
14.6 Comments on Exercises 4 1 

I 14.1 INTRODUCTION 

1, In the previous unit you studied about statements and their truth values. In this 
unit, we shall discuss ways in which statements can be linked to form a logically 
valid argument. Throughout your mathematical studies you would have come 
across the terms 'theorem' and 'proof'. In Sec. 14.2, we shall talk about what a 
theorem is and what constitutes a mathematically acceptable proof. 

In Sec.14.3, we shall discuss some ideas formalised by the English 
mathematician Boole and the German logician Frege (1848 - 1925). These are 
the different methods used for proving or disproving a statement. As you go 
through the different types of valid arguments ,  please try and find 
connections with what we discussed in Block 1. 

The principle of mathematical induction has a very special place in 
mathematics because of its simplicity and vast applicability. You will revisit 
this tool for proving statements in Sec.14.4. \Fig.l: George Boole 

I 
Please go through this unit carefully. You need to be able to convince your (1815 - 1864) 

learners that its contents are part of the foundation on which all mathematical 
knowledge is built. 

Objectives 

After reading this unit, you should be able to develop in your learners the 
ability to 

explain the terms 'theorem', 'pwof' and 'disproof'; 

' describe the direct method and some indirect methods of proof, 

I ! state and apply both forms of the principle of induction. 

I 14.2 WHAT IS A PROOF? 

I Suppose I tell somebody, "I am stronger than you." The person is quite likely 
I 
I to  turn around, look menacingly at me, and say, "Prove it!" What she or he 
I 

really wants is to be convinced of my statement by some evidence. (In this case 
it would probably be a big physical push!) . 



Elementary Logic Convincing evidence is also what the world asks for before accepting a 
scientist's prediction$, or a historian's claims. 

In the same way, if you want a mathematical statement t o k e  accepted as trup, 
you would need to provide mathematically acceptable evidence to support 
it. This means that you would need to show that the statement is universally 
t rue.  ,And this would be done in the form of a logically valid argument. 

Definition: An argument (in mathematics or logic) is a finite sequence of 
statements pl, . . . , p,, p such that (pl A p2 A . . . A p , )  -+ p. 
Each statement in the sequence, pl, p2,. . . , p, is called a premise (or an 
assumption, or a hypothesis). The final statement p is called the 
conclusion. 

Let's consider an example of an argument. that shows that a given statement is 
true. 

Example 1: Give an argument to show that the mathematical statement 
'Fot any two sets A and B, A n  B 2 A' is true. 

Solution: One argument could be the following. 
Let x be an arbitrary element of A n  B. 
Then x A and x E B, by definition of 'n'. 
Therefore, x E A. 

1 
This is tnue for every x in A n B. 
Therefore, A n B c A, by definition of '5 ' .  

* * *  
The argument in Example 1 has a peculiar nature. The truth of each of the 4 
premises and of its conclusion follows from the truth of the earlier premises in 
it. Of course, we start by assuming that the first statement is tfue. Then, 
assuming the definition of 'intersection', the second statement is true. The third 
one is true, whenever the second one is true because of the properties of logical 
implication. The fourth statement is true whenever the first three are true, 
because of the definition and properties of the term 'for all'. And finally, the 
last statement is true whenever all the earlier ones are. In this way we have 
shown that the given statement is true. In other words, we have proved the 
given statement, as the following definitions show. 

Definitions: We say that a proposition p follows logically from propositions 
pl, pz, . ., p, if p must be true whenever pl, p2, - . . , pn are true, i.e., 
(PI A P2 A ' ' ' A p,) ===+ P. 
[Here, note  the'use of dhe implication arrow '+'. For any two propositions r 
and s, 'r 3 s' denotes 's is t r u e  whenever r is true.' ~ o t e  that, using the 
contrapositive, this also denotes 'r is false whenever s is false'. Thus 'r -, s' and 
'r s S' are different except when both r and s are true or both are false.] 

A proof of 3 proposition p is a mathematical argument consisting of a sequence 
of statements pl, p2,. . . , p, from which p logically follows. So, p is the 
conclusion of this argument. 

1 

The statement that is proved to be true is called a theorem. 

Sometimes, as you will see in Sec.14.3.3, instead of showing that a statement p 
is true, we try ta prove that it is false, i.e., that N p is true. Such a proof is * 

called a disproof of p. In the next section you will read about some ways of 
disproving a statement. 

Shet imes  it happens that we feel a certain statement is true, but we don't 
succeed in providg it. It may also happen that we can't disprove it. Such 
statements are called conjectures. If and when a conjecture is proved, it would 

28 be called a theorem. If it is disprqved, then its negative will be a theorem! 



In this context, there's a very famous conjecture which was made by a 
mathematician Goldbach in 1742. He stated that : 
For every n E N, if n is even and n > 2, the* n is the sum of two primes. 

To this day, no one has been able to  prove it or disprove it. To disprove it 
several people have been hunting for an example for which the statement is not 
true, i.e., an even number n > 2 suchjthat n cannot be written as the sum of 

1 two prime numbers. . 
Now, as you have seen, a mathematical proof of a statement consists of one or 
more premises. These premises could be of four types: 

i) a proposition that has been proved earlier (e.g., to  prove that the complex 
roots of a polynomial in R[x] occur in pairs, we use the division algorithm); 
or 

ii) a proposition that follows logically from the earlier propositions given in 
the proof (as you have seen in Example 1); or 

iii) a mathematical fact that has never been proved, but is universally 
accepted as true (e.g., two points determine a line). Such a fact is called an 
axiom (or a postulate);  

, 
iv) the definition of a mathematical term (e.g., assuming the definition of 'C' 

in the proof of A n B C A). 
You will come across more examples of each type while doing the following 
exercises, and while going through proofs in this course and other courses. 

