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14.1 INTRODUCTION

In this unit, we discuss some concepts from linear algebra which will be useful in the
study of multivariate statistical analysis. We look, in some detail, at idempotent
matrices and quadratic forms. In the context of this course we start with the study of
real symmetric matrices and the associated quadratic forms in Sec. 14.2. We define a
classification for the quadratic forms and develop a method for determining the class
to which a given quadratic form belongs.

In Sec.14.3, we study positive definite and semi definite matrices. In this Section we
also obtain some characterizations of positive definite and semi definite matrices, and
study some of their useful properties. Here we give a method of computing a square
root of matrices; this plays an important role in transforming correlated random
variables to uncorrelated random variables.

Idempotent matrices and Cochran’s theorem play a key role in the distribution of
quadratic forms in independent standard normal variables, particularly, in connection
with the distribution of quadratic forms to become independent chi-squares. In
Sections 14.4 and 14.5, respectively we study the properties of idempotent matrices,
and prove the algebraic version of Cochran’s theorem.

Singular value decompositions plays a very important role in developing the theory
and studying the properties of canonical correlations between two random vectors. In
Section 14.6, we study the singular value decomposition.

In this Unit, we shall be using the following notations. Matrices are denoted by capitai
letters like A,B,C. Vectors are denoted by boldface lower case letters like X,y,z.

Scalars are denoted by lower case letters like a,b,o.. The transpose, rank and trace of

amatrix A are denotedby A" or A', rank A and tr(A), respectively. R" denotes
the n-dimensional Euclidean space. ‘ ‘

Objectives

After studying this unit, you should be able to
e determine the definiteness of a given quadratic form;
e apply the speciral decomposition in the study of principal components;

e compute a triangular square root of a positive definite matrix;

e apply the properties of positivé and semi definite matrices to certain problems;
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e apply Cochran’s theoremv to the distribution of quadratic forms in normal
variables; :

¢ apply the singular value decomposition in the development of canonical
correlations.

Let us start our discussion with real symmetric matrices.

14.2 REAL SYMMETRIC MATRICES

Real symmetric matrices play a very important role in the study of multivariate
statistical analysis. For example, the variance-covariance matrices are real symmetric
matrices. They also play a crucial role in the distribution of quadratic forms in

correlated normal random variables. We shall denote (i, j)™ element of a matrix A
by a;. Then we write A =(a;) .

Definition 1: A square matrix A =(a;) of order n is called a real symmetric matrix

if (i) all the elements of A are real and (ii) a;; =aj; for i, j=1...,n.

Definition 2: A quadratic form in n variables Xx,,x,,..., X

n

is a homogeneous
polynomial of degree 2 in these variable. '

You also know that there is a unique real symmetric matrix A associated with a given

~ real quadratic form Q(X), in the sense that Q(x) = X’Ax . This matrix A is called the

matrix of the quadratic form Q(x). (For reference, MTE-02, Sec. 14.3)

Example 1: Examine the following matrices for symmetric property

NE i wll 23 '(iii) 13 N
i3 123 2 1 45

Solution:
(i) is not a real symmetric matrix because all of its elements are not real.
(i)  is not a real symmetric matrix because it is not a square matrix.
(iii)  is not a real symmetric matrix because a,, =3 and a,, =2 therefore a,, #a, .
(iv)  is areal symmetric matrix because (a) it is a square matrix (of order 2x2),
(b) all of its elements are real and (c) a;, =4 =a,, .

Heskek

Example 2:  Find the matrix of the quadratic form Q(X) = 2x,x, +5x,X, +3x; — x§ .

Xy B
Solution: Since there are three variables x,, x, and x,, x=| x, (. Let A be the
X3
symmetric matrix such that Q(x)=x’Ax . Then A is of order 3x3. Further

ay =ay, =1/2 (coefficient of x,x, ) =1. In general, whenever i# j, a;=a; =1/2

(coefficient of x; ;). Also a; = the coefficient of x’,i=1,2,3 . Thus

0 1 25
A=]1 3 0
25 0 -1}

ok %k
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Let us now try an exercise. Some Linear Algebra

Ei1) Find the matrices of the following quadratic forms:

. 2 .2
1 x;-x3

(i) 2x?+3x,x,+5x%3
(iii) 3x,X, +5X,X; —4x,X,

(iv) x*+x3+x,x, (in four variables x,, X,, x; and x,)

Depending upon the range, every non null quadratic form Q(x) in n variables can be -

classified into one of the following mutually exclusive and collectively exhaustive
classes:
(It is also said to be identification of the definiteness of the quadratic form.)

(a) positive definite (pd) if Q(x)>0 for all xe R", x*0,

(b) positive semidefinite (psd) if
(i) Q(x)>0 forall xe R", and
(1) Q(x)=0 forsome x=0

(c) negative definite (nd) if Q(x)<0 forail x# 0 (i.e., if —Q(x) is positive
definite),

(d) negative semidefinite (nsd) if (i) Q(x) €0 forallx and (ii) Q(x)=0 for some
x#0. (ie.,if —Q(x) is positive semidefinite),

(e) indefinite, if it does not belong to any one of the above classes (a) — (d) (i.e.,
there exists X and y in R" such that Q(x) >0 and Q(y)<0)).

The quadratic form Q(x) =0 can be classified into any one of the classes (b) and (d).

Example 3: Classify each of the following quadratic forms using the above
classification. Also write down the matrices of the respective quadratic forms.

Q) xt-x; (i) x? +x?

(iii) x7 +x; +2x; (in four variables x,, X,, x, and x,)
(iv) -x? - x?

) —xf - x% - 2xi (again in four variables)

Solution:
() xf-xi=1 if x,=1and x,=0. Again x’ ~x}=-1 if x, =1 and x, =1.

Thus it is indefinite. The matrix of the quadratic form is Ll) 0 jl .

(i)  x]+xj >0 whenever at least one of x, and x, is not zero. Hence this
quadratic form is positive definite. The matrix of the quadratic form is

10
[0 J, the identity matrix.

(i) Q(x)=x}+x;+2x3=0 forall values of x,, x,, X, and x,. However, for

x,=1and x,=x, =x, =0, the value of x? +x3 +2x3 =0, Thus, thereis a
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vector X = X #0 such that Q(x)=0. Hence this quadratic form is
0
1000
. e . . .10 1 0 0
positive semi-definite. The matrix of the quadratic form is 000 ol
0 001

We leave it to you to show that the quadratic forms in (iv) and (v) are negative definite
and negative semi-definite, respectively. (You can use the quadratic forms in (ii) and
(iii) to arrive at this conclusion, and for writing down the matrices of the quadratic
forms in (iv) and (v).)

