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15.1 INTRODUCTION 

We begin the unit with an overview of the scope of multivariate analysis. We identify 
the extensions of problems of univariate analysis to higher dimensions and also outline 
the problems special to multivariate analysis which do not have univariate 
equivalence. We do this in Section 15.2. In Section 15.3, we study the properties of 
variance-covariance matrices in detail. We also identify the class of variance- 
covariance matrices with the class of nnd matrices. In Section 15.4, we present 
several examples of discrete and continuous multivariate distributions. 

Objectives: 

After completing this unit, you should be able to 

define the scope and applications of multivariate analysis; 

distinguish between univariate and multivariate analysis; 

describe the bivariate normal distribution; 

compute with the mean vectors, variance-covariance matrices and covariance 
matrices of transformed variables; 

apply the concepts of marginal and conditional distributions and independence in 
multivariate probability distributions. 

15.2 SCOPE OF MULTIVARIATE ANALYSIS 

Let us start with an example. A software company wants to recruit 3 fresh 
engineering graduates. There are 20 applicants and their scores (each out of 100) in 
the aptitude test (x,) , the test on software technology (x,) and the interview (x,) are 
recorded below in a matrix form 
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In this matrix form, the vector x = 

is called a data matrix related to x . The (i, j)" element xi of X denotes the score 

of the i" candidate in the aptitude test or the test on software technology or the 
interview according as j = 1, 2,3 respectively. Thus, x,, = 49 is the score of the fifth 
candidate in the aptitude test. Each row of X corresponds to the scores of a candidate 
in three tests and each column of X corresponds to the scores of 20 candidates in a 
particular testlinterview. Univariate analysis deals with the data on a single variable, 
say, those in the interview. Multivariate analysis deals with data on more than one 
variable (possibly correlated) collected on the same subjects. One of the major aims 
of statistics relates to dealing with variability in the data. By dealing with variability 
we mean (i) determining the extent of variability, (ii) identifying the sources of 
variability and (iii) either control the variability by taking suitable measures or taking 
advantage of the variability to select certain subject in an optimal manner or 
classifying the subjects or variables into different groups depending upon the 
variability. When we deal with a single variable, the variability is often quantified by 
the variance. When we deal with more than one variable, then the variability is often 
quantified by the matrix of variances and covariances. For example, in the case of the 
data mentioned above, the variability is quantified by the matrix xu, = (oij) 

where oi, =Cov(x,, x,),ij=l, 2, 3. 

Such a matrix x is called the variance covariance matrix of x and is denoted by 

D(x). We shall discuss about such a matrix in detail in the next section. 

Let us turn our attention to the recruitment problem. If the recruitment is based on just 
the interview scores, then the candidates 6, 10 and 2 get selected. Again, if the 



recruitment is based on the aptitude test, the candidates 19, 6 and 8 get selected where Definition and 

as under the criterion of software technology scores, the candidates 19,2 and 8 get Properties of MVN-I 

selected. Notice that it is not realistic or optimal to base the judgment on the scores of 
just one of the three variables as we are ignoring useful information on the others. 
One possible way of using the scores on all the three is taking the average of the 
scores on the three (two tests and the interview) for each candidate and select the three 
candidates with the top three average scores. What should be the justification in 
choosing a criterion? We should choose a criterion which can distinguish among the 
candidates in the best possible manner. When we took the average, we took the linear 

combination ltx where 1' = . Why not look for a linear combination ptx 
3 '  3 '  3 

over all linear combinations, which distinguishes among the candidates in the best 
manner or in other words which has the largest variability (variance) and use that as an 
index for selection criterion? This is precisely what is done in obtaining the first 
principal component. The first principal component p'x is a normalized linear 
combination of x , which has the largest variance among all normalized linear 
combinations of x . 

Getting information on any variable is expensive in terms of time and or money. We 
may like to ask whether it is worthwhile conducting the test in software technology 
given that the aptitude test and interview are being conducted. Put in other words, 
does the test in software technology provide significant additional information in the 
presence of the aptitude test and the interview? This is called the assessment of 
additional information. 

Based on the data X on x can we group the candidates into some well-defined 
classes? This may be a useful information if the company has jobs of different types - 
(a) requiring high skills and (b) requiring medium skills but intensive hard work. 
There may be a third group which is not of any use to the company. This is called the 
problem of discrimination. 

How well can we predict the interview score of a candidate based on his two test 
scores? This problem is called the problem of multiple regression and correlation. 
Suppose the interview mentioned above is a technical interview. Assume that there is 
another HR interview and the score on HR interview be denoted by x, . We may be 
interested in the association between the tests scores and the interviews scores, i.e., 
between (x,, x,) and (x,, x,) . Such a problem is called the problem of canonical 
correlations. The problems mentioned above are some problems specific to 
multivariate analysis which do not occur in univariate analysis. In univariate analysis, 
we talk about inferences (estimatiodtesting) on the meadproportiodvariance of a 
variable. These problems can be extended to the inferences on mean vector/variance 
covariance matrix of a random vector. Univariate analysis of variance has an analogue 
in multivariate analysis of variance. 

In this section, we shall learn to compute the variance covariance matrices. 

