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1 14.1 INTRODUCTION 

In this unit, we discuss some concepts from linear algebra which will be useful in the 
study of multivariate statistical analysis. We look, in some detail, at idempotent 
matrices and quadratic forms. In the context of this course we start with the study of 
real symmetric matrices and the associated quadratic forms in Sec. 14.2. We define a 
classification for the quadratic forms and develop a method for determining the class 
to which a given quadratic form belongs. 

In Sec.14.3, we study positive definite and semi definite matrices. In this Section we 
also obtain some characterizations of positive definite and semi definite matrices, and 
study some of their useful properties. Here we give a method of computing a square 
root of matrices; this plays an important role in transforming correlated random 
variables to uncorrelated random variables. 

Idempotent matrices and Cochran's theorem play a key role in the distribution of 
quadratic forms in independent standard normal variables, particularly, in connection 
with the distribution of quadratic forms to become independent chi-squares. In 
Sections 14.4 and 14.5, respectively wet study the properties of idempotent matrices, 
and prove the algebraic version of Cochran's theorem. 

Singular value decompositions plays a very important role in developing the theory 
and studying the properties of canonical correlations between two random vectors. In 
Section 14.6, we study the singular value decomposition. 

In this Unit, we shall be using the following notations. Matrices are denoted by capital 
letters like A, B, C . Vectori are denoted by boldface lower case letters like x,y,z . 
Scalars are denoted by lower case letters like a, b,a , The transpose, rank and trace of 

a matrix A are denoted by A' or A' , rank A and tr(A) , respectively. Rn denotes 
the n-dimensional Euclidean space. 

After studying this unit, you should be able to 

determine the definiteness of a given quadratic form; 

apply the spectral decomposition in the study of principal components; 

compute a triangular square root of a positive definite matrix; 

apply the properties of positive and semi definite matrices to certain problems; 
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Normal variables; 

apply the singular value decomposition in the development of canonical 
correlations. 

Let us start our discussion with real symmetric matrices. 

14.2 REAL SYMMETRIC MATRICES 

Real symmetric matrices play a very important role in the study of multivariate 
statistical analysis. For example, the variance-covariance matrices are real symmetric 
matrices. They also play a crucial role in the distribution of quadratic forms in 
correlated normal random variables. We shall denote (i, j)th element of a matrix A 

by aij . Then we write A = (aij) . 

Definition 1: A square matrix A = (aij) of order n is called a real symmetric matrix 

if (i) all the elements of A are real and (ii) aG = aji for i, j = I,. . . , n . 

Definition 2: 'A quadratic form in n variables x, , x, ,. . . , x, is a homogeneous 
polynomial of degree 2 in these variable. 

You also know that there is a unique real symmetric matrix A associated with a given 
real quadratic formQ(x) , in the sense that Q(x) = x'Ax . This matrix A is called the 
matrix of the quadratic form Q(x) . (For reference, MTE-02, Sec. 14.3) 

Example 1: Examine the following matrices for symmetric property 

Solution: 

(i) is not a real symmetric matrix because all of its elements are not real. 

(ii) is not a real symmetric matrix because it is not a square matrix. 

(iii) is not a real symmetric matrix because a,, = 3 and a,, = 2 therefore a,, # a,, . 

(iv) is a real symmetric matrix because (a) it is a square matrix (of order 2 x  2 ), 
(b) all of its elements are real and (c) a,, = 4 = a,, . 

Example 2: Find the matrix of the quadratic form Q(x) = 2x,x, +5x,x, + 3xi - x: . 
%, % .' 

Solution: Since there are three variables x,, x, and x,, x = 

symmetric matrix such that Q(x) = x'Ax . Then A is of order 3 x  3 .  Further 
a,, = a,, = 112 (coefficient of x, x, ) = 1 .  In general, whenever i # j, aij = aji = 112 

(coefficient of xi xj ). Also a,, = the coefficient of x:, i = 1,2,3 . Thus 

A = 1 3 O  

[z05 ':] ' *** 



Let us now try an exercise. Some Linear Algebw 

El) Find the matrices of the following quadratic forms: 
2 (i) x:-x, 

(ii) 2x: + 3xlx2 + 5xi 

(iii) 3xIx2 + 5x2x, -4x1x3 

(iv) x: + xi + x2x4 (in four variables x,, x2 , x, and x, ) 

Depending upon the range, every non null quadratic form Q(x) in n variables can be 
classified into one of the following mutually exclusive and collectively exhaustive 
classes: 
(It is also said to be identification of the definiteness of the quadratic form.) 

i (a) positive definite (pd) if Q(x) > 0 for all x E Rn , x * 0 ,  

(b) positive semidefinite (psd) if 
(i) Q(x) 2 0 for all x E Rn , and 
(ii) Q(x) = 0 for some x # 0 

(c) negative definite (nd) if Q(x)< 0 for all x # 0 (i.e., if -Q(x) is positive 

(d) negative semidefinite (nsd) if (i) Q(x) 5 0 for all x and (ii) Q(x) = 0 for some 
x + 0.  (i.e., if -Q(x) is positive semidefinite), 

(e) indefinite, if it does not belong to any one of the above classes (a) - (d) (i.e., 
there exists x and y in Rn such that Q(x) > 0 and Q(y) < 0)). 

The quadratic form Q(x) = 0 can be classified into any one of the classes (b) and (d). 

Example 3: Classify each of the following quadratic forms using the above 
classification. Also write down the matrices of the respective quadratic forms. 

