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15.1 INTRODUCTION

This unit is very closely linked with Unit 13. It was C.E.Shannon, the founder
of information-theory, who observed an analogy between the functioning of
switching circuits and certain operations of logical connectives. In 1938 he gave
a technique based on this analogy to express and manipulate simple
switching circuits algebraically. Later, the discovery of some new solid state
devices (called electronic switches or logic gates) helped to modify these
algebraic techniques and, thereby, paved a way to solve numerous problems a2l . :
related to digital systems algebraically. " Fig 1: Claude Shannon

In this unit, we shall diScuss the symbolic logic techniques-which are required
for the algebraic understanding of circuits and computer logic. In Sec.15.2, we
shall introduce you to Boolean algebras with the help of certain examples-
based on objects you are already familiar with. You will see that such algebras
are apt for describing operations of logical circuits used in computers.

In Sec.15.3, we have discussed the linkages between Boolean expressions and
logic circuits.

In Sec.15.4, you will read about how.to ’exp'ress the overall functioning of a
circuit - mathematically in terms of certain suitably defined functions called
Boolean functions. In this section we shall also consider a simple circuit
" design problem to illustrate the apphcatlons of the relationship between

Boolean functions and circuits.

Let us now consider the objectives of this unit.

Objectives

After reading this unit, you should be able to

e define and give examples of Boolean algebras, expressions and functions;
® give algebraic representationé of the furictioning of logic gates;

e obtain and simplify the Boolean expression representing a circuit;

e construct a circuit for a Boolean expression;” a7
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spectively.
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“a set X (# ¢) having two binary operations (denoted by V and A), one unary

B1. Associative Laws: xV{yvz)=(xVy)Vz,
xA(yAz)=(xXAy)Az
B2. Commutative Laws: XVy=yVXx,
o ‘ XAy =yAX
B3. Distributive Laws: xV(yAz)=(xVy)A(xVz),
' xA(yVvVz)= (x/\y)v(x/\z)
B4. Identity Laws: XVO =x, .=
- xAI=x
B5. Complementation Laws: xAX' =0,
xVx' =1

~ A are called the join operation and meet operation, respectlvely The una.ry
R operatmn is called the complementation.

' From our d1scuss1on preceding the deflmtlon a.bove, you would agree that the set

4-_‘

e design and simplify some simple circuits using Boolean algebra techniques.

-

15.2 BOOLEAN ALGEBRAS

Let us start with some questions: Is it possible to design an electric/electronic
circuit without actually using switches (or logic gates) and wires? Can a circuit
be redesigned, to get a simpler circuit-with the help of pen and paper only?

The answer to both these gpestions is “Yes’. What allows us to give this reply is
the concept of Boolean algebras. Before we start a formal discussion on these
type of algebras, let us take another look at the objects treated in Unit 13.

As before, let the letters p, g, r,... denote statements (or propositions). We
write S for the set of all propositions. As you may recall, a tautology 7 (or a
contradiction F) is any proposition which is always true (or always false,
respectively). By abuse of notation, we shall let 7 denote the set of all
tautologies and F denote the set of all contradictions. Thus,
TCS,FCS.

You already know from Unit 1 that, given two propositions p and q, both pAq
and p V q are again propositions. And so, by the definition of a binary
operation, you can see that both A (con‘]unctlorb and V (disjunction) are
binary operations on the set S, where we are writing A(p,q) as p A q and V(p,q)
aspvqVpqeSs. '

Again, since ~ p is also a proposition, the operation ~ (negation) defines a
unary function ~: & — S8. Thus, the set of propositions S, with these
operations, acquires an algebraic structure.

As is clear from Sec.13.3, under these three operations, the elements of S satisfy
associative laws, commutative laws, distributive laws and
complementation laws.

Also, by E19 of Unit 13, you know that pV F = p andp A T = p, for any
proposition p. These are called the identity laws. The set S with thethree
operations and properties listed above is a particular case of an algebralc ’
structure Wthh we shall now define.

Deflmtlon. A Boolean algebra B is an algebraic structure which consists of

operation (denoted by /) and two specially defined elements O a.nd I (say)
which satisfy the following five laws for all x, y, z € X. '

We write this algebraic structure as B = (X V, A L0, I)‘;: or simply B, if the
context makes the mda.mng of the other terms clea.r The two operatlons Vv and




S of propositions is a Boolean algebra, where T and F will do the job of I and Boolean Algebra
O, respectively. Thus, (S8,A,V, ~,F,T) is an example of a Boolean algebra. ~ and Circuits

We give another example of a Boolean algebra below.

‘Example 1: Let X be a non-empty set, and P(X) denote its power set, i.e.,
P(X) is the set consisting of all the subsets of the set X. Show that P(X) is a
Boolean algebra.

Solution: We take the usual set-theoretic operations of intersection (M), union
(U), and complementation (¢) in P(X) as the three required operations. Let ¢
and X play the roles of O and I, respectively. Then you can verify that all the
conditions for (P(X),u,N, ¢, ¢,X) to be a Boolean algebra hold good.

For instance, the identity laws (B4) follow from two set-theoretic facts, namely,
‘the intersection of any subset with the whole set is the set itself’ and ‘the union
of any set with the empty set is the set itself’. On the other hand, the
complementation laws (B5) follow from another set of facts from set theory,
‘namely, ‘the intersection of any subset with its complement is the empty set’
and ‘the union of any set with its complement is the whole set’.

* % %

Yet another example of a Boolean algebra is based on switching circuits. For
this, we first need to elaborate on the functioning of ordinary switches in a
mathematical way. In fact, we will present the basic idea which helped the -
American, C.E.Shannon, to detect the connection between the functioning of
switches and Boole’s symbolic logic. '

You may be aware of the functioning of a simple on-off switch which is x=1

commonly used as an essential component in the electric (or electronic) "
networking systems. A switch is a device which allows the current to flow only —_—
when it is placed in the ON position, i.e., when the gap is closed by a x=0 o
conducting rod. Thus, the ON position of a switch is one state of a;\§witch, ' Fig.2: OFF-ON
called a closed state. The other state of a switch is the open state, when it is position

placed in the OFF position. So, a switch has two stable states.

There is another way to talk about the functioning of a switch. We can denote
a switch by x, and use the values 0 and 1 to depict its two states; i.e., to convey
that x is open we write x = 0, and to convey that x is closed we write x =1
(see Fig.2).

These values which denote the state of a switch x are called the state-values
(s.v., in short) of that switch.

