = nh 
The conditions for minima: 

...... = ....., Ny [n, 2 ~ ,  (N- 1) n]; [(N+ 1) x, (N+2) x, ......, ( 2 N -  l ) ~ ] ,  

rc 271: 
N 

....... 
N N ' """' N '""' 

In terms of path difference 

N I . . * -  .... I ,  
If you write all possiblc values of y, you will find that we have (N - 1) positions of minima 
between any two successive principal maxima. In Eq. (10.17) the first square bracket lists 



the positions oi(N-1) minima betwccn thc central and first principal maximum. Simi1;uly 
the second square brackct lists the positions of (N-1) minima bctwccn h c  lirst and s ~ o n d  
principal maxima. In olher words, thc first minimum oncithcr sidc of thc nth principal 

h maximum givcn by d sine,,, = nlwill bc at d sinemi, = n h  -+_ - . 
N 

Furthcr, we know that between any two consccutivc minima, Lhcrc has to bc a maxima Such 
maxima arc said to be secondary maxima. Thcrc will bc (N - 2) positions of secondary maxima 
bctwcen two consecutive principal maxima. As in singlc slit diffraction pattern the swonc1at-y 
maxima arc not symmeuical, and the intcnsity of secondary maxima is vcry small. Thcre are 
lhereforc of liUlc practical imporlance. Fig. (10.6) shows the intensity pattern for N=8. Here we 
havc shown principal maxima comrponding to n=O, 1,2,3 and six secondary maxima between 
adjacent principal maxima. 

1 2n 1 4n 1 6'n I 9ir 1 l l n  )13n 115n 17n 19n 21n 23n 25n 

NY= n 3n 5n 7n 10n 12n 14n 
I l l  

18n 20n 22n 

Fig.10.6: lntcnslty pattern for a dlfRactlon gallng of 8 slits. 

Example 2 

Calculsrtc thc maximum numbcr of principal maxima that can be formed with a grating 
50W lines pcr cm for light of wavelength 5000 A. 
Solution : 

I cm Grating element d = - - 
5000 

- 2 x  10-"cm 

Thc condition for the formation of principal maxima is d sine,, = nh. Since Isin0 I < 1, 
d we cannot have n greater than -. In this specific case 
?b 

Therefore, it will be able to show Ist, 2nd, 3rd and 4th orders of principal maxima. 

If, on the other hand, wc have a grating with 15000 lines per cm 

which is less than 2. Such a grating will show only 1st order spectrum with X = 5000 A. You 
can verify this result while observing grating s p e c m  in your second level physics 
laboratory course. 

10.4.4 Angular Half -width of Principal Maxima 
You now know that for N slits 
1. The principal maxima occur when y = nlr and therefore Ny= nNz, i.e. d sine,, = nk 
2. On either side of the principal maxima, we have a minimum when Ny = Nnk f rc or 

Dilfraction Grating 



You may now question as to why is 
68 called angular half width? It is 
quitc simple. You know that the 
principal maximum exrends from 
minimum on one side to minimum on 
the other side and 68 is half of it. If 
we consider the case of 6 slits the 
first principal maximum extends from 

Ny = 5nto Ny= 7x 

or 
5h 7L 

d sine,, = - 
6 

You must note that the term half 
width of a speutum line (or a 
diffrauion curve) has a slightly 
diflerent meaning. The diagram 
shown below represents the intensity 
vs 8 curve. The half width gives the 

width of  the curve at *. It is equal 

t o  AC in the diagram. The angular 
half width on the other hand, is equal 
to BD. Obviously you can convince 
yourself that A C  is not equal to BD. 
Only in the extreme case whcn the 
curve is a triangle ia AC = BD. 

7t when y = nx k - . In terms OF palh diffcrcnce and angle of diffraction, the conditions for 
N 

principal maxima and the adjaccnl minimun~ are 

d sinQmz = nh (10.19a) 

and 

The angle bctwccn Om,, and C),, is callcd thc angular half-width of principal maxima. Let 
us dcnotc it by 68. Wc rlow procccd to calculatc this angle. Wc can calculate 
60 (= I 0- -€I,, I) by compuling 8mx and 0," from these equations. Alternatively, by 
choosing 0, > Ow, wc substilulc 0,, = 0- + 68 in Eq. (10.19b) to obtain 

or 3t 
d sine,, cos 88 + d COS~,, sin 68 = nh + - N 

For 60 + 0, cos 68 -, 1 and sin 68 + 68. Hence 

Using Eq. (10.19a), we find Lhnt il k+cs a compact form: 

so Lhat 

60 = h. 
N d cos 8- 

which shows that ~ h c  principal maximum becomes sharpcr as N increases. It is for this 
reason ha1 grating spccuum is so sharp. You will now learn about it in detail. 

