
Structure 

9.1 Introduction 
Objectives 

9.2 Diffraction from a Single Slit: Point Source 
Observed Pattern 
Calculation of Intensity Distribution 

9.3 Diffraction by Circular Aperture 

9.4 Summary 

9.5 Terminal Questions 

9.6 Solutions and Answers 

9.1 INTRODUCTION 

In the previous unit you studied Fresnel diffraction and learnt that the diffraction pattem 
depends on the distance between aperture and screen as well as the source. As the 
observation screen is moved away from the aperture, the diffraction pattern passes from 
the forms predicted in turn by geometrical optics, Fresnel diffraction and Fraunhofer 
diffraction. When a plane wavefront is incident at the diffracting aperture, the transition 
from Fresnel to Fraunhofer pattern is determined by the ratio of the size of the diffracting 
obstacle to its distance from the source and/or the observation screen. You will now learn 

I about Fraunhofer diffraction in detail. 

In Sec. 9.2 we have dcscribcd the experimental arrangement and salient features of the I 
' 

observed Fraunhofer diffraction pattern from a single slit illuminated by a point source. 
This is followed by a simple theoretical analysis of observed results. When we deal with * 

plane wavefronts, you will find that theoretical analysis is fairly simple. In Sec. 9.3 we 
have described Fraunhofer diffraction by a circular aperture because of its importance for . 
optical devices. You will learn that the diffraction pattern consists of a central bright disc 
(called Airy disc) surrounded by concentric dark and bright rings. As a corollary, you will 
see that a random array of small and nearly circular obstacles gives overlapping 

/' diffraction patterns called halos. You may have observed brilliant halos while driving a 
car whose fogged window is illuminated by a motorcycle at the back. We shall discuss the 
physical basis for diffraction halos at the end of this unit 

Objectives 

After going through pis unit you will be able to 

c describe experimental arrangement for observing Fraunhofer diffraction pattern I 

from a narrow vertical slit and a circular aperture 

c explain observed irradiance on the basis of simple theoretical analysis 

e solve numerical problcms, and . 

e explain formation of diffraction halos. 

DIFFRACTION FROM A SINGLE SLIT: POINT 
SOURCE 

From the prcvious unit, you may recall that to observe Fraunhofer diffraction pattern, we 
require a point source, which is far away (almost at infinity) from the diffracting aperture 
(a singlc, slit in the present discussion). The wavefronts of light approaching the diffracting 
aperlure can be assumed to bc essentially plane. The observation screen should also be at 
infinite distance from  he aperture. You may now like to ask: Is it practical to put the 



source of tight and the observation screen at infinite distance from the diffracung aperture? 
This definitely is not practical because (i) the intensity of diffracted light reaching the 
obscrvation screen would be reduced infinitesimally (inverse square law) and (ii) we will 
require infinitely big laboratory rooms. Do these limitations suggcst that we cannot 
observe Fraunhofer diffractibn? These difficulties arc readily overcome by using 
converging lenses in an actual' experiment 

Fraunhofer Diffraction 

Fig.9.1: Producing Fraunhofer dimadion pattern 

Thc cxpcrimcntal arrangement for producing Fraunhofer diffraction pattern is shown in 
Fig. 9.1. A monochromatic point sourcc(S) of light is placed in thc focal plane of a 
converging lcns L, ,  so that a plane wave is incident on a long narrow slit. Another 
convergent lens L, is placed on thc othcr side of the slit. The observation screen is placed 
at thc sccond focal point of this lens. Then light focusscd at any point on the observation 
screcn is duc to parallel diffracted wavelets emanating from different portions of h e  
;lit. You must note that the observation screen and diffraction screen arc kept parallel. 
Moreover, both the screens are perpendicular to the common axis of L, and L,. The slit is 
so adjuslcd that the cornmon axis of thcse lenses is perpendicular to the length of the slit 
and passes through the middle of h e  slit, both in height and width. 

In a physics laboratory this arrangement is easily achieved by using an ordinary 
spectrometer. We hope hat you got an opportunity to work with a Spectrometer in your second 
lcvcl laboratory cowse. To observe the diffraction from a point source, thc slit of the 
collimator should be replaced by a finc pinhole, which should be mful ly  positioned 1 the 
focal point ol the collimator lens. Thc observation screen can be placed at the back focal plane 
of the tclescopc. Alternatively, wc may observe the back focal plane of lens with an 
eyepiece. The dificting screen with slit ape-, is placed between the two lenses suitably on 
the turn table. 