We shall also write x’ for a switch which is always in a state opposite to x. So
that _
x is open = x'is closed and x is closed = x’is open. T )

The switch x' is called the invert of the switch x. For example, the switch a’

shown in Fig.3 is an invert of the switch a. ; . ) Table 1: s.v. of x’
. . x ' xI |
g ], 01
— — 1{0
*———-oo—,—-————bo{.-———-u
a
I “g % o is the invert of a. ot of the sw1tch
s ven state vaiue S
, . {e value of x" for & g1 recedmg -
. ide gives the sta £ x and our p
‘Table ! alongSl derwed from the defuutlon o w0

These values are

By

i ole on 2 values, 0 a.nd
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1. Such a var1a’t$1e {which can only take on two- Values) is called a Boolean
variable. Thus, if x is a Boolean vgzr”lable so-is x'. Now, in order to design a
circuit consisting of several switches, there are two ways in which two switches

‘can be connectéd: parallel connections and series connections (see Fig.4). -

b '
6)) Parallel connection - (ii) Series connection

‘ Fig. 4: Two ways of connecting switches.
From Fig.4(i) above, you can see that in case of a parallel connection of
switches a and b (say), current will flow from the left to the right extreme if at
least one of the two switches is closed. Note that ‘parallel’ does not mean
that both thef switches 'are in the same state.

On the other ;hand, current can flow in a series connection of switches only
when both the switches a and b are closed (see Fig.4(ii) ).

Given two switches a and b, we write a par b and a ser b for these two types of -
connections, :respectwely

In view of these definitions and the precedlng discussion, you can see that the
state values of the connections a par b and a ser b, for different pairs of state
values of switches a and b, are as given in the tables below.

Table 2: State values of a par b and a ser b.

s.v. | s.v.!| s.v. of s.v. [ s.v. | s.v. of
ofa |ofb|aparb - ofa{ofb|aserb
0 0. 0 0 0 0
0| 1 1 0 1 0
1 0! 1 1 0 0
1 1 1 1 1 1

We have now developed a sufficient background to give you the example of a
Boolean algebra which is based on switching circuits.

Example 2: The set S = {0,1} is a Boolean algebra.

Solution: Take ser and par in place of A and V, respectively, and inversion(')
instead of i~ as the three required operations in the definition of a"Boolean

algebra,. Also take O for the element O and 1 for the element I in this definition. |
'Now, using Tables 1'and 2, you can check that the five laws B1-B5 hold good. _

Thus, (S, par, ser, 7,0,1) is a Boolean algebra.
* %k %

A Boolean algebra whose underlying set has only two elements is very
important in the study of circuits. We call such an algebra a two-element }
Boolean algebra, and denote it by B. From this Boolean algebra we can build
many more, as in the following example.

Example 3: Let B"=Bx B x--- x B ={(er,e,...,eq) | eache; =0 or 1},
for n > 1, be the Cartesian product of n copies of B For Ik, _]k € {0,1}
(1<k< n) define

11112, L in A(JI;J27 --an = (il /\jlai2/\j2:-- in/\jn)

o)Vt = i Vi Vi Vi)l



Then B" is a Boolean algebra, for all n > 1. : " Boolean Algebra
) : and Circuits
Solution: Firstly, observe that the case n = 1 is the Boolean algebra B.

Now, let us write 0 = (0,0,...,0) and I = (1,1,...,1), for the two elements of
B" consisting of n-tuples of 0’s and 1’s, respectively. Using the fact that B is a
Boolean algebra, you can check that B", with operations as def1ned above, is a
'Boolean algebra, for every n > 1.

* %k Xk

The Boolean algebras B", n > 1, (called switching algebras) are very useful
for the study of the hardware and software of digital computers.

We shall now state, without proof, some other properties of Boolean algebras,
which can be deduced from the five laws (B1-B5).

Theorem 1: Let B = (S,V, A, /,0,I) be a Boolean algebra. Then the
following laws hold V x,y € S.

a) Idempotent laws: xVx=X, XAX=X.
b) Absorption laws: xV (xAy)=x, XA(XVy)=x.
¢) Involution law : (x") =x.

d) De Morgan’s laws: (xVy) =x /\y,(xAy)’zx Vy'.

In fact, you have already come across some of these properties for the Boolean
algebra S of propositions in Unit 13. In the following exercise we ask you to =
verify them. '

E1l) a) Verify the identity laws and absorption laws for the Boolean algebra
(S,A,V, ~,T,F) of propositions. :

b)- Verify the absorption laws for the Boolean algebra
(P(X)a U7 n) ca ¢7 X)

In Theorem 1, you may have noticed that for each statement involving V and A,
there is an analogous statement with A (instead of V) and V (instead of A).
This is not a coincidence, as the following definition and result shows.

Deﬁnition : If p is a proposition involving ~, A and V, the dual of p, denoted
by pY, is the proposition obtained by replacmg each occurrence of A (and/or V)
in p by V (and/or A, respectively) in p°.

- For example, x V (x/\ y) =x isthe dualof x A (x Vy) =x.

Now, the following principle tells us that if a statement is proved true; then we
have simultaneously proved that its dual is true.

- Theorem 2 (The principle of duality): If s is a theorem about a Boolean
algebra, then so is its dual 9.
It is because of this principle that the statements in Theorem 1 look so similar.

Let us now see how to apply Boolean algebra methods to circuit design.

Wh1le expressing c1rcu1ts mathematically, we identify each circuit in terms of
some Boolean variables. Each of these variables represents either a simple ‘
switch or an 1nput to some electronic switch.

Definition: Let B = (S, V, A,7,0,1I) be a Boolean algebra. A Boolean
_expression in variables x1,Xz,...,Xk (say)\, each taking their values in the set S
is defined recursively as follows:

i) Each of the variables xj,Xsg,...,Xg, as well as the elements 0 and I of the
Boolean algebra B are Boolean expresions. : 51
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i) If X1 and X are previously defined Boolean expresions, then X; /\Xg, X1VXg
and X are alsb Boolean expresions.

For instance, x; A xj is a Boolean expression because so are x; and x5, Similarly,
because x; A Xy is alBoolean expression, so is (X1 A x2) A (X1 A Xj).

If X is a Boolean e)ipression in n variables x3,X2,..., X, (say), we write this as
X =X(x1,...,Xn) -

In the context of simplifying circuits, we need to reduce Boolean expressions to
simpler ones. ‘Simple’ means that the expression has fewer connectives, and all
the literals involved are distinct. We illustrate this technique now.

Example 4: Reduice the following Boolean expressions to a simpler form.