El.) 'Write down an example of a theorem, and its proof (of a t  least 4 steps), 
taken from school-level algebra. At each step, indicate which of the four 
types of premise it is. 

E2) Is every statement a theorem? Why? 

So far we have spoken about valid, or acceptable, arguments. Now let us see an 
exanlple of a sequence of statements that will no t  form a valid argument. 
Consider - the following sequence. 

If Maya sees the movie, she won't finish her homework. 
Maya won't finish her homework. 
Therefore, Maya sees the movie. 

Looking at the argument, can you s$y whether it is valid or not? Intuitively you 
may feel that the argument isn't valid. But, is there a formal logical tool that 
you can apply to check if your intuition is correct? What about truth tables? 
Let's see. 

The given argument is of the form 

[(P -+ 4) A ql * i) , 
where 
p: Maya sees the movie, And 
q: Maya won't finish her homework. 

Let us look at the truth table related to this argumeht (see Table 1). 

Methods of Proof 



Elementary Logic 

'Modus ponens' is a 
Latin term which means 
'method of affirmation'. 
'\ 

.. denotes 'therefore' 

'Modus tollens' means 
' m e t w  of denial'. 

The last column gives the tr'uth values of the premises. The first columil gives 
the corresporiding truth values of the conclusion. Now, t h e  a rgument  will 
only b e  valid i fwhenever  b o t h  t h e  premises a r e  t rue ,  t h e  conclusion 
is t rue .  This happens in the first row, but no t  in the third row. 
Therefore, the argument is not  valid. 

Why don't you check an argument for validity now? 

E3) Check whether the following argument is valid. 
( P - - + ~ V ~ ~ ) A ( ~ - + P )  * (p--+r)  

You have seen that a proof is a logical argument that verifies the truth of a 
theorem. There axe several ways of proving a theorem, as you will see in the 
next section. All of them are based on one or-more rules  of inference, which 
are different forms of arguments. We shall now present four of the most 
commonly used rules. 

i) Law of de tachment  (or modus  ponens) 
Consider the following argument: 

If Kali can draw, she will get a job. 
Kali can draw. 
Therefore, she will get a job. 

To study the form of the argument, let us take p to be the proposition 
'Kali can drqw.' and q to be the proposition 'Kali will get a job.'. Then the 
premises are (p --+ q) and p. The conclusion is q. 
So, the form of the argument is, 
P - + 9  

P I i-e., [(P -+ q) A PI * (4- 

. .'. q 
Is this argument valid? To find out, let's construct its truth table (see 
Table 2). 

Table 2: Truth table for [ (p  --+ q) A p] + q 

In the table, look at 'the secdnd column (the conclusion) and the fourth 
column (the premises). Whenever the premises are true, i.e., in'Row 1, the 
conclusion is true. Therefore, the argument is valid. 
This form of valid argument is called the law of detachment because the 
conclusion q is detached from a premise (namely, p --+ q). It is also called 
the law of direct inference. 

ii) Law of contraposition (or modus  tollens) 
To understand$is law, consider the following argument: 

/ 

If Kali can draw, then she will get a job. 
Kali will not get a job. 
Therefore: Kali can't draw. 

\ Takidg p and q as in (1) above, you can see that the prekises are p -+ Cj 



and N q. The conclusion is N p. 
So the argument is 
P -+ q 

q , i.e., [(p -t q) A N q] =+ N p. 

.'. " p 

If you check, you'll find that this is a valid form of argument. 

There are two more rules of inference that most commonly form the basis of 
several proofs. The following exercise is about them. 

E4) You will find three arguments below. Convert each of them into the 
I language of symbols, and check if they are valid. 

i) Either the eraser is white or oxygen is a metal. 
The eraser is black. 
Therefore, oxygen is a metal. 

ii) If Madhu is a 'sarpanch', she will head the 'panchayat'. 
If Madhu heads the 'panchayat', she will decide on property disputes. 
Therefore, if Madhu is a 'sarpanch', she will decide on property 

b disputes. 

iii) 1 Either Munna will' cook or Munni will practise Karate. 
If Munni practises Karate, then Munna studies. 
Munna does not study. 
Therefore, Munni will practise Karate. 

E5) Write down one example each of modus ponens and modus tollens. 

As you must have discovered, the arguments in E4(i) and (ii) are valid. The 
first one is an example of a disjunctive syllogism. The second one is an 
example of a hypothetical syllogism. 

Thus, a disjunctive syLhgism is of the form 

P"q 

" P r ive., [(P q) A - PI =+ 4. - 
.'. q 

And, a hypothetical syllogism is of the form 

p - ' q  ( 

q-" , i.e., [ ( p - + q ) ~ ( q + r ) ]  =+ ( p - t r ) .  

:. p -' r 

Let us now see how different forms of arguments can be put together to  prove or 
disprove a statement. 

14.3 DIFFERENT METHODS OF PROOF 

In this section we shall consider three different strategies for proving a 
statement. We will also discuss a method that is used only for disproving la 
statement . 

