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15.1 INTRODUCTION

We begin the unit with an overview of the scope of multivariate analysis. We identify
the extensions of problems of univariate analysis to higher dimensions and also outline
the problems special to multivariate analysis which do not have univariate
equivalence. We do this in Section 15.2. In Section 15.3, we study the properties of
variance-covariance matrices in detail. We also identify the class of variance-
covariance matrices with the class of nnd matrices. In Section 15.4, we present
several examples of discrete and continuous multivariate distributions.

Objectives:

After completing this unit, you should be able to

» define the scope and applications of multivariate analysis;

distinguish between univariate and multivariate analysis;
e describe the bivariate normal distribution;

s compute with the mean vectors, variance-covariance matrices and covariance
matrices of transformed variables;

e apply the concepts of marginal and conditional distributions and independence in
multivariate probability distributions.

-15.2 SCOPE OF MULTIVARIATE ANALYSIS

Let us start with an example. A software company wants to recruit 3 fresh
engineering graduates. There are 20 applicants and their scores (each out of 100) in
the aptitude test (x,), the test on software technology (x,) and the interview (x,) are
recorded below in a matrix form ‘
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52 61 35
64 75 72
68 60 58
50 65 59
49 58 65
70 64 81
50 54 47
70 71 54
61 65 63
62 65 78
58 70 64
50 48 31
47 59 56
55 61 60
46 48 42
60 62 68
52 53 64
58 61 50
78 82 65
42 47 49

e

X

In this matrix form, the vector X =| X, | is called a random vector and the matrix X
X3

is called a data matrix related to x. The (i, )™ element x, j of X denotes the score

of the i*" candidate in the aptitude test or the test on software technology or the
interview according as j=1, 2, 3 respectively. Thus, x,, =49 is the score of the fifth

candidate in the aptitude test. Each row of X corresponds to the scores of a candidate
in three tests and each column of X corresponds to the scores of 20 candidates in a
particular test/interview, Univariate analysis deals with the data on a single variable,
say, those in the interview. Multivariate analysis deals with data on more than one
variable (possibly correlated) collected on the same subjects. One of the major aims
of statistics relates to dealing with variability in the data. By dealing with variability
we mean (i) determining the extent of variability, (ii) identifying the sources of
variability and (iii) either control the variability by taking suitable measures or taking
advantage of the variability to select certain subject in an optimal manner or
classifying the subjects or variables into different groups depending upon the
variability. When we deal with a single variable, the variability is often quantified by
the variance. When we deal with more than one variable, then the variability is often
quantified by the matrix of variances and covariances. For example, in the case of the
data mentioned above, the variability is quantified by the matrix

sta =(0;;)

- where o;; =Cov(x;, x;),ij=12,3.

Such a matrix Z is called the variance covariance matrix of x and is denoted by

D(x). We shall discuss about such a matrix in detail in the next section.

Let us turn our attention to the recruitment problem. If the recruitment is based on just
the interview scores, then the candidates 6, 10 and 2 get selected. Again, if the




recruitment is based on the aptitude test, the candidates 19, 6 and 8 get selected where Definition and
as under the criterion of software technology scores, the candidates 19, 2 and 8 get Properties of MVN-1
selected. Notice that it is not realistic or optimal to base the judgment on the scores of

just one of the three variables as we are ignoring useful information on the others.

One possible way of using the scores on all the three is taking the average of the

scores on the three (two tests and the interview) for each candidate and select the three

candidates with the top three average scores. What should be the justification in

choosing a criterion? We should choose a criterion which can distinguish among the

candidates in the best possible manner. When we took the average, we took the linear

combination I'x where 1 =[§, —;:, %) . Why not look for a linear combination p‘x
over all linear combinations, which distinguishes among the candidates in the best
manner or in other words which has the largest variability (variance) and use that as an

index for selection criterion? This is precisely what is done in obtaining the first
principal component. The first principal component p‘x is a normalized linear

combination of x, which has the largest variance among all normalized linear
combinations of x.

Getting information on any variable is expensive in terms of time and or money. We
may like to ask whether it is worthwhile conducting the test in software technology
given that the aptitude test and interview are being conducted. Put in other words,
does the test in software technology provide significant additional information in the
presence of the aptitude test and the interview? This is called the assessment of
additional information.

Based on the data X on x can we group the candidates into some well-defined
classes? This may be a useful information if the company has jobs of different types —
(a) requiring high skills and (b) requiring medium skills but intensive hard work.
There may be a third group which is not of any use to the company. This is called the
problem of discrimination.

How well can we predict the interview score of a candidate based on his two test
scores? This problem is called the problem of multiple regression and correlation.
Suppose the interview mentioned above is a technical interview. Assume that there is
another HR interview and the score on HR interview be denoted by x,. We may be

interested in the association between the tests scores and the interviews scores, i.e.,
between (x,, X,) and (x;, x,). Such a problem is called the problem of canonical

correlations. The problems mentioned above are some problems specific to
multivariate analysis which do not occur in univariate analysis. In univariate analysis,
we talk about inferences (estimation/testing) on the mean/proportion/variance of a
variable. These problems can be extended to the inferences on mean vector/variance
covariance matrix of a random vector. Univariate analysis of variance has an analogue
in muitivariate analysis of variance.

In this section, we shall learn to compute the variance covariance matrices.

15.3 VARIANCE COVARIANCE MATRICES

As we discussed in the previous section, the variance-covariance matrix of a random
vector is a quantification of the joint variability of the components of the random
vector. The variance-covariance matrices play a very important role in quantifying
dependence structure in multivariate analysis. In this section, we formally define a
random vector, its mean vector and variance-covariance matrix. We shall obtain
formulae for the mean vector and variance-covariance matrix of linear compounds of a
given random vector. We shall give a method of transforming correlated random
variables to uncorrelated random variables. We shall show that every variance
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Basics of Multivariate covariance matrix is nnd and that every nnd matrix is the variance-covariance matrix

Normal of a random vector.
X, )
Definition: A random vector x={ : | of order px1 is a finite ordered p-triple
Xp
E(x;)
sequence of random variables X, X,, ..., X,. E(X) = : is called the mean
E(x > )

vector of x, where E(x;) denotes the expected value of x;. Let G;; denotes the

covariance between x,; and x ;- Then the matrix Z= (o;)) of order pxp is called

Y.
the variance-covariance matrix of x, denoted by D(x). Let y=| : | be another

Yaq
random vector. Let A;; denotes the covariance between x; and

Yii=L....p,j=1,...,q. Then A, =((A;;)) iscalled the covariance matrix
between x and y and is denoted by Cov(x, y). '

Clearly D(x) = Cov(x, X).

We know that V(x) = E(x —E(x))* and Cov(x, y) =E((x —~E(x)) (y—E(y)). Is there
a multivariate analogue to the above? Notice that

o, Oy ... Oy
O, Op O
D(x)=) =((0,,)=| .
j : .
G, Oy ... O

‘where dij =Cov(ki, x;)=E((x; —E(x;)) (x; ~E(x))) .
Xy~ E(xy) .
Thus, D(x)=|E| (x, —E(x))+x, ~E(x,))
x, —E(x,)
or D(x)=E{(x—E(x)) (x—E(x))t} K6
It cén be shown similarly that »
Cov(x, y) = E{(x~ E(x)) (y - E(y))'] )

Let us illustrate this in the following example.