S koK

In Example 3, we considered quadratic forms whose matrices are diagonal matrices.
Here it is easy to identify the definiteness of the quadratic form. In fact, if

Qx) = Zkix? is a quadratic form in n variables x,,..., x,,, then Q(x) is p.d., p.s.d.,

T 1=l

n.d., n.s.d. or indefinite according as A, >0 for all i; A, 20 for all i and A;=0 for
some j; A; <0 forall i;; <0 forall i and A;=0 for some j; orif A, <0 for some

i and A, >0 for some j, respectively.

Now, what if we have a‘qu/adratic form Q(X) = 2x12 ~3X,X, + X5 or
Q(x)=2x7 +x3 +x3 —‘ﬁ;xz ~2X,X; +4x%,%;? (Notice that the matrices of these
15 2 -15 -t
quadratic forms are l:-—l.S { } and |-1.5 1 ? , respectively, and are not
-1 2

diagonal matrices.)

In general, consider a quadratic form Q(x) = x’Ax, where A is not a diagonal matrix.

How do we determine the definiteness of the quadratic form in such a case? The
following results will be useful towards that end.

Theorem 1: Consider a quadratic form Q(x) =x’Ax where A is symmetric. Make a
nonsingular linear transformation 6f the variables: y=Tx (whereT is nonsingular).
Call the transformed quadratic form as y(y)(= y'T’rAT'ly). Then the ranges of
Q(x) and y(y) are the same.

Proof: Let o belongs to the range of Q(x). So, there is a vector X, such the
a=Q(xy) = XgAX, . Write y, =Tx,. Now

o =x,A%, =X, T'T AT "Tx, =y, T "AT 'y, = w(y,) . Hence ¢ belongs to the
range of W(y). Thus, the range of Q(x) is a subset of the range of y(y). Since T is
nonsingular, by reversing the arguments, we can show that the range of y(y) is a
subset of the range of Q(x). The proof is complete.

What we are saying through Theorem 1 is that the range of a quadratic form is
invariant under nonsingular linear transformations. Thus, the definiteness of a
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- quadratic form is invariant under nonsingular linear transformations. (Making a Some Linear Algebra

nonsingular linear transformation can also be interpreted as changing the basis.)

Recall that a real square matrix S is called an orthogonal matrix if S'=S™'. If S and
T are orthogonal matrices of the same order, then sois ST . To see this we note that
T'S'ST=TIT =1. Similarly, STT’S’=1. Hence (ST) =T’S" is the inverse of ST .

I 0
Also, you should verify that [0 T} is an orthogonal matrix if T is an orthogonal
matrix.

So, now we want to determine the definiteness of a quadratic form Q(x), the matrix of

which is not necessarily diagonal. We shall now show that we can make an
orthogonal transformation of the variables (i.e., we can make a transformation y = Px

where P is an orthogonal matrix) such that under this transformation, the quadratic
form is transformed into a quadratic form Zkiyf . Since we know how to determine

the definiteness of Zkiyf , and since the definiteness of inyf is the same as that
of Q(x), we would then have the definiteness of Q(x).

If A is areal matrix, then it is not necessary that its eigenvalues are real. For examp]e

0 1
if A =[ . } then the eigenvalues are i and —i. However, if A is real, and
symmetric then all its eigenvalues are real as shown below.

Theorem 2: Let A be areal symmetric matrix. All the eigenvalues of A are real
and all the eigenvectors of A can be chosen to be real.

Proof: Let A+ilL be an eigenvalue of A and let the corresponding eigen vector be
x+1y , where A, W are real numbers and x,y are real vectors. Clearly at least one
of x and y is non-zero as x+1iy , being an eigen vector is nonnull. Now,
A(x+iy) =(A +iw) (x+iy)
Equating the real and the imaginary parts on both sides of the above equality, we get,
Ax =Ax —uy D
Ay =Ay +x )
Premultiplying (1) by y” and (2) by x’, we get |
Y Ax=Ay'x-py’y 3
X Ay =Axy +ux’x C))
Since A is symmetric and y’Ax is a scalar we have y'Ax = (y'Ax) = x'A’'y =x’Ay .

Similarly, y’x =x’y . Now subtracting Eqn.(3) from Eqn.(4) we get u(x’x+yy)=0.
Since at least one of x and y is non-null, xx+y’y #0. So, u=0.

 Hence all the eigenvalues of A are real. Further A(x+iy)=2A(x+iy), yields
Ax=Ax and Ay=Ay. Since at least one of x and y is non-zero and x, ¥ are real,
we can choose a non-zero vector among X, y as an eigenvector of A corresponding
toA . This complete the proof of the theorem.

Now we are ready to prove the result we had mentioned earlier in the following
theorem.
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Theorem 3: Let A be areal symmetric matrix of ordern . Then there exists a real
orthogonal matrix P of order n such that A=PAP’, where A is a real diagonal

matrix.

Proof: We shall prove the theorem by induction on n. Let A bea 1xI real
symmetric matrix, i.e. A =(a), where o is a real number. Clearly

(Do) D =.o.)=(a). Also (1) is an orthogonal matrix of order 1x1 since
(1Y.()=(1.1)=(1). So the theorem is true for n=1. Let the theorem be true n=m
(a positive integer >1). Let A be a matrix of order (m+1)x(m+1). Let x, be a

normalized eigenvector of A corresponding to eigenvalue A,. Then Ax, =AX,.

Now x, can be extended to an orthonormal basis X,,...,X,,,, of R™". Write

A x v e e o [R B (M by ,
AR = A(x;:...: X)) = (X 0 Xep) =R , where 0, b}, and
Lo B, 0 B,

B,, are of order mx1, 1xm and mxm, respectively. [This is because,
22
AX,,..., AX_,, are vectorsin R™ and x,...., x,,, form a basis of R™", so Ax; is

a linear combination of x,,..., x_., .

7 ’
% b

Therefore R’AR =[ 0‘ B“). Since R’AR is real and symmetric it follows that
N 22

A, 0
b,, =0 and B,, isan inxm real symmetric matrix. Thus, R’AR =[ ! ] By
22

induction hypothesis there exists an orthogonal matrix S, of order mxm that

T 0
B,, =S,I'S] where T is a real diagonal matrix. Writing S ={ S 1 , we notice that
1/

S is an orthogonal matrix and

AT ;"1 0\ t ;\’1 0\ 7’
R’AR =8 IS' or A=RS ISR
0 r) 0 T
Write P=RS. Since R and S are orthogonal matrices so is P as noticed earlier.