() X(x1,%2) = (X1 Ax2) A (x1 Axp);
(b) X(x1,%2,X3) &= (X1 AX2) V (X1 A x5 AX3) V(X1 A X3).

Solution: (a) Here we can write

(x1 Ax2) A(x1 AXh) = ((X1 AX2) AXy)AXb (Associative law)
= (x1 AXg) AX, -(Absorption law)
= x1 A (x2AX5) (Associative law)
= x1AN0O (Complementatxon law)
= 0. , (Identity law)

Thus, in its sunphfled form, the expression given in (a) above is O, i.e., a null
expression. ‘ :
(b) We can write

(X1 Ax2) V (x1 A xh Axs) V (x1 Axz)

= [x1 A {x2 V (%4 A x3}] A (X1 A X3) : (Distributive law)
= [x1 A {(X2 VX5) A (x2 Vx3)} A (x1 A X3) (Distributive law)
= [x1 A{TA(xp Vx3)}] A (X1 AX3) (Complementation law)

Identity law)
Distributive law)
Distributive law)
Idemp.,& assoc. laws)
Distributive law)
Absorption law)

= [X1 A (XQ V XQ)] A (X1 A X3)

[(x1 Ax2) V(X1 AX3)] A (X1 AX3)

[(Xl A X2) A le A X3)] \% [(X1 A X3) A (X1 A Xg)]
= (X1 A Xg A X3) \Y (X1 N X3) )

= X; A [(X2 A X3) \Y X3]

= X1 A X3 i

i

fi

o~ —  —

Thus, the simplified form of the expression given in (b) is (x1 A x3).
: * ok ok

Now you should find it easy to solve the following exercise.

E2) Simplify the Boolean expression
X(x1,%2,X3) = (x1 A x2) V ((X1 A Xx2) AX3) V (X2 AX3).

With this we coﬁclude this section. In the next section we shall give an
important appli¢ation of the concepts discussed here.

|

15.3 LOGIC CIRCUITS

If you look arodnd, you would notice many electric or electronic appliances of
daily use. Somd of them need a simple switching circuit to control the auto-stop
(such as in a stereo system). Some would use an auto-power off system used in
transformers to control voltage fluctuations. Each circuit is usually a
combination of lon-off switches, wired together in some specific conf iguration.
Nowadays cert@m types of electronic blocks (i.e., solid state devices such as




transistors, resistors and capacitors) are more in use. We call these electronic Boolean Algebra
blocks logic gates, or simply, gates. In Fig. 5 we have shown a box which - and Circuits
consists of some electronic switches (or logic gates), wired together in a specific

manner. Each line which is entering the box from the left represents an

independent power source (called input), where all of them’need not supply

voltage to the box at a given moment. A single line coming out of the box gives

the final output of the circuit box. The output depends on the type of input.

—_ )]
Inlput ___ |
!;?:::r : Circuit Output lead -
: ’ Box —
§;___J‘

Fig. 5: A logic circuit.

This sort of arrangement of input power lines, a circuit box and butput
lead is basic to all electronic circuits. Throughout the unit, any such
interconnected assemblage of logic gates is referred to as a logic circuit.

. As you may know, computer hardwares are designed to handle only two levels

‘of voltage, both as inputs as well as outputs. These two levels, denoted by 0
and 1, are called bits (an acronym for binary digits). When the bits are
applied to the logic gates by means of one or two wires (input leads), the
output is again in the form of voltages 0 and 1. Roughly speaking, you may
think of a gate to be on or off according to whether the output

voltage is at level 1 or 0, respectively. Table 3: Qutputs of AND-
Three basic types of logic gates are an AND-gate, an OR-gate and a gate
NOT-gate. We shall now define them one by one. X1 | X2 | X; AXg
Definition : Let the Boolean variables x; and xg represent any two bits. An (1) g 8 -
AND-gate receives inputs x; and x; and produces the output, denoted by ol 1 0
X1 A X2, as given in Table 3 alongside. ‘ 111 1
The standard pictorial representation of an AND-gate is shown in Fig.6 below.
" .
Tx, 0 ik
T
Fig. 6: Dmgrammatlc representation of an AND-gate
From the f1rst three rows of Table 3, you can see that whenever the voltage in
any one of the input wires of the AND-gate is at level 0, then the output
voltage of the gate is also at level 0. You have already encountered such a
situation in Unit 13. In the following exercise we ask you to draw an analogy Table 4: Output of an OR-
between the two situations. gate.
Eaa. . X1 | X2"| X1 VX
E3) -Compare Table 3 with Table 2 of Unit 13. How would you relate x; A xg 01 T 02 - 1 0 2
' with p A q, where p and q denote propositions? o l1 1
A N _ 110 1
Let us now consider another elementary logic gate. 11 1.

Definition : An OR—gate receives inputs X; and x2 and produces the output,
denoted by x; V X2, as given in Table 4. The standard pictorial representation
-used for the OR-gate is as shown in Fig.7.

53
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X, VX
X, VX

‘F)g 7 Diagrammatlc representatlon of an OR-gate

From Table 4 you can see that the situation is the other way around from that
in Table 3, ie., the output voltage of an OR-gate is at level 1 whenever the
level of voltage in even one of the input wires is 1. What is the analogous
situation in the context of propositions? The following exercise is about this.

E4) Compare Table 4 with Table 1 of Unit 13. How would you relate x; V x2
with p Vv q, where p. and q-are propositions?

And now we will discuss an electronic realisation of the invert of a simple switch
.about which you read in Sec.3.2.

Table 5: Output of a NOT-  Definition : A NOT-gate receives bit x as input, and produces an output

gate. denoted by X', as given in Table 5. The standard pictorial representation of a
=T+ : NOT-gate is shown in Fig.8 below. : ‘ :
1 . 0 ' Flg 8: Diagrammatic representation of a NOT-gate

If you have solved E5 and E6, you would have noticed that Tables 3 and 4 are
the same as the truth tables for the logic connectives A (conjunction) and v
(disjunction). Also Table .3 of Unit 1, after replacing T by 1 and F by 0, gives
Table 5. This is why the output tables for the three elementary gates are called
logic tables. You may find it useful to remember these logic tables because
they are needed very often for computing the logic tables of logic circuits.

Another important fact that these logic tables will help you prove is given in
the following exercise.

E5) Let B = {0,1} consist of the bits 0 and 1. Show that B is a Boolean
algebra, i.e., that the bits 0 and 1 form & two-element Boolean algebra.