9.2.1 Observed Pattern 

Let us pause for a minute and think what would the diffraction pattern of the vertical slit 
look like? Or what would be the distribution of intensity in this pattern? You may think that 
the diffraction pattem would be a single vertical line or a series of vertical lines on the 
obscrvation screen. This line of thought is wildly off-target. The actual diffraction pattern 
is astonishingly differenl; it consists of a horizontal streak of light composed of bright 
elongated spots connected by faint streaks. In other words, after passing through the 

I 
vertical slit, light spreads along a horizontal line. This means that diffraction pattern is 
along a line perpendicular to the lcngth of the dibcting slit. You may interpret this 
horizonlai diffraction as a spread out image of the point source. The extent of horizontal 
spreading is controlled by the width of the slit; as the width increases, the spreadipg- 
decreases. And in the exrrerne case of a very wide slit, Lhe (horizontal) diffraction streak 
reduces to a bright point. Physically, very wide slit means that the slit has effectively been 
removed. 

The salient features of the observed Fnunhofer diffraction pauem of a single vertical slit 
from a point source are shown in Fig. 9.2. These are summarised below: 

i) The diffraction pattern consists of a horizontal streak of light along a line perpendicular 
to Lhc length of the slit. 



ii) The horizontal pattern is a series of bright spots. The spot at the central point Po, which 
lies at the intersection of the axis of L1 and Iq with the observation screen, is the 
brightest. On either side of this spot, we observe a few more bright spots symmctrically 
situated with respect to PO. 

Fig.9.2: Observcd Fraunhofer diffraction pattern of a dilTraractin~ slit 
' \  

iii) The intensity of the central spot is maximum and its peak is locatcd at Po. The pcak 
intensities of other spots, on either side of thc ccnlral spot, dccrwsc rapidly as we move 
away from Po. The central maximum is called principal maxima and other maxima as 
secondary maxima. 

The widh of a is s ~ c i t i e d  iv) The width of the cenml spot is twice thc width of olhcr spots. 
h c  distance between two 
consccuiive minima. v) A careful examination of the diffraction pattern shows that ~ h c  central pcak is 

symmetrical. But on either side of the central maximum, secondary maxima are 
asymmetrical. In fact, the positions of the maxima arc slightly shirtcd towards the 
observation point Po. 

Let us now lcarn the theoretical basis of thcse result?. 

9.2.2 Calculation of Intensity Distribution 

The first step in the calculation of intensity distribution is to rmlisc that the observcd 
diffraction pattern is focussed on the observation screen placed at thc back focal planc of 
lens 4. We know that only parallel rays are brought. to focus in the back focal planc of 
the lens. Therefore, diffracted light must be emerging as a series of parallcl light. The 
beam of rays parallel to the axis of the lens are focusscd at the focal point. Hcwcver, thc 
beam inclined to the axis of the lens is brought to focus on thc back focal planc but away 
from the focal point. We can as well describe this observation in terms of the wavefront; 

We take the plane of h e  paper as the two being perpendicular to each other. Since diffraction pattern lies on a' horizontal 
horimnta'. The plane Of the paper is line (which is at right angles to the cortimon axis of L1 and 9, the diffracted wavefmnts 
defincd by the diffraclion streak and 
the axis of the lens 4. will be vertical planes perpendicular to the plane of the paper. That is, after passing 

through the vertical slit, the incident plane waves are replaced by a system of vertical 
plane waves which proceed in different directions. Therefore, for our theoretical analysis it 
is suficient to assume that when a plane wavefront falls on the diffracting slit, each point 
of the aperture such as A A, A, A, ... B (Fig. 9.3) becomes a source of secondary wavelets, 
which propagate in the direction of the point Pe under consideration. Thcse are 
diffracted plane waves. (You should realise that diffracted waves have no existence in the 
domain of geometrical optics. The diffracted waves arise due to interaction between light 
and matter. In the present case, the interaction is between light and the jaws of the slit.) 

Refer to Fig. 9.3a which shows the geomehy for the imdiance at point Pe (on the distant 
screen) which makes an angle 0 with the axis. In order to sum up the contributions of 
different wavelets at Pe, we must know their amplitudes and phases. The amplitudes of the 
disturbances from A. A,, A2, .:. will be very nearly equal. Do you know why? This is 
because the distance of point P, from the diffracting scwn  is very large compared to the 
width (b) of the aperture. 

Now let us consider the phases of the disturbances reaching the point P,. You will agree 



that the points A, A, ,  A,, A, ... B within thc aperture form a scries of coherent sources 
since they havc originated from Lhe same point source. Also points A, A,, A,, ..., B are in 
the same phase since Lhcy lie on  he same plane wavefront. The phase difference between 
different diffracted rays reaching h e  point. P, arises due to the difference in path lengths 
travcllcd by Lhcm to reach P,. To know the phase difference, we draw a plane normal to 
thc parallel diffractcd rays. Thc mace of this plane in the planc of the paper is AD (Fig. 
9.3a). Though Lhc disturbances are in phase at points A, A,, A,, ..., B when they stut, they 
reach thc trace AD in diffcrent phases because of the unequal path lengths travelled by 

Fraunhofer Dlffraclion 

Fig.9.3: (a) Cross-sectional vlcw or thc geomctry for s l~~gle  slit diffrnctiun 
(b) l tacc  or optical paths bctwcen sllt and scrccn 

ihcm. Thc optical paths of diffracted wavcs from the plane A D  to the focal point P,  are 
cqual. This is bccause in a welt corrected converging lcns Lhc optical paths of all rays 
bclwccn any plane intcrsccting ~ h c  parallcl bcam of light pcrpcndicularly and thc poirit TWO sources arc snid 10 bc cohcrcnt 

if chcy emit in-phasc wavcs of thc whcrc rays convcrge aftcr traversing thc Icns, arc cqual. That is, optical paths Ap, Po and same rrcquc,lcy. 
Dp2 P, arc cqual, its may be seen from Fig. 9.3(b). Therclorc, lhc wavclcts arrive at Po 
wilh ttc same rclativc phnsc diffcrcncc as the ones existing at thc Lrace AD.  