Let us start with a proof strategy based on the first rule of inference that we 
discussed in the p~bvious section. 

14.3.1 Direct P r o o f  / 
/ 

This form of proof is based entirely on modus ponens. Let us formally spell out 
the strategy. 

Methods of Proof 1 



' Elementary Logic Defi-rliti6n : A direct proof of p + q is a logically valid argument that begins 
with the assumption that p is true and, in one or more applications of the law 
of detachment, 6onchides that q must be true. 

So, to construct a direct proof of p =+ q, we start by assuming that p is true. 
Then, in one or Inlore steps of the form p + ql ,  ql + q2 , .  . . , qn + q, we conclude 
that q is true. consider the following examples. 

Example  2: Give a direct proof of the statement 'The product of two odd 
integers is odd.'. 

Solution: Let ps clearly analyse what our hypotheses are, and what we have to 
prove. 
We start by considering any two odd integers x and y. So our hypothesis is 
p: x and y are odd. 
The conclusionwe want to  reach is 
q : xy is odd. 
Let us first prove that p + q. 
Since x is odd, x = 2m + 1 for some integer m. 
Similarly, y = 2n + 1 for some integer n. 
Then xy = (2rn + 1)(2n + 1) = 2(2mn + m + n) + 1. 
Therefore, xy i$ odd. 
So we have ~ h a w n  that p + q. - 

Now we can apply modus ponens to p A (p + q) to get the required conclusion. 

No te  that the essence of this direct proof lies in showing p + q. 

Example  3: Give a direct proof of the theorem 'The square of an even integer 
is an even integer.'. 

I Solution: Firbt of all, let us write the given statement symb~lically, as 

(V x E Z ) ( P ( ~ )  - q(x)) 
where p(x) : x i s  even, and 
q(x) : x2 is even, i.e., q(x) is the same as p ( ~ 2 ) .  

The direct proof, then goes-as follows: 

Let x be an even number (i.e., we assume p(x) is true). 
Then x = 2n, for some integer n (we apply the definition of an even number). 
Then x2 = ( 2 0 ) ~  = 4n2 = 2(2n2). 
:. x2 is even (i.e., q(x) is true). 

Note  that we have proved the statement for every x since we have treated x as 
an arbitrary wen number and not a particular value. 

Why don't you try an exercise now? 

E6) Give a direct proof of the statement 'If x is a real number such that 
x2 = 9, then either x = 3 or x = -3.'. 

Let us now consider another proof strategy. 

14.3.2 Indirect Proofs 

In this sub-skction we shall consider two roundabout methods for proving p + q. 

P rao f  by cbntrapositive: In the first method, we use the fact that the 
proposition p =+ q is logically equivalent to  its contrapositive (N  q + - p), 
l.e., . 

I 

(P =+ 9) 2 (" 9 =+" P ) .  



For instance, 'If Ammu does not agree with communalists, then she is not . 
orthodox.' is the same as 'If Ammu is orthodox, then she agrees with 
communalists.'. 

Because of this equivalence, to prove p + q, we can, instead, prove - q + - p. 
This means that we can assume that - q is true, and then try to prove that - p 
is true. In other words, what we do to prove p + q in this method is to 
assume that q is false and then show that p is false. Let us consider an 
example. 

Example 4: Prove that 'If x,y E Z such that xy is odd, then both x and y are 
odd. ', by proving its contrapositive. 

Solution: Let us name the statements involved as below. 
p : xy is odd 
q : both x and y are odd. 

so, - p : xy is even, and - q : x is even or y is even, or both are even. 

. We want to prove p + q, by proving that - q + - p. So we start by assuming 
that - q is true, i.e., we suppose that x is even. 
Then x = 2n for some n E N. 
Therefore, xy = 2ny. 
Therefore, xy is even, by definition. 
That is, - p is true. 

So, we have shown that - q + - p. Therefore, p + q. 

I 
Why don't you ask your students to try some related exercises now? 

E7) Write down the contrapositive of the statement 'If f is a 1-1 function from 
a finite set X into itself, then f must be surjective.'. 

E8) Prove the statement 'If x is an integer and x2 is even, then x is also even.' 
by proving its contrapositive. 

And now let us consider the other way of proving a statement indirectly. 

Proof by contkadiction: In this method, to prove q is true, we start by 
assuming that q is false (i.e., - q is true). Then, by a logical argument we arrive 
at a situation where a statement is true as well as false, i.e., we reach a 
contradiction r A - r for some statement r. This means that the truth of -- q 
implies a contradiction, a statement that is always false. This can only happen 

_ ;<-;when - q is false also. Therefore, q must be true. 

This method is called proof .by contradiction. It is also called reductio ad 
absurdum (a Latin phrase) because it relies on reducing a given assumption to 
an absurdity. 

Let us consider an example of the use of this method. 

%ample 5: Show that 6 is irrational. 
// 

Solution: Let us try and prove the given statement by contradiction. For this, 
we begin by assuming that 6 is rational. This means that there exist positive 

a 
integers a and b such that 6 = -, where a and b have no common factors. 

b 
This implies a 7 f i b  + a2 = 5b2 + 51a2 + 51a. 
Therefore, by definition, a = 5c for some c E Z. 
Therefore, a2 = 25c2. 

Methods of Proof 



Elementary Logic But a2 = 5b2 also. 
So 25c2 = 5b2 =+- 5c2 = b2 + 5(b2 + 5)b. 