(iii) x: + x i  + 2x1: (in four variables x,, x,, x, and x,) 

2 2 (iv) -x, - x2 

(v) -x: - xi - 2x3 (again in four variables) 

Solution: 
2 2 

(i) x: -x, = I  if x, =1 and x 2  = O .  Again x: -x2 =-1 if x, =1  and x 2  = l .  

Thus it is indefinite. The matrix of the quadratic form is 

(ii) x: + xi > 0 whenever at least one of x , and x , is not zero. Hence this 
quadratic form is positive definite. The matrix of the quadratic form is 

(iii) Q(x) = x; + xi + 2x: 2 0 for all values of x,, x , , x, and x , . However, for 
2 2 x3=1 and x , = x 2 = x 4 = 0 ,  thevalueof x, +x2+2x: = O .  Thus,thereisa 
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vector x = # 0 such that Q(x) = 0. ~ e n c e  this quadratic form is i%l 
1 0 0 0  

positive semi-definite. The matrix of the quadratic form is 

. >.. 

We leave it to you to show that the quadratic forms in (iv) and (v) are negative definite 
and negative semi-definite, respectively. (You can use the quadratic forms in (ii) and 
(iii) to arrive at this conclusion, and for writing down the matrices of the quadratic 
forms in (iv) and (v).) 

*** 

In Example 3, we considered quadratic forms whose matrices are diagonal mamces. 
Here it is easy to identify the definiteness of the quadratic form. In fact, if 

n 

Q(x) = x ? x '  is a quadratic form in n variables x,,. .., x,, , then Q(x) is p.d.. p.s.d., 
i=l 

n.d., n.s.d. or indefinite according as hi > 0 for all i; 3Li 2 0 for all i and hj = 0 for 

some j; hi < 0 for all i; hi 5 0 for all i and hj = 0 for some j ; or if hi < 0 for some 

i and h, > 0 for some j, respectively. 

Now, what if we have a quadratic form Q(x) = 2x: -3x1x2 + x; or 

Q(x) = 2x: + xi + x i  -.TXIx2 - 2x1x3 + 4x2x3 ? (Notice that the matrices of these 

diagonal matrices.) 

In general, consider a quadratic form Q(x) = x'Ax . where A is not a diagonal matrix. 
How do we determine the definiteness of the quadratic form in such a case? The 
following results will be useful towards that end. 

Theorem 1: Consider a quadratic form Q(x) = x'Ax where A is symmetric. Make a 
nonsingular linear transformation 6f the variables: y = Tx (where T is nonsingular). 

Call the transformed quadratic form as y(y)(= y ' ~ - l ' ~ ~ - l y ) .  Then the ranges of 

Q(x) and yr(y) are the same. 

Proof: Let a belongs to the range of Q(x) . So, there is a vector xo such the 

a = Q(xo) = xiAx, . Write yo = Tx, . Now 

a = x&x0 = X;T'T-"AT-~TX, = ~ ; T - ~ ' A T - ' ~  , - - yr(yo). Hence a belongs to the 
range of yr(y). Thus, the range of Q(x) is a subset of the range of yr(y) . Since T is 
nonsingular, by reversing the arguments, we can show that the range of yr(y) is a 
subset of the range of Q(x) . The proof is complete. 

What we are saying through Theorem 1 is that the range of a quadratic form is 
invariant under nonsingular linear transformations. Thus, the definiteness of a 



I 
1 quadratic form is invariant under nonsingular linear transformations. (Making a 

nonsingular linear transformation can also be interpreted as changing the basis.) 
t 

Recall that a real square matrix S is called an orthogonal matrix if S' = S-I . If S and 
I T are orthogonal matrices of the same order, then so is ST . To see this we note that 

T's'S T = T'IT = I . Similarly, ST T'S' = I . Hence (ST)' = T'S' is the inverse of ST . 

Also, you should verify that [: :] is an orthogonal matrix if T is an orthogonal 

matrix. 

So, now we want to determine the definiteness of a quadratic form Q(x) , the matrix of 
which is not necessarily diagonal. We shall now show that we can make an 
orthogonal transformation of the variables (i.e., we can make a transformation y = Px 
where P is an orthogonal matrix) such that under this transformation, the quadratic 

form is transformed into a quadratic form x h i y '  . Since we know how to determine 

the definiteness of x h i y '  , and since the definiteness of x h i y '  is the same as that 

of Q(x) , we would then have the definiteness of Q(x) . 

If A is a real matrix, then it is not necessary that its eigenvalues are real. For example 
0 1 

if A = [- 1. then the eigenvaluesare i and i . However, if A is real, and 

I I symmetric then all its eigenvalues are real as shown below. 

Theorem 2: Let A be a real symmetric matrix. All the eigenvalues of A are real 
and all the eigenvectors of A can be chosen to be real. 

Proof: Let h + i p  be an eigenvalue of A and let the corresponding eigen vector be 
x + iy , where A, y are real numbers and x , y are real vectors. Clearly at least one 
of x and y is non-zero as x + iy , being an eigen vector is nonnull. Now, 

A(x + iy) = (h + ip) (X + iy) 

I Equating the real and the imaginary parts on both sides of the above equality, we get, 

Ax=hx-yy (1) 

Ay=hy+px  (2) 

Premultiplying (1) by y' and (2) by x' , we get 

y' Ax = hy'x - py'y (3) 

x' Ay = hxjr + yx'x (4) 

Since A is symmetric and y'Ax is a scalar we have  AX = (y'Ax)' = x'A'y = X ' A ~  . 
Similarly, y'x = x'y . Now subtracting Eqn.(3) from Eqn.(4) we get p(x'x + yy) = 0 .  

Since at least one of x and y is non-null, x'x + y'y # 0 . So, y = 0 .  