Lct us considcr thc apcrture AB to bc dividcd into n cqual puts so that Ad,  = A,A, = A d ,  
= bln = A. 11 rncms that wc havc a scrics of p i n 1  sources from A to 3. Actually, lhc apcrlure 
contliiris a continuous distribution of points from A to B ,  and lhcrcforc in thc limiting casc, 
nb-+ - and A -+ 0 s ~ ~ c h  Lhal nA -+ b. Consider Lhc two rays stiirting from two 
ncighbouring points A and A,. l'hc path diffcrcncc bctwccn thcm is AA, sine, where 8 is 
 he anglc bctwccn the diffractcd rays and the normal lo the slit. Hcncc the corresponding 
phase dirfcrencc is givcn by 

2x 
t$ = - (AA, sin 0) = h 

LcL thc ficld a1 P, duc lo thc disturbancc originating from A bc a, cos of. ,Then, thc ficld 
duc Lo thc disturbance from A, is a,, cos (w1 - Q, ). Hcrc wc havc assumd thal the 
amplitudcs or disturbances from diffcrcnt poinls arc cqual. The ficld duc to disturbanccs 
from succcssivc poin~c A,, A,, ...., B arc a, cos (or - 2@ ), a, cos (or - 3$ ), ..., 
a,, cos (of - n@ ), rcspcctivcly. Thc magniludc of resullant ficld at P, is cqual to thc sum 
of thcsc disturbanccs. Hcncc wc can write 

E = a,, cos or + uo cos (wl - Q, ) + a,, cos (w - 24, ) + ...+ u, cos (ot --n$ ) 

111 Unii 2 of PHE-02 course on Oscillations and Wavcs, wc sunimcd up tllis scrics 
(Eq. (2.38)). Wc will just quote lhc rcsul~ hcrc: 



whcrc E, is [he amplitude of lhc resullant ficld at Po : 

sin k) 
E,= a, sin (4I/2) 

In the limit n + rn and A + 0, n A + b. Then from Eq. (9.1) wc have 

so [hat 0 = a brine will be very small for n + m. We may lhcrcfor~ wdle 
A n 

Subslitutc this rcsult in Eq. (9.3). On simplification you will find that 

sin k) 
E - E!l&&!2 = ,, 

- U" sin (9/2) (0 /2)  (n brine) 

whcrc wc havc writlcn 

and 

You will notc that for a givcn wavclcnglh, P signirics half or lhc phasc difference betwccn 
disturbanccs originating from thc exwcmc points A and B. Thc cxprcssion for resultant 
ficld at P,  wkcs thc form 

E = A cos (,I - ,) = 4 cos (a - , (3.6) 
P 

Thc corresponding inlcnsity diswibution at Po is givcn by 

Let us pausc for a whilc and pondcr as to what wc havc achieved. This result suggests that 
thc intcnsily is maximum at 8 = 0. This rcadily follows by noting that when we suhslitulc 
8 = 0 wc have holh P and sinp equal to zcro but 

Therefore 

This rcsult is cxpcclcd on gcomcWical considerations. In h c  limil or a dishnt screen, thc 
central point bccomcs cquidis~nt from cach point on thc slit. All diffrdctcd wavcs arrive 
in phasc at Po and intcrfcrc cons~ruclivcly. A2 is thcn thc valuc of thc maximum intcnsily 
a1 thc ccnlrc or thc paucrn. This niaximum is also lcrmcd principal maximum. 



For brcvity wc writc I,=, = A2 = lo. Thcn inlcnsily ar any poinl at an anglc 9 with the Fraun hoier Diffraction 

horizoourl axis is givcn by 

le = I(, (y-J 
Positions of maxima and minima 

A very clcar idca of thc singlc slil pattcm 
a n  be ohaincd from the following 
simplc qualitalivc argument. The path 
diifcrcncc bctween waves difiractcd by 
extrcmc points in Ihc slit is 
BD = b sin 9 (see fig. bclow). Suppose 
ha t  lighl i s  focussed at some point Po If 
BD is an intcpral multinlc of A, we will 
show that hc"resultant'intcnsiti at Po 

