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8.1 INTRODUCTION 

We know from our day-to-day experience that we can hear persons talking in an adjoining 
roonr whose door is open. This is due to the ability of sound waves to bend around the 
comers of obstacles in their way. You are also familiar with the ability of water waves to 
propagate around obstacles. ~ou 'may  now ask: Does light, which is an electromagnetic 
wave, also bend around comers of obstacles in its path? In the previous block you have 
learnt manifestation of wave nature of light in the form of interference: Light from two 
coherent sources interfers to form fringed pattern, But what may puzzle you is the fact 
that light casts shadows of objects, i.e. appears to travel in straight lines rather than 
bending around comers. This apparent contradiction was explained by Fresnel who 
showed that the ease with which a wave bends around comers is strongly influenced by 
the size of the obstacle (aperture) relative to its wavelength. Music and speech 

I wavelengths lie in the range 1.7 cm to 17m. A door is about 1 m aperture so that long 
wavelength waves bend more readily arcund the door way. On the other hand, wavelength 
of light is about 6x1P7m and the obstacles used in ordinary experiments are about a few 
centimetres in size, i.e. 104-105 times bigger. For this reason, light appcars to travel along 
straight lines and casts shadows of objects instead of bending around their comers. 
However, it does not mean that light shows no bending, it does so under suitable 
conditions where size of obstacles is comparable with the wavelcngth of light. You can get 
a feel for this by closely examining shadows cast by objects. You will~observe that the 
edges of shadows are not sharp. The deviation of waves from their original direction 
due to an obstruction in their path is called diffraction. 

The phenomenon of diffraction finds grcat use in daily life. You will learn that diflraction 
places a fundamenhl restriction on optical instruments, including human eye, in respect of 
resolution of objects. In this block you will learn that a lot of good physics is involved in 
diffraction limited systems. 

The phcnomenon of diffraction was first observed by Grimaldi, an Italian mathcmatician. 
And a systematic explanation of diffraction was given by Fresncl on the basis of Huygens- 
Fresncl principle. According to it,diffraction is attributed to the mutual interference of 
secondary wavelets from different parts of the same wavefront by taking phase difference 
into account. (The interference phenomenon involves two coherent wave trains.) 

For mahematical convenience and ease in understanding, diffraction is classified in two 
categories: Fraunhofer diffraction and Fresnel diffraction. In Fraunhofer class of 
diffraction, the source of light and the observation scrcen (or human eye) are effectively at 

You may have see11 TV IoNcr in 
Dclhi. It is 235111 high and almost 
three times taller than Ql~tub Minar. 
Have you ever thoughk Why is TV 
transmission beamed from a height? 
'Ihc TV transmission involves shod 
wavelength signals, X e lcm. These 
arc blocked by hills, buildings and 
the curvature of Eanh. It is only to 
avoid blockage that TV sighals are 
transmitted from high towers. The 
radio signals am reflected by the 
ionospheric layers before reaching 
us. In contrast to this, the T.V. 
signals which arc microwaves, do 
not gel reflected by h e  ionosphere. 
Their transmission lakes place along 
h e  line of sight. To get the T.V, 
signals aansrnined over long 
distances, geostationary satellites 
are used, which when placed at 
suitable heights reflecl these 
signals. 

Fraunhofer diffracdon and Fresnel 
diffraction are also called far field 
diffraction and near field 
diffraction, respectively. 



f7ig.X.I : Observing dlffradinn 
using n pair of razor bladcs 

infinite distance rrom lhe obstacle. This can be done most conveniently using sitable 
lenses. It is of particular practical importance in respect of the general theory of optical 
instruments. You will learn about it in the next unit. 

In Frcsncl class of diffmction, the source or the obscrvation screen or both are at finite 
distances from thc obs~aclc. You will recognise that for Fresnel diffraction, the 
expcrimen~l arrangement is fairly simple. But its theoretical analysis is more difficult than 
that of Fraunhofcr difhction. Also, Fresnel diffraction is more general; it includes 
Fraunholcr diffraction as a spccial case. Moreover, it has importance in historical 
perspective in Ll~at i t  led to thc development of wave model of light. You will learn these 
debits in this unit. 

You may be aware of thc prclirninarics of diffraction phenomenon from your school 
physics curriculum. Or you may have opted PHE-M course on Oscillations and Waves. In 
whatevcr situation you are placed, you should refresh your knowledge. 

Objectives 

Aftcr studying this unit, you will bc able to 

rp stale simplc cxperimcnts which illustrate diffraction phenomenon 

ea dcscribc an cxpcrimcnhl sct-up for diffraction at an aperture e.g. a circular aperture 

cxplain hat Fraunhofcr diffraction is a special case of Fresnel diffraction 

e discuss ~ h c  conccpt of Frcsnel half-period zones and apply it to zone plate 

e discuss diffncrion pattcm duc to a circular aperture and a straight edge, and 

e solvc nurncrical problcrns. 

8.2 OBSERVING DIFFRACTION: SOME SIMPLE 
EXPERIMENTS 

As you know, thc wavclcngth of visible light ranges from 400 nm to 700 nm. And to see 
diffraction, carcful obscrvations havc to be made. We will now familiarise you with some 
simplc situations and cxpcrimcnts LO observe diffraction of light. The pre-requisits for 
thcsc arc: (i) a source of lighl, prcfcrably narrow and monochromatic, (ii) a sharp edged 
obslaclc and (iii) an obscrvation scrccn, which could be human retina as well. 

1. Look at a distant slrcctdlight at night and nearly close the eye lashes. The light appears to 
slrcak oul from ~ h c  bulb. This is bccausc light has bcnt around the comcrs of your eyelids. 

2. Stand in a druk room and look at a distant light bulb in another room. Now move slowly 
until thc doorway blocks hnlf of thc light bulb. The light appears to streak out into the 
umbra rcgion of thc dark room duc to diffraction around the doorway. 

3. Takc a piccc of finc clolh, say finc handkerchief or muslin cloth. Stretch it flat and keep 
it closc to 1t1c cyc. Now locus your cye on a distant street lamp (atleast 100 m away) 
through it. Do il a1  nigh^. Do you observe a regular pattern of spots arranged along a 
reclanglc? On carcful cxarnination you will note that the spots on the outer part of the 
pallcrn appcar colovrcd. Now rotatc thc handkerchief in its own plane. Does the pattern 
ro(;llc? You will bc cxcilcd to see that the pattern rotates and the speed of rotation of the 
palcrn is samc as that of h c  handkerchief. 

Wc arc now tcmplcd to ask: Do you know why is this pattem of spots obtained? You will 
agrcc that Ihc hllndkcrchicf is a mcsh (criss-cross) of finc threads in mutually 
pcrpcndicular directions. Obviously, thc observed pattern is formed by the diffraction of 
ligh~ (frorn thc lan~p) by Ll~c mcsh of thc handkerchief. 

4. Takc a pair of razor hladcs and onc clcar glass elcctric bulb. Hold the blades so that the 
cdgcs arc parallcl :md llavc a narrow slit in-bctwccn, as shown in Fig. 8.1. Kmp theslit 
closc to your cyc and parallcl lo lllc lilarnent. (Use spectacles if you normally do.) By 
carcl'ully adjusting thc widlh of Ihc slit, you should observe a pattem of btight and dark 
bands which show somc colours. Now use a bluc or red film. What do you observe? 
Docs Lllc pattern t)cco~nc clcnrcr? 



5. Mount a small ball bearing carefully on a plate of glass wilh a small amount of h w a x  
so that no wax spreads beyond the rim of the ball. Place Lhis opaque obstacle in a smng 
beam of light (preferably monochromatic) diverging from a pinhole. Under suitable 
conditions, you will obbrve a bright spot, called P o h n  spot at the centre of the 
shadow cast by the ball bearing. This exciting observation proved unchallengable 
evidence for diffraction of light. 