15.3 VARIANCE COVARIANCE MATRICES 

As we discussed in the previous section, the variance-covariance matrix of a random 
vector is a quantification of the joint variability of the components of the random 
vector. The variance-covariance matrices play a very important role in quantifying 
dependence structure in multivariate analysis. In this section, we formally define a 
random vector, its mean vector and variance-covariance matrix. We shall obtain 
formulae for the mean vector and variance-covariance matrix of linear compounds of a 
given random vector. We shall give a method of transforming correlated random 
variables to uncorrelated random variables. We shall show that every variance 
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covariance matrix is nnd and that every nnd matrix is the variance-covariance matrix 
of a random vector. 

Definition: A random vector x = (il 1 of order p x 1 is a finite ordered p-triple 

l X P l  

sequence of random variables x,, x,, . . ., x, . E(x) = [:::::I is called the mean 

vector of x , where E(xi) denotes the expected value of x i .  Let aij denotes the 

covariance between xi and x j .  Then the matrix x= ((ai,)) of order p x p  is called 

the variance-covariance matrix of x ,  denoted by D(x) . Let y = [ i1 ] be another 

Yq 

random vector. Let hi denotes the covariance between xi and 

y,, i = 1, .. ., p, j = 1, . . ., q . Then A,,, = ((Aij)) is called the covariance matrix 

between x and y and is denoted by Cov(x, y) . 

Clearly D(x) = Cov(x, x) . 

We know that V(x) = E(x - E(x)12 and Cov(x, y) = E((x - E(x)) (y - E(y)) . Is there 

a multivariate analogue to the above? Notice that 

rail 4 2  -.- qp] 

iopl O p 2  . .. app 1 
where oi, = Cov(xi, x j )  = E((xi - E(xi)) (x - E(x j)) . 

x, - E(x1) 

x, - E(x,) 

It can be shown similarly that 

Cov(x, Y = ~ { ( x  - (Y - E(Y ))'I 
Let us illustrate this in the following example. 

Example 1: Let x,, x, and x, be random variables with means 2.3, - 4.1 and 1.5 

respectively and the variances 4 , 9  and 16 , respectively. Let p,, denotes the 

correlation coefficient between x, and x,; j = 1, 2, 3 and i = 1, 2,3. Let 

p12 = 0.5, p,, = 0.3 and p,, = -0.4. Write down the mean vector and the variance 

covariance matrix of x = (x, x2 x,)' . 

Solution: The mean vector of x is E(x) = E(x,) = -4.1 . i:::::; I r: I 



The variances and covariances are given by 

oI1 = V(x1) =4,  022 = V(X,) = 9  and o;, = V(x,) =16 

Therefore c= 3.0 9.0 -4.8 

2.4 -4.8 16 

Notice that I2 is symmetric in the above example. In fact, this is true for every 
variance-covariance matrix I2 because oiJ = COV(X, , x J )  = COV(X,, X, ) = o,, -for all i 

and j . Since the leading principal minors of I2 are 4.0, 27.0 and 218.88, 

respectively, it follows, from Theorem 5 of Unit 14 that I2 is positive definite. 

1 Now try an exercise. ~ 
I 

El)  Let x, and x, be two random variables with joint probability distribution given 
in the following table 

. - 
Find the variance-covariance matrix for x = (x , , x , ) 

Let x be a random vector. Consider ltx where 1' is a fixed vector (i.e., the 
components of 1 are not random variables). We shall now find the mean and variance 
of ltx in the following theorem. 

Theorem 1: Let xpXl be a random vector with E(x) = p and its variance-covariance 

' i  ' matrix equal to L Let 1 be a fixed vector and let ltx = I,x, + 12x2 +..- + lpxp be a 
! 1 

linear combination of the components of x . Then ~ ( l ' x )  = 1' E(x) = l tp  and ' 

, 
1 I 

1 v(ltx) = l t u .  Also cov(ltx, mix) = lt12m where m is a fixed vector. 

I Proof: ~ ( l ' x )  = E(l,x, +12x2 +...+ lpxp) 

i = l,E(x,) + 12E(x2) +.-. + lPE(xp) 

= l t ~ ( x )  = lt p 

Definition and 
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Now let us illustrate the above theorem in the following example. 

Example 2: Find the mean and variance of ltx in Example 1, where 1 = 

find the covariance between ltx and mtx , where m = -1 . i:! 
Solution: Mean of ltx = I'E(X) = I,E(x, ) + 12E(x2) + l,E(x,) 

1 
=-x-0.3=-0.I 

3 

VO'X) = l t z l  (Usingh Theorem 1) 

1 
= -X  30.2 = 3.36 

9 
Cov(ltx, m'x) = l t C m  (using Theorem 1) 

1 
3 3'0 -2t8! [:j =-(I 1 1) 3.0 9.0 

2.4 -4.8 16 
/e.\ 

Now try an exercise:. 

E2) Let x = (x, x, x, x,)' be an random vector with mean vector 

( 1 0.2 0.2 0.2) 

0.2 1 0.2 0.2 
p = (2 1 - 1 - 2)' and variance covariance matrix C= 

0.2 0.2 1 0.2 



Find the mean and variance of ltx and Cov (ltx, mtx) , where It = (1 1 1 1) and 

mt=( l l - 1 -1 ) .  
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We shall now extend the results of Theorem 1 to several linear functions. 

Theorem 2: Let x and y be random vectors of orders p x 1 and q x 1 respectively. 
Let E(x) = p, E(y) = 8, D(x) = C, D(y) = r and Cov(x, y) = A . 

Let B,,, and C,,, be fixed matrices (non-random). Then the following hold. 