. , - ~ Example 1: Let X,, X, and x; be random variables with means 2.3, —4.1 and 1.5
! ' respectively and the variances 4,9 and 16, respectively. Let p;; denotes the
~ correlation coefficient between x; and x i j=1,2,3and i=1,2,3. Let
! ' P, =0.5, p13';—- 0.3 and p,; =-0.4. Write down the mean vector and the variance
| covariance matrix of x = (X, X5 X5)".
Eéx,)) [ 23
Solution: The mean vector of x is E(x)=| E(x,) |=|—4.1].
| E(x;)) | 1.5
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0, = V(x,)=4,0, =V(x,)=9 and 03; = V(x;) =16

G,, =Cov(x,, X,) =p12./V(x1). V(x,) cov(x;, X;

we know that p; = ————=
=0.5x2x3=3.0 1/V(xi).V(xj)
013 = Cov(x,, X;3) =P34y V(%)) V(x;)
=0.3x2x4=24
G, =Cov(X,, X;) =p23w/V(x2). V(x5)
=—04x3x4=-478
40 .30 24
Therefore Zz 30 90 48
24 —48 16

Notice that X is symmetric in the above example. In fact, this is true for every
variance-covariance matrix X because o;; = Cov(x;, x;) =Cov(x;, x;) =0;; forall 1

and j. Since the leading principal minors of X are 4.0, 27.0 and 218.88,
respectively, it follows, from Theorem 5 of Unit 14 that X is positive definite.

Now try an exercise.

E1l) Let x, and x, be two random variables with joint probability distribution given
in the following table

X2
Xy 0 1 pi(xy)
-1 0.14 0.16 |03
0 0.26 0.04 |03
1 0.30 0.10 |04
. po(x,) |07 0.3

Find the variance-covariance matrix for x =(x,, x,).

Let x be a random vector. Consider 1'x where 1' is a fixed vector (i.e., the
components of 1 are not random variables). We shall now find the mean and variance

of 1'x in the following theorem.

Theorem 1: Let x_, be a random vector with E(x) = and its variance-covariance

pxl

" matrix equal to Z. Let 1 be a fixed vector and let 1'x = Lx;+1Lx, +--+1x, bea

linear combination of the components of x. Then E(I'x) =1' E(x) =1y and

V{I'x) =1'Zl. Also Cov(l'x, m'x) =1'Zm where m is a fixed vector:

Proof: E(I'x) = E(I;x, +1,x, +---+1.x ) ,
=LE(x))+LE(xy)+-+ +1 B(x,) [
=1'E(x) =1'p

| AR ’ ' 33
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Normal L

=Cov(l,x, +1,x, + -u-lpx'p,

3 t
=Zﬁ: l;, 10, =1'El

i=l j=I

p
Cov(l'x, m'x) = iz L, m;0,; =1'Em

i=l j=i

Lx +1x, +---+ 1%,

Now let us illustrate the above theorem in the following example.

1
Example 2: Find the mean and variance of 1'x in Example 1, where 1= 1 1|. Also
3 1
2
find the covariance between 1'x and m'x, where m=| —1|.
-1

Solution: Mean of 1I'x =1'E(x) =1,E(x,) + ,E(x,) + ,E(x;)
=%(E(xl)+E(x2)+ E(x,)) =%(2.3—4.1+1.5)

=%x—0.3=—0.1

V('x) =l'Zl (Usingh Theorem 1)
40 30 24 r
=%(l 1130 90 -438 % |
24 -48 16 1

1
=1(9.4 72 13.6)!1
9 o
|
1
=-x%30.2=3.36
.9
Cov(l'x, m'x) =1" Zm (using Theorem 1)
| 40 30 24)\(2
=§(111) 3.0 9.0 -48||-1
24 -48 16 J| <1
1 2 1 2
=—(94 72 13.6) -1|=—x-20=—=.
3( ) X 3 3

Now try an exercise.-

E2) Let x=(X, X, X; X,)" be an random vector with mean vector

1 02 02 02
02 1 02 02
02 02 1 02]
02 02 02 1

h= (2 1-1-2)" and variance covariance matrix Z=

34




Find the mean and variance of I'x and Cov(l'x, m‘x), where 1' =(1111)and
m=(11-1-1).

‘We shall now extend the results of Theorem 1 to several linear functions.

Theorem 2: Let x and y be random vectors of orders px1 and qx1 respectively.
Let E(x)=u, E(y)=0,D(x)=Z, D(y)=T and Cov(x,y)=A.

Let B, and C_, be fixed matrices (non-random). Then the following hold.

() EBx)=Bu
(b) D(Bx)=BIB'
(¢) Cov(Bx, Cy)=BAC'

bl
Proof: (2) B=| ! | where b, is the " row of B,i=1,...,r .
bl‘
b, x b,E(x) b,
Now E(Bx)=E = =M |E(x)=Bu

bx) \bEx/ b,

b,x)} (bx
(b) D(Bx)=Cov(Bx, Bx)=Cov o
bx, (bx
Thus, the (i, ))* element of D(Bx) is Cov(b;x, b;x)=b,Zb} for

I, j=1,...,p from Theorem 1.

bl
Thus, D(Bx)=| i | D" (bj:...:b})=BEB".
bl'
b,x) (¢y
(¢) Cov(Bx,Cy)=Cov 4,1 ¢ 1|where C, isthe i® row of
b.x/) \¢.y
Ci=1...,s. .
The (i, ) element Cov(Bx, Cy) =b,Ac} A
b,
Hence Cov(Bx, Cy)=| : |A(c}:...:c})=BAC"
b

r

Example 3: Let ¥ be the variance-covariance matrix of a random vector x of order
px1. Let r; denotes the correlation coefficient between x; and x;,1, j=1,...,p.

Write R = ((r; j)) . R iscalled the correlation matrix of x.

Definition and
Properties of MYN-I




Basics of Multivariate o 0 0
Normal
0 c
Write = T= Yz
0 0 0 Spp

Thus, T is a diagonal matrix with i diagonal element equal to the standard deviation
of x;,i=1,...,p. Assume that g, ..., O, are strictly positive. Show that
R=T'ZT".

Cov(xl,x )

o;
\/V(x W(x,) Voo,

Solutlon Notice that I

0
1 611 . c.lp ‘é
The @i, )™ element of T'ZT™ is [0 e G2 0 L. OJ o, . o, j
0
Gpl Cpp .
0
0
: J
1 1 1 2
Y 2 2 g4
_(o-igo-,.l e OO, a,.fa,.p). ; |
™ element
A element ,
0

N Gij
"0 60'2= =T

i jj ’ T
C../O:
it i

Thus, R=T'XT!,

This establishes a relationship between the variance-covariance matrix and the
correlation matrix of a random vector.

Now, try the following exercise.

E3) (a) Give an alternative matrix proof of Theorem 2(b) and (c).

(b) Obtain the correlation matrix of a random vector x with the following
variance-covariance matrix.

40 30 24
Z: 30 90 -48
24 48 16

(Compare your results with the matrices in Example 1.)