A plot of Eq. (9.7) Tor inlcnsily distrihulion is shown in Fig.9.4. You will notc lhal the will be zero. For = ,, angle 
inlcnsily is maximum Tor 8 = 0: I ,  - ,, = I, = A2. Tlic inL?nsily ~radually falls on cither sidc e salisfics the muation b sine = h, we .,-., ., - - 
Ol' h c  principal maximum and bccomcs zcro whcri P = + x or P = - n since sin (+ x ) is divide the slit into two qua1 halvcs AM 

xcro. This is lhc first minimum. So wc can say that the angular half width of principal 
~ f n ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ f l ~ $ ~ ~ ~ ~ ~ l w o  

maximum is from p = 0 to P = n. Thc sccond minimum on cihcr sidc occurs at P = 4'2x. pint sources ,, M. 7hc 
Thus we get h e  minima when diircrcncc hc~wccn them is 

= rnn m = 4  l , k 2 , %  3, ... 

AM sin0 - (bp) sin9 = U2. Ihc 
corresponding phase dificrcncc will hc 
x.  I'hereiorc the two wavcs on 
supcrposilion Icctd lo 7 ~ r o  intensity HI P,, 
Similarly, iora poi111 A,,  jusl below A, 
thcrc will bc a &rrcspdnding point hf, Nolc Lhal h e  valuc m = 0 is excludcd bccausc it corrcsponds lo Lhc principal maximum hiow such hat 

(for p = 0). Substituting the valuc O K  from Eq. (9.8) in Eq. (9.5) we find that Lhc dificrcncc betwccn disturbances 
condition for minima can also be cxpkesscd as - 

b sin 8 = + h, + 21. 2 3h ... 

= nth, rtl = + I ,  f 2, k 3, ... (9.9) 

That is, C) dcpends on thc wavclcngth of liglit and thc slit width. For a givcn slit width, the 
sprcad in diffraction paucrn dcpcnds dircctly on h c  wavclcngb. Accordingly you should 
cxpcct that rcd light will bc diffraclcd Lhrough a largcr an:!lc than thc bluc 01. violct liglit. 

You irlay now like lo know: Whal will happcn whcn whitc light illuminatcs a singlc slit? 
Wc cxpcct that cach wavelength will bc diffrdctcd indcpcntlcntly. This givcs risc to a 
whitc ccnual spot surrounded by colourcd fringcs. Thc outcr part oT this patlcrn would 
lcnd Lo be reddish. You can easily observe this diffraction paticrn by looking through lhc 
tincs of' a dinner fork at a candlc in a dimly illuminatcd room. On twisling lhc fork about 
its handle, you will obscrve thc diffraction pattcm as soon as thc cross-sectional area 
bccomcs small cnough. 

Thc cxprcssion I ,  = lo givcs thc diffraction intnsity in diffcrcnt directions. In 

ordcr to dctcrmine thc directions (and positions) of secondary maxima, wc diffccrcnriatc 
this equation with rcspect to p and equatc k e  result to xcro. This givcs 

so that sin P (P - tan p) = 0 

From this wc get the conditions sin p = 0 anci p - tan P = 0. 

Thc condition sin /3 = 0 implics that P = -t mn, whcre m is any intcgcr. This is a Lrivial 
condition as it signifies minima and is of no intcrcst. 

Thc condition P = tan P therefore givcs the positions of secondary maxima. This is a 
transcendcnlal equation. Thc rooE of this cquation can bc found by a graphical method. 
All you havc to do is to rccall that an angle equals its tangent at intersections of the 
slraigh~ line 

r =  P 
and thc curve 

gcncrated by them is agnin hr2. On 
suprposition this  pair nlso leads lo 7,cro 
intcnsity a1 P" Wc can thus pair off all 
thc points in 111e uppcr half (AM) will1 
corresponding points in the lowcr helf 
(MO) and Illc dismrbanccs due IQ upper 
half of thc slit will bc cancctlcd 
by dislc~rbiurccs duc to the lowcr half. So 
the rcsultanl intcnsily at Po will bc mro. 
This cxplaios why we gct a minimum 
intensity ut Po whcn thc path diiicrcnce 
ktwcen thc rays from extremes is cqual 
to a. 

Lct us now considcr rhc carc rn = 2 
so &at thc p t h  diffcrcncc b sine 
betwccn thc cxtrcmc rays is qua1 to a. 
We can now irnaginc that h e   lit is 
dividcd into four cqunl parts. Wc can, by 
similar pairing, show that the first and 
second quancrs havc a path difference of 
hR and cnnccI each other. Third and 
f o u h  quancrs canccl cach othcr by h e  ' , 

samc atxumcnt so  hat the rcsrllmt 
inlcnsilyin the focal plane a1 Po is again 
zero. Form = 3 thc path differcncc 
between the two cxtrcmc rays is 
b sin0 = 3h. In this case, thc slit should 
be divided into six equal parts to show 
similar pairing and cancellation and lhcn 
leading to 7cro inlensi~y. By this simple 
qualita~ive argument, wc have shown 
hat  whcn he  path diffcrcncc between 
h e  extreme parallel diffracled rays in a 
particular direction is an 
inlegral multiple of h , thc resultan1 
difiradcd intensity in that direction is 
TCm. 