(a) E(Bx) = B p  

(b) D(Bx) = BCBt 

(c) cov (BX, CY) = BAC' 

Proof: (a) B = where b, is the ith row of B, i =1, ..., r . 

Now E(Bx) = E 

(b) D(Bx) = Cov(Bx, Bx) = Cov 

~ h u s ,  the (i, j)& klement of D(Bx) is Cov(bix, bjx) = biCb: for 

i, j = 1, . . ., p from Theorem 1. 

(bi : . . . : b:) =BIB' . 

(c) Cov(Bx,Cy) = Cov [[:::I , [I::]] where C j  is the j' row of 

C, j= l ,  ..., s .  

The (i, j)" element Cov(Bx, Cy) = biAc:. 

Hence Cov(Bx, ,) .[1').(=; :..:.:) = BAC' 

b r 

Example 3: Let C bethe variance-covariance matrix of a random vector x of order 
p x 1 . Let q denotes the correlation coefficient between xi and x j, i, j = 1, . . ., p . 
Write R = ((qj)) . R is called the correlation matrix of x . 





Proof: (a) Let I: be the variance-covariance matrix of a random vector x . Then for 
each fixed .I, lgI: 1 = v(ltx) 2 0 (Since variance of a rqndom variable is nonnegative.) 
Hence I: is nnd. 

(b) Let I:,, be an nnd matrix. Then by Theorem 4(b) of Unit 14, there exists a matrix 

C of order p x r for some positive integer r such that I: = CCt . Let x, , x,, . . ., x, be 

independent random variables each with variance 1 . Write xt = (x,, . . ., x,) . Then 

D(x) = I,, (I,, is the identity matrix of order r x r  ). Write y = Cx . Then by theorem 

2, D(y) = CICt = CC' = I: . 

Corollary: The variance-covariance matrix I: of a random vector x is positive semi- 
definite if and only if there exists a fixed non-null vector 1 such that ltx is a constant 
with probability 1. 

Proof: I: is positive semi-definite 
w There exists fixed I # 0 ,  such that ltI: 1 = 0 

m There exists fixed 1 + 0 such that v(l tx) = 0 

m There exists a fixed vector I # 0 such that I'X is a constant with 
probability I .  

In general, independentluncorrelated random variables are easier to handle statistically 
than the correlated random variables. We shall now give methods of transforming a 
random vector (the components of which are correlated) with positive definite 
variance covariance matrix to a random vector the components of which are 
uncorrelated, by a suitable linear transformation. 

Let x be a random vector of order p x l  with D(x) = I: is a non-diagonal pd matrix. 

Method 1: Let I: = PAP' be a spectral decomposition of I: where P is orthogonal 
and A diagonal. Since I: is pd, so is A . Write 5 = Ptx . Then 

D(5) = PtZP = P'PAP'P = A ,  since P is orthogonal. Since A is a diagonal matrix, 

the components of 5 are uncorrelated. Also V(Ei ) = hi , the ith diagonal element of 
A .  

112 t If we write y = A- P x , then D(y) = A-"~P'PAP'PA-"~ = I . Here 

Thus, the components of y are uncorrelated each with variance 1. 

~ e f o r k  proceeding further, let us recall that if I: is pd, then there exists a nonsingular 
matrix B such that I: = B B ~  . Write y = B-'x . Then 

D(y) = B-'cB-" = B-'BB' B-l' = I . Hence the components of y are uncorrelated, 

each with variance 1. Notice that in method 1, PA'/' is a choice for the matrix B . 

In Unit 14, we gave a method of computing a lower triangular square root of a pd 
matrix. Before giving Method 2, we shall give another algorithm of obtaining a lower 
triangular square root of a pd matrix. This algorithm also helps us in getting the 
inverse of the triangular square root as a bonus whereby we can write down y 
immediately. 

Definition an1 
Properties of MVN- 
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Let E be a pd matrix of order p x p and I be p x p unit matrix. I 
Algorithm: Step 1 : Form the matrix T = (Z : I) 

Step 2: Set i = 1 ( i  is the sweep out number) 
Step 3: Replace the ith row of T by (i' row of T )  +A 
Step 4: Is i = p ? If yes go to Step 9. If no go to Step 5. 
Step5: Set j = i + l  

t.. 
Step 6: Replace jth row of T by ( j' row of T ) -2 (ith row of T) 

t ii 
Step 7: Is j = p ? If yes go to Step 9. If no go to Step 8. 
Step 8: Replace j by j + 1 and go to Step 6. 

Step 9: Is i = p ? If yes, go to Step 1 1. If no go to Step 10. 
L 

Step 10: Replace i by i + 1 and go to Step 3. 
Step 11: The first p columns of T form Bt and the last p columns 

of T form B-' where E=BBt with B lower triangular. 

Method 2: Obtain a lower triangular square root of E and B-' by the above 
algorithm. Then write down y = B-'x . Since B is lower triangular, so is B-' 

: I 1 i 1 , where 8-' = ((b")) . 
. . 

Observe that y1 = bl1xl 

y2 = bZ1x1 + b 2 2 ~ 2  

Thus, the first component of y is a scalar multiple of the first component of x . The 

second component of y is a linear combination of the first two components of x ,  and 
SO on. 

We now illustrate the above methods with examples. 

Example 4: Let x be a random vector with D(x) = (: 
(a) Find an orthogonal transformation 5 = Px (where P is an orthogonal matrix) such 

that the components of 5 are uncorrelated. Obtain the variances of 5, and k2. 