$.3 PRODUCING A DWFRACTION PATTERN 

You will recall that in the Fresnel class of diffraction, the source of light or the screen or 
both are, in general, at a finite distance from the difficting obstacle. On the other hand, in 
Fraunhofer diRraction, this distance is effectively infinite. This condition is achieved by 
putting suitable lenses between the source, the obstacle and the screen. A large number of 
workers have observed and studied Fresnel and Fraunhofer difbction patterns. A systematic 
study of Fresnel diffraction pattern from obstacles of different shapes e.g. small spheres,, 
discs and apertures - circular, elliptical, square, or brianylar - of different sizes was done 
by Indian Physicist Y.V. Kathvate under the guidance of Prof. C.V. Raman. Their 

Poianon waa n member of the 
canrniuee which was appointed ~AY 

judge Frcsnel's disytation. To 
dispmvc Freanel. and hence wave 
Lhmry. Poiason stguul that I centnl 
high; spot should-- in Ihe 
ahadow of a circular ohnude. I-Iis 
logic, called ruluctio ad abarnium, 
goes M follows: Consider the 
shrdow of a perfectly d object 
baing caer by a point awra (0) 
ahown below. 

FIg.R.2: Schematics of exper~mcntal arrangement u d  by Kothvatc tc observe Frmnd diNmctlon 

experimental set up for photographing these patterns is shown in Fig. 8.2. It consists of a 
I light tight box (length nearly 5 m) with a fine pinhole at one end. The light on the pinhole 

from a 100 W lamp was focussed using a convex lens. A red filter was used to obtain 
monochromatic light of wavelength 6320 A. The obstacle was placed at a suitable distance 
(about 2 m) from the pinhole. The photographic plate was mounted on a movable stand so 
lhal i ~ s  distance from the obstacle could be varied. They used steel ball boarings of radii 

I 

l.SXrnm, 1.98mm. 2.37mm and 3.17mm as spherical obstacles. They also worked with 
discs of Ule same sizes. (As such, you should not attach much sipificrulce to the 
exaclness of these sizes.) These obstacles, in turn, were mounted on a glass plate, which 
was kept at a distance of about 2 m from the pinhole. 

Amording to the warc theory all 
Ihe waves a! the periphery will be 
in phaaa lhla i n  b w c  they hnve 
covered the ~ m c  diatancc from the 
sourct. So chc waves starting fmm 
the rim PP' and reaclling C should 
all be in phase a Ihe centre of the 
shadow. This implies chpt then 
should be a bright spot at tho centre 
of the shadow. This wcu considered 
absurd by Poisson. He was 
definitely not aware ha! the bright 
spot in question had alrendy bear 
diawved by Maraldi alrnos~ a 
century ago. Soon after Poi~aon's 
objection, Arago carried out the 
experiment using a disk of Zriun 
diameter. To hia surprise, hc 
rediacoved the central bright 

The photographic plate was kept at distances of 5cm, IOcm. a m .  40cm and 18km from 
the mounted glass plate (obstacle). For the last case, the diffraction patterns obtained from 
these spheres are shown in Fig.8.3 (a). These patterns clearly show the distribution of light 
intensity in the region of geometrical shadow of the obslacles. 

Flg.8.3: Fresnel diffraction patterns: Kathvate experlments with 
(a) spherm and @) circular discs of four slzes 



Dmractlon The diffraction patterns for circular discs of the same size are illustrated in Fig.8.3(b).you 
will f i d  that these patterns are almost similar to those for spheres. Moreover,the 
diffraction patterns on the left half of this figure,which comespond to bigger spheres and 
discs (radii 3.17mm and 2.37mm), show the geometrical shadow and a central bright spot 
within it. On the other hand, in the diffraction patterns corresponding to the smaller sphere 
and disc of radius 1.98mm, the geometrical images are recognisable but havc fringes 
appearing on edges. The fringe pattern around the central spot becomes markedly clearer 
for the sphere and disc of radius 1.58mm. An enlarged view of this pattern is shown in 
Fig. 8.4. The formation of the bright central spot in the shadow and the rings around the 
central spot are the most definite indicators of non-rectilinear propagation of light This 
suggests diat light bends in some special way around opaque obstacles. These departures 

- from rectilinear propagation come under the heading of diffraction phenomenon. 

Let us pause for a minute and ask: Are these diffraction patterns unique for a given source 
and obstacle? The answer to this question is: Fresnel pauerns vary with the distance of the 
source and screen from the obstacle. Let us now study how this transition evolves. 

8.3.1 Spatial Evolution of a Diffraction Pattern: Transition from 
Fresnel to Fraunhofer Class 

To observe transition in the Fresnel diffraction pattern with distance, we have to introduce 
a small modiTication in Kathvate's experimental arrangement, as shown in Fig. 8.5(a), The 

Fig&.& Enlarged view of fringe 
lor db of rad,l pint source is now located at the focal point of a converging lens L. The spherical waves 

1 3 m m  (upper) and originating from the source 0 are changed into plane waves by this lens and the wavefront 
1.98 mm (lower) is now parallel to the diffracting screen with a narrow opening in the form of a long 

narrow slit (Fig. 8.5(b)). 'These waves pass through the slit. The diffracted waves are also 
plane and may have an angular spread. You may now like to know the shape, size and 
intensity distribution in the diffraction pauern on a distant observation screen. 

A slit is a rectangular opening 
whose wicbh (0.1 mm or so) is 
much d l c r  than it.! length 
(1 an or more). 

Pig. 8 5  (a): Arrangerneat to obsene trandtloa In Pesnel dlffkactlon pattern 
@) Cros~-Pectlwnl view of the geometry s h m  in (a) above. 

When the incident wavefront is strictly parallel to the difbcting screen, we get a 
vertical patch of light when the obsefvation screen is immediately behind the aperture. 
That is, we get a region A'B' of uniform illumination on the observation screen. The size 
of this region is equal to the size of the slit both in width and height. The remaining 
pottion of the screen is absolutely dark. Aplot of this intensity distribution is shown in 
Fig. 8.6 (a). From P to A', the intensity is zero. At A', it abruptly rises to I. and remains 
constant h m  A' to 8'. At B', it again drops to zero. We can say that A'B' represents the 
edges of the geometrical shadow (and the law of rectilinear propagation holds). 

2. As the screen is moved away from the aperture, a careful observation shows that the 
patch of light seen in (1) above begins to lose sharpness. If the distance between the 
obstacle and the obsefvqtion screen is large compared to the width of the slit, some 
fringes start appearing at the edges of the patch of light. But this patch resembles the 
shape of the slit The intensity distribution shows d imt ion  rippling effect somewhat 
like that shown in Fig. 8.6(b). From this we can say that the intensity distribution in the 
pauem depends on the distance at which the observation screen is placed. 



3. When b (-lm) is much greater than the width of the slit (- 0.1 mm), the fringes seen in 
(2) above - close to edge of the patch - now spread out and the geometrical image of the 
slit can no longer be recognised. As distance is increased further, diffraction effects 
become progressively more pronounced. 

4. When b is very large, i.e. once we have moved into the Fraunhofer region, ripples no 
longer change character. You can observe this pattern by putting a convex lens after the 
slit. The observation screen should be arranged so that it is at the second focal plane of 
the lens. These variations in Fraunhofer diffraction are shown in Fig. 8.6(c). You will 
learn the dztails of the Fraunhofer pattern in the next unit. 

Pig. 8.6: Spatial evdutlon of a dlffractlon pattern 

From this we may conclude that thc Fresnel diffraclion can change significantly as the 
distance from the aperture is varied. You must now bc intcrcstcd lo understand these 
observations atlcast qualitlttivcly. First systematic efforl in this direction was made by 
Fresnel. Let us learn about it now. 

