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8.1 INTRODUCTION

We know from our day-to-day experience that we can hear personstaking in an adjoining
room whose door is open. Thisisdue to the ability of sound waves to bend around the
comers of obstaclesin their way. Yaou are aso familiar with the ability of water waves to
propagate around obstacles. You may now ask: Does light, which isan electromagnetic
wave, dso bend around comers of obstaclesin its path?In the previous block you have
learnt manifestation of wave nature d light in the form of interference: Light from two
coherent sources interfers to form fringed pattern, But what may puzzle you is the fact
that light casts shadows of objects, i.e. appearsto trave in straight lines rather than
bending around comers. This gpparent contradiction was explained by Fresne who
showed that the ease with which a wave bends around comersis strongly influenced by
the size of the obstacle (aperture) relative to its wavelength. Musc and speech
waveengthslie in the range 1.7 am to 17m. A door isabout 1 m aperture so that long
waved ength waves bend morereadily arcund the door way. On the other hand, wavelength
of light is about 6x10""m and the obstaclesused in ordinary experimentsare about a few
centimetres in size, i.e. 10°-10° times bigger. For this reason, light appears to travel along
straight lines and casts shadows of objects ingtead of bending around their comers.
However, it does not mean that light shows no bending, it does S0 under suitable
conditions where size of obstacles is comparablewith the wavelength of light. Yau can get
a fed for this by closaly examining shadowscast by objects. You will-observe that the
edges of shadows are not sharp. The deviation o waves from their original direction
due to an obstruction in their path iscalled diffraction.

The phenomenon of diffraction finds great use in daily life. Yau will learn that diffraction
places a fundamental restriction on optical instruments, including human eye, in respect of
resolution of objects. In this block you will learn that a lot of good physicsis involved in
diffraction limited systems.

The phenomenon of diffraction was first observed by Grimaldi, an Itdian mathematician.
And a systematic explanation of diffraction was given by Fresncl on the basis of Huygens-
Fresncl principle. According to it diffraction is atributed to the mutua interference of
sccondary wavelets from different parts of the same wavefront by taking phase difference
into account. (The interference phenomenon involves two coherent wave trains.)

For mathematical convenienceand easein understanding, diffraction is classified in two
categories. Fraunhofer diffraction and Fresnel diffraction. In Fraunhofer class of
diffraction, the source of light and the observation screen (or human eye) are effectively at

You may have seew TV lower in
Delhi. It is235m high and almost
three timestaller than Qutub Minar.
Haveyou ever thought: VWy isTV
transmission beamed from a height?
The TV transmission involves short
wavelengthsignals, » = Icm. These
arcblocked by hills, buildings axd
the curvatare of Earth, It isonly to
avoid blockagethat TV signals are
tranamitted from high towers. The
radio signals are reflected by the
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us. In contragt to this, theT.V.
signals which are microwaves, do
not gel reflected by the ionosphere.
Their transmission takes place along
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diffraction and near field §
diffraction, respectively.
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Fig.8.1: Observing diffraction

using a pair of razor blades

infinite distance from the obstacle. This can be done most conveniently using suitable
lenses. It is of particular practica importance in respect of the general theory of optical
instruments. Yau will learn about it in the next unit.

In Fresnd class of diffraction, the sourceor the observation screen or both are at finite
distances from the obstacle. You will recognise that for Fresnel diffraction, the
experimental arrangement is fairly smple. But its theoretical analysis is more difficult than
thet of Fraunhofcr diffraction. Also, Fresne diffraction is more generd; it includes
Fraunhofer diffraction as a special case. Moreover, it has importance in historical
perspective in that it led to the development of wave modd of light. You will leamn these
details in this unit.

Yau may ke aware o the preliminaries o diffraction phenomenon from your school
physics curriculum. Or you may have opted PHE-02 course on Oscillations and Waves. In
whatever Situation you are placed, you should refresh your knowledge.

Objectives
After studying this unit, you will bc able to
e stalesimple experiments which illustrate diffraction phenomenon
e dcscribcan experimental sct-up for diffractionat an aperturee.g. acircular aperture
cxplain that Fraunhofcr diffraction isaspecia caseof Fresnel diffraction
e discussthe concept of Fresnd half-period zonesand apply it to zone plate
® discussdiffraction pattern due toa circular apertureand a straight edge, and

& solve nurncricd problcrns.

8.2 OBSERVING DIFFRACTION: SOME SIMPLE
EXPERIMENTS

As you know, the wavelength of visible light ranges from 400 rm to 700 nm. And to S32
diffraction, careful observations have to be made. We will now familiarise you with some
simple Situationsand cxperiments to observe diffraction of light. The pre-requisits for
thesc arc: (i) asourcedf light, prelerably narrow and monochromatic, (i) a sharp edged
obstacle and (iii) an obscrvation screen, which could be human retina as well.

1. Look a adistant street light at night and nearly close theeye lashes. The light appearsto
streak out from the bulb. Thisisbecause light has bent around thecomers of your eydids.

2. Stand in adark room and look at a distant light bulb in another room. Now movedowly
until the doorway blockshalf of the light bulb. The light appears to streak out intothe
umbrarcgion of the dark room due to diffraction around the doorway.

3. Takc apicee of finccloth, say finc handkerchief or mudin cloth. Stretch it flat and keep
it closc to the cyc. Now locus your cye on adistant street lamp (atleast 100 m away)
through it. Do it at night. Do you observea regular pattern of spotsarranged alonga
reclangle? On carcful cxarnination you will note that thespots on the outer part of the
patiern appear coloured. Now rotate the handkerchief in itsown plane. Does the pattern
rotate? You will bcexcited to see that the pattern rotatesand the speed of rotation of the
pattern issame asthat of the handkerchief.

We are now tempted to ask: Do you know why is this pattem of spots obtained? Yau will
agree that the handkerchic( isamesh (criss-cross) of finc threadsin mutually
perpendicular directions. Obviously, the observed pattern isformed by the diffraction of
light {from the lamp) by the mcsh of the handkerchief.

4. Take apair of razor blades and one clear glasselectric bulb. Hold the bladesso that the
edges arc parallel and have a narrow dlit in-bctween, asshown in Fig. 8.1. Keep the slit
closc o your cyc and parallel to the filament. (Use spectacles if you normally do.) By
carcfully adjusting the width of the dlit, you should observe a pattem of bright and dark
bands which show some colours. Now use abluc or red filter. What do you observe?
Daocs the pattern become clearer?



5. Mountasmal bdl bearing carefully on a platecf glass with asmall amount of beeswax
<0 that nowax spreadsbeyond therim of the ball. Placethis opaguecbstaclein astrong
beem of light (preferably monochromatic) diverging from a pinhole. Under suitable
conditions, you will obgerve a bright spot, caled Poisson spot at thecentre of the
shadow cast by theball bearing. Thisexciting observation proved unchallengable
evidencefor diffraction of light.