(b) Find a nonsingular linear transformation y = Bx , so that the components of y are 

uncorrelated each with variance 1 by both the methods described above. 

Solution:(a) Using the solution of E4 of unit 1 ,  we have the spectral decomposition of 
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Hence the required orthogonal matrix is P' = P' = [:;I =+ [i !I] - The 

transformation is 6 = Pix. 
1 1 

Thus, 5, =-(x, + x 2 )  and 5, =-(XI - x2) JZ fi 
3 0 3 0 

Now .is) = Pt P( ) PtP = [ 1 
0 1 0 1 

So V(6,) = 3 and V(5,) = 1 

1 
(b) Using Method 2 write y, = -5, and y, = t2 

JT 

Then y, and y2 are uncorrelated and V(y,)  and V(y,) = 1 .  

Using Method 1 for the matrix [ i y )  and proceed as below. 

...................... 2 1 1 0 (1) 

...................... 1 2 0 1 (2) 
--------- 

1 1  ....................... A - - 0 (3)=(1)+& JZJZ 
3 1 I ........................ 0 - - - 1  (4)=(2)--(3) 
2 2 JZ 

--------- 
1 1  JZ - - 0 ........................ (5) = (3) 
& &  

1 JZ ..................... 
2 &fi (6)=(4)+$. 

'The required transformation is y = B-'x . 

Hence y, =- x, 
I JZ 
I 
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-. - , 
E4) Consider a random vector x = 

x4 

x5 

t 5  1 1  1 1 1  

D(x)= 1 0  6 1 2 . W r i t e y = x ,  and c =  . 
1 2 1 8 3  1 1  x3 I::J n u s ,  =(:I. 

4 2 

Let B=[2 4 5 2  '1 and c=[: :]. Write u=Byand v = C e .  

Compute the following: 

(a) E(u), D(u) 

(b) E(v), D(v) and 

(c) Cov(u, v) . 

E5) Let x be a random vector with E(x) = 

that each row sum of D(x) is 0.  Obtain a linear combination l tx which is 
constant with probability 1. What is the value of this constant? 

E6) Let x be a random vector with D(x) = 2 17 27 . Use Method 2 to obtain a I: 2: 

lower triangular square root matrix B and its inverse such that the components 
of y = B-'x are uncorrelated each with variance 1. 

E7) Let C be the variance covariance matrix of a random vector x . Let oii = 0 .  

Show that the covariance of xi with all other components is zero. 

In the next section, we shall discuss the multivariate distributions. 

15.4 MULTIVARIATE DISTRIBUTIONS 

In this section, we give an introduction to multivariate distributions. By a multivariate 
distribution, we mean the joint distribution of more than one random variables. We 
give examples of discrete and continuous multivariate distributions. From the joint 
distribution of random variables x, , . . ., xp we obtain the individual distribution 

(which we call the marginal distribution) of each x . We define the concept of 
conditional distribution. We briefly study the concept of independence of random 
variables and its relation touncorrelatedness. First, let us consider a few examples. 





Basics of Multivarlrrle PIX] ='O)=P{xl =o, x2 =O)+P{x, =ol x2 =l)+P{xl =o, X 2  =2)+p{xl =o, X 2  =3)  
Normal 20 60 36 4 -- - +-+---It----. 

228 220 220 220 

Notice that PIX, = 0) is the row-sum corresponding to x, = 0 in the Table 15.1. 
Accordingly this is recorded as row-sum corresponding to x, = 0 .  Similarly, the 

second and third row-sums are the probabilities of x, = 1 and x, = 2 ,  respectively. 
Thus, the marginal distribution of X, ib  

I 

%Me iS.2: dargitlai disti.ibiition of x, 

Value 

Probability - - - 
220 220 220 

Similarly, the marginal distribution of x, is obtained using the column sums in 
Tabie 15.1. Thus, the marginal dibtpibutibti of x2 is 

Tdble 15,dt hiriiiidhl distribution of x, 

56 
Probability - 112 - 48 - 4 - 

220 220 22Q-. ,-,220 

Suppose we are givcn~ad$itiand iflbmation that no long distance running specialist is 
selected, or in other words, we know that x, = 0 .  Then what m thd fjrobabillties for 

X, =0,1,2,3 given this addidofill1 i n k + ~ & t i ~ ' ?  Rotice that we are looking for the 
conditional probabitiddi Pf x2 = j ( x, = 0) , for j = 0,1, 2,3. We can compute them 
as 

P , ~  I , ,  (j 1 Q )  

The above distribution of x, given x, = 0 is called the conditional dtstvibutltl~ of: X 2  

given x, = 0 and can be expressed neatly in the following table. 

Table 15.4: Conditional distribution of r;:;, = 0 

Now, try the following exercises. 



E8) In Example 5, let x, = number of cricketers chosen. Write down the joint 

distribution of x, aiid k, : UBtttin the marginal distributions of x, and X, . 
Obtain the conditional distribution of x, givefl x2 = 1. 

E9) In Example 5, let p, j, denotes P{x, = i, x, = j, x, = k} . Obtain p; jk for 

i=0,1 ,2 ,  j=0,1,2,3and k = 0 , 1 , 2  ,..., 6 , i + j + k = 3 .  Thevaluesof x1,x2 

and x, and the corresponding p,,, constitute the joint distribution of x, , x, 

and x,. 