8.4 FRESNEL CONSTRUCTION 

I L ~ L  us consider a plane wavc front represented by WW' propagating Lowards the right, as 
shown in Fig. 8.7(a). First we calculate thc effect of Lhis plane wavcfronl at an external 
point P,, on the screen at a distance b. Then we will introduce an obstacle like a straight 
cdge and see how intensity a1 Po changes. 

I;ig.d:'l: Frcsncl construction (a) Propagrition IT a plol~c wavefront and (b) Dlvlsion of 
wnvefrnnt into annular spaccs cnclmcd by conmntrle circles 

Wc know that every point on Lhe plane wavefront may bc though1 of as a source of 
scconclary wavelets. We wish to compute the resultant cffcct a1 Po by applying 
Huygens-Frcsnel principle. One way would be lo write down the equations of vibrations at 
P, due to each wavelet and then qdd them together. This is a cumbersome proposition. 
Thc difficulty in mathematical calculation arises on two counls: (i) There arc an infinile 



Diffraction number of points and each acts as a source of secondary wavclcts and (ii) Since the 
distance travelled by the secondary wavelets arriving at Po is different, they reach the 
point Po with different phases. To gct over these difficulties, Fresnel deviscd a simple 
geometrical metliod which providcd uscful insight and beautiful explanation of diffraction 
phcnomenon from small obstaclcs..Hc argued that (i) It is possible to locate a series of 
points situated at Ihe same distance from Po so that all the secondary wavelets originating 
from them wave1 the same distance. (ii) We can, in particular, find the locus of those 

h 3h 
points from where the wavelcls travel a distance b + - b + 9, b + - and so on. 2' 2 ' 

Thc Fresncl construction consisls of dividing the wavehont into annular spaces enclosed 
by concentric circlcs (Fig. 8.7(b)). The effect at Po will be obtained by summing 
contributions of wavelets from these annular spaces called half period elements. When an 
obstacle is inserted in-betwccn the wavefront WW' and the point Po, some of these half 
pcriod clemcnls will be obslruclcd depending upon the size and shape of the obstacle. The 
wavclcts from thc unobstrucled parts only will reach Po and their resultant can be 
calculated easily by Frcsncl's mcthod. Let us now learn about Fresnel construction, half 
pcriod clcments and the mcthod of sumrnation of the contributions of secondary wavelets. 

8.4.1 Half Period Elements 
To discuss thc conccpt of Fresncl's half-period elcments we assume, for simplicity, that 
light comcs from infinity so that the wavefront is plane. Refer to Fig. 8.8. It shows a plane 
wavcfront W' F'I; of monochromaric light propagating along the z-direction. We wish to 

I'lg. 8.8: Hnlf pcrlnd zones on a plnne wavefront: A schemntic constructlon 

calculalc thc resultant amplitudc of thc field at an arbitrary point Po due to superposition 
of all thc secondary Huygens' wavelets originating from the wavefront. To do so, we 
dividc thc wavcfront into half-pcriod zones using the following construction: From the 
point Po wc drop a perpendicular PoO on the wavefront, which cuts it at 0. The p in t  0 is 
callcd thc polc of the wavcrront with respect to the point P,. Suppose that b is the 
disuncc betwecn the foot of Lhe perpendicular to Po, i.e. OP, = b. Now with Po as centre, 

h 2h wc dnw sphcrcs of ndii b + - 6 + 1, b + %, and so on. You can easily visualise that 
2' 2 

lhcsc spheres will inlerscct the plane wavefront in a series of concentric circles with centre 
O and ndii OQ,, 0Q2, OQ3, ...., as shown in Fig.8.8. This geometrical construction . 

dividcs lhc wavcrront into circular strips called zones. The first zone is the space enclosed 
by the circlc of radius OQ1, the second zone is the annular space between the circles of 
radii 0Q2 and OQl. Thc third zonc is annular space between the circles of radii OQ, and 
0Q2 and so on. Thcse conccntric circles or annular rings are called Fresnel zones or half 
peritd elements. This nomenclature has genesis in the fact that the path difference 
bctwccn Lhc wavelets rcaching Po rrom corresponding points in successive zones is v2. 



To compute the resultant amplitude at Po due to all the secondary wavclets cmanating 
from the entire wavefront, we first consider an infinitesimal arca dS of Lhc wavefront. We 
assume that the amplitude at Po due to dS is (i) dircclly proponional LO thc area dS since it 
determines the number of dcondary wavelets, (ii) invcrscly proportional LO lhc distance of 
dS from Po and (iii) directly proportional to thc obliquily raclor (I+ cosB), where 8 is the 
angle between the normal drawn to the wavefront at dS and lllc linc joining dS to Po. 8 is 
zero for the central point 0. As we go away lrom 0. thc value of O incrwses until it 
becomes 90' for a point at infinite distance on thc wavclronl. Physically, it ensures that 
wavefront moves forward. That is, thcre is no rcvcrsc (or backward) wave. The obliquity 
factor takes the value 2 for forward direction. 1 for 9 = 90" and zcro for 8 = 180'. 

If we denote the resultant amplitudes at Po due LO all the sccondxy wavclcts from the 
fust; second, third, fourth. ..., nth zone by a , ,  a2, a,, a4, ..., a, , Lhcn wc can write 

An a, = Const x - (1+ cos 0) 
bn 

(8.1) 

where A,, is the area of the nth zone and bn is the avcragc dislancc of thc nlh zone from 
PCP 

Eq. (8.1) shows that Lo know the amplitude o l  secondary wavclcki arriving nl Po from any 
a zone, we must know A,. This, in turn, requires knowlcdgc or lllc radii of thc circlcs defining 

the boundaries of the Fresnel zones. To calculate radii of various half pcriod zoncs in tcms 
of known distances, let us denote OQ, = r , ,  OQ, = r2, OQ, = r,, ..., OQ,= rn. From 
Pythagoras' theorem we find that the radius of lhc first circlc (zonc) is givcn by 

P 2 7 1  / 2  

The approximation 1 <c b  holds for pnclicnl syserns using visible light. Similarly, the 
radius of the n ~ h  circle (zone) is given by 

n2 h2 whcrc we have neglected the term - in comparison LO nb h . This approximation holds 
4 

for all diffraction problems of interest to us here. 

It readily follows from Eqs. (8.24 and (8.2b thn thcradii ol' the circlcs arc proportional -+- lo the square root of natural numbcrs, i.c. I ,  43, G... . Thcrcforc, i f  lhc first zone 
has radius r , ,  the successive zoncs have radii 1.41 r,, 1.73 r , ,  2 r ,  and so on. For He-Ne 
laser light (h = 6328 A), if we takc Po LO bc 30 cm away (b = 30 cm), tllc radius of rhe 
first zone will be 0.436 mm. 

Lel us now calculate the arca of cach of the half-pcrid zoncs. For lhc fiisl zonc 

E nbh  (8.3a) 

The area of the second zone, i.e. thc annular rcgion bclwccn  he lirsl and Lhe second 
circlcs is 



Diffraction 

Rcfcr to figure abovc and consider 
the contribulions from thc (ti - 1)th 
and nth zones. Firs~ly, the areas of the 
Iwo a~nular  regions are 
approximately cqual, is. ,  ~ h c  
ampli~udes of secondary wavclc~s 
s~arling from klh the zones arc 
equal. Secondly, Ihe poin~s on thc 
i~incrmosl circlc of ( n  - l )rh zonc e.g. 
poin~s likc R are situated at a distance 
of b +(n -2) h/2 from Po- whereas 
h e  points on the innermon circlc of 
nth zone c.g. poinls like S arc situa~ed 
at a dislance of b + ( n  - 1) h/2 from 
Po. Thc padl differcncc belwcen the 
secondary wsvclels reaching Po from 
H and S is h12. This means hallhe 
wavcs re~chirig Po arc out of phase 
by hf2 and cancel each olhcr. 
Similarly for every pin1 hetween R 
and S in the (n - 1)1h zonc we have a 
corresponding point hctwcen S and T 
in thc nth zonc which have a pah 
differcnce of h/2 or phase difference 
of x and hence cancel each other. 
Sincc the areas of the lwo 7anes are 
approximately equal, we arrive at  he 
rcsult that for every point In Ule 
(n - 1)th zone we have a point in 
the nth zone which is out of phase 
by x or half orn period. 
Hence the name half- 
period zoncs. 

