
Deep Learning
on Windows

Building Deep Learning Computer Vision
Systems on Microsoft Windows
—
Thimira Amaratunga

Deep Learning on
Windows

Building Deep Learning
Computer Vision Systems

on Microsoft Windows

Thimira Amaratunga

Deep Learning on Windows: Building Deep Learning Computer Vision Systems on
Microsoft Windows

ISBN-13 (pbk): 978-1-4842-6430-0			 ISBN-13 (electronic): 978-1-4842-6431-7
https://doi.org/10.1007/978-1-4842-6431-7

Copyright © 2021 by Thimira Amaratunga

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Matthew Moodie
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Pexels

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6430-0. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Thimira Amaratunga
Nugegoda, Sri Lanka

https://doi.org/10.1007/978-1-4842-6431-7

To my loving wife, for all your support

v

Table of Contents

Chapter 1: �What Is Deep Learning?��� 1

Defining Deep Learning��� 1

Intelligent Machines��� 2

Artificial Intelligence�� 3

Machine Learning�� 4

Deep Learning�� 5

Convolutional Neural Networks�� 7

How Deep?��� 7

Is Deep Learning Just CNNs?��� 9

Why Computer Vision?��� 10

How Does It All Come Together?�� 10

Is an Artificial Intelligence Possible?��� 13

Chapter 2: �Where to Start Your Deep Learning�� 15

Can We Build Deep Learning Models on Windows?��� 15

Advantages of Using Windows��� 16

Limitations of Using Windows�� 17

Programming Language: Python�� 18

Package and Environment Management: Anaconda�� 19

Python Utility Libraries for Deep Learning and Computer Vision��� 19

Deep Learning Frameworks��� 20

About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

vi

TensorFlow��� 20

Keras�� 22

Other Frameworks�� 23

Computer Vision Libraries�� 23

OpenCV��� 23

Dlib��� 25

Optimizers and Accelerators�� 26

NVIDIA CUDA and cuDNN�� 26

OpenBLAS��� 26

What About Hardware?�� 26

Recommended PC Hardware Configurations��� 28

Chapter 3: �Setting Up Your Tools��� 33

Step 1: Installing Visual Studio with C++ Support��� 33

Step 2: Installing CMake�� 37

Step 3: Installing Anaconda Python�� 40

Step 4: Setting up the Conda Environment and the Python Libraries�� 44

Step 5: Installing TensorFlow��� 46

Step 6: (Optional) Installing Keras Multibackend version��� 48

Step 7: Installing OpenCV��� 49

Step 8: Installing Dlib��� 50

Step 9: Verifying the Installations��� 51

Step 10: (Optional) Manually Installing CUDA Toolkit and cuDNN�� 55

Troubleshooting��� 62

Matplotlib Pyplot Error�� 62

Not Getting the Latest Versions�� 63

Not Using the Latest Version of OpenCV��� 64

Dlib Build Errors��� 65

Summary��� 66

Table of Contents

vii

Chapter 4: �Building Your First Deep Learning Model��� 67

What is the MNIST Dataset?�� 67

The LeNet Model�� 69

Let us Build Our First Model��� 69

Running Our Model�� 81

Trying a Different Dataset�� 86

Clothing Image Classification using Fashion-MNIST��� 88

Running Our Fashion-MNIST Model��� 95

What Can You Do Next?�� 100

Chapter 5: �Understanding What We Built�� 101

Digital Images�� 102

Convolutions�� 103

Nonlinearity Function��� 107

Pooling��� 109

Classifier (Fully Connected Layer)�� 110

How Does This All Come Together?�� 111

Chapter 6: �Visualizing Models��� 115

Saving Models in Keras�� 115

Using the plot_model Function of Keras�� 117

Using an Opensource tool to Visualize Model Structures: Netron�� 122

Visualizing the Features Learned by Convolutional Filters�� 124

Chapter 7: �Transfer Learning��� 131

The Problem with Little Data�� 131

Using Data Augmentation�� 132

Build an Image Classification Model with Data Augmentation�� 136

Bottleneck Features��� 146

Using Bottleneck Features with a Pretrained VGG16 Model�� 149

Going Further with Model Fine-tuning��� 155

Fine-tuning our VGG16 Model�� 158

Table of Contents

viii

Making Predictions Using Our Models��� 166

Trying out a Deeper Model: InceptionV3�� 169

Chapter 8: �Starting, Stopping, and Resuming Learning��� 181

Using Multithreading to Increase the Training Speed�� 181

Using Model Checkpoints��� 185

Knowing When to Stop Training��� 198

Building a Robust Training Script��� 201

Chapter 9: �Deploying Your Model as a Web Application�� 215

Setting up Flask��� 216

Designing Your Web Application��� 218

Building Your Deep Learning Web Application��� 220

Scaling Up Your Web Application�� 230

Chapter 10: �Having Fun with Computer Vision�� 233

What We Need�� 233

Basics of Working with Images�� 234

Working with Video: Using Webcams��� 240

Working with Video: Using Video Files��� 242

Detecting Faces in Images��� 244

Detecting Faces in Video�� 246

Simple Real-Time Deep Learning Object Identification��� 248

Chapter 11: �Introduction to Generative Adversarial Networks������������������������������ 253

The Story of the Artist and the Art Critic�� 253

Generative Adversarial Networks��� 254

Generating Handwritten Digits with DCGAN��� 255

The Generator��� 257

The Discriminator��� 260

The Feedback��� 262

The Training�� 264

Running the Training��� 267

Table of Contents

ix

Can We Generate Something More Complex?�� 272

What Else Can GANs Do?��� 283

Chapter 12: �Basics of Reinforcement Learning��� 287

What is OpenAI Gym?��� 288

Setting up OpenAI Gym�� 289

Solving the CartPole Problem�� 293

Solving the MountainCar Problem��� 301

What Can You Do Next?�� 309

�Appendix A: A History Lesson: Milestones of Deep Learning�������������������������������� 311

�What is the ImageNet Challenge (The ILSVRC)?�� 311

�AlexNet: 2012��� 312

�ZF Net: 2013��� 313

�VGG Net: 2014�� 314

�GoogLeNet/Inception: 2014/2015��� 315

�Microsoft ResNet: 2015�� 317

�DenseNet: 2017�� 318

�Why Simply Going Deeper Does Not Work��� 320

�AlphaGo from DeepMind�� 320

�Dota 2 Bot from OpenAI��� 322

�Appendix B: Optional Setup Steps��� 327

�Switching the Backend in Multibackend Keras��� 327

�Installing OpenBLAS for Theano��� 329

Index�� 333

Table of Contents

xi

About the Author

Thimira Amaratunga is an inventor, a Senior Software

Architect at Pearson PLC Sri Lanka with over 12 years

of industry experience, and a researcher in AI, machine

learning, and deep learning in education and computer

vision domains.

Thimira holds a Master of Science in Computer Science

with a Bachelor's degree in Information Technology from the

University of Colombo, Sri Lanka.

He has filed three patents to date, in the fields of

dynamic neural networks and semantics for online learning

platforms. Thimira has also published two books on deep

learning: Build Deeper: The Deep Learning Beginners’ Guide and Build Deeper: The Path

to Deep Learning.

In addition, Thimira is the author of Codes of Interest (www.codesofinterest.com),

a portal for deep learning and computer vision knowledge, covering everything from

concepts to step-by-step tutorials.

LinkedIn: www.linkedin.com/in/thimira-amaratunga.

http://www.codesofinterest.com
http://www.linkedin.com/in/thimira-amaratunga

xiii

About the Technical Reviewer

Sarani Mendis is currently working as a Software Engineer

at Pearson Lanka, with six years of industry experience. She

is an enthusiast and a researcher in UI/UX, AI and machine

learning in natural language processing, and computer

vision domains. Sarani is also an active volunteer at Lanka

Software Foundation and has worked on many of their

projects under Code for Sri Lanka–Elections.

She holds a Master of Science in Computer Science and

a Bachelor of Information Technology from University of

Colombo School of Computing–Sri Lanka.

xv

Acknowledgments

Like many others, this book also started as a single thought. Even with experience in

publishing two earlier books, it was a challenging journey. From the beginning and

along the way, I have received support and encouragement from many, and I would like

to express my sincere gratitude here.

First, I would like to thank the team at Apress, especially Smriti Srivastava, the

acquisitions editor; Shrikant Vishwakarma, the coordinating editor; Matthew Moodie,

the developmental editor; and everyone else involved in the publishing of this book.

I would also like to thank Sarani Mendis, the technical reviewer, for the excellent

feedback and suggestions that added immense value to this book.

To my loving wife, Pramitha: Thank you for the encouragement and the motivation

you provided from the inception of the idea to the completion. Without your support

throughout the long hours and days spent writing and perfecting this book, completing it

might not have been possible.

To my managers at Pearson PLC, who have guided me throughout the years, I would

like to express my gratitude for the guidance and encouragement. And to my team and

colleagues, thank you for all your support that allowed me to achieve this.

And last but not least, to my parents and sister, thank you for the endless support

throughout the years.

xvii

Introduction

Do you wish to learn to build practical deep learning and computer vision Systems,

but are reluctant to switch to Linux for the development? Do you feel like you are more

familiar with Windows, and wish that you could build everything on Windows? Well, you

do not need to worry anymore. The latest deep learning and computer vision libraries

have matured to the point that almost everything now can be made to work seamlessly

on Windows as well. This book will show you how.

Windows OS accounts for over 70% of desktop PC usage. Windows provides many

conveniences, with a wide variety of available productivity tools, causing it to gather

a large user base. Furthermore, due to the better hardware compatibility and driver

support, most decently to high-powered personal PCs tend to run Windows. This means

that there is a large percentage of AI enthusiasts and developers out there who would

like to jump into learning the remarkable capabilities of deep learning / AI. But they

are reluctant or afraid to take the first steps because of the fear of the complexity of the

tools and a widely held belief that AI systems can only be built on developer-friendly

operating systems such as Linux. This book aims to help them move past those mental

blocks and start building practical deep learning systems.

Deep learning on Windows will help you learn to build deep learning and computer

vision systems using Python, TensorFlow, Keras, OpenCV, and more, right within the

familiar elements of Microsoft Windows. The goal of this book is to get as many of you

interested in the field of deep learning and have the OS you build upon a nonbarrier to

begin learning.

Along the way, we will learn what deep learning is and how it came to be. We will

clarify some misconceptions and confusion surrounding deep learning and look at some

of the major milestones it has achieved throughout the years. We will dive into coding,

while learning how to apply the concepts as you build. You will learn how to set up all

the tools and technologies you will need to start coding deep learning systems on a

Windows system.

xviii

In this book, you will:

•	 Learn the concepts, history, and milestones behind deep learning

and how it relates to machine learning and AI while resolving some

misconceptions surrounding those AI concepts.

•	 Learn the tools you would require (TensorFlow, Keras, OpenCV,

CUDA, etc.) to successfully learn building deep learning systems, and

learn how to set up, configure, and troubleshoot them step by step.

Learn to get the tools working on Microsoft Windows and learn why

the OS or the hardware you are developing in does not hold you back

in building state-of-the-art AI systems. This should allow you to break

any mental barriers and apply what you have learned in any OS or

other system.

•	 Learn to build your first deep learning model and understand how

the concepts of each step of it work through code examples. Learn

how to visualize the internal workings and the structure of a model

to gain a deeper understanding of how they work, and apply that

experience to develop more complex models in the future.

•	 Learn to build real-world, practical deep learning computer vision

systems with limited amounts of data with the concepts of transfer

learning and fine-tuning. Learn how to configure training of larger

models with large datasets, and ways you can deploy your application

once trained.

•	 Once you have mastered the basics, learn more exciting and

advanced concepts such as generative adversarial networks, and

reinforcement learning (for basics in game programming).

The book is meant for you if you are an enthusiast of machine learning and

AI—from the beginner to intermediate level—and would like to get a taste of what

deep learning can do. It is meant for you if you prefer to jump in and learn through a

hands-on, practical way by trying out coding and are not afraid to get your hands dirty

with code. And finally, this book is meant for you if you desire to build practical,

real-world AI systems.

Introduction

1
© Thimira Amaratunga 2021
T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_1

CHAPTER 1

What Is Deep Learning?
We live in the era of artificial intelligence (AI).

We may be born a little too late to explore earth, and born too early to explore the

universe. Yet we may be here just in time to witness the rise of AI.

And we can help build that future.

Innovation in the field of AI is happening daily, from smart consumer devices to

AI personal assistants to self-driving cars. The technology giants—Google, Facebook,

Amazon, Microsoft, Apple, IBM, and AI-specialized organizations like DeepMind and

OpenAI—strive to build AI technologies in a variety of fields that solve problems and

improve the quality of life.

Deep learning is the latest iteration of AI. Although the concept itself has been

around for many years, deep learning has become popular during the past few years

due to the remarkable breakthroughs it continues to achieve. What was science fiction a

decade ago is now becoming a reality.

Thanks to deep learning, AI technologies are increasingly becoming a part of our

household. Today, most of our consumer devices and services have some sort of AI built

into them. Maybe it is time you joined the revolution. You too can start contributing to

this AI drive.

But first, we need to make sure that we understand what deep learning is.

�Defining Deep Learning
Whether you are coming from a traditional AI background or just starting in the AI field,

you might be wondering what the terms “artificial intelligence,” “machine learning,” and

“deep learning” mean, as well as the other terminology surrounding it (Figure 1-1).

https://doi.org/10.1007/978-1-4842-6431-7_1#DOI

2

With the term “deep learning” becoming a buzzword, and becoming a part of some

consumer technologies as well, it may be hard to figure out what each of these terms

mean and how they relate to each other. You might be trying to figure out whether these

three terms can be used interchangeably, and where each of them came from.

These are common questions that come to all of us when we are beginning the deep

learning journey. Let us see how we can answer them.

Deep learning is a subset of machine learning that deals with hierarchical feature

learning.

Machine learning is an approach to artificial intelligence that aims at providing

machines with the ability to learn without explicitly programming them.

As for artificial intelligence, we should probably start from the beginning. It all

started with the idea of intelligent machines.

�Intelligent Machines
The concept of intelligent machines is the idea that machines can be built with parallel

(or greater) intelligence of a human being, giving them the capacity to perform tasks that

require human intelligence.

Human beings have been obsessed with this idea since ancient times, and written

records of it can be traced back to the 1300s (from the works of Ramon Llull, 1232–1315).

By the seventeenth century, Gottfried Leibniz expanded on this idea with his calculus

Figure 1-1.  The deep learning confusion

Chapter 1 What Is Deep Learning?

3

ratiocinator—a theoretical universal logical calculation framework. By the nineteenth

century, the concept of formal reasoning had begun, with the introduction of concepts

such as propositional logic by George Boole and predicate calculus by Gottlob Frege.

However, there was no formal research concept for AI until the Dartmouth

Conference in 1956.

�Artificial Intelligence
In June 1956, many experts in the field—scientists and mathematicians—came together

at Dartmouth College in New Hampshire. This conference, titled “The Dartmouth

Summer Research Project on Artificial Intelligence,” was the starting point of the formal

research field of artificial intelligence. The Logic Theorist, developed by Allen Newell,

Herbert A. Simon, and Cliff Shaw, now considered to be the first artificial intelligence

program, was also presented in the Dartmouth conference. The Logic Theorist was

meant to mimic the logical problem solving of a human and was able to prove 38 out of

the first 52 theorems in Principia Mathematica (a book on principles of mathematics

written by Alfred North Whitehead and Bertrand Russell).

By the 1960s, AI research was in full swing. It had funding from the US Department

of Defense, more and more AI research labs were being established, and researchers

were optimistic. Herbert A. Simon had predicted in 1965 that “machines will be capable,

within twenty years, of doing any work a man can do.”1

But AI did not progress quite that fast.

Around the late 1990s and early 2000s, researchers identified a problem in their

approach to AI: to artificially create a machine with intelligence, one needed to first

understand how intelligence worked.

Even today, we do not have a complete definition of what we call “intelligence.”

To tackle the problem, researchers decided to work from the ground up: rather

than trying to build intelligence, they investigated building a system that could grow an

intelligence on its own.

This idea created the new subfield of AI called machine learning.

1�Herbert A. Simon, The Shape of Automation for Men and Management (New York: Harper & Row,
1965), p. 96.

Chapter 1 What Is Deep Learning?

4

�Machine Learning
Machine learning is a subset of artificial intelligence and aims at providing machines

the ability to learn without explicit programming. The idea is that such machines (or

computer programs), once built, will be able to evolve and adapt when they are exposed

to new data.

The main idea behind machine learning is the ability of a learner to generalize from

experience. The learner (or the program), once given a set of training samples, must be

able to build a generalized model upon them, which would allow it to decide upon new

cases with sufficient accuracy.

Based on this approach, there are three learning methods for machine learning systems:

•	 Supervised learning: The system is given a set of labeled cases (a

training set), based on which it is asked to create a generalized model

that can act on unseen cases.

•	 Unsupervised learning: The system is given a set of unlabeled cases

and asked to find a pattern in them. This is ideal for discovering

hidden patterns.

•	 Reinforcement learning: The system is asked to take any action and

is given a reward, or a penalty based on how appropriate that action

is to the given situation. The system must learn which actions yield

the most rewards in given situations over time.

With these techniques, the field of machine learning flourished. They were

particularly successful in the areas of computer vision and text analysis. Over the years,

many models have been introduced as means of implementing machine learning

techniques, such as artificial neural networks (models inspired by how neurons of the

brain works), decision trees (models that use tree-like structures to model decisions and

outcomes), regression models (models that use statistical methods to map input and

output variables), and so on.

Around 2010, a few things happened that influenced machine learning research:

Chapter 1 What Is Deep Learning?

5

•	 Computing power became more available, and evaluating more

complex models became easier.

•	 Data processing and storage became cheaper. More data became

available for consumption.

•	 Our understanding of how the natural brain works increased,

allowing us to model new machine learning algorithms around them.

These breakthroughs propelled us into a new area of machine learning called deep

learning.

�Deep Learning
Deep learning is a subset of machine learning that focuses on an area of algorithms

inspired by our understanding of how the brain works to obtain knowledge.

It is also referred to as deep structured learning or hierarchical learning.