As said before, a logid circuit can be designed using elementary gates, where the
output from an AND—gate or an OR-gate, or a NOT—gate is used as an input
to other such gates in the circuitry. The different levels of volﬁage in these
circuits, starting from the input lines, move only in the direction of the arrows
.as shown in all the figures given below. For instance, one combination of the
_three elemeritary gates is shown in Fig.9.

i‘ig. 9: A logic circuit of elementary gates.
Now let us try to see the connection between logic circuits and Boolean
expressions. We first consider the elementary gates, For a given pair of inputs
X1 and xg, the output in the case of each of these gates is'an expression of the .
54 : 'form X A Xg OF X3 V X2 OF x.



Next, let us-look at larger circuits. Is it possible to find an expression
associated with a logic circuit, using the symbols A, V and ’? Yes, it is. We will
illustrate the techmque of finding a Boolean expression for a given logic circuit
with the help of some examples. But first, note that the output of a gate in a
circuit may serve as an input to some other gate in the circuit, as in Fig. 9. So,
to get an expression for a logic circuit the process always moves in the direction
of the arrows in the circuitry. With this in mind, let us consider some circuits.

Example 5: Find the Boolean expressmn for the logic circuit given in Fig.9
above. .

Solution: In Fig.9, there are four input terminals. Let us call them x;, X2, X3
and x4. So, x; and x2 are inputs to an OR-gate, which gives X,V x2 as an
output expression (see Fig. 9(a) ).

Similarly, the other two inputs X3 and x4, are inputsto an AND-gate. They
will givé x3 A x4 as an output expression. This is, in turn, an input for a
NOT-gate in the circuit. So, this yields (x3 A x4)’ as the output expression.
Now, both the expressions Xj V x2 and (X3 A X4)' are inputs to the extreme right
AND-gate in the circuit. So, they give (x1 V x2) A (x3 Ax4) as the final output
: express1on which represents the logic circuit.

X1 L oxvx,
%, 1V Xy '
T\ (X V X9) A (x5 A XY .
. . xs
5 \__ XgAXy (x5 A X))
Fig. 9(a)
* K X

You have just seen how to find a Boolean expression for a logic circuit. For
more practice, let us find it for another logic circuit.

10.

X1
X9

Fig. 10
Solutlon. Here the first output is from an OR-gate, i.e., A is x; V Xo. This, in
turn; serves-as the input to a NOT-gate attached to it from the right. The
resulting bit B is (x3 V x2)’ This, and x3, serve as 1nputs to the extreme right

AND-gate in the circuit. given above. This yields an output expression
(x1 V x2)’ A x3, which is C, the required-expression for the circuit given in Fig.10.

* ok %

Why don’t you try to find the Boolean expressions for some more logic c1rcu1ts
now?

E6) Find the Boolean expression for the output of the logic circuits given below.

Example 6: Find the Boolean expression C for the logic circuit given in Fig.

' Boolean Algebra

and Circuits

55
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- So far, you have seen how % 'obtain a Boolean eicpression that represents a

" x{ A xg and X1 V X3, which are connected by the connective V (OR). So, the two

* the circuit shown in Fig.12 below:

This is the required logic circuit which is represented by the given expressmn.

Example 8: Given the expression (x; V (X3 A x})) A (x2 V x}), find the
‘correspon&ing circuit, where x; (1 < i < 4) are assumed to be inputs to the
: c1rcu1try

" and x3 V xj. They are las shown in Fig.13(a).

()

given circuit. Can you do the converse7 That is, can you construct a logic
circuit corresponding to a given Boolean expression? In fact, this is done when
a circuit designing problem has to be solved. The procedure is quite simple. We
illustrate it with the help of some examples.

Example 7: Construct the logic circuit represented by the Boolean expression -
(x{ AX2) V (X1 V x3), where x; (1 <i < 3) are assumed to be inputs to that
circuitry. ' *

Solution: Let us first see what the portion (x| A x2) of the given expressxon
contributes to the complete circuit. In this expression the literals x| and x, are
connected by the connective A (AND). Thus the circuit corresponding to it is’
as shown in Fig.11(a) below, by the definitions of NOT-gate and AND-gate.

“

i ‘ »
: X] AXg Xg
(a) (b)

Fig. '11: [Logic circuits for the expressions x) A x3 and x; V Xs.

Slmlla.rly, the gate corresponding to the expression x; V x3 is as shown in .
Fig.11(b) above. Finally, note that the given expression has two parts, namely,

Xy VXg'

logic circuits given in Fig.11 'ava,e,, when ¢connected by an OR-gate, will give us

X x{

(X, ARV (%) vV Xg)

»

Fig. 12d Circuitry for the expression (x; A Xa).V (x1 V Xs)

* ¥ ¥

Solution: We first consxder the circuits representmg the express1ons Xg A x3
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x1) v (x2 A xa{) - and Clrcults

() : () ; ()
' Fig.13:‘_\Construction of a logic circuitry. -
Also you know that the literals xj and xj are outputs of the NOT-gate. So,
these can be represented by logic gates as shown in Fig.13(b). Then the circuit
for the part x] V (g Ax}) of the given expression is as shown in Fig:13(c). You
already know how to. construct a logic circuit for the expression xg'V xj.

Finally, the two expressions (X} V (xz A x3)) and (x V x}) being connected by

the connective A (AND), give the required circuit for the given expression as
shown in Fig.14. ‘

— (x,"v (152 AX N A XV x) -
Z' >

Fig. 14: Circuitry for the expression (x3 V (x2 A x3)) A (xz v x4)
‘ * % %

Why don,’t you try to solve some exercises now?

E7) Find the logic circuit corresponding to the expréssion xi A '(Xg v )l’3) .

E8) Construct the logic circuit and obtain the logic table for the express1on
X1 V (x5 A x3).

So far we have established a one-to-one correspondence between logic circuits
and Boolean expressions. You may wonder about the utility of this. The
mathematical view of a circuit can help us understa.nd the overall functioning
of the circuit. To understand how, consider the circuit given in Fig.10 earlier.
You may think of the inputs bits X, X2, and x3 as three vanables each one of
which is known to have two values only, namely, 0 or 1, dependmg upon the
level of voltage these inputs have at any moment of time. Then the idea is to
evaluate the expression (x; V x2)' A x3, which corresponds to this’ circuit, for -
different values of the 3-tuple (x1,X2,X3). ’

How does this evaluation help us to understand the functioning of the circuit? ;
To see this, consider a situation in which the settings of x, X2 and x3 at a
certain stage of the process are x; = x3 = 0 and x2 = 1. Then we know that
x1Vxe =0V 1=1 (see the second row of Table 3 given earlier). Further, using
the logic table of a NOT-gate, we get (X1 V x2)’ = 1’ = 0. Finally, from Table 3,
we get (x1 V x2)) Axg = 0A 1 =0. Thus, the expression (x; V x2)" A x3 has value
0 for the set of values (0,1,0) of input bits (x1, X2, X3). Thus, if x; and X3 are
closed, while x; is open, the circuit remains closed.

