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16.1 INTRODUCTION 

In this unit, the concepts of marginal and conditional distributions and the important 
concept of independence with the help of examples will be continued. We also give a 
method of obtaining the density of a transformed random vector. In Sec. 16.2, we 
introduce multivariate normal distribution using its density function. In Sec. 16.3, we 
study the multivariate normal distribution defined via linear zero functions and obtain 
several properties. We also show that the two definitions of multivariate normal 
coincide if the variance-covariance matrix is positive definite. 

Objectives 

After completing this unit, you should be able to 

apply the properties of multivariate normal distribution to the problems of 
multivariate analysis; 

appreciate the beauty of the density-free approach to multivariate normal 
distribution. 

16.2 NONSINGULAR MULTIVARIATE NORMAL 
DISTRIBUTION 

The multivariate normal distribution is a generalization of the univariate normal 
distribution to higher dimensions. This distribution plays a fundamental role in 
multivariate analysis. While it is true that the real data virtually never follow 
multivariate normal, the multivariate normal distribution is often a good 
approximation to the population distribution. Also the sampling distributions of many 
multivariate statistics are approximately normal, regardless of the form of the parent 
distribution (discrete or continuous) in view of the multivariate central limit theorem 
which can be stated as follows: 

Theorem 1 (Multivariate Central Limit Theorem): Let x, , x, , . . . , x, be 
independent observations from a population with mean vector p and finite variance- 

1 " 
covariance matrix, I . Let P = - xi . Then for large n, (P - p) has an 

" i=1 

approximate multivariate normal distribution with mean vector 0 and variance- 
covariance matrix I . ( n should be large relative to the number of components in E .) 

Moreover, the multivariate normal theory is easily tractable mathematically and nice 
and elegant results can be obtained. Thus, the study of multivariate normal 
distribution serves the dual purpose of usefulness in practice and mathematical 
elegance. 
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Let us start with the simplest extension of a univariate standard normal distribution. 
Let x, , . . . , xp be independent standard normal variables. Then their joint density 

which we have identified as the density of x = (x,, . . . , x,)' is given by 

- -- A e 2 , u ~ R P , w h e r e u = ( u  ,,..., u,)'. 

Let us make a nonsingular linear transformation y = Bx + p , where B is a fixed 
nonsingular matrix and p is a fixed vector. Accordingly let us set v = Bx + p . Then 
the density of y is obtained as follows. 

First we obtain the Jacobian of the transformation: 

h 1  av, - ... - 
a l l  

"1, "12 .-. blp 
. . " ... *. . . . . . . . 

J(ul, .. ., up) =Absolute value of : . . . - - ... ... =IBl 

~ v P  h P  - ... - 
a l l  

bpl bp2 ... b, 
h P  

Also u = B-I (v - 1) 
1 -L(v-p)' B-"B-' (v-p) 

So the density of y is -.e 
1 

(2n)g 
' [absolute value of l ~ ( 1  

Letuswrite Z=BBt.  Then )Z~=JB( (Bt (=(~12 .~o theabso lu teva lueof  I B I  is 

I Z r", the positive square root of I Z 1. 
1 -+v-p)' z-'(v-p) 

Thus, the density of y can be rewritten as f,, (v) = , V E  RP.  

Notice that the density of y depends on the parameters p and Z . The probability 
distribution with this density is called p-variate normal distribution with parameters * .  

p and Z and we denote the distribution as I 

Y - N,(L Z) 

In the same notation, the vector x that we considered originally has the distribution 
Np (0,I) - 

Let us now identify the parameters p and Z . 

We know that E(x) = 0 and the variance-covariance matrix D(x) = I ,,since x, , . . . , xp 

are independent standard normal variates. 