$.3 PRODUCING A DIFFRACTION PATTERN

Yau will recdl that in the Fresnel class o diffraction, the sourceof light or the screen or
bath are, in generd, at a finite distance from the diffracting obstacdle. On the other hand, in
Fraunhofer diffraction, this distance iseffectively infinite. This condition is achieved by
putting suitable lenses between the source, the obstacle and the screen. A large number of
workers haveobserved and Sudied Fresnd and Fraunhofer diffraction patterns. A systematic
study of Fresnd diffraction patern from obstaclesdf different shapes e.g. smal spheres,
discs and apertures— circular, éliptical, square, or triangular — o different Szes vas done
by Indian PhysicistY. V. Kathvate under the guidanceof Prof. C.V. Raman, Their
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Fig.8.2: Schematicsof experimental arrangement used by Kathvate to observe Frasnel diffraction

experimental set up for photographing these patternsis shown in Fig. 82 It consistsof a
light tight box (length nearly 5 m) with a fine pinhole at one end. The light on the pinhole
from a 100 W lamp was focussed using a convex lens. A red filter vas usad to obtain
monochromatic light of wavelength 6320 A, The obstacle was placed at asuitable distance
(about 2 m) from the pinhole. The photographic plate was mounted an @ movable stand SO
that its distance from the obstacle could be varied. They usad sted bal bearings of radii
1.58mm, 1.98mm, 2.37mm and 3.17mm as spherica obgtacles. They also worked with
discs o the same sizes. (As such, you should not attach much significance to the
exactness Of these Szes) These obstacles, in turn, were mounted on aglassplate, which
was kept at a distance of about 2 m from the pinhole,

The photographic plate was kept at distancesof Sem, 10cm, 20cm, 40cm and 180cm from
the mounted glass plate (obstacle). For the last case, the diffraction patternsobtained from
these spheres are shown in Fig.8.3 (a). These patterns clearly show the distribution of light
intensity in the region of geometrical shadow of the obstacles.

Fig.8.3: Fesnel diffraction patterns: Kathvate experiments with
{a) spheres and (b) circular discs of four sizes

Fresnel Diffraction

Poisson was a nenber o the
committee which was appointed to
judgeFresnel's dissertation. To
disprove Fresnel, and hence wave
theory, Poissom argued that s central
bright spot should sppear 1the
shadow of a circular obstacle. His
logic, called reductio ad absurdum,
goes as follows: Congder the
shadow Of a perfectly round object
baing-cast by a paint source {0)
shown below.

According to the wavc theory all
the waves a theperiphery will be
in phase. This is because they have
cover ed the same distance from the
source. SO the waves starting from
the rim PP* and reaching C should
all be in phase @ the centre of the
shadew. Thisimpliesthat then
should beabright spot at the centre
of the shadow. Thiswas considered
absurd by Poisson. He was
definitely not aware that the bright
ot in question had already been
discovered by Maraldi almost a
century ago. Soon after Poisson"s
objection, Arago carried out the
experi nent usng adisk of 2mm
diameter. To hia surprise, he
rediscovered the central bright spot.
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Flg.8.4: Enlarged view of fringe
ad
1.58mm L?Bger aﬁ{jr i
1.98 mm (lower)

Aditisarectangular opening
whose width (0.1 mm or S0) is
much smaller than its length
(1 an a more).

The diffraction patternsfor circular discs of the same sizeareillustrated in Fig.8.3(b).You
will find that these patternsare dmost similar to those for spheres. Moreover.the
diffractionpatterns on the |eft half of this figure,which correspond to bigger spheresand
discs (radii 3.17mm and 2.37mm), show the geometrical shadow and a centra bright spot
within it. On the other hand, in the diffraction patterns corresponding to the smaller sphere
and disc of radius 1.98mm, the geometrical images are recognisable but have fringes
gppearing on edges. The fringe pattern around the central spot becomes markedly clearer
for the gohereand disc of radius 1.58mm. An enlarged view dof this pattern is shown in
Fig. 84. Theformation d the bright central spot in the shadow and the rings around the
centrd spot are the mog definiteindicators of non-rectilinear propagetion o light This
uggests that light bends in some specia way around opaque obstacles. These departures
from rectilinear propagation come under the heading of diffraction phenomenon.

Let us pausefora minute and ask: Are these diffraction patterns unique for a given source
ad obstacle?The answer 1o this question is Fresnd pauerns vary with the distance of the
source and screen from the obgtacle. Let us now study how this trangition evolves.

8.3.1 Spatial Evolution of a Diffraction Pattern: Transition from
Fremnd to Fraunhofer Class

To observe trangtion in the Fresnd diffraction pattern with distance, we have to introduce
a small modification in Kathvate’s experimental arrangement, as shown in FHg. 8.5(a). The
point sourceis now located at the focal point of a converging lens L. The spherica waves
originating from the source O are changed into plane waves by this lens and the wavefront
is now pardld to the diffracting screen with a narrow opening in the form of a long
narrow dit (Fig. 8.5(b)). Theee waves pass through the dit. The diffracted wavesare dso
plane ad may have an angular spread. You may now like to know the shape, sze ad
intengty didribution in the diffraction pattern on adistant observation screen.
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Fig 8.5 (a): Arrangement to observe transition in Fessnel diffraction pattern
(b) Cross-sectional view of thegeometry shown in (a) above.

1. When theincident wavefrontisgrictly pardle tothediffracting screen, wegeta
vertica patch of light when theobservation Screen i simmediatedy behind theaperture
Thatis, wegetaregion AB of uniform illuminationon the observation screen. Thesize
of thisregionisequd to thesizeof the slit both in width and height. The remaining
portion of theSyem isabsolutely dark. A plot of this intensity distributionisshown in
Fg.8.6 (a). From PtoA, theintensityiszero. AtA, itabruptly risesto /o and remains
congantfrom A' toB’. At B, itagain drops tozero. We cansay that AB  representsthe
edgesof thegeometricd shadow (and thelaw of rectilinear propagation holds).

2. As thescreenis moved away from the gperture, a careful observationshowsthat the
petch of light seen in (1) abovebeginsto losesharpness. If thedistance between the
obstacleand the observation screen islargecomparedto thewidth of thedit, some
fringes Start appearing at the edgesof the patch of light. But thi s patch resembles the
shapedf theslit The intensity distribution shows diffraction ripplingeffect somewhat
likethet shown in Fig. 8.6(b). Framthi s we can say that the intensity distributionin the
pattern dependson thedistanceat which the observation screen is placed.



3. When b (-Im) is much greater than the width of the it (- 0.1 mm), the fringesseen in Fresnd Diffraction
(2) above- closeto edge of the patch — now spread out and the geometrica image of the
slit can nolonger berecognised. Asdistance isincreased further, diffraction effects
become progressively more pronounced.

4. When bisvery large, i.e. once we have moved into the Fraunhofer region, ripples no
longer changecharacter. You can observe this pattern by puttingaconvex lensafter the
dit. Theobservation screen should be arranged so thet it isat the second focd planedf
thelens. Thesevariationsin Fraunhofer diffractionare shown in Fig. 8.6(c). Yau will
learn thedetails of theFraunhofer pattern in the next unit.
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Pig. 8.6: Spatial evolution of a diffraction pattern

From this we may conclude that the Fresnel diffraction can change significantly as the
distance from the aperture is varied. Yau mugt now be interested to understand these
observationsatleast qualitatively. First systematic efforl in this direction was made by
Fresnel. Let us learn about it now.

84 FRESNEL CONSTRUCTION

Let us consider a plane wave front represented by WW' propagating towards the right, as
shown in Fig. 8.7(a). First we calculate the effect of this plane wavcfronl at an external
point 7, on the screen at a distance b. Then we will introduce an obstaclelike a straight

cdge and see how intengity at P, changes.