Us1ng similar arguments, you can very easily calculate the other values of the
expression (X V X2)' A xg in the set
{0,133 = {(x1,x2,x3) [ xi=0o0r1, 1 <i< 3} _ .57
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Table 6 is the logic
table for the circuit
given in Fig.10.
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of values of input bits. We have recorded them in Table 6.

Observe that the row entries in the first three columns of Table 6 represent the
different values which the input bits (x1,X9,x3) may take. Each entry in the last

o

1

i

column of the table gives the output of the circuit represented by the expression

(x1 V x2)’ Ax3 for the corresponding set of values of (xi1,x2,x3). For example, if
(x1,X2,x3) is (0,1,0), then the level of voltage in the output lead is at a level 0
(see the third row of Table 6). ‘

You should verify that the values in the other rows are correct.

Table 6: Logic table for the expression (x1 V x2)’ A Xs.

X1 VXg | (x1Vx2) (il V x2)' A X3

X1 | X2 | X3
0(0]O0 0 1 0
01011 0 1 1
0|10 1 0 0
110]0 1 0 0
01111 1 0 0
111]0 1 0 0
1101 1 0 0
11111 1 0 0

Why don’t you try an exercise now?

E9) Compute the logic table for the circuit given in E6(b) above.

You have seen how the logic table of an expression representing a circuit
provides a functional relationship between the state (or level) of voltage in
the input terminals and that in the output lead of that logic circuitry. This
leads us the concept of Boolean functions, which we will now discuss.

15.4 BOOLEAN FUNCTIONS |

In the last section you studied that an output expression is not merely a device
for representing an interconnection of gates. It also defines output values as a

- function of input bits. This provides information about the overall functioning
‘of the corresponding logic circuit. So, this function gives us a relation between

the inputs to the circuit and its final output .

This is what heips us to understand control over the functioning of logic circuits
from a mathematical point of view. To explain what this means, let us
reformulate the logic tables in terms of functions of the input bits,

Let us first consider the Boolean expression

X(X1,X2) = X1 A X,
where x; and x3 take values in B = {0, 1}. /‘You' know that all the values of this
expre§é‘ion, for different pairs of values of the variables x; and x2, can be

calculated by using properties of the Boolean algebra B. For example,

OAT =0A0=0 = X(0,1)=0.

Similarly, you can calculate the other values of X(xy,x3) = x; A X4 over B.

In this way we have obtained a function f : B2 — B, dg;fihed as follows:

/

f(e1,e9) =‘X(e1,e2) =e;Aey, where e, ey = {0,1}.




So f is obtained by replacing x; with e; in the expression X(x1,x2). For example, Boolean Algebra
when e; = 1, e; = 0, we get f(1,0) = 1A 0 = 1. and Circuits
More generally, each Boolean expression X(xi, X, ...,Xx) in k variables, where

each variable can take values from the two-element Boolean algebra B, defines a

function f: BX — B: f(e1,...,ex) = X(e1,. .., &)

Any such function is called a Boolean function.

Thus, each Boolean expression over B = {0, 1} gives rise to a Boolean function.
In particular, corresponding to each circuit, we get a Boolean function.
Therefore, the logic table of a circuit is just another way of representing the
Boolean function corresponding to it.

For example, the logic table of an AND-gate can be obtained using the
function A : B2 — B : A(e1,e2) =e1 Aea.

To make matters more clear, let us work out an example.

Example 9: Let f: B2 — B denote the function which is defined by the
Boolean expression X(x1,X2) = Xj A X5. Write the values of f in tabular form.

Solution: f is defined by f(e;,es) = €} A e}, for ey,es € {0,1}. Using Tables 3, 4

and 5, we have «
f(0,0) =0 A0 =1A1=1, f(0,1)=0A1=1A0=0,
f(1,0) =1"A0 =0A1=0, f(1,1)=1"A1=0A0=0.

We write this information in Table 7.

Table 7: Boolean fiinction for the expression x] A x5.

e; | ex | ) | ey | fler,e2) = €] A€
ojo[1]1 Inl=1 '
0l111]0 1A0=0
1701011 0A1=0
1100 o0An0=0

* %k %k

Why don’t you try an exercise now?

'E10) Find all the values of the Boolean function f : B2 — B defined by the
Boolean expression (x3 A x2) V (x1 A X5).

Let us now consider the Boolean function g : B2 — B, defined by the expression

X(Xl,XQ) = (Xl A Xg)l. :

Then g(e1,e2). = (e1 Vea), e1,e2 € B.

So, the different values that g will take are .
g(0,0)=(0v0)y=0=1, g(0,1)=(0v1)y =1 =0,
g(1,0)=(1v0)y =1=0, g(l,1)=(1v1=1=0.

In tabular form, the values of g can be presented as in Table 8.

Table 8: Boolean function of the expression (x1 V x2)’.

e1 | ea | €1 Ve g((:11 ’Vezl ),—
00 0 1
0 1 1 0
1 0 1 0
1 1 1 0

By comparing Tables 7 and 8, you can see that f(e;,e2) = g(es, es) for all
(e1,e2) € B2. So f and g are the same function. 59




Elementary Logic

In Boolean algebra
terminology this is known
as the ‘disjunctive normal
form’ (DNF) of the

expression
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What you have just seen is that two (seemingly) different Boolean
expressions can have-the same Boolean function specifying them. Note
that if we replace the input bits by propositions in the two expressions involved,
then we get logically equivalent statements. This may give you some idea of
how the two Boolean expressions are related. We give a formal definition below.

Definition : Let X = X(x1,X2,...,xx) and Y = Y(x1,X3;...,%k) be two
Boolean expressions in the k variables x1,...,xx. We say X is equivalent to Y
over the Boolean algebra B, and write X =Y, if Both the expressions X and Y
define the same Boolean function over B, i.e.,

X(e1,e2,...,ex) = Y(e1,ez,...,ex), for all ¢ € {0,1}.
So, the expressions to which f and g (given by Tables 7 and 8) correspond are
equivalent. :

Why don’t you try an exercise now?