Similarly, you can rcndily vcrify hat Lhc area of the nth zone 

A,, = n: r;4 - r:-, = x b h  ) 
That is, all individual zones havc nearly Lhe same arca. The physical implication of the 
equality of zonc arcas is ha1 ~ h c  a~nplilude of secondary wavelets starting from any ~wo 
zoncs will be vcry ncarly cqual. You must howcvcr rcmember that the result contained in 
Eq. (8.3) is approximate and is valid for cases whcre b 9 nh . A more rigorous calculation 
shows hat lhc arca ofa zonc gradually increases wilh n: 

r In this equalion b + n - 5 5 dcnolcs the average distance of the nth zone from Po. The 
\ 1 

geometry of  he nth zonc is shown in Fig. 8.9. It is important to point our here that the effect 
of incrcnsc in A, wilh n is almost balanccd by the increase in the averagc distance of the nth 
zonc from Po. That is. thc ratio A,,/bn in Eq. (8.1) remains nh , which is constant, 

Fig. 8.9 : Hidr pcriud zuncs and thclr ovcrage dktnnce from the point of observation. 

indcpcndcnl of n. This mcans that Ihe amplitude due to any zone will be influenced by the 
obliquity Tactor; it  is actually rcslmnsible for monoionic decreasc in the amplitudes of higher 
zones (a, > a, > u3, ... > a,). Also, il is irnporlant for our computation to note that phases of 
wavclcls from conscculivc zoncs dill'cr by one-half of a wavelength. Therefore, h e  
secondary wavcs from any two corresponding points in successive zones [nth and (n - 1)th 
or (n + 1)h] rcach P,, out of phasc by x or half of a period. 

Suppose thal ~ h c  conlribulion of all h c  sccondary wavelcts in the nlh zonc at Po is 
dcnolcd by a,,, Thcn, thc contribution of (n - 1)lh 7 ~ n c  a, - ,, will tcnd to annihilate the 
effect of nh  zonc. Malhcmalically wc write the resultant amplitude at Po due to the whole 
wavcfron~ as a sum of an infi~lilc scrics whosc lcrms are alkmakly positive and negative 
but the magnitudc of succcssivc lcrms gradually diminishcs; that is, 

Wc will show that thc sum ol' lllis infinilc scries is cqual to a,/2. In words, the resultant 
amplitude at P, duc to all thc scconthry wavelcts emanating from the entire wavefront is 
equal to onc-hnll'of thc contribution of secondary wavclels fmm the firs1 zonc. 

There are scvcral mcihods of dcriving this rcsul~. Hcrc we will dcscribe a simple graphical 
construction. (Thc malhcmalical mcthod is given as TQ.) Lcl AB, CD, EF, Gf?, ..., 
respectively denorc Ulc amplitudes o~rcsultant vectors a,, 3, a,, a,, ... due to the first, 
sccond, ihird, fourh ,... nlh zonc. (Wc know lhat a,, a,, a,, a, , ... q, are alternately 
posilivc and ncgalivc.) 'I'hcsc vcctors arc shown scpardtcly in Fig. 8.10(a) to show their 
rnagnitudcs and positions. But thcir uuc positions arc along the same line, as shown in Fig. 
8.10 (b). Thc rcsullilnt of Lhc rirst ~ w o  zoncs will bc h e  small vector AD. But the resultant of the 
first lhrcc zoncs is Ihc largc vcclor AP; orthc four 7nnes the smallcr vector AH and so on. 

Refer Lo Fig. tl.lO(a) again. You will notc that thc rcsulmt of infinitely large number of 
zoncs is cqual lo (i,/2. lr wc considcr a Uinitc numbcr of noncs, say n, the resultant is given by 



where n is any number (odd or even). 

To see this, you closely reexamine Fig. 8.10(b). You will note that all vectors repmting a,, 
3, $, a4, ... are line segments whose midpoint cohcidcs with the midpoint of at (nuked as--). 

RIC r 

Fig. 8.10: Phasor diagram for F m n d  (half-period) zones. I~~dlviduul  utnplitudcs am shown in (a). 
Actually all vectors arc along the sumc lioc. This is shown in (b). l'hc m u l t a n t  
amplitudes due to n( = 2, 3, ...) zoncs a re  shown 111 (c). 

(You must convince yourself about this.) In other words, lhc vcclor reprcscnting an is a 
line, half of which is above the horizontal line passing Lllmugh ~ h c  midpint of a, and the 
other half is below this line. The resliliant of n zones is a vcclor joining A lo  he end of 
the vector representing a,,. When n is odd, the end point of  he veclor representing an will 
be above the horizontal line by a$, which proves the rcquircd result. 

If n is even, the end point will be below this horizontlil Iinc by a,J2. Addd vectorially, we 
have the same result. We thus sed that the resultant arnplilude at Po duc to n zones is half 
the sum of amplitudes contributed by the first and  he ILSL zonc. 5 will be numerically 
greater than a,/2 when n is odd and smallcr than a,/2 whcn n is evcn. For cxample, the 

a1 MN 
resultant contribution due to 7 zones is AO, which is cqual to - + --- . On the other 

2 2 
a1 OP I hand, for 8 zones the resultant is AQ = y - - 

2 - 
It may be emphasized that in this graphical method of summalion of Ihe scrics, we have 
used three properties: (i) vectors representing a,, a,, ... arc all dong ~ h c  same straight line 
(ii) alternate vectors are oppositely directed and (iii) the mugniludcs of a,, +, ... decrease 
gradually. We now consider a simple example to illustrat lhcse concepts. 

Example 1 

Consider a series with n = 100 in which each Lerrn is equnl to thc arithmetic mean of the 
preceding and he following temrs. Calcula~e the rcsul~anl. 

Solution 

As a special case, we can take the terns of Ihc scrics as 100, 99, 98, .... 3, 2, 1. 
. . E, = (100-99)+(98-97)+(96-95)+ ....( 4-3)+(2-I )  

= 1 + 1 + 1 .... 50 terms 

= 50 

which is half of the first term. Now consider the relalion 

and take different number of terms in this arithmclic scries. If wc have only one term, 
(a, = loo), we take lhe first term as also thc last lcrm as 100. Thcn we gel 

So fur we have considered the effect 
of a whole number of half period 
elements at a given point. The sum of 
the amplitudes due to all h e  
secondary wavelets starting from the 
nth ? m e  was represented by %,But 
so far we have not computed the 
magnitude and phase of this vector. 
An obvious related problem is to 
cnlculate the effect at Po due to a 
fraction of a given half period 
element. We can do h i s  easily by the 
vector summation method. We divide 
a Fresnel zone into a series of n sub- 
zones of equal areas. Refer to figure 
below. It shows such a division for 
the annular space between (n - 1)h 
and n h  circles. 0 is taken as an t re  
and circles of slightly differing radii 
have been drawn such that the 
annular space between two 
consecutive circles enclosca equal 
arca. Now wi~hin l l ~ c  area covered by 
n sub-wne, we can neglect variation 
in inclination factor. Since all thcrc 
aub-zones ~ R V C  bccn drawn so that 
they have qua1  areas, h e  amplitude 
nt Po due to ihcse small equal arcas 
will be the same. But the phases will 
change wniintiously from one 
sub-zone to die next subzone by 
Wn since the phase difference 
ktween Ule secondary wavelas 
starting from h e  innennost to ihe 
outermost subzone of any one 

3, 
Frcsnel half period w n c  is - or x. If 

2 
we make n very large, we will have 
infinitesimally small but equal arcas 
md phases of wavclcts from these 
vary mn~inuously and uniformly. 