.
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Fig.8.7: Fresnel construction (a) Propagation of @ plane wavefront and (b) Division of
wnvefrnnt inte annular spaces enclosed by concentrie circles

W know that every point on the plane wavefront may bc thought of as a source of

sccondary wavelets. We wish to compute the resultant effect at P, by applying

Huygens-Fresnel principle. One way would be to write down the equations of vibrations at

P, due to each wavelet and then gdd them together. This is a cumbersome proposition.

The difficulty in mathematical caculation arisesan two counls: (i) There arc an infinite 9
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number of points and each acts & a source of secondary wavclcts and (i) Since the
distance travelled by the secondary wavelets arriving at Py is different, they reach the
point P, with different phases. To get over these difficulties, Fresnel devised a simple
geometrical method which provided useful insight and beautiful explanation of diffraction
phenomenon from small obstacles. He argued that (i) It is possible to locate a series of
points situated at the same distance from P, so that all the secondary wavelets originating
from them travel the samedistance. (ii) We can, in particular, find the locus of those
points from where the wavelets travel a distanceb + g b+ 2‘%, b+ 3—h, and so on.

The Fresnel congtruction consists of dividing the wavefront into annular spaces enclosed
by concentriccircles (Fig. 8.7(b)). The effect at Py will be obtained by summing
contributionsof wavelets from these annular spaces called half period elements. When an
obstacle is inserted in-between the wavefront WW” and the point Pg, some of these half
period clements will be obstructed depending upon the size and shape of the obstacle. The
wavclcts from the unobstructed parts only will reach Py and their resultant can be
caculated easily by Fresnel’s mcthod. Let us now learn about Fresnel construction, half
period clements and the method of summation of the contributionsof secondary wavelets.

8.4.1 Half Period Elements

To discuss the concept of Fresnel’s haf-period elements we assume, for smplicity, that
light comes from infinity so thet the wavefront is plane. Refer to Fig. 88. It showsa plane
wavcfront Ww* /F of monochromariclight propagating along the z-direction. We wish 10

v

Fig. 8.8: Half period zones On a plane wavefront: A schemntic construction

calculalc the resultant amplitude of the field at an arbitrary point P, due 1 superposition
of al the secondary Huygens wavelets originating from the wavefront. To do so, we
divide the wavcfront into half-period zones using the following construction: From the
paint P, we drop a perpendicular PO on the wavefront, which cutsit at 0. The point O is
called the pole of the wavefront with respect to the point Py Supposethat b is the
distance between the foot of the perpendicular to Py, i.e. OP, = b. Now with P, &5 centre,
wc draw spheres of radii b + %‘ b+ —22—-h, b+ % and so on. Yau can easily visualise that
these spheres will intersect the plane wavefront in a seriesof concentric circles with centre
Oand radii 0Q,, 0Q,, 0Q,, ...., as shown in Fg.8.8. Thisgeometrical construction
divides the wavefront into circular strips called zones. The first zone is the space enclosed
by the circle of radius 0Q,, the second zone is the annular space between the circles of
radii 0@, and 0Q,. The third zone isannular space between the circles of radii 0Q, and
0Q, and so on. These concentric circlesor annular ringsare called Fresnel zonesor half
period elements. This nomenclature has genesisin the fact that the path difference
bctween Lt wavelets reaching P, from corresponding points in successive zones is A/2.



To compute the resultant amplitude at P, due to all the sccondary wavelets cmanating Fresnel Diffraction
from the entire wavefront, we first consider an infinitesmal arca dS of the wavefront. We

assume that the amplitude at P, due to dS is (i) dircctly proportional Lo the arca d§ since it

determinesthe number of sécondary wavelets, (ii) inversely proportiona o the distance of

dS from P, and (iii) directly proportional to the obliquity factor (1+ cos@), where 8 is the

angle between the normal drawn to the wavefront & dS and the linc joining dS to Py 6 is

zero for the central point O, Aswe go away from O, the value of 0 increases until it

becomes %0° for a point at infinite distance on the wavefront, Physicaly, it ensures that

wavefront moves forward. That is, there is no reverse (or backward) wave. The obliquity

factor takes the value 2 for forward direction. 1 for 6 = 90° and zero for 6 = 180°.

If we denote the resultant amplitudes at P duc to al thc secondary wavelets from the
fust; second, third, fourth. ..., nth zone by a,, a,, 8, a4, ..., & , then we can write

A
a, = Const x b—“ (1+ cos 6) 8.1)
n

where 4, isthe area of the nth zone and b, is the average distance of the nth zone from
P,

Eqg. (8.1) showsthat lo know theamplitudeof secondary wavclets arriving at 2, from any
zone, we must know A,. This, in turn, requiresknowledge of the radii of the circlcsdefining
the boundariesof the Fresnel zones. To calculate radii of various half period zoncsin terms
of known distances, let usdenote OQ, =r,, 0Q, = ry, 005 = r3, ..., 0Q, = r,. From
Pythagoras’ theorem wefind that the radiusof’ the first circle (zone) is given by

2 1/2
" =[[b + 22‘-} - bz} = Vor + 2

= VoA (8.2a)

The approximation A << b holds for practical systems using visible light. Similarly, the
radius of the nth circle (zone) is given by

2 172
i _p2
A l:[b + 2 }.] b ]

949 1/2
[nbx + 5{”—]

= Vnbr (8.2b)

N
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22
wherc we have neglected the term % in comparison to nb A . This approximation holds

for al diffraction problems of interest to us here,

It readily follows from Egs. (8.2a) and (8. hat the radii of the circlcsarc proportional
lo the square root of natural numbers, i.c. I, V2. V3, 4. . Thercfore, if the first zone
has radiusr,, the successive zoncs have radii 141 ry, 1.73 ry, 2, and so on. For He-Ne
laser light (A = 6328 A), if we take P, to bc 30 em away (b = 30 em), the radius of rhe
first zone will be 0.436 mm.

Let us now calculate the arca of each of the half-period zoncs. For the [irst zone

o) -4

a2
nbk+47\.

A=nnR

1l

nbh (8.32)

il

The area of the second zone, i.e. the annular region between the first and the second
circlcsis

1
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Refer to figure above and consider
the contributions from the (4 - 1)th
and nth zones. Firstly, the areas of the
two annular regions are
approximately cqual, i.c., the
amplitudes d secondary wavelets
starting from both the zones arc
equal. Secondly, the points on the
innermost circle of (n = 1)th zonce.g.
points like R are sitvated at adistance
of b+(n —2)A/2 from Py whereas
the points on the innemmosi circle of
nth zone e.g. points likeS arc sitvated
at adistance of b+ (n 1) A2 from
Py The path differcnce between the
secondary wavelets reaching Py from
R and S isA/2. This meansthat the
wavcsreaching /7, arc out of phase
by A/2 and cancel each other.
Similarly for every point hetween R
and S in the (n - 1)th zonc wehavea
corresponding point beiween Sand T
in the nth zone which haveapath
difference of A/2 or phasedifference
of 7 and hence cancel eech other.
Since the areas of the two zones are
approximately equal, we arrive at the
result that for every point In the

(n = 1)th zonewe have a pointin
the nth zonewhich isout of phase
by x or halfofa period.