E11) Show that the Boolean expressions
X =|x1 Ax2)V(x1 Ax5) and Y =x3A(xzVx3)

are equivalent over the two-element Boolean algebra B = {0,1}.

So far you have seen that given a circuit, we can define a Boolean function
corresponding to it. You also know that given a Boolean expression over B,
there is a circuit corresponding to it. Now, you may ask:

Given a Boolean function f: B" — B, is it always possible to get a Boolean
expression which will specify f over. B? The answer is ‘yes’, i.e., for every
function f: B" — B (n > 2) there is a Boolean expression (in n variables) whose
Boolean function is f itself. '

To help you understand the'undyerlying procedure, consider the following

examples. '

Example 10: Letf: B2 - B bé a function which is defined by
£f(0,0) =1, f(1,0)=0, f(0,1)=1, f(1,1)=1.
Find the Booledn expression specifying the function f.

Solution: f can be represented by the following table.

Table 9
Input | Output

X1 | X2 f(xl P XQ)
0,0 1
1,0 0
0 1 1
1|1 1

We find the Boolean epression according to the following algorithm:

. Step 1: Identify all rows of the table where the output is 1: these are the 1st,

3rd and 4th rows.

Step 2: Combine the variables in each of the rows identified in Step 1 with
‘and’. Simultaneously, apply ‘not’ to the variables with value zero in
these irows. ‘So, for the '
st raw: x| A X5,
3rd row: x| Axo,
4th row: x1 A Xa.




~ Step 3: Combine the Boolean expressions obtained in Step 2 with ‘or’ to get
the compound expression representing f:
So, f(x1,%2) = (X Ax5) V (xj Ax2) v (x1 Ax2).

* K ok

bYE)’u can complete Example 10, by doing the following exercise.

E12) In the previous example, show that X(e1,e2) = f(eq,e2) Vey, e € B.

E13) By Theorem 2, we could also have obtained the expression of f in Example
10 in ‘conjunctive normal form’ (CNF). Please do so.

An important remark: To get a Boolean expression for a Boolean function h
(say), we should first see how many points v; there are at which h(v;) = 0, and
how many points v; there are at which h(v;) = 1. If the number of values for
which the function h is 0 is less than the number of values at which h
is 1, then we shall choose to obtain the expression in CNF, and not
in DNF. This will give us a shorter Boolean expression, and hence, a simpler
circuit. For similar reasons, we will prefer DNF if the number of values at which
h is 0 is more. .
Why don’t you apply this remark now?
. _/

E14) Find the Boolean expressions, in DNF or in CNF (keeping in mind the
remark made above), for the functions defined in tabular form below.

X1 | X2 | X3 | f(x1,%2,X3) X1 | X2 | x3 | g(x1,X2,X3)
1111 1 111 1
111 0 0 1 1 0. 1
1 0 1 0 1 0 1 0
@l1]0]o 1 ml1]0]o0 1
0 1 1 0 0 1 1 0
0]1 0 0 01410 0
0olo]1 0 0olol1 1
i 010 | 1 01010 1

Boolean functions tell us about the functioning of the corresponding circuit.
Therefore, circuits represented by two equivalent expressions should essentially
do the same job. We use this fact while redesigning a circuit to create a simpler
one. In fact, in such a simplification process of a cirguit, we write an expression
for the circuit and then evaluate the same (over two-element Boolean algebra B)
to get the Boolean function. Next, we proceed to get an equivalent, simpler
expression. Finally, the process terminates with the construction of the circuit
for this simpler expression. Note that, as the two expressions are '

_equivalent, the circuit represented by the simpler expression will do
“exactly the same job as the circuit represented by the original -
expression.

Let us il{ustrate this process by an example in some detail.

“Example 11: Design a logic circuit capable of operating a central light bulb in -

a hall by three switches x1,X2, x3 (say) placed at the three enprances to that hall.

Solution:Let us consider the procedure stepwise.

Step 1: To obtain the function correspondlng to the unspemfied
circuit.

To start with, we may assume that the bulb is off when all the sw1tches are off

Boolean Algebra
and Circuits

61



Elementary Logic ~ Mathematically, this demands a situation where kl = X9 = X3 = 0 implies
£(0,0,0) = 0, where f is the function which deplcts the functional utility of the
circuit to be designed.

Let us now see how to obtain the other values of f. Note uhat every change in
the-state of a switch should alternately put the light bulb on or off. Using this
fact repeatedly, we obtain the other values of the function f.

Now, if we assign the value (1,0,0) to (x3,x2,X3), it brings a single change in the
state of the switch x; only. So, the light bulb must be on. This can be written
mathematically in the form f(1,0,0) = 1. Here the value 1 of f stands for the on
state of the light bulb.

Then, we must have f(1,1,0) = 0, because there is yet another change, now in
the state of switch xs..

You can verify that the other values of f(x1,xg,X3) are given as in Table 9.

Table 9 Function of a circﬁitry for a three-point functional.bdlb.

x1 | X2 | x3 | f(x1,x2,x3)

01010 0

1{0]0 1

1 1 0 0

1 1 1 1
of1l0 1

0 1 1 0

0011 1

1101 0

Step 2: To obtain a Boolean expression which will specify the
function f. Firstly, note that the number of 1’s in the last column of Table 9

_are fewer than the number of 0’s. So we shall obtain the expression in DNF
(instead of CNF).

By following the stepwise procedure of Example 10, you can see that the
required Boolean expression is given by
X(x1,%2,X3) = (X1 A X5 /\x;;) V (x] Axg A x3)\\/ iXI A x2 A X3) V(X1 A Xg A X3) .
At this stage we can directly jump into the construction of the circuit for this
expression (using methods discussed in Sec.15.3). But why not try to get a
. simpler circuit? ‘ .
Step 3 : To simplify the expression X(x1,x2,x3) given above. Firstly,
observe that
(x1 AXp AX3) V(X1 Axg AX3) = X1 A [(X5AX3)V (x2AX3)]
X1 A [(x’2 Vx2) A X3]
= x1 A (L Ax3)
X1 A X3,

1l

by using distributive, complementation and identity laws (in that order).
Similarly, you can see that A
(X AXh AX3) V(x1 AXg) = (x5 V X1) AXa.
We thus have obtained a simpler (and equivalent) expression, namely,
- X(x1,X2,X3) = (X] Axg Ax5) V(x5 V X1) AX3],
whose Boolean function is same as the function f. (Verify this!)