1 E10) In Example 5, obtain the variance-covariance matrix of x = 

The random variables x, ,x, and x, in Example 5, E9 and E l0  are discrete. Then 

x = x, is called a discrete random vector and the distribution of x (the joint I:: 1 
distribution of x,, x, and x,) in such a case is called discrete multivariate 
distribution. More generally, we can define discrete multivariate distribution for 
x = (x, , x, , . . . , x , ) ~  by joint probability. 

P(xl =i l ,  x, =i,, ..., x, =i,)=p,,, ?,.. , p ,  

Then for a set A of p-tuples P(x E A) = xpi,,i2, ,,, ,p (i,, i, ,. . ., i,) E A . 

t .  
On the other hand we say that x, , . , . , x, are jointly continuous ( x = (x, . . . x,) 1s 

continuous) if there exists a function f (u,, . . ., up) defined for all u,, . . . ,up having the 

property that for a set A of p-tuples, i s .  A c RP . 

P((x,, ..., X,)E A) = j... Jf(uI, . . ,  u2)du1 ,,..., du, , where the integration is over 

(u,, ..., u p ) e A .  Thus, P(XE R ~ ) =  I... I f (u1  ,..., uP)duI. ... du, 31 .  
R " 

The function f (u, , . . . , up) is called the probability density function of x (or joint 

probability density function of (x,, . . .,x,)). If A, ,. . ., A, are sets of real numbers 
' _  

iiir?t A = [(u,, . . ., up),u, E A,, i = 1, . . ., p} we can write 
L 

P{(x,,. . ., x,) E A} = P{xi E Ai. i = 1, .. ., p} = I.. . If (uI.  ..up)du1 ... du, 
A, A, 

The distribution function of x = (x, . . .x , )~  is defined as 

F(a,, a ,,..., a,)=P(x, -<a,, ..., x, <a,} 

Definition and 
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a, a~ 

= I.. . I f ( u  ,... up)du I . . . d ~ p .  (al7 a,, ..-, a , )€RP 



It follows upon differentiation, that f (a,, . . . , a,) = F(a, , . . . ,a, ) provided the 
da, ... aaP 

partial derivatives are defined. At a countable set where partial derivatives are not 
defined we set it equal to zero. 

Another interpretation of the density function of x can be given using the following: 

"' +"' "'+7 P{ai < xi < a,  + 6ai, i = 1, . .., p) = I .. . f (u,,.. ., u,)du, .. . ..dup 
"1 a, 

-- f (a,, . . . , ap)6al,. . .6ap . 

when 6a1, i = 1, . . . , p  are infinitesimally small and f is continuous. Thus, 

f (a,, . .., ap)6a,, 6a,, . .., 6a, is a measure of the chance that the random vector x is 

in a small neighborhood of (a,, . . ., a,) . 

Let f, (u, , u z, . . . , up ) be the density function of random vector x of order p x 1 

Then the marginal density of x i ,  denoted by f,, (ui ) is defined as 

00 w 

fxi (ui)  = J... Jf(uI.u ,,...up MU] . . . d ~ ~ - ~ d u ~ + , .  . .duP - 4 
Let x, = (x,, . . . , x , ) ~  and x, = (x,,, , . . . , x , )~  . Then the joint marginal density of x, - 00 

is defined as f,, (u,) = 1.. . Jf (u, , . . . u,)du,, . . .dup where u, = (o, , . . ., u,)' . 
8 40 

Likewise we can define fx2 (u,) , where u, = (u,,, , . .., up)' . 

The conditional density of x, given x, = (u,,, , . . . , up )' is defined as 

Why is the conditional density defined thus? To see this let us multiply the both sides 
of the above equality by du,, . . .,du, . 

~ ( u ,  < x ,  < u , + d u  ,,..., u p < x p ~ u , + d u p )  - - 
~ ( u , ,  2 x,,, i ur+, + du,, ,,.. .,up 5 xp 5 up + du,) 

Thus, fXIIXZrU2 (u1 1 u,), du, , . . ., duP represents the conditional probability that xi lies 

between u, and u, + du,, i = 1, . . ., r given that x, lies in small neighbourhood of u, 

thatisbetween u, and u,+du,,  j = r + l ,  ..., p .  



Example 6: Let x = (x,,  x,)' has the joint density 

c(2-u , -u , )  o < u ,  cl, O < u , < l  
f x  (u,, ~ 2 )  = 

otherwise 

I where c is a constant. 

I (a) Obtain the value of c 

I (b) Find the marginal density of x, 

I (c) Find the conditional density of x, given x, = u, , where 0 < u, < 1 . 

(dj Find the probability that x, > I 14 given x, = u,, 0 < u, < 1. - m 

Solution: (a) Since f,(u,, u,) is a density function, I.. . ~fx(ul ,u , )dul ,du2 = I  

= c. (2 - u,)du, - u,du, since du, = du, = l  I 
0 0 S 0 I 0 I 

i 
I (b) The marginal density of x, in the range (0, 1) is 

J 

= fi2-u1 -u2 jdu, 
0 

( Thus. f , , (u , )=  
u, , for O<u ,  < l  

elsewhere 

I for 0 c u , < 1  
(e) By symmetry, the marginal density of x, is fX2  (u, ) = 5 - U 2  ' 

0 , elsewhere 

1 So, the conditional density of x, given r, = u,, 0 < u2 < 1 is 

!=uz ( ~ 1 1 ~ 2 )  = 
fx("13u2j - 2-~u1 - u 2  where O< u, < 1. Since fX(ul. - 
f,,(u,) 2- 

2 u2 

\ whenever u, E (0,l) whatever be given u, . 