Some Linear Algebra 

~ Hence all the eigenvalues of A are real. Further A(x + iy ) = h(x + iy) , yields 
Ax = hx and A y = hy . Since at least one of x and y is non-zero and x , p are real, 
we can choose a non-zero vector among x , y as an eigenvector of A corresponding 
to h . This complete the proof of the theorem. 



Theorem 3: Let A be a real symmetric matrix of order 11 . Then there exists a real 
orthogonal matrix P of order n such that A = PAP', where 11 is a real diagonal 

matrix. 

Proof: We shall prove the theorem by induction on n . Let A be a 1 x 1 real 
symmetric matrix, i.e. A = ( a ) ,  where a is a real number. Clearly 

(l)'(a) (1) = (1 .a. 1) = (a)  . Also (1) is an orthogonal matrix of ordcr 1 x 1 since 

(1)'.(1) = (1 . I )  = (1) . So the theorem is true for n = I . Let the theorem be true n = m 

(a positive integer > 1 ). Let A be a matrix of order (In + I) x(m + 1) . Let x,  be a 

normalized eigenvector of A corresponding to eigenvalue h ,  . Then Ax, = h,x, . 
Now x, can be extended to an orthonormal basis x, ,. . . , x,,, of R ~ "  . Write 

R = (x, :. .. : x,,,) . Clearly R is an orthogonal matrix. Now 

AR=A(x , :  ... :x,+,)=(x, :. . . :x ,,.,) 1" '") = RiA1 1 , where 0, bi2 and 
( 0  B22 0 B22 

B,, are of order m x  1,l x m and m x m , respectively. [This is because, 

Ax2,. . . , Ax,,, are vectors in R'"" and x,, . . . , x,~,, form a basis of Rm+' , so Ax, is 

a linear combination of x, ,. . . , x,,, .] 

Therefore R 'AR = . Since R'AR is real and symmetric it follows that 

b,, = 0 anci R,, is an in x m real synlmetric matrix. Thus, R'AR = 

induction hypothes;~ there exists an orthogonal matrix S, of order m x m  that 

BZZ = S,r'Si where r' is a real diagonal matrix. Writing S = (' 1 , we notice that 
0 S I j  

S is an ortho,oonal matrix and 

Write P - RS . Since R and S are orthogonal matrices so is P as noticed earlier. 

Writing D = , we observe that D is a real diagonal matrix. 

Thus, the theorem is true for n = m + 1 . 

Hence the theorem follows by ir,duction on n . 

The beauty of Theorem 3 lies in its interpretation. Let A be a real symmetric matrix 
and let A = PAP' where P is orthogonal and A is a real diagonal matrix. We then 
have 

AP = PA or A(.,: 

... h, 
AP, = hip i , i= I  ,.... n .  

Since p, is a vector in an orthonormal basis, p, is (a non-null vector) of unit norm. 

Hence is an eigenvalue of A and p, is an eigenvector of A corresponding to the 

eigenvalue A, . Thus, the diagonal elements of A are the eigenvalues of A and the 
columns of P are the orthonormal eigenvectors of A . Further 



Write Ei =pip:, i =I , .  . ., n 

E, if i = j 
Then EiEj = 

0 otherwise 

and rank Ei = rank pipi =rank pi = 1 . 
n 

Thus, we are able to write A = CI,E, where E,,. . ., En are symmetric idempotent 
1 = I  

matrices of rank 1 such that E, E, = 0 whenever i # j . The set {h, ,. . . , hn } is called 

the spectrum of A . Since the decomposition mentioned above involves the spectrum 
and the eigenvectors it is called a spectral decomposition of A . 

Example 4: Obtain a spectral decomposition of the matrix A = (; :]. 
4 - 1  

Solution: The characteristic equation of the matrix is 

6 f  436-28 
The roots are n = 3 + &  

L 

So the eigenvalues are 3 + and 3 - & . 

Some Linear Algebra 

Let u = (:1) he the eigenvector o l  the given matrix corresponding to the eigenvalue 

Then [A - (3 + &)I]u = 0 or r-: -I:&][::)=0 

Notice that the second column of /A  - (3 + &)I) is (-1 - &) times the first column. 

So, u, = 1 + f i  and u, = I satisfy the equation ( A  - (3 + &)l)u = 0.  

To normalize u , we divide it by its norm namely /w = . Thus, 

the normalized eigenvector corresponding to the eigenvalue 3 + h is 
7 \ 

I 1+J2 
. It can be shown similarly that the normalized eigenvector 

- I \  
corresponding to 3 - J2 is 

\/&(-(I 
+ A)). Hence A = PAP' 

where P = JZzE r+f - ( l i - - J a n d * = r + F  3->),istherequired 

,spectral decomposition. 
*** 

Using Theorem 3, we can determine the definiteness of a quadratic form. Consider the 
quadratic form Q(x) = x'Ax . Let A = PAPI be a spectral decomposition of A . Then 

Q(x) = xfPAP'x = yfAy where y = P'x . Since P is nonsingular (in fact, orthogonal) 
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y ' ~ y  is determined by the diagonal elements A, ,. . . , L, in, A the eigen values of A . 

Thus 

I positive definite if hi > 0 for all i 

positive semidefinite if hi 10 Vi and hj = 0 for some j 

negative definite if hi < 0 for all i 

negative semidefinite if hi I 0 for all i and hj = 0 for some j 

[indefinite if hi > 0 for some i and h, = 0 for some j 

Because of the one-one correspondence between real symmetric matrices and the 
quadratic forms, we call a real symmetric matrix A as positive definite, positive 
sernidefinite, negative definite, negative semidefinite or indefinite accordingly as the 
corresponding quadratic form x'Ax is positive definite, positive semidefinite, negative 
definite, negative semidefinite or indefinite, respectively. 