Hencethe name half-

period zoncs.

nl(b + A2 -b]—mb A

2 2
n(rz - rl)

=2nbA-nbd =nbA (8.3b)
Similarly, you can readily verify that the area of the nth zone
A, = n(rﬁ - ’%—1) =nbh 8.3c)

That is, dl individua zones have ncarly the same arca. The physical implication of the
equality of zonc areas is that the amplitude of secondary waveletsstarting from any two
zoncs will be very ncarly cqual. Yau must however remember that the result containedin
Eq. (8.3) is approximate and is valid for cases where b nh. A more rigorous calculation
shows that the arca of a zonc gradually increases with e

LA
A= 71:7L[b + (n - 2} 2:'

114 ,
5] 7 denotes the average distanceof the nth zonefrom P, The

8.3d)

In thisequation b+ (’1 -

geometry of the nth zonc isshown in Fig. 89. It isimportantto point our here that the effect
of increnscin A, with # isalimost balanced by theincrease in the average distanceof thenth
zonc from P That is. the ratio A, /b, in Eq. (8.1) remainszA , which is constant,

Fig. 8.9 : Hall peried zones and thelr average distance from the pdrt d observation.

independent of n. Thismeans that the amplitude due to any zone will be influenced by the
obliquity factor; it is actualy responsible for monotonic decrease in the amplitudesof higher
zones(a, > @, > 4y, ..> a). AlS0, it isimportant for our computationto notethat phases of
wavelels from consceulive zoncsdilfter by one-haf of awavelength. Therefore, the
secondary waves from any two corresponding points in successivezones [nth and (n — 1)th
or (n+ 1)th] reach 7, out o phase by = or hdf of a period.

Suppose that the contribution of &l the sccondary wavelets in the nth zonc at P, is
denoled by a,, Then, the contribution of (n = 1)th zone & _,, will tend to annihilate the
effect of nth zonc. Mathematically we write the resultant amplitudeat P, due to the whole
wavelront & a sum of an infinite scrics whose terms are alternately positive and negative
but the magnitude of successve werms gradually diminishes; that is,

E=a +aye™+a,e M +a, ey

1]

a—ty + G —ag+ ..+ (-1)*la 8.4)
We will show that the Sum of this infinitc scries iscqua to a,/2. In words, the resultant
amplitude & P, duc to dl the sccondary wavelets emanating from the entire wavefront is
equal to one-hall of the contribution of secondary wavclets [rom the first zonc.

Thereare scveral methods of deriving thisresult. Herc we will describe asimplegraphical
congtruction. (The mathematical method isgiven asTQ.) Let AB, CD, EF, GH, ...
respectively denote the amplitudes of resultant vectorsa,, a,, a, 8, .. dueto thefirst,
sccond, third, fourth,...nh zonc. (Wcknow that a,, a,, a, & , .. a,areadternately
posilive and negative.) These vectors arc shown separately in Fg. 8.10(a) to show thelr
magnitudes and positions, But their uuc positions arc along the same line, asshown in Fg.
810 (b). The resultant of the first two zoncswill be the smal vector AD. But the resultant of the
fird three zoncsisthe large veetor AF; of the four zones thesmaller vector AH and Soon.

Refer o Fig. 8.10(a) again. Yau will note that the resultant of infinitely large number of
zoncsis cqud 10 a,/2. If we consider alinite number of zones, say 7, the resultant isgiven by



4 4
E@m) = 5 3 8.5)

where n is any number(odd or even).

To seethis, yau dosdly reexamineFig. 8.10(b). Yau will note that dl vectors representing a, ,
ay, Gy 4y, A€ |iNe segments whose midpoint coincides with the midpoint of a; (marked as—).
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Fig. 810: Phasor diagram for Fresnel (half-period) zones. Individual amplitudes are shown in (a).
Actually all vectorsarc along the same line. This is shown in (b). The resultant
amplitudes due to #( = 2, 3 ...) zones are shown In (c).

(You mugt convince yoursdlf about this) In other words, the veclor representing a,, isa
line, haf of which is above the horizonta line passing through the midpoint of a, and the
other hdf isbelow thisline. Theresultant of n zones is a veclor joining A Lo the end of
the vector representing a, When n is odd, the end point of the veclor representing a, will
be above the horizontal line by a,/2, which proves thercquired result.

If n is even, the end point will be below this horizontal linc by a,/2. Added vectorially, we
have the same result. We thus se€ that the resultant amplitude at P due © » zones is half
the sum of amplitudescontributed by the first and the last zone. & will ke numerically
greater than a,/2 when n is odd and smaller then a,/2 when n is even. For example, the

14 MN . On the other

resultant contribution due to 7 zonesisAO, which is equal to 5

. _49 OP
hand, for 8 zones the resultant isAQ = 2" o

It may be emphasized that in this graphica method of summation of the series, we have
used three properties: (i) vectors representing a,, @, ... ac dl along the same straight line
(ii) aternatevectorsare oppositely directed and (iii) the magnitudes of a,, a,, ... decrease
gradualy. We now consider a smple example to illustraic these concepts.

Example 1

Congder a series with n = 100 in which each term isequal to the arithmetic mean of the
preceding and the following terms. Calculate the resultant.

Solution

As a special case, we can take the terms of the soricsas 100, 99, 98, ... 3,2, 1
. E = (100=99) + (98 =97) + (96 =95) + ... 4 ~3) + (2= 1)

1+1+1...50terms

=50

which is hdf of the first term. Now consider the relation

)

and teke different number of termsin this arithmelic series. If wc have only one term,
(a, = 100), we take the first term as also the last term as 100. Then we get

Fresnal Diffraction

Sofur wehave considered the effect
of a whole number of half period
elements & a given point. The sumof
the amplitudes dueto all the
secondary wavelets starting from the
nth zone was represented by a, But
so far wehave not computed the
magnitude and phase of this vector.
An obvious related problem isto
calculate the effect at P duetoa
fraction of a given half period
element. Wecan do this easily by the
vector summation method. We divide
aFresnel zone into a series of 7 sub-
zones of equal areas. Refer tofigure
below. It shows such a division for
the annular space between (7 = 1)th
and ath circles. O istaken as centre
and circles of dightly differing radii
havebeen drawn such that the
annular space between two
consecutive circles encloses equal
arca, NOW within the areacovered by
a sub-zone, we can neglect variation
ininclination factor. Since all these
sub-zones have been drawn so that
they have equal areas, the amplitude
at Py duc to these small equal arcas
will bethe same. But the phases will
change continuously from one
sub-zone to the next sub-zone by
A2n since the phase difference
between the secondary wavelets
starting from the innermost to ihe
outermost sub-zone of any one

Fresnel half periodwnc isl or. If

2

we maken very large, wewill have
infinitesmally small but equal areas
and phases of wavclcts from these
vary continuously and uniformly.

Thus wc have a set o disturbances of
equal amplitude hut uniformly
changing phase such that the phase
difference between the two extreme
disturbances is#, These extreme
vectors are represented by AA* and
BB’ in thefigure shown on the next
page. Weknow that in such acase
the vector diagram isa semicircle
and the resultant of the summation
o amplitudes isthe diameter AB.

13
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Now we will cormpute magnimde and
phase of the resultant AB. If dl the
disturbances from the subzones were
in the same phase, the resultant would
have been aline dong AA” and equal
to thelength of thearcof the
semicircleAB (= r) of radiusr. But
wefind that the actual resultant
amplitude isAB =2r, Thusthe

resultant amplitude i§ =ltim$
rr oIt

thevalue which would ¢ obtained if
al hewavelets within aFresnel half
period element had the same phase.
Sincethe lineAB isparallel tothe
line MM, we see that the resultant
phaseof vector AB is the some as that
of thevector MN representingthe
disturbance starting from themiddle

. point (M) of the zone, In other words,
AB isperpendicular to AA. 'hat is, it
is aquarter-period behind the wavel et
starting from the innermost sub-zone.
Wecan find, in asimilar manner, the
resultant contribution due to the next
half-period zone. It isgivenby CD
and differs from AB by &. The
resuluant of the sum of these two
zonesis thesmaller vector AD. The
magnitudesof vectors and their
phasesfor succeeding zones give rest
of the figure.The resultant curveisthe
vibration spiral with gradually
smaller and smaller semicircles until
eventually it coincides withZ, The
resultant of dl the half-period
elementsisAZ whichishalf of hat
which would be produced by thefirst

- 1,21

zonealéne. It is equal to e o
timesthat which would be produced
by dl the wavelets from thefirst wne
acting together in thesame phase.