P |
Writing D = (0 I"\[ , we observe that D is a real diagonal matrix.

Thus, the theorem is true for n=m+1.
Hence the theorem follows by irnduction on n .

The beauty of Theorem 3 lies in its interpretation. Let A be a real symmetric matrix
and let A =PAP’ where P is orthogonal and A is a real diagonal matrix. We then

have
(7*1 -0
AP =PA or A(p,:...:p)=(Py Py 2 - or
B
APi=7u-lpi,i=L...,n.

Since p, is a vector in an orthonormal basis, p, is (a non-null vector) of unit norm.
Hence A, isan eigenvalue of A and p, is an eigenvector of A corresponding to the
eigenvalue 2, . Thus, the diagonal elements of A are the eigenvalues of A and the
columns of P are the orthonormal eigenvectors of A . Further
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=Mpp; +--+A,P,P,

Write E, =p.p;,i=1,...,n
E, ifi=j
0 otherwise

Then EE, ={
and rank E, =rank p,p; =rank p, =1.

n
Thus, we are able to write A = ZK‘Ei where E,,..,E, are symmetric idempotent
i=l ‘

matrices of rank 1 such that E,E; =0 whenever i# j. The set {A,..., A} iscalled

the spectrum of A . Since the decomposition mentioned above involves the spectrum
and the eigenvectors it is called a spectral decomposition of A .

4 1
Example 4: Obtain a spectral decomposition of the matrix A = [1 2] .

4-A 1

Solution: The characteristic equation of the matrix is Y

-0

or (4-1)2-M)-1=0

or A2 —6L+7=0
+436-2

The roots are §+6§=3ix/5

So the eigenvalues are 3++/2 and 3-4/2.

u 13 . . . .
Let u =[ '] be the eigenvector of the given matrix corresponding to the eigenvalue
u :

2
3+42.

. _ /'
Then [A - (3+v2)lu=0 or 1-V2 ! ““]:0
1 —1-}/5 \uz

" Notice that the second column of (A -3+ \/E)I) is (—1 -2 ) times the first column.

So, u, :1+\/§ and u, =1 satisfy the equation (A—(3+\/§)I)u=0.

2
To normalize u, we divide it by its norm namely ,/(1 +J§) +12 =4+ 2«/5 . Thus,

the normalized eigenvector corresponding to the eigenvalue 3+ V2 is

1 [1+\/§

44220 1

1
corresponding to 3-42 is —;{ ( )} Hence A = PAP

] . It can be shown similarly that the normalized eigenvector

Ja+2d2 (1442
1 (12 1

3+42 0
where P = ———— and Az( \/_

Jav2g2| 1 (142 L0 3-2

spectral decomposition.

) , is the required

ke

Using Theorem 3, we can determine the definiteness of a quadratic form. Consider the
quadratic form Q(x) = x’Ax. Let A =PAP’ be a spectral decomposition of A. Then

Qx)=x"PAP'x =y’Ay where y=P’x. Since P is nonsingular (in fact, orthogonal)

11
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y'Ay is determined by the diagonal elements A,,..., A in, A the eigen values of A.

n

Thus

positive definite if A, >0 for all i

positive semidefinite if ,; 20 Vi and &; =0 for some j
X'Ax is <negative definite if &, <O for all i

negative semidefinite if A; <0 for all i and &; = 0 for some j

indefinite if &, > 0 for some i and }; = 0 for some j

Because of the one-one correspondence between real symmetric matrices and the
quadratic forms, we call a real symmetric matrix A as positive definite, positive
semidefinite, negative definite, negative semidefinite or indefinite accordingly as the
corresponding quadratic form x’Ax is positive definite, positive semidefinite, negative
definite, negative semidefinite or indefinite, respectively.

Now let us illustrate the following example as an application of this.

Example 5: Determine the definiteness of the quadratic forms (i) 2x? — x,x, +x3
and (i) X} + x5 + x? =3x,%, =3%x,%; =3%,%; .

2 =05
Solution: (i) The matrix of the quadratic formis A =( 05 1 ] .
\_ .

We see that its characteristic equation | A —AL|=0 is {
(2-2) (1-A)—0.25=0 or A* -31+1.75=0
3+9-7

Hence the eigenvalues which are the roots of the above equation are ——_——2——— or

3+\/§ 3—\/5
an:

d 5 which are positive.

2
Hence the quadratic form is positive definite.
1 ~15 -15
(ii) The matrix of the quadratic formis A={-1.5 1 -1.5].
-1.5 -15 1
It is easy to notice that the sum of each row in A is -2.
1 1
Hence A|1|=-2!1]|.Thus, -2 is an eigenvalue of A. Further, the sum of the
1) 1

eigenvalues which is the same as the trace of A is 3. Hence there must be at least

one positive eigenvalue of A. So the quadratic form is indefinite.
k% %k

Now, try the following exercises.

E2) Let A be areal symmetric matrix, a diagonal element of which is negative.
Show that A cannot be positive definite or positive semidefinite.

E3) Determine the definiteness of the following quadratic forms:
() x? ——5x]x2. +7x3, (i) x;—x5+x] —x;x, +10x,X; = 2X,X5,

(i)  2x7+3x2 +4x2 +6x,x,

12
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2 1 .
E4) Let A= (1 2] . Obtain the spectral decomposition of A . Hence write down

Al

In next section, we shall discuss more about positive definite and non-negative definite
matrices.

14.3 POSITIVE DEFINITE AND SEMIDEFINITE
MATRICES

In the previous section, we noted that the definiteness of a quadratic form is also
attributed to the matrix of the quadratic form. Thus, if x’Ax is positive definite
where A is a real symmetric matrix, then we call A as a positive definite (pd) matrix.
A real symmetrix matrix is called a Semidefinite matrix if it is either pd or psd i.e., if
x'Ax20 for all x. Positive definite (pd) and nonnegative definite (nnd) matrices
play a very important role in the multivariate analysis. Unless stated otherwise, when
we say a matrix is pd, psd, nnd, nd, nsd we mean that the matrix is real and symmetric.
We may not state this fact explicitly each time.

In this section, we study several properties of positive definite and nonnegative
definite matrices. We shall also give an easy way to construct positive definite
matrices and orthogonal matrices of order nxn . Let us start with the following very
useful theorem.