Plots of these curves arc also shown in Fig. 9.4. The points of intersection excluding P = 0 
(which corresponds to principal maximum) occur at P = 1.43~. 2.461~. 3 .47~  ctc. and give 
the position of the first, second, third maxima on either side of the central maximum. You 
should note that thcse maxima do not fall midway between two minima. For instance, the 
rist maximum occurs at 1 . 4 3 ~  rather than 1.5h. Similarly the second maximum occurs at 
2 .46~  rathcr 2.5h and so on. This means that the intensity curves are asymmetrical. The 
plot clcarly shows that the positions of maxima are slightly shifted towards the cenue of 
the pattern. You may recall that this asymmetry is observed experimentally as well. 

Fig. 9.4: Amplitude and intensity contours for Fraunhofer diffraction of a slngle 
slit showing positions of maxlma and minima 

Let us now calculate the intensities at these positions of maxima. The intensity of fust 
secondary maximum is given by 

sin 1.43 x = 0.04% 
( - 1 - J  

This means that the intensity of the first secondary peak (nearest to the central peak) is 
about 4.%% of the central peak. Similarly, you can calculate and convince yourself that 

y = p is a s~taighl linc passing the intensities of the second and third secondary maxima are about 1.68% and 0.83% of 
through ~ h c  origin. y = lan p is the cenbat maximum. We call these maxima as secondary maxima. 
rcprcsen~ed by a family o f  cuwcs 
having for asympto~es The intensities of the secondary maxima can be calculated to a fairly close approximation 

n 3 x  5n p = - ,  *T ,  *-,... 
2 2 

n + 2x 2x + 3x by finding the values of P at halfway positions i.e. at P = - 
2 2 ' -  

4 4 4  3n + 4rr,... etc.The intensitiesatthesepositionsare- - - 
2 gK2 * 2 . ~ ~ 2  * 49$ .-. Or 

--- I I 
I , ... of the central maximum which are very close to the above 

22.1 ' 61.7 ' 121 
calculated values. We thus see that most of the light is concentrated in the central 
maximum. 

Another important characteristic of the principal maximum is that its width is double of 
the width of secondary maximum. We have left its mathematical proof as an exercise for 
you. Before you proceed, you should solve SAQ 1. 

Spend SAQ 1 
5 min 

Show that the principal maximum is twice as wide as the secondary maxima. 

To give you a feel for numerical values and fix the ideas developed in this section, we 
now give a few solved examples. You should go through these carefully. 

Example 1 

In the experimental set up used to observe Fraunhofer diffraction of a vertical slit (width 
0.3mm), the focal length of lens L, is 30 cm. Calculate (a) the diffraction angles and 
positions of the first, second and third minima, and (b) the positions of the first, second 
and third maxima on either side of the central spot. The slit is illuminated with yellow 
sodium light which is a doublct. You may take h = 6000 A. 



Solution Praunhofer Diffraction 

You have seen that the conditions for minima are given by b sin 0 = rnh ; rn = + 1, + 2, 
+ 3, ... For small values of 8, we may write sin 8 s 0. Then 

and the distance Po P, is f 8, where f is the focal length. Therefore,the diffraction angles 
h h  a e l ,  8,, 8, for the first, second and third minima are - 2-, and 3 - , respectively.. 
b '  b b 

On substituting the numerical values of h and b we find that 

8, = 28, = 4 x rad 

€I3 = 301= 6 x rad 

The distances d l ,  d2, 4 of these minima from the central spot are 

dl = f 8, = (30 cm) x 2 x  = 6 x  1 0 - 2 ~ m  =O.Mcm 

d, = 2f 8, = 2 x 0.06 cm = 0.12 cm 

You will note that these minima are separated by a distance of 0.06 cm on the focal plane 
of the lens. We know that the first three secondary maxima occur at P = 1.431c, 2.46~ and 
3.47~c, respectively. The corresponding dillaction angles in radians for these lhree maxima are 

h  h  h  (el),, = 1.43 - , (82)mX = 2.46 - and (Qj),, = 3.47 - 
b b b 

. , (0,)- = (1.43) (2 x (8d,, =2.46 (2 x 

and 

(e,),, = (3.47) (2 x 10") 

and the corresponding distances from the ccnwal point (Po) are 

dl = f (0,)- = (30 cm) x 1.43 x 2 x 10 -3 = 0.086 crn 

d, = f(O&,, = (30 cm) x 2.46 x 2  x 10" = 0.16 cm 

d3 = f (8,)- = (30 cm) x 3.47 x 2 x 10" = 0,21 cm 

Example 2 

In the abovc experirnenl, we change slit widths to 0.2mm, O.lmm, and 0.06mm. Calculate 
the positions of the first and second minima. 