14

9 an__
§—2+2-100

ext We teke two terms, Then
€= (100-99) =1

Also
4 Gy 100
2 2 - 2 2
= 50-495 =05
For three terms €= (100-99) +98 = 99
4 4 _ -
ad 2t = 50+ 49 = 99
For four terms, £ = (100-99) +(98-97) = 2
ad A% sy 485=15
5, t5 =50-485=1
For five terms £ = (100 —99) + (98 —97) +96 = 98
L -
ad 2+2—50+48-98
For six tems = (100-99)+(98-97)+ (%6 -95) = 3
and G, % _ g0 475225
5 +5 = 50-475 =2

a
and S0 on. Thus we see that £ is given by 51 + a—z" to afairly good degree of accuracy.

8.4.2 Rectilinear Propagation

Refer 1o Fg. 811 Light originatesfrom a point sourceand propagatestowardstheright.
Supposethat thesourceis | m away from the aperture. We may take the sphericd wave
fdling an the gpertureas nearly a plane wave. (Theradiusd curvatureof theincident

Fig. 811: Trosnal construction and rectilinear propagation of light

sphericd wavewill nat quditatively changetheargument.) Let uSwork out thesizesof
Fresnd hdf period clements for the typica casewherethescreen is30 am away from the
aperture. Taking %, = 5X 10~ ¢cm, weget 7,=V(30 cm) x (5 x 10~ cm) =387 x 102 cm.
This means that the diameter of the firgt zoneislessthan 1 mm. Let US consider the 100th
zone. Itsradius 7,4, = ¥30 €M x 100 x 5 x 10~ an = 387 x 10" 'em 0 that thediameter
will bealittle less than 1cm. Therefore, if the apertureisabout 1.am in diameter, it will
accomodateover 100 Fresnd zonesand the amplitudeat P, due to the exposed part of the

a a
wavefront will bei1 + —12“’.Sincea,, will befairly small, theintensity at Py will be




essentidly hdf of thet dueto thefirst hdf period zone, which isthe intensity expected at P, when Fresnel Diffraction
the aperture iscompletely removed. \We thus find that even throughasd | gperturewe get the
origind intendity at P, That is light travelsin astraight linefor dl practical purposes.

Let us now understand the formation of shadowsand illuminated regions due to an
obstacle (Fig. 8.12). Consider the point P, whosepoleis O, If the distance between 0,

Fig. 812 Fresnel CONSrUction and formation of shadows/illuminated rEQONS
and theedgeA of the obstacleis nearly 1 cm, over 100 haf period elements will be
a
accomodated in it. And as seen above, the intensity at 7, will ke nearly equal to 5‘ . In

other words, he obstacle Twill have no effect at the point P. Similarly, at P, whichis
taken 1 cm inside the geometrical edge of the shadow, over 100 hdf period elements

a
around 0, are obstructed and the intensity a P, will be less than %0 , which is almost

negligible. This implics almost complete darknessat P,. In other words, the obstacle has
completely obstructed the light from the source and the region around point P, isin the
shedow. Only around P, which signifies the geometrical edge of the shadow, wefind
fluctuationsin intensity depending on how many hdf period elements have been altowed
to pass or have been obstructed. Thisexplainsthe observed rectilinear propagation of light
since Fresnel zones are obstructed or alowed through by obstaclesof the size of afew
mm for these typical distances.

A special optical device, designed to obstruct light from alternate half-period elementsis
known as Zone plate. It provides experimental evidence in favour o Fresnd's theory. Let
us learn about it now.

843 TheZone Plate

The zone plate isa special optical device designed to block light from alternate
hall-period zones. You can easily make a zone plate by drawing concentriccircleson a
white paper, with their radii proportional to the squareroots d naturd numbers and
shading alternate zones. Fig.8.13 shows two zone plates of several Fresnel zories, where

Fig. 6.13: Zone plate: (a) positive (b) negative

al even numbered or odd numbered zonesare blacked out. Now photograph these

pictures. The photographic transparency (negetive) in reduced Size actsas a Fresnd zone

plate. (Recently, Gabor has proposed a zone plate in which zones change transmission

according to a sinusoidal wave.) Lord Raylcigh made the first zone platein 1871, Today 15
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zone plates are usad to form images using X-rays and microwavesfor which conventional
lenses do not work.

If you now pause for a while and logically reflect upon the possible propertiesof a
Fresnel zone plate, you will reach the following conclusions:

1. A zoneplate actslike aconverging lens (see Example 2) and producesa very bright
spot. To understand the formation of the spot, let ussuppose that the first ten odd zones
areexposad to light. Then, Eq.(8.4) tellsus that the resultant amplitudeat Pg i sgiven by

Ep =0, +ay+ a5+ .. + ayg 8.5)

If the obliquity factor does not produce much change, we may write &, = 10 a,, which
means that the amplitude for an aperture containing 20 zones is twenty times and intensity
is400 times that due to a completely unobstructed wavefront. Thisisillustrated in
Example 2

Example 2
Show thet a zone plate acts like a converging lens.

Solution

Refer to Fig. 8.14. It shows the section of the zone plate perpendicular 1o the plane dof the
paper. § isa point source of light at a distance U from the zone plate and emits spherical
waves. We wish to find the effect at P, a a distancev from the plane of the zone plate.

Fig.8.14: Action d a zone plateas a converging lens

In this zone plate we divide its plane into zones bounded by circles with
centreat 0 and radii OQ,, 0Q,, 005, ... 0Q, such that the path of the ray from § to P,

. A . . .
increases by 5 from successivezones. Then we can easily write

§Q,+0 Py = u+v+-723

SQ2+Q2P0 = U+VvV+ "2‘}‘

2
SO, + Q, Py =u+v+127L
By Pythagoras’ theorem we can write
50, = \s0* + 0Q?
s n
= u2+,-§=u+2—u'+..

where r,, isthe radius of the nth zone,

Similarly, you can convince yourself that

Q. P, = v+§9‘; +...



r2
If », << u Orv, wecan ignore terms higher then 5"; or

o
2v.chce

§Q.+Q. P +r%++r'2’—++—")‘b i

0.+0. P,=u o TVt Sutvis (by congtruction)

That is, the radii of the circles are proportional to the square root of natura numbers, as
before.

r2
If we identify;gi asf,, the focd length of he zone plate, we find that

+

gl
<=
S[S

1
Ja
which is identical to the lens equation. Therefore, this device behaves like a converging
lens with afoca lengthf = rZ Inh and forms a real image of § at P,

2. Thezoneplate hasseveral foci. To understand this, we assume that the obscrvation
screen isat adistanceof onefocal length from the diffractingaperture. Then it readily
followsfrom theabove exampletha the most intense (first order) focal point is situated
at fy =ri/\ . Togive you afed for numerical values, lct Uscalculate f; for a zone plate
with radii 7, = 0.1¥n ¢m and illuminated by amonochromatic light of wavelength
A =5500 A. Yau can easily see that