But now we find that 5 divides both a and b, which contradicts our earlier 
assumption thqt a and b have no common factor. 
Therefore, we donclude that our assumption that is rational is false, i.e., 
is irrational. 

* * * 
We can also us8 the method of contradiction to prove an implication r + s. 
Here we can u* the equivalence N (r -+ s) r A N s . So, to prove r + s, we 
can begin by *sumin$ that r + s is false, i.e., r is true and s is false. Then we 
can present a,vtalid argument to arrive at a contradiction. 

Consider the fallowing example from plane geometry. 

Example 6: Prove the following: 
If two distinct Lines L1 and L2 intersect, then their infersection consists of 
exactly one point. 

Solution: To prove the given implication by contradiction, let us begin by 
assuming that *the two distinct lines L1 and L2 intersect in more than one point. 
Let us call two of these distinct points A and B. Then, both L1 and L2 contain 
A and B. This contradicts the axiom from geometry that says 'Given two 
distinct points, there is exactly one line containing them.'. 

Therefore, if La and L2 intersect, then they must intersect in only one point. 

The contradictlion rule is also used for solvi~fg,many logical puzzles by discarding 
all solutions that ieduce to contradictions. Consider the following example. 

Example 7: There is a village that consists of two types of people - those 
who always tell the truth, and those who always lie. Suppose that you visit the 
village and t w ~  villagers A and B come up to you. Further, suppose 
A says, "B aleays tells the truth," and 
B says, "A anq I are of opposite types." 
What types are A and B? 

Solution: Let us start by assuming A is a truth-teller. 
:. What A says is true. 
:. B is a truth-teller. 
:. What B says is true. 
:. A and B arb of opposite types. 
This is a contradiction, because our premises say that A ~ n d  B are both 
truth-tellers. 
:. The assumption we started with is false. - -_ 
:. A always talls lies. 
:. What A has told you is a lie. 
:. B always tdlls lies. 
:. A and B are of the same type, i.e., both of them always lie. 

Here are a few exercises for you now. While doing them you would realise tGtt 
there are situations in which all the three methods of proof we have discusse~ so 
far can be'usftd. 

E9) use  the method of proof by contradiction t~ show that 

i) f i ,  is irrational, for any prime p. 

ii) For' x E R, if x3 + 4x = 0, then x = 0. 
.- 



E10) Prove E 9(ii) directly as well as by the method of contrapositive. Met ,hods of Proof 

E l l )  Suppose you are visiting the village described in Example 7 above. 
Another two villagers C and D approach you. C tells you,"Both of us 
always tell the truth," and D says, "C always lies." What types are, C and 
D ? 

Let us now consider the problem of showing that a statement is false. 

14.3.3 Counterexamples . 
S ppose I make the statement 'All human beings are 5 feet tall.'.. You are quite 
1' lt ely to show me an example of a human being standing nearby for whom the 
statement is not true. And, as you know, the moment we have even one 
example fhr which the statement (Vx)p(x) is false [i.e.,(3x)(.v p(x)) is true], then 
the statement is false. . 

An example that shows that a statement is false is a counterexample to such 
a statement. The name itself suggests that it is an example to counter a given 
stsernent. 

A common situation in which we look for counterexamples is to disprove 
(statements of the form p + q. From Unit 13, you know that .v (p + q) = 
p A .v q. Therefore, a counterexample to p + q needs to be an example where 
p A .v q is true, i.e., p is true and .v q is true, i.e., the hypothesis p holds but the 
conclusion q does not hold. 

For instance, to disprove the statement 'If n is an odd integer, then n is prime.', 
we need to look for an odd integer which is not a prime number. 15 is one such 
integer. So, n = 15 is a counterexample to the given statement. 

Notice that a counterexample to a statement p proves that p is false, i.e., 
.v p is true. 

Let us consider another example. 

Example 8: Disprove the following statement: 
(V a E R)(V b E R)[(a2 = b2) + (a = b)]. 

Solution: A good way of disproving it is%o look for a counterexample, that is, 
a pair of real numbers a,and b for which a2 = b2 but a # b. Can you think of 
such a pair? What about a = 1 and b = -l? They serve the purpose. 

' 

In fact, there are infinitely many counterexamples. (Why?) 

Now, an exercise! 

E12) Disprove the following statements by providing a suitable counterexample. 

i) V X E Z , X E Q \ N .  

ii) ( x + y ) " = x " + y n V n E N , x , y E Z .  

iii) f : N + N is 1-1 iff f is onto. 
(Hint: To disprove p @ q it is enough to prove that p + q is false or 
q + p is false.) 

There are some other strategies of proof, like a constructive proof, which you 
must have come across in other mathematics courses. We shall not discuss this 
method here. 

.e can 

.oving 
be several ways 
a statement. 

Other proof-related adjectives that you will come across are vacuous and 
.-trivial. 



Elementary Logic ' A vacuous proof makes use of the fact that if p is false, then p + q is true, 
regardless of the truth value of q. So, to vacuously prove p + q, all we need to 
do is to show that p is false. For instance, suppose we want to prove that 'If 
n > n + 1 for n E Z, then n2 = 0.'. Since 'n > n + 1' is false for every n E Z, the 
given statement is vacuously t rue ,  or t r u e  by  default .  