- - - - -- - 

10.5 DIFFRACTION GRATING 

You have lcarnt about h e  difCraclion pattcrn produced by a system of parallel equidistant 
slits. An arrangcmcnt or a luge numbcr of equidistant narrow vertical slits is known as 
diffraction grating. Thc first gratings were made by Fraunhofer. He suetched fine silver 
wire on a frarnc. His grating had ncarly 200 wires to a centimeter. Afterwards gratings 
were made by ruling Iinc lincs wilh a diamond pen on a glass plate. The transparent part 
bitween the lincs acted as a slit whilc Lhe ruling itself acted effectively as the opaque part. 
Rowland was among thc firs1 lo rule gratings on a metallic surface. He produced plane as 
well as concavc gratings with nwrly 5000 lincs per centimctcr. These gratings are difficult 
to make and arc expcnsivc but celluloid replicas can be made fairly cheaply and are 
commonly used in thc physics laboralory for spectral analysis. You can make a simple 
coarse graliny for dcmonslration purposcs on a platc by drawing equidistant and parallel 
scratches on thc photographic cmulsion. Now-a-days it is possible to produce gratings 
holographically. Holographic gratings have greater rulings per cm and are definitely better 
than ruled gralings. You will gct an opportunity to learn details about holography in 
Block-4. 

10.5.1 Formation of Spectra 

We have seen Lhal for a monochromaiic light of wavelength hl, the principal maxima are 
given by Lhe graling equalion' 



With the experimental arrangement described above we will gcl Lhcsc principal maxima as 
one line in each order. Using another source of light which emits a longer wavelength b, 
we will gct a corrcsponding line in each ordcr a1 a larger angle 9,: 

d sine, = n h, n = 0 , 1 , 2 , 3  ,... 

However if the same source of light emits bolh the colours corresponding to wavelengths 
A, and &, we will get two lines simultaneously in cach ordcr. Thcse two lines will be 
seen as two spectrum lines separated from each olhcr. This is bccausc cxccpt the central 
maximum (zeroth order). the angles of diffraction for h, and & arc difrcrcnt in various 
olher orders. In the cenual maximum 0 = 0 for all wavclcngths and Lhcrel'ore different 
colours are not s~parated from each other. What do you cxpcct lo obscrvc when we have 
a white light source? The central image will bc whilc whilc all othcr orders will show 
colours and we will see a continuous spectrum, 

We note that in the grating equation, if we know d, 8 and n, wc can calculate the 
wavelength of light. Since the grating clemenl (d) is known for a gr~tirig and 0 can be 
measured. this arrangement provides a simple and accuralc rncthod ol' ~ncasuring k. This 
is discussed in the following section. 

10.5.2 Observing Grating Spectra 

In your second level physics laboratory coursc, you musl Ilavc obscrvctl grating spectra 
using a simple spcctromcter. This arrangcmcnl is dcpic~cd in Fig. 10.7. Tllc light from 
the given source is focusscd (with the hclp of a Icns) on Lhc slit ol' lllc collirn:~tor which 
sends out a parallel beam of light. 

Fig.10.7: A schemntlc dlngroln of cxperin~c~~tul  a ~ . r i ~ r i j i c ~ ~ ~ c ~ ~ t  I'or ol)scrvir~g grati~rg spcctra 

The lclescope arm is rotatcd and brought in linc will1 Lhc colli~nnlor. This crlsurcs ha1 Lhc 
parallel beam of light falling on the objcctivc of lclcscopc is focussed at Lhc crosswircs, 
which is in the focal planc of  he cyc piccc. Thc posilion ol' L ~ I C  sourcc ol' light sllould bc 
adjusted to gct the brightest image. Wc mount Lhc dilli~action gr:~tiog on Lhc ~ur11l;lblc 'and 
adjust iL so that the lighL is incident normally on Lhc grnling. Ncxt we route Llic lclcscopc 
arm to the left or right to get the first ordcr spcclruril in Lllc I'icltl or view, 11' lllc swrcc of 
lighl is a discharge tube containing sodium, rncrcury or argon, Lhc sl)cctrmll will consist of 
a scries of spccuum lincs. Each spectrum linc is n difliaclctl imngc ol' lhc slil, formed by 
different wavclengths prcscnt in thc sourcc. To gcl sll:u-p linc irnagcs, wc a(ljusl Lhc grating 
SO that thc diffrac~ing slits are parailel to lhc colli~nator slil. This call bc tioric by rolating 
lhe grating in its own plane. 