Since y = Bx + p , we have 
E( y ) = E(Bx + p) = BE(x) + p = p 

D(y) = D(Bx + p) = D(Bx) = BIB' = BB' = Z 



1 

Thus, p and Z are the mean vector and the variance-covariance matrix of Definition and Properties 
of MVN-11 

y - N, (p, Z) . Recall that we started with B nonsingular and hence Z is nonsingular 

(in fact, positive definite). The fact that B is nonsingular was crucial in obtaining the 
density of y as above (Notice that the jacobian not being 0 was an assumption while 
obtaining the density of the transformed random vector in the form mentioned above.) 

I Thus, the distribution N,(p, C) , i.e., the p-variate normal distribution with mean 

vector p m d  variance-covariance matrix Z is called a nonsingular p-variate normal 
distribution, if C is positive definite. Later on, we shall also study the case where Z 
need not necessarily be positive definite. Let us now summarize the above discussion. 

Definition 1: A random vector y of order p x 1 is said to have a nonsingular 
p-variate normal distribution with parameters p and Z if it has the density 

where p is a fixed vector in RP and Z is a p x  p positive definite matrix. Also then, 

we use the notation y - Np(p, Z) . 

Remark: If y - N,(p, X) where C is a positive definite, then E(y) = p and 

D(y) = Z . 

We shall now turn our attention to the marginal distributions. Let y - N, (p, C) . 

where y, , v, and p, are of order r x l(1 I r 5 p) and Z, , and C,, are of order r x r 
and (p - r) x (p - r) , respectively. Such partitions of v, p and Z are called 
conformable partitions to that of y . 

We first show that if X,, = 0 ,  then y, and y, are independent. Notice that if Z,, = 0 ,  

then the covariance between y, and y,, i = 1, . . ., r and i = r + 1, . . . , p is 0 and hence 

each yi , . . ., y, is uncorrclated with each of Y.,, , . . .. Y, . 

Theorem 2: Let y - N,(p, 2) where C is positive definite. Let y, v, p and C be 

partitioned as given in Eqn. (1). Then y, and y, are independent if and only if 

x,, =o. 

Proof: We need to prove only the 'if part as the only if part has already proved in 
Theorem 4 of Unit 15. 

1 1 , - 5 ( v - ~ ) ' X - ' ( v - ~ )  
The density of y is fy  (v)  = y y e  (2x1 1x1 
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0 z; 

Hence (V-~)~T'(V-~)=[~/-P~:~;-P: 

Thus, fy ( v )  can be rewritten as 

Thus, joint density of y factors into product of r-variate and (p -r) -variate normal 

density involving only v, and v, , respectively. 

Hence y,  and y , are independent. 

We now obtain the marginal distribution of y, in general case. 

Theorem 3: Let y - NP(p, X) where I: is positive definite. Let y, v, p and Z be 

partitioned as in Eqn. (1). Then the marginal distribution of y, is N, (p, , XI,) . 

Proof: The technique of the proof lies in transforming from y to 5 by a nonsingular 

linear transformation such that y, = 4, , and 5, and 5, are independent. Then the 

marginal distribution of 5, and hence y, can be easily obtained using Theorem 6 of 
Unit 15. Towards this end, write 

A  0 
since 1 1 = ~ 1 . ~ 1 ,  where A  and C are squares and 1 I 1 = I  

B C  



1 
1 

-3(v-p)' r1 (,,-p) 
Now f, (v )  = d y e  ( 2 4  1x1 

The Jacobian of the transformation is J = I-...;; 
I 

Hence the density of g= 6 = 

From the above it is clear that ( y, - k ) and ( y2 - P2 - ~ ~ ~ 2 ; ; :  ( Y  I - P,)) are 

independent with densities N, (0, Z,,) and Np-,(O, Z, - Z 2 , , ~ ; ~ ~ , , )  , respectively. 

Hence the marginal distribution of y, from the above factorization is N , ( F ~ ,  Zll) . 
Also the marginal distribution of y2 - ~ ~ ~ 2 ~ ~ ~ )  is ( 
Np-, (p2 -%,2;:pl, 2, - %,2;:2,,). (Notice that = Xi2 1. 