We are ready now to show the equality of the class of all nnd matrices w1th the class
of all variance-covariance matrices.
Theorem 3: (a) Every variance-covariance matrix is nonnegative definite (nnd).

(b) Every nnd matrix is the variance-covariance matrix of a random
vector.




Proof: (a) Let X be the variance-covariance matrix of a random vector x. Then for ’ Pro rlt’.eﬁ“itfioM“v:"
' . . 1es 0 -
each fixed 1, 1'Z 1=V(1'x) =0 (Since variance of a random variable is nonnegative.) pe

Hence X is nnd.

(b) Let X, be an nnd matrix. Then by Theorem 4(b) of Unit 14, there exists a matrix

C of order pxr for some positive integer r such that Z=CC". Let x,,X,, ..., X, be
independent random variables each with variance 1. Write x' =(x,, ..., X,). Then
D) =1,

. is the identity matrix of order rxr). Write y = Cx. Then by theorem
2, D(y)=CIC' =CC' =X.

Corollary: The variance-covariance matrix Z of a random vector x is positive semi-

definite if and only if there exists a fixed non-null vector 1 such that 1'x is a constant
with probability 1.

Proof: X is positive semi-definite
< There exists fixed 10, such that I'Z1=0
¢ There exists fixed 10 such that V(I'x)=0

&> There exists a fixed vector 1 0 such that 1'x is a constant with
probability 1.

In general, independent/uncorrelated random variables are easier to handle statistically
than the correlated random variables. We shall now give methods of transforming a
random vector (the components of which are correlated) with positive definite
variance covariance matrix to a random vector the components of which are
uncorrelated, by a suitable linear transformation.

Let x be a random vector of order pxlwith D(x)=X isa non-diagonal pd matrix.

Method 1: Let X =PAP"' be a spectral decomposition of £ where P is orthogonal
and A diagonal. Since X ispd, sois A. Write {=P'x. Then

D()=P'EP =P'PAP'P = A, since P is orthogonal. Since A is a diagonal matrix,

the components of & are uncorrelated. Also V(§ )=A,, the i diagonal element of
A

If we write y = A™2P'x, then D(y) = A"/*P'PAP'PA™? =1. Here

A7 = diag | —ey ;e |
T

Thus, the components of y are uncorrelated each with variance 1.

Before proceeding further, let us recall that if Z is pd, then there exists a nonsingular
matrix B such that = =BB‘. Write y =B'x. Then

. D(y)= BB =B 'BB'B™" =1. Hence the components of y are uncorrelated,

each with variance 1. Notice that in method 1, PAY? is a choice for the matrix B.

In Unit 14, we gave a method of computing a lower triangular square root of a pd
" matrix. Before giving Method 2, we shall give another algorithm of obtaining a lower
triangular square root of a pd matrix. This algorithm also helps us in getting the
inverse of the triangular square root as a bonus whereby we can write down y
immediately.




Basics of Multivariate Let X be a pd matrix of order pxp and I be pXp unit matrix.
Normal

Algorithm: Step 1: Form the matrix T=(X:1)
Step 2: Set i=1 (iis the sweep out number)
Step 3: Replace the i row of T by (i row of T) —\/a
Step4: Is i=p? If yes go to Step 9. If no go to Step 5.
Step 5: Set j=i+1

ji

t
Step 6: Replace j™ row of T by (j® row of T) —= (i row of T)

Step 7: Is j=p? If yes go to Step 9. If no go to Step 8.
Step 8: Replace j by j+1 and go to Step 6.

Step 9: Is i=p ? If yes, go to Step 11. If no go to Step 10.
Step 10: Replace i by i+1 and go to Step 3.

Step 11: The first p columns of T form B' and the last p columns

of T form B~ where £ =BB' with B lower triangular.

Method 2: Obtain a lower triangular square root of T and B~ by the above
algorithm. Then write down y =B™'x. Since B is lower triangular, so is B™'.

Xy
Soy=y=| . . 7 |, where B =((bY)).

Observe that y, =b''x,

il i
y; =b'x; +:--+b'x,

—hP! pp
Yp =bP X +---+b7x,.

Thus, the first component of y is a scalar multiple of the first component of x. The
second component of y is a linear combination of the first two components of x, and
SO on.

TS —

We now illustrate the above methods with examples.

21
Example 4: Let x be a random vector with D(x) = [1 2] .

(a) Find an orthogonal transformation & =Px (where P is an orthogonal matrix) such
that the components of & are uncorrelated. Obtain the variances of & and &, .

(b) Find a nonsingular linear transformation y = Bx, so that the components of y are
uncorrelated each with variance 1 by both the methods described above.

Solution:(2) Using the solution of E4 of Ijnit 1, we have the spectral decomposition of

(2 1) ¢ ¢ . 3 0Y(p _of3 0,
D(X)_[l 2J—3P1p1+1pzpz=(P1-P2)(0 IJ[P‘Z =P 0 1 P
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N 11 1 (1 Definition and
where p, =— and = d P=(p,: . Properties of MVN-I
P £ u |4} J—Z_(—]J an (P;:py) perties o
p, 1 (1 1
Hence the required orthogonal matrix is P = P' = : = ~—é— ") The
P> -

transformation is & =P'x.
1 1
—E(Xx +X,) and &, =7£‘(X1 ~X2)

NowD(&):P‘P(z’ 0)P‘P=(3 0)
0 1 01

Thus, § =

So V(£)=3 and V(,) =1

(b) Using Method 2 write y, =\/—1§-§, and y, =&,

Lo JLI
or y=|{ 3 E=| V3 P'x
0 1 0 1

Then y, and y, are uncorrelated and V(y,) and V(y,)=1.

2 1
Using Method 1 for the matrix (1 2 0 (1)] and proceed as below.
2 01 1 0 e )
102 0 1 e, (2)
A Lo 3)=(+2
V2 V2
3 1 !
0 = —=1 s H=2)-—@3
) (4)=( \/5()
1 1
V2 e o0 (3)=03)
2 V2 .
3 1 V2 3
0 o — = e, (6):(4)+\/:.
2 Jo 3 2
' 1
20 —2 0
Thus, B= and B =
o Tous, B= 1 3 I3
— 2 2 % G

\ The required transformation is y =B7'x.

|

i
a

\
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X4 1
X, 2
T E4) Consider a random vector x=| x, | with E(x)=| O | and
Xy 3
Xs -2 .
5 1 1 1 1
1 40 20 X,
. (%4 ¥)
D(x)={1 0 6 1 2|. Write y=|x,| and &= < . Thus, x= : )
12183 Xy > /
lt 02309
4 2
2 -1 1 ,
LetB-—-(4 5 2] and C=| -1 3|. Writce u=Byand v=C&.
0 1
Compute the following:
(2) E(u), D(u)
(b)  E(v), D(v) and
© Cov(u,v). ,
1 : 2 -1 -1
E5) Let x be a random vector with E(x)=] 2 | and D(x)=|~1 2 -1{. Notice
-1 ~1 -1 2

that each row sum of D(x) is 0. Obtain a linear combination 1‘x which is
constant with probability 1. What is the value of this constant?

4 2 6
E6) Let x be a random vector with D(x)=]2 17 27|. Use Method 2 to obtain a
6 27 70

lower triangular square root matrix B and its inverse such that the components
of y=B'x are uncorrelated each with variance 1.