Definition and 
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Normal 
wehave f , , l x 2 = u 2 ( ~ I I ~ 2 ) = j  5 - u 2  

l o  otherwise 
for any given u, E (0 , l ) .  

Example 7: Consider a random vector x with joint density 
2e-u1e-2u2, O<U!  <00, O < u 2  

fx(u1- ~ 2 ) '  
9 

elsewhere 

(a) Obtain the marginal density of x, 

(b) Obtain the conditional density of x, given x, = u,, u, > 0 .  

Solution: (a) Clearly fX2 (u,) = 0 whenever -+ < x, 5 0.  Let 0 < x, < - , then 

-- 
- -lo 

= 2e-2U2 , whenever 0 < u, 5 - . 
which is an exponential distribution with parameter 2. 

fx(u19u2) = 
2e-ul e-uz 

(b) Given u, >O f x , l n 2 = u 2 ( ~ I  I u2) = - - e-ul , whenever 
f,, ( ~ 2 )  2e-U2 

Again f ,l,,2=u, (u, ( u,) = O,u, e (0, w) for any given u, 

ma. e-"I ~ ~ u , E ( o , ~ ) , u ~ E ( o , w )  
otherwise 



It can be easily checked that this is the same as the marginal distribution of x, . Thus, 

in this'example the joint density of x, and x, is the product of the marginal densities 

of x, and x,. 

Let a random vector x = , where x; is of order r x l  and x, is of order G" 
(p - r) x 1 have joint density f, (u) , where u = is partitioned according to the (2) 
partition of x .  We say that x, and x, are independent if 

P{x, E A, X, E B) = P(xl E A]P{x, E B) all subsets A and B of R' and R(,-" 
respectively. 

It can be shown that x, and x, are independent if and only if the joint density of x, 

and x2 (i.e., the density of x )  is equal to the product of the marginal density of x, 
and x, or in other words 

f,(u) = f,, (ul).fX2 (u2),  for all u, and u, . 

We give below a relationship between uncorrelatedness and independence. 

Theorem 4: Let x, and x, be independent vectors. Then the matrix Cov(x,, x,) = 0 .  

Proof: Let fXl (u,) and fX2 (u,) be the densities of x, and x,. Then the joint density 

of x, and x, (i.e., the density of x = x = ) is f, (u) = f,, (u,).fx2 (u,) where GI 1 

Let u, = (u,, ..., u,)' and u, = (u,,,, . . ., u , ) ~  . 

Cov(u, , u,) = E(u, ui) - E(u,)E(ui) 

since the first integral in the previous expression splits into the product of the two later 
integrals. Also for a matrix A = ((aij)) , we define 

1. . . /A dx, , . . . , dx, = (( 1. . . la, jdx, , . . . , dr , )) . 

However, the converse is not hue as shown through the following exercise El I. 

Now, try these exercises. 

El 1) Let x have the following probability distribution 

Value 1-3 1-1 1 1  13 

Definition and 
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(a) Show that the probability distribution x2 is 

(b) Write down the joint distribution of x and x2 
(c) Show that x and x2 are uncorrelated. 
(d) Show that x and x2 are not independent. 

E12)' Consider a random vector x = (1:) with the density 

cu,(2-u, -u2)  O<u, < I ,  O<u, < l  
fx ( ~ 1 ,  ~ 2 )  = 

otherwise 

where c is a constant. 

(a) Obtain the value of c . 
(b) Find the marginal densities of x, and x2 . 
(c) Find the conditional density of x, given x, = u, . 
(d) Are x, and x2 independent'? 

Let us consider the bivariate normal distribution. This is a special case of the 
multivariate normal distribution which we shall study in detail in the next few 
sections. 

Example 8 (Bivariate normal distribution): Let x = f X 1 )  have joint density 

2 2 This distribution will be denoted by N, jpX,, px2. ox, ,ax2 ,p ) . 
(a) Rewrite the above density in terms of variance-covariance matrix C of x . 

(b) Obtain a lower triangular square root B of C.  

(c) Write down the density of y = B-'x . 

(d) Hence write down the marginal density of y, and x, . 

(e) Show that y, and y, are independent. 

(f) Obtain the conditional distribution of x, given x, = u, . 

Solution: (a) Let C = [::: 

2 2 
Thus, 1x1 = (TI - oI2 = ox, 



where LI = (::) and PX =[:::) * 

Thus, the density of x can be rewritten in terms of C as 
I 

] -(u-,Ir il~-'("-pX ) 
f, (u) = ------i- e ,UE R ~ .  

2nl~1? 

Hence we can denote this distribution as N, (p, ,E) . 

(b) Let C = BB' , where B is lower triangular. 

Writing 

We have b~~ =& 

and 

(c) Consider y = B-'x . Write v = B-'u and py = ~ - ' p ~  

Then the density of y is given by (density of x written in terms of y ). 

f,(v>=f,(Bv) lJ (u , ,  u2)I-l 

Definition and 
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"22 bl I b22 b, I 

av, - -  
a ~ ,  . a ~ ,  

Then J(u,,u,) = 
av2 av2 --  
aul a ~ ,  

Hence (u - p, ) t ~ - l  (u - p, ) 
= ( U - - ~ ~ ) ~ B - I ' B - ~ ( L I - ~ ~ )  

= ( ~ - P ~ ) ~ ( v - p ~ )  

1 1 - , (v -Py) t (~ -Py)  I 1 -L(v-wy )'(v-Py) 
Thus, the density of y is f, (v) = - - -7e  .I45 = ~e 

2zlcl. 
The range of values for y, and y2 are clearly the same as the range of values of x, 

and x, , namely, -m < y, < a , -  m < y, < . 