TO mcasurc the wavelength of cach line, we sct Ihc vcrlicnl crosswil.cs a1 Lhc ccnlrc of 
cach spcclrum linc and notc 1hc position of Ihe tclcscopc in cnch casc. Tlic difrcrcncc 
bclwecn this position of the tclcscopc and ~ h c  dirccl position givcs Ulc :mglc of diffraction 
for cach of thc lincs. To rcducc crror, thc position or ~ h c  tclcscupc is nolcd on both sidcs 
of thc dircct position and half of this anglc givcs llic anglc ol' dil'linction. 

You must have obscrved thal 

1. Thc spcclrum exists on bolh sidcs of thc dirccl bcnill. 

Diffraction Grating 

To mount a grating for normal 
incidcncc, you should follow he 
stcps givcn bclow : 
1. Takc Ihc reading of thc mmtablc 

when ~ h c  ~clcscope arm is in line 
with Ihc collimator. Let il be 9. 

2. Rotatc ~ h c  tclcscopc 10 position 
I$ k 90'. 

3. Mount Ihc grating on h e  [urn 
table and rotale die turn table lill 
you sce Ihc image of the slit after 
reflection from Ihc grating. A1 h i s  
position Ihc surfacc of the grating is 
inclined at 45" to ihe parallel beam 
of ligh~ cmerging from the 
collimator. 

4. Obviously turning the grating 
through 45' in the propcr direction 
will makc the light fall normally 
on the grating surface. 

Light emitted by an atom consists of 
sharp spectrum lines. Light emitted by 
a molccuie consism of a group of lincs 
which when unresolved give a band 
likc appearance and is oficn called 
band spcctrum, while an incandescent 
lamp or similar sourccs will givc a 
continuous spcctrum, whcrc various 
colours mcrgc into onc another. 



Dlffradlon 2. Apart from fhe first order, Lhe second or even third order spectrum (depending on the 
grating element) are also prcsent 

3. DiNerent spectrum lines are not equally bright or sharp. This depends on the energy 
levels and the transitions OF thc atom giving the spectrum. These concepts are further 
illustrated in h e  following example. 

Example 3 

Rowland ruled 14438 lines pcr inch in his grating. (i) Calculate the angles of diffraction 
for violet ( h = 4000 A) md rcd (h = 8000 A) colours in the fmt order of spectrum. 
(ii) What is thc largest wavelcngth which can be seen with this grating in the third order? 

Solution 

2'54 cm - 0.0001759cm (i) The grating element d = - - 
14438 

= 1.759 x lo4 cm 

Suppose that the violct colour (1 = 4000 A) is diffracted through angle 8,. Recall the 
condition For maximum: 

For first ordcr, on subs~ituiing thc givcn values, you will get 

sin 0, = lo" = 0.2274 
1.759 x 104cm 

Therefore 0, z 13" 

Similarly, for rcd colour ( X = 8000 A), wc have 

sin 0, = lWs cm = 0.4548 
1.759 x 10-"cm 

so that 
8, = 27' 

This means tha~ thc c~ilirc visiblc spcclrum in the first order extends from nearly 0 = 13O 
to 9 = 27", i.e. covcrs an ariglc ol' about 14". 

(ii) d sin0 = 3 Am, 

According to ihc givcn condilioo, 0 = 90" so that sin0 = 1 and d = 3 h,, 

This calculalion su rgcsts ~hi.11 in die Lhird order spectrum, the sodium doublet consisting of 
5890 A and 5896 k will no1 bc visible. Do you recall this from your observations on 
spcctral analysis using a diffraction grating? If you have so far not opted for the second 
lcvcl physics, it will bc worhwhilc w verify this result. 

If you calculalc sin 8, and sin 0, Sor lst, 2nd and 3rd orders, you will find that for 

1st ortlcr sin 0, = 0.2274 4 0, - 13O 
3 14" spread 

sin 0, = 0.4548 3 9, - 27" 

2nd ordcr sin 0, = 0.4548 3 0, - 27O I * 38" spread 
sin 8, = 0.9096 3 8, - 65" 

3rd orcirr sin 8, = 0.6822 8. - 4 3 0 1  
sill O,,w, = I for Am, = 5860 A * 47' for 4000 A - 5860 A 

and 0- = 90° 

sin O, > 1 cannot bc observed. 3 entire visible spectrum is not 
available in 3rd ordcr. 



Schematically it is shown bclow for the spectnrrn on thc Icli sidc of ~ h c  ccnuc. A similar 
spectrum will be observcd on the right side of Ihc central orticr. 