E7) Let £ be the variance covariance matrix of a random vector x. Let 6;, =0.
Show that the covariance of x, with all other components is zero. '

In the next section, we shall discuss the multivariate distributions.

15.4 MULTIVARIATE DISTRIBUTIONS

. . In this section, we give an introduction to multivariate distributions. By a multivariate
- distribution, we mean the joint distribution of more than one random variables. We
give examples of discrete and continuous multivariate distributions. From the joint
distribution of random variables x,, ..., X, we obtain the individual distribution

(which we call the marginal distribution) of each x . We define the concept of
conditional distribution. We briefly study the concept of independence of random
variables and its relation to uncorrelatedness. First, let us consider 2 few examples.




Example 5: A college has 2 specialists in long distance running, 4 specialists in
Tennis and 6 top level cricketers among its students. The college plans to send 3
sportsmen from the above for participating in the University sports and games. The
three sportsmen are selected randomly from among the above 12. Let x, and x,

denote respectively the number of long distance specialists and the number of tennis
specialists chosen. The joint probability mass function of x, and x, is defined as

" P{x, =i,x, =j} for i=0, 1,2 and j=0,1, 2, 3. Obtain the joint probability mass
function of x,, X, .

Solution: The joint probability mass function of x,, x, is given by
p@, D=P(x,; =1, x, =})
2Ci 4Cj 6C3—i-j .. . ; '
- ; 0i14j<,1=0,1,2, j=0,1,2,3
= C3

k0 otherwise

The marginal probability mass function of x, is given by

3—i
P, @) =P(x, =)= P(x, =i, x, =)
| 0

Ue) § () (e, )

= 12Ci P
_ (zcil)z((;oc3—i), i=0, 1’ 2
3

0, otherwise

Similarly, the marginal probability mass function of x, is computed as

4 8
C. °C, .
N j 3-j
pxz(J)" 12C3’
j=0,1,2,3

=0, otherwise

The values taken by x, and x, and the corresponding probabilities constitute the joint

distribution of x, and x, and can be represented in a tabular form as follows:

Table 15.1: Joint distribution of x, and x,

Value

taken by — % |0 ! 2 3 Row

3 X, Joint probability sum

0 . |20 [6 [36 [ 4 120
% 220 | 220 220 220 220

] g (30 [a 12 [, 90
g 220 220 | 220 220

2 £ 1 6 14 0 10

_ - 220 | 220 _ 220 ’
56 112 438 4
Column sum 1
\ 220 | 220 220 220

For the joint distribution table, it is easy to write down the distributions of x; and x,
which we call the marginal distributions of x, and x,, respectively. ‘

Definition and
Properties of MVN-I



Basics of Multivariate P{x, =0} =P(x, =0, x, =0} + P{x, =0, x, =1} +P{x, =0, X, =2} +P{x, =0, x, = 3)
Normal 20 60 36 4
e st
220 220 220 220

Notice that P{x, =0} is the row-sum corresponding to x, =0 in the Table 15.1.
Accordingly this is recorded as row-sum corresponding to x, =0. Similarly, the
second and third row-sums are the probabilities of x, =1 and x, =2, respectively.
Thus, the marginal distribution of x, 18

Table 15.2: Margitial distribidtion of x,

Value 0 1 2

oy 120 90 10
Probability —270- —2-% 556

Similarly, the marginal distribution of x, is obtained using the column sums in
Table 15.1. Thus, the marginal distribution of x, is

‘Table 15.3¢ Matgiial distribution of x,

Veliie 0o 11 2 13
Probability | o | = |2 |4
220 |20 | 220 | 220

Suppose we are given additional information that no long distance running specialist is
selected, or in other words, we know that x, =0. Then what are the probabilities for
x,=0,1,2,3 given this additional infortnatieh? Notice that we are looking for the

conditional probabilities: B{x, = j|x, =0}, for j=0, 1, 2, 3. We can compute them
as

Py, 1x, (1/0)

=P(x, = j/x, =0) = T =0 X 2D

P(x, =0)

_a)(c)lc,)
Cei°e]
- (4le)(;(§ C3—j)’ §=0,1,2,3

The above distribution of X, given X, = 0 is called the conditional dlstﬂbutftm 6f XE
given x; =0 and can be expressed neatly in the following table.

Table 15.4: Conditional distribution of x-45 o

Value - B

PERER

, |
5

Probability

o | — |

:w»lin- =

Now, try the following exercises.

42
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Definition and

E8)  InExample 5, let x, = number of cricketers chosen. Write down the joint Properties of MVN-I

distribution of x; fifl X;: Obtain the marginal distributions of X, and X;.
Obtain the conditional distribution of X, giveti x; =1.

E9)  InExample5, let p;;, denotes P{x, =i, x, = j, x, =k} . Obtain p,; for
i=0,1,2,j=0,1,2,3and k=0,1,2,..., 6,i+ j+ k=3. The values of x;, X,
and x; and the corresponding p;;, constitute the joint distribution of x;, X,

and x;.
X
E10) In Example 5, obtain the variance-covariance matrix of X =| X4 |.

X3

The random variables x,,X, and x, in Example 5, E9 and E10 are discrete. Then
X
x=|x, | is called a discrete random vector and the distribution of x (the joint
X3
distribution of x,, x, and x,) in such a case is called discrete multivariate
_distribution. More generally, we can define discrete multivariate distribution for
X =(Xy, X,, ...,X,)" by joint probability.
P(x, =iy, X, =iy, .00 X, =ip):pi,i2,---ip.

Then for aset A of p-tuples P(xe A) = Zpipiz.r--,ip (j, 1y, 5 1))EA.

On the other hand we say that x,, ..., x, are jointly continuous (x = (X, ...xp)t is
continuous) if there exists a function f (u,...;u l)) defined for all u,, ...,u v having the

property that for a set A of p-tuples, i.e. ACR”.

P(gxl, - xp)e A= J' jf(ul, s uy)duy, L, dup , where the integration is over

(W, U, )€ A, Thus, PxeRP)= [l [f(a,. up)du, .duy, =1,
R?

The function f(u,,..., u p) 18 called the probability density function of x (or joint
~ probability density function of (x,,...,x,)). If A,,..., A, are sets of real numbers

such that A= {(u,; ..., u)ueA;,i=1..., p} we can write

P(Xse X, )€ A}=P(x; € Api=L o p)= [ [£(0;.0,)du;. . du,
A A,

The distribution function of x=(x,...x p)t is defined as

F(a, ay,..., a,)=P(x; 2a;, ..., X, <a,}

g
= I If(u,...up)dul...dup, (a, a,,...,a,)€ R?
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P
da,...0a,
partial derivatives are defined. At a countable set where partial derivatives are not

defined we set it equal to zero.

It follows upon differentiation, that f(a,, ..., a,)= F(a,,...,a;) provided the

Another interpretation of the density function of x can be given using the following:

a,+8a, a+da,
P{a, <x,<a; +da,i=1,...,p}= I If(u,,...,up)dul,...,du

ay ay

P

~f(a,, ..., aP)Bal,...Bap.

when da,,i=1....,p are infinitesimally small and f is continuous. Thus,
f(a,,...,a,)da, da,, ..., 8a, is a measure of the chance that the random vector x is

in a small neighborhood of (a,, ..., a,). -
Let f, (uj, u,, ..., u)) be the density function of random vector x of order px1.