'Ihus wc have u SCL of disturbnnces of 
qua1 amplitude hut unifornlly 
changing phasc such that the phasc 
dificrenco bctwcen the two extreme 
disturbances is x .  lhcse  extreme 
vectors are reprcsen~cd by AA* and 
UR' in the figure shown on the next 
pagc. We know  ha^ in si~ch a case 
 he veclor diagram is a scrnicirclc 
and h e  resullant of ~ h c  sunimntion 
of amplitudes is dlc diamcter AB. 



Now we will compute magnilude and 
phaoeof the resultant AB. If all the Nsxt we take two tenns. Then 
disturbwcw from the subzones were 
in the same phase, the resultant would 5 = (100 -99) = 1 
have been a line along AA' and equal 
to the length of the arc of the 
semicircle AD (= lr r) of radius r. But Also 
we find that the actual resulmt 
amplitude is AB = 2. Thus the a, an 100 99 - + - - - -  
resultant ampliulde is' =? times 

XI It 
2  2 - 2  2 

the value which would be obtained if 
all h e  wavelets within a Fresnel half 
period element had the m e  phase. 
Since h e  line AB is parailel to the Ihree terms 
line MN, we see that the resultant 
phase of vector AB is the some or that 
of the veaor  MN representing the and 
disturbance startinp from the middle 

. p i n t  (M) of the &e. In other words, 
AB is perpendicular to AA'. 'hat  is, it 
is a quarter-period behind the wavelet 
starting from the innermost sub-zone. 
We can find, in a similar manner, the 
resultant contribution due to the next 
half-period zone. It is given by CD 
and differs from AB by n. The 
resultlnt of the sum of these two 
zones is the smaller vector AD. The 
magnitudes of v e a o n  and their 
phases for succeeding zones give rem 
of the figure.The resultant curve is the 
vibration spiral with gradually 
smaller and smaller semicircles until 
eventually it coincides with Z. The 
resultant of all the half-period 
elements is AZ which is half of h a t  
which would be produced by the first 

1 - 2  1 zone aldne. It is equal to - x- -- 
2 x-lr 

times h a t  which would be produced 
by all the wavelets from the first wne 
acting together in the name phase. 

For four terms, 5 = (100 - 99) + (98 - 97) = 2 

and 

For five lerms 5 = (100-99)+(98-97) +96  = 98 

and 

For six terms 5 = (100 - 99) + (98 - 97) + (96 - 95) = 3 

and 

a1 a, and so on. Thus we see that 5 is given by - + - to a fairly good degree of accuracy. 
2 2 

8.4.2 Rectilinear Propagation 

Refer to Fig. 8.1 1. Light originates from a point source and propagates towards the right. 
Suppose that the source is l m  away from the aperture. We may take the spherical wave 
falling on the aperture as nearly a plane wave. (The radius of curvature of the incident 

S 

lilg. 8.11: Prcsnd construction and rectilinear propagation of light 

spherical wave will not qualitatively change the argument.) Let us work out the sizes of 
Fresnel half period clelnents for h e  typical case where the screen is 30 cm away from the 
aperture. Taking h = 5 x 10" crn, we get r,=d(30 cm) x (5 x 10" cm) = 3.87 x cm. 
This means that Lhc diameter of lhe first zone is less than 1 mm. Let us consider the 100th 

, zone. Its radius r,,, = 430 cm x 100 x 5 x 10" cm = 3.87 x 10-'cm so that the diameter 
will be a litlle less lhm lcm. Thcreforc, if the aperture is about 1 cm in diameter, it will 
accomodate over 100 Frcsncl zones and the amplitude at Po due to the exposed part of the 

a1 "1, wavefront will be - + - . Since a,, will be fairly small, the intensity at Po will be 2 2 



essentially half of that due to the first half period zone, which is h e  intensity expected at Po when 
Ihe ape- is completely removed. We U~us find that even through a small aperture we get the 
original intensity at Po. That is, light travels in a straight line for all practical purposes. 

Let us now understand thc'formation of shadows and illuminaled regions due to an 
obstacle (Fig. 8.12). Consider Ihe point P3 whose pole is 02, If Ihe distance between O2 

Flg. 8.12: Fremd construction and formation of shadowdlllun~inatPd regions 

and the edge A of the obstacle is nearly 1 cm, over 100 half period elements will be 
a1 accomodated in it. And as seen above, the intensity at P, will be nearly equal to - . In 
2 

oher words, he obstacle Twill have no effect at h e  point P,. Similarly, at P,, which is 
taken 1 cm inside the geometrical edge of the shadow, over 100 half period elements 

a1 oo around 0, are obstructed and the intensity at P1 will bc less than - , which is almost 2 
negligible. This implics almost complete darkness at PI. In other words, the obstacle has 
completely obstructed thc light from the source and Lhe region around point P, is in the 
shadow. Only ardund Po, which signifies the geometrical edge of the shadow, we find 
fluctuations in intensity dcpcnding on how many half period elements have been alIowed 
to pass or have been obstructed. This explains the observed rectilinear propagation of light 
since Fresnel zones are obstructed or allowed through by obstacles of thc size of a few 
mm for these typical distances. 

A special optical device, designed to obstruct light from allernatc half-period elements is 
known as Zone plate. It provides experimental evidence in favour of Fresnel's theory. Let 
us learn about it now. 

8.4.3 The Zone Plate 

The zone plate is a special optical device dc~igncd to block light from altcmate 
hall-period zones. You can easily make a zone plate by drawing concentric circles on a 
white paper, with their radii proportional to the square roots of natural numbers and 
shading alternate zones. Fig.8.13 shows two zone plates of several Fresncl wnes, where 

I'ig. 6.13: Zone plate : (a) positive (b) ngativc 

all evcn numbered or odd numbered zones are blacked out. Now phologaph these 
pictures. The photographic Lransparency (negative) in reduced size acts as a Fresnel zone 
platc. (Recently, Gabor has proposed a zone plale in which zones change udnslnission 
according to a sinusoidal wave.) Lord Raylcigh made h e  first zonc plate in 1871. Today 



Diffraction zone plates are used to form images using X-rays and microwaves for which conventional 
lenses do not work. 

If you now pause for a while and logically reflect upon the possible properties of a 
Fresnel zone plate, you will reach the following conclusions: 

1. A zone plale acts like a converging lens (see Example 2) and produces a very bright 
spot. To understand the formation of the spot, let us suppose that the first ten odd zones 
are exposed to light. Then, Eq.(8.4) tells us that the resultant amplitude at Po is given by 

If the obliquity factor does not produce much change, we may write gm = 10 a,, which 
means that the amplitude for an aperlure containing 20 zones is twenty times and intensity 
is 400 times that due to a completely unobstructed wavefront. This is illustrated in 
Example 2. 

Example 2 

Show that a zone plate acts like a converging lens. 

Solution 
Refer to Fig. 8.14. It shows the section of the zone plate perpendicular to the plane of the 
paper. S is a point source of light at a distance u from the zone plate and emits spherical 
waves. We wish to find the effect at Po at a distance v from the plane of the zone plate. 

FI~.8.14: Action of a zone plate as a converging lens 

In this zone plate we divide its plane into zones bounded by circles with 
centre at 0 and radii OQ,, OQ,, OQ,, ... OQ, such that the path of the ray from S to Po 

h 
increases by - from successive zones. Then we can easily write 2 

By Pythagoras' theorem we can write 

where rn is the radius of the nth zone. 