3rd order - 

& 

2nd order -\-1st 4 
order 

Thus wc find that in 1st order red just touches sccontl ordcr violcl. (Tl~is is bccause we 
have selected A = 4000 A and A = 8000 A.) It mcans tllat Llicrc is csscnti:~lly no 
overlapping of f is t  and sccond ordcr spcctra. hl third ordcr h, begills a1 C) z 43'. If you 
calculate wavelength li, of 2nd ordcr prescnt a1 0 = 43" you will find that 

Therefore h = 6000 A of the 2nd ordcr occurs at Lhc sarnc plncc as h = 4000 A of third 
order. Therefore, from 6000 A to 8000 A will havc ovcrlnppi~ig colours. This dirficulty is 
usually avoided by using suitable colour filters. 

We now summarise what you have learnt in this unit. 

10.6 SUMMARY 

a The double slit diffraction pattern consists or a nulnbcr olcquully spaccd fringes 
similar to what is observed in intcrfercnce cxpcrimcnls. Tlicsc liingcs are the 
brightest in thc central part of thc pattern. 

a In double slit pattern fringes reappear ~hrcc or four tilncs bclbrc Lhcy bccome too 
faint to observe. 

a The central maximum in doublc slit paltcrn is li~ur Limcs briglitcr ~Ii:in lhat in single 
slit pattern. 

a The intensity of double slit diffraction pattcm a t  an arlglc O is givcrl by 

Here lo = A2, P = and y = ' d sine, whcrc b is slit width iind d is disfance 
h 

belwcen two similar points in these aperlurcs. I t  is ctlunl to a + 13, whcre a is the 
width of the intervening opaque spacc bctwccn two slits. 

a The intensity of double slit diffraction pattcm is product or lJlc irradionccs observcd 
for the doublc slit interference and singlc slit difrraclion. Physicrlly, it arises due Lo 
interference between two diffracted bwms 



m For slits of vcry small widths, the double slit diffraction pallem reduces to Young's 
inlcrfcrcncc paucm. 

m The conditions of maxima and minima in doublc slit (equally spaced) interference 
pallcm arc: 

d sin% = nh (maxima) 

(minima) 

and thc condition for minima for diffraction intcnsily is 

b sin0 = mh (minima) 

Thc intensity distribution in N-slit diffraction pattern is given by 

Thc condilions Tor maxima and minima in N-slit pattern are given in h e  box on 
pagc 50. 

0 As the numbcr of slits increases, the maxima get narrower and for sufficiently large 
valucs of N, thcy bccome vcry sharp lines. The angular half-width of principal 
maximum 60 is givcn by 

68 = 
h 

N d  cos 0- 

Thc principal maximum is sharp for large values of N. 

10.7 TERMINAL QUESTIONS 

1. If we usc a while light source in Ule arrangement shown in Fig. 10.2, how will it affect 
Lhc fringcs? 

2. Can Lhcrc bc principal maxima of zero intensity because of diffraction at each slit? If 
ycs, discuss. 

10.8 SOLUTIONS AND ANSWERS 

SAQs 
1. h, will give ils diffraction paltcm wilhin which we will gct he interference fringes. The 

pattcrn for h2 will be smallcr if 12< 1,. 'They will both be superimposed on one another 
coinciding at 8 = 0. 

2. Thc gcneral conditions for missing orders in tcrms of y and P arc: y= 4 nx or d sin0 = k 
nhandp=+mnorbsine=+mh. 

Thcreforc whcn n = pm (n, m, p arc all intcgcrs) we gcl 

The missing ordcrs occur whcn dlb is an integer. When dlb = 1, i.e. h e  two slits exactly I 

join, all thc interfcrcncc ordcrs are missing. Physically it means that we have a singlc 
slit of doublc width and consequently no interfcrcnce. 

I 

Forg = 2, smnd,  fourth, sixth, ... orders will bc missing. What do you say about 
b 



3. For N = 2, Eq. (10.13) lakes Lhe form Diflraction Grating 

- A2 sin2 B (2 sin y cos y12 
- P2 sin2 y 

which is the required result for the double slit. 

I. As before, each wavelengh will give its interference fringes. The central fringe for all 
wavelengths will coincide and hence the central fringe will be white. Fringes of order 
n = 1,2,3, ... located on either side of the central fringe, at different 8 values given by 
d sin 8 = n3c for diffcrcnt wavelengths will bc colourcd. 

2. There can be a principal maxima whose intensity is zcro bccause of the diffraction at 
each slit. These are called missing orders or absent spectra. We know that the 
relationship between P and y in terms of slit width and slit separation for N slits is the 
same as for the double slit. Therefore, the conditions for missing orders rcmain 
uaal~ercd. And a particular maximum will be absent if it is formed at the same angle as 
thc minimum of single slit diffraction pattern. This occurs at an angle which satistics 
Eq. (10.19a) and (l0.19b). 