Then the marginal density of x,, denoted by f, (u,) is defined as

oo

f, (u;)= J' Jf(ul,u:,_,.nup)du]...dui_ldum...du

—oo

p

Let x, =(x,,..., x,)" and x, =(x_,,...,x,)". Then the joint marginal density of x,

fs defined as f, (u))= J J'f(ul,...up)dum...dup where u, =(u,, ..., u)".

~00  —00

Likewise we can define f, (u,), where u, =(u,, ..., up)'.

The conditional density of x, given x, =(u,,;,..., u,)" is defined as

r+1% °

f,(up,...up)

f . (u |ll )=
XyIx,=u, 151 [¥2
f,, (1)

Why is the conditional density defined thus? To see this let us multiply the both sides
of the above equality by du,, ...,du,.

f, (uy,...u,)du, ...du,

u, |u,)du,...du, =
@ 0o, =

Then fmxﬂ:u,
T »ug)du,,...du

12" p

P(u, <x, <y, +du,,...,u, <x, <u, +du,)

— P

P
P(u, <x., Sy, +du,,..u, <X, Su, +du)

=P{u1 <x,<up+duy,.,u €x <o, +du o, €x, Su g Hdu,e,u, <X S +du

Thus, f (u;|u,), du,, ..., du, represents the conditional probability that x; lies

between u; and u, +du,,i=1,..., r given that \xj lies in small neighbourhood of u;

xy[X2=u,

that is between u; and u; +du;, j=r+1,...,p.




- Let us now consider a few examples,

Definition and
. Properties of MVN-1
Example 6: Let x =(x,, x,)" has the joint density

c(2~u,—-u O<u, <1, O<u, <1
fx(ulauz)z{( 2) :) ! B

otherwise
where ¢ is a constant.

(a2) Obtain the value of ¢ ‘ :
(b) Find the marginal density of x, “
(c) Find the conditional density of x, given x, =u,, where 0 <‘u2 <1

(d) Find the probability that x, >1/4 given x, =u,,0<u, <1

Solution: (a) Since f, (u,, u,) is a density function, |... |f (u,,u,)du,,du, =1
x\H 2 142 1 2

—oa
w oo

Now | = J.Jf (u,,uz)duldu2 ”‘c (2—-u, —u,)du,du,

—o0 —o0

=c. I(2 u;)du, — j‘u du, since Idul fduz =1
= (2u1 ﬂ (UZ Jj‘
0

(b) The marginal density of x, in the range (0, 1) is

1
fx, (ul ) = Ifx (ul’u2)du2
0

3

= _‘.(2‘ u; —u,)du,
0

\ 1

| ‘- =(2-u,)- fu,du,

\ =2-u -—==-1

| —3—~u‘ for O<u, <1

\ Thus, f, (w)=52 !’

| 0 , elsewhere

| 3 -u for O<u, <1
(c) By symmetry, the marginal densny of x, is f_(u,)= 2> 2

‘ O , elsewhere

: So, the conditional density of x, given X, =u,,0<u, <l is

1
f (u,|u )=M=2—_&:—ul where O<u, <1. Since f,(u,,u,)=0,

xfxp=uy \HLER2 3
1 f (02) P

whenever u, € (0, 1) whatever be given u,.
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Basics of Multivariate 2—-u,—u,

Normal whenever 0<u, <1
Ol

?

we have f,, _, (u |uy)= 575
0 , otherwise

for any given u,€(0,1).

, 1
i d) P(x,>—
. (d) <| 4

1 (31 3u2)_' 31-24u,

32 4 ) 16(3-2u,)

Example 7: Consider a random vector X with joint density

fx(ul,u2)={

2e™Me ™2, O<u, <o, O<u,<e

0 , elsewhere

(a) Obtain the marginal density of x,
(b) Obtain the conditional density of x, given X, =u,,u,>0.

Solution: (a) Clearly f, (u,)=0 whenever —o<x, S0. Let 0<x, <eo, then

f, (w)= jZe"“‘ e :du, =2e Ie'“’dul
0

1)

- 26—-2“1 e—u, ]M
0

=2e™™"2, whenever 0 <u, <oo.
which is an exponential distribution with parameter 2.

f (u,u,) 2e™Me™
fxg (u2) 2e™™

(b) Given u, >0f,, _, (u,fu,)= =¢ ", whenever
O<u <o,

Again f

(u, [u,)=0,u, & (0, =) for any given u, .

e™ if u € (0,5),u,€(0,c)
otherwise

X lxy=u,

ThllS, f)(,I)(2=u2 (ul l“'z) =




1t can be easily checked that this is the same as the marginal distribution of x,. Thus,
in this example the joint density of x, and X, is the product of the marginal densities
of x; and x,.

X )

Let a random vector x =[ , where x, is of order rx1 and x, is of order
sz

u

(p—r1)x1 have joint density f, (u), where u =( ] is partitioned according to the

2
partition of x. We say that x, and x, are independent if

P{x, € A, x, € B} =P(x, € A}P[x, € B}all subsets A and B of R" and RV
respectively.

It can be shown that x, and x, are independent if and only if the joint density of X,
and X, (i.e., the density of x) is equal to the product of the marginal density of x;
and X, or in other words

f,(w) =1, (u)f, (w,),forall u, and u,.

We give below a relationship between uncorrelatedness and independence.

Theorem 4: Let x; and x, be independent vectors. Then the matrix Cov(x,, X,}=0.
Proof: Let f, (u,) and f,(2 (u,) be the densities of x; and x,. Then the joint density

X,

of x, and x, (i.e., the density of x = x =( ]) is f,(w) =1, (ul).fx2 (u,) where

2

Let u, =(u,,...,u,)" and u, = (u,,,.....,u,)" .
Cov(u,, u,) =E(u, u}) — E(u,)E(u})

- J‘ Julu;fxl_ (W)f,, (u,)du, ...du,

—[I---I“afx. (ul)dul...dur] [I---J.“tzfxl (uz)dum...dup]:O

since the first integral in the previous expression splits into the product of the two later
integrals. Also for a matrix A =((a;)), we define

[ Jadx, ...,.dxp =((f fadxis- axg)).

However, the converse is not frue as shown through the following exercise E11.

Now, try these exercises.

El11) Let x have the following probability distribution

Value -3 -1 1 3
Probability 14 Ya | Y4 4

Definition and
Properties of MYN-I
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(a) Show that the probability distribution x” is

Value 1 9
| Probability V2 V2

(b) Write down the joint distribution of x and x2
(c) Show that x and x* are uncorrelated.
(d) Show that x and x* are not independent.

. . X . .
E12) Consider a random vector x =[ ! ) with the density
: X2
ey (2—u,—-u,})  O<uy <1, O<u, <1
f(u,u,)= :
0 otherwise
where c is a constant.

(a) Obtain the value of c.
(b) Find the marginal densities of x, and x,.

(¢) Find the conditional density of x, given x, =u,.
(d) Are x,and x, independent?

Let us consider the bivariate normal distribution. This is a special case of the
multivariate normal distribution which we shall study in detail in the next few
sections.