Deep learning builds upon the idea of artificial neural networks and scales it up,

to be able to consume large amounts of data by deepening the networks in a specific

way. Through a deeper network, a deep learning model has the capability of extracting

features from raw data and “learn” about those features little by little in each layer,

building up to a higher-level knowledge of the data. This technique is called hierarchical

feature learning, and it allows such systems to automatically learn complex features

through multiple levels of abstraction with minimal human intervention.

Following are some definitions of deep learning from some pioneering work in

the field:

A sub-field within machine learning that is based on algorithms for learning multiple

levels of representation to model complex relationships among data. Higher-level features

and concepts are thus defined in terms of lower-level ones, and such a hierarchy of features

is called a deep architecture.

—Deep Learning: Methods and Applications2

The hierarchy of concepts allows the computer to learn complicated concepts by

building them out of simpler ones. If we draw a graph showing how these concepts are

2�Li Deng and Dong Yu, Deep Learning: Methods and Applications (Redmond, WA: Microsoft
Research, 2014), p. 200.

Chapter 1 What Is Deep Learning?

6

built on top of each other, the graph is deep, with many layers. For this reason, we call this

approach to AI, deep learning.

—Deep Learning3

One of the most distinct characteristics of deep learning—and one that made it quite

popular and practical—is that it scales well; that is, the more data given to it, the better it

performs. Unlike many older machine learning algorithms that have an upper bound to

the amount of data they can ingest—often called a plateau in performance (Figure 1-2)—

deep learning models have no such limitations (theoretically), and they may be able to

go beyond what humans can comprehend. This is evident with modern deep-learning-

based image processing systems that are able to outperform humans.

3�Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning (Cambridge, MA: MIT
Press, 2016), p. Back Cover Text.

Figure 1-2.  The lack of plateau in performance in deep learning

Chapter 1 What Is Deep Learning?

7

�Convolutional Neural Networks
Convolutional neural networks (CNNs) are a prime example of deep learning. They

were inspired by how the neurons are arranged in the visual cortex (the area of the brain

which processes visual input). Here, not all neurons are connected to all the inputs from

the visual field. Instead, the visual field is “tiled” with groups of neurons (called receptive

fields) that partially overlap each other.

CNNs work in a similar way. They process their input in overlapping blocks of the

input using mathematical convolution operators, which approximates how a receptive

field works (Figure 1-3).

The first convolution layer uses a set of convolution filters to identify a set of low-

level features from the input image. These identified low-level features are then pooled

(from the pooling layers) and provided as input to the next convolution layer, which uses

another set of convolution filter to identify a set of higher-level features from the lower-

level features identified earlier. This continues for several layers, where each convolution

layer uses the inputs from the previous layer to identify higher-level features than the

previous layer. Finally, the output of the last convolution layer is passed on to a set of

fully connected layers for the final classification.

�How Deep?
Once you grasp the capabilities of deep learning, there is one question that usually

surfaces: If we say that deeper and more complex models give deep learning models

the capabilities to surpass even human capabilities, then how deep a machine learning

model should be to be considered a deep learning model?

Figure 1-3.  A convolutional neural network

Chapter 1 What Is Deep Learning?

8

It turns out that there is no clear response to this question. What we need to do

instead is to look at deep learning from a different angle to understand it better. Let us

take a step back and see how a deep learning model works—for example, with CNNs.

As mentioned earlier, the convolution filters of a CNN attempts to identify lower-

level features first and use those identified features to identify higher-level features

gradually through multiple steps.

This is the hierarchical feature learning we talked about earlier, and it is the key

to understanding deep learning and what differentiates it from traditional machine

learning algorithms (Figure 1-4).

A deep learning model (such as a CNN) does not try to understand the entire

problem at once; that is, it does not try to grasp all the features of the input at once, as

traditional algorithms tried to do. What it does look at is the input, piece by piece, so that

Figure 1-4.  Hierarchical feature learning

Chapter 1 What Is Deep Learning?

9

it can derive from its lower-level patterns/features. It then uses these lower-level features

to gradually identify higher-level features, through many layers, hierarchically. This

allows deep learning models to learn complicated patterns, by gradually building them

up from simpler ones. This also allows deep learning models to comprehend the world

better, and they not only see the features but also see the hierarchy of how those features

are built upon each layer.

Of course, having to learn features hierarchically means that the model must have

many layers in it. This means that such a model will be “deep.”

That brings us back to our original question: it is not that deep models are deep

learning, but rather that to achieve hierarchical learning, the models need to be deep.

The deepness is a by-product of implementing hierarchical feature learning.

So how do we identify whether a model is a deep learning model or not?

Simply put, if the model uses hierarchical feature learning—identifying lower level

features first, and then building upon them to identify higher-level features (e.g., by

using convolution filters)—then it is a deep learning model. If not, then no matter how

many layers your model has, it is not considered a deep learning model. This means that

a neural network with 100 fully connected layers (and only fully connected layers) would

not be a deep learning model, but a network with a handful of convolutional layers

would be.

�Is Deep Learning Just CNNs?
When we talk about deep learning, we talk about CNNs a lot. You might be wondering

whether deep learning is only CNNs.

The answer is no.

The following models, among others, are considered deep learning:

•	 Convolutional Neural Networks

•	 Deep Boltzmann Machine

•	 Deep Belief Networks

•	 Stacked Autoencoders

•	 Generative Adversarial Networks (GANs)

•	 Transformers

Chapter 1 What Is Deep Learning?

10

We take CNNs as examples for deep learning more often because they are easier to

understand. As they were based on how biological vision works, it is easier to visualize

and apply how they are based on the cognitive workflow of vision.

But we should keep in mind that CNNs are not the whole picture of deep learning.

�Why Computer Vision?
Looking at the history of deep learning and some recent achievements of it,4 you will

notice that most of the projects it has been applied to deal with computer vision. Even

the ImageNet competitions focus on visual recognition.

Why is that? Does deep learning only work on computer vision?

Not really.

Vision—understanding and giving meaning to visual inputs—is something humans

are exceptionally good at. The ability to understand one’s surroundings is considered

a sign of intelligence. So when it comes to building intelligent machines, vision is one

of the core capabilities that we wish an intelligent machine to possess. It is also easy to

validate, as we can easily compare it with the ability of a human.

Therefore, exploring vision capabilities has become a core area in deep learning

research.

The achievements deep learning gathers in the vision field may shape how we

approach other fields as well. Thanks to the capability of transfer learning (which we will

discuss in a later chapter), deep learning can apply knowledge gained from one domain

to another domain. While typically this capability is used to apply knowledge from one

vision model to another, it is speculated (and there is much ongoing research) how the

knowledge from a model trained on visual input may apply in a nonvisual context.

�How Does It All Come Together?
Returning to our original questions: How do the areas of artificial intelligence, machine

learning, and deep learning relate to each other?

4�A more detailed look at the milestones of deep learning throughout the years is available in
Appendix 1.

Chapter 1 What Is Deep Learning?

11

Simply put, machine learning is a subset (an approach) of artificial intelligence, and

deep learning is a subset of machine learning, all working toward the common goal of

creating an intelligent machine (Figure 1-5).

See Figure 1-6 for a quick look back at how deep learning, machine learning, and

artificial intelligence evolved through the years.

Figure 1-5.  How artificial intelligence, machine learning, and deep learning relate
to one other

Chapter 1 What Is Deep Learning?

12

With its initiation in the early 2010s, deep learning kept on achieving groundbreaking

results, with accuracies that were thought not to be possible earlier in tasks that were

previously thought to be only possible to perform by humans, such as image recognition,

language processing, and speech recognition. Shown in Figure 1-7 are a few of the

noteworthy deep learning milestones in image recognition over the past decade.

Figure 1-6.  The evolution of deep learning

Chapter 1 What Is Deep Learning?

13

You can learn more about these specific models and their importance to deep

learning in Appendix 1.

With the capabilities demonstrated and the success achieved by deep learning, we

may be a step closer to the ultimate goal of artificial intelligence: building a machine

with human (or greater) level intelligence.

�Is an Artificial Intelligence Possible?
Despite everything AI has already achieved, there still exists some skepticism out there

as to whether true AI (also referred to as artificial general intelligence) is possible.

One of the reasons for these skepticisms is due to a misunderstanding of the term

“artificial intelligence.” This has caused doubts in the approach AI is taking toward its goals.

Figure 1-7.  Deep learning model accuracy over the years

Chapter 1 What Is Deep Learning?

14

The term “artificial intelligence” is an unfortunate mis-term, which has led to many

misinterpretations. When the Dartmouth conference of 1956 named the new research

field as artificial intelligence, they had good intentions for that name. But, as always,

intentions are not preserved nor are they obvious.

The common misconception—by taking the name literally—is that AI aims to build

“intelligence” artificially. However, in reality, the term “artificial intelligence” was and

was always meant to be “artificial” + “Intelligence,” meaning that it was meant to bridge

artificial and intelligence. The goal of AI is to observe and understand “intelligent”

behavior inherently found in natural constructs (human or otherwise) and attempt to

build the intelligent behavior into artificial constructs. These artificial constructs could

be computer programs, machines/robots, algorithms, or theoretical frameworks.

This concept is what has brought us models such as neural networks and genetic

algorithms, among many others. If you look closely at these models, it becomes apparent

that they are all applying modified versions of natural intelligence concepts on top of

artificial constructs.

The ultimate goal of AI was—and is—to build a machine with a human or greater

level of intelligence. (Note that a “machine” is a subjective term here, which can mean

any artificial construct.) We do not want to reinvent “intelligence” for it. We just need

to adapt the character and concept of natural intelligence to the artificial constructs we

build.

We do not build intelligence artificially. We build machines inspired by nature.

Chapter 1 What Is Deep Learning?

15
© Thimira Amaratunga 2021
T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_2

CHAPTER 2

Where to Start Your Deep
Learning
Welcome to the exciting world of deep learning, AI, and computer vision.

With a high-level understanding of what deep learning is and its capabilities from the

last chapter, you might be eager to learn building practical deep learning and computer

vision systems.

But are you reluctant to switch to Linux for the development? Do you feel like you are

more familiar with Windows, and wish that you could build everything on Windows?

Well, you do not need to worry anymore. The latest deep learning and computer

vision libraries have matured to the point that almost everything now can be made to

work seamlessly on Windows as well.

We will look at building deep learning systems on Windows step by step.

But first, let us answer a concern you might be having.

�Can We Build Deep Learning Models on Windows?
If you have been a developer for long, you might have noticed that Windows did not used

to work well with cutting-edge development, especially open-source projects.

While deep learning and computer vision frameworks weren't necessarily limited to

a particular OS, the ease of development on Linux or Unix-based systems and the pace of

which the development happened meant that the latest features and options were either

delayed or not available on Windows. And thus for a time, if you wanted to make any

serious machine learning, AI, or computer vision models, it seemed like you would have

to stick with Linux or a Unix-based system.

But fortunately, things have improved for Windows greatly in recent years.

Cutting-edge deep learning frameworks like TensorFlow and Keras, as well as computer

vision libraries like OpenCV and Dlib, now have their newer versions working natively on

Windows. Driver support and GPU acceleration also work seamlessly on Windows now.

https://doi.org/10.1007/978-1-4842-6431-7_2#DOI

16

In fact, in some cases, it is easier to get GPU acceleration such as NVIDIA CUDA

support working with Windows than on Linux. Windows driver support for consumer

graphics cards has been ahead for many years.

�Advantages of Using Windows
Windows is the most popular operating system in the world, with over 70% of desktop

PCs using some version of it (see Figure 2-1).1

Figure 2-1.  Windows usage on desktop PCs1

1�Statistics from GS Statcounter, “Desktop Operating System Market Share Worldwide, Sept.
2019–Sept. 2020,” https://gs.statcounter.com/os-market-share/desktop/worldwide,
accessed [19 Apr 2020] and Wikipedia, “Desktop/Laptop Operating System Browsing Statistics,”
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems#Desktop_and_laptop_
computers, accessed [17 Apr 2020].

Chapter 2 Where to Start Your Deep Learning

https://gs.statcounter.com/os-market-share/desktop/worldwide
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems#Desktop_and_laptop_computers
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems#Desktop_and_laptop_computers

17

In most cases, unless you are a dedicated DL/ML researcher, if you already have a

decently powerful general-purpose PC—or are thinking of getting or building one—you

tend to use Windows on it. Probably you are more familiar with using Windows as the

OS of your home PC and are using other software on your PC that is only available on

Windows.

So, if you are thinking of learning to build deep learning models, it is easier when you

do not need to switch your OS to do so.

If you are planning to use GPU accelerations on your models—which we cover

later in this chapter—then getting them working on Windows is much easier than other

operating systems due to better driver support (although Linux GPU driver support is

now improving).

And if you do have a good GPU in your PC, chances are that you want to use that for

other things like gaming or productivity instread of dedicating it to deep learning. By

sticking to Windows, you get the best of both worlds.

�Limitations of Using Windows
In addition to the advantages we discussed, there are some limitations in using Windows

that you should be aware of.

While most of the frameworks and libraries for deep learning and computer vision

are now available on Windows, you may find that the latest versions of them are typically

delayed more than their Linux counterparts.

If you try to customize or build the libraries from source, you may find that the

requirements to build them on Windows are a little bit strict. It is the main reason that

the native packages tend to be delayed for Windows.

Because support for Windows was recent, you may also find that the community

support for issues on Windows is also less than that for Linux. This will hopefully

improve in the future, with more people starting deep learning development on

Windows.

The bottom line is that you do not have to switch from Windows to an OS like Linux

in order to learn deep learning if you don't want to. In this book, we will see how to get

everything needed to build deep learning systems that work on Windows.

Chapter 2 Where to Start Your Deep Learning

18

Linux is a great OS for developers. If you feel like it, you should definitely check out

developing on Linux. Serious researchers on deep learning and computer vision do tend

to use Linux systems for their development due to the flexibilities it provides. But it is not

a must for you to start learning.

You can start building practical deep learning systems right on Windows. And once

you learn how, you can later switch to any OS for your development if you prefer.

So what do you need to start?

You need to select a programming language to write your code and select a couple of

deep learning frameworks for that language, throw in a selection of utility libraries and

tools to help you, and then just start coding.

Does that sound too overwhelming?

Let us look at these requirements one at a time.

�Programming Language: Python
You might wonder, why Python? Is it the only language for deep learning? Definitely not.

When you understand the concepts, you can use pretty much any language to

implement deep learning. But some languages have already established tools, libraries,

and frameworks for supporting machine learning and deep learning tasks. To avoid

reinventing already existing elements, we chose a language that has a lot of such

pre-existing support.

Is Python the best language for deep learning? That is a tricky question.

When we look for the most popular languages for machine learning, a couple of

languages stand out: Python, R, C++, C, and MATLAB. Each of them has its advantages

and disadvantages.

We chose Python for several reasons that are especially important when you are just

starting to learn deep learning.

For a beginner in deep learning—especially for someone with a programming

background—writing code in Python would be more natural. You can use most of the

familiar object-oriented and functional programming concepts. While performance may

not be as good as C or C++, Python is still quite fast. Having the capability to run the code

on multiple CPUs and GPUs helps a lot too. Another plus point is that most C and C++

libraries tend to have Python interfaces as well (e.g., OpenCV, Dlib, Caffe). Compared

to R and MATLAB, the availability of deep learning and machine learning libraries are

similar in Python. But considering the maturity of the libraries, Python libraries seem to

Chapter 2 Where to Start Your Deep Learning

19

be more bleeding edge. Most of the latest deep learning frameworks are currently being

developed primarily targeting Python (e.g., TensorFlow).

One of the biggest advantages of using Python is its deployability. Say you build

an awesome deep learning program, and you want to deploy it as a web service. With

Python, it is fairly straightforward. With R, MATLAB, or C/C++, it will take quite a bit of

effort.

Considering all these benefits, we are going to use Python for our deep learning

experiments.

�Package and Environment Management: Anaconda
Anaconda is an open source platform of Python and R languages meant for machine

learning, data science, large-scale data processing, and scientific computing. Anaconda

contains optimized versions of Python for many platforms and architectures.

It is not only a Python distribution, but also a package, dependency, and

environment manager for Python. Through its conda package manager, Anaconda

allows easy creation of virtual isolated environments—with its Python binaries

and packages—to experiment with. You can create multiple independent Python

environments of multiple Python versions, and their own independent installed

packages, based on your needs.

Anaconda also contains hundreds of prebuilt and tested packages for machine

learning, scientific computing, and data processing that you can directly install through

the conda package manager. It removes the hassle of finding, building, installing, and

dependency managing of packages and libraries.

�Python Utility Libraries for Deep Learning
and Computer Vision
When working with Python and the deep learning frameworks (which we will be looking

at in a bit), having the following set of utility libraries will make a lot of tasks easier:

•	 NumPy: adds support to handle large multidimensional arrays in

Python, along with a collection of high-level mathematical functions

that can be applied across arrays.

Chapter 2 Where to Start Your Deep Learning

20

•	 SciPy: the scientific cousin of NumPy. SciPy adds support for

mathematical optimization, linear algebra, integral and differential

equations, interpolation, special functions, Fourier transforms, and

signal processing to Python.

•	 Pillow: pillow is a fork of PIL (Python Image Library), which adds

image processing capabilities to Python. It adds extensive file

format support for images, with efficient internal representation

mechanisms.

•	 Scikit-Image: adds a set of higher-level image processing capabilities

to Python, such as edge detection, equalization, feature detection,

and segmentation.

•	 h5py: adds the support of the HDF5 binary data format to Python.

The HDF5 format is used in many of the machine learning

frameworks, as it allows easy storage and handling of large,

terabyte-level data as if they were internal data arrays.

•	 Matplotlib: Matplotlib is a sophisticated 2D and 3D plotting

and data visualization library for Python, allowing you to create

publication-quality plots and figures on a variety of platforms.

Note T hese are just a few of the utility libraries that we would need to get our
code working. We will be needing more as we go along. But having these will help
make things easier from the start.

With Anaconda, we also do not need to install them one by one. Anaconda has
utility functions to quickly install these—and more—which we will investigate in
the next chapter.

�Deep Learning Frameworks
�TensorFlow
TensorFlow is currently one of the most actively developed machine learning libraries in

the world. At its core it is a symbolic math library, which specializes in applications such

as neural networks.