Theorem 4: a) A matrix A is positive definite if and only if A =BB’ for some
nonsingular matrix B ..
b) A matrix A is nonnegative definite if and only if A =CC’ for

some matrix C.

Proof: a) If part. Let A =BB’ for some nonsingular matrix B. Let x be a nonnull
vector.. Then x’Ax=xBBx=y'y = y1 +- +yn >0 where y =B'x.
Since B is nonsingular, so is B”.

Let if possible y =B’x=0. Then x=(B")'y=0.
Since x # 0, there is a contradiction. So y#0.

Hence x’Ax =Y’y >0. The choice of x being arbitrary, it follows, that A is positive
definite. Only if part. Let A be positive definite. Then all its eigenvalues are strictly
positive. Let A = PAP’ be a spectral decomposition of A . Let \/7—; seeesJA, be

positive square roots of A,,..., A
| \/X; e 0
0o .. \/Z

A? =
Then B =PA"*P’ is symmetric and BB’ = PA"2P'PA2P’ = PA?A?P’=PAP' = A.. .

respectively. Write

n°

Further since A,,..., A, are strictly positive, so are \/7—L_ sl Ay - Now

|BI=|PAY?P’|=|P|| P’|| A'? || PP’[| AY? = I|| A¥ |= {A,...A, >0. Hence B is
nonsingular.

13
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[Notice that B=PA"?P’ is a spectral decomposition of B. Now since diagonal

elements of A" are strictly positive it follows that B is pd. In fact, we proved that
more stronger result that if A is pd then A = BB’ for some symmetric pd matrix B .]

(b) It suffices to prove the statement for positive semidefinite matrices as an nnd
matrix is either pd or psd. (For the pd matrices we already proved the statement

in (a).)

If part. Let A=CC’. Then x'Ax = x'CC’x =uu >0 where u=Cx. Hence A is
nnd. ’

Only if part. Notice that since A is psd all its eigenvalues are nonnegative. Let
AM2A, 2. 2A > A, =...= A, =0 be the cigenvalues of A. We can write a spectral

decomposition of A as
A 0,
A=P P
0 0
where P is an orthogonal matrix and A, is a diagonal pd matrix of order rxr. Write

\/;:...O
()\/;:

v

Then

1

AA 0. . . t .

C=P| " P’ is symmetric and CC' = A . This complete the proof.
0 0

A matrix B such that A = BB’ is called a square root of A . Given A, B is not unique

since A = BPP'B” where P is any orthogonal matrix. In Theorem 4 we gave a
method of computing a square root if we know the spectral decomposition of A .
However, obtaining spectral decomposition is not easy in general. We shall now
discuss a method of obtaining a square root of a positive definite matrix.

Let us start with an example.

4 1 2
Example 6: Obtain a square root of the positive definite matrix A=1 3 1
2 15
Solution: We shall obtain a lower triangular matrix B such that A = BB’. Write
b, 0 O
B=|by by, 0 |. Weshallsolve for b; j=i,...,3,i=1,2,3 such that A =BB’.
b31 vb32 b33 ’
Write

41 2) (b, 0 0)(b, b, b,
1 3 1|=|b, by, 0|l 0 by by
21 5) lby by, by)lO0 0 by

Equating the elements on both sides, we get

a, =4=b;, or b, =2 (You can choose either +2 or -2 but choose and fix one of -

them.)

1
a, =1=b; by so b21=b——=1/2

11
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A 1 11 11
a,,=3=bj +b;, or b§2:3—z=-4—. So b22=\E.

1 /4 1
a,; =1=b,, by +by, by, or by, by, =1-1/2.1=1/2 or b, =3 ﬁ:ﬁ

1Y 1 43 43
a,; =5=bl +bj, +bl, orb§3=5—12—[?) =5-1~—=--o0r by, =,/—.

V11 11 11 11
2 0 0
INTEY .
Thus, B=|— \/—— 0 | is square root of A.
2 4
1 43

Vit Vi,

koK

For the given matrix A in Example 6, we could obtain a lower triangular matrix B
such that A = BB’. Can we always do this? Let us examine how we went about in
solving for the elements of B. First we solved for the first column of B, then for the
second column and so on. Also observe that each time we just had to solve one
equation in one unknown to obtain the ¢lements of B. Could there have been some
hitch? What if the computed value for b2, or later for b3, turns out to be negative? If

it happens to be so, we would not have been able to solve for B. It can be shown that
if A is positive definite then the above situation never arises.

Let us now try an exercise.

E5) Compute a lower triangular square root in each of the following cases.

9 3 13

yo (4] Gy (3 5 1
W1y,

\316

Let us illustrate few more examples to understand the concept of definiteness.

A
Example 7: Let A =[ " " ] be an nxn positive definite matrix where A,
: 12 22

and A,, are square matrices of order rxr and (n—r1)x(n—r) respectively for some
r(1<r<n-1). Show that A,, is positive definite.

Solution: Let x be a rx1 nonnull vector.

Ay A ’ '
Then xX'Ayx = (x":0), e X) =(x":0)A *1>0, since x) is a
TANAL An e\ 0 0)

nonnull vector. Hence A, is pd.
*kok

Example 8: Let A be a positive definite matrix. Then show that [A[|>0.

Selution: Since A is positive definite, by theorem 4(a), A = BB’ for some
nonsingular matrix B. So

|A|=|BB’|=|B|.|B’|=|B>0
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4 ap 4,
ap Ay a, .
Let A=| . : -" | be a pd matrix.
aln a2n ann
gy Ay ay;
a, a a,.
. 1 ax 2
Write A, =| .© . Sl.i=l..,n
a; @y sy

The matrices A;,1=1,..., n are called leading principal submatrices of A .
Combining Examples 6 and 7 we have | A, |>0 fori=1,...,n if A is p.d. Is the

converse true? Next theorem has the answer of this which is stated below without

proof.
skk %k

Theorem 5: et A be a real symmetric matrix of order nxn. Let A;,i=1,...,n be
as defined above. Then A is positive definite if and only if | A, | >0 for
A, i=1..,n. '

Example 9: Let A be a symmetric positive definite matrix. Show that RAR” is pd
where R is any nonsingular matrix.

Solution: By Theorem 4(a) A =BB’, where B is nonsingular. Then
RAR’=RBB'R’=CC’ where C=RB. Further, C is nonsingular since R and B

are nonsingular. Hence RAR is pd.
' EEXS

Example 10: A symmetric matrix A is positive definite if RAR’ is pd for some
nonsingular matrix R .