1 -;[(vl-Pyl ,'+iv2-Py2,'] 
(d) The joint density of y, and y, is -e , -oo<vl, v2 < m .  

2n 

2 1 
-Pyl ) -$v2-py2 r 

Hence the marginal density of y, is .e dv2 
-m 

- 1 ef (*l-'y1)2 -- , since the integrand above as the density of a 
& 

normal distribution. 

1 . 1 - i ( v l - ~ ~ ,  y 
Thus, the marginal density of y, = - x1 1s -e , - 00 < v, < w which is 

b, 1 4 5  
the density of N .I ) . 

1 
So, xl  has a normal distribution with mean = b, ,pYI = b,, -y,, = yxl and 

bl 1 

variance = b;,v(y1) = b:, = GI, . 

Thus, the marginal distribution of x, is N (P,, ,o,,) . 
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, - -<u2<- ,  

Try the following exercise. 
& 

E13) Let a have a bivariate normal distribution N, ( p ,  , px2 .ox, ,a,, pxlx2 ) . Show 

that x, and x, are independent if and only if pxlX2 = 0 . (Recall that, in 

general, uncorrelatedness does not imply in dependence. However if x, and 

x, have a bivariate normal distribution then x, and x, are independent if and 

only if they are uncorrelated.) 

Now, we shall summarize the unit. 

15.5 SUMMARY 

In this unit, we have covered the following points: 

Nature of multivariate problems 

Computation of the mean vector and variance-covariance matrix of a linear 
transformation of a random vector 

An algorithm to compute a lower triangular square root of a positive definite 
matrix and its inverse simultaneously 

Discrete and continuous multivariate distributions 

Uncorrelatedness and independence 

Bivariate normal distribution. 

15.6 SOLUTIONS TO EXERCISES 

El) p1 =E(X,)=(-1) (0.3)+(0) (0.3)+(1) (0.4)=0.1 

p2 = E(X2) = (0) (0.7) + (1) (0.3) = 0.3 

0 1 1  =E(X, -p1)' 

= (-1 - 0.1)' (0.3) + (0 - 0.1)'(0.3) + (1 - 0.1)'(0.4) = 0.69 

0 2 2  =E(X2 -p2)' 

= (0 - 0.3)' (0.7) + (1 - 0.3)'(0.3) = 0.78 

0 1 2  =E(X1 - P I )  (X2 -p2) 
=(-1-0.1) (0-0.3) (0.21) + (-1-0.1) (1 -0.3) (0.09) 
+ (0 - 0.1) (0 - 0.3) (0.21) + (0 - 0.1) (1 - 0.3) (0.09) 
+ (1 - 0.1) (0 - 0.3) (0.28) + (1 - 0.1) (1 - 0.3) (0.12) = 0 



Therefore, mean = p = [:::I 

1 
E2) Themeanof l t x = l y = ( l  1 1 1) =o=o  

- 1  

1- 2) 

We can write C, = 0.8 I + 0.211' [where I is identity matrix of order 4 x 4 ] 

where 1' = (1 1 1 1) ( = 1' of the present exercise) 

Now V(1' X) = l t Z 1  = 0.81'1 + 0.21' 11' 1) 
= 0 . 8 ~ 4 + 0 . 2 ~ 4 ~ 4 = 3 . 2 + 3 . 2 = 6 . 4  

E3) (a) Let z = (3 
Cov (x, Y)  

The D(z) = 

Let u = Bx and v =Cy 

write w = [:I 
B O X  B O  

Then w =(:)=[:;)=[ O C y  ) [ )=( O C  ) 2 
B 0 B 0 

Thus D(w)=D[( 0 c )z)=( 0 c 
0 ct 01 

whence it follows that D(Bx) = D(u) - BC,Bt and 

COV(BX, c y )  = COV(U, V) = BAC' . 

Definition a: 
Properties of MVP 

(b) The standard deviations of x,, x, and x, are 2.0, 3.0 and 4.0 , respectively 
Hence the correlation matrix R of the random vector x is 
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1 
You can easily check that I 3  = 0 - 0 1 

3 .O 

Therefore, 

which is exactly the same as in Example 1 (as expected). 

E4) From the given information, 

(a) E(u) = E(B y) = BE(y) = [: : i)[i]=(104) 

(b) E(v) = E(C z) = C E(z) = E(v) = E(C z) = CE(z) = -1 3 [: :](:I=[;] 
(c) Cov(u, v) = Cov(By, Cz) = BCov(y, z) C t  

4 1 \  



Note: Since D(v) = D(C z) = CD(z)Ct , the rank of D(v) is at most equal to Definition anc 
Properties of MVN-I 

the rank of D(z) which is equal to 2 (since the determinant of 
D(z) = 63 # 0 ). So D(v) is a positive semidefinite matrix. It can be shown 

that =I " is orthogonal to both [a] and [use Gram-Schmidt 

-14 

orthogonalization process on [,],[i],[k andhencell  4 -14)C-0. 