Chapter 2 Where to Start Your Deep Learning

21

TensorFlow is the second-generation machine learning library by the Google

Brain Team, and has gained huge popularity in recent times due to its deep learning

capabilities. First released in November 2015, as the successor to DistBelief (Google

Brains first-generation machine learning library), TensorFlow initially only supported

Python and C on Linux. Since then it has added support to C++, Java, Go, JavaScript,

and experimental support for Swift. Third-party support is also available for C#, Haskell,

Julia, MATLAB, R, Scala, Rust, OCaml, and Crystal. TensorFlow now works on Windows

and Mac OS natively.

TensorFlow is capable of running on either CPU or GPU (with NVIDIA CUDA). It

also runs on Google’s proprietary Tensor Processing Units (TPUs)—application-specific

integrated circuit (ASIC) units built specifically for machine learning and tailored for

TensorFlow. TensorFlow can also run on lower-end devices like mobile phones—on

Android and iOS—and Raspberry Pi devices when running inference.

TensorFlow uses stateful data flow graphs for its numerical calculations, where

the nodes of the graph represent mathematical operations, while the edges of the

graph represent the data that flows through the nodes. The data is represented as

multidimensional arrays (tensors), hence the name “TensorFlow.”

In February 2017, TensorFlow released version 1.0.

TensorFlow.js 1.0 was released in March 2018.

TensorFlow 2.0 was released in January 2019, version 2.1 in January 2020, and

version 2.2 in May 2020.

The 2.x versions come with many new features and improvements, such as eager

execution, multi-GPU support, tighter Keras integration, and new deployment options

such as TensorFlow Serving (Figure 2-2).

Chapter 2 Where to Start Your Deep Learning

22

�Keras
Keras is a higher-level neural networks library for Python, which can run on top of

TensorFlow, CNTK (Microsoft Cognitive Toolkit), or Theano, and has limited support

for MXNet and Deeplearning4j. The focus on Keras is to allow fast experimentation and

prototyping of code by being user-friendly, minimal, modular, and extensible. Keras

gives you a more clean and structured code than when using the backend libraries

directly.

Keras supports convolutional networks and recurrent networks, as well as

combinations of the two, and can run on both CPU and GPU, based on the capabilities of

the backend being used.

With the release of TensorFlow v1.0 in February 2017, the TensorFlow team added

dedicated support to Keras in the TensorFlow library.

With TensorFlow 2.0, released in January 2019, the Keras library is fully integrated

into the TensorFlow library and is available through the tf.keras interface. The

multibackend Keras implementation is also maintained as a separate branch, but the

main development now happens on tf.keras.

Figure 2-2.  The TensorFlow 2.0 Ecosystem2

2�Image is from [https://blog.tensorflow.org/2019/09/tensorflow-20-is-now-available.
html], “TensorFlow 2.0 is now available!,” [30 Sept 2019].

Chapter 2 Where to Start Your Deep Learning

https://blog.tensorflow.org/2019/09/tensorflow-20-is-now-available.html
https://blog.tensorflow.org/2019/09/tensorflow-20-is-now-available.html

23

�Other Frameworks
�Scikit-Learn

Scikit-Learn (formerly scikits.learn) is a library for machine learning, data mining,

and data analytics. It gives capabilities such as classification, regression, clustering,

dimensionality reduction, model selection, and preprocessing (feature extraction and

normalization). Scikit-Learn has one of the best collections of machine learning and

utility algorithms for data processing.

�Theano

Theano is a machine learning and numerical computation library developed by

the researchers at the University of Montreal. The idea behind Theano is to allow

developers to write symbolic expressions, which it would then dynamically compile

to run on various architectures. The dynamic C code generation feature of Theano

allows programs to efficiently run and take advantage of different CPU or GPU

architectures. Theano has tight integration with NumPy, which it uses to represent its

multidimensional data structures.

Theano has been in active development since 2007 and is considered as a good

alternative to TensorFlow, as both support similar features.

�Computer Vision Libraries
Why do we need computer vision libraries?

As we discussed in the previous chapter, when working with deep learning, you will

run into many tasks requiring computer vision and image processing.

Having these libraries will make things easier.

�OpenCV
OpenCV (open source computer vision) is the de facto standard library when it comes

to computer vision. Aimed at real-time computer vision applications, OpenCV is

loaded with vision and image processing algorithms. It also has some machine learning

capabilities built in to aid with building computer vision applications.

Chapter 2 Where to Start Your Deep Learning

24

Originally developed by Intel and initially released in June 2000, OpenCV has

since been made open-source and is now released under the BSD license. The current

versions of OpenCV is primarily written in C++, but still contains some legacy C

components as well as C interfaces. OpenCV has interfaces for C, C++, Python, MATLAB,

and Java. It can run on Windows, Linux, Mac OS, iOS, and Android.

As well as the computer vision aspect of it, OpenCV provides excellent image

processing and manipulation options such as cropping, resizing, transforming, color

channel manipulating, and many more options on a variety of image types. This makes it

essential to many applications in which images are used, such as building deep learning

computer vision models with frameworks such as TensorFlow. OpenCV is also able to

process video streams from cameras as well as video files (Figure 2-3).

Currently there are two major branches of OpenCV: v3.x and v4.x. The 4.x branch

contains the latest development and is more optimized. However, the 3.x versions may

be more cross-compatible with other libraries we are using.

Figure 2-3.  OpenCV processing a video file

Chapter 2 Where to Start Your Deep Learning

25

�Dlib
Dlib is a toolkit for C++ and Python containing machine learning algorithms and tools

for creating complex software to solve real-world problems. Dlib provides algorithms

for machine learning and deep learning, multiclass classification and clustering models,

support vector machines, regression models, a large set of numerical algorithms for

areas such as matrix manipulations and linear algebra, graphical model inference

algorithms, and utility algorithms for computer vision and image processing. And due to

C++ implementations backing most of these implementations, they are optimized to the

point that can be used in some real-time applications as well.

If you’re interested in facial recognition models or facial emotion processing, then

Dlib is a library you should try out, as Dlib has some of the most optimized out-of-the-

box face detection and face landmark detection models available (Figure 2-4).

Dlib also has easy to use functions to train your own object detectors, shape

predictors, and deep learning–based semantic segmentation of images.

Figure 2-4.  Dlib Face Landmark Detection in action

Chapter 2 Where to Start Your Deep Learning

26

�Optimizers and Accelerators
Building and training deep learning models are computationally complex tasks, usually

taking a lot of processing power and time of a system. Optimizers and accelerators

are libraries and tools which help to perform those steps faster. Most optimizers and

accelerator tools work by giving your deep learning code direct access to the capabilities

of the hardware of the system, allowing them to harness the full potentials of the

hardware.

�NVIDIA CUDA and cuDNN
CUDA is a parallel computing platform and programming model invented by NVIDIA.

It enables dramatic increases in computing performance by harnessing the power of

the GPU. cuDNN—CUDA Deep Neural Network library—is a GPU-accelerated library of

primitives for deep neural networks. cuDNN provides highly tuned implementations for

standard routines such as forward and backward convolution, pooling, normalization,

and activation layers.

Using CUDA and cuDNN along with either Theano or TensorFlow can speed up your

neural networks extensively (networks that took hours to train might take just minutes,

but this would depend entirely on your model). The only requirement is that you need to

have a CUDA supported NVIDIA GPU in your system.

�OpenBLAS
OpenBLAS is an open-source implementation of the BLAS (basic linear algebra

subprograms), containing optimizations for many specific processor types. Machine

learning libraries such as Theano can speed up certain routines by utilizing BLAS

libraries. You will see a noticeable speed difference when running your models with

OpenBLAS on CPU. However, some libraries, such as TensorFlow, have their internal

optimizers, and will not see any improvements with OpenBLAS.

�What About Hardware?
The next question that might strike you is: What kind of hardware do I need to do deep

learning experiments?

Chapter 2 Where to Start Your Deep Learning

27

It is a tricky question, as we need to think about the two phases of a deep learning

system: training and inference.

To build a deep learning system—or any machine learning system—we first gather

some data to train the system on. We then build a deep learning model and run it

through the training dataset. This is where our model “learns” the characteristics of the

data. Once the system runs through the training dataset, we typically do some validation

steps to make sure it has been trained properly. These steps are called the training phase

of the system.

Once the system completes the training phase, it is ready to be put to real use. This is

where the system is presented with new, real-world data and utilizes what it has learned.

The system will use what it has learned, to infer things about the new data it is being

presented. This is called the inference phase of the system.

So how does this relate to our question about hardware?

The training phase is the most resource-intensive of the two. It requires high

computation power (either CPU or GPU) to run the training through a deep learning

model, and large amounts of memory to hold the data needed for the training. So for

training deep learning models, you will need a machine with sufficient computing power

and memory. The more power you have, the faster and the more complex the models

you can train. Having GPU-computing capable graphics card (such as a one with an

NVIDIA CUDA enabled GPU) would be a plus here.

But remember, even a moderate PC is capable of training sufficiently large deep

learning models. There are techniques you can use to handle large data sets with limited

memory. So do not let your PCs specs discourage you from experimenting. All the code

we discuss in this book can run on a standard PC or laptop.

If you feel that your local computing power is not sufficient for your experiments,

you can easily use cloud computing services to train your deep learning models. Amazon

Web Services provides their P3 GPU Compute instances, which are backed by NVIDIA

Tesla GPUs (see AWS P3 Instances3), which should be able to handle massive deep

learning models, or Google Colab Notebooks (see Google Colaboratory4).

What about the inference phase?

3�AWS P3 Instances are from [https://aws.amazon.com/ec2/instance-types/p3/],” “Amazon
EC2 P3 Instances,” [20 Apr 2020.]

4�Google Colaboratory, “Welcome To Colaboratory,” https://colab.research.google.com/,
[20 Apr 2020.]

Chapter 2 Where to Start Your Deep Learning

https://aws.amazon.com/ec2/instance-types/p3/
https://colab.research.google.com/

28

A properly optimized deep learning model would be able to run inference on a

limited resource device such as a Raspberry Pi device or a smartphone. This typically

depends on the size of the final trained model. There are deep learning architectures—

such as MobileNet and SqueezeNet, which are specifically designed to be fast and

smaller in size, so they can fit into mobile devices.

�Recommended PC Hardware Configurations
If you are thinking of building (or upgrading) or buying a PC that you plan to use for deep

learning, machine learning, or computer vision tasks, here are some recommendations

for the hardware.

Note P lease note that these are only recommendations. The libraries and
frameworks mentioned in this book can be set up and will work on a variety of
hardware configurations.

As mentioned earlier, the main requirements for a machine aimed at deep learning

and computer vision are processing power and memory. Processing power dictates

how fast the required calculations can be performed and is determined by how fast

your CPU and GPU are. The number of processor cores your CPU has will also have an

impact on the speed as it dictates how parallel the operations can be. Memory dictates

how complex your models can be (as they need to be loaded into the memory) as well

as how much of the training data can be loaded into the memory at a time, indirectly

affecting the training speed. The complexity of the models you will be able to train will

be determined by both the amount of RAM the machine has and the amount of VRAM

the GPU has.

Therefore, the ideal deep learning PC would consist of a faster, powerful CPU with a

high core count, with large amounts of RAM, and a faster GPU with higher VRAM.

But unless you have an unlimited amount of money to spend on the absolute

highest-end PC, you would have to balance out these requirements. So let us see what

we should practically look in to.

Chapter 2 Where to Start Your Deep Learning

29

For the CPU, balance out the power and affordability. Something like an Intel

Core-i5 or an AMD Ryzen 5 would be sufficient as a minimum. A Core-i7 or higher

(eighth-generation or higher) for Intel,5 or Ryzen 7 or higher (second-generation or

higher) for AMD,6 would be a better choice if you can go for it. Consider the core count

as well as the single-core performance when selecting. An overclockable processor

(i.e., multiplier unlocked processor, such as the Intel K series) is only recommended if

you are experienced with overclocking, as we prefer stability over raw speed for deep

learning workloads. You can usually save several hundred dollars by going for a non-

overclockable processor.

Pair up the processor with a decent motherboard. You will not need a fancy gaming-

featured motherboard. But look for a one with good power distribution, with a higher

number of VRMs (voltage regulator modules). In deep learning workflows, both the CPU

and GPU would be running at their max, so better power delivery will keep them stable.

Also, look for the expandability of the motherboard as well. Having more RAM slots

would allow you to add more RAM later, while more PCIe 16x slots will allow you to go

for a multi-GPU option later. However, these are optional features if you are just starting.

Go for the highest amount of RAM you can afford. It is recommended to have 16GB

of RAM at a minimum. Also, be aware of the recommended speed of the RAM that

your processor and motherboard support. Higher speed RAM with XMP profiles may

introduce instabilities if you are unfamiliar with how they work.

As mentioned with the motherboard, stable power is essential to the stability of the

system. Some deep learning training tasks can take hours, if not days. Therefore, a stable

power supply is a must. When selecting a power supply look for a one with an energy

efficiency rating of “80+ Gold” or better. Based on the processor and the graphics card

you select, typically a 500W power supply may suffice. But you may go for a higher one if,

for example, you plan to go for multiple GPUs later.

Selecting a GPU can be a bit tricky, as they are usually the most expensive

component of a PC build. Since most deep learning and machine learning frameworks

and libraries use NVIDIA CUDA for GPU processing, we would need to select an NVIDIA

graphics card.

5�List of Intel microprocessors from [https://en.wikipedia.org/wiki/List_of_Intel_
microprocessors], “List of Intel processors,” [21 Nov 2020].

6�AMD Ryzen from [https://en.wikipedia.org/wiki/Ryzen], “Ryzen,” [20 Nov 2020].

Chapter 2 Where to Start Your Deep Learning

https://en.wikipedia.org/wiki/List_of_Intel_microprocessors
https://en.wikipedia.org/wiki/List_of_Intel_microprocessors
https://en.wikipedia.org/wiki/Ryzen

30

Note  While AMD has some excellent graphics card models, their compatibility
and support with ML tasks are still experimental. So we will need to stick to NVIDIA
here.

When considering a graphics card for deep learning, machine learning, or computer

vision tasks, few things needs to be considered:

•	 CUDA core count: The higher the core count, the better it can

parallelize the processing.

•	 Memory: Higher memory allows you to fit more training data at

a time for processing. (If your dataset is bigger than the available

GPU memory, you will have to chunk it and perform incremental

learning.)

•	 Clock speed: The higher the clock speed, usually the better (if you’re

just starting, don’t think too much about numbers such as “base

clock” and “boost clock,” as several other factors are affecting the

speed of the card).

•	 Other features: Having additional features such as Tensor Cores

found in GPUs with NVIDIA Turing microarchitecture (GeForce

RTX 20 series or newer), might help increase the training speed of

your models. But you may need to tune your models to utilize these

features.

Based on these factors, the following graphics cards families can be recommended:

•	 GeForce 10 series: An older generation, but still fairly good

performance. You may also be able to find these very cheaply

in the used market if you are comfortable getting a used

GPU. Recommended cards: GTX 1070Ti or better (1070Ti, 1080,

1080Ti).

•	 GeForce 16 series: The same Turing architecture as the 20

series, but without the Tensor Cores and RT Cores (Ray-Tracing).

Recommended cards: GTX 1660 or better (1660, 1660Ti).

Chapter 2 Where to Start Your Deep Learning

31

•	 GeForce 20 series: The latest generation of NVIDIA GeForce (at the

time of this writing). Turing architecture with Tensor Cores and RT

Cores. Recommended cards: RTX 2060 Super or better (2060 Super,

2070 Super, 2080 Super, 2080Ti, Titan RTX).

•	 GeForce 30 series: It is still too early to say anything about the deep

learning performance of the next generation of NVIDIA GeForce. But

with the new Ampere microarchitecture, it is expected to outperform

the previous generations.

NVIDIA graphics cards are sold either directly through NVIDIA—the “Founders

Edition” cards—or through NVIDIA partners such as ASUS, MSI, EVGA, Gigabyte, and

many more. When selecting a graphics card, it is better to select one from a well-known

brand, as those tend to have better build quality, better and stable power delivery, and

better cooling. Deep learning tasks will stress your GPU and sustain the stress more than

any game or application.

In addition to this, faster storage such as an SSD would also help to speed up your

system.

What we discussed here are only recommendations; it is possible to build deep

learning models with much older or slower hardware than this. Therefore, do not

be discouraged if your current machine does not meet these recommendations. As

mentioned in the previous section, optimizing your models plays a larger role than the

speed of the hardware you train on. So start learning, and start building.

Chapter 2 Where to Start Your Deep Learning

33
© Thimira Amaratunga 2021
T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_3

CHAPTER 3

Setting Up Your Tools
Now that we know what we need to get started, let us begin setting up our tools.

Since we will be using packages from several different sources—from Anaconda

package channels, pip packages, and so on—the order in which we install them is

somewhat important in order to get a smoother installation experience without any

conflicts. We recommend the following order of operations:

	 1.	 Install Visual Studio with C++ Support

	 2.	 Install CMake

	 3.	 Install Anaconda Python

	 4.	 Set up the Conda Environment and the Python Libraries

	 5.	 Install TensorFlow

	 6.	 (Optional) Install Keras multibackend version

	 7.	 Install OpenCV

	 8.	 Install Dlib

	 9.	 Verify Installations

Let us look at how to set up each of them.

�Step 1: Installing Visual Studio with C++ Support
The first step we need to do is to install a compiler for C++.

Why do we need C++? Aren’t we going to code in Python?

Yes, we are going to use Python. And no, you do not need to learn C++ to learn deep

learning (although C++ is a wonderful language).

https://doi.org/10.1007/978-1-4842-6431-7_3#DOI

34

But some of the more advanced Python libraries have parts that were written with

C++ to improve their performance. So to install some of the libraries, we need to have a

C++ compiler installed in our system.

On Windows, we use Visual Studio as the compiler.

Due to various compatibility issues of different Visual Studio versions with various

packages, it is recommended that we stick with an older version of Visual Studio

rather than the latest version. This older version can be downloaded from the Visual

Studio Older Versions page.1 Visual Studio 2015 is a good choice (Figure 3-1). The free

community edition will be enough for our tasks.

When installing VS 2015, make sure to select the “custom” install option (Figure 3-2).

Figure 3-1.  Select to download “visual studio community 2015 with update 3”
from the Visual Studio older versions page

1�Visual Studio (older versions page), https://visualstudio.microsoft.com/vs/older-
downloads/, [22 Nov 2020]; you will need to register (free) for a Microsoft Online account in order
to download older versions of Visual Studio.