Solution:  Let x#0. Consider X’Ax = xR'RARR"x = y'RARy where

y=R"x1%0 since x#0. Hence XAx=yRAR’y >0 since y #0 and RAR’ is pd.
Hence A is pd.

*%k ok

Now try the following exercises.

E6) Let C and D be symmetric matrices of order r xr and (n—r)X(n—r)

cC o
respectively. Show that [0 DJ is pd if and only if C and D are pd.

’
AlZ 22

then A,, is pd.

A, A .
E7) Let Az[ . 32] where A, and A,, are square. Show thatif A ispd,

E8) Let A beasin E7. Show thatif A isnnd, then A,, and A,, are nnd.

Now let us take up some more theorems.

All .A12

t
12 22

Theorem 6: Let A =[ ) be a partition of A, where A, and A,, are

square. A is pd, if and only if+A,, and A,, ~ A}, A;! A, are pd.



' i : X . Linear Algeb
Proof: For the ‘if’ part A,, is pd. For the ‘only if’ part A is pd and hence A,, is pd Some Linear Algebra

by Theorem 5. Thus for both parts A;] exists. It is easy to see that

Ay Ap [ [ Q}LAU 0 )[I A;]]An]
A:2 Azz A;2A]‘11 I 0 A22“A;2A1~1#A12 0 I

| A, 0 ,
Hence A=R g , . R
0 A22 A12A11A12

I 0
where R = ! . Notice that |R|=]1|. |I|—1
ApAj 1

Hence R is nonsingular. By Examples 8 and 9, and E6 it follows that A is pd if and
only if 'A,, and A,, — A, A;] A,, are pd. This completes the proof.

As we stated in the beginning that we shall give an easy way to construct pd matrices
and orthogonal matrices. We shall do so now.

- Theorem 7: Let A be a symmetnc matrix of order nxn with positive dlagonal

elements and let a, >Z|aul i=1,...,n.
_]#l

Then A is positive definite.

The proof is beyond the scope of this notes.
Using the above theorem, it is easy to see that the matrix A in Example 5 and those in
ES are pd.

Theorem 8: Let u be a vector with unit norm. Then I—2uu’ is a symmetric,
orthogonal matrix.

Proof: (I-2uu’)’ =1'-2(u’yu’ -I 2uu

Hence I-2uu’ is symmetric.

Further, (I-2uu’) (I-2uu’) =1~ 2uu’~ 2uu’ + 4uu’uu’ =1 ~ duu’+ 4uu’ =1 since
uwu=1. So I-2uu’ is orthogonal.

Example 11: - Let A be a positive semidefinite matrix of order nxn and let a; = 0.
Then show that a; =Ofor j=1,..,n.

Solution: Consider x=a ¢; +¢; where €;and e, are i" and j* columns of the
identity matrix of order nxn and q is areal number.

Now X'Ax = e[ Ae; +ejAe; + 2ae[Ae s

=a’a; +a;+ 208, =a; +2aa,

—(a5+1)
2a;;
which is a contradiction since A is psd. Hence a; =0. Choice of j bemg arbltrary,

the result follows. -

Let if possible a, #0. Choose o= . Then X'Ax=a; ~(a; +1)=-1<0

Now let us try the foiloWing exercises.

E9) Let A be annd matrix. Show that x’Ax =0'if and only if Ax=0.

E10) Show that (1-p)1+pll’ is pd if and only if ——Ll— <p<1 where n is the
n _—




~

Basics of Multivariate order of the matrix and 1'=(l, ..., 1).
Normal

E1l) Construct a 3x3 symmetric nondiagonal positive definite matrix A such that
a,=2,a, =3,a;,=4.

i as

El12) Let A and B be nnd matrices of the same order. Show that (i) A+ B is nnd;
(ii) the column space of A is a subspace of the column space of A +B .

So far we have discussed about various types of real symmetric matrices and other
types of real symmetric matrices. Now let us discuss about idempotent matrices.

144 IDEMPOTENT MATRICES

A square matrix A is said to be idempotent if A% = A . Can you quickly come up
with some examples of idempotent matrices? Yes, you are right! O and 1 are
idempotent matrices. In fact, the only nonsingular idempotent matrix is 1. Why?

This is so because A*=A and A is nonsingular implies A =1 (premultiply both

sides of AZ=A byA™) Similarly, the only rank 0 square matrix, namely O is
idempontent. What about idempotent matrices of order nXn of rank r

I O
(1€r<n~1)? (6 OJ is an example of an idempotent matrix of rank r.

Further, if A is an idempotent matrix and P is a nonsingular matrix of the same
order, then PAP™'. PAP™' =PA’P~' =PAP™'.

Thus, PAP™' is an idempotent matrix.
I, 0 . .
Hence P{(; 0) P~ is an idempotent matrix of rank r for every nonsingular matrix

P. We shall now show that every idempotent matrix of rank r is of the form

I 0
P((; 0} P~ for some nonsingular matrix P.

Theorem 9: Let A bean nxn matrix of rank r (1<r<n-1). Then A is
I 0 , .
idempotent if and only if A = P(‘; 0] P! for some nonsingular matrix P.

Proof : ‘If’ part has already been proved above. For the ‘only if” part, let A bean:
nxn idempotent matrix of rank r (1<r<n-1). Let A=(a,:a, t...:8,). We
have ‘ :
(a:...2a)= A=A’ =A(a, :...:a,)
Hence Aa, =a;,i=1,...,n , Sincerank A=r, there exist r linearly independent
columns a; ,...,8; of A. Thus

Aaij=aij,j=1,...,r. ' . 43
Again, A(I-A)=0. Hence the set of columns of (I-A) is a subspace of the null
space N(A) of A. We know that dimension of N(A) =n—rank A=n-r. So, rank
of I—A isat most n—r. On the other hand, since 1= A+(I—A), n= rank 1< rank
A+ rank (I-A).

Hence rank (I~ A)2n— rank A. Thus, rank (I-A)=n— rank A. This, coupled
with the fact the column space of (I— A) c N{A), shows that the column space of |




. i Algeb,
~a,_ be line aﬂy Some leear gebra

n-r

(I-A) is the same as the null space of A. Let ¢, —a,.....¢
independent columns of I-A. Then

Ale, —a, )=0,k=1...,n~1 | (2)
—al...le  —a ) Clearly, P is an nxn matrix. Let

Px=0. Then, x;a; +x,a; +...+Xa +X, (el" —al')+..‘.+xn,(eln —-a, )=0.