Xy

Example 8 (Bivariate normal distribution): Let x =( J have joint density

X,
. 3 . 2 N )
_ i {(“1‘“;.} +(“2"ﬂxz 2p (ul“”x){uz"”y)
. 2At-ple )l 0 ) L oy T o8,

2m"1 ze \/(1 - pil": )

fx(ul’u2)= ,—oo < Uy <oo, —co U, < oo,

This distribution will bé denoted by N, (ux, sHy, ,cil 1Or Py, )

(a) Réwrite the above density in terms of variance-covariance matrix X of x.
(b) ©btain a lower triangular square root B of X.

(c) Write down the density of y=B7'x.

(d) Hence write down the marginal density of y, and x .

(e) Show that y, and y, are independent.

(f) Obtain the conditional distribution of x, given x, =u,.

’ 6, © . o )
Solution: (a) Let X =( n 12) be the variance covariance matrix of x. Then
o
12 O»

=52 =
Gy —ze and Oz —pxlxzoxlo-xz .

2 _ 2 2 2.2 _ 2 2 (1_A2
Thus, |Y|=0,,6,, -0}, =0; 0} ~p,,,0,05, =0, Oy, (1 pxm)

b.9% XZ
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. l o Gx, lecxz (ul -ux, }
C1-pl., [(“1'“*1)("2 ”‘2)];— Pxx, ——12— ‘\uz—um
| o, 0y, o,

1 ze -—px|x20x,cx2 ul —p“)q
=[(U;“Hx():(uruxg )] (]“Pi,xz)(ci.ci) 0, 04,0, : ci u, —H,,

( u U u ) 1 ( 622 "612) (ul '—u'xl }
il L 2 MG T
- ot Co? : IE| Gy Oy (U2 ~Hy,
=(u-p) T (u-n,),
Wy /uxl
where u= and p, = .
u2 p’xz

Thus, the density of x can be rewritten in terms of T as

1 .
i o) = (o)
1 € ?

2n|Z)2

f (u)= eR?.

Hence we can denote this distribution as N, (p,,2).

(b) Let X=BB’, where B is lower triangular.

Writing (Gn ‘512\=[b11 O)(bn bll\ '
O 522} by by )\ O b22J :
We have b, =0y
(o]
by ==
Oy
3
i

(¢) Consider y =B™'x. Write v=B 'w and p_=B7'p_.

Then the density of y is given by (density of x written in terms of y ).
f, (V) =L,Bv) I (u, u,)i™
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- Thus, the density of y is f,(v)=

AT
du, du.
Then  J(u,u,) 3 ' 5 2
OV, OV,
du; du,
1
b, 0‘ 21 !
| ®n 1 -1 L
e 1 :b =140 Gy ——2 ""[Vo'nczz‘clzz} =[Z| 2
a1 byby 1
|b11b22 b22

Also ™ =(BB')=B"B' =B~'B"’

Hence (u-p,)'T"'(u-p,)
=(u-p,) BB w~p,)
=(V-p ) (v-p,)

1 e?
2mj3)2

The range of values for y, and y, are clearly the same as the range of values of x;
and x,, namely, ~eo <y, <oo,~co<y, <o,

Hence y~ N, (uy,l)
“'12'{("1 My )2 Hvrmny, )2}

. . ' .1
(d) The joint density of y, and y, is —2;63 , —oo <V, ¥V, <o,

1 2 1 2
(Vl*l"yl) 'e"‘z'(vz'llyz) d

, 1 =
Hence the marginal density of y, is }. —é;e 2‘ v,

dv,

i e“%{"] “Hy }2 ]' 1 e“‘;‘("z‘ﬂyz )2

N2m
1 2
"E(v' _""Yl)

e , since the integrand above as the density of a

_..S}
a

2

normal distribution.

1 2
——| —;u . R
P ,—o0 <V, <eo whichis

T .1
Thus, the marginal density of y, =—x, is €
by V2m

the density of N(].Lyl ,]) .

. 1
So, x, has a normal distribution with mean =b,u =b”B—p.Lx1 =M, and
11

variance =b3V(y,)=b}, =6,.

Thus, the marginal distribution of x, 1s N (ux' ,0”) .
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(e) The joint 2density of y,; and y, is (i.e. the density of y ) is Properties of MVN-I
1 1 2
2Le 7o) e k) =h,(v,).h,(v,) forall v,, v, where
T
I 5w, Lvm,Y
hl(v1)=2—ne 2 ,—e0 <V, <o and hz(v2)=2—ne~ ) —eo<V, <00,

Notice that h, depends only on v, and h, depends only on v,. Hence y, and y, are

independent.

(f) We can write

1 0 o
O On (o), 0 1 =2
> = = 21-2- 1 k r 0”
0, Opn o, 0 05-0,00, 0 1
1
o, )| — 0 1 0
S (1 —=||on
Hence X7 = oy ) S |
0 1 0 -1 011
G2 — 612011012
X
Hence the density of x =[ ! j can be rewritten as
X2
1
| o )| — 0 1 0
1 ()| 1 ——= | oy -,
€ : S 1 _Si 1{u
211:]2}5 0 -1 0 ——— O 27 H

1 0 U~ u -y, 7
Writing v=| o, "= G

-——= 1 u2 —ux2 -
Oy

We have the density of x as

2
= _9_1_!_ _ \
RIEN) R

1 e, 2 0y, —6,,0, 0,
62 [ 2270120,,%12 ,—°°<V1,V2<°°.

ik c
2m|xf2

Also notice that [2|=0,,6,, 07, =0, (02 -6,,07'0}, )

Hence the conditional density of x, given x, =u, is

IR [formma 2540w

1 2 o e 2 61,-6,;0,,0,;

2
~1
27:[0‘“ (022 ~G),0 012)]

fx2|x1 (uz lul ) =
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52

(020220, )

. 1 2 0,,-01,07'0,
22—0120,,012
= € n

2
oy e
2n (022 =026, 0y, )

,—oo<u, <oo,

2
which is the density function of N[;,Lx + &(u =My ),0‘11[0’22 - &D
2 G 1

or N(uxz +Prn, Z (u-n,,).02, (1-02, )] :

Xy

Try the following exercise.

E13) Let x have a bivariate normal distribution N, (“xl’ M, >0y, Oy, sPxx, ) Show
that x, and x, are independent if and only if Pxx, =0. (Recall that, in

general, uncorrelatedness does not imply in dependence. However if x; and
X, have a bivariate normal distribution then x, and x, are independent if and
only if they are uncorrelated.)

Now, we shall summarize the unit.

15.5 SUMMARY

In this unit, we have covered the following points:
e  Nature of multivariate problems

e  Computation of the mean vector and variance-covariance matrix of a linear
transformation of a random vector :

e  An algorithm to compute a lower triangular square root of a positive definite
matrix and its inverse simultaneously

. Discrete and continuous multivariate distributions
e  Uncorrelatedness and independence

) Bivariate normal distribution.