Chapter 3 Setting Up Your Tools

https://visualstudio.microsoft.com/vs/older-downloads/
https://visualstudio.microsoft.com/vs/older-downloads/

35

Select to install the Visual C++ option in the next screen (Figure 3-3).

Figure 3-2.  Visual Studio custom install

Chapter 3 Setting Up Your Tools

36

After the installation is completed, you can verify that C++ is available by launching

Visual Studio and checking whether the ‘Visual C++’ option comes up (Figure 3-4).

Figure 3-3.  Select to install Visual C++

Chapter 3 Setting Up Your Tools

37

�Step 2: Installing CMake
CMake is a cross-platform build tool used to compile, test, and package software

projects. CMake is used as a build tool in many open-source projects with C++ libraries,

such as Dlib. CMake requires to have a C++ compiler installed on the system, which is

why we installed Visual Studio with C++ tools before installing CMake.

In order to install CMake, head over to the CMake Downloads page2 and download

the latest Windows win64-x64 installer package (Figure 3-5) and run the installation.

Figure 3-4.  Visual Studio 2015 with Visual C++

2�CMake (downloads page), https://cmake.org/download/, [9 Apr 2020].

Chapter 3 Setting Up Your Tools

https://cmake.org/download/

38

When installing, make sure to add CMake to the system path (Figure 3-6).

Figure 3-5.  Download the latest CMake package

Chapter 3 Setting Up Your Tools

39

Once the installation is completed, you can verify the installation by running the

following on the Windows command prompt (Figure 3-7).

cmake --version

Figure 3-6.  Add CMake to the system path

Chapter 3 Setting Up Your Tools

40

�Step 3: Installing Anaconda Python
Installing Anaconda is straightforward: simply head over to the Anaconda individual

edition downloads page3 and download the latest Python 3.x 64-Bit package for

Windows (Figure 3-8). The full installer is about 470MB in size, and contains the conda

package manger, Python 3.8, and a set of prebundled commonly used packages. While

the base installer comes with Python 3.8, we will be able to use other Python versions

when creating the conda virtual environments.

Figure 3-7.  Verify CMake version

3�Anaconda (individual edition downloads page), https://www.anaconda.com/products/
individual, [19 Nov 2020].

4�Anaconda (package lists), https://docs.anaconda.com/anaconda/packages/pkg-docs/,
[19 Nov 2020].

Chapter 3 Setting Up Your Tools

https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
https://docs.anaconda.com/anaconda/packages/pkg-docs/

41

The list of packages bundled in the installer, as well as the full list of conda packages

available to install, can be found at the Anaconda package lists.4

Tip I f you do not need the full installer with the prebundled packages, and
only need the conda package manager and Python, you can get the Miniconda
distribution,5 which has a much smaller size (~60MB). The miniconda installer
package is also available with Python 3.8, but allows us to set up virtual
environments with other Python versions.

Figure 3-8.  The Anaconda individual edition downloads page

5�Miniconda (distribution), https://docs.conda.io/en/latest/miniconda.html, [28 Jul 2020].

Chapter 3 Setting Up Your Tools

https://docs.conda.io/en/latest/miniconda.html

42

Installing is as simple as running the downloaded graphical installer.

Tip I n the graphical installer, the “add Anaconda to my PATH environment variable”
option might be unchecked by default (Figure 3-9). It is better to check this option, as
it allows us to run the conda commands from the Windows command prompt.

Figure 3-9.  The “add Anaconda to my PATH environment variable” option in the
Anaconda installer

Chapter 3 Setting Up Your Tools

43

If you forget to check this option, do not worry. You can add Anaconda to the PATH
manually by adding the following to the system PATH variable (where \path\to\
anaconda3 is the Anaconda installation directory):

\path\to\anaconda\path\to\anaconda\Library\mingw-w64\bin\
path\to\anaconda\Library\usr\bin\path\to\anaconda\Library\
bin\path\to\anaconda\Scripts

For an example, if the user profile is at C:\Users\Thimira\, the paths should be:

C:\Users\Thimira\Anaconda3C:\Users\Thimira\Anaconda3\
Library\mingw-w64\binC:\Users\Thimira\Anaconda3\Library\usr\
binC:\Users\Thimira\Anaconda3\Library\binC:\Users\Thimira\
Anaconda3\Scripts

Once the installation is completed open a Windows command prompt and run the

following command:

conda list

If you get a list of installed conda packages, then Anaconda is installed and working

properly.

Note I f you get an error message, make sure you closed and reopened the
terminal window after installing, or do it now. Then verify that you are logged into
the same user account that you used to install Anaconda.

At this point, if you have not used Anaconda Python before, it is better to go through

the “getting started with conda” guide.6 This a tutorial that should take you less than

30 minutes, and helps you get familiarized with the commands and capabilities of

Anaconda.

6�Conda, “Getting Started with Conda,” https://conda.io/projects/conda/en/latest/user-
guide/getting-started.html, [31 Jan 2020].

Chapter 3 Setting Up Your Tools

https://conda.io/projects/conda/en/latest/user-guide/getting-started.html
https://conda.io/projects/conda/en/latest/user-guide/getting-started.html

44

�Step 4: Setting up the Conda Environment
and the Python Libraries
Once you get the hang of conda, it is time to create the conda environment and install

the necessary packages.

Note  Make sure you performed the “conda update conda” command as
mentioned in the getting started guide before proceeding.

When creating the conda environment we also need to install the utility libraries we

discussed in the previous chapter. We can install them one by one. But with conda, we

do not have to.

Conda has a metapackage named ‘anaconda’ that bundles many of the commonly

used utility packages.

So we just need to run the following command to create the conda virtual

environment and install all the utility packages we want in it (this is a single command;

see Figure 3-10).

conda create --name deep-learning python=3.7 anaconda

Figure 3-10.  Creating the Conda environment

Chapter 3 Setting Up Your Tools

45

•	 --name deep-learning: We set the name of the environment to be

“deep-learning.” You can change that to anything you like.

•	 python=3.7: We tell conda to create the new environment with Python

3.7. You can specify another version of Python if you want to. But 3.7 is

the one that is recommended now.

•	 Anaconda: We tell conda to install the anaconda metapackage into

the created environment. This will install the bundle of commonly

used utility packages, which includes the set of utility libraries we

discussed earlier.

Note I nstead of using the metapackage—which installs a lot of packages that
you might not need—you can also specify the list of packages to be installed when
creating the environment:

conda create --name deep-learning python=3.7 numpy scipy
scikit-learn scikit-image pillow h5py matplotlib

Once the environment is created (which may take several minutes to download and

install all the required packages; Figure 3-11), you can activate it by running:

conda activate deep-learning

Figure 3-11.  Environment creation finished

Chapter 3 Setting Up Your Tools

46

When an Anaconda environment is activated, the name of the environment will get

prepended to the command prompt (Figure 3-12).

You can use this to verify that you are working on the correct environment. Always

make sure that you have activated and working on the correct environment for all the

following steps.

Figure 3-12.  Conda environment activated

�Step 5: Installing TensorFlow
TensorFlow has both a CPU version and a GPU version. If your system has a CUDA

capable NVIDIA GPU installed, the TensorFlow GPU version is able to harness the

processing power of that GPU to accelerate the training of your models.

If you have a CUDA capable NVIDIA GPU I highly recommend installing the GPU

version, as it gives massive speed-ups to your deep learning experiments.

Tip  You can check whether your NVIDIA GPU is CUDA capable from the list of
CUDA supported GPUs at the NVIDIA Developer site.7 You will need a GPU with
CUDA Compute Capability 3.5 or higher in order to run TensorFlow GPU.

7�[https://developer.nvidia.com/cuda-gpus], “CUDA supported GPUs,” [22 Nov 2020].

Chapter 3 Setting Up Your Tools

https://developer.nvidia.com/cuda-gpus

47

As TensorFlow now has an Anaconda-native package, we will be using it to install

TensorFlow, as it simplifies the installation of its dependencies such as the CUDA Toolkit

and cuDNN libraries.

To install the GPU version of TensorFlow, run the following command (make sure

you are in the activated conda environment we created earlier):

conda install tensorflow-gpu==2.1.0

Note  We are specifying the version number of the package also as tensorflow-
gpu==2.1.0 because anaconda tends to install an older version. Hopefully this will
be fixed in the future, but until then it is better to specify the package version.

Tip A lways check for the latest available TensorFlow package version
from the Anaconda package lists8 and install that version. At the time of
this writing the Anaconda package lists shows version 2.2.0 as the latest
TensorFlow version available. However, if you attempt to install it, you may get a
“PackagesNotFoundError” due to an issue with the conda package registry. Until
that is fixed, we will stick with TensorFlow 2.1.0.

For the CPU version:

conda install tensorflow==2.1.0

Caution  Do not attempt to install both the GPU and CPU versions in the same
conda environment. If you want to switch the versions, uninstall the other version
first, or use a different conda environment.

8�Anaconda (package lists), https://docs.anaconda.com/anaconda/packages/pkg-docs/,
[19 Nov 2020].

Chapter 3 Setting Up Your Tools

https://docs.anaconda.com/anaconda/packages/pkg-docs/

48

Conda will take care of installing all the dependencies for you. If you opted to install

the GPU version, this will also include the CUDA Toolkit and cuDNN libraries as well

(Figure 3-13).

�Step 6: (Optional) Installing Keras Multibackend
version
This is an optional step.

With TensorFlow versions 2.0 and up, Keras is integrated into the TensorFlow library

and is available through its tf.keras Python interface.

But if you need to install the multibackend version of Keras for experimentation with

other backends such as Theano, you can install it using pip:

pip install keras

Switching the backend of Keras is done in the keras.json file, which is located at

%USERPROFILE%\.keras\keras.json on Windows. The default keras.json file looks like this:

{

 "floatx": "float32",

 "epsilon": 1e-07,

Figure 3-13.  The CUDA-toolkit and cuDNN libraries being installed

Chapter 3 Setting Up Your Tools

49

 "backend": "tensorflow",

 "image_data_format": "channels_last"

}

When switching the backend, you need to be aware of the image_data_format

parameter of Keras also. You can read more about it in Appendix 2.

If you are sticking with TensorFlow, the default settings of Keras will work fine.

�Step 7: Installing OpenCV
OpenCV has prebuilt binaries for Windows that can be downloaded from their official

site. But you may run into issues with getting the Python bindings working with 64-Bit

Python 3.7.

The easiest way to get OpenCV working on Windows with 64-Bit Python 3.7 is to

use the Anaconda package (Figure 3-14). As with TensorFlow, conda will handle all the

dependency management.

conda install opencv

Figure 3-14.  OpenCV being installed

Chapter 3 Setting Up Your Tools

50

�Step 8: Installing Dlib
With all the great features in Dlib, installing it has always been a little bit troublesome

because of some specific dependency requirements it needs that have a habit of almost

always conflicting with your other libraries. With the latest versions, however, installing

Dlib has become somewhat simple.

If you want the latest official package of Dlib installed, then using the pip package is

the way to go.

Note  You need to have Visual Studio and CMake installed before attempting
to install Dlib. Make sure CMake is available in the system path by running
cmake --version.

You can install the Dlib pip package with:

pip install dlib

It will collect the package, build the wheel using CMake, and then install it in your

conda environment (Figure 3-15).

Figure 3-15.  Dlib PIP installation successful

Chapter 3 Setting Up Your Tools

51

�Step 9: Verifying the Installations
After you install all the required packages and libraries, it is best to do some preliminary

checks to ensure that everything is installed correctly. Otherwise, you will run into issues

later when running your code and wouldn’t know whether there’s a bug in the code, or

an issue with the installation.

We will not be able to test everything without attempting to run a few deep learning

models. But these steps will help you make sure everything is ready.

First, make sure you have activated the conda environment we created earlier:

conda activate deep-learning

You can verify that the environment activated correctly by looking at the command

prompt (Figure 3-16).

Run the following to see a list of all the installed packages:

conda list

You will get a long list like the following (Figure 3-17):

Figure 3-16.  Conda environment activated

Chapter 3 Setting Up Your Tools

52

Glance through the list to see if all the packages we installed are there.

Then run the Python interpreter, and see whether it has the correct Python version

(3.7.*) and architecture (64-Bit).

(deep-learning) C:\Users\Thimira>python

Python 3.7.6 (default, Jan 8 2020, 20:23:39) [MSC v.1916 64 bit (AMD64)]

:: Anaconda, Inc. on win32

Type "help," "copyright," "credits" or "license" for more information.

>>>

Next, within the Python interpreter, import each of the packages we installed, one at

a time:

•	 TensorFlow

import tensorflow as tf

•	 OpenCV

import cv2

•	 Dlib

import dlib

•	 Multibackend Keras (if you installed it)

import keras

Figure 3-17.  Listing the installed packages in our Conda environment

Chapter 3 Setting Up Your Tools

53

If everything is set up properly, all these imports should complete without any errors.

Some packages, such as TensorFlow and Keras, may display some info messages while

importing (Figure 3-18).

Finally, let us check TensorFlow functionality. Run each of the following commands,

one after the other, in the Python interpreter:

import tensorflow as tf

x = [[2.]]

print('tensorflow version', tf.__version__)

print('hello, {}'.format(tf.matmul(x, x)))

If you have the TensorFlow GPU version installed, you may see some info messages

of CUDA libraries being loaded (Figure 3-19).

Figure 3-18.  Test importing the installed packages

Chapter 3 Setting Up Your Tools

54

The final result should be shown as hello, [[4.]] (Figure 3-20):

If all commands ran without errors, then we are good to go.

You can run quit() to exit the Python interpreter.

Figure 3-20.  TensorFlow test successful

Figure 3-19.  TensorFlow GPU version loading the CUDA libraries

Chapter 3 Setting Up Your Tools

55

�Step 10: (Optional) Manually Installing CUDA Toolkit
and cuDNN
When we installed the TensorFlow GPU version via the conda package, you will notice that

the CUDA Toolkit and the cuDNN library got also installed as conda dependencies. While this

works with the TensorFlow conda package (and few other conda packages), for other libraries

that might require CUDA functionality, you may need to install the CUDA toolkit globally.

You can download the CUDA Toolkit from the NVIDIA CUDA downloads page,9

which lists the latest CUDA Toolkit binaries. Older versions of CUDA can be downloaded

from the CUDA toolkit archive page.10 Select the toolkit version you require, and then

select the appropriate package for your version of Windows (Figure 3-21).

Figure 3-21.  NVIDIA CUDA toolkit downloads page

9�NVIDIA (CUDA downloads page), https://developer.nvidia.com/cuda-downloads, [9 Apr 2020].
10�NVIDIA (CUDA toolkit archive page), https://developer.nvidia.com/cuda-toolkit-archive,

[20 Nov 2019].

Chapter 3 Setting Up Your Tools

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-toolkit-archive

56

Note  Selecting the exe (local) installer will greatly reduce the installation time
and is the better option if your Internet connection is slow or unreliable. Also, you
can reuse the same installation package to start the installation over if anything
goes wrong. Note that the download size is around 2.6GB in the latest version.

Next, you need to download cuDNN by heading over to NVIDIA cuDNN Page.11 The

downloads page for cuDNN will list multiple versions of cuDNN. You must make sure to

download the latest version of cuDNN that is compatible with the CUDA Toolkit version

you are using. For example, if we selected CUDA Toolkit v10.2 then we need to select

Download cuDNN v7.6.5 (November 18, 2019), for CUDA 10.2 or whatever the latest

version is. The download is about 280MB is size (Figure 3-22).

Figure 3-22.  The cuDNN downloads page

11�NVIDIA (cuDNN page), https://developer.nvidia.com/cudnn, [12 Apr 2020]; you will need to
register (free) for a NVIDIA developer account in order to download cuDNN.

Chapter 3 Setting Up Your Tools

https://developer.nvidia.com/cudnn

57

Once both packages are downloaded, start by running the installer for the CUDA

Toolkit. In the install options select the Custom Install option (Figure 3-23). In the

Custom Install Options page, deselect the options for GeForce Experience, Display

Driver (Figure 3-24), and Visual Studio Integration (Figure 3-25).

Figure 3-23.  Select the custom install option in the CUDA toolkit installer

Chapter 3 Setting Up Your Tools

58

Figure 3-24.  Deselect GeForce experience and driver components

Chapter 3 Setting Up Your Tools

59

Caution I f you go with the Express Installation option, and you already have the
latest display driver for your GPU installed, the installer may attempt to overwrite
the already installed display driver with an older version driver. Therefore, if you
already have the latest driver (and GeForce Experience installed), it is better to go
in the Custom Installation path.

The Visual Studio Integration option is known to cause issues with some versions
of Visual Studio. Therefore, it is better to deselect it if you do not plan to build Visual
C++ CUDA applications.

You can keep the defaults for everything else in the CUDA installer.

Figure 3-25.  Deselect the Visual Studio integration option under CUDA

Chapter 3 Setting Up Your Tools

60

Once the CUDA installation is complete, you can verify the installation by running

the following command in the command prompt:

nvcc -V

(Note the uppercase “V.”)

This will give an output of something like (Figure 3-26):

nvcc: NVIDIA (R) Cuda compiler driver

Copyright (c) 2005-2019 NVIDIA Corporation

Built on Wed_Oct_23_19:32:27_Pacific_Daylight_Time_2019

Cuda compilation tools, release 10.2, V10.2.89

Once the CUDA Toolkit is installed, you can install cuDNN.

cuDNN is not an installer. It is a zip file. You install it by extracting it and copying its

content to the CUDA installation directory. When you extract cuDNN, you get a cuda

directory, with 3 subdirectories: bin, include, and lib (Figure 3-27).

Figure 3-26.  CUDA toolkit installation verification

Chapter 3 Setting Up Your Tools

61

Figure 3-27.  cuDNN zip file extracted

Figure 3-28.  cuDNN files extracted to the CUDA toolkit installation directory

If you go to your CUDA installation directory (by default it is C:\Program Files\

NVIDIA GPU Computing Toolkit\CUDA\vx.x, where x.x. is the version you installed), you

will see that it also contains directories named bin, include, and lib, with several other

directories.

You need to copy the contents of each directory in the cuDNN to the respective

directory in the CUDA installation directory (Figure 3-28). In other words, copy the

contents of bin from cuDNN to bin of CUDA; lib of cuDNN to lib of CUDA; and include

of cuDNN to include of CUDA.

Chapter 3 Setting Up Your Tools

62

Once everything is copied, the CUDA Toolkit and cuDNN will be ready for your

CUDA experiments.