4l (0.1 cm)?
f=%= 5500 x 10% em ~ 12

To locate higher order foca points, wenote from Eq. (8.2b) that for 7, fixed, n increasesas b
decreases. Thusfor b= f,/2, N =2. That is, a P, moves towardsthe zone plate dong theaxis,
the same zond areadf radius r, encompasses more half-period zones, At this point, each of
theoriginal zonescoverstwo half-period zones and al zonescance. When b=£/3,n = 3.
That is, three zonescontribute from theorigina zoned radiusr,. Of these, twocancel out but
oneis left to contribute. Thus other maximum intendty points dong theaxisar ¢ Stuated at

182 o o 182 _182
—3—cm,f5— 5 cm,f; = 7 ©

and so on. Between any two consecutive 7 foci, thercwill be dark points.

r‘
f, = o, for n odd. For the above numericdl example, f; =

85 DIFFRACTION PATTERNS OF SIMPLE
OBSTACLES

From Sec. 8.3 you will recal that by utilizing Kahvatc's experimental arrangement, the
Fresnd diffraction pattern of various apertures and obstacles could be photographed by
varying distances between the source, the object and Ihe photographic plate. Wc wilt now
use results derived in Sec. 8.4 to explain the observed diffraction pattern of smple
obstacles like circular apertureand straight edge.

We begin by studying the Fresncl diffraction patiemn of a circular gpcrturc.

85.1 ACircular Aperture

Refer to Fig. 8.15. It shows a sectional view of the experimental arrangement in which a
plane wave isincident on a thin metallic sheet with a circular apcrturc. You will note that
the plane o the wavcfront is parallel to the plane of the metal plate; both being
perpendicular to the plane of the paper.

Let us calculate theintensity a a point P, situated on the line passing through the centre of
the circular apertureand perpendicular to the wavefront. Suppose that the distance between
the point 7 and the circular apertureis b. As discussed earlier, the intengity at the
observation point due to the entire uninterrupled plane wavcfrontisgiven by Eqg. (8.4),

Fresnd Diffraction

It isinstructive tocompare the
action of a converging lensand a
zone plate in forming a real image
of an object. Rcfer to figure below
which shows a converging lens.
Consider two raysOABI and OCDI.,
Takingthe refractive index for air
and glass as p, and p,, the optical
path lengths of these rayswill be

B OA +p AB +p, Bland p, OC +
B, CD +p, DL

Thelensis so designed that these
optical paths areequal. Thisistrue
for dl other rays, e.g. OEG!. Thus
different rays starting from O reach
| in the same phase and form a
bright image.

In a zone plate (Fig. 8.14), altemaie
zones are blocked. Therefore, rays
fmm the source § after passing
through the first, third, fifth, etc.
wncs reach the point Py with a path
difference of X, 2X, 3X , ...and
hence reinforce cach other. This
results in the formation of a bright
image at Pg. Obviously, we will get
several positions of bright images if
the path difference between the
successiveexposed zones is A .

17
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where a,, a,, ... etc. give the contributionsdue to successiveFresnel zones. Our problem here
can be solved by constructingappropriate Fresnel zones and finding out as to how many of
these hdf period d ements are transmitted by the aperture. However, it isimportant to note
that for an aperturedf agiven size, the number of hdf period el ementstransmitted may not
awayshe thesame. Thisis becausetheradii of the Fresnel zonesdepend upon thedistance
of pointP, from O (r, = Yn X b). You can easily convinceyoursdf that if the:pir_lt Pyisfar
away from theaperture( b is very large), the radiusof thefirst zone, equal to YA B, may be
larger then theradiusof theaperture. In such asituation, al the secondary wavel etsgtarting
even from theentirefirst zone alone may not be transmitted. That is, the wavel etsfrom a
smadl portion of thefirst Fresnel zone only are transmitted.

A
o
2

WI

Fig. 8.15: Diffraction by a circular aperture: A cross-sectional view of the experimental arrangement

The next question we have to answer is How to calculate the amplitude at P, when the
aperture has tranamitted only a fraction of the first Fresnel zone? As a first approximation,
we assume that the wavelets arrive at Py in phase. (Thisis quite justified because the path
difference between the extreme wavelets within anyone haf period elementsis A/2 and
since only afraction of thefirst zone may be transmitting here, the net phase difference
will be correspondingly less) Further, the inverse square law for intensity tells us that the
amplitude at P, will be inversely proportional to 6. Hence, the effect a Py, which isat a
large distance, will be quite small.

As the point P, moves towards the aperture (b becomes smaller), the zone size shrinks and
agreater part of the central zone is transmitted. As a result, the intensity increases
gradudly. As the observation point comes closer and closer, with the shrinking of the sizes
of zones, a stage may reach when the first zone exactly fills the aperture. Then VbA , the
radius of the first zone-is also the radius of the aperture. We know that the first zone
contributes a; to the amplitude a P, Compare it with the situation where the obstacle
with circular apertureis not present. The entire wavefront contributesbut the amplitude at

Pyis > Sinceintensity is proportional to the squareof amplitude, the intensitiesat P,

2
with and without the aperture are respectively a? and % . That is, theintensity at a given

paint is four times as large when the apertire isinserted in the path then when it is
completdy removed. This surprising result is not apparentin the redm of everyday experience
dominated by rectilinear propagetion of light

As the observation point P, comes still closer, the circular aperture may transmit first two
zones. The amplitude will then be( a, — a,) which isexpected to be very small. The
additiond light produces practically zero amplitude, hence darkness, at Py, Bringing the
point Py gradudly closer will cause the intensity to pass through maxima and minima
aong the axisof the aperture depending on whether the number of zones transmitted is
odd or even. |f we continue to bring the point £, closer to O, the number of Fresnel zones
4
2
point P, is so close that an infinitely large number of zones contributeto the amplitude.

transmitted by the gperture goes on increasing. The value—= isfinally reached'when the



The same variation in intensity should be experienced if the point P, is kept fixed and the
radius of the aperture is varied continuously. This can bc done experimentafly but is
somewhat more difficult.

We have calculated the intensity at pointson the axis but the above considerations do not
give any information about the intensity at points off the axis. A detailed and complex
mathematical analysis which we shall not discuss here, shows that P issurrounded by a
system of circular diffraction fringes. Photographs of thesc [ringe patterns have been taken
by several workersand we referred to Kathvate's experiments carlier in this unit.

We now illustrate the conceptsdeveloped here by solving an exampie.

Example 3

In an experiment abig plane metal sheet has acircular aperture of diameter 1 mm, A
beam of parallel light of wavelength %, = 5000 A is incident upon it normally. The shadow
iscast on a screen whose distance can be varied continuoudy. Calculate the distance at
which the aperture will transmit 1,2,3, ... Frcsncl zones.

Solutipn

Let by, by, by, ..., b, be the distancesat which 1,2,3, ..., n zoncs are transmitted by an
apetureof fixed radius . FnMm Eq. (8.2 b) we know that

nb A =r2

S0 that b, = £
n
. i -2 _ _(05cm)
sncer isfixed. Hence b, - % = S x 105em 50¢cm
Similarly, we find that
.2 _S0cm _ =30 . - 0cm _
b, w= 2 - 25cm, by = 3 cm = 16.7 cm, b, = i 125 cm

by = 10cm, b = 83 cm, b, = 71 cm, by = 6.2cm and so on.