Solution 

For slit width b = 0.2 mrn, we have 

Similarly 

I These minima are separated by 0.09 cm. Rccall that  he corresponding value for a slit of 
width 0,03 crn was 0.06 cm. This mems that for a given wavclenglh, thc spread of 
secondary maximum increases as slit width decreases. This conclusion is brought out in 
the following calculalions as well. 

I 



For a slit of width b = 0.1 mm, we have 

d, = (30 cm) x 6000 x cm 
0.1 x 10-I crn 

Fig. Q.5: Single-slit diffraction 
irradiancm as the slit 
width varlcs 

and d, = 2 x 0.18 cm = 0.36 cm 

For slit width b = 0.06 mm, we have 

dl = (30 cm) x 6000 x cm 
0.06 x 10-I cm 

Wc thus find that for slits of widths 0.3mm, 0.2rnm, O.lrnm, and O.Mrnm, the first 
minimum on either sidc of the principal maximum occurs at distances of 0.06 crn, 0.09 
cm, 0.18 cm, 0.3 cm. In these four cases, the corresponding principal maximum extends 
over 0.12 crn, 0.18 cm, 0.36 crn and 0.6 cm. 

This shows that as the slit becomes narrower, the spread of central maximum increases. 
Conversely, the wider the slit, the narrower is the central diffraction maximum. 

We now considcr an inlcresting case whcre width of the slit is varied in comparison to the 
wavelength of light. 

Example 3 

Consider a slit of widh b = 10h , 5h and h . Calculate the spread of the central 
maximum. 

Solution 

From Eq. (9.9), we note that for a slit of width b = 10h , the first minimum is located at 

10h sine= h 

or 

sin 8 = 0.10 

and 
8 = 5.7" 

Fora slitof widlh 5 h ,  we have 

5hsin 0 = h 

That is, as the aperture of lhc slil changes from 10h to 5h , the diffraction pattern sprcads 
out about twice as far. For b = h ,  

sin 8 = 1 

or 

8 = 90" 

The rirst minimum falls at 90". That is, h e  central maximum spreads out and the 
dirfracdon pallern shows no ripple. These features are shown in Fig. 9.5. 

Spend 
5 min. 

You may now like to answer an SAQ. 

SAQ 2 

1% illumi~rate thc slit of Example 1 with violet light of wavelength 4358 A.from a 
mercury lamp, Show hat the diffraction pattern shrinks correspondingly. 



Diffraction Pattern of a Rectangular Aperture 

So far we have described Fraunhofer diffraction pattern of a slit aperture. Let us now 
consider as to what will h a h n  if both dimensions of the slit are made comparable. We 
now have a rectangular aperture of width a and height b as shown in Fig. 9.6(a). We 
expect that the emergent wave will spread along the length as well as the width of the slit. 
Can you depict the diffraction pattern? It is shown in Fig.9.6(b). Mathematically, the 

I ,  sin2 p sin2a 
intensity is given by I = b IE. sin 0 and a =  asi in 8 

a2 P2 where p = 7 h .  

Slit Source 

The experimental arrangement shown in Fig. 9.1 is modified as shown in Fig. 9.7 so 'that 
instead of the point source of light we have a slit source of light (Fig. 9.7(a\\. 

I;ig.9.7: (a) Experimental arrangement for diffraction from a vertlcal narrow single silt Ulurninatcd 
by a slit source (b) Expcrimcnhl arrangement In a physics laboratory. 

As a mattcr of fact, thc experimental arrangement, which is commonly employed in most 
experiments, uses a spectrometer (Fig. 9.7(b)). The slit of the collimator arm is illuminated 
so that each point of the slit source acts as an independent source. You know that a point 
source gives a horizontal streak of light as the diffraction pattern of a vertical slit. Now 
whcn wc use a slit as  a source, we can imagine a series of point sources 0,, U2. O,, ... etc. 
one above the other to form the slit source (Fig. 9.7(a)). Each point source will give its 
own diffraction pattcrn since each point is to be regardcd as an independent point source. 
With the same diffracting slit and the same I~itses L, and 4, the central dffraction 
maximum due to all point sources will lie above one another and give a central bright 
vertical fringe. Similarly from secondary maxin~a and minima points, we will obtain a 
series of vertical fringes, which will be situated at equal intervals on either side of the 
central fringe. The resulting pattern arises by superposition of a serics of horiwnlal 
diffraction streaks sucked on each other in a vertical direction. Thc intensity along any 
horizontal line wiIl be the same as in Fig.9.2. This is because Cach point of the slit source 
acts as an independent and effectively as a non-coherent source. 

You will observe that clear fringes are obtained only when thc width of the source slit is 
small. Suppose that thc width of the source slit is gradually increased. This will lead to an 
increase in the width of its image on the observation screen. A stage will come when the 
width of its image, becomes comparable with the distances between successive vertical 
fringes. This will gradually make the vertical fringes less clear and indistinct. For a 
similar reason, we obtain clear fringes only when the source slit is parallel to the 
diffraction slit. 