�Troubleshooting
To avoid most of the installation errors, make sure you perform the conda upgrade step

before installing any packages (Figure 3-29).

conda update conda

Following are a set of issues that you might encounter, and how to fix them.

�Matplotlib Pyplot Error
At the time of writing, there is an issue with a one specific build of the Matplotlib library

available on conda. You can check it by running the following commands in the Python

interpreter.

First, try importing the Matplotlib package. It should not generate any errors:

import matplotlib

Figure 3-29.  Conda upgrade step running

Chapter 3 Setting Up Your Tools

63

Next, try importing the matplotlib.pyplot package:

import matplotlib.pyplot as plt

If the issue exists, it will crash your python interpreter.

If you have this issue, in order to solve this, you need to uninstall the Matplotlib

library from conda and reinstall it using pip:

conda remove matplotlib

pip install matplotlib

You only need to do this if you have that error; it is possible that the faulty build will

be fixed by the time you read this.

�Not Getting the Latest Versions
While you are installing packages in conda, you might notice that you are not getting the

latest available versions of the packages. This may be due to one of several reasons.

Conda package manager considers the inter compatibility between all the packages

in an environment when installing, and may decide to go with an older version of a

package for compatibility reasons.

Conda also caches the packages it downloads and installs. Therefore, it might

sometimes use an older cached version of a package rather than fetching the latest one.

You clean the cache using the following command:

conda clean –all

Cleaning the cache might allow conda to fetch the new versions.

If not, you can force conda to install the specific version of a package by specifying it

in the install command (you can find the available package versions from the Anaconda

package lists):12

conda install tensorflow-gpu==2.1.0

Conda will analyze the package version specified and will let you know whether it is

compatible with the packages already installed in the conda environment, and whether

12�Anaconda (package lists), https://docs.anaconda.com/anaconda/packages/pkg-docs/,
[19 Nov 2020].

Chapter 3 Setting Up Your Tools

https://docs.anaconda.com/anaconda/packages/pkg-docs/

64

any package upgrades or downgrades are required. It will wait for you to confirm

whether to proceed with the installation or not, so that you can safely check whether the

specific version you want will work or not.

�Not Using the Latest Version of OpenCV
If you recall, when we were installing OpenCV, we did not use the latest version, instead

we let conda install an older version (version 3.4.1 in this case). Why didn't we force

conda to install the latest version as we discussed in the previous section?

Well, if you try to install OpenCV v4 using the following command:

conda install opencv==4.0.1

you will get an error such as the one shown in Figure 3-30.

Basically, the OpenCV v4 conda package requires Python 3.8 or higher and CUDA

version 11.0, which does not work with the other libraries—such as TensorFlow—that we

are using.

So we will stick with the 3.4.x version for now, which has all the functionality we will

be exploring in this book.

Figure 3-30.  OpenCV v4 Conda install error

Chapter 3 Setting Up Your Tools

65

�Dlib Build Errors
While installing Dlib pip package, you might run into an error such as this (Figure 3-31):

This happens when CMake is either not installed properly, not added to the system

path properly, or when the Windows command prompt window was not closed and

reopened after CMake was installed.

If you encounter this, make sure CMake was properly installed and added to the

path, and make sure you closed and reopened the command prompt window after it was

installed.

You can verify CMake is properly installed by running:

cmake --version

Figure 3-31.  Dlib build error

Chapter 3 Setting Up Your Tools

66

�Summary
In this chapter, we learned how to set up all the tools needed to start building deep

learning models.

You need to install Visual Studio, CMake, and Anaconda Python as prerequisites.

Here are all the commands needed to install everything on an Anaconda Python

environment on Windows:

create the conda environment

conda create --name deep-learning python=3.7 anaconda

activate the conda environment

conda activate deep-learning

install tensorflow (GPU version)

conda install tensorflow-gpu==2.1.0

install opencv

conda install opencv

install dlib

pip install dlib

These are only the core set of tools needed for learning to build deep learning

models. You will install many more tools as you start building.

Chapter 3 Setting Up Your Tools

67
© Thimira Amaratunga 2021
T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_4

CHAPTER 4

Building Your First Deep
Learning Model
We are now ready to start building our first deep learning model.

But where do we begin?

To see deep learning in action, let us start with something that deep learning systems

are extremely good at: a convolutional neural network built for image classification.

For this, we will build what’s commonly considered the “hello world” program of deep

learning—that is, to write a program to classify images of handwritten digits. Think of it

as a simple OCR system.

But don’t we need a lot of data to train the system?

Well, luckily for us, since handwritten digits classification is a very popular problem

to solve (even before deep learning), there is a publicly available dataset called the

MNIST dataset.

�What is the MNIST Dataset?
Back in 1995, the National Institute of Standards and Technology (NIST) in the United

States created a dataset of handwritten characters to be used in machine learning and

image processing systems. While this dataset worked for the most part, since the training

and validation sets did not come from the same source, and due to some preprocessing

applied on the images, there were some concerns about the validity of the dataset in a

machine learning context.

In 1998, the data from the NIST dataset were cleaned up, normalized, and

reorganized to resolve its issues, and this created the MNIST dataset (Modified

National Institute of Standards and Technology dataset). The MNIST contains 70,000

images—60,000 training images and 10,000 testing/validation images—of 28x28 pixels.

https://doi.org/10.1007/978-1-4842-6431-7_4#DOI

68

The MNIST dataset is publicly available from its official website.1 However, due to its

popularity, many machine learning and deep learning frameworks either have it built

in, or provide utility methods to fetch and read the dataset. Keras, Scikit-Learn, and

TensorFlow all provide such built-in methods, which spare us from having to retrieve,

read, and format the data ourselves. A few samples from the MNIST dataset are shown in

Figure 4-1.

With a dataset at hand, we now need to decide on the architecture of the

convolutional neural network we are going to build. In deep learning, since there can be

so many variations of the way we can structure a model, it is typically better to start with

a known and proven deep learning model and then make adjustments on it. So for our

task, we will choose the LeNet architecture.

1�MNIST website, http://yann.lecun.com/exdb/mnist/, [14 May 2013].

Figure 4-1.  A few samples from the MNIST dataset

Chapter 4 Building Your First Deep Learning Model

http://yann.lecun.com/exdb/mnist/

69

�The LeNet Model
LeNet is a 7-layer Convolutional Neural Network (CNN) introduced by Y. LeCun,

L. Bottou, Y. Bengio, and P. Haffner. In 1998 they introduced LeNet-5, their fifth

successful iteration of the architecture.2 It was designed specifically for handwritten and

printed character recognition, so it fits perfectly with our requirements.

LeNet uses two sets of convolution operations (Figure 4-2). The first set uses 20

convolutional filters, and uses ReLU (Rectified Linear Units) as the nonlinearity function

(the original LeNet architecture from the 1998 paper used Tanh as the nonlinearity

function instead of ReLU), followed by a Max-Pooling layer. The second set uses 50

convolutional filters, again followed by ReLU and Max-Pooling. The output of these are

then flattened, and sent through two fully connected (dense) layers to get the output

predictions.

The LeNet architecture is simple, but provides excellent accuracy for small image

classification tasks. And since it is small, it can be easily trained on a CPU.

�Let us Build Our First Model
We now have the data and have selected an architecture for our first deep learning

model. So let’s start building.

We will be using TensorFlow 2.1 and tf.keras (the TensorFlow version of Keras), in the

Python 3.7 environment we created earlier.

Create a new Python file and name it lenet_mnist_tf_keras.py.

2�Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied to document
recognition,” in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998, doi:
10.1109/5.726791.

Figure 4-2.  The LeNet architecture

Chapter 4 Building Your First Deep Learning Model

70

In this new file we will start by importing the necessary packages:

14:

15: # first, let's import tensorFlow

16: import tensorflow as tf

17: import numpy as np

18:

19: # import the mnist dataset

20: from tensorflow.keras.datasets import mnist

21:

22: # imports used to build the deep learning model

23: from tensorflow.keras.optimizers import SGD

24: from tensorflow.keras.models import Sequential

25: from tensorflow.keras.layers import Conv2D

26: from tensorflow.keras.layers import MaxPooling2D

27: from tensorflow.keras.layers import Activation

28: from tensorflow.keras.layers import Flatten

29: from tensorflow.keras.layers import Dense

30:

31: # import the keras util functions

32: import tensorflow.keras.utils as np_utils

33:

34: import argparse

35: import cv2

36: import matplotlib.pyplot as plt

37:

We start with importing TensorFlow, which is needed for us to use the tf.keras

functions.

The tensorflow.keras.datasets package contains several commonly used built-in

datasets of Keras. We import the MNIST dataset from it.

The tensorflow.keras.optimizers, tensorflow.keras.models, and tensorflow.

keras.layers contains the core set of functions we would need to build our deep

learning model.

The tensorflow.keras.utils package has several utility functions which would

help us the build our model.

Chapter 4 Building Your First Deep Learning Model

71

We import the argparse package to handle command line arguments, which allows

us to train and evaluate the model.

OpenCV (imported as cv2) is used to display the results from evaluating the

trained model.

The matplotlib package is used to visualize/graph the training performance of the

model, as it is always better to see how well a model gets trained.

There will be two phases to our digit classification system: training and evaluating

(for this application, we are not building an inference phase). The training phase takes

time and is usually the most resource intensive phase. We certainly would not want to

run the training every time we run our program. So we define a couple of command line

arguments to trigger the two phases:

37:

38: # Setup the argument parser to parse out command line arguments

39: ap = argparse.ArgumentParser()

40: ap.add_argument("-t", "--train-model", type=int, default=-1,

41: help="(optional) Whether the model should be trained on

the MNIST dataset. Defaults to no")

42: ap.add_argument("-s", "--save-trained", type=int, default=-1,

43: help="(optional) Whether the trained models weights

should be saved." +

44: "Overwrites existing weights file with the same name.

Use with caution. Defaults to no")

45: ap.add_argument("-w", "--weights", type=str, default="data/lenet_

weights.hdf5",

46: help="(optional) Path to the weights file. Defaults to

'data/lenet_weights.hdf5'")

47: args = vars(ap.parse_args())

48:

We define three arguments:

•	 --train-model: indicates whether the model should be trained. Pass

1 to it to train the model.

•	 --save-trained: When the model is trained, we have the option to

save the model weights to a file to be loaded back later. Pass 1 to this

parameter, to indicate to save the weights.

Chapter 4 Building Your First Deep Learning Model

72

•	 --weights: By default, we will be saving the models weights to data/

lenet_weights.hdf5 (set by the default parameter of this argument). If you

want to override that path, you can pass a custom path to this parameter.

Now, we load and preprocess our dataset:

49:

50: # Get the MNIST dataset from Keras datasets

51: # If this is the first time you are fetching the dataset, it will be

downloaded

52: # File size will be ~10MB, and will placed at ~/.keras/datasets/mnist.npz

53: print("[INFO] Loading the MNIST dataset...")

54: (trainData, trainLabels), (testData, testLabels) = mnist.load_data()

55: # The data is already in the form of numpy arrays,

56: # and already split to training and testing datasets

57:

58: # Reshape the data matrix from (samples, height, width) to (samples,

height, width, depth)

59: # Depth (i.e. channels) is 1 since MNIST only has grayscale images

60: trainData = trainData[:, :, :, np.newaxis]

61: testData = testData[:, :, :, np.newaxis]

62:

63: # Rescale the data from values between [0 - 255] to [0 - 1.0]

64: trainData = trainData / 255.0

65: testData = testData / 255.0

66:

67: # The labels come as a single digit, indicating the class.

68: # But we need a categorical vector as the label. So we transform it.

69: # So that,

70: # '0' will become [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

71: # '1' will become [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

72: # '2' will become [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

73: # and so on...

74: trainLabels = np_utils.to_categorical(trainLabels, 10)

75: testLabels = np_utils.to_categorical(testLabels, 10)

76:

Chapter 4 Building Your First Deep Learning Model

73

Most of the cleaning up of the dataset has been already done for us by Keras. It is

already in the format of numpy arrays, and already split to training and testing data.

If this is the first time you are using the MNIST dataset from Keras, it will be

downloaded (around 10MB file size), and placed at %USERPROFILE%/.keras/datasets/

mnist.npz.

The numpy arrays are in the format of [samples, height, width]. But Keras (and

TensorFlow) expects one more dimension in the data arrays, which is the depth—or the

channels—dimension. In a color image, there would be three channels—red, green, and

blue. But since our digit images are grayscale images, there will only be one channel. So

we reshape the arrays to add one more axis, so that the arrays become [samples, height,

width, depth] shaped.

Since these are image data—each value being the gray value of a pixel—the values

are in the range of 0–255. But for a neural network, it’s better to always have the values in

a range of 0–1. So we divide the entire array by 255 to get it in range.

The labels for the dataset come as single digits. But to train a neural network model,

we need them as categorical vectors. We use the util function to_categorical to

transform them so that:

'0' will become [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

'1' will become [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

'2' will become [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

And so on.

Now we come to the core part of the code, defining the structure of our model. We'll

define a function named build_lenet() for this:

077:

078: # a function to build the LeNet model

079: def build_lenet(width, height, depth, classes, weightsPath=None):

080: # Initialize the model

081: model = Sequential()

082:

083: # The first set of CONV => RELU => POOL layers

084: model.add(Conv2D(20, (5, 5), padding="same",

085: input_shape=(height, width, depth)))

086: model.add(Activation("relu"))

Chapter 4 Building Your First Deep Learning Model

74

087: model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

088:

089: # The second set of CONV => RELU => POOL layers

090: model.add(Conv2D(50, (5, 5), padding="same"))

091: model.add(Activation("relu"))

092: model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

093:

094: # The set of FC => RELU layers

095: model.add(Flatten())

096: model.add(Dense(500))

097: model.add(Activation("relu"))

098:

099: # The softmax classifier

100: model.add(Dense(classes))

101: model.add(Activation("softmax"))

102:

103: # If a weights path is supplied, then load the weights

104: if weightsPath is not None:

105: model.load_weights(weightsPath)

106:

107: # Return the constructed network architecture

108: return model

109:

Our function takes five parameters: the width, height, and depth of the input; the

number of classes; and the path to the model weights file if given, and returns the model

structure (with the model weights loaded if passed via the weightsPath parameter).

We use the Keras Sequential model to build our network. The Keras Sequential

model makes building sequential network architectures (where all the layers are stacked

up sequentially) much simpler. For more complex, nonsequential architectures (such as

Inception modules) Keras provides the Functional API. But for simple sequential ones

like LeNet, the Sequential model is the easiest.

We start with the first Convolutional, ReLU, and Pooling layer set. In the sequential

model, the first layer needs to know the shape of the input to expect, so we pass it with

the input_shape parameter. The subsequent layers can infer the shape on their own.

We first define 20 convolutional filters of size 5x5, followed by a ReLU activation, and a

Chapter 4 Building Your First Deep Learning Model

75

Max-Pooling layer of 2x2. The strides parameter defines how much the pooling window

should slide on the feature map for each pooling operation. We will go through how each

of these operations work in the next chapter.

The second set of Convolutional, ReLU, and Pooling layers are almost the same, with

the number of convolutional filters increased to 50.

We then flatten the input, and add a Dense (fully connected) layer of 500 units.

The final layer is again a Dense layer, where the number of units is equal to the

number of output classes of our data. We set a Softmax classifier as its activation.

If a path to a model weights file is passed, we load the weights to the constructed

model. Otherwise, we return just the model.

Note D on’t worry if you do not yet understand what each of these layer types
and parameters are and how they work. We will investigate them in more details
later in the book.

Once we have the function to build the model, we can specify the optimizer for the

model and then compile it:

142:

143: # Build and Compile the model

144: print("[INFO] Building and compiling the LeNet model...")

145: opt = SGD(lr=0.01)

146: model = build_lenet(width=28, height=28, depth=1, classes=10,

147: weightsPath=args["weights"] \

148: if args["train_model"] <= 0 else None)

149: model.compile(loss="categorical_crossentropy",

150: optimizer=opt, metrics=["accuracy"])

151:

Here, we use the SGD Optimizer (Stochastic Gradient Descent), with a learning rate

of 0.01 (set by the lr parameter).

We specify the width and height of the input as 28x28 as those are the dimensions of

the images in the MNIST dataset. The depth parameter is set to 1, as we're dealing with

grayscale images which has only one color channel.

Chapter 4 Building Your First Deep Learning Model

76

Once the model is compiled, we train our model:

152: # Check the argument whether to train the model

153: if args["train_model"] > 0:

154: print("[INFO] Training the model...")

155:

156: history = model.fit(trainData, trainLabels,

157: batch_size=128,

158: epochs=20,

159: validation_data=(testData, testLabels),

160: verbose=1)

161:

162: # Use the test data to evaluate the model

163: print("[INFO] Evaluating the model...")

164:

165: (loss, accuracy) = model.evaluate(

166: testData, testLabels, batch_size=128, verbose=1)

167:

168: print("[INFO] accuracy: {:.2f}%".format(accuracy * 100))

169:

We check the command line arguments (which were handled through argparse) to

see whether we should run the training or not.

We pass our trainData and trainLabels (which we preprocessed/cleaned earlier) in to

the model.fit() function.

We set the batch size to 128, which means the model will be trained with batches of

128 images at a time. Training in batches reduces the training time significantly. Batch

size also controls the accuracy of the estimate of the error gradient when training using

gradient descent. Because of that, deep learning models are almost always trained in

batches. A batch size of 128 should work fine for our dataset here. You can change it later

to see how it affects training.

An epoch is an iteration over the entire dataset. The epochs parameter tells how

many times the model needs to be trained over the entire dataset. We set our epoch

count to 20.

Chapter 4 Building Your First Deep Learning Model

77

Along with our trainData and trainLabels, we pass the testData and testLabels also

(using the validation_data parameter). This allows us to validate the model performance

over the epochs.

Once the training is complete, we use the model.evaluate() function to evaluate the

trained model with the full test dataset to get the final loss and accuracy of the model.