15.6 SOLUTIONS TO EXERCISES

El) p,=E(X,)=(-1) (0.3)+(0) (0.3)+ (1) (0.4)=0.1

b, =E(X,)=(0) (0.7)+(1) (0.3)=0.3

o, =EX, _Hx)z
=(-1-0.1)? (0.3) + (0—0.1)2(0.3) + (1-0.1)2(0.4) = 0.69

0, =E(X, —lflz)2
=(0-0.3)%(0.7) + (1-0.3)*(0.3) =0.78

o, =EX| —1,) (X; —1,) .
=(-1-0.1) (0—-0.3) (0.21)+ (-1-0.1) (1-0.3) (0.09)
+(0-0.1) (0—0.3) (0.21) + (0—-0.1) (1-0.3) (0.09)
+(1-0.1) (0-0.3) (0.28)+(1-0.1) (1-0.3) (0.12)=0




G.. =0 Definition a:
21 : Properties of MV}

0.3

069 0
ay= .
wd 3 [0 0.78}

0.1
Therefore, mean = = [ }

E2) Themeanofltx=lu=(l_1 11 | =0=0

-2
We can write X =0.8 [+0.2/' [where [ is identity matrix of order 4x 4 ]

where I'=(1 1 1 1) (=1'of the present exercise)

Now V(1'x)=1'Z1=0.811+0.21'4'1)
=0.8x4+0.2x4x4=32+32=6.4

Cov(l'x, m'x)=1"Tm =0.81'm + 0.21'/I'm =0
=0.8X0+0.2%x4x0-0

E3) (a)Let z= [x]
7 y

D(x) Cov(x,y)]

Th D(z)=
© 2 [Cov(y,x) D(y)

{3

Let u=Bx and v=Cy

u
Write w:[ J
v
. u) (Bx B 0\(x B O
Then w = = = = z
\ (VJ (CYJ [0 C]{YJ {0 C]
[[B 0}} [B oj {B‘ 0}
Thus D(w)=D z = D(z)
0 C 0 C o C
_(B _OME A] B' 0) (BZB' BAC'
0 C)lA' Tl 0o C') (CAB' CIcCt

whence it follows that D(Bx) = D(u) = BEB' and
Cov(Bx, Cy) = Cov(u, v)=BAC'.

(b) The standard deviations of x,,x, and X, are 2.0, 3.0 and 4.0, respectively.
Hence the correlation matrix R of the random vector x is
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Normal R=B'EB" where B=| 0 30 0
0 0 40
2.0
You can easily check that B™' =| 0 —3—16 0
o o -
i 40 |
Therefore,
55 0 0Jra0 30 24)5 O O 1 05 0.3}
R=/0 L 0[30 90 —48|lo L of=05 1 -04
0o o L \24 48 160) ¢ o 1| 03 -04 1J
4.0 4.0

which is exactly the same as in Example 1 (as expected).

E4) From the given information,

1 1 g 3 11
4 0|, D(z) =(3 9} and Cov(y,z)[2 O
0 6 1 2

1

E(y)=|2 ,E(Z)=t2]
0
5
D(y)=(1
1

1
2 -1 1 0
(a) E(w)=E(B Y)=BE()’)=( ] 2 =( ]
0

51 1
2 -1 1 30 46
D(u) =BD(y)B' = 1 4 0||-1 5|=
4 5 2 46 260
106 2

4 2 -8
(b) E(v)=E(Cz) = CE(z) = E(v)=E(Cz)=CE(@)=| -1 3 [—ﬂ: 9
0 ! 2
42) o e 1 oy (21252 30
D(v)=D(Cz)=CD@)C' =| -1 3 [ ]( J: 52 71 24
3 9)2 3 1
0 1 30 24 9

(¢) Cov(u, v)=Cov(By, Cz) =BCov(y, 2) C!
1

1
_2-11204—10_12114
—45212231_8088
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Note: Since D(v) =D(C z) = CD(z)C', the rank of D(v) is at most equal to Pmper?i?:r:fﬁ:/[nv‘;‘-(]
the rank of D(z) which is equal to 2 (since the determinant of
D(z)=63#0). So D(v) is a positive semidefinite matrix. It can be shown

1 4 2
that g=| 4 | is orthogonal to both | —1 | and | 3 | [use Gram-Schmidt
-14 0 I
4Y (2) (1
orthogonalization processon | —1,{ 3 |,| 0 | andhence (1 4 -14)C=90.
0 1 0

Thus, 0=g'CD(z) C'g==V(g' v)}. Hence g'v is a constant with
probability 1. Let us find out the constant now.
(-8

E(g'v)=g'E(w)=(1 4 -14)|9 |=0. Since g'v is a constant with
2

probability 1, g'v =E(g'v) =0 with probability 1.

ES) This is similar to the note in E3. Since each row sum (same as the column sum)
of D(x) is 0. We have 1'D(x)1=0 where 1'=(1 1 1).

Hence 1'x =X, + X, + X, is a constant with probability 1. The constant is
E1'x)=E(x) +E(x,)+E(x;)=1+2-1=2.

E6) We form D(x):I and follow the procedure in Method 2. Thus,

4 2 6 1 0 0 (1)
2 17 27 0 1 0 )
6 27 70 0 0 1 (3)
2 1 3 Vs 0 0 @=(1)+2
0 16 24 -5 1 0 ) =2)-@
0 24 61 20 1 (6) = (3) - 3 x(4)
2 1 3 Vs 0 0 (7) = (4)
s W 0 ®)=(5)+4
0 25 -2 -2 9 =(6)-6x(8)
2 1 3 1 0 0 (10) = (7)
4 6 7 0 (11) = (8)
0 ce - 2 (12)=(9)+5
200
Hence B=|1 4 0/ isalower triangular square root of D(x) (i.e.
36 5

55
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0

o

1
2
D(x)=BB')and B! = L
8 4
3 3 1
20 10 5

uncorrelated each with variance 1 as D(y) =B™'D(x)B™" =B'BB' =1.

0 |. The components of y =B™'x are

E7) V(x;)=06; =0. So x; is a constant with probability 1. Hence Cov(x,, x =0
forall j.

X being a variance-coVan'a.nce matrix is nnd by Theorem 3(a). Now by
Example 11 of Unit 14, 6; =0=>0;; =0 for all j. Hence Cov(x;, x;)=6; =0

for all j.

E8) x, =No. of tennis specialists chosen
X, = No. of cricketers chosen

Let p;; denotes the probability that x, =i and x;=j,i=1,...,4 and j=1,...,6"

Clearly p, =0 whenever 1+ j=>4 as only 3 sportsmen were chosen.
Y By y

Py = O since there are only 2 specialists in long distance running and 3
sportsmen are selected.

b =(2C.) (. )/ (Pca)=-5

220
Po2 = (2C1) (6C2)/(12C3)=“39‘

220
“* Pos =(6C3 )/(12C3)=‘22§06

Pos =Pos =Pos =0

Pio 2(4(:10) (2C2 )/(uca):

B

ae]
]
—
'S
ke
e
—_—
[}
O
pa——
—
(]
f)
o —
=
~
@)
()
N
i
N
[ o0

P13 =P1a =Pys =P =0

P2 = (4C2) (zcl)/(lzcs)=£

220

Px =(4C2)(6C1)/(12C3)_ %

T 220

P22 =Py =P2s =P =P26 =0

P = (4C3 )/(12(:3) : :

T 220 220
P3; =P3 =P33 =P3g =P3s =P3s =0
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Also p; =0 for i=4 or j=4.