Now let us illustrate the following example as an application of this. 

Example 5: Determine the definiteness of the quadratic forms (i) 2x: - x,x2 + x i  

and (ii) x: + xi  + xi - 3x,x2 - 3x,x, - 3x2x, . 

Solution: (i) The matrix of the quadratic form is A = [-i.5 -3. 
We see that its characteristic equation I A - hI (= 0 is 

(2-2) (1-A)-0.25=0 or h2 -32+1.75=0 

Hence the eigenvalues which are the roots of the above equation are 
3 + f i  

or 
2 

3 + f i  and - - , which are positive. 
2 2 

Hence the quadratic form is positive definite. r 1 -1.5 -1.51 

(ii) The matrix of the quadratic form is A = / -1.5 1 -1.5 1 . 

It is easy to notice that the sum of each row in A is -2. 

Hence A 1 = -2 1 . Thus, -2 is an eigenvalue of A .  Further, the sum of the [:I 111 
eigenvalues which is the same as the trace of A is 3 .  Hence there must be at least 
one positive eigenvalue of A .  So the quadratic form is indefinite. 

*** 
Now, try the following exercises. 

E2) Let A be a real symmetric matrix, a diagonal element of which is negative. 
Show that A cannot be positive definite or positive semidefinite. 

E3) Determine the definiteness of the following quadratic forms: 

(i) x: - 5x,x2 + 7xi ,  (ii) x: - x i  + x,2 - x1x2 + 10x1x3 - 2x2x3, 

(iii) 2x: + 3x; + 4x; + 6x1x2 



E4) Let A = [ , Obtain the spectral deromposition of A .  Hence write down 

In next section, we shall discuss more about positive definite and non-negative definite 
matrices. 

14.3 POSITIVE DEFINITE AND SEMIDEFINITE 
MATRICES 

In the previous section, we noted that the definiteness of a quadratic form is also 
attributed to the matrix of the quadratic form. Thus, if x'Ax is positive definite 
where A is a real symmetric matrix, then we call A as a positive definite (pd) matrix. 
A real symmetrix matrix is called a Sernidefinite matrix if it is either pd or psd i.e., if 
x'Ax L 0 for all x . Positive'definite (pd) and nonnegative definite (nnd) matrices 
play a very important role in the multivariate analysis. Unless stated otherwise, when 

I we say a matrix is pd, psd, nnd, nd, nsd we mean that the matrix is real and symmetric. 
We may not state this fact explicitly each time. 

In this section, we study several properties of positive definite and nonnegative 
definite matrices. We shall also give an easy way to construct positive definite 
matrices and orthogonal matrices of order n x n . Let us start with the following very 
useful theorem. 

Theorem 4: a) A matrix A is positive definite if and only if A = BB' for some 
nonsingular matrix B . 

b) A matrix A is nonnegative definite if and only if A = CC' for 
some matrix C . 

Proof: a) If part. Let A = BB' for some nonsingular matrix B . Let x be a nonnull 
vector. Then X'AX = X'BB'X = y'y = y: + - . a  + yi I 0  where y = B'X . 

Since B is nonsingular, so is B' . 

Let if possible y = B'x = 0 . Then x = (B')-' y = 0. 

Since x # 0 ,  there is a contradiction. So y # 0.  3 

Hence x'Ax = y'y > 0. The choice of x being arbitrary, it follows, that A is positive 
definite. Only if part. Let A be positive definite. Then all its eigenvalues are strictly 
positive. Let A = PAP' be a spectral decomposition of A . Let A,. . . , & be 

positive square roots of h, , . . ., I, , respectively. Write 

Some Linear Algebra 

Then B = PA"~P' is symmetric and BB' = P A ~ ~ ~ P ' P A ~ ~ ~ P '  = P A ' ~ ~ A ' ~ ~ P '  = PAP' = A . . 

Further since I , ,  . . ., I, are strictly positive. so are A,. . . ,a . Now 

1 B I=l PA'~P'  [=I P 11 P' 11 A"' I=I PP' 11 Aln [=I I I( A'" (= ,/= > 0 . Hence B is 

13 
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elements of All2 are strictly positive it follows that B is pd. In fact, we proved that 
more stronger result that if A is pd then A = BB' for some symmetric pd matrix B .] 

(b) It suffices to prove the statement for positive semidefinite matrices as an nnd 
matrix is either pd or psd. (For the pd matrices we already proved the statement 
in (a).) 

If part. Let A = CC' . Then x'Ax = X'CC'X = u'u 2 0 where u = C'x. Hence A is 
nnd. 

Only if part. Notice that since A is psd all its eigenvalues are nonnegative. Let 
h, 2 h, 2. .  .2 h, > h,,, =. . . = h, = 0 be the eigenvalues of A . We can write a spectral 
decomposition of A as 

where P is an orthogonal matrix and A, is a diagonal pd matrix of order r x r  . Write 

t 0 - -  a) 
Then 

C = P['? o ) ~ '  is symmetric and C C  = A .  This complete the proof. 
0 0 

A matrix B such that A = BB' is called a square root of A .  Given A, B is not unique 

since A = BPP'B' where P is any orthogonal matrix. In Theorem 4 we gave a 
method of computing a square root if we know the spectral decomposition of A .  
However, obtaining spectral decomposition is not easy in general. We shall now 
discuss a method of obtaining a square root of a positive definite matrix. 

Let us start with an example. 