You may have noticed that the model.fit() function returns a value which we have

captured in the history variable. This history value contains the accuracy and loss values

of both training and validation for each epoch as the model trained. Using this value,

we can draw a graph of how well the model was trained. Let's define a new function—

graph_training_history()—to accept this history object and draw the graph:

109:

110: # a function to graph the training history of the model

111: def graph_training_history(history):

112: plt.rcParams["figure.figsize"] = (12, 9)

113:

114: plt.style.use('ggplot')

115:

116: plt.figure(1)

117:

118: # summarize history for accuracy

119:

120: plt.subplot(211)

121: plt.plot(history.history['accuracy'])

122: plt.plot(history.history['val_accuracy'])

123: plt.title('Model Accuracy')

124: plt.ylabel('Accuracy')

125: plt.xlabel('Epoch')

126: plt.legend(['Training', 'Validation'], loc='lower right')

127:

128: # summarize history for loss

129:

130: plt.subplot(212)

131: plt.plot(history.history['loss'])

132: plt.plot(history.history['val_loss'])

133: plt.title('Model Loss')

Chapter 4 Building Your First Deep Learning Model

78

134: plt.ylabel('Loss')

135: plt.xlabel('Epoch')

136: plt.legend(['Training', 'Validation'], loc='upper right')

137:

138: plt.tight_layout()

139:

140: plt.show()

141:

The history object contains four keys: [acc, loss, val_acc, val_loss].

We use matplotlib to draw the graph.

We start by specifying the graph size (12, 9) and style (ggplot).

We define two subplots to draw the accuracy matrices and the loss matrices for

training and validation separately. Each subplot will show the matric for both training

and validation.

We pass the history object to this function after the model training completes, right

after the print statement for the morel accuracy at line 168:

169:

170: # Visualize the training history

171: graph_training_history(history)

172:

Once all the training and validation is complete, we save the model weights to a file:

172:

173: # Check the argument on whether to save the model weights to file

174: if args["save_trained"] > 0:

175: print("[INFO] Saving the model weights to file...")

176: model.save_weights(args["weights"], overwrite=True)

177:

178: # Training of the model is now complete

179:

We use the value of the weights command line argument as the path, which is by

default set to data/lenet_weights.hdf5 if you did not override it. If a file with a same

name is already there in the specified location the save_weights() function will not

Chapter 4 Building Your First Deep Learning Model

79

overwrite it by default. This is to avoid accidentally overwriting your trained models.

Here we allow it to overwrite the file by setting overwrite=True.

Now our model is built, compiled, trained, and evaluated. We can use this trained

model to test a few random digits:

179:

180: # Randomly select a few samples from the test dataset to evaluate

181: for i in np.random.choice(np.arange(0, len(testLabels)), size=(10,)):

182: # Use the model to classify the digit

183: probs = model.predict(testData[np.newaxis, i])

184: prediction = probs.argmax(axis=1)

185:

186: # Convert the digit data to a color image

187: image = (testData[i] * 255).astype("uint8")

188: image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)

189:

190: # The images are in 28x28 size. Much too small to see properly

191: # So, we resize them to 280x280 for viewing

192: image = cv2.resize(image, (280, 280), interpolation=cv2.INTER_

LINEAR)

193:

194: # Add the predicted value on to the image

195: cv2.putText(image, str(prediction[0]), (20, 40),

196: cv2.FONT_HERSHEY_DUPLEX, 1.5, (0, 255, 0), 1)

197:

198: # Show the image and prediction

199: print("[INFO] Predicted: {}, Actual: {}".format(

200: prediction[0], np.argmax(testLabels[i])))

201: cv2.imshow("Digit", image)

202: cv2.waitKey(0)

203:

204: # close all OpenCV windows

205: cv2.destroyAllWindows()

We pick 10 random digits from the test dataset.

Chapter 4 Building Your First Deep Learning Model

80

We then pass each of these images to the model.predict() function to get a prediction

of what that digit is. The model.predict() function—much like the model.fit() function—

expects the input as batches for predicting. Since we are only passing one sample at

a time, we add a new axis to the data array—testData[np.newaxis, i]—to indicate that

there’s only one sample in this input.

The predictions come as a vector of probabilities for each class in the data. So we use

the argmax function to get the array index of the class with the highest probability. Since

our classes are the digits 0 to 9, the array index is the class label of the digit.

We now have the prediction. But rather than printing it out in the console alone, we

want to display it along with the digit. We are going to use OpenCV for that. But we need

to do some slight adjustments/postprocessing to the data before we can show them on

OpenCV.

Remember that earlier we rescaled all the data to be in the range of [0.0–1.0]. Now we

need to rescale it back to [0–255], so we multiply everything by 255.

OpenCV expects the image data to be unsigned 8-bit integers. This means that we

convert the entire array to uint8 format with astype(“uint8”).

Now the image is in grayscale format. We convert it to a colour image by calling cv2.

cvtColor(image, cv2.COLOR_GRAY2RGB). The image will still look grayscale. But now,

we can draw text on it with color.

And finally, having the images at 28x28 pixels size is much too small. So we need to

resize them to 280x280 size using the cv2.resize() function.

With the image data ready, we put the predicted digit value on the top left corner of

the image and display it. By specifying cv2.waitKey(0) we keep the window open till any

key is pressed. And since we are in a loop, we can switch through the 10 random digits

we choose from the test dataset.

Along with displaying the digit, we also print the predicted digit with the actual value

of the samples to the console.

Finally, as a good coding practice, we will also add some instructions on how to run

the code as comments on the top of the file:

01: # How to use

02: #

03: # Train the model and save the model weights

04: # python lenet_mnist_tf_keras.py --train-model 1 --save-trained 1

05: #

06: # Train the model and save the model weights to a give directory

Chapter 4 Building Your First Deep Learning Model

81

07: # python lenet_mnist_tf_keras.py --train-model 1 --save-trained

1 --weights data/lenet_weights.hdf5

08: #

09: # Evaluate the model from pre-trained model weights

10: # python lenet_mnist_tf_keras.py

11: #

12: # Evaluate the model from pre-trained model weights from a give

directory

13: # python lenet_mnist_tf_keras.py --weights data/lenet_weights.hdf5

14:

This completes the coding for our first deep learning model.

�Running Our Model
We are now ready to run our first deep learning model. Let us do a few prechecks before

we hit run to make sure it runs smoothly:

	 1.	 Make sure you have installed all the required libraries mentioned

in the last chapter. TensorFlow, OpenCV, and Matplotlib are the

main requirements for this example.

	 2.	 Make sure you have activated the conda environment which you

installed all the libraries. You can double check by looking at the

command prompt to see whether the activated environment's

name is displayed.

	 3.	 In the directory where you have your lenet_mnist_tf_keras.py

file, create a directory named data if you have not done so already.

This is where the model weights will be saved by default. Make

sure this data directory is writable.

If all prechecks are good, we can run our code.

Since this is the first run of our model, we need to train the model. So we set the

command line arguments to train the model, and save the weights of the trained model:

python lenet_mnist_tf_keras.py --train-model 1 --save-trained 1

Chapter 4 Building Your First Deep Learning Model

82

If you have not used the MNIST dataset before, Keras will automatically download

the MNIST dataset. The download is about 10MB, so it should not take long.

Once the data is downloaded, our code will build the deep learning model, compile

it, and will start the training (Figure 4-3).

The training will run for 20 epochs, as we specified.

If you are running this with the TensorFlow GPU version, the training will take less

than two minutes. On a CPU however, it may take up to 30 minutes.

The console will show the progress of the training, accuracy and loss of training and

validation.

Once the training is complete, it will evaluate the model on the test dataset and give

the final accuracy value (Figure 4-4).

Deep learning is exceptionally good at classification of simple images such as these.

We should be getting around 98–99% accuracy with our simple model.

Figure 4-4.  Training completed and evaluation running

Figure 4-3.  Our model being trained

Chapter 4 Building Your First Deep Learning Model

83

Once the evaluation step is done, the code will use Matplotlib to open a window to

show the training history of the model (Figure 4-5).

The validation matrices follow the trend of the training, which is a good indication,

as it does not look like the model is overfitting on the training data.

Note T he code execution will be on hold until you close the Matplotlib window.
So remember to close it once you have reviewed the graph. You can also save the
graph as an image from the Matplotlib window.

Now, the fun part. OpenCV will open the 10 random test digits one at a time, along

with the predicted value of the digit (in green at the top-left of the image). Here are some

examples (Figures 4-6, 4-7, and 4-8):

Figure 4-5.  The model training history

Chapter 4 Building Your First Deep Learning Model

84

Figure 4-6.  Model prediction: digit 4

Figure 4-7.  Model prediction: digit 8

Chapter 4 Building Your First Deep Learning Model

85

You can switch through the digits by pressing any key.

Note I n some Windows builds of OpenCV, there’s a bug in the code for opening an
image window where if you try to manually close the window (by clicking the window
close button), the code execution gets stuck. So it’s better to let the code close the
window properly by just switching between the results by pressing any key.

Along with showing the digit, we also print the predicted and actual values to the

console (Figure 4-9).

Figure 4-8.  Model prediction: digit 5

Chapter 4 Building Your First Deep Learning Model

86

After training our model, the model weights will be saved to data/lenet_weights.

hdf5. You can run the model again without training by running:

python lenet_mnist_tf_keras.py

�Trying a Different Dataset
Once you are satisfied with the way the LeNet model classifies digits from the MNIST

dataset, you might like to try out a different dataset that is a little bit more complex.

The Fashion-MNIST dataset would be the next best choice.

Fashion-MNIST consists of 10 classes of images of clothing. The images are in 28x28

pixel grayscale format, and has the following 10 classes labeled 0 to 9:

•	 0: T-shirt/top

•	 1: Trouser

•	 2: Pullover

•	 3: Dress

•	 4: Coat

•	 5: Sandal

Figure 4-9.  The testing digit predictions and actual values printed on the
console

Chapter 4 Building Your First Deep Learning Model

87

•	 6: Shirt

•	 7: Sneaker

•	 8: Bag

•	 9: Ankle boot

Following are a few examples from the dataset (Figure 4-10):

Figure 4-10.  Samples from Fashion-MNIST dataset

Chapter 4 Building Your First Deep Learning Model

88

Like the MNIST dataset, Fashion-MNIST consists of 70,000 images—60,000 training

and 10,000 test images. Because of the similarities between the two datasets, Fashion-

MNIST can be a drop-in replacement to any model that uses the MNIST dataset.

You can download Fashion-MNIST from its official website.3 But, as with MNIST, due

to the popularity of the dataset, many machine learning and deep learning frameworks

has it built-in.

�Clothing Image Classification using Fashion-MNIST
Let us build a deep learning model to classify images of clothing from the Fashion-

MNIST dataset.

As we talked about earlier, Fashion-MNIST is designed to be a drop-in replacement

wherever MNIST can be used. So, we can start with the same LeNet model structure and

the code we used earlier.

Let’s create a new Python file for it and name it lenet_fashion_mnist_tf_keras.py.

We will start by importing the necessary packages:

01: # How to use

02: #

03: # Train the model and save the model weights

04: # python lenet_fashion_mnist_tf_keras.py --train-model 1 --save-trained

1

05: #

06: # Train the model and save the model weights to a give directory

07: # python lenet_fashion_mnist_tf_keras.py --train-model 1 --save-trained

1 --weights data/lenet_fashion_weights.hdf5

08: #

09: # Evaluate the model from pre-trained model weights

10: # python lenet_fashion_mnist_tf_keras.py

11: #

12: # Evaluate the model from pre-trained model weights from a give

directory

3�Fashion: MNIST official website, https://github.com/zalandoresearch/fashion-mnist,
[23 May 2020].

Chapter 4 Building Your First Deep Learning Model

https://github.com/zalandoresearch/fashion-mnist

89

13: # python lenet_fashion_mnist_tf_keras.py --weights data/lenet_fashion_

weights.hdf5

14:

15: # first, let's import tensorFlow

16: import tensorflow as tf

17: import numpy as np

18:

19: # import the FASHION_MNIST dataset

20: from tensorflow.keras.datasets import fashion_mnist

21:

22: # imports used to build the deep learning model

23: from tensorflow.keras.optimizers import SGD

24: from tensorflow.keras.models import Sequential

25: from tensorflow.keras.layers import Conv2D

26: from tensorflow.keras.layers import MaxPooling2D

27: from tensorflow.keras.layers import Activation

28: from tensorflow.keras.layers import Flatten

29: from tensorflow.keras.layers import Dense

30:

31: # import the keras util functions

32: import tensorflow.keras.utils as np_utils

33:

34: import argparse

35: import cv2

36: import matplotlib.pyplot as plt

We will then define the command line arguments:

38: # Setup the argument parser to parse out command line arguments

39: ap = argparse.ArgumentParser()

40: ap.add_argument("-t", "--train-model", type=int, default=-1,

41: help="(optional) Whether the model should be trained on

the MNIST dataset. Defaults to no")

42: ap.add_argument("-s", "--save-trained", type=int, default=-1,

43: help="(optional) Whether the trained models weights

should be saved." +

Chapter 4 Building Your First Deep Learning Model

90

44: "Overwrites existing weights file with the same name.

Use with caution. Defaults to no")

45: ap.add_argument("-w", "--weights", type=str, default="data/lenet_

fashion_weights.hdf5",

46: help="(optional) Path to the weights file. Defaults to

'data/lenet_fashion_weights.hdf5'")

47: args = vars(ap.parse_args())

Then we will load and preprocess the dataset:

50: # Getting the FASHION_MNIST dataset from Keras datasets

51: print("[INFO] Loading the FASHION_MNIST dataset...")

52: (trainData, trainLabels), (testData, testLabels) = fashion_mnist.load_

data()

53: # The data is already in the form of numpy arrays,

54: # and already split to training and testing datasets

55:

56: # Rescale the data from values between [0 - 255] to [0 - 1.0]

57: trainData = trainData / 255.0

58: testData = testData / 255.0

59:

60: # Defining the string labels for the classes

61: class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',

62: 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

63:

64: # Display a sample from the FASHION_MNIST dataset

65: plt.figure(figsize=(16,16))

66: for i in range(25):

67: plt.subplot(5,5, i+1)

68: plt.xticks([])

69: plt.yticks([])

70: plt.grid(False)

71: plt.imshow(trainData[i], cmap=plt.cm.binary)

72: plt.xlabel(class_names[trainLabels[i]])

73: plt.show()

74:

Chapter 4 Building Your First Deep Learning Model

91

75: # Reshape the data matrix from (samples, height, width) to (samples,

height, width, depth)

76: # Depth (i.e. channels) is 1 since MNIST only has grayscale images

77: trainData = trainData[:, :, :, np.newaxis]

78: testData = testData[:, :, :, np.newaxis]

79:

80: # The labels comes as a single digit, indicating the class.

81: # But we need a categorical vector as the label. So we transform it.

82: # So that,

83: # '0' will become [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

84: # '1' will become [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

85: # '2' will become [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

86: # and so on...

87: trainLabels = np_utils.to_categorical(trainLabels, 10)

88: testLabels = np_utils.to_categorical(testLabels, 10)

Here, we define a list named class_names to house the text labels of the 10 classes of

the Fashion-MNIST dataset (line 61). The index of each element of the list is the class ID.

We also load 25 samples from the dataset and display (lines 65–73).

Now we build our model structure. This is the same LeNet model we used for the

MNIST dataset:

091: def build_lenet(width, height, depth, classes, weightsPath=None):

092: # Initialize the model

093: model = Sequential()

094:

095: # The first set of CONV => RELU => POOL layers

096: model.add(Conv2D(20, (5, 5), padding="same",

097: input_shape=(height, width, depth)))

098: model.add(Activation("relu"))

099: model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

100:

101: # The second set of CONV => RELU => POOL layers

102: model.add(Conv2D(50, (5, 5), padding="same"))

103: model.add(Activation("relu"))

104: model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

Chapter 4 Building Your First Deep Learning Model

92

105:

106: # The set of FC => RELU layers

107: model.add(Flatten())

108: model.add(Dense(500))

109: model.add(Activation("relu"))

110:

111: # The softmax classifier

112: model.add(Dense(classes))

113: model.add(Activation("softmax"))

114:

115: # If a weights path is supplied, then load the weights

116: if weightsPath is not None:

117: model.load_weights(weightsPath)

118:

119: # Return the constructed network architecture

120: return model

We also define the graph_training_history() function exactly as before:

123: def graph_training_history(history):

124: plt.rcParams["figure.figsize"] = (12, 9)

125:

126: plt.style.use('ggplot')

127:

128: plt.figure(1)

129:

130: # summarize history for accuracy

131:

132: plt.subplot(211)

133: plt.plot(history.history['accuracy'])

134: plt.plot(history.history['val_accuracy'])

135: plt.title('Model Accuracy')

136: plt.ylabel('Accuracy')

137: plt.xlabel('Epoch')

138: plt.legend(['Training', 'Validation'], loc='lower right')

139:

Chapter 4 Building Your First Deep Learning Model

93

140: # summarize history for loss

141:

142: plt.subplot(212)

143: plt.plot(history.history['loss'])

144: plt.plot(history.history['val_loss'])

145: plt.title('Model Loss')

146: plt.ylabel('Loss')

147: plt.xlabel('Epoch')

148: plt.legend(['Training', 'Validation'], loc='upper right')

149:

150: plt.tight_layout()

151:

152: plt.show()

Also like we did before, we build, compile, and run the training:

155: # Build and Compile the model

156: print("[INFO] Building and compiling the LeNet model...")

157: opt = SGD(lr=0.01)

158: model = build_lenet(width=28, height=28, depth=1, classes=10,

159: weightsPath=args["weights"] if args["train_model"]

<= 0 else None)

160: model.compile(loss="categorical_crossentropy",

161: optimizer=opt, metrics=["accuracy"])

162:

163: # Check the argument whether to train the model

164: if args["train_model"] > 0:

165: print("[INFO] Training the model...")

166:

167: history = model.fit(trainData, trainLabels,

168: batch_size=128,

169: epochs=50,

170: validation_data=(testData, testLabels),

171: verbose=1)

172:

173: # Use the test data to evaluate the model

174: print("[INFO] Evaluating the model...")

Chapter 4 Building Your First Deep Learning Model

94

175:

176: (loss, accuracy) = model.evaluate(

177: testData, testLabels, batch_size=128, verbose=1)

178:

179: print("[INFO] accuracy: {:.2f}%".format(accuracy * 100))

180:

181: # Visualize the training history

182: graph_training_history(history)

Here we are setting the number of training epochs to 50 (line 169).

Once training is complete, we save the model weights to a file and select few random

images from the test dataset to evaluate the trained model:

184: # Check the argument on whether to save the model weights to file

185: if args["save_trained"] > 0:

186: print("[INFO] Saving the model weights to file...")