Thus, 0 = gtCD(z) C'g = V(gt v) . Hence g'v is a constant with 
probability 1. Let us find out the constant now. 

E(gtv) = gtE(v) = (1 4 -14) 9 = 0. Since gtv is a constant with i181 
probability 1, gtv = E(gtv) = 0 with probability 1. 

E5) This is similar to the note in E3. Since each row sum (same as the column sum) 
of D(x) is 0. We have 1' D(x)l = 0 where It = (1 1 I )  . 

Hence l 'x  = x, + x 2  + x3  is a constant with probability 1. The constant is 

E ( 1 ' ~ ) = E ( x , ) + ~ ( x ~ ) + E ( ~ , ) = 1 + 2 - 1 = 2 .  

E6) We form D(x) : I and follow the procedure in Method 2. Thus, 

Hence B = 1 4 0 is a lower triangular square root of D(x) (i.e. [: 111 
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1 
D(x) = BB' ) and B-' = . The components of y = B-'x are 

- -- - 
20 10 5 

uncorrelated each with variance 1 as D(y) = B-'D(x)B-" = B-'BB' = I . 

E7) V(x, ) = o, = 0. So xi is a constant with probability 1. Hence Cov(x, , xj) = 0 

for all j. 

C, being a variance-covariance matrix is nnd by Theorem 3(a). Now by 
Example 11 of Unit 14, oii = 0 3 od = 0 for all j . Hence Cov(xi, x j) = oij = 0 

for all j. 

E8) x2 =No. of tennis specialists chosen 
x3 = No. of cricketers chosen 

. . 
Let pij denotes the probability that x2 = i and x, = j, 1 = 1, . . . , 4  and j = 1, . . ., 6- 

Clearly pi, = 0 whenever 1 + j 2 4 as only 3 sportsmen were chosen. 

poo = 0 since there are only 2 specialists in long distance running and 3 
sportsmen are selected. 



Also pij=O for i = 4  or j 2 4 .  

Thus, the joint distribution of x, and x, is given by 

Joint Distribution of x, and x, 

Definition and 
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Conditional Distribution of x, I x2 = 1 

E9) Clearly pij, = 0 whenever i + j + k # 3. Hence we shall consider only those 

combinations of i, j and k such that i + j + k = 3 .  

Value 

Probability 

E10) From Table 15.2 of Example 5, 

From Table 15.3 of Example 5, 

0 
4 - 

112 

1 
48 - 
112 

4 

0 

2 

- 60 
112 

5 

0 

3 

0 

6 

0 



2 2 340 120 SO V(x2)=E(x2)-(E(x2) )=--I=- 
220 220 

From E8), we have 

90 90 20 330 3 
E(x,)=l.-+2.-+3.-=-=- 

220 220 220 220 2 

2 90 90 20 630 E(x3)=1.-+4.-+9.-=- 
220 220 220 220 

630 9 135 V(x3)=---=- 
220 4 220 

From Table 15.1 of Example 5 

48 12 4 80 
E(x,x2)=1.1.-+1.2.-+2.1.-=- 

220 220 220 220 

From the table of joint distribution of x2 and x, in E8, 

From the computations of E8, 

120 1 3  45 
So Cov(x, x,) =---.-= -- 

220 2 2 220' 

Hence the variance covariance matrix of x = (x,, x,, x,)' is 

-30 -45 

220 
-45 -90 135 

Definition and 
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Remark: Notice that each row sum of the above dispersion matrix is 0 .  Thus, it 
is a positive semidefinite matrix. Is it surprising? No! Why not? That is 
because we know that x, + x, + x3 = 3 (a constant). Thus, V(x, + x, + x3) = 0 .  

E 1 1) (a) Notice that x2 can take only two values 1 and 9. 

2 1 Similarly, P(x = 9) = P(x = 3) + P(x = -3) = - 
2 

(b) The joint distribution of x and x2 is given as under: 

Joint Distribution of x and x2 

sum 

1 1  
(c) Clearly, E(x) = -- + - = 0 

4 4 

SO COV(X, x2) = E(x.x') -E(x).E(x~) = E(x.x~)  

3 1 3 1  3 1  3 1  =(-3) .-+(-I) .-+l.-+3 .-=o. 
4 4 4 4  

(d) P(x=3 and x2 = l )=O 

I 2 1 But P(x = 3) =- and P(x = 1) =- 
4 2 

Thus, P(x = 3 and x2 = 1) # P(x = 3).p(x2 = 1) . 

Hence x and x2 are not independent. 

c.ul(2-u,-u,) whenO<ul<l and O<u2 <1 
E12)(a) fx(u,,u,)= 

otherwise 



12 
Hence c = - 

5 

I (b) The marginal density of x, is 

Definition and 
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12 
= -u , (2 -~ ,  5 - ~ ) = ~ u , ( ~ - u , )  if Ocu ,  cl and 0 otherwise. 

1 Similarly, the marginal density of x, is 

(c) The conditional density of x, given x, = u,, 0 < u, c 1 , is given by 
1 F, 

(d) Since the conditional density of x, given x, is different from the marginal 
distribution of x, , we conclude that x, and x, are not independent. 

E l  3) From Example 8, if pxlx2 = 0 , the density of x = (::I is 

Hence x, and x, are independent. Conversely, if x, and x, are any two 
independent random variables, then we know that pxlx2 = 0 and hence it holds in 

this particular case. 
-x- 