Definition and
Properties of MVN.I

Thus, the joint distribution of x, and x, is given by

Joint Distribution of x, and x,

-
Value ] - Row
akenby | x, 0 1 2 l3 4 J 516 cum
QL X, Joint PrE)ba;)ﬂity ]
30 20 56
0 0 — = == g Io 0
220 220 220 220 f
4 48 60 112
1 —_ = = —= ’
> 1.220 220 220 0 0 100 220
=12 36 48 |
2 S = | = 1o 0 0|0 |0 | ==
i-;’ 220 220 220
A 4 4
£ 1220 0 220
4 =10 0 0 0 0|0 (0 ]o
20 90 2
Folumn 90 0 o lo lo |1
sum 220 220 220 | 220 |

The marginal distribution of x, is as follows:

Marginal Distribution of x,

Value 0 I 12 3 4
s6 | 112 | 48 4

Probability | — | —= |22 | 4 14

TN 1 550 | 220 | 220 | 220

The marginal distribution of x, is as follows:

Marginal Distribution of x,

Value 0 1 2 3 4 5 6

2 20
Probability 20 2 20 0 0 0
220 | 220 | 220 k220 |

The conditional distribution of x,|x, =1 is obtained using the row
cortresponding to x, =1in the joint probability table as follows:

220 220 112
48 112 48

P(x, =1]x, =) =0 112 _ 48
(o=t == =Tk
0

P(x;=2|x, =1 —*90—-1—12——-6
: 220 220 112

P(xy=jlx,=0)=0 for j>3

Thus, the conditional distribution of x, | x, =1 is as follows:



b

asics of Multivariate Conditional Distribution of x,}x, =1
Normal
Value 0 1 2 3 4 5 6
. 4 48 60
Probability | — — —_— 0 0 0 0
112 112 112

E9) Clearly p;y =0 whenever i+ j+k#3. Hence we shall consider only those

combinations of i, j and k suchthat i+ j+k=3.

Poas =(6C3)/(12C3) 20

220

o=, (7, 2

220

=t (e ) (7).

220

pl()2=(2Cl)(6C )/(IQC ) 2

220

Piss =(ZC1) (4C1)(6C1)/(12C3) Sk

220

E10) From Table 15.2 of Example §,

Ex)=1. 20 42,10 _110_1
220 7220 220 2

E(x})=1. 2 +4. 10 _130
220 220 220
130 175
V(x;)=E(x, EXx ) )=——-—=
‘ ()(())2204220

From Table 15.3 of Example 5,

12,48 , 4 220

E(x 1. . . = =
X2)= 220 220 220 220
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Definition and
E(x%) =1. 112 +4, v48 +9.- 4 = 340 Properties of MVN-I
220 220 220 220

340 120
So V =E(x2)—(E(x,))=——1=—=
0 Vix)=E(x) = (B(x2)) 220 220

From E8), we have

90 ,, 9 .20 330_3 |

E(x,)=1. . . = = |
220 220 220 220 2

E(x%)=1. 2 +4. 90 +9. 20 _ 630 ‘
) 220 220 220 220 R

V(x ):@_2—}}2
7720 4 220

From Table 15.1 of Example 5

E(x,x,)=1.1. 8 1212 gy 2 80
220 220 220 220 i
80 1 30
C =E -E(x).E(xX,)=—-==—-—
OV(XIXZ) (X1X2) ( 1) (xz) 220 2 220

From the table of joint distribution of x, and X, in E8,

E(x,x,) =11 412 0 5,36 240
220 <220 220 220
Cov(x2x3)=£19_1_.§=_9_0
220 2 220

From the computations of ES8,

|
|
Prob{x, =1, x; =1}=p,;; =— ’

48
220
Prob{x, =1, x; =2} =p,p, = 30

30 e
220 , }
J
|

6
PrOb{xl =2, X3 =1}=p201 =%

Now E(x;x;)=1.1. 48 +1.2. 30 +2.1. 6 =120
220 220 220 220

|
!
120 13 45 | . ‘~
|
1
|
|
|
|
4
|
|
|

So Cov(x, X;)=———.—==——.
0 CovlxiXs) =722~ " 220

Hence the variance covariance matrix of X =(X,, X,, X;)' is

75 -30 —45
1 130 120 -90
-45 —-90 135
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Basics of Multivariate Remark: Notice that each row sum of the above dispersion matrix is 0. Thus, it
Normal is a positive semidefinite matrix. Is it surprising? No! Why not? That is
i because we know that x, +x, + X, =3 (aconstant). Thus, V(x, +x, +X;)=0.

Ell)(a)

(b)

(©)

(d

E12) (a)

60

Notice that x* can take only two values 1 and 9.

P(x2 =1)=P(x=1or x=—1)=P(x=1)+(p(x:—1):%

Similarly, P(x> =9)=P(x =3)+ P(x =-3) = %

The joint distribution of x and x* is given as under:

Joint Distribution of x and x>

Value Row

taken - -3 -1 1 3

by X sum

lx* Joint Probability

1 20 14 14 0 Y%
_E
£8

9 AR 0 0 14 1
— A

g}‘i“mn v v V4 va 1

1 1
Clearly, E(x)=——+—=0
y, E(x) PR

So Cov(x, x?)=E(x. xz) ~Ex).E®x?) =E(x.x?)

=(=3)>. +( D3 +13‘11 331 =0.
P(x=3 and x*=1)=0
But P(x—3)—l and P(xz—l)—l

4 2

Thus, P(x =3 and x> =1)2P(x =3)P(x’=1) .

Hence x and x’ are not independent.

(2-—u;—u,) whenO<u, <1 and O<u, <1

cu
f (u;, u,) ={ !

0 ' otherwise

11
So 1= [[f,(u,,u;)du,du,
00
L
= IIC(2u1 —u}f —uluz)duldu2
00



1 1 Definition and
=c (2u1 ——ulz)—ul(-[%duzj dul Properties of MVN-1
0

th
(@]
——
W N W
=
_ 0|5,
]
w]_‘u
| I |
[ i
g 05

Hence ¢ = 2
5

(b) The marginal density of x, is

12 1y 12 .
=—5—u1[2—u] -—)=—u18—u1) if O<u; <1 and O otherwise.

Similarly, the marginal density of x, is

!
12

— |u,(2-u, —u, )dy, =£[_2__u_2
5 : 53 2

(¢) The conditional density of x, given x, =u;, O0<u, <1, is given by

—12(2 u,—u,)u
f Bt TR} g | 4. -
x(ul’u2)= 5 _2-u-u , O<u, <1
f(w) 123 3
| sulpw)

(d) Since the conditional density of x, given X, is different from the marginal
distribution of x,, we conclude that x, and x, are not independent.

E13) From Example 8, if p, , =0, the density of x= (XIJ is
- 142 xz

C N2 2
_1 ul—l"'i N Uiy,
2l o, O,
e

2n6._ o

=i, ’ 1f Uz=Hy, ’
R o BN Oy
Vars, Ny
=f, (u,)f,, (u;)

fx (ul’u2)=

Hence x, and x, are independent. Conversely, if x; and x, are any two
independent random variables, then we know that p, . =0 and hence it holds in

this particular case.
—X—
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