187: model.save_weights(args["weights"], overwrite=True)

188:

189: # Training of the model is now complete

190:

191: # Randomly select a few samples from the test dataset to evaluate

192: for i in np.random.choice(np.arange(0, len(testLabels)), size=(10,)):

193: # Use the model to classify the digit

194: probs = model.predict(testData[np.newaxis, i])

195: prediction = probs.argmax(axis=1)

196:

197: # Convert the digit data to a color image

198: image = (testData[i] * 255).astype("uint8")

199: image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)

200:

201: # The images are in 28x28 size. Much too small to see properly

202: # So, we resize them to 280x280 for viewing

203: image = cv2.resize(image, (280, 280), interpolation=cv2.INTER_

LINEAR)

204:

205: # Add the predicted value on to the image

Chapter 4 Building Your First Deep Learning Model

95

206: cv2.putText(image, str(class_names[prediction[0]]), (20, 40),

207: cv2.FONT_HERSHEY_DUPLEX, 1.5, (0, 255, 0), 1)

208:

209: # Show the image and prediction

210: print("[INFO] Predicted: \"{}\", Actual: \"{}\"".format(

211: class_names[prediction[0]], class_names[np.

argmax(testLabels[i])]))

212: cv2.imshow("Digit", image)

213: cv2.waitKey(0)

214:

215: cv2.destroyAllWindows()

We use the class_names list defined earlier to get the text class name from the

predictions (lines 206 and 210).

�Running Our Fashion-MNIST Model
When our code is ready, and we have also done the same prechecks we did for the

MNIST, we can run our new model:

python lenet_fashion_mnist_tf_keras.py --train-model 1 --save-trained 1

If you have not used the Fashion-MNIST dataset before, Keras will automatically

download it. Once the dataset is loaded, our code will display few samples from the

dataset (Figure 4-11).

Chapter 4 Building Your First Deep Learning Model

96

Figure 4-11.  A few samples from the dataset

The training will run for 50 epochs, and will take few minutes when

running on a GPU.

With our LeNet model you will get around 90% accuracy (Figure 4-12).

Figure 4-12.  Accuracy of our model on Fashion-MNIST

The training history graph will look something like the one in Figure 4-13.

Chapter 4 Building Your First Deep Learning Model

97

Our code will then display 10 random samples from the test dataset along with their

predicted class from the model (Figures 4-14, 4-15, 4-16).

Figure 4-13.  The training history graph of our model

Chapter 4 Building Your First Deep Learning Model

98

Figure 4-14.  Model prediction: sneaker

Figure 4-15.  Model prediction: pullover

Chapter 4 Building Your First Deep Learning Model

99

Along with showing the results of the samples, the code will also print the predicted

and actual values to the console (Figure 4-17).

After the training completes, the model weights will be saved to data/ lenet_fashion_

weights.hdf5 like it did before.

Figure 4-16.  Model prediction: sandal

Figure 4-17.  The predictions and actual values printed on the console

Chapter 4 Building Your First Deep Learning Model

100

�What Can You Do Next?
Getting a 90% accuracy on the Fashion-MNIST dataset is good—but you can definitely

try to improve that result. You can try tweaking the model and see whether it improves

the results. Here are a few things you can try out:

•	 Change the number of convolutional filters, and see how it affects the

training (via the training history graph).

•	 Add more convolutional layers, and see whether it improves the

model. See how it affects the training time as well. And see how many

layers you can add before the model starts to become worse.

•	 Add more dense layers. Is the model starting to overfit?

You can detect when the model is overfitting by looking at the loss metrics. If

the validation loss stops dropping while the training loss continues to drop as the

training progresses, then the model is overfitting. This means the model has basically

“memorized” our training samples but has not learned to generalize the problem,

causing it to fail on the unseen samples (in this case, the validation samples).

We will be talking about how we can handle much more complex datasets and

models in later chapters.

Chapter 4 Building Your First Deep Learning Model

101
© Thimira Amaratunga 2021
T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_5

CHAPTER 5

Understanding What
We Built
Running our first deep learning model gave us a small glimpse of what deep learning can

do. There are many exciting projects we can build with deep learning.

But first, it is better to understand what we built, and how it works.

Let us look back at the model we built. We used the LeNet architecture, which looks

like this (Figure 5-1):

Figure 5-1.  The LeNet model

Looking through the model architecture and going through our code, we see that the

workings of our model is based on few functions:

	 1.	 Input: Digital Images

	 2.	 Convolutions

	 3.	 Nonlinearity function (ReLU)

	 4.	 Pooling

	 5.	 Classifier (Fully Connected Layer)

Let us see how each of these functions work and how they contribute to our model.

https://doi.org/10.1007/978-1-4842-6431-7_5#DOI

102

�Digital Images
Our input image is the first piece of the process.

Although we consider them as images based on our perception, for a machine,

images are just another form of digital data.

A digital image consists of a collection of pixels. Each pixel is defined by the color

value of one or more color-channels. A grayscale image has only a single channel. Each

pixel in the image has a value from 0 to 255, where 0 indicates black and 255 indicates

white (Figure 5-2).

A color image has three channels—red, green, and blue for an RGB image (Figure 5-3).

Figure 5-2.  An image is just a matrix of pixel values

Chapter 5 Understanding What We Built

103

Therefore, in mathematical terms, an image is a matrix of pixel values.

The operations in a deep learning model (and in neural networks in general) are

performed on these matrices of values.

�Convolutions
The mathematical convolution operation on matrices is capable of extracting features

from a matrix such as an image, as it preserves the spatial relationship between the

elements of the matrix. CNNs extensively use convolution operations, which is where

they get the name convolutional neural networks. As we discussed in Chapter 1, the

mathematical convolutions on an image work like the receptive fields of the visual cortex

in humans and animals. Like the receptive fields, convolutions work by processing small

squares of the input at a time.

Figure 5-3.  A color image is a set of pixel values per each channel

Chapter 5 Understanding What We Built

104

Note  You can learn more about the properties of mathematical convolution
operation at the Wikipedia page for “Convolution” here: https://
en.wikipedia.org/wiki/Convolution.

To get a simple understanding of how convolutions works, think of two matrices: the

input and the convolution matrix (Figure 5-4).

The convolution operation happens by the convolution matrix “sliding on” the input

matrix, to produce the convoluted output (Figure 5-5).

Figure 5-4.  The input and the convolution matrices

Chapter 5 Understanding What We Built

https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Convolution

105

Figure 5-5.  The convolution operation

Chapter 5 Understanding What We Built

106

As the convolution operation happens, the convolution matrix only sees part of the

input matrix, but it maintains the spatial relationship of what it sees. Various different

convolution matrices produce different outputs from the input.

What if we apply the same operation to an image?

As we discussed, a digital image is a matrix of pixel values.

Therefore, we should be able to perform the same convolution operations on an

image as well.

If we attempted the same operation—where the input is an image—with different

convolution matrices, the output of them would show various representations of the

features of the image. Following are a few examples (Figure 5-6).

Figure 5-6.  Effects of different convolutions on an image

Chapter 5 Understanding What We Built

107

As these different convolution operations filter and extract different features of the

images, they are typically called “filters.”

In a CNN, many filters are used to extract and learn different features from the input

images. When using deep learning libraries such as TensorFlow or Keras, we do not need

to specify what each of the filters should be. Instead, we only specify the number and the

size of the filters. The training process of the library will determine which filters get used.

Typically, the more filters you have in a network, the better it is at learning patterns from

the input.

�Nonlinearity Function
Once the convolution step is complete and the various feature maps of the input image

have been generated, a CNN applies a nonlinearity function on the feature maps.

Nonlinearity is needed because real-world data is nonlinear, but the convolution

function is a linear operation. Therefore, to handle the representation of real-world data,

we need to apply a nonlinearity function.

Rectified linear unit, or ReLU, is a commonly used nonlinearity function. Other

functions such as tanh or sigmoid can also be used as nonlinearity functions. Which

function to use will depend on the architecture of your model. ReLU performs better in

most general cases when using backpropagation for training. In most cases, ReLU also

performs better with deeper model architectures than sigmoid and tanh. Therefore,

ReLU is a good starting point when developing new model architectures.

The ReLU function can be seen in Figure 5-7.

Chapter 5 Understanding What We Built

108

This may look complicated, but ReLU is quite simple. It goes through each pixel and

sets the negative values to zero, and retains the positive pixel values as they are.

The function can also be shown as:

Output = max(0, Input)

When applied to a feature map, the results from ReLU looks like this (Figure 5-8):

Figure 5-8.  ReLU applied to a feature map

Figure 5-7.  The ReLU function

Chapter 5 Understanding What We Built

109

�Pooling
After the nonlinearity is applied, the CNN does a pooling step (also known as spatial

pooling, subsampling, or downsampling). Pooling reduces the dimensionality of each

feature map by retaining only the most important information. It can be done in several

ways, such as max pooling, average pooling, and sum pooling. Out of these, max pooling

has shown better results in general.

In max pooling, we define a window (an area of the feature map) and get the max

value from the pixels in that area (Figure 5-9).

Pooling gives a CNN several benefits:

	 1.	 It makes the feature dimensions smaller and more manageable.

	 2.	 It reduces the potential to overfit by reducing the number of

parameters and computations needed in the network.

Figure 5-9.  Max pooling

Chapter 5 Understanding What We Built

110

	 3.	 It makes the network invariant to small transformations,

distortions, and translations in the input, which means that small

changes in the input will not significantly affect the output. This

allows the network to generalize better.

	 4.	 It makes the network scale invariant, allowing objects to be

detected wherever they are in the input image.

At this point the work of a single convolution layer of the CNN is complete. The next

convolution layers would take the output feature maps of the previous layer, as their

inputs and continue the same operation until they reach the fully connected layers.

�Classifier (Fully Connected Layer)
The classifier (also known as a fully connected layer or dense layer) is a traditional

multilayer perceptron network. Each neuron of a layer in the classifier connects with

every neuron in the next layer. The final output layer of the classifier typically uses a

softmax activation function. Other activation functions such as sigmoid can also be

used for different scenarios. Sigmoid generally performs well with binary classification

problems, while softmax performs well with multiclass classifications.

The purpose of the classifier is to take the high-level features extracted by the

convolution and the pooling layers and combine them in order for the final classification

(Figure 5-10).

Figure 5-10.  The feature extraction and classification

Chapter 5 Understanding What We Built

111

�How Does This All Come Together?
How do these elements that we discussed—convolutions, ReLU, pooling, and

classifiers—work together to understand the images?

To understand this, let us take an extremely simplified example: let's see how a

neural network might learn to recognize a square shape.

Like any other training task, the neural network would need to go through hundreds,

or maybe thousands, of training images.

What it needs to learn are the defining features of a square.

For us humans, as we have a firm grasp of visual elements, the defining features of

a square would be “lines,” “length,” and “angles.” And we know—that is, our minds have

been trained to know—which of the combinations of those features results in a square

and what to look for when recognizing one (Figure 5-11).

Figure 5-11.  A possible thought process of identifying a square

But a machine (or an untrained AI) has no concept of what a line, length, or angle is.

What the AI (the neural network in this case) would try to do is to look for any common

features that can be seen in the provided training set.

The ability to “see” features of a neural network can be greatly increased by using a

feature extraction method such as convolutions.

As you can see in the preceding diagram (Figure 5-12), the convolution filters allow

to extract out some unique elements out of the images.

Chapter 5 Understanding What We Built

112

Using feature extraction flows like this (with convolutions, ReLU, and pooling), a

neural network would be able to better generalize the identified features from the input

images. As such, it would be able to narrow down the common features of the given data

set more easily.

Our handwritten digit classifier works in the same way.

The model we built uses many convolutional filters to identify the common features

of the digits and tries to identify which combinations of them contributes to which of the

digit classes (Figure 5-13).

Figure 5-12.  Possible features learned by a model using convolutions

Chapter 5 Understanding What We Built

113

This same concept can be applied to recognize more complex inputs, such as more

real-world images, as well. The following diagram shows how an image of a car might be

identified with feature extraction in a CNN (Figure 5-14).

Figure 5-13.  Possible features learned on the digits of the MNIST dataset

Chapter 5 Understanding What We Built

114

What we talked about here is the flow of our simple convolutional neural network

with just a handful of layers. But the concepts within that model—convolutions,

regularization, pooling, and so on—are used within more complex models as well. You

will notice combinations of these same concepts applied within larger, more complex

models as we start to build them.

Figure 5-14.  How the filters extract features

Chapter 5 Understanding What We Built

115
© Thimira Amaratunga 2021
T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_6

CHAPTER 6

Visualizing Models
When building a deep learning model, it is often better to be able to visualize the model.

Although the model we created—the LeNet model—is simple, it is better if we can see

the structure. Especially when we are tweaking or modifying the model, we can easily

compare their structures. And when working with more complex models (which we will

look at in the next chapter), it is easier to wrap your head around them if you can see

their structure visually.

But wouldn’t it be better if there was a way to automatically draw the structure of a

model?

As it happens, TensorFlow/Keras has just the method for it. But first, we first need to

learn how to save our models properly.

�Saving Models in Keras
In Chapter 4, when we build our first deep learning model, we learned of a one way to

save a Keras model, which is to use the model.save_weights() function. This method,

as the name suggests, only saves the weights of the model’s neurons. The weights of a

model are what the model has learned through the training.

But a model is more than just its weights.

In order to use the saved weights, we have to reconstruct the model structure in

code, and load the weights into it. Furthermore, the save_ weights () function does not

save the optimizer state of the model. Therefore, we cannot use it to resume the training

of a model from a previous training state.

For those requirements Keras provides another save option: model.save().

When using model.save() it saves all of the following as a single file:

•	 The model’s structure, architecture, and configuration

•	 The model’s learned weights

https://doi.org/10.1007/978-1-4842-6431-7_6#DOI

116

•	 The model’s compilation information (configuration used with

model.compile())

•	 The optimizer and its state of the model (allowing you to resume

training)

This provides much more versatility to the saved models.

Note  The model.save_weights() function has its own usage as well. In more
advanced situations, such as when the learned weights of one model needs to be
transferred to a different model architecture, the save_weights() function is highly
useful.

Let us add model.save() function to our LeNet model. We will modify the following

code segment from our original code (lines 178, 179):

173: # Check the argument on whether to save the model weights to file

174: if args["save_trained"] > 0:

175: print("[INFO] Saving the model weights to file...")

176: model.save_weights(args["weights"], overwrite=True)

177:

178: # Save the entire model

179: model.save('data/lenet_model.h5')

Now, if we run training on our model, it will save the full model as lenet_model.h5

in the data directory (Figure 6-1).

With the full model saved, we can now use the built-in functions of Keras to visualize

the model.

Figure 6-1.  The saved model file

Chapter 6 Visualizing Models

117

�Using the plot_model Function of Keras
We can use the plot_model function from the tf.keras.utils package to plot the

structure of a Keras or tf.keras model.

However, to get the plot_model function to work, we will need to install few

additional packages:

•	 Graphviz library: an open-source graph visualization library

•	 Pydot: the Python bindings of the Dot language used by Graphviz

We can install both the packages in to our conda environment by running (Figure 6-2):

conda install graphviz pydot

Once the packages are installed, we can start a new code file to add our visualization

code. We will name it model_visualization.py.

In this new file we will start by importing the necessary packages:

1: # Import the packages

2: import tensorflow as tf

3: import numpy as np

4:

5: from tensorflow.keras.models import load_model

6: from tensorflow.keras.utils import plot_model

Figure 6-2.  Installing Graphviz and Pydot packages

Chapter 6 Visualizing Models

118

We will use the load_model function to load the LeNet model we saved in the earlier step.

The plot_model function is what we will use for the visualization.

We can then load our model by passing the path to our saved model file to

the load_model function:

8: # Loading the model from saved model file

9: model = load_model('data/lenet_model.h5')

Finally, we can generate the model structure visualization by using the plot_model

function:

11: # Visualizing the model

12: plot_model(

13: model,

14: to_file='model.png',

15: show_shapes=True,

16: show_layer_names=True,

17: rankdir='TB',

18: expand_nested=False,

19: dpi=96

20:)

The parameters for the plot_model function are as follows:

•	 model: the model object we want to visualize

•	 to_file: the file name for the image that generates

•	 show_shapes: whether to show the input and output shapes of the

layers

•	 show_layer_names: whether to show the layer names of the model

•	 rankdir: this is an argument passed on to PyDot which determines

the format of the generated plot. rankdir is the direction of the plot.

TB or Top-to-Bottom will generate a vertical plot, while LR or Left-to-

Right will generate a horizontal plot.

•	 expand_nested: if your model has nested models, this will specify

whether to expand them in the plot or not

•	 dpi: the resolution of the generated plot in dots-per-inch

Chapter 6 Visualizing Models

119

When we run our code, the visualization will be saved as model.png on the same

folder as the code file, and would look like this (Figure 6-3):

Figure 6-3.  The structure of the LeNet model visualized using plot_model

Chapter 6 Visualizing Models

120

The show_shapes and show_layer_names parameters allows you to control the

amount of details that will be displayed in the generated plot (Figure 6-4).

You can try turning them off:

11: # Visualizing the model

12: plot_model(

13: model,

14: to_file='model_no_layer_details.png',

15: show_shapes=False,

16: show_layer_names=False,

17: rankdir='TB',

18: expand_nested=False,

19: dpi=96

20:)

Which would result in (Figure 6-5):

Figure 6-4.  The layer name and the shape in the visualized plot

Chapter 6 Visualizing Models

121

Figure 6-5.  Plot with both show_shapes and show_layer_names off

Chapter 6 Visualizing Models

122

Finally, with the rankdir parameter, you can switch to generating a horizontal plot:

11: # Visualizing the model

12: plot_model(

13: model,

14: to_file='model_horizontal.png',

15: show_shapes=True,

16: show_layer_names=True,

17: rankdir='LR',

18: expand_nested=False,

19: dpi=96

20:)

This results in a horizontal plot (Figure 6-6).

Because of these flexibilities of the plot_model function, it can be an excellent tool

when you are building more complex models.

�Using an Opensource tool to Visualize Model
Structures: Netron
Netron is an opensource visualizer for neural network, deep learning, and machine

learning models. Netron has been created by Lutz Roeder,1 and is available through its

GitHub page.2

At the time of this writing, Netron supports the following model file formats:

ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Core ML (.mlmodel), Caffe (.caffemodel,

.prototxt), Caffe2 (predict_net.pb), Darknet (.cfg), MXNet (.model, -symbol.json),

1�GitHub (Lutz Roeder), https://github.com/lutzroeder, [14 Nov, 2020].
2�Github (Netron), https://github.com/lutzroeder/netron, [14 Nov, 2020].