Now,
0=APx=xAa, +X,Aa; +...+XAa + xrﬂA(ell —-a; ) +...+ x"A(e,n_r —a, )

=x,, +...+xa; inview of Eqns. (1) and (2).

This implies x; =x, =x, =0 since a, ,...,a; are linearly independent. This in turn
implies x ,; =..., %, =0 since ¢ —a, ,i=1...,n—r are linearly independently.

Thus, Px =0 implies x =0 or the columns of P are linearly independent. So rank
P =n or in other words, P is nonsingular.

Further, AP=A(aiI el e~ l...le _aln_,)

I. O
Thus, we have A = P[(; 0] P™'. This completes the proof.

Let A be an idempotent matrix of order nxn with rank r. From Theorem 9, the
following statements are clear.

(a) A is similar to a diagonal matrix.
(b) A has at most two distinct eigenvalues 1 and 0. Eigenvalue 1 is with algebraic

multiplicity r and O with algebraic multiplicity n—r.

Finding the rank of a matrix in general is not very easy. However, it is quite easy for
idempotent matrices. We start with a definition.

Definition: The trace of a square matrix A of order nxn is defined as the sum of its

diagonal elements and is denoted by tr(A). Thus, tr(A) = Z a,

i=l

Example 12: Let A and B be are square matrices of the same order. Show that (i) -
tr(cA)=c.tr(A) when c is a real number; (ii) tr(A +B)=tr(A)+tr(B).
Solution: (i)  tr(CA)=) caii=c) aii=ctr(A)
' ' i=l =1
n

(i) tuw(A+B) =Z(aii+bii)=iaii+zn:bii=tr(A)+tr(B)

i=1 i=l

$ok ok
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Example 13: Let A and B be matrices of order mxn and nxm respecnvely
Show that tr(AB) = tr(BA).

Solution: The (i, i)" element of AB is given by Za b. . Hence

i
j=1

H(AB) Zzaubn ZZau ji Zzb,. a; =tr(BA), since pr a;; is the
o=l el =l =l j=1 = i=l

(» )™ element of AB.

%ok ok

We are now ready to prove the following theorems.

Theorem 10: Let A be an idempotent matrix of any order nxn . Then rank
A=tr(A).

Proof: If rank A is O or n, then always A=tr(A). Letrank A'=r when
1<r<n-1. Then by Theorem 9, there exists a nonsingular matrix P such

I
thatA=P( r OJ P,
0 0

Now tr(A) = tr|: [I OJP":|=‘UHI' 0]P"P}=tr(l' O]=r=rank A.
00 0 0 0 0

We state below another result on idempotent matrices.

Theorem 11: A square matrix A of order nxn is idempotent if and only if
rank (I-A)=n- rank A.

Theorem 12: Let A be a real symmetric and idempotent matrix of rank r. Then
there exists an orthogonal matrix S such that A = S(g g] S’. Hence A is
nonnegative definite. '

Proof: Left as an exercise.

Let us now have an example.

Example 14: Let A and B be idempotent matrices of the same order. Then show
that A +B is idempotent if and only if AB=BA=0.

Solution: ‘If® part is trivial. For the ‘only if part,let A,B and A+B be
idempotent. Then A+B=(A+B)YA+B)=A2+B’+AB+BA=A+B+AB+BA.

"So, AB+BA =0. Pre-multiplying by A , we get AB+ABA =0. Now post

multiplying the previous equality by A we get ABA+ABA =0 or ABA=0. Hence
AB =0 and as a consequence BA =0.

kK

Try the following Exercises.

E13) Let A bea 2x2 idempotent matrix. Can a,, be equal to 2?

A 0
~ El14) Let A and B be idempotent matrices. Then show that (0 B] is also

idempotent.




i

E15) Show thatif A and B are idempotent and the column space of A is contained .

in the column space of B,the BA=A .

In this section, we shall discuss Cochran’s theorem.

14.5 COCHRAN’S THEOREM

Cochran’s theorem concerns with the probability distributions of quadratic forms in
independent standard normal variables. This is a very important theorem which allows
us to decompose sum of squares into several quadratic forms and identify their
distributions and establish their independence.

X
Let x=| : | be avectorof n independent standard normal variables. Let
X

n
A, A,,..., A, be real symmetric (nonrandom) matrices such that
xx=x"Ax+xA,x+---+x A x. Weknow that x’x is distributed as chi-square
with n degrees of freedom. Cochran’s theorem asserts that xA; x,i=1,..., k are

N .

distributed as independent chi-squares if and only if Z rank A, =n. In this section,
- i=l

we prove an algebraic version of this result. In the next unit, we shall prove the

statistical version. : '

Theorem 13: Let A, A,,..., A, be real symmetric matrices such that
A, +A, +---+ A, =1. The following are equivalent:

(a) A, is idempotent, i;l, R

(b) i rank A; =n

i=1

(c) A; A;=0 whenever i# ]

k k
Proof: (a)=>(b):n=rank I=tr() = tr(A, +---+ A, )= D tr(A;)= D rank A,

i=l i=1

(since A,,..., A, are idempotent rank A, =tr(A;) by Theorem 10.)

k

(b)=(c): Letrank A, =r;. Then by (b), Z r,=n. Since A, is a real symmetric
i=l

matrix there exists a matrix P, of order nxr, suchthat A, =PAP, PP, =1 , and

A, is areal nonsingular diagonal matrix, i =1,..., k. (Take the help of Theorem 3)

k
So, I= A, +---+A, =) PAP =PAP

i=1

A0 0 O
where P=(P,:P,:...:P,) and A= 0 0 . | Notice that the number of
0 0 .. A,

k
columns in P is Zri which equals n by hypothesis. Hence P is a square matrix of
1

order nxn. So, n2 rank P2 rank (PAP")= rank I=n. Hence P is a nonsingular
matrix. Similarly, A is also nonsingular. Since PAP’=1 and PA is a square matrix,

Some Linear Algebra
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gzsriris <l>f Multivariate P’=(PA)™. Inother words, P'PA=1 or P'P=A"" which is a diagonal matrix. So
al
PP, =0 whenever i# j. Hence A; A; =PAPPA P/ =0 whenever i#j.

(c)=>(a): Foreach i, A. = A. I=A. (A, +---+ A, )= A? since A, A. =0 whenever
i i i 1 k i i j

~i#j. Thus, A, is idempotent for each i . Theorem is thus proved.