9.3 DIFFRACTION BY A CIRCULAR APERTURE 

Fraunhofer diffraction by a circular apcrture is of particular interest because a lens in an 
optical device like microscope, telescope, eye etc. can be rcgardcd as a circular aperture. 
For this case, thc experimental arrangement is shown in Fig. 9.8(a). A plane wave is 
incident normally on thc aperture and a lens whose diameter is much Iqger than that of 

Irlg.9.6: Diffroctlon h m  a 
rectangular aperture. Both 
dlmcnslons of the rectangular 
aperture are small and a two- 
dlmenslonal dlffradon 
pattern is d lscernible on the 
screcntThe lower part shows 
dlffhttloa pattern of a single 
square aperture 



Fig.9.8: (a) Expcrimcntal arrangcmcnt for observing the Fraunhofcr diffraction pattern by a 
circular aperture. (b) Thc Airy pattern of threc stars; the circlc of light a t  the lcft of 
the figure corresponds to zeroth ordcr (c) The corresponding intensity distribution. 

thc aperture is placcd close to it. The Fraunhofer diffraction pattern is observed on the 
back focal planc of thc lens. Because of the rotational symmetry of the system, we expect 
that the diffraction pattern will consist of concentric dark and bright rings known as Airy 
pattcrn. Fig. 9.8 (b) shows the Airy pattern of three stars. Thc dctailed derivation of the 
diffraction pattern for a circular aperture involves complicated mathematics. So we just 
quote thc final result for the intensity distribution: 

where 

Here D is the diameter of thc aperture, h is thc wavelength of light and 0 is the angle of 
diffraction, lo is the intensity at 9 = 0 (which rcprcscnts the central maximum) and Jy(y ) 
is  he Bessel function of thc first ordcr. (We know that you arc: not very familiar with 
Bessel functions.) Wc may just mention that thc variation of J, (y ) is somewhat like a 
damped sine curve. Moreover, the intensity is maximum at the centre of the pattern sincc 

@ similar to the relation 

lim sin + 

P + O  p 

Other zeros of J ,  (y ) occur at y = 3.832,5.136, 7.016, ... which correspond to the 
successive dark circles in the Airy pattern. Thus the first dark ring appears when 

Let us compare this result with the analogous equation for the narrow slit. We find that the 
angular half-width of the central disc, i.e. the angle between the central maximum and the 
fist minimum of the circular aperture, differs from that for the slit pattern through the 
weird number 1.22. The intensity distribution of Eq. (9.11) is plotted in Fig. 9.8(c). The 
pattern is similar to that for a slit, except that the pattern for circular aperture now has 
rotational symmetty about h e  optical axis. The central maximum is consequently a 
circular disc of light, which may be regarded as the diffracted "image" of the point source 
by h e  circular aperture. It is called the Airy disc. It is surrounded by a series of alternate 
dark and bright Fringes of decreasing intensity. However, the pattern is not sharply defined. 



If you consider any section through the circular aperture intensity distribution is very 
much the same as obtained from a point source with a single slit Indeed, the circular 
aperture pattern will be obtained if you rotate the single slit pattern about an axis in the 
direction of the light and passing through the central point of the principal maximum. 

We now give an example to enable you to have a feel for h e  numerical values. 

Example 4 

Plane waves from a helium-neon laser wih wavelength 6300 A are incident on a circular 
aperture of diameter 0.5 mm. What is h e  angular location of the first minimum in the 
diffraction pauern? Also calculate the diameter of Airy disc on a screen 10m behind h e  
aperture. 

Solution 

We know from Eq. (9.13) that 

D sin 0 = 1.22h 

On substituting the given values, we get 

(0.5 x 10-3m) sin 8 = 1.22 x 630 x 10-9m 

sin 9 = 1.22 x 630 10-9m 
0.5 x 10" m 

In thc small angle approximation, sin 8 s 8 so that 

9 = 1.54 x 10 -3 rad = 0.087' 

On a screen placed 10m away, the linear location of the first minimum is 

Hence 

This value of x signifies the radius of the Airy disc so that the diamctcr is about 3 cm. 

You can observe a white light circular diffraction pattcm by making a small pinholc in a 
sheet of aluminum foil. Then look through it at a dislant light bulb or a candlc standing in 
a poorly illuminated (dark) room. 

Imagine that a random array of small circular apcnurcs is illuminated by planc wavcs 
from a white point source. Wc know that each aperlurc will gcneratc an Airy type 
diffraction pattern. If the aperturcs arc small and closc togclhcr, thc dirfraction paucrns arc 
largc and overlap. The overlapping diffraction patterns producc o rcadily visiblc halo, 
namely, a central white disc surrounded by circular coloured rings. Which colour do you 
expcct to be at the outermost rim? Should it not bc rcd? Similar halos arc also obscrvcd 
when thc diffraction is due to a random array of circular obslaclcs. 