The amplitudes corresponding to these distances are plotted in Fig. 8.16.

Another conclusion of historic interest followsif we substitute the gpcrturc by acircular
disc or a round obstacle just covering the first Fresncl zone. The light reaching the point
of observation P, will be due to al zones except the first. The second zone is therefore the
first contributing zone and the intensity of light spot at the centre of the shadow of the
obstacle will be ailmost equally bright as when the first zone was unobstructed.

You may now ask: Why is the bright spot at the centre only?This is because thereis no
path difference and hence phase difference between waves reaching an axial point. At any
other off-axis point, waves will reach with different phases and may tend to cancel
mutually. The existenceof this spot was demonstrated by Arago, though Poisson gave his
theoretical argumentsto disprove wave theory o light.

You may now like to answer an SAQ.

SAQ 1

Acoin hasadiameter of 2cm. How many Fresncl zoncsdocsit cut off if the screenis2m
away? Do you expect to see abright spot at thecentre? If wec move the screen to a distance
of4 m, h0\1\4 many zones will it cut off?Will the bright spot now look brighter? Why? Take
A=5x10""m.

So far we have discussed diffraction patterns which had axia symmetry: the object or
aperture was circular and the plane wavefront originated from a point source. We now
wish to consider the case wherein sourceis a dit source. This source will emit cylindrica
waves with the dit as axis. We wish to study the diffraction pettern of a straight edge.

Fresnel Diffraction

bicm}

Fig. 8.16. Variation of amplitades
at axial points at
differentdistances from
theaperture

Spend

2 min

19




Diffraction

‘The dlit has

avery small width

compared to its tength. Or we may
say hat in comparisen to its width,
it hasan infinite length.

Fig. 8.18: Intensity distribution in

20

the diffraction pattern
duetoastraight edge

8.5.2 A Straight Edge

Let § be adit source perpendicular to the planed the pgper. Thissendsacylindrica
wavefront towardsthe obstacle which isagtraight edge perpendicular to the pgper. Yau can
take athin metal sheel ar arazor blade with the sharpedge pardld to thedlit. Fig. 8.17(a)
showsascction perpendicular 10 the length of thedlit. Thelinejoining § and £, the point on
the wavefront touching the cdge of the straight edge, when produced meetsthe screenaat -

(a) (b

Pig. 8.17: (u) Crusssectional view of the gcomctry to observe diffraction due to a straight edge and
(b) Fresnd constructlon divides the cylindrical wavefront in half period strips

Py,which isthe geometrical boundary of the shadow. Consgider any point Pon thescreen. A
linejoining it to § cutsthe wavefront & R. We wish to know how intensity varieson the
screen. Thiscd culaion is somewhat complicated because. unlike the previouscase, we now
haveacylindricd wavefront. Morcover, the obstacle does not possessan axid symmetry.

For a planewave and obstacles with axia symmetry you know how to construct Fresnd
zones. To condruct hdf period dementsfor astraight edge, we dividethecylindrica
wavefrontinto strips. As before, we make sure in the congtruction that the amplitudesd the
waveetsfrom these Sripsarriveat Py out of phaseby # so that alternate termsare podtive
and negative. This isachieved by drawing aset of circleswith P, ascentreand radii

b, b+12“ ,bt 2—2}” . CUtting the circular section o thecylindrical waveat pointsQ, AA’, BB,

CC', ... Fg. 8.17(b). If linesare drawn through A, A', B, B' &tc. normd to the planeof the
paper, the upper as well as the lower haf of the wavefront getsdividedintoaset of
half-period strips. These half period strips stretch aong the wavefront perpendicularto the
planed thepaper and have widths OA, AB, BC, ... in the upper hdf and QA’, A’B’, BC, ... in
the lower hdf. Yau mey recdl that Fresnel zonesare o nearly qual area. For hdf period
gtrips, thisdoes not hold. Theareas d half-period stripsare proportiond to their widthsand
thesedecrease rapidly as we go out dong the wavefront from O,

From the geometry of the arrangement it is obvious that on the screen there will be o .
intengty variaion along the direction pardld 1 the length of the dit. Therefore, the bright
and dak fringes will ke straight lines pardld to the edge.

A plot of theoreticdly calculated intensity distribution on the screen is shown in Fig. 818,
Yau will nate the following sdient features

(i) Aswego from a point P’ desp inside the shadow towards the point Py defining theedge
of theshadow, the intendity gradudlly rises. At P/, theintensity isamost zero.

(ii) At Po, theintengty isonefourth of what would have been the intensity on the screen
with the unobgtructed wayefrort.

(iii) On moving further towardsP, theintensity risessharply and goesthrough an dternating
series of maxima and minimadf gradualy decreasing magnitudebeforeapproaching the
vauefor the unobstructed wave Thisisexpectedsinceeffect d theedgeat far of f
diganceswill be dmost negligible.



(iv) Theintensity of the first maximum is greater then the intensity of unobstructed wave, Fresnel Diffraction
i.e. it isgreater than 4 timestheintensity at Py. Beyond these alternate maxima and
minima, thereis uniform illumination.

(v) Thediffraction fringes are not of equal spacing (asin interference experiments); the
fringes gradually come closer together as we move away from the point Pg.

You may now like to know atleast qualitative explanation of these results. From Fig. 8.17
we note that the line joining P and § dividesthe wavcfrontinto two parts. The amplitude
of wave at P is dueto the part WE of the wavefront, which is complctcly unaffected by
the straight edge. The amplitude at P will be maximum if RE contains odd number of haf
strips. This will happen if EP= RP = (2n + 1) A/2. (When EP - RP = n) , the portion RE
will contain even number of strips.) As pointed out carlier, the amplitudesdue to strips are
alternatcly positiveand negative. Therefore, as point P moves away from P, the
illumination on the screen will pass atematcly through maxima and minima when the
number of hadf period strips in RE is1,2,34, .... At P, only hdf of the wavcfrontEW
contributes. Therefore, the amplitude is halved and the intensity isone-fourth o the

unobstructed wavefront. —

It is worthwhile to ponder as to what pattern the geometry of the expermental F
configuration throws. We expect dark and bright bands parallel to the cdge. However, the

dark bands will not be completcly dark since the upper hall’ o the wavcfront RW always P 4
¢ ontributes light to this part of the screen, R

Let us now consider the Situation for the point P inside the geometrical shadow. Refer to
Fig. 8.19. Yau will note that the corresponding point R isshifted below the cdge so that the
illumination at P is due entirely to the wavclctsfrom the upper hdf of the wavefront; the

. . . ; Fig. 8.19: -sectional view of
lower portion having been blocked by the edge. Even the upper hadl' is exposed only in £ Cross-sectional view o

geometry shewn in

part. If the edge cuts off r strips of the upper half of the wavefront, the effect at P will be Fig. 8.17(a) when the
dueto (rt 1), (rt+2), (r + 3) etc. strips which may bc taken to bc equal to one-half of observation potnt isin
that due to (r + 1)th strip. This will rapidly diminish to zero @ shown in Fig. 8.18 because the geometrieal shadow

the cifectiveness of higher order strips goeson decreasing,.

Let us now deduce the width of thediffraction bands. Again refer to Fig. 8.17(a).
Supposc that we have the nth dark band at P. Then

EP-RP = n} (8.6)
From the AEPP,, if PP, = x, we have

n 2 172
EP = (bz + 2 =b[l +ﬁ]

b(ul-"fJ:m%ﬁ @®7)

2 p? b

where we have retained only first two terms in the binomial serics.