We now prove an algebraic version of another useful result in connection with the
distribution of quadratic forms in normal variables.

Theorem 14: Let A and B be symmetric idempotent matrices and let B— A be non
negative definite. Then B— A is also a symmetric idempotent matrix.

'Proof: Since A is symmetric idempotent, it is nnd. Since B—A is nnd, the column
space of A is contained in the column space of B. So BA=A. Then
(B-A)A=0=A(B-A). Since BI-B)=(1-B)B=0, A0-B)=(I-B)A=0 and
(I-B)(B-A)=0=(B-A)(I-B) . Now A+(B—A)+(I-B)=1. By (g=(a)
of Theorem 13 it follows that B— A is idempotent.

After Cochran’s theorem, we shall discuss the singular value decomposition in this
section. ‘

14.6 SINGULAR VALUE DECOMPOSITION

In Theorem 3, we showed that if A is a real symmetric matrix, there exists an
orthogonal matrix P such that A = PAP’. We also showed that the diagonal elements
of A are the eigenvalues and the column of P are the orthonormal eigenvectors of

A . What about a real mxn matrix A ? We know that every mxn matrix- A of

I 0
rank r(1<r<min{m, n}) can be written as A = R[O‘ 0] S when R and S are
nonsingular.

Can we replace the nonsingular matrices by orthogonal matrices if we can relax I, to

a positive definite diagonal matrix? If so, what interpretation can we give to the
orthogonal matrices and the diagonal elements of the diagonal matrix? We study these
details in this section.

Theorem 15: Let A be a real matrix of order mxn with rank r1<r<min{m, n}).
Then there exists orthogonal matrices Uand V of orders mxm and nxn

A0
respectively such that A = U(O OJ V’ where A is a positive definite diagonal

matrix.

Proof: Notice AA” and A’A are nonnegative definite matrices (Why? See
Theorem 4). Let u,, u,,...,u, be orthogonal eigenvectors of AA’ corresponding to

the eigenvalues A, 2, 2...2A, >A,, =...=A  =0. So AAw,=Au,,i=1...,m.

Write v; =—\/12.;—A'ui, i=1,...,r, where \/X is the positive square root of A, . Then
fori, j=1,...,r
' lifi=j

v =L waAn, =
V‘VJ“JZ\/x—j"‘AA"j {Oifi;tj

22
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J Thus, V,,..., v, are orthonormal vectors. Extend v,,..., v, toan orthonormal basis 8

are orthogonal matrices.
Also AAw, =0 fori=r+1...,m. Hence u;AA'w; =0 or A'n; =0 for
i=r+l,...,m. '

. ’ ’
Sinceu,u; +...+uu, =1, we have
A=(up +..+uu) )A -

= (uuf +...+u0,)A since u; A=0 for i=r+1,...,m.

=i\/-7\—iuiv;

i=l

Denote 8, = JA,,i=L...,r and A=diag(3,, d,,..., d,
S , A 0 , , ;

It follows that A = Z\ﬁ:uiv.l =U 0 0 V’. The proof is complete.
i=1

We shall now interpret the columns of U and V and the diagonal elements of A in
the above form. : :

0

diagonal matrix.

! Let A= U(ﬁ )V' , where U and V are orthogonal and A is a positive definite

Then rank of A is the same as tank of A which in turn is the number of rows in A .

Now
‘ 2
AA'=UA 0fa 0 V'=UA 0 A%
0 0,0 O 0 0

2 0 ,
Thus, U[AO o V’ is a spectral decomposition of AA". Hence the diagonal

elements of A’ are the nonzero eigenvalues of AA’ and the columns of U are the
orthonormal eigenvectors of AA’. To be more specific

AAY = 8w, for i=1,...,r
" lofor i=r+1,...,m

- 7’ AZ 7 . - s ’
Again A'A =V[ 0 g] U’, which is a spectral decomposition of AA". Hence

2 :
AAv, = &v, for i=1...,r
0 for i=r+1,...,n
Thus, the diagonal elements of A and the columns of U and V relate to the
eigenvalues and eigenvectors of AA” and A’A . The diagonal elements of A are
called the singular values and the columns of U and V are called the singular
A

vectors of A. The decomposition A = U[o

0
0] V’ is called the singular value

decomposition of A.
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Example15: LetA==-|—2 1 -2/0 1 0 0%_1 . '11 _1 be a ’

2 =2 1)looo o -

-1 -1 -1 1

singular value decomposition of A . What are the eigenvalues of AA” and A’A ?
Identify the corresponding eigenvectors. What is the rank of A ?

A0
Solution: A=U(0 JV’

0 :

’ 1 -1 -1 -1

1 -2 2
1 -1 1 -1 -1 . o
where U=—/-2 1 -2|and V== are orthogonal matrices,

: 3 2l-1 -1 1 -1
-2 =2 1

-1 -1 -1 1

and A=(2 O]
01

The eigenvalues of AA” are Sf' =4, 6; =land 0. The corresponding eigenvectors are

1 -2
the first, second and third columns respectively of U, namely % ~2 1, 1 1 |, and
-2 -2
. -2
3 -2 | respectively.
1

Hokok

Let us now sum up whatever we have studied in this unit.

14.7 SUMMARY

In this unit, we have covered the following pbints:

Definition of a real symmetric matrix

Classification of quadratic forms

Spectral decomposition of a real symmetric matrix

A method of determining the definiteness of a quadratic form
Properties of positive definite and nonnegative definite matrices
A method of finding a triangular square root of a pd matrix -
Properties of idempotent matrices

Cochran’s Theorem

A A T AT S A

Singular Value Decomposition.

14.8 SOLUTIONS/ANSWERS

El. i) Coefficient of x{, x3, and‘!xlx2 are respectively 1, ~1 and 0. So the

0 -1

. : 2 2.1 0
matrix of the quadratic form x; —x; is .
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ii) Coefficients of x?, x2,and x,x, are respectively 2,5 and 3. So the matrix

iii) Coefficients of xlz, x%, x§ , XX,, X,X; and X,X, are respectively
| 0,0, 0,3,—4,5. So the matrix of the quadratic form 3x,X, +5X,X; ~4X,X,
j is

{ 0 1.5 =2
15 0 251,
L—z 25 0

iv) Coefficients of x7, X3, x7, X3, X;X,, X X3, X;X,, X,X3, X,X, and X;X, are
respectively 1,1,0,0,0,0,0,0,1, 0. So the matrix of the quadratic form

2 2 :
Xq +X2 + X,X4 18

1 00 0
0 1 0 05
05 0 0 0
0 00 O
{ E2. Suppose a; <0. Let ¢, denotes the i™ column of the identity matrix. Then

| e, Ae, =a; <0. Hence A cannot be pd or psd.