Example 6: Obtain a square root of the positive definite matrix A = 1 3 [l i: 
Solution: We shall obtain a lower triangular matrix B such that A = BB' . Write r1 :, :]. Wesha l l so lve fo rb~ j= i  ,..., 3 , i = 1 7 2 , 3 s u c h t h a t ~ = B B f  B =  b,, 

b31 b32 b33 

Write 

2 1 5  

Equating the elements on both sides, we get 

a l l  = 4 = b:, or b,, = 2 (You can choose either +2 or -2 but choose and fix one of 
them.) 
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7 2 2  a,, =5=b;,+b3,+b,, orb;, =s- I  
1 43 

2-($] =5-1--=-or b33 = 
11 11 E 

n u s ,  B = J: o 
is square root o i  A .  

- 

For the given matrix A in Example 6, we could obtain a lower triangular matrix B 
such that A = BB'. Can we always do this? Let us exainine how we went about in 

I solving for the elements of' B . First we solved for the lirst column of B , then for the 
second column and so on. Also observe that each time we just had to solve one 
equation in one unknown to obtain the elements of B . Could there have been some 

hitch? What if the computed value for b:, or laler for b:, turns out to be negative? If 
it happens to be so, we would not have been able to solve for B . It can be shown that 
if A is positive definite then the above situation never arises. 

1 Let us now try an exercise. 

1 E 5) Compute a lower triangular square root in each of the following cases. 

Let us illustrate few more examples to understand the concept of definiteness. 

1 Example 7: Let A = 1 1 be an n x n ~osit ive definite matrix where A, ,  

and A,, are square matrices of order r x r and (n - r) x (n - r )  respectively for some 

r(l I r 5 n - 1) . Show that A,, is positive definite. 

Solution: Let x be a r x 1 nonnull vector. 

since is a 

nonnull vector. Hence A,,  is pd. 
*** 

Example 8: Let A be a positive definite matrix. Then show that ( A I> 0 .  

Solution: Since A is positive definite, by theorem 4(a), A = BB' for some 
nonsingular matrix B . So 





1 Proof: For the 'if part A,, is pd. For the 'only if part A is pd and hence A,, is pd Some Linear Algebra 

) by Theorem 5. Thus for both parts A;: exists. It is easy to see that 

0 

A,, -A;,A;~A,, 

0 
Hence A = R ( 2  A,, - A;,A;:A,~ 
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order of the matrix and 1' = (I, . . . ,1) . 

El  1) Construct a 3x3 symmetric nondiagonal positive definite matrix A such that 
a,, =2, a,, =5,a3, = 4 .  

E12) Let A and B be nnd matrices of the same order. Show that (i) A + B is nnd; 
(ii) the column space of A is a subspace of the column space of A + B . 

So far we have discussed about various types of real symmetric matrices and other 
types of real symmetric matrices. Now let us discuss about idempotent matrices. 

14.4 IDEMPOTENT MATRICES 

A square matrix A is said to be idempotent if A, = A . Can you quickly come up 
with some examples of idempotent matrices? Yes, you are right! 0 and I are 
idempotent matrices. In fact, the only nonsingular idempotent matrix is I . Why? 
This is so because A' = A and A is nonsingular implies A = I (premultiply both 
sides of A' = A by A-I .) Similarly, the only rank 0 square matrix, namely 0 is 
idempontent. What about idempotent matrices of order n x n of rank r 

1, 0 (1 5 r 5 n - 1) ? j0 o) is an example of an idempotent matrix of rank r . 

Further, if A is an idempotent matrix and P is a nonsingular matrix of the same 
order, then PAP-' . PAP-' = PA~P-' = PAP-' . 

Thus, PAP-' is an idempotent matrix. 

Hence P(: 9 P-I is an idempotent matrix of rank r for every nonsingular matrix 

P .  We shall now show that every idempotent matrix of rank r is of the form 

:) for some nonsingular matrix P . 

Theorem9: Let A bean n x n  matrixofrank r ( l I r 5 n - 1 ) .  Then A is 

idempotent if and only if A = P I' O P-, for some nonsingular matrix P . 
(0 0) 

Proof : 'If part has already been proved above. For the 'only i f  part, let A be an : 
n x n  idempotentmatrixofrankr(1IrIn-1). LetA=(a,:a,:...:a,). We 
have 

(a,: ... : ~ , ) = A = A ~  =A(a, :...:a,) 

Hence Aa, =a,,  i = 1,. . . , n , Since rank A = r , there exist r linearly independent 

columns ail ,..., a,, of A . Thus 

AaiJ  =a,] ,  j=l ,  ..., r .  (1) 

Again, A(l- A) = 0 . Hence the set of columns of (I - A) is a subspace of the null 
space N(A) of A.  We know that dimension of N(A) = n -rank A = n - r . So, rank 
of I -A isatmost n - r .  Ontheotherhand,since I = A + ( I - A ) , n =  rank 1 5  rank 
A + rank (I - A) . 

Hence rank (I - A) 2 n - rank A. Thus, rank (I - A) = n - rank A . This, coupled 
with the fact the column space of (1 - A) c N(A) , shows that the column space of 



Some Linear Algebra - be linearly (I - A) is the same as the null space of A . Let ell -all ,. .. , e  ,"_, alm-r 
independent columns of I - A . Then 

~ ( e , ~  - a Ik )=0 ,  k = l ,  ..., n- r  (2 )  

. . - ) . Clearly, P is an n x n matrix. Let Consider P = (ail : . . , : a, :ell -all . . . . . e ,"-[ a 

Px = 0 .  Then, xIail + x2ai, + ... + xralr + xr+, (ell -aIl ) +. .. + xn (e -a  ) = 0 . 