Similarly, a tr ivial  proof of p + q is one based on the fact that if q is true, 
then p + q is true, regardless of the truth value of p. So, for example, 'If 
n > n + 1 for n E Z, then n + 1 > n' is trivially true since n + 1 > n V n E Z. The 
truth value of the hypothesis (which is false in this example) does not come into 
the picture at dl .  

Here's a chance for you to think up such proofs now! 

E13) Give one example each of a vacuous proof and a trivial proof. 

And now let us study a very important technique of proof for statements that 
are of the form p(n), n E N. 

14.4 PRINCIPLE OF INDUCTION 

In a discussion with some students the other day, one of them told me very 
cynically that all Indian politicians are corrupt. I asked him how he had 
reached such a conclusion. As an ar ument he gave me instances of several /g 
politicians, all of whom were knowh to be corrupt. What he had done was to 
formulate his general opinion of politicians on the basis of several particular 
instances. This is an example of inductive logic ,  a process of reasoning by 
which general rules are discovered by the observation of several individual cases. 
Inductive reasoining is used in all the sciences, including mathematics. But in 
mathematics we use a more precise form. 

Precision is required in mathematical induction because, as you know, a 
statement of the form (V n E N)p(n) is true only if it can be shown to be true 
for each n in N. (In the example above, even if the student is given an example 
of one clean politician, he is not likely to change his general opinion.) 

How can we make sure that our statement p(n) is true for each n that we are 
interested in? To answer this, let us consider an example. 

Suppose we want to prove that 1 + 2 + 3 + . . + n = n(n + for each n E N. Let 
2 

us call p(n) the predicate '1 + 2 + . , . + n = n(n + '. Plow, we can verify that it 
2 

is true for a few values, say, n = l , n  = 5,n = 10, n = 100, and so on. But we still 
can't be sure that it will be true for some value of n that we haven't tried. 

But now, suppose we can show that if p(n) is true for some n, n = k say, then it 
will be true for n = k + 1. Then we are in a very good position because we 
already know that p(1) is true. And, since p(1) is true, so is p(l  + I ) ,  i.e., p(2), 
and so on. In this way we can show that p(n) is true for every n E N. So, our 
proof boils down to two steps, namely, 

i) Checking that p(1) is true; 
ii) Proving that whenever p(k) is true, then p(k + 1) is true, where k E N. 
This is the principle that we will now state formally, in a more general form. 

Principle of Mathemat ica l  Induct ion (PMI) :  Let p(n) be a predicate 
involving a natural number n. Suppose the following two conditions hold: 

i) p(m) is true for some m € N; 
ii) If p(k) is true, then p(k + 1) is true, where k(>_ m) is any natural number. 



Then p(n) is true for every n > m. 

Looking at the two conditions in the principle, can you make out why it works? 
(As a hint, put rq = 1 in our example above.) 
Well, (i) tells us that p(m) is true. Then putting k = rn in (ii), we find that 

' 
p(m + 1) is true. Again, since p(mf1) is true, p(m + 2) is true, and so on. 

Going back to the example above, let us complete the second step. We know 

that p(k) is true, i.e., 1 + 2 + . . . + k = k(k + I ) .  We want to check if p(k + 1) is 
2 

true. So let us find 

1 + 2 + . . . + ( k + l )  = ( 1 + 2 + . . . + k ) + ( k + l )  

- - k(k + + (k + I), since p(k) is true 
2 

- - (k + l)(k + 2) 
2 

So, p(k + 1) is true. 
r 

And so, by the principle of mathematical induction, we know that p(n) is true 
for every n E N. 

What does bhis principle really say? It says that if you can walk a few steps, say 
m steps, and if at each stage you can walk one more step, then you can walk 
any distance. It sounds very simple, but you may be surprised to know that the 
technique in this principle was first used by Europeans only as late as the 16th 
century by the Venetian F. Maurocylus (1494-1573). He used it to  show that 
1 + 3 + . + (2n - 1) = n2. Pierre de Fermat (1601 - 1665) improved on the 
technique and proved that this principle is equivalent to the following 
often-used principle of mathematics. 

I The Well-ordering Principle: Any non-empty subset of N contains a 
smallest element. 

You may be able to see the relationship between the two principles if we reword 
the PMI in the following form. 

Principle of Mathematical Induction (Equivalent form): Let S c N be 
such that 
i) ~ E S  

I ii) For each k E N ,  k 2 m, the following implication is true: k E S + k + 1 E S. 
Then S = {m, m + 1, m + 2,.  . . ). ' Can you see the equivalence of the two forms of the PMI? If you take 
S .i {n E N ( p(n) is true ), 
then you can see that the way we have written the principle above is a mere 
rewrite of the earlier form. 

Now, let us consider an example of proof using PMI. 

Example 9: ~ydmathematical induction to prove that 
l2 +22 +32 + . - a  +n2  = "n+ 1)(2n + 1) Vn E N .  

6 
Solution: We call p(n) the predicate 

I 
n 

1 ~ + 2 ~ + 3 ~ + - . . + n ~ = - ( n + 1 ) ( 2 n + l ) .  
I 6 

Since we want to prove it for every n E N, we take m = 1. 
I 1 
i Step 1: p(1) is l2 = -(1 + 1)(2 + I),  which is true. 

6 

1 Step 2: Suppose, for an arbitrary k E N,p(k) is true, i.e., 
k 

r ' 1 ~ + 2 ~ + * : - + k ~  = ;(k+1)(2k+ 1) is true. 