This complete the proof. 

Corollary: If y - Np (p, 2 )  where Z is positive definite, then y, - N(pi, aii ) for 

i = l ,  ..., p .  

We shall now obtain the conditional distribution of y2 giveny, = v, , where 

y(- Np(p, 2)) is partitioned as in Eqn. (I). Once again we assume that Z is p.d. 

Definition and Properties 
of MVN-I1 

Theorem 4: Let y - Np(p, Z) where Z is positive definite. Let y, v, p and Z be 

partitioned as in Eqn. (1). The conditional distribution of y, given y, is 
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Prool: In the proof of meorem 7 of Unit 15, we showed that y, -Z,,Z;;~, andyl are 

independently distributed. Hence the conditional distribution of y, - Z,,Z-'~, given 
11 

y, is the same as the unconditional distribution of y, - z,,Z-'~, , which 
11 

is N,-, jL2 - Z2,Z;:p1. Z2, - 221Z;1212) . Thus, the conditional distribution of y, 

given y, = v, is a p-r variate normal with mean equal to 

Ir2 - Z2lZ;:Irl+ Z2IZ; VI 

since when y, = vl, y, = v,, Z , , Z ; ~ ~ ~  = z ~ ~ Z ~ ~ ~  is a fixed vector. .' 
I 

Also the conditional variance-covariance matrix is the same as that of y, - Z21Z~:yl 1 
which is Z2, - x~,z~z , ,  . 

Thus, the conditional distribution of y, given y, is 

N,-, (JL, + Z2,Z;; ( v, - p, ) . 2, - %,Z;~Z,,) . This complete the proof. 

Let r = p - 1. Then y, is univariate ralddoxn variable y, . Also I;,, is a row vector of 

order I x (p -I) and Z, , is of order (p - 1) X (p -I) . Then conditional expectation of 

yp given y, = v,, . . ., y,-, = v,-, obtained from the above theorem is 

where Po = pP - %,Z;:p, and p = (PI , . . . , PP-, - Z;$12 . 

This conditional expectation is called regression of y, on y,, . . ., y,-, . 

So it is clear that if y,, . .-., y, have a joint pvariate normal distribution, then the i 
i 

regression of y, on y,, . . . , y,-, is linear in yl , . . ., y,-, . PI, . . ., P,-1 are called the i 

regression coefficients. 
1 

Example 1: Let y = (y, , y,, y, 1' have N, (p, I;) , where Ir = 1 

(a) Write down the marginal distributions of y,, y, , and y, . 

(b) Write down the marginal distribution of ., [;:I * 

(c) Write down the conditional distribution of y, given y, = +.5 and y, = 0.2. 

(d) Make a nonsingular linear transformation + Ty + c so that 5,. 5, i d  5, are 

independent standard normal variables. 



Solution: (a) In view of the corollary to Theorem 3 of Unit 15, 
Y, - N(1,4), y2 - N(-l,4) and y3 - N O ,  4) 

Definition and Propertie! 
of MVN-I1 

(b) It is easy to see that the marginal distribution of (y,, Y,)' is a bivariate normal. 
From the given information on p and C , we have 

E(yl) = 1, E(y3) = 0, V(yl) =V(Y, = 43 C o v ( ~ ,  2 Y,) = 2  

(c) The conditional distribution of y, given y2 =-0.5 and y, =0.2 is normal by 
Theorem 4. 

F 
i , - Partition T = L o :  where o,, is of order 1 x 2 and 112 is of order 2 x 2 . 

0 1 2  T22 

Then by Theorem 4, the conditional mean of y, is pl + o,,~;; [;;I:) 

t The conditional variance is 

i 
So the conditional distribution of yi given y2 = -0.5 and y, = 0.2 is N(l. 1, 3) . 

(d) We have y - p - N3 (0, C) 

We shall obtain a lower triangular matrix B such that BBt = Z . Then 
5 = B-'(y - p) has a trivariate normal distribution with independent components. 