Step 4: To design a circuit for the expression obtained in Step 3.
Now, the logic circuit corresponding to the simpler: (and equlvalent) expression
obtained in Step 3 is as shown in Fig.15.
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Fig. 15: A circuit for the expression (xj A x2 A x5) V ((x5 V.x1) A X3).

So, in 4 steps we have designed a 3-switch circuit for the hall.
* % %

We can’t claim that the circuit designed in the example above is the simplest
circuit. How to get that is a different story and is beyond the scope of the
present course.

Why don’t you try an exercise now?

'E15) Design a logic circuit to operate a light bulb by two switches, x; and x2

(say).

We have now come to the end of our discussion on applications of logic. Let us
briefly recapitulate what we have discussed here.

15.5 SUMMARY

- In this unit we have considered the following points.

1. - The definition and examples of a Boolean algebra. In particular, we have
~ discussed the two-element Boolean algebra B = {0,1}, and the switching
_ algebras B",n > 2. :

2. The definition and examples of a Boolean expression.

The three elementary logic gates, namely, AND-gate, OR—gate'and
NOT-gate; and the analogy between their functioning and operations of .
logical connectives. '

4.~ The method of construction of a logic circuit corresponding to a given

"~ Boolean expression, and vice-versa. _

5. How to obtain the logic table of a Boolean expression, and its utility in the
understanding of the overall functioning of a circuit.

The method of simplifying a Boolean expréssion.

 The method of construction of a Boolean function f : B" — B,
corresponding to a Boolean expression, and the concept of equivalent
Boolean expressions. B '

8. Examples of the use of Boolean algebra techniques for constructing a logic
circuit which can function in a specified manner.

15.6 COMMENTS ON EXERCISES

Ei) a) In E19 of Unit 13, you have already verified the Identity laws. Let us
proceed to show that the propositions p V (p A q) and p are logically
equivalent. It suffices to show that the truth tables of both these 63"
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E2)

B3

E4)

E5)

-E6)

propositions are the same. This follows from the first and last
columns of the following table.

PlalpAqlpV(PAg)
F|F| F F
F|T| F F
T|F| F T
T|T| T T

Similarly, you can see that the propositions pA (pV q) and p are
equivalent propositions. This establishes the absorption laws for the
Boolean algebra (S,A,V,",T,F).

b) Let A and B be two subsets of the set X. Since ANB C A,
(ANB)UA = A. Similarly, as A C AUB, we have (AUB)NA = A.
. Thus, both the forms of the absorption laws hold good for the
Boolean algebra (P(X),U,N, ¢,X,).

We can write

X(x1,%x2,%3) = ((x1 Ax2)V ((x1 Ax2) AX3))V (x2 A x3)
= (x1 AXg)V (X2 AX3) (by Absorption law)
= XoA (x1Vx3) (by Distributive law)

This is the simplest form of the given expression.

Take the propositions p and q in place of the bits x; and xg, respectively.
Then, when 1 and O are replaced by T and F in Table 3 here, we get the
truth table for the proposition p A q (see Table 2 of Unit 13).

This esta»bhshes the analogy between the functioning of the AND—ga.te
and the conjunction operation on the set of propositions.

Take the propositions p and q in place of the bits x; and xg, respectively.
Then, when 1 and 0 are replaced by T and F in Table 4 here, we get the
truth table for the proposition p V q (See Table 1 of Unit 13).

This establishes the analogy between the functioning of the OR-gate and
the disjunction operation on the set of propositions.

Firstly, observe that the information about the outputé of the three

_elementary gates, for different values of inputs, can also be written as

follows:

0A0=0A1=1A0=0, 1Al5=1; (see Table 3)
0v0=0,0v1I=1v0=1Vv1=1; and (see Table 4)
0'=1, 1=0. (see Table 5)

Clearly, then both the operations A and V are the binary operations on B

and ' : B — B is a unary operation. Also, we may take 0 for O and 1 for I

in the definition of a Boolean algebra.

Now, by looking at the logic tables of the three elementary gates, you can

see that all the five laws B1-B5 are satisfied. Thus, B is a Boolean algebra.
. . /

a) ' Here x; and x2 are inputs to an OR-gate, and so, we take X1 VXg a8
input to the NOT-gate next in the chain which, in turn, yields
- (x1Vx2) as the required output expression for the circuit given in (a). -

b) Here x; and x, are the inputs to an AND-gate: So, the expression
Xi A Xg serves as an input to the NOT-gate, being next in the chain.
This gives the expression (x; A xp)’ which serves as one input to the
extreme right AND-gate. Also, since xj is another input to this




AND-gate (coming out of a NOT-gate), we get the expression Boolean Algebra
(X1 A x2)' A X} as the final output expression which represents the ~ and Circuits
circuit given in (b).
E7) You know that the circuit rep- . .
resenting expressions x; and xVxj are as shown in Fig.16 (a) and (b) below.

X
2 X, V Xg
’ . . - 2 3
b X, ‘ 2778 o

’

X3 . X3

@ . ®
Fig. 16

Thus, the expression ‘x'l A (X2 V x3), being connected by the symbol A,
gives the circuit corresponding to it as given in Fig.17 below.

X; |> : b ¢
1 1 ' xl’ A (X2V X3') -
. / >

Xy

’
o X X, V X3

Fig. 17: A logic circuit for the expression xj A (x2 V.xg)~

E8) You can easily see, by following the arguments given in E9, that the
circuit represented by the expression x; V (x5 A x3) is as given in Fig. 18.

X

Nl v (X' AXg) -
—) "
Xo . X2’ .

X,  AX
X5 ) 2 3

: Fig. 18
The logic table of this expression is as given below.
X1 | X2 | X3 | X5 | X5 AXg | X1V (x5 A Xs)
0]J]0|0]1 0 0
0j0(1]|1 1 1
01070 0 0
11001 0 1
01110 0 0
111100 0 1
1,011 1 1
1/1/1 0] O 1 i

~E9) Since the output expression representing the circuit given in E8(b) is
found to be (x; A x2)' Axj, the logic table for this cireuit is as given below.

X1 | X2 | X3 | X1 AXo | (X3 AXg) | x5 | (x1 Ax2) Ax§

000 0 1 1 1

0]0]1 0 1 0| 0

0110 0 i 1 1

100 0 1 |1 1

ol1|1] o 1 0. 0

110 1 .0 1 0

rjol1 o+ "1 |0 0 .
111 17 0 0 0 ; 65




Elementary Logic E10) Because the e’xpressmn (x1 Axg) V (x1 A xj) involves three variables, the

corresponding Boolean function, f (say) is a three variable function, i.e.
f:B% — B. It is defined by

f(e1,e2,e3) = (e1 Aeg) V (e1 Aejy), er,eq and e3 € B.