Now, 

O=APx=xIAai1 +x2Aai2 +...+ xrAai + x , + , ~ ( e ,  - a , , ) + . . . + x , ~ ( e ~ ~ ~ ,  -alD,) 

= x,ail + . . . + x,air in view of Eqns. (1) and (2). 

This implies x, = x, = x, = 0 since a,, ,. . .,air are linearly independent. This in turn 

implies x,,, = . . . , xn  = 0 since ell -a,, , i = 1,. . . , n - r are linearly independently. 

Thus, Px = 0 implies x = 0 or the columns of P are linearly independent. So rank 
P = n or in other words, P is nonsingular. 

. . Further, AP = A (ail : . . . : ai : ell - all . . . . . el"-. 

=(ail :...:aic :O:  ... :0) 

Thus, we have A = P P-I . This completes the proof. 

I 
Let A be an idempotent matrix of order n x  n with rank r . From Theorem 9, the 

i following statements are clear. 
I 

(a) A is similar to a diagonal matrix. 

(b) A has at most two distinct eigenvalues 1 and 0 .  Eigenvalue 1 is with algebraic 
multiplicity r and 0 with algebraic multiplicity n - r . 

Finding the rank of a matrix in general is not very easy. However, it is quite easy for 
idempotent matrices. We start with a definition. 

Definition: The trace of a square matrix A of order n x n is defined as the sum of its 
n 

diagonal elements and is denoted by tr(A) . Thus, tr(A) = ail 
i=l 

Example 12: Let A and B be are square matrices of the same order. Show that (i) 
tr(cA) = c.tr(A) when c is a real number; (ii) tr(A + B) = tr(A) + tr(B) . 

Solution: (i) tr (CA) = x c a i i  = c x  aii = c tr (A)  
i=l i=l 

n n n 

(ii) t r ( ~ + ~ ) = x ( a i i + b i i ) = x a i i + x b i i = t r ( ~ ) + t r ( ~ )  
i=l i=l i=l 
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E15) Show that if A and B are idempotent and the column space of A is contained . 
in the column space of B , the BA = A . 

Some Linear Algebnj 

In this section, we shall discuss Cochran's theorem. 

14.5 COCHRAN'S THEOREM 

Cochran's theorem concerns with the probability distributions of quadratic forms in 
independent standard normal variables. This is a very important theorem which allows 
us to decompose sum of squares into several quadratic forms and identify their 
distributions and establish their independence. 

Let x = l x n J  

be a vector'of n independent standard normal variables. Let 

A,, A,, . . ., A, be real symmetric (nonrandom) matrices such that 
x k  = x' A,x + xrA,x + ... + x' A,x . We know that x'x is distributed as chi-square 
with n degrees of freedom. Cochran's theorem asserts that xrAi x, i = 1,. . . , k are 

n 

distributed as independent chi-squares if and only if C rank A, = n . In this section, 
i=l 

we prove an algebraic version of this result. In the next unit, we shall prove the 
1 statistical version. 

Theorem 13: Let A,, A,, . . ., A, be real symmetric matrices such that 

A, + A, + A, = I . The following are equivalent: 

(a) Ai is idempotent, i = 1, . . . , k 

k 

(b) x rank Ai = n 

(c) Ai A = 0 whenever i # j 

k k 

Proofi ( a ) a ( b ) : n = r a n k  I = t r ( I ) = t r ( ~ , + . . . +  A , ) = C U ( A , ) = C  rank A, 
i=l i=l 

(since A, ,. . ., A, are idempotent rank Ai = tr(Ai ) by Theorem 10.) 
k 

(b) 3 (c) : Let rank Ai = q . Then by (b), q = n . Since Ai is a real symmetric 
i=l 

matrix there exists a matrix P, of order n x q such that Ai = qAiP,', Pi' P, = I, , and 

Ai is a real nonsingular diagonal matrix, i = 1,. . . , k . (Take the help of Theorem 3) 

0 0  0 
where P=(Pl :P2:  ... :Pk) and A =  . Notice that the number of 

0 0 '.. : 

k 

columns in P is C r i  which equals n by hypothesis. Hence P is a square matrix of 
1 

order n x n . So, n 2 rank P 2 rank (PAP') = rank I F  n . Hence P is a nonsingular 
matrix. Similarly, A is also nonsingular. Since PAP' = I and PA is a square matrix, 
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PrP, = 0 whenever i # j . Hence A, A, = P,A,%A,P~' = 0 whenever i # j . 

(c) 3 (a) : For each i, A, = A, I = A, (A, + ... + A, ) = A: since A, A, = 0 whenever 

i # j . Thus, A, is idempotent for each i . Theorem is thus proved. * , 

We now prove an algebraic version of another useful result in connection with the 
distribution of quadratic forms in normal variables. 

Theorem 14: Let A and B be symmetric idempotent matrices and let B - A  be non 
negative definite. Then B -A is also a symmetric idempotent matrix. 

Proof: Since A is symmetric idempotent, it is nnd. Since B -A is nnd, the column 
space of A is contained in the column space of B . So BA = A . Then 
(B-A)A=O=A(B-A).  Since B(1-B)=(I-B)B=O,A(I-B)=(I-B)A=O and 
(I-B)(B-A)=O=(B-A)(I-B) . Now A + ( B - A ) + ( I - B ) = I .  By ( c )a (a )  
of Theorem 13 it follows that B -A is idempotent. 

After Cochran's theorem, we shall discuss the singular value decomposition in this 
section. 