Further, 

We shall use the algorithm given in Sec. 15.4 to get as required B and B-, . Thus, we 
form 
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Henceif k=Ty+c,where T=B-' a n d c = T c = T  , then 6 isavectorof 

independent N(0, 1) variables. 

Now, try an exercise. 

4 0 4 0 1  
El )  Let N, (p, Z) , where p = and E = 

1 2 0 6 0  

(a) Obtain the marginal distribution of . (;: 1 
(b) Show .at (::) and I::) are independent. 

(c) Obtain the conditional distribution of [:;I given [::I =(-::I 
(d) Write down the correlation coefficient between y, and y, . 

So far, we have discussed multivariate normal distribution. Let us now discuss 
characterization of multivariate normal via linear functions. 

16.3 CHARACTERIZATION OF MULTIVARIATE 
NORMAL VIA LINEAR FUNCTIONS 

Let y have a nonsingularp-variate normal distribution. In the previous section, we 
saw that each component of y has a univariate normal distribution. Notice that 

y, = eiy , where ei is the ith column of the identity matrix. Thus, yi is a linear 
combination of the components of y. In this section, we show that every fixed linear 



combination of the components of y (where y is as specified above) has a univariate Definition and Properties 

normal distribution. We then go on to show that the distribution of a p-variate random of MVN-11 

vector is completely determined by the class of distributions of all fixed linear 
combinations of its components. Hence we show that ap-variate random vector y 
has a p-variate normal distribution if and only if every fixed linear combination of the 
components of y has a univariate normal distribution. Using this characterization, we 

derive several properties of multivariate normal distribution, some of which we 
studied in the previous section. 

Theorem 5: Let y - N,(p, Z) where C is positive definite. Then the following hold. 

(a) Let z = By where B is a fixed nonsingular matrix. Then z - N, (Bp, BZB') . 
(b) Let x ='Cy , where C is a fixed r x p matrix of rank r ( l 5  r 5 p) . Then 

x - N, (Cp, CXCt ) . 
(c) Let w = I'y where I is a fixed nonnull vector. Then w - N(l'p, 1'Bl) . 

Further the distributions of z and x are nonsingular multivariate nornlal. 

I 1 
- - (v-*r  z I ( "  .*\ 

Proof: (a) The density of y is f, (v )  = 
P/ 

e 
(zK), 2 lZi!4 

Since for the transformation z = By, B is non-singular, the Jacobian of the 
transfomatioil is the absolute value of [ B I as we saw in the beginning of Sec. 15.4. 

Let u = Bv and 8 = Bp . We have y = B-'z, v = B-'u and p = ~ - ' 8 .  We can now 

write down the density of z as 

1 -IjB-lu-B--~B I C  7 B lu-B-lB) 

e I -  1 
f z  (u> = 

(2n)% lElX abs. value of J B ~  ' 

) Notice that 1 BXB1 I =I B' 1.  I Z 1. Hence / BZBt )"'=I z y2 (absolute value of 1 B I). 

Further (B-'u - B -'8)' X-' (B-'u - B-'0) 

= (U - O)t B-"x-'B-~(u - 0) 

= (U - 0)' (BXB' )-I (U - 8) 

which is the density of Np(O, BZB') or NP(Bp, BBBt) 

(b) Since C is an r x  p matrix of rank r . the rows of C are linearly independent. 

Hence there exists a matrix T of order (p - r) x p of rank (p - r) such that B = 

is nonsingular. W e  can extend the rows of C to a basis of RP . The rows of T are 

additional vectors in the extended basis of RP .] 
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\*Y 

Observe that the components of Cy are the first r components of z . By Theorem 3, 
the marginal distribution of the first r components of z , i.e., distribution of Cy is 

r -variate normal. Since E(Cy ) = Cw and D(Cy) = CCCt , it follows that 

Cy = N, (Cp, CCC' ) . 
If I: is positive definite then so in the matrix CCC' , (Why?) hence distribution of Cy 
is non-singular multivariate normal. 