Step 3: To check if the assumption in Step 2 implie$ that p(k + 1) is true. Let's 
see. 

The term 'mathematical 
induction' was first used 
by De Morgan. 

Note that p(n) is a 
predicate, not a 
statement, unless we 
know the value of n. 
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p(k+ 1) is 1 2 + 2 2  + k2 + ( k +  1)2 = -(k+2)(2k+3) 6 

k + l  ( f2  +22 +. . .  + k2) + ( k +  1)2 = -(k+2)(2k+3) 
6 

k k +  1 
e G(k + 1)(2k + 1) + (k + 1)2 = -a(k + 2)(2k + 3), 

since ~ ( k )  is true. 

k + l  k + l  
-[k(2k+ 1) +6(k + I)] = -(k+ 2)(2k + 3 )  

6 6 
k + l  2k2 + 7k + 6 = (k + 2)(2k + 3), dividing throughout by - 

6 ' 
which is true. , 
So, p(k) is true implies that p(k + 1) is true. 

So, both the conditions of the principle of mathematical induction hold. 
Therefore, its coslclusion must hold, i.e., p(n) is true for every n E N. 

* * * 
Have you gone through Example 9 carefully? If so, you would have noticed that 
the proof consists of three steps: 

Step 1 (called the basis of induction):  Checking if p(m) is true for some 
m E N. 

S t e p  2 (called the induct ion hypothesis):  Assuming that p(k) is true for an 
arbitrary k E N, k 2 m. 

S t e p  3 (called the induct ion step): Showing that p(k + 1) is true, by a direct 
or an indirect proof. 

Now let us cbnddkr an example in which m # 1. 

Example  10: Show that 2' > n3 for p 2 10. 

Solution: We write p(n) for the predicate '2" > n3'. 
f 

Step 1: For n = 10, 21° = 1024, which is greater that lo3. Therefore, p(10) is 
true. 

S t e p  2: We assume that p{k) is true for an arbitrary k 2 10. Thus, 2k > k3. 

S t e p  3: Now, we want to prove that 2k+1 > (k + 1 9 ~ .  'hote that 

ak+l = 2.2k >'2.k3, - by our agsumption 

2 (I + k)3.k3, since k > 10 

Thus, p(k + 1) is true if p(k) is true for k 2 10. 

Therefore, by Uhe principle of mathematical induction, p(n) is true b' n 2 10. 

* * * 
Why don't yoq try to apply the principle now? 

E14) 'Use mathematical induction to  prove that 



- . 1 1 1 Methods of Proof 
E15) Show that for any integer n > 1, - + - + . . + - > h. Jz 

(Hint : The basis of induction is p(2).). 
4 

Before going further a n o t e  of warning! To prove that p(n) is true V n 2 m, 
both the basis of induction as well as the induction step must hold. 
If even one of these conditions does not hold, we cannot arrive at the conclusion 
that p(n) is true V n 2 m. 

For example, suppose p(n) is (x + y)" 5 xn + yn V x, y E R. Then p(1) is true. 
But Steps 2 and 3 do not hold. Therefore, p(n) is not true for every n E N .  
(Can you find a value of n for which p(n) is false?) 

As another example, take p(n) to be the statement '1 + 2 + . . . + n < n'. Then; if 
p(k) is true, so is p(k + 1) (prove it!). But the basis step does not hold for any 
m E N. And, as you can see, p(n) is false. 

Now let us look at a situation in which we may expect the principle of induction 
to  work, but it doesn't. Consider the sequence of numbers 1,1,2,3,5,8,  - . . . 
These are the Fibonacci numbers ,  named after the Italian mathematician 
Fibonacci. Each term in the sequence, from the third term on, is obtained by 
adding the previous 2 terms. So, if a, is the nth term, then al = 1, a2 = 1, and 
an = an-l + an-, V n 2 3. 
Suppose we want to  show that a,< 2" V n E N using the PMI. Then, if p(n) is 
the predicate a,< 2", we know that p(1) is true. 
Now suppose we know that p(k) is true for an arbitrary k E N ,  i.e., ak < 2kl We 
want to show that ak+l < 2k+1, i.e., ak + ak-1 < 2k+1. But we don't know 
anything about ak-1. So, how can we apply the principle of induction in the 
form that we have stated it? In such a situation, a stronger, more powerful, 
version of the principle of induction comes in handy. Let's see what this is. 

Principle of S t rong  Mathemat ica l  Induction: Let p(n) be a predicate that 
involves a natural number n. Suppose we can show that 

i) p(m) is true for some m E N, and 
ii) whenever p(m), p(m + I) ,  . . , p(k) are true, then p(k + 1) is true, where 

k 2 m. 
Then we can conclude%hat p(n) is true for all natural numbers n 2 m. 

Why do we call this principle stronger than the earlier one? This is because, in 
the induction step we are making more a.ywmptions, i.e., that p(n)  is t r u e  for 
every n lying between m a n d  k, not just that p(k) is true. In using the strong form 

wei often need to check 
Let us now go back to the Fibonacci sequence. To use the strong form of the Step for,more than one 
PMI, we take m = 1. We hake seen that p(1) is true. We also need to see if p(2) value of ,,. 
is true. This is because we have to use the relation a, = + an-2, which is 
valid for n >_ 3. 