Similarly, you can convince yourself that 

e QnPo=  v + -  +.. . 
2v 



I.2 rZ 
, If r, << u or v, we can ignore terms higher than -" or " . Hcnce 

2u 2v 

Fresnd Diffraction 

r l r: nh SQ, + Q, Po = u + - + v + - = u + v + - (by construction) 
2u 2v 2 

That is, the radii of the circles are proportional to the square root of natural numbers, as 
before. 

9 
If we identify as fn, the focal length of he  zone plate, we find that 

nh 

which is identical to the lens equation. Therefore, this dcvicc behavcs like a converging 
lens with a focal length f = r: lnh and forms a real image of S at P,. 

2. The zone plate has several foci. To understand this, we assumc that the obscrvation 
screen is at a distance of one focal length from the diffracting aperture. Then it readiIy 
follows from the above example that the most intcnse (first order) focal point is situated 
at fi = d / h  . To give you a feel for numcrical valucs, Ict us calculatcfi for a zone plate 
with radii r, = 0.1Gcm and illuminated by a monochromatic light of wavelength 
h = 5500 A. You can easily see that 

6 0.1 ~ r n ) ~  
= K = 5501) x 10-8 crn 

= 182 cm 

To locate higher order focal points, we notc from Eq. (8.2b) that for rn fixed, n increases as b 
decreases. Thus for b = f1/2, n = 2. That is, as Po moves towards the zone platc along the axis, 
the same zonal area of radius r ,  encompasses more half-pcriod zones. At this point, each of 
the original zones covers two half-period mnes and all zones cancel. Whcn b = f1/3,  n = 3. 
That is, three zones conhibute from the original zone of radius rl. Of hesc, two cancel out but 
one is left to contribute. Thus other maximum intensity pints along the axis arc situated at 

6 182 182 fn = - for n odd. For the above numerical example,f, = -- cm, f5 = - cm, f7 = 7 cm 
n h  3 5 

and so on. Between any two consecutive 7 foci, thcrc will bc dark points. 

8.5 DIFFRACTION PATTERNS OF SIMPLE 
OBSTACLES 

From Sec. 8.3 you will recall that by utilizing Kalhvatc's expcrimcntal arrangement, the 
Fresnel diffraction pattern of various apertures and obstacles could bc photographrid by 
varying distances between the source, the object and lhe photographic plate. Wc wilt now 
use results derived in Sec. 8.4 to cxplain Lhe observcd diflraction pattern of simple 
obstacles like circular aperture and straight edge. 

We begin by studying the Fresncl difliaction paltern of a circular apcrturc. 

8.5.1 A Circular Aperture 

Refer to Fig. 8.15. It shows a sectional view of the cxpcrimenlal arrangemcnt in which a 
plane wave is incident on a thin metallic sheet with a circular apcrturc. You will note hat 
the plane of the wavcfront is parallcl to the plane of thc mclal platc; bolh being 
perpendicular to the plane of the paper. 

It is inaruaive to compare h e  
action of a converging lens and a 
mnc plate in forming a real imagc 
of an object. Rcfcr to figure below 
which shows a converging lcns. 
Consider two rays OADI and OCDI. 
Taking the refractive indcx for air 
and glass as b a n d  pE, h e  optical 
path lengths of ~ h e s e  rays will Ix 
p,OA + pgA13 + p,BI and p,OC + 
p, CII + C L ~  Dl. 

The lens is so designed that these 
opical palhs are equal. This is true 
for dl other rays, e.g. OEGI. Thus 
different rays starting from 0 reach 
I in the same phase and form a 
bright image. 
In a zone plate (Fig. 8.14), alternate 
zones arc blocked. Ihcrcforc, rays 
fmm the source S after passing 
through the first, hird, fifth, etc. 
wncs reach h e  point Po with a path 
difference of X, 2X , 3X , ... and 
hence rcinforce cach olher. This 
ruults in the formation of a bright 
image at Po. Obviously, we will get 
sevcral psilions of bright images if 
hc path differencc ktwcen the 
successive exposed mnes is nh . 

Let us calculate the intensity at a point Po situatcd on thc line passing through thc centre of 
thc circular aperture and perpendicular to the wavefront. Supposc that the disunce between 
the point Po and the circular aperture is b. As discussed ,earlier, the intensity at thc 
observation point due to the cnlire uninlcrruplcd plane wavcfront is given by Eq. (8.4)' 



where a,, a;?, ... etc. give the contributions due to successive Fresnel zones. Our problem here 
can be solved by constructing appropriate Fresnel zones and finding out as to how many of 
these half period elements are transmilled by Ihe aperture. However, it is important to note 
that for an aperture of a given size, the number of half period elements transmitted may not 
always bp, the same. This is because the radii of the Fresnel zones depend upon the distance 
of point Po from 0 (r,, = -1. You can easily convince yourself that if the int Po is far 
away from the aperture (b is very large), the radius of the first zone, equal to f", 1 b may be 
larger than the radius of the apeme.  In such a situation, all the secondary wavelets starting 
even from the entire first zone alone may not be transmitted. That is, the wavelets from a 
small portion of the first Fresnel zone only are transmitted. 

Fig. 8.15: Dlffractlon by a clrcular aperture: A cram-scctlonal view of the experimental arrangement 

The next question we have to answer is: How to calculate the amplitude at Po when the 
aperture has transmitted only a fraction of the first Fresnel zone? As a first approximation, 
we assume that the wavelets anive at Po in phase. (This is quite justified because the path 
difference between the extreme wavelets within anyone half period elements is AJ2 and . 
since only a fraction of the first zone may be transmitting here, the net phase difference 
will be correspondingly less.) Further, the inverse square law for intensity tells us that the 
amplitude at Po will be inversely proportional to 6. Hence, the effect at Po, which is at a 
largc distance, will be quite small. 

As the point Po moves towards the aperture (b becomes smaller), the zone size shrinks and 
a greater part of the central Zone is transmitted. As a result, the intensity increases 
gradually. As the observation point comes closer and closer, with the shrinking of the sizes 
of zones, a stage may r ~ c h  when the first zone exactly fills the aperture. Then a, the 
radius of the first zone.is also the radius of the aperture. We know that the f is t  zone 
contributes al to the amplitude at Po. Compare it with the situation where the obstacle 
with circular aperture is not present. The entire wavefront contributes but the amplitude at 

Po is - . Since intensity is proportional to the square of amplitude, the intensities at Po 
2 

a: with and without the aperture are respectively a: and - . That is, the intensity at a given 
4 

point is four times as large when the apertiue is inserted in the path than when it is 
completely removed. This surprising result is not apparent in the realm of everyday experience 
dominated by rectilinear propagation of light 

As the observation point Po comes still closer, the circular aperture may transmit first two 
zones. The amplitude will then be (a, - 4 which is expected to be very small. The 
additional light produces practically zero amplitude, hence darkness, at Po. Bringing the 
point Po gradually closer will cause the intensity to pass through maxima and minima 
along Ihc axis of the aperture depending on whether the number of zones transmitted is 
odd or even. If we continue to bring the point Po closer to 0, the number of Fresnel zones 

a1 Lansmitted by the aperture goes on increasing. The value - is finally reached' when the 2 
point Po is so close that an infinitely large number of zones contribute to the amplitude. 



The same variation in intensity should be experienced if thc point Po is kcpt fixed and the 
radius of the aperture is varied continuously. This can bc donc cxpcrimcnti~lly but is 
somewhat more difficult. 

We have calculated the intensity at points on the axis but thc abovc considcralions do not 
give any information about the intensity at points off thc axis. A dclililcd and complcx 
mathematical analysis which we shall not discuss herc, shows hat  P, is surrounded by a 
system of circular diffraction fringes. Photognphs of thcsc rringc puuerns have becn taken 
by several workers and we referred to Kathvate's expcrirncnts carlicr in his  unit. 