(c) This is a special case of (b) where r = 1 . 

Thus, we have proved that if y - N, (b, C) , where Z is positive definite, then every 

nonnull fixed linear combination Ity of y has a univariate normal distribution. If 

1 = 0 ,  then l'y = 0 with probability 1. It has mean 0 and variance 0 .  It can be 
thought of as N(0,O) 

' 6  1 2 

Example 2: Let y - N,(p, X) where p = 

(a) Obtain the distribution of x = Cy where C = [: ; :) 
(b) Obtain a linear combination 5 = l'y of y such that 5 has a standard normal 

distribution. 

Solution: (a) C is a 2x 3 matrix of rank 2 .  (Both the rows of C are non-null and 
neither is a scalar multiple of the other.) Hence by Theorem 5(b), we have 
x = Cy - N,(Cp, cCC') . 

(b) Let m = 1 . By (c) of Theorem 5 and part (a) given above, we have [l'j 
m'y =- ~ ( m ' p ,  mrZm) , where m'p = 0 and m%m = 25 . 

So m'y - N(O,25). 

1 1 
Taking l=-m=i  5 I,, wehave ~ = l ' y - ~ ( O , ~ ) .  



Now, try the following exercise. Definition and Properties 
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1 
E2) (a) Let y - N, (p, Z) and 7 = - ( y, + + yp ) . Obtain the distribution 

P 

(b) Lety-N,(p ,Z)  w h e r e p = ( 2  1 3 -4) and 

Find x = Cy and w = Ty , where x and w are vectors of order 2 x 1 such 
that x and w have independent nonsingular bivariate normal distributions. 
Compute the parameters of these distributions. 

We now embark on the issue of characterizing the multivariate normal distribution via 
linear functions. 

Definition 2 (Characteristic Function): For a univariate random variable 

x, O x  (t) = ~ ( e " " )  is called the characteristic function of x . For a multivariate 

random variable y of order p x 1, 9, (t) = E(~"'Y ) is called the characteristic function 

of y . 

The characteristic function of a univariate random variable is a function of a real 
variable t , where as that of a p-variate random variable is a function of p real 

variables t,, ..., t, or the vector t = (t, ,  ..., t,)' in RP . 

We state the following results on characteristic functions the proof of which are 
beyond the scope of this notes. 

Theorem 6: Every random vector has a characteristic function. 

Theorem 7: (a) The characteristic function 9 ( t )  of a random vector y uniquely 

determines its distribution. 

(b) If @(t) = y,(t,).  . .v, (t,) , then the comfi.onents of y are independent. 

L e t y =  y =  ] be a .;ition of y . Partition t accordingly. If 

Y k  

then rectors y,, . . ., y, are mutually independent. 

We now prove a theorem due to CramCr and Word that connects the distribution of a 
p-variate random vector with the distributions of the linear combinations of its 
components. 
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Theorem 8: Let y be a p-variate random vector. Then the distribution of y is 

completely determined by the class of univariate distributions of all linear functions 

l'y, I E RP . ( I  fixed). 

Proof: Let the characteristic function of I ' y  be @(t, I) = E(eit1'~ ) . 

Now @(I, I) = ~(e ' " ) )  = ~ ( 1 )  is the characteristic function of y as a function of 

I = (I,, . . . , I,)' . By Theorem 7(a) above, the distribution of y is completely specified 

by the characteristic function of y . 

Motivated by Theorem 8 together with the fact that every linear function of a random 
vector having a (nonsingular) multivariate normal, has a univariate normal 3 

distribution. we define multivariate normal distribution as follows. 

Definition 3: A p-dimensional random vector y is said to have a p-variate normal 

distribution if every linear function I'y (with constant I ) of component of y has a 
- 

univariate normal distribution. 
1 

From now on, in this section, we use Definition 3 and obtain several important 
properties of multivariate normal distribution. We shall also show that this definition I 

coincides with the earlier definition through density, whenever the density exists. This 
approach is called a density-free approach. 