Now, you can verify that the values of f in tabular form are as given in the
following table.

e ez |e3|elNey ey | e1 Nej (e f/geé;;i/’ ?23 Ael)
0]0]0 0 1 0 0 -
001 0O |0 0 0
01110 0 1 0 0
1700 0 1 1 1
ol1]1] o |of| o 0
110 1 1 1 1
11011 0 0 0 0

1 1 1 1 0 0 1

E11) To show that the Boolean expressions X and Y are equivalent over the
two-element Boolean algebra B = {0, 1}, it suffices to show that the
Boolean functions f and g (say) corresponding to the expressions X and Y,
respectively, are the same. As you can see, the function f for the
expression X is calculated in E10 above.

Similarly, you ccan see that the Boolean function g for the expression Y in
~ tabular form is as given below.

| X1 | X2 | X3 | X5 | X2 VX5 i(lx/l\’ E(;z’ )\(/33(3 )
0] 0 0 1 1 0o
0[O 1 0 0 0
011 0 1 1 0
11|10 0 1 1 1
oj1|1]o0]| 1 0
1101 ] 1 1
110 1 0 0 -0

11 110 1 1

Comparing the last columns of this table and the oné given in E10 above,
you can see that f(e1, ez, e3) = g(e1, e2,€3). v e1,e2,e3 € B=10,1}. Thus,
X and.Y are equiva,lent

E12) Firstly, let us evaluate the given expression X(x1,%2) over the two-element
Boolean algebra B = {0,1} as follows:
X(0,0) = (0'AQ)V(QD A0V (0AD)
= (I1A1)V(1A0)V(0AD)
o~ = 1VO0VO0=1=f0,0);
| X(1,0) = ('A0)V(I'A0)V(1A0)
. (0A1)V(0AOD)V(1AD)
0VOVO0.=0=f(1,0);
(0'A1)V(O'AL)V(0OAL)
(1A0) V(1AL V(OAD)
0V1VvV0=1=f(0;1);
ANV AL V(AL
(OAO)V(OAL)V(1AT)
66 = 0VOVv1=1=£(1,1).

uom

-

X(0,1)

mn

I

X(1,1)

[




It thus follows that X(e;,ez) = f(e1,e2) ¥ e1,e5 € B= {0, 1}. ~ Boolean Algebra

) . d Circuit
E13) Step 1: Identify all rows of the table where output is 0: This is the 2nd ane Areuts

TOow.

Step 2: Combine Xy and X2 with ‘or’ in these rows, simultaneously applying
‘not’ to x; if its value is 0 in the row: So, for the 2nd row the
expression we have is x; V xj.

- Step 3: Combine all the expressions obtained in Step 2 with ‘and’ to get
the CNF form representing f: In this case there is only 1 expressmn
So f is represented by x; Vx5 in CNF.

E14) a) Observe from the given table that, among the two values 0 and 1 of
 the function f(x1, X2, X3), the value 1 occurs the least number of times.
Therefore, by the remark made after E 13, we would prefer to obtain
the Boolean expression in DNF. To get this we will use the stepwise
procedure adopted in Example 10. '
Accordingly, the required Boolean expression in DNF is given by

X(%1,X2,%3) = (X1 A Xg AX3) V (X1 A Xy AX3) V (Xy AXg AXg).

b) By the given table, among the two values 0 and 1 of the function the
points v; at which g(v;) = 0 are fewer than the points v; at which
g(vi) = 1. So we would prefer to obtain the corresponding Boolean
expression in CNF,

Applying the stepWISe procedure in the solution to E13, the required
B901ean expression (in CNF) is given by

X(x1,X2,x3) = (X1 Vx5V X3) A (x] VX2 Vx3) A (x'1 V xg VX3).

E15) Let g denote the function which depicts the functional utility of the circuit
to be designed. We may assume that the light bulb is off when both the
switches x; and x; are off, i.e., we write g(0,0) = 0.

Now, by arguments used whlle calculating the entries of Table 9, you can
easily see that all the values of the function g are as given below:

g(0,0) =0, g(0,1) =1, g(1,0) =1, g(1,1) =0.
" Thus, proceeding as in the previous exercise, it can be seen that the

Boolean expression (in DNF'), which yields g as its Boolean function, is
given by the expression

X(x1,%2) = (x] Ax2) V (x1 AX5),
becat;se g(0,1) =1and g(1,0) =1.

Finally, the logic circuit corresponding to this Boolean expression is shown
in Fig. 19.

Fig. 19
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‘Comments on Problems in Activity Sheet (P.5)

1. Ask the groups to come up with the point they think at which the problem lies.
For instance, if they say that it is at the inductive stage, then they should say
why they think so. A general discussion on the validity of their reasoning can
be held after this. Such problems and discussions are a good way for
developing an understanding of the methods of proof.

The problem here is in Step 5. (Why?)

2. The students could try various methods to prove that the number required for
anm X n bar is N-1, where N =m + .

For related activities you can access the website www.cut-the-knot.org/proofs
3. The key to the solution is the concept of uniform motion.  When a body

travels at a constant speed, its graph is a straight line. In order to draw a
graph, one needs a line along which the body travels and a time axis.

Let’s denote the four straight lines by 1;,15,1;,1,. Draw a perpendicular to the
plane in which the four roads are located and think of it as a time axis. Each
person travels with a constant speed. Therefore, the graphs of their motion are
straight lines, say, m; my,ms,my.

.. The fact that point P = (x,y,t) belongs fo m, is e‘quivalent to saying that
1. point Q = (x,y) lies on I.
2. P; passed through the point Q at time t.

From (1) it follows that the projection of m; onto the plane of roads coincides
with /;.

Also, since P, and P, met, at the time of their encounter they were located at ) o
the same planar point. Therefore, by (2), m; and m, intersect. Since P3 met ;”‘;;;2:2:}?::5 lines
both P, and P,, m; intersects both m; and m,. Therefore, they all lie in the unique plane.

same plane. But the same argument applies to P, as well. Hence, all four

lines m;, i = 1,2,3,4, lie in the same plane. Finally, the lines m3 and my could

not be parallel because their respective projections on the horizontal plane, /3

and [,, intersect. ' '

- The fact that the lines m; and my intersect means that P; and P4 happened to be
at the same planar point at some point in time. This means that they did meet.

4. - "One solution is given in Fig. 1.
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