Now that we know that both p(1) and ~ ( 2 )  are true, let us go to the next step. 
In Step 2, for an arbitrary k 2 2, we assume that p(n) is true for every n such 
that 1 < n 5 k, i.e., a, < 2" for 1 5 n 5 k. 

Finally, in Step 3, we must show that p(k + 1) is true, i.e., ak+l < 2k+1. Now 

ak+l = "k+"k-1 

< 2k + 2k-1, by our assumption in Step 2. 

= 2k-1 (2 + 1) 
< 2k-l 2 , 

.2 
- 2k+l - 

:. p(k + 1) is true. 
:. p(n) is true V n E N. 39 



Elementary Logic ThoughJhe "strodg" form of the PMI appears to be different from the "weak" 
form, the two are actually equivalent. This is because each can be obtained 
from the other. So, we can use either form of mathematical induction. In a 
given problem we use the form that is more suitable. For instance, in the 
following example, as  in the case of the one above, you would agree that it is 
better to use the $trong form of the PMI. 

Example 11: Use induction to prove that any integer n 2 2 is either a prime 
or a product of pnimes. 

Solution: Here p(n) is the predicate 'n is a prime or n is a product of primes.'. 
Step 1 (basis of induction) : Since 2 is a prime, p(2) is true. 

Step 2 (indudion hypothesis): Assume that p(n) is true for any integer n 
such that 2 5 n 5 k, i.e., p(3), p(4), . . . , p(k) are true. 

Step 3 (inducqion step): Now consider p(k $ 1). If k + 1 is a prime, then 
p(k + 1) is true. If k+ 1 is not a prime, then k + 1 = rs, where 2 5 r 5 k 
and 2 f s 5 k. But, by our induction hypothesis, p(r) is true and p(s) 
is true. Therefore, r and s are either primes or products of primes. And 
thereforle, k + 1 is a product of primes. So, p(k + 1) is true. 
- 

Therefore, p(n) id true V n 3 2. 

Why don't you tqy some exercises now? 

E16) If a l ,  %, . . are the terms in the Fibonacci sequence, use the weak as well 
as the strorfg forms of the principle of mathematical induction to 

3 
show that a,., > - V n 2 3. Which form did you find more convenient? 

2 

E17) Consider the following "proof" by induction of the statement 'Any n 
marbles are of the same size.', and say why it is wrong. 
Basis of induction : Far n = 1, the statement is clearly true. 
Induction hypothesis : Assume that the statement is true for n = k. 
Induction step : Now consider any k + 1 marbles 1,2, . , k + 1. By the 

induction hypothesis the k marbles 2,3, . . , k + 1 are of 
the same size. Therefore, all the k+ 1 marbles are of the 
same size. 

Therefore, the given statement is true for every n. 

E18).Prove that the following result is equivalent to the principle of 
mathematical induction (strong form): 

- 

. Let S N such tbat 
i) ~ E S  

I 

ii) Ifm,rm+l,m+2,...,kareinS,thenk+lES . 
Then S = (n E N(n 2 m). 

1 
E19) To prove that - < 2 6  - 1 V n E N ,  which form of the principle of 

i=l 4-. 
mathemat6cal induction would you use, and why? Also, prove the 
inequality, 

/ /  With this we tome to the end of our discussion on various techniques of proving 
or disproving mathematical statements. Let us take a brief look at what you 
have read in this unit. 



14.5 SUMMARY . i 

In this unit you have studied the following points. 

1. What constitutes a proof of a mathematical statement, including 4 
commonly used rules of inference, namely, 
i) law of detachment (or rnodus ponens) : [(p --t q) A p] =+- q 

ii) law of contraposition (or modus tollens) : [(p -+ q) A N q] +- N p . 

iii) disjunctive syllogism : [(p V q) A .v p] =+- q 
Y 

iv) hyp~t~hetical syllogism : [(p -+ q) A (q -+ r)] =+- (p -+ r) 

2. The description and exafiples of a direct proof, +ich is based on modus . 
ponens. \ 

3. Two types of indirect proofs : proof by contrapositive and proof by 
contradiction. 

I 4. The use of counterexamples for disproving a statement. 

I 
5. The "strong" and "weak" forms of the principle of mathematical induction, 

and their equivalence with the well-ordering principle. 

14.6 COMMENTS ON EXERCISES , 

I E l )  For example, 
Theorem: (x + y)2 = x2 + 2xy + y2 for x, y E R. 
Proof: For x, y E R, (x + y)2 = (x + y)(x + y) (by definition of 'square') 
(X + y) (X + y)  = X(X + y)  + y(x + y) (by distributivity, which has been 
proved earlier) 
x(x + y) + y(x + y)  = x2 + 2xy + y2 (again by distributivity, and by 
definition of addition and multiplication of algebraic terms). 
Therefore, (x + y)2 = x2 + 2xy + y2 (using an earlier proved statement that 
a = b and b = c implies that a = c). 

,,E2) No, not unless it has been proved to be true. 

premises conclusion 
1 1  1 

The premises are true in Rows 1, 2, 4, 7, 8. So, the argument will be valid 
if the conclusion is also true in these rows. But this does not happen in 
Row 2, for instance. Therefore, the argument is invalid. 

Methods of Proof 
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ii) 

iii) 

Let p : The eraser is white, 
q : Oxygen is a metal. 
Then tbe argument is 

- P - 
.'. q 

Its truth table is given below. 