Theorem 9: Let y be a p-dimensional random vector having a p-variate normal 

distribution. Then E(y) and D(y) exist. 

Proof: Since every linear function has univariate normal and y, is a linear function of 

y , hence by definition, E(y, ) = p, and V(y,) = o,, exist and are finite for i = 1, . . ., p . 
Again, since y, + y, is a linear function of 

y, V(y, + yJ) = V( y, ) + 2Cov(y,, y ,) + V(y, ) exists and is finite. Hence 

Cov( y, , y,) = o, exists and is finite. Hence E(y) = (p,. . . . , p,)' and 

I>(y) = Z = ((0,)) exist and are finite. 

We now obtain the characteristic function of y - N,,(p, . 

Theorem 10: Let y have a p-variate normal distribution with E(y) = p and 

variance-covariance matrix D(y) = Z . Then the characteristic function of y is 

,t - ittp-;text 
@(t) = E( eitty ) = @(t) = ~ ( e '  ) - e 

Proof: Recall that the characteristic function of univariate random variable having a 
~~0~ 

ies-- 
normal distribution with mean 0 and variance o2 is ~ ( x )  = ~(e ' " )  = e . 

Also for each fixed t ,  t ty  - ~ ( t ' p ,  t tZt)  

Hence the characteristic function of t'y denoted by Y(s, t )  = E(ei"? = 
I 

i~t'~--s'tTt 
~ ( s ,  t) = E ( ~ ~ ~ " Y )  = e , for every t 

it'p-$tTt 
Now @(t) = E ( ~ " ~ Y  ) = @(I,  t )  = e 



! Notice that the characteristic function of y depends on p and X. its mean vector and 
variance-covariance matrix respectively. Also by Theorem 7, the distribution of y is 
completely specified by its characteristic function. Hence the distribution of y is 
completely specified by its mean vector and variance-covariance matrix. Henceforth, 
we shall use y - N, (p, X) to denote that y has a p-variate normal distribution with 

parameters p andX . Where we do not insist that X is positive definite. However, 

in view of Theorem 3 of Section 15.3, X is nnd. 

Theorem 11: Let y - N,(p, X) . Then every linear function 1 5  - ~ , ( l ~ p ,  L I Z )  

Proof: By definition, L L y  has a univariate normal distribution. Further E(lcy ) = L'p 

and v ( l ty )  = LtZ . 

Try an exercise. 

E3) Let y - N,(p, X) . Let B be a fixed r x p matrix. Show that 

By - N, (Bp, BXB ) . 

Here, we shall discuss few more theorems. 

Theorem 12: Let y - N, (p, X) . If X is a diagonal matrix. then the components of 

y are independent. 

Proof: The characteristic function of 
1 2  

I t l y  - lttp-Qxt It,,l,-Tt,o,! I t  p -lt20 
@(t)=E(e ) - e  = e  ...e P P  2 P PP (since ttCt = t;o,, + . . . + tao,, ) 

So, by Theorem 7(b) y,, . . ., y, are independent. 

If X is a diagonal matrix, then y, , . . . , y, are uncorrelated. Thus, we have shown in 

Theorem 7 that uncorrelatedness implies independence if y, , . . . , y, have a 

~nultivariate nornlal distribution. 

Theorem 13: Let y - N, (p, X) . Write y = [::I, when y a s  r components. 

Partition p and X conformably as p = and = X"). Thelr y and y2 
.p2 =22. 

are independently distributed if and only if C12 = 0.  

The proof is similar to that of Theorein 12. 

Example 3: Let y - N, (p, X) . Partition y as y = . Show that if y , , . . . . yk 

Y k  

are independent pair-wise, then they are mutually independent. (In general, pair-wise 
independence does not imply mutually independence, but it holds if y, ,  . . ., yk have a 
multivariate normal distribution.) 