25 7

The eigenvalues of A are the roots of the characteristic equation
|[A—=AIl=0 or (1-A) (7-1)—6.25=0.

The Characteristic equation can be rewritten as A> —8A+0.75=0.

8+64-3 ang 8-/64=3
2 2

| 1 25
1 E3. i) The matrix of the quadratic form x? —5x,x, +7x2 is A ={ }

which are both

Hence the eigenvalues are

positive. Hence the quadratic form x? —5x,x, +7x? is positive definite.

ii) For x,=1 and x, =x, =0, the value of the quadratic form is 1. Again for
X, =1, X, =x; =0, the value of the quadratic form is —-1. Hence the
quadratic form is indefinite.

ii1l) The matrix of the quadratic formis A = . The characteristic

o W
S W W
~ O O

equation of A is (4-1) ((2-A) (3-A)—-9)=0. So 4 is a root of the above
equation. The remaining two eigenvalues are the roots of the equation
(2-X) (3=A)-9=0 or A*-5A—3=0. So the eigenvalues are

5+425-12 ‘
2

and 4. Thus, all the three roots are positive. Hence the given
quadratic form is positive definite.
. 2 1 ‘ . .
E4. The eigenvalues of A = | 2 are the roots of the characteristic equation
(2-2A)? ~1=0 or A —4A+3=0 or (A~3) (A=1)=0. So the eigenvalues are

X
Ay =3and A, =1. Let 17 be an eigenvector coreesponding to A, . Then
Xy

25
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2x, +x, =3x,
X, +2x, =3x,

or —x; +x, =0
X, ~Xx,=0

Thus, x, =x,. So the normalized eigenvector corresponding to the eigenvalue
1 {1
3is —| |
V2 (J

1
It can similarly be shown that %[ 1] is the normalized eigenvector

corresponding to the eigenvalue 1 orthogonal to the first eigenvector. So the
spectral decomposition of A is

A=3= U(l 1)+1—[ 1}}(1 -1)

/1 133 0)Y1(1 1
or — =
21 =100 1)i211 -1
If A, =PAP’ is a spectral decomposition of A, then
A? =PAP’'PAP' =PA’P’.
By induction it can be shown that A* = PA¥P’ for k=1,2,...

Thus, if A,,..., A, are the eigenvalues of A, then Af,...,AX are the eigenvalues

of A*. The eigenvectors of A* can be taken to be the same as the eigenvectors
of A.

Hence aw L Ex 0\11 !
21 ~-1){ 0 1)21—1'

E5. i) Let(4 1]=(b“ Oj(b“ b“)
1 2) b, byl 0 by

So bj, =4 or b, =2

1 1
by, b, =1or b2,=bll =-2—
1 7
b +bl, =2 or b3, =2——==
22 7 2 2
S0 b22=‘\{2—7

Thus, the required lower triangular square root is

[ RN )
w(ﬁ, o

31 0 }(biy by by
ii) Let 3 51 bzl 0] 0 by by
J b31 b32 b33 0 0 b33
$O b} =9 or b, =3
b,, b, =3 or b, =1
b, b, =3 or b, =1
b2, +b%, =5 or b2, =5-1 or b,, =2



E6.

E7.

E8.

E9.

E10.

Ell.

El12.

b,, by, +by, by =1 or b, b, =1-1=0 or b, =0 Some Linear Algebra

b3, +b%, +b4 =6  or bl =6-0-1=5 or by =5 .
300

Thus, the required triangular square rootis |1 2 .0

1 05

‘If’ part: let C and D be positive definite. Then

(x": y')[ﬁ E]EXJ =x'Cx +y'Dy >0 whenever at least one of x and y is
y

c o),
non-null. Hence is pd.
0 D

1 p

whenever x #0. Hence C is pd.

.o’ AH A12 0 — .
We know that 0<(0:y’) =y'A,y whenever y#0 (y is

Al Ap Y
chosen so that y’Ay is conformable). Hence A,, is pd.

Use the same procedure as in E7.

Let A be an nnd matrix. Then there exists B such that A =BB’. Hence
0=x’Ax = x'BB'x implies that Bx=0. So Ax=BB’x=0. '

Nonzero eigenvalues of AA” and A’A are the same. Hence nonzero
eigenvalues of pl1° are the same as the eigenvalues of the 1x1 matrix

pl’l=np. The eigenvalues of p'l =np. So, the eigenvalues of pl1” are np
and [0, 0,..., 0 (n—1) times].

Let A be an eigenvalue of pII'. Let the corresponding eigenvector be x.
Then (I-p)l+pl1)x=(1-p)x+Ax =(1—-p+A)X.

Tﬁus, the eigenvalues of (1-p)l+pll° are
(1-p)+np, A=p),..., (1-p) ((n —1) times).

Hence (1-p)1+pl11” ispdifandonlyif 1+(n—1)p>0 and 1-p>0 or

L cpar.
n-1
2 1 05
We use Theorem 7 for this purpose. Thus, | 1 5 3 | is a pd matrix with
05 3 4

diagonal elements 2, 5 and 4, respectively.
i) x'(A+B)x=x'Ax+xBx >0 since X’Ax and x’ Bx are nonnegative.
Hence A +B is nnd. '

CI
ii) Write A=CC" and B=DD’. Hence A+B=CC’+DD’=(C:D) (D’] .

27




Basics of Multivariate Hence column space of A = Column space of C < column space of (C:D)=

N I
orma column space of A+B.

b . i 2 b)2 b 2 b}
be an idempotent matrix. Then =
d ¢ d)\c d) \c d)

4+bc=2. bcannotbe O since 4+bc=2. Also bc=-2
2b+bd=b. So 2+d=lord=-1

2
E13. Let [
c

2c+cd=c
be+d*=d
bc+1=-1

or bc==2. Choose b=-2 and c¥1

(in fact choose b any nonzero number and ¢ = %2 )

2 2
1 -1

A 0YA 0) [A> 0) (A O
E14. = =
0 B/\O B 0 B? 0 B
A 0) . . N
So 0 B is idempotent if A and B are idempotent.
\ .

] is idempotent. Hence there is an idempotent matrix with

E15. Since the column space of A is contained in the column space of B, we get
A =BDfor some D.
Now BA=BBD=BD=A.
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