We now illustrate the concepts developed here by solving an examplc. 

Example 3 

In an experiment a big plane metal sheet has a circular apcrturc of diamcter 1 mm. A 
beam of parallel light of wavelength h = 5000 A is incidcnt upon it nor~nally. The shadow 
is cast on a screen whose distance can be varied continuously. Calculate the distance at 
which the aperture will transmit 1,2,3, ... Frcsncl zoncs. 

Soluti~n 
Let b,, b,, b,, ..., bn be the distances at which 1,2,3, ..., n zoncs are transmitted by an 
aperture of frxed radius r. Fmm Eq. (8.2 b) we know hat  

so that 

P since r is fixed. Hence b - - - ('05 cm)2 = 50 crn - 
h - 5 x 10Jcm 

Similarly, we find that 

b5 = 10 cm, b, = 8.3 cm, b7 = 7.1 cm, b, = 6.2 cm and so on. 

The amplitudes corresponding to these dislilnces are plotted in Fig. 8.16. 
4 

Anolher conclusion of historic interest follows if wc substitutc thc apcrturc by a circular 
disc or a round obstacle just covering the first Frcsncl zone. The light rwching the point 
of observation Po will be due to all zones except h c  first. Thc sccond zonc is therefore the 
first contributing zone and the intensity of light spot at thc cenue of Ihc shadow of the 
obstacle will be almost equally bright as when the first zone was unobstructed. 

Fresnd Difiractlon 

Plg. 8.16: Variation of ampllludes 
at axial polnu at 
different disiances from 
the aperture 

You may now ask: Why is the bright spot at the cenlre only? This is because there is no 
path difference and hence phase difference between wavcs reaching an axial point. At any 
other off-axis point, waves will reach with different phases and may lend to cancel 
mutually. The existence of this spot was demonstrated by Arago, though Poisson gave his 
theoretical arguments to disprove wave theory of light. 

You may now like to answer an SAQ. 

SAQ 1 
Spend 

Acoin has a diameter of 2 cm. How many Fresncl zoncs docs it cut orf if Llic screen is 2 m 2 min 
away? Do you expect to see a bright spot at the cenue? If wc movc thc scrcen to a distance 
of4 m, how many zones will it cut off? Will the bright spot now look brightcr? Why? Take 
h = 5 x  10-~m. 

So far we have discussed diffraction patterns which had axial symmclry: the object or 
aperture was circular and the planc wavefront originated rrorn a point source. We now 
wish to consider the case wherein source is a slit source. This sourcc will cmit cylindrical 
waves with the slit as axis. We wish to study h c  diffraction pattern or a s~raight cdge. 



Let S bc a slit sourcc pcrpcndicular to thc plane of the paper. This sends a cylindrical 
'l'hc slit has a very small wid~h wavefront towards thc obslaclc which is a straight edge perpendicular to the paper. You can 
compared to its lcngh. Or we may 
say h a t  in comparisorl to its width, take a thin mebl shcct or a razor bladc wih the sharp edge parallel to the slit. Fig. 8.17(a) 
i t  has an infinite length. shows a scction ~~crpcndicular to thc IcngLh of the slit. The line joining S and E, the point on 

the wavcfront touching the cdgc of Lhc straight edge, when produced meets the screen at. 

Pig. 8.17: (u) Cruss section~ll viuw of the gcomctry to ohscrvc diffraction due to a stmlg-ht edge and 
(b) 1Frcsnd constructlo~l divides thc cylindrical wavefront La half period strips 

Po,which is thc gcomclrical boundiuy of the shadow. Consider any point P on the screen. A 
line joining it  to S cuts the wavefront at R. We wish to know how intensity varies on the 
screen. This calculation is somewhat complicated because. unlike the previous case, we now 
have a cylindrical wavefront. Morcover, the obstacle does not possess an axial symmetry. 

For a plane wavc and obslacles with axial symmetry you know how to construct Fresnel 
zones. To conslruct half period elements for a straight edge, we divide the cylindrical 
wavefront into strips. As before, we make sure in the construction that the amplitudes of the 
wavelets from thcsc strips arrive at Po out of phase by n so that alteinate terms are positive 
and negative. 'This is achieved by drawing a set of circles with Po as centre and radii 

h 2h b, b + - , b + - ,... cutting be circular section of the cylindrical wave at points 0, AA', BB', 
2 2 

CC', .... Fig. 8.17(b). If lines are &awn Lhrough A, A', B, B' etc. normal to the plane of the 
paper, the upper as wcll as the lower half of the wavefront gets divided into a set of 
half-period strip. These hdT pcriod strips stretch along the wavefront perpendicular to the 
plane of the papcr and have widths OA, All, BC, ... in the upper half and OA', ;4'B', B'C', ... in 
the lower half. You may recall that Fresnel zones are of nearly qual  area. For half period 
strips, this does not hold. The arcas of half-period strips are proportional to their widths and 
these decrease rapidly as we go out along the wavefront from 0. 

AL-, From the georneiry of the arrangement it is obvious Lhat on the screen there will be no . 
I' 1'. intensity variation dong the direction parallel to the length of the slit. Therefore, the bright 

and dark fringes will bc struigh~ lines parallel to the edge. 

Fig-8.1B: Intensity distril)ution in A plot of theoretically calculated intensity distribution on the screen is shown in Fig. 8.18. 
uredlmetlonpattern You will note the following salient features: due to a straight edge 

(i) As we go from a point I" deep inside the shadow towards the point Po defining the edge 
of the shadow, the intensity gradually rises. At P', the intensity is almost zero. 

(ii) At PO, the intensity is one-fourth of what would have been the intensity on the screen 
with the unobstructed wayefront. 

(iii) On moving fuaher towards P, the intensity rises sharply and goes through an alternating 
series of muxima and minima of gradually decreasing magnitude before approaching the 
value for thc unobslructcd wave. This is expected since effect of the edge at far off 
distances will be almost negligible. 



(iv) The intensity of the first maximum is greater than the intensity of unobstructed wave, 
i.e. it is greater than 4 times the intensity at Po. Beyond these altcmale maxima and 
minima, there is uniform illumination. 

(v) The diffraction fringes are not of equal spacing (as in in~crfercncc experiments); the 
fringes gradually come closer together as we move away from the point Po. 

You may now like to know atleast qualitative explanation or these results. From Fig. 8.17 
we note that the line joining P  and S  divides the wavcfront into two parts. The amplitude 
of wave at P is due to the part WE of the wavefront, which is complctcly unaffected by 
the straight edge. The amplitude at P  will be maximum if RE contllins odd number of half 
strips. This will happen if EP - RP = (2n + 1) hn. (When EP - RP = nh , the portion RE 
will contain even number of strips.) As pointed out earlier, the amplitudes due to slrips are 
alternatcly positive and negative. Thereforc, as point P rnovcs away from Po, h e  
illumination on the screen will pass altematcly through maxima and minima when the 
numbcr of half period strips in RE is 1,2.3,4, .... At Po, only half of thc wavcfront E W  
contributes. Therefore, the amplitude is halved and thc intcnsity is one-fourth of the 
unobstructed wavefront. - -  

It is worthwhile to ponder as to what pattern thc gcomclry of tllc expcrirncnlal P 

configuration throws. We expcct dark and bright bands parullcl to thc cdgc. However, the 
dark bands will not be completcly dark sincc the uppcr tiall' of lhc wavcfront RW always P 

r ontributcs light to this part of chc scrccn. 
P 

~t US now consider the situation for thc point P' insidc thc gco~nctrici~l shadow. Refer to 
Fig. 8.19. You will note h a t  the corresponding point R isshil'tea bclow h c  cdge so that the 
illumina~ion at P' is due entirely to the wavclcts Troln thc uppcr half of thc wavefront; the 
lower portion having been blockcd by the edge. Evcn thc uppcr hall' is cxposed only in Fig.8.19: Cross-sectiond 'lcw Or 

geometry shown in 
part. 1f thc edge culs off r strips of the uppcr half of thc wavcfront, ~lrc efkct at P' will be Fig. 8.17(s) when the 
due to (r + I), (r + 2), (r + 3) etc. strips which may bc tllkcn to bc cqual to one-half of observation polnt is in 
that duc to (r + 1)th strip. This will rapidly diminish to zcro as shown in  Fig. 8.18 because the geometrical shadow 

the c~~cctivencss or higher ordcr strips goes on dccrcasing. 