Solution: Partition p and Z conformably to that of y . Thus, p = 1") and 

Definition and Propertic 
of MVN-' 
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For i r j , (:;I has a mult&ariate normal distribution with mean vector [:;I and 

variance-covariance matrix (why?). If yi and y, are independent, then 

Z 0 ... . 0 

Thus, Z = 

Now the characteristic function of y is 
1 I 1 

it'p-ttZt i t - t t  i t ~ p k - - t ~ Z k k t k  
@(f) = E ( ~ ~ ~ ' Y )  = e 2 = e ... e 

Thus, y, , . . . , yk are mutually independent. This complete the proof. 

So far we have not shown the existence of a random vector defined as in the definition 
of multivariate normal via linear functions. We shall now do this. First we shall 
prove a Lemma. 

Lemma 1: Let y have a multivariate distribution with mean vector p and variance 

covariance matrix Z . Then y - p belongs to the column space of Z with 

probability 1. 

Proof: We shall show that if a vector 1 is orthogonal to the columns of Z ,  then 

It (y - p) = 0 with probability 1. 

1% = 0 2 1% = 0 2 v ( l t  (y - p)) = 0 2 It (y - p) is a constant with probability 

1 2 It (y - p) = E(lt (y - p)) = 0 with probability 1. 

Theorem 14: y - N, (p, Z) if and only if there exists a random vector x of 

independent standard normal variables such that y = p + Bx with probability 1 for 

some matrix B of full column rank such that BBt = Z . 

Proof: If part: Let 1 be a fixed vector. Then l ty  = l t p  + ltBx . Now ltBx is a linear 
combination of independent standard normal variables and hence has a univariate 
normal distribution. Hence l ty  = l t p  + ltBx has a univariate normal distribution. The 
choice of 1 being arbitrary, it follows that y has a multivariate normal distribution. 
Now E(y) = E(p + Bx) = p + BE(x) = p , since E(x) = 0 

D(y) = D(p + Bx) = D(Bx) = BIBt = Z . 

Hence y - N, (p, X) . 

'Only i f  part: Let the rank of Z be equal to r. Let a spectral decompositiGn of Z be 



where P, is a matrix of order Px r such that P,'P, =I, and A is a pd diagonal matrix 

of order r x r . Thus, I2 = BBt where B = P,A'/~ and A'" is the pd square root of A .  
Notice that the rank of B is the same as rank of PI which is equal to r since 

qtp1 = I, . A ~ S O  ( A ~ ' ~ ) ~ : P , A ~ ~ ~  = I . 

Now write x = (All2)-' P; (y - p) . Clearly x is a random vector of order r x 1 . x has 

an r-variate normal distribution. Now, E(x) = (A"~)-'P:E(~ -p) = 0 . 

Also D(x) = (A'/~)-' P : ~ ~ ( A ' / ~ ) - '  
112 -1 = ( k 1 2 ) - 1 ~ ; ~ l ~ ~ ,  (A ) 

= ( A ~ ~ ~ ) - ~ A ( A ~ ~ ~ ) - ~  = I. 

Thus, we have manufactured a random vector x - N, (0, I) (i.e., x is a vector of r 
independent standard normal variables) given by 

By Lemma 1, (y -p) belongs to the column space of X (with probability 1) which is 

the same as the column space-of PI. 

Thus, (y - p) = Plv for some v with probability 1.  

Thus, P , A ~ / ~ x  = PIP: Plv = Plv = y - p with probability 1 

or y = p + Bx where B = P,A'/~ 

Thus, we have established the existence of a random vector y having p-variate normal 
distribution via linear functions. 

Example 4: Let y - N, (p, 2 )  as defined via the linear functions. Let I2 be pd. 