Suspended water (n = 1.33) droplcls in air (n = 1.00) givc risc to dilTraction halos: Whcn 
observed through a light cloud cover around h c  sun or moon, thcsc dirrraclion halos arc 
rererred to as coronas. Wc can distinguish bctwccn diffraction halos and icc cryslal halos. 
Icc cryslal halos are due to rcrraction and dispcrsion by thc icc crystals; they havc rcd on 
thc insidc of the rings. 

Whilc driving a car at night, you may have sccn brilliant halta through fogged up car 
windows on which light of a molorcycle following you is incidcnL Thcsc arc dilliaclion halos. 
You can mrily produce such halos by breathing on the sidc of a clcar glass and hcn looking 
through h e  fogged area at a small source (c.g., match, penlight, or dishnt bulb). 



9.4 SUMMARY 

o To observe Fraunhofer diffkaction pattern, the distance of the diffracting screen from the 
source and obseriration screen should be alomost infinite. Experimentally this condition 
is achieved by using convergent lenses. 

e The Fraunhofer diffraction pattern of a slit formed by a point source consists of a 
horizontal streak of light. This horizontal diffraction panern may be regarded as a spread 
out image of the point s o m e  and consists of a series of diffraction spots symmetrically 
situated with respect to central point. 

@ The central spot has a maximum intensity and its width is twice compared to other spors 
which are of equal width. Their intensities decrease rapidly. In fact, most of the light is 
concentrated in the central maximum. 

e The plane wavefront incident on the slit gives rise to a system of vertical plane 
diffracted wavefronts which originate from each point of the diffracting aperture. 

o The intensity at any point Pe on the screen is computed by taking the phase difference 
between the successive diffracted waves into account. The intensity at a point Pe is 
given by 

whcre p = n- sin 7L and b is width of the slit. 

e If the path difference b sine between waves diffracted by extreme ends of the slit is an 
integral multiple of li, we obtain zero intensity. 

s The Fraunhofer diffraction pattern of a slit (as aperture) formed by a slit source of light 
consists of a series of vertical fringes. In this pattern, the central vertical fringe is the 
brightcst and thc intensity of other fringes decreases rapidly. The width or central fringe 
is doublc of that for other fringes. 

e The diffraction pallern of a circular aperture consists of concentric rings with a central 
bright disc. Thc first dark ring appears when sin 0 = 1.22 7L ID. 

- - - - 

9.5 TERMINAL QUESTIONS 

1. A singlc slit has  a width of 0.03 mm. A parallcl beam of light of wavelength 5500 A, is 
incident normally on it. A lens is mounted behind the slit and focussed on a screcn 
located in its focal planc, 100 cm away. Calculate the distance of the third minimum 
from Lhc centre of the diffraction paltcm of the slit. 

2. A helium-ncon lascr emit.? a diffraction-limited beam (li = 6300 A) of diametcr 2 mm. 
What disunctcr of light patch would the beam produce on the surface of the nioon at a 
distance of 376 x 103km from thc earlh? You may neglect scattering in earth's 
a trnosphcrc. 

9.6 SOLIJTIONS AND ANSWERS 

SAQs 

1. Wc know that angular spread of the central maximum is from 

For small 8, wc have sin 8 = 8 and wc find that principal maximum is spread from 
h h 

@ = -i; lo ' = -- b ' , 



Similarly, you can show hat the first sccondary maximum on thc positive side cxtcnds I'raun hokr Diffraction 

h 2h h 2h 
[ram 0 = - to 0 = - and on thc negative sidc Iiom 0 = - - lo €I = -- 

b b b b 

Thus we sce that the central maximum is twice as wide as a sccondary maxima. 

2. Wc know that 

b sin 8, = h 

. . (0.3 x 10-'cm) sine, = 4358 x 10-8cm 

or 

sine, = 1.45 x 

In the small anglc approximation we can take 

8, = 1.45 x rad 

and 

e2 = 2.90 x 109 rad 

On comparing these values with those given in Example 1 for the first and second 
minima, you will note that violet light is diffracted about 27% Icss. 

TQs 
I .  From Eq. (9.9) we know that the conditions for minima are givcn by 

Hcrc b = 0.03rnrn = 3 x 10-~cm, n = 3 and h = 5500 A 

. . nh 3 x (5500 x 10-km) = 5,5 sin 8 = - = 
b 3 x 1W3cm 

In thc small anglc approximation, sin 8 G €I z lane 

. . x = 5.5 x 10 -2 x (100 crn) 

= 5.5 cm 

2. Suppsc that the light patch on the Moon is taken to bc Airy disc oldiamelerx of a 
dilrraclion limitcd beam of inilial diameter 2 mm. Then using Eq. (9.13) we can write 

1 22 h 1.22 x (6300 x crn) 
sine = - 

D - (0.2 cm) 

In the small angle approximation, sine E 0 = 384.3 x lo4 rad. Sincex = 21.8 , we find on 
substituting the numerical values that 

x = 2 x (376 x 103krn) x (384.3 x lo4) 

= 289 km 