14.6 SINGULAR VALUE DECOMPOSITION 

In Theorem 3, we showed that if A is a real symmetric matrix, there exists an 
orthogonal matrix P such that A = PAP'. We also showed that the diagonal elements 
of A are the eigenvalues and the column of P are the orthonormal eigenvectors of 
A . What about a real m x  n matrix A ? We know that every m x  n matrix A of 

rank r(l I r 5 min(m, n))  can be written as A = R [ ) S when R and S are 

nonsingular. 

Can we replace the nonsingular matrices by orthogonal matrices if we can relax I, to 
a positive definite diagonal matrix? If so, what interpretation can we give to the 
orthogonal matrices and the diagonal elements of the diagonal matrix? We study these 
details in this section. 

Theorem 15: Let A be a real matrix of order m x  n with rank r ( l 5  r 5 min(m, n))  . 
Then there exists orthogonal matrices U and V of orders m x m and n x n 

respectively such that A = U [ :) V' where A is a positive definite diagonal 

matrix. 

Proof: Notice AA' and A'A are nonnegative definite matrices (Why? See 
Theorem 4). Let u, , u, ,. . . , u, be orthogonal eigenvectors of AA' corresponding to 

the eigenvalues h, 2 h, 2.. . L h, >A,+, =. . . = h, = 0 .  So AA'u, = hiui, i = 1,. . ., m . 
1 

Write vi = - A'u, , i = 1,. . . , r , where &- is the positive square root of hi . Then 
K 

for i, j = l ,  ..., r 
I 1 1if  i = j  

viv' = &-- 
ulAAfu = 

Oif i # j  



Thus, v,,. . ., v, are orthonormal vectors. Extend v,,. . . , v, to an orthonormal basis 

v ,,..., vn of R n .  Write U=(u , :  ... :urn) and V=(v , :  ... : v n ) .  Clearly U and V 
are orthogonal matrices. 
Also AA'u, = 0 for i = r + 1,. . . , m . Hence u;AAfui = 0 or A'u, = 0 for 

Sinceup; + ... + u,u', = I, we have 

A = (up ;  +...+ u,u:,)A 

= ( u p ; +  ...+ u,u:)A since ui A=O for i = r + l ,  ..., m 

Denote 6, =A. i = l ,  ..., r and A=diag(l,, 6,, .... 6. 

r 

It follows that A = z f i u i v :  = U [ 3 V B  The proof is complete. 
i=l 

We shall now interpret the columns of U and V and the diagonal elements of A in 
the above form. 

A 0 
Let A = U(o a) V' , where U and V are orthogonal and A is a positive definite 

diagonal matrix. 

Then rank of A is the same as rank of A which in turn is the number of rows in A .  
Now 

0 
Thus, U( ) V' is a spectral decomposition of AA' . Hence the diagonal 

0 0 

elements of are the nonzero eigenvalues of AA' and the columns of U are the 
orthonormal eigenvectors of AA' . To be more specific 

i 62ui for i=1, ..., r 
AArui = 

0 for i = r + l ,  ..., m 

Again A'A = V [t :\J U' , which is a spectral decomposition of *A'. Hence 

62vi for i =I, ..., r 
A'AV, = 

0 for i = r + l ,  ..., n 
Thus, the diagonal elements of A and the columns of U and V relate to the 
eigenvalues and eigenvectors of AA' and A'A . The diagonal elements of A are 
called the singular values and the columns of U and V are called the singular 

vectors of A. The decomposition A = U (t :) V' is called the singular value 
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decomposition of A .  
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Example 15: Let A 
3 

be a 
2 -1 -1 1 

-1 -1 -1 1 

singular value decomposition of A . What are the eigenvalues of AA' and A'A ? 
Identify the corresponding eigenvectors. What is the rank of A ? 

2 0 
and A = (  0 1 ] 
The eigenvalues of AA' are 6: = 4,6; = 1 and 0 .  The corresponding eigenvectors are 

the first, second and third columns respectively of U , namely 

- -2 respectively. :r1 
Let us now sum up whatever we have studied in this unit. 

14.7 SUMMARY 

In this unit, we have covered thefollowing points: 

1. Definition of a real symmetric matrix 

2. Classification of quadrat~c forms 

3. Spectral decomposition of a real symmetric matrix 

4. A method of determining the definiteness of a quadratic form 

5 .  Properties of positive definite and nonnegative definite matrices 

6. A method of finding a triangular square root of a pd matrix 

7. Properties of idempotent matrices 

8. Cochran' s Theorem 

9. Singular Value Decomposition. 

14.8 SOLUTIONSIANSWERS 

El. i) Coefficient of x:, xi , and ' x,x, are respectively 1, - 1 and 0 . So the 

matrix of the quadratic form x: - xi is [: 3. 



ii) Coefficients of x:, x: , and x,xz are respectively 2 , s  and 3 .  So the matrix 
Some Linear Algebra 

of the quadratic form is 
[ I 9  I:]- 

iii) Coefficients of x:, xi ,  xi ,  xlxz, x,x, and x2x3 are respectively 
I 0,0, 0,3, - 4,5.  So the matrix of the quadratic form 3x,x2 + 5xzx3 - 4x1x, 

2 2 7 2  iv) Coefficients of x , ,  x2, x;, x,, x,xz, xlx,, x,x,, x2x3, x2x4 and x3x4 are 
respectively 1, 1, 0, 0, 0, 0, 0, 0,1, 0 .  So the matrix of the quadratic form 

E2. Suppose aii < 0 .  Let ei denotes the ith column of the identity matrix. Then 

el Ae, = aii < 0. Hence A cannot be pd or psd. 