All the premises are true only in the third row. Since'the conclusion 
in this row is also true, the argument is valid. 

The argument is (p -+ q) /\ (q -+ r) s (p -+ r) 
where p: Madhu is a 'sarpanch', 
q : Madhu heads the 'Panchayat', 
r : Madhh decides on property disputes. 
This is v$lid because, whenever both the premises are true, so is the 
conclusioh (see the following table.) 

premises conclusion 
1 1  1 

The argument is 

[(P V q )  A (9 -+ r) A -- rl * q 
where p: Munna will cook. 
q: Munni *ill practise Karate. 
r: Munna dtudies. 

1 )  

This is not' valid, as you can see from Row 4 of the following truth 
table. 



Methods of Proof 
conclusion 7-premises - 

1 1 1 

E6) w e  need to prove p ===+ q, where 
p: x E R such that x2 = 9,.and 
q: x = 3 or x = -3. 
Now, x2 = 9 ===+ d? = hfi====+ x = f 3 .  
Therefore, p is true and (p q) is true, allows us to conclude that q is 
true. 

t t 4 t 

I E7)  If f is not surjective, then f is not a 1-1 function from X into itself. 

E8)  We want to prove N q a- p, wherev 
p: x E Z such that x2 is even, 

q - ' r  

T 

F 

T 

T 

T 

F 

q: x is even. 
Now, we start by assuming that q is false, i.e., x is odd. 
Then x = 2m + 1 for some m E Z. 
Therefore, x2 = 4m2 + 4 m  + 1 = 2(2m2 + 2m) + 1 
Therefore, x2 is odd, i.e. p is false. 
Thus, N q ==+ N p, and hence, p + q. 

1:l:i;l: i : i : 1 

E9) i) This is on the lines of Example 5. 
ii) Let us assume that x3 + 4x = 0 and x # 0. Then x(x2 + 4) = 0 and 

x # 0. Therefore, x2 + 4 = 0,  i.e., x2 = -4. But x E R and x2 = -4  is 
a contradiction. Therefore, our assumption is false. Therefore, the 
given statemerit is true. 

N r  r 

T T T F  

T T F T  

T F T F  

T F F T  

F T T F  

F T F T  

P 

E10) Direct proof: x" 4x = 0 s x(x2 + 4) = 0 
===+x=00rx2+4=0  
==+ x = 0, since x2 # - 4  V x E R. 

I Proof by contrapositive: Suppose x # 0.  Then x(x2 + 4) # 0 for any 
x E R. 
:. x3 + 4x # 0 for every x E R. 
So we have proved that 'For x E R, x # 0 a x" 44 # 0.'. 
That is, 'For x E R, x3 + 4x = 0 , s  x = 0.'. 

P"q 

T 

T 

T 

T 

T 

T 

q 

E l l )  Suppose C tells the truth. Therefore, D always tells the truth. Therefore, 
C always lies, which is a contradiction. Therefore, C can't be a 
truth-teller, i.e., C is a liar. Therefore, D is a truth-teller. 

E12) i) What about x = l ?  
ii) Take n = 2, x = 1 and y = -1, for instance. . . 

iii) Here we can find an example f such that f is 1-1 but not onto, or such 
that f is onto but not 1-1. 
Consider f : N ;-t N : f(x) = x + 10. Show that this is 1-1, but not 
surjective. 



Elementary Logic E13) i) Theorem: The area of every equilateral triangle of side a and 
perimeter 2a is divisible by 3. 
Proof: Since there is no equilateral triangle that satisfies the 
hypothesis, the proposition is vacuously true. 

ii) Theorem: If a natural number c 'is divisible by 5, then the perimeter 
of the equilateral triangle of side c is 3c. 
Proof: Since the conclusion is always true, the proposition is 
trivially true. . 

E14) Let p(n) be the given predicate. 

Step 1: p(1) : 1 1 2 - 1, which is true. 
1 

Step 2: Assume that p(k) is true for some k > 1, i.e., assume that 1 + - + 
, 1 

4 

Step To show that p(k + 1) is true, consider 

iff k I k + 1, which is true. 
1 1 

< 2 - -  Therefore, (2 - i) + (k + - 
(k + 1) 

Therefore, p(k + 1) is true. 

Thus, by the PMI, p(n) is true V n E N. 

1 + 
(k + 

, by Step 2. 

I 1 
- 4- -- > a, which is true. 

- . ,  JI JZ 
Now, Asurhe that p(k) is true for some k 2 2. Then 

4 1 1 
1 1 1 1 1 -+-+. . .  +-+- 

Ji; JETi 
> Ji; + --- 

d m '  
since p(k) is true. 

Jz ,/m+ 1 

> &Ti, since Jk+l> JI;. 
Hence p(k + 1) is true. 
:. p(n) is true V n 2 2. 

E16) We shall dpply the strong form of the PMI here. 
3 

Let p(n) : la, > - 
2'  

Step 1: p(3) and ~ ( 4 )  are true. 

Step 2: Assume now that for K E N ,  k 2 3, p(n) is true ,for every n such 
that  3 I n <_ k. 

Step 3: We want to  show that  p(k + 1) is true. Now 
3 3 

4 k + l  = a k + a k - 1  > - +  -, by Step 2 
2 2 
3 

I > - 
2'  

:. p(k + 1) is true. 

Thus, p(n) is true 'd n 2 3. 