Let us now dcduce the width of the diflraclion bands. Again rerer to Fig. 8.17(a). 
Supposc that wc have the nth dark band at P.  Then 

EP- R P  = nh (8.6) 

From the AEPP,, if PP, = x, wc have 

where we have retained only first two tcrms in thc binomial serics. 

From the ASPP,, we can similarly writc 

Hence, 1 x2 
R P = S P - S R = b + - -  

2 (n  + 0)  

and 

For thc nth dark band, we gcl 



We therefore find that the distances of the dark bands from the edge of the geomebical 
shadow are proportional to the square root of natural numbers. Consequently, the bands 
will get closer together as we go out from the shadow. This fact distinguishes the 
diffraction bands from the interfe~nce bands, which are equidistant. 

To enable you to grasp these ideas, we now give a solved example. 

Example 4 

If in the above experiment a = 30 cm, b = 30 cm and 3c = 5 x 10" cm, calculate the 
position of the lst, 2nd, 3rd and 4th minima from the edge of the shadow. 

Solution 
From Eq. (8.10) we know that the distance of nth minima from the edge of the shadow is 
given by 

If we substitute given values of a, b and h and take n = 1.2, 3 and 4, we find that 

From these values we find that the distance between consecutive minima decreases 
continuously as we move away from the edge of the shadow. 

You may now like to answer an SAQ. 

Spend SAQ 2 
2 min 

Instead of the straight edge we keep a narrow obstacle, say a wire of diameter 1 mm. 
What will be the intensity on the screen? 

Let us now summarise what you have learnt in this unit. 

8.6 SUMMARY 

e When the distance between the source of light and the observation screen or both 
from thc diffracting apenure/obstacle is finite, the diffraction pattern belongs to 
Fresnel class. 

e When the screen is very close to the slit apeme/obstacle, the illumination on the 
screen is govemed.by rectilinear propagation of light. 

e The Fresnel diffraction pattern represents fringed images of the obstacle. Depending 
on the distance, there can be an infinite number of Fresnel diffraction patterns of a 
given obstacle/ aperture. 

e When plane'wavefronts are incident on a diffracting slit and the patternis observed 
on a screen effectively at an infinite distance, the diffraction pattern belongs to 
Fraunhofer type. Unlike the Fresnel diffraction, there is only one Fraunhofer 
diffraction patlern. 



e Fresnel construction for the diffraction paucm l'mm a circular obswcle, when a 
plane wavefront is incident on it, consists or dividing the wavcfront into half period 
zones. 

e The area of each Fresnel half-period zone is nurl y equal to TC bh . 
e The resultant amplitude due to nth zone at any axial point is given by 

An an = Constant x - (1 + cos 9) 
bn 

2 
e The magnitude of resultant amplitudeA8 duc to h c  firs1 halipcriod clcment is - 

x 
times the value which would be oblaincd if all h e  wavcfronls within Lhe halr-period 
element had the same phase. 

e The phase of the resultant vector of the first hall. period zone is bchind the phase 2 
of light from the centre of the zone. 

e A zone plate is an optical device in which allcmale half-pcriod xorics arc blackened. 

e In Fresnel diffraction pattern due to a circular apcrturc thc inlcnsity at an axial point 
goes through a series of maxima and minima as wc vary lhc dislmcc of Ihc point of 
observation. 

e The diffraction pattern of a straight edge consisis or allcrnalc bright and dark bands. 
The spacing between minima (or maxima) dccrcascs as wc move away from thc 
edge of the shadow: 

8.7 TERMINAL QUESTIONS 

1. Starting from Eq. (8.4) prove the result conttlincd in Eq. (8.5). Assunic that thc obliquily 
factor is such that each term in Eq. (8.4) is less than Ihc arithmclic mcm of its preceding 
and succeeding terms. 

2. The,eighth boundary of a zone plate has n diamctor OF brim. ~ / ~ c r c  is its principal focal 
I point located for light of wavelength 5000 A? 

I 

1 
I 

3. How many Fresnel zones will be obstructed by a sphcrc of radius 1 mm if the screen is 
20 cm away? Take h = 5000 A. If the distance of the screen is increased Io 200 cm, what 
will be the size of the sphere which will cut of[ 10 zoncs? 

8.8 SOLUTIONS AND ANSWERS 

SAQs 

1. The radius of the coin is equal to 1 cm. To know Lhc number of zones k i n g  obstructed, 
we use the relation 

where r, = 1 cm, b = 200 cm and h = 5 x cm. 

(1 ~ m ) ~  , .'. n =  
(200 cm) x (5 x 10 -5 crn) 

You should expsct to see a very dim spot at the centre. 

When the screen is moved to 4 m, the number of zoncs bcing obsuuctcd is given by 



Iliffraction (1 
n = (400 cm) x (5 x 10 " cm) 

= 50 

Thc cenwal spot is cxpcctcd to bc somcwhat brighter. Does it not appear to contradict the 
inverse squarc law? 

Id' / 1 2. Rcfcr to Fig. 8.20 A point P I  outside the gcomelrical shadow is similar to such a point in 
P the slriight cdge. So wc will havc unequally spaced bright and dark fringes parallel to 

the wirc on cach sidc or thc shadow. What is the intensity at Q inside the shadow? It is 
Fig. 8.20: A cross-sectional view 

of thc arrangement for simply half ff~c cll'cct of Lhc first half period strip on either side of the thin wire. It will 
producing dlKractlon show equally spaccd fringes inside thc shadow. 
due to a narrow obstacle 

TQs 
1. We rcwritc J2q. (8.4) as 

a(&) = 5 2 + (? - u2 + 2) + (T - a,, + 5) + 2 +... (0 

n 
Whcn n is odd. Lhe last tcrrn would bc 2 . We are told that obliquity is such that each term is 

1 less than hc arilhrnctic man of its prcccding and succeediig terms i.e., an < 5 (an-, + q +,). 

Thcn the quantities in Lhc parcnlhcses in (i) will be positive. So when n is odd, the 
minimum valuc of thc arnplitudc produccd by consecutive zones is given by 

To obtain ffic uppcr lilnit, wc rcwrilc a. (8.4) as 

(ii) 

Following ffic argurncnt uscd in obtaining the lower limit on the amplitude, we find that 
lhe upper limit is 

Since the amplitudcs for any lwo adjacent zones are nearly equal, we can take an - ,  s an. 
Within this approximation 

The results contained in (ii) and (iv) suggest that when n is odd, the resultant amplitude at 
Po is given by 

Following he  same rncthod, you can readily show that if n were even 

2. D, = 0.6 cm so that r, = 0.3 cm. We know that 



3.a) The radius of a Fresnel zone is given by 

Here we are told that r,, = 0.1 cm, b = 20 cm and X = 5 x 10-Scm. 

. . t n = - -  lWZ cm2 = 10 
b 1 - (20 cm) x (5 x 1W5 cm) 

(b) In this part we have to calculate r,, for given values of n = 10, b = 200 cm and 
h. = 5 x W5cm: 