E3. i) The matrix of the quadratic form x: - 5x,x? + 7xi is A = 
I 

The eigenvalues of A are the roots of the characteristic equation 
]A-hI J=O or (1-h) (7-h)-6.25=0. 

The Characteristic equation can be rewritten as h2 - 8h + 0.75 = 0 . 

Hence the eigenvalues are 
8 + 8 - f i  

which are both and 
2 2 

positive. Hence the quadratic form x: - 5x1xz + 7x; is positive definite. 

ii) For x, = 1 and x2 = x, = 0 ,  the value of the quadratic form is 1 . Again for 
x, = 1, x, = x, = 0 ,  the value of the quadratic form is -1. Hence the 
quadratic form is indefinite. 

iii) The matrix of the quadratic form is A = . The characteristic 

10 0 41 
equation of A is (4 - h) ((2 - h) (3 - 3i) - 9) = 0 .  So 4 is a root of the above 
equation. The remaining two eigenvalues are the roots of the equation 
(2 - h) (3 - 3i) - 9 = 0 or k2 - 53i - 3 = 0 .  SO the eigenvalues are 

5kJ25-12 
and 4.  Thus, all the three roots are positive. Hence the given 

2 
quadratic form is positive definite. 

E4. The eigenvalues of A = 1: are the roots of the characteristic equation 

(2-h)'-1=0 or 3i2-43i+3=0 or (A-3)(3i-l)=O. Sotheeigenvaluesare 

h, = 3  and h2 = l .  Let ) be an eigenvector conesponding to h . Then 
xz l 
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2x1 + X 2  = 3x1 

x,  + 2x2 = 3x2 
or - x 1 + x 2  =o 

X I  - X 2  =o 
Thus, x, = x2 . So the normalized eigenvector corresponding to the eigenvalue 

It can similarly be shown that - is the normalized eigenvector 

corresponding to the eigenvalue 1 orthogonal to the first eigenvector. So the 
spectral decomposition of A is 

If A,,, = PAP' is a spectral decomposition of A ,  then 

A' = PAP'PAP' = PA'P'. 

By induction it can be shown that Ak = PA~P'  for k = 1,2,. . . 
Thus, if h, ,. . ., h, are the eigenvalues of A ,  then h: ,. . . , I :  are the eigenvalues 

of Ak . The eigenvectors of A'; can be taken to be the same as the eigenvectors 
of A . 

So b:, = 4  or b,, = 2  

2 0 

Thus, the required lower triangular square root is 

9 3 3  

0 0 b33 

so b:, = 9 or b,, = 3  

b l , b 2 , = 3  or b,, = 1 

b I l b , , = 3  or b,, =1 

b;, +biz = 5  or biz =5-1 01 



b,, b,, + b,, b,, = 1 or b,, b,, = 1 - 1 = 0 or b,, = 0 
Some Linear Algebra 

b:, + b:, + b:, = 6 or b:, =6-0-1=5 or b,, = f i  . 

Thus, the required triangular square root is 

E6. 'If' part: let C and D be positive definite. Then 

non-null. Hence I; 
'Only if' part: Let (z be pd consider 0 < ( x' : 0) 

whenever x # 0 . Hence C is pd. 

E7. We know that 0 < (0 : y') = yrAz2y whenever y # O  ( y  is 

chosen so that y ' ~ y  is conformable). Hence A,, is pd. 

E8, Use the same procedure as in E7. 

E9. Let A be an nnd matrix. Then there exists B such that A = BB' . Hence 
0 = x'Ax = X'BB'X implies that B'x = 0 . So Ax = BB'x = 0 .  

E10. Nonzero eigenvalues of AA' and A'A are the same. Hence nonzero . 

eigenvalues of pl 1' are the same as the eigenvalues of the 1 x1 matrix 

pl' 1 = np . The eigenvalues of pl' 1 = np . So, the eigenvalues of pl 1' are np 
and [ 0, 0,. . . , 0 (n - 1) times]. 

Let h be an eigenvalue of pLIt . Let the corresponding eigenvector be x . 
Then (I-p)l+pllr)x=(l-p)x+hx =(I-p+h)x.  

Thus, the eigenvalues of (1 - p)l + pl 1' are 
(1 - p) + np, (1 - p),. . . , (1 - p) ((n - 1) times). 

Hence (I-p)l+pllr ispdifandonlyif l+(n-1) p>O and 1-p>O or 

El  1. We use Theorem 7 for this purpose. Thus, 1 5 3 is a pd matrix with 

10.5 3 4 J 
diagonal elements 2, 5 and 4 ,  respectively. 

E12. i) xr(A + B)x = x'Ax + X'BX 2 0 since x'Ax and x' Bx are nonnegative. 
Hence A + B is nnd. 
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-Hence column space of A = Column space of C c column space of (C : D) = 

column space of A + B . 

E l i .  Let (? be an idempotent matrix. Then 
2 b 2 b  2 b )  

c d [ d d) 

4 + bc = 2.  b cannot be 0 since 4 + bc = 2 .  Also bc = -2 
2 b + b d = b .  So 2 + d = l  or d=-1 
2 c + c d = c  

bc+d2 = d  
bc+l=-1 
or bc = -2 . Choose b = -2 and c = 1 

-2 
(in fact choose b any nonzero number and c = - ) 

b 
2 -2 

Thus, ( is idempotent. Hence there is an idempotent matrix with 
1 -1 

a,, = 2 .  

A O A O  A 0 

El..( O B O B  [ )=rA2 0~~ ' I=( O B  1 
So [t 0) is idi~npotent if A and B are idempotent. 

E15. Since the column space of A is contained in the column space of B , we get 
A = BD for some D . 
Now BA=B.BD=BD=A. 