From the ASPP,,, we can similarly write

12
SP= @+ b+
Hence RP=SP—SR=b + = X2 (8.8)
’ - - 2 (a + 0) :
_ 12 1 X
and EP - RP= [b+ > b)—(b+2 aHJ
_1@2 2 A
_2[b a+b]_2b(a+b) 89)

For the nth dark band, we got
21
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x’a

W@ +b) nh
); ; '
or x = ni 8.10)

We thereforefind that the distances of the dark bands fromthe edge of the geometrical
shedow are proportiond to the square root of naturd numbers. Consequently, the bands
will get closer together as we go out from the shedow. This fact distinguishesthe
diffraction bands from the interference bands, which are equidistant.

To enable you to grasp these ideas, we now give a solved example.

Example 4

If in the above experiment a=30cm, b=30an and A = 5 X 1075 cm, caculate the
postion of the Ist, 2nd, 3rd and 4th minima from the edge of the shadow.

Solution
From Eq. (8.10) we know that the distance of nth minima from the edge of the shadow is
gven by

a +

X = ni
a

If we subgtitute given vauesd a, b and h and taken= 1.2, 3 and 4, we find tha

£ = 2 x (30cm) x (60cm)
1 30cm

172
x (5 x 1075 cm)]
= 7.75x 102 cm
X, = V2 x, = 1.09 x 10-'cm
x, = V3 x, = 134 x 10~lem
Xy = 2x,=1.55x107cm.

Fom these vadues we find that the distance between consecutive minima decreases
continuoudy as we move avay from theedge o the shedow.

You may now like to answer an SAQ.

SAQ 2

Ingtead of the straight edge we keep a narrow obstacle, say a wireof diameter 1 nm
What will be the intensity on the screen?

Let us now summarise whet you have learnt in this unit.

86 SUMMARY

e When thedistance between thesourced light and the observation screen or both
from the diffractingaperture/obstacle isfinite, thediffraction pattern belongsto
Fresnd class

® \When thescreenis vary close to theslit aperture/obstacle, the illumination on the
screen isgovemed. by rectilinear propagationd light.

e TheFresnd diffraction patern representsfringed images of the obstacle. Depending
on the distance, therecan bean infinite number of Fresnd diffraction patternsof a
given obstacle/ aperture.

® \When plane wavefronts areincident on adiffractingdit and the pattern is observed
an ascreen effectively at an infinite distance, thediffraction pattern belongsto
Fraunhofer type. Unlike the Fresnd diffraction, thereisonly one Fraunhofer
diffraction pattern.



e Fresnel construction for the diffraction pattern from acircular obstacle, when a Fresnd Diffraction
plane wavefront isincident on it, consistsot dividing the wavcfrontinto haf period

ZOnes.
e Theareaof each Fresnel half-period zoneisnearly equal to 1t b .

e Theresultantamplitude due to nth zone & any axial point is given by o

A
a, = Congtant X b—" (1+cos8)

n (

® Themagnitudeof resultant amplitude AB due to the first half period element iS %

timesthe value which would be obtained if al the wavefronts within the hall-period
element had the same phase.

® The phaseof theresultant vector of the first hdl. period zoneisltz- behind the phase

of light from thecentreof thezone.
e A zoneplateisan optical devicein which aliemate half-period zones arc blackened.

® InFresnd diffraction pattern due toacircular apcrturcthe intensity at an axial point
goesthrough a series of maximaand minimaas wc vary the distance of the point of
observation.

® Thediffraction pattern of a straight edgeconsists of aiternate bright and dark bands.
Thespacing between minima(or maxima) decrcases as wc move away from the
edgedf theshadow:

8.7 TERMINAL QUESTIONS

1 Starting from Bq, (8.4) prove theresult contained in Eq. (8.5). Assume that the obliquity
factor issuch that each term in Eq. (8.4) islessthan (he arithmetic mean of its preceding
and succeeding terms.

2 The eighth boundary of azone plate hasa diameter of 6mm. Where isits principal foca
point located for light of wavelength 5000 A?

3. How many Fresnel zones will be obstructed by asphere of radius1 mm if thescreen is
20cm away?Take A = 5000 A. If thedistance of the screen is increased to 200 cm, what
will bethesize of the sphere which will cut off 10 zones?

88 SOLUTIONS AND ANSWERS

SAQs

1. Theradiusof the coinis equal to 1 cm. To know the number of zonesbeing obstructed,
we usetherelation

_
Y
wherer,=1cm b=200cmand A =5 X 10~ ¢m.
= (Lem)® :
(200cm) x (5 X 1075 cm)

100

You should expect to See a very dim spot at the centre.

When the screen is moved to 4 m, the number of zones being obstructed is given by
23




Diffraction ]
n= tﬁree-em)—&—ﬁx—le;‘huﬁ

%. -0
' The central spot is cxpected t0 be somewhat brighter. Does it not appear to contradict the

| / ! inverse square law?
. / 2. RcfertoFig.8.20 A paint P, outside the geometrical shadow issimilar tosuch apoint in
. the straight cdge. So we will have unequally spaced bright and dark fringes parallel to
Fio B2, A orosssectional view t_he wirc on cach side of the shadow. Whgt isthe intengity at_ 2ins dethe sta;jow?It_is
g 5.4 of the arr angementfor smply haf the effcet of the first haf period strip on either side of the thin wire. It will
producinggifraction show equdly spaced fringesinside the shadow.
duetoanarrowobstade
TQs

1. Werewrite Eq. (8.4) as

a a ay as as) 9 .
S R T o R e
a(Py) (2 a, 2J (2 a, 2] Z ®

When n isodd. the last term would bo % .Wearetold that obliquity is such that each temis

less then the arithmetic mean o its preceding and succeeding termsiee., a, <% @,_,ta,).
Then the quantitics in the parentheses in (i) will be positive. So when n is odd, the
minimum valuc of the amplitude produced by consecutive zones is given by

a(Py) > % (@, +a)

To obtain the upper limit, we rowrilc Eq. (8.4) as

= G4 _ Ga| _ % _ G| _  _ G
a(PO)—-[al—zJ [2 a3+2J (2 a5+2] y tan
(i)
Following the argument used in obtaining the lower limit on the amplitude, we find that
the upper limit is
a a,_
aPy<a -~ - “2 +a, (iii)

Since the amplitudes for any two adjacent zones are nearly equal, we can takea, _, = 4,
Within thisapproximation

a, +a, .
a (P < ) @iv)
The results contained in (ii) and (iv) suggest that when n isodd, the resultant amplitudeat
P, isgiven by
a, + a,
a (P()) = 2 (V)
Following the same mcthod, you can readily show that if n were even
a(py) = (v

2. D; =06 an so that r, = 0.3 cm. We know that

£ I3

~ nk



4 (03 cm)? Fresndl Diffraction

fo = BN "8 x (5 x 105 cm)
2.25 x 102 cm

225 cm

3.a) The radius of a Fresnel zone is given by
r. = \nAb :
Here we are told that 7,= 0.1cm b =20 cmand A = 5 X 10-Scm. _

o 1072 cn? _
bA ~ (20cm) x(5 x 105cm)

n=

(b) Inthispart we have to calculater, for given valuesof n = 10, b=200 an and
A=5x 10" %cm:

r, = V10 x (200cm) x (5 x 107 cm)

= 0.32 cm
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