Then show that the density of y is 

Solution: Since I2 is pd, by Theorem 14, there exists a random vector x of order 
p x 1 which is a vector of independence N(0,l) variables such that y = p + Bx with 

probability 1. where B is a p x p matrix such that I2 = BBt . 

Since I2 is nonsingular, it follows that B is nonsingular. 

The density of y is 
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Basics of Multivariate 
Normal 

1 1 -(V-~Y ~-'(v-~) 

f y  (4 = e 
( 2n)L 1 ~ 1 %  

Thus, the two definitions of multivariate normal are equivalent if Z is pd. 

Now, we shall summarize the unit. 

16.4 SUMMARY 
* 

In this unit, we have covered the following points. 
9 .. -- 

Marginal and conditional distributions. 

Density of a nonsingular multivariate normal distribution. 

Marginal and conditional distributions in multivariate normal. 

Definition of multivariate normal via linear functions. 

Characteristic function of multivariate normal. 

El) (a) Clearly, yl and y3 have a joint bivariate normal distribution. 

E(y,) = 2,E(y,) = 1, V(yl) =9,V(y3) = 6 and Cov(y,, y3) = 2.  Thus 

(b) Cov 
Cov(Y37~2) c o v ( ~ 3 7 ~ 4 )  

=o 

Since y,, y,, y2 and y4 have a joint (multivariate) normal distribution, 
uncorrelatedness implies independence as shown in Theorem 6. 

(c) Partitioning y, p and Z as in Eqn. (1) where r = 2 ,  we get 

Along .the lines of Theorem 8, we can show that the distribution of 

YI Iy2 = v 2  is q1 -r;2ziiz21) 

Here v2 =( " ) SO 
-2.6 



So, the conditional distribution of y, I y, = (::6) is 

(d) The correlation coefficient between y, and 

1 
E2) (a) y = - l t y  wherelt=(l ,  ..., 1) 

P 

By Theorem 9(c), we have y - N -1' p, 71tZ1 [i pl 1 
1 

Now ltp=(lLl +...+pp). So - l tp=p.  
P 

(b) Since ( z )  = ( a y ,  by Theorem 9(b) (since P is pd) we have [:) have a 

joint multivariate normal distribution. So x and w have independent 

bivariate normal distributions if and only if Cov(x, w) = CZTt = 0 .  Let us 

1 0 0 0  
choose c = ( o 1 . 0  o ). m n  x = c y = 6 ) .  

Also CZ = (: : ::) . We need CZT' = 0 ,  or in other words we 

need two vectors (non-null) each with 4 components which are orthogonal 
to both the rows of CZ . This can be achieved using Gram-Schmidt 
orthogonalization process (as described earlier) on 

0 

u = u2 = l'j , u3 = i d  u. =I:]. As a result, we get 
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T = ( f  
sothatCZTt=O.  Now x = C y =  

3 -4 



c - 
Basics of Multivariate 
Normal w = T y =  1 3 ~ ,  -9y2 - y3 -3y4 . So x and w being linear compounds 

Y2 +3Y3 - 4 ~ 4  
of y have bivariate normal distributions. 

Notice that D(x) and D(w) are nonsingular. Hence x and w have 
nonsingular bivariate normal distributions. 

E3) Consider ltBy where 1 is a fixed vector. Since it is a linear combination of . 
components of y , 

I'BY - N(z 'B~ ,  Z ~ B Z B ~ I )  

The choice of 1 being arbitrary, it follows that By - N(Bp, BZBt) by 
definition. 

-x- 



PRACTICAL ASSIGNMENT Definition and Properties 
of MVN-I1 

Session I 

I 1. Write a program in C-language to find the lower triangular square root of a 

1 pd matrix. Also test your program on E6) of Unit 15. 
I b 

I 
2. Consider y = (y , , y , , y , )' - N, (p, Z) . Write a program in C-language to find 

I 
the marginal distributions of y,, y, and y, . Also extend it to find the 

conditional distribution of y, given y, and y, . Also test your program on 
Example 1 of Unit 16. 