Figure 6-6.  Horizontal plot

Chapter 6 Visualizing Models

https://github.com/lutzroeder
https://github.com/lutzroeder/netron

123

Barracuda (.nn), ncnn (.param), Tengine (.tmfile), TNN (.tnnproto), UFF (.uff), and

TensorFlow Lite (.tflite). It also has experimental support for many other formats and is

actively being developed to constantly add support to more formats.

Netron has standalone installer packages for MacOS, Linux, and Windows.3 It also

has a browser version.4

Once installed (or with the browser version), you just need to open the saved model

file from its UI (Figure 6-7).

3�Github (Netron downloads), https://github.com/lutzroeder/netron/releases/latest,
[14 Nov, 2020].

4�Lutz Roeder (Netron browser version), https://www.lutzroeder.com/ai/netron, [14 Nov, 2020].

Figure 6-7.  The Netron UI

Chapter 6 Visualizing Models

https://github.com/lutzroeder/netron/releases/latest
https://www.lutzroeder.com/ai/netron

124

When the model is loaded, you can select nodes/layers from the visualized graph to

view their properties (Figure 6-8).

Netron gives many other visualization properties as well as the ability to export the

visualized plot.

�Visualizing the Features Learned by
Convolutional Filters
In the past few chapters, we have been looking into building our first deep learning

model and learn how it uses convolutional filters to extract features from the input and

procedurally “learn” how to interpret the input using those features.

But what does convolutional filters see? What features do they learn?

Figure 6-8.  Netron displaying a properties of a layer

Chapter 6 Visualizing Models

125

We can attempt to see the features learned by the filters by maximizing the

activations of them.

Let us attempt it on our LeNet model. We will start with a new code file, which we

will name lenet_filter_visualization.py.

We start by importing the necessary packages:

1: # importing the necessary packages

2: import tensorflow as tf

3: import numpy as np

4: import time

5: import cv2

6:

7: from tensorflow.keras.preprocessing.image import save_img

8: from tensorflow.keras import backend as K

9: from tensorflow.keras.models import load_model

For the technique we are going to use, we need to disable eager execution, which is

in TensorFlow v2.x:

11: # we disable eager execution of TensorFlow v2.x

12: # Ref: https://github.com/tensorflow/tensorflow/issues/33135

13: tf.compat.v1.disable_eager_execution()

We then set the parameters for the generated images, and select the layer from the

model we are going to visualize:

15: # dimensions of the generated pictures for each filter.

16: img_width = 28

17: img_height = 28

18:

19: # the name of the layer we want to visualize

20: # (check the model.summary())

21: layer_name = 'conv2d_1'

As the layer name, we need to select a convolutional layer. If we look back at

the model structure we visualized earlier, we can see that our LeNet model has two

convolutional layers: conv2d and conv2d_1. We will select conv2d_1 here.

Chapter 6 Visualizing Models

126

We then load our model, using the model file we saved earlier in this chapter:

23: # Loading the model from saved model file

24: model = load_model('data/lenet_model.h5')

25:

26: print('Model loaded.')

27:

28: # get the summary of the model

29: model.summary()

The model.summary() function will give you a text representation of the model

structure. The output would look like this (Figure 6-9):

We then define the input data and the dictionary of layers with their names:

31: # this is the placeholder for the input images

32: input_img = model.input

33:

34: # get the symbolic outputs of each "key" layer (we gave them unique names).

35: layer_dict = dict([(layer.name, layer) for layer in model.layers[1:]])

Figure 6-9.  The summary of the LeNet model

Chapter 6 Visualizing Models

127

We then define two utility functions:

37: # utility function to normalize a tensor by its L2 norm

38: def normalize(x):

39: return x / (K.sqrt(K.mean(K.square(x))) + 1e-5)

40:

41: # util function to convert a tensor into a valid image

42: def deprocess_image(x):

43: # normalize tensor: center on 0., ensure std is 0.1

44: x -= x.mean()

45: x /= (x.std() + 1e-5)

46: x *= 0.1

47:

48: # clip to [0, 1]

49: x += 0.5

50: x = np.clip(x, 0, 1)

51:

52: # convert to RGB array

53: x *= 255

54: if K.image_data_format() == 'channels_first':

55: x = x.transpose((1, 2, 0))

56: x = np.clip(x, 0, 255).astype('uint8')

57: return x

The normalize function normalizes a given tensor by its L2-norm to allow a smooth

gradient ascent. The deprocess_image transforms a given tensor into a valid image.

Next comes the main chunk of the code. We loop over the 50 filters of the conv2d_1

layer, obtain the loss and gradients of each, and normalize the gradients (using the

normalize function defined earlier). We then start with a gray image with random noise

and run gradient ascent for 20 steps. 20 was selected here as the number of epochs based

on the results from past experiments which resulted in sharper visualizations. You can

attempt to change the number of epochs and see how it affects the output.

Finally, the processed filters are converted to images (using the deprocess_image

function defined earlier) and added to a list named kept_filters:

059: kept_filters = []

060: for filter_index in range(0, 50):

Chapter 6 Visualizing Models

128

061: # we scan through the 50 filters in our model

062: print('Processing filter %d' % filter_index)

063: start_time = time.time()

064:

065: # we build a loss function that maximizes the activation

066: # of the nth filter of the layer considered

067: layer_output = layer_dict[layer_name].output

068: if K.image_data_format() == 'channels_first':

069: loss = K.mean(layer_output[:, filter_index, :, :])

070: else:

071: loss = K.mean(layer_output[:, :, :, filter_index])

072:

073: # we compute the gradient of the input picture wrt this loss

074: grads = K.gradients(loss, input_img)[0]

075:

076: # normalization trick: we normalize the gradient

077: grads = normalize(grads)

078:

079: # this function returns the loss and grads given the input picture

080: iterate = K.function([input_img], [loss, grads])

081:

082: # step size for gradient ascent

083: step = 1.

084:

085: # we start from a gray image with some random noise

086: input_img_data = np.random.random((1, img_width, img_height, 1))

087: input_img_data = (input_img_data - 0.5) * 20 + 128

088:

089: # we run gradient ascent for 20 steps

090: for i in range(20):

091: loss_value, grads_value = iterate([input_img_data])

092: input_img_data += grads_value * step

093:

094: print('Current loss value:', loss_value)

095: if loss_value <= 0.:

Chapter 6 Visualizing Models

129

096: # some filters get stuck to 0, we can skip them

097: break

098:

099: # decode the resulting input image

100: if loss_value > 0:

101: img = deprocess_image(input_img_data[0])

102: kept_filters.append((img, loss_value))

103: end_time = time.time()

104: print('Filter %d processed in %ds' % (filter_index, end_time -

start_time))

With the images of the filters ready, we can stitch them into a single 6x6 grid image

and enlarge to make it more visible:

106: # we will stich the best 36 filters on a 6 x 6 grid.

107: n = 6

108:

109: # the filters that have the highest loss are assumed to be better-looking.

110: # we will only keep the top 36 filters.

111: kept_filters.sort(key=lambda x: x[1], reverse=True)

112: kept_filters = kept_filters[:n * n]

113:

114: # build a black picture with enough space for

115: # our 8 x 8 filters of size 28 x 28, with a 5px margin in between

116: margin = 5

117: width = n * img_width + (n - 1) * margin

118: height = n * img_height + (n - 1) * margin

119: stitched_filters = np.zeros((width, height, 3))

120:

121: # fill the picture with our saved filters

122: for i in range(n):

123: for j in range(n):

124: img, loss = kept_filters[i * n + j]

125: stitched_filters[(img_width + margin) * i: (img_width +

margin) * i + img_width,

126: (img_height + margin) * j: (img_height +

margin) * j + img_height, :] = img

Chapter 6 Visualizing Models

130

127:

128: # enlarge the resulting image to make it more visible

129: stitched_filters = cv2.resize(stitched_filters, (579, 579),

interpolation=cv2.INTER_LINEAR)

130:

131: # save the result to disk

132: save_img('lenet_filters_%dx%d.png' % (n, n), stitched_filters)

The resulting image, named lenet_filters_6x6.png, will be saved in the same folder as

the code file, and will look something like this (Figure 6-10):

While at first glance this may seem like random noise, if you look closely you can

see some subtle patterns in the output. These patterns represent attempts in matching

lines, edges, and textures of the input images from various directions. As we discussed in

the last chapter, the different filters extract different features from the images. Once the

filters “learn” the features, a combination of those are used to match the input images to

determine what the image is.

Figure 6-10.  The visualized activations of convolutional filters of the LeNet model

Chapter 6 Visualizing Models

131
© Thimira Amaratunga 2021
T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_7

CHAPTER 7

Transfer Learning
We saw how exceptionally well deep learning models performed when applied to

computer vision and classification tasks. Our LeNet model with the MNIST and

Fashion-MNIST datasets was able to achieve 90%–99% accuracy under a very reasonable

amount of training time. We have also seen how the ImageNet models have achieved

record-breaking accuracy levels in more complex datasets.

Now you might be eager to try out what we learned on a more complex and practical

classification task. But what should we consider when we are going to train our own

image classification model with our own categories from scratch?

�The Problem with Little Data
If you attempted to build such a system, you might find that building a classifications

system from scratch—even with deep learning—is not an easy task. To get sufficient

accuracy from your model, without overfitting, would require a lot of training data.

The ImageNet has millions of data samples, which is why the models trained on

them perform so well. But for us to find or build a training dataset of that level for the

classification task we plan on building would be practically infeasible.

The problem with having a small dataset to train a model is that when the model

sees the same few samples repeatedly through its training epochs, it tends to overfit to

those specific samples. And not having a large enough validation dataset makes

matters worse.

But do we really need that much of data to get an image classification model

working? What can we do with a little amount of data?

One method we can try is the use of data augmentation.

https://doi.org/10.1007/978-1-4842-6431-7_7#DOI

132

�Using Data Augmentation
The idea of augmenting the data is simple: we perform random transformations and

normalization on the input data so that the model being trained never sees the same

input twice.

When working with limited amounts of training data, this method can significantly

reduce the chance of the model overfitting.

But performing such transformations to our input data manually would be a tedious

task, which is why TensorFlow/Keras has built-in functions to help with just that.

The Image Preprocessing package of tf.keras has the ImageDataGenerator function,

which can be configured to perform the random transformations and the normalization

of input images, as needed. This ImageDataGenerator can then be coupled with the

flow() and flow_from_directory() functions to automatically load the data, apply the

augmentations, and feed into the model.

Note  When using the ImageDataGenerator of tf.keras the output of it will be
the augmented dataset. Therefore, when using an ImageDataGenerator to feed
the data to a model, the model will only see the augmented dataset. This is the
recommended way that will work for many situations. There are other techniques
that combine the augmented dataset with the original dataset, but they are used
less commonly.

Let us write a small script to see the data augmentation capabilities of

ImageDataGenerator.

We will use the following as our input image (Figure 7-1). Create a directory named

data at the same place as the script and place this input image in there. Also create

a subdirectory named augmented inside this data directory. This will be where the

augmented images that are generated will be saved.

Chapter 7 Transfer Learning

133

We will then use the following script to load the image, run data augmentations

using ImageDataGenerator on it 20 times, and save the resulting augmented images:

01: from tensorflow.keras.preprocessing.image import ImageDataGenerator,

img_to_array, load_img

02:

03: # define the parameters for the ImageDataGenerator

04: datagen = ImageDataGenerator(

05: rotation_range=40,

06: width_shift_range=0.2,

07: height_shift_range=0.2,

08: shear_range=0.2,

09: zoom_range=0.2,

10: horizontal_flip=True,

11: fill_mode='nearest')

12:

13: img = load_img('data/Bird.jpg') # this is a PIL image

14:

Figure 7-1.  The input image bird.jpg

Chapter 7 Transfer Learning

134

15: # convert image to numpy array with shape (3, width, height)

16: img_arr = img_to_array(img)

17:

18: # convert to numpy array with shape (1, 3, width, height)

19: img_arr = img_arr.reshape((1,) + img_arr.shape)

20:

21: # the .flow() command below generates batches of randomly transformed images

22: # and saves the results to the `data/augmented` directory

23: i = 0

24: for batch in datagen.flow(

25: img_arr,

26: batch_size=1,

27: save_to_dir='data/augmented',

28: save_prefix='Bird_A',

29: save_format='jpeg'):

30: i += 1

31: if i > 20:

32: break # otherwise the generator would loop indefinitely

Here, we have used the following parameters for our augmentations:

•	 rotation_range: the range (degrees) within which to apply random

rotations to the images.

•	 width_shift_range: the range within which to apply random

horizontal shifts.

•	 height_shift_range: the range within which to apply random vertical shifts.

•	 shear_range: the range within which to apply random shearing

transformations.

•	 zoom_range: the range within which to apply random zooming to

the images.

•	 horizontal_flip: whether to apply random horizontal flips to the images.

•	 fill_mode=‘nearest’: the method of which the newly created pixels

are filled. Specifying as nearest will fill the new pixels with the same

values as the nearest pixels of the input image.

Chapter 7 Transfer Learning

135

The ImageDataGenerator has several more parameters for augmentations. You can

read about them in the official documentation page.1

The flow() function of the ImageDataGenerator is able to take in the input

images, apply the augmentations we defined, and produce batches of augmented data

indefinitely on a loop. While in this example we only have one input image, the flow()

function is really meant to be used with batches of images.

The resulting augmented images are saved into the data/augmented directory, and

would look something like this (Figure 7-2):

1�TensorFlow (ImageDataGeneraor parameters), https://www.tensorflow.org/api_docs/
python/tf/keras/preprocessing/image/ImageDataGenerator, [14 Nov, 2020].

Figure 7-2.  Some of the augmented images

Chapter 7 Transfer Learning

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator

136

By using data augmentations like these, we should be able to reduce the chance of a

deep learning model overfitting when training on a small dataset.

�Build an Image Classification Model with Data
Augmentation
With our understanding of data augmentations, let us apply it to building a practical

model.

But first, we will need an image dataset. For this we will use a bird image dataset

from Kaggle.

Kaggle is a community of data scientists and machine learning enthusiasts, and

lets you find and publish datasets, experiment and build models in Jupyter notebook

environments, and participate in data science and machine learning competitions.

In the vast catalog of datasets of Kaggle, we will use the 225 Bird Species dataset.2 The

dataset is about 1.4GB is size and is downloadable as a zip file (Figure 7-3).

2�Kaggle, “225 Bird Species Dataset,” https://www.kaggle.com/gpiosenka/100-bird-species,
[1 Mar, 2020]. You will need to register for a Kaggle account to download datasets. Registration is
free, and gives you many benefits as a machine learning enthusiast.

Chapter 7 Transfer Learning

https://www.kaggle.com/gpiosenka/100-bird-species

137

Note  This dataset, as with many other datasets in Kaggle, is actively maintained.
While there are images of 225 bird species at the time of this writing, more species
and categories may have been added to this dataset by the time you read this. You
can also select any other dataset with a similar structure.

Once downloaded, you can extract the contents of the zip file. In the extracted

directory, you will get 4 subdirectories: consolidated, train, test, and valid (Figure 7-4).

Figure 7-3.  The 225 Bird Species dataset from Kaggle

Chapter 7 Transfer Learning

138

The consolidated directory contains the full dataset, organized into subdirectories

for each specie/category. The train, test, and valid subdirectories contain the same

dataset split into train, test, and validation sets with the same subdirectory structure.

For our experiment, initially we will only select 10 of the categories from the 225. We

will select the following 10 as a start:

•	 ALBATROSS

•	 BANANAQUIT

•	 BLACK-THROATED SPARROW

•	 COCKATOO

•	 DARK EYED JUNCO

•	 D-ARNAUDS BARBET

•	 GOLDEN PHEASANT

•	 HOUSE FINCH

•	 ROBIN

•	 SORA

Note  These 10 categories were selected because they contain different number
of samples for each category. We will see how that affects the training accuracy
and how to overcome its negative effects.

Figure 7-4.  The extracted dataset

Chapter 7 Transfer Learning

139

Create a new directory named data and create two subdirectories named train

and validation inside it. Copy over the directories of the preceding selected categories

from the train and valid directories of the extracted dataset to the train and validation

directories you have created. The final directory structure should be like this (Figure 7-5):

Note  When creating the directory structure, make sure that the subdirectory
structure of the validation directory is same as that of the train directory.

Let us start our bird classification model with data augmentation by staring a new

code file. We will name it bird_classify_augmented.py.

Figure 7-5.  The directory structure of the dataset

Chapter 7 Transfer Learning

140

We will start with importing the necessary packages:

1: from tensorflow.keras.preprocessing.image import ImageDataGenerator

2: from tensorflow.keras.models import Sequential

3: from tensorflow.keras.layers import Conv2D, MaxPooling2D

4: from tensorflow.keras.layers import Activation, Dropout, Flatten, Dense

5: from tensorflow.keras import backend as K

6: import matplotlib.pyplot as plt

7: import math

We then define our utility function to graph the training history using Matplotlib:

09: # utility functions

10: def graph_training_history(history):

11: plt.rcParams["figure.figsize"] = (12, 9)

12:

13: plt.style.use('ggplot')

14:

15: plt.figure(1)

16:

17: # summarize history for accuracy

18:

19: plt.subplot(211)

20: plt.plot(history.history['accuracy'])

21: plt.plot(history.history['val_accuracy'])

22: plt.title('Model Accuracy')

23: plt.ylabel('Accuracy')

24: plt.xlabel('Epoch')

25: plt.legend(['Training', 'Validation'], loc='lower right')

26:

27: # summarize history for loss

28:

29: plt.subplot(212)

30: plt.plot(history.history['loss'])

31: plt.plot(history.history['val_loss'])

32: plt.title('Model Loss')

33: plt.ylabel('Loss')

Chapter 7 Transfer Learning

141

34: plt.xlabel('Epoch')

35: plt.legend(['Training', 'Validation'], loc='upper right')

36:

37: plt.tight_layout()

38:

39: plt.show()

Then, we define some parameters for the training:

41: # dimensions of our images.

42: img_width, img_height = 224, 224

43:

44: train_data_dir = 'data/train'

45: validation_data_dir = 'data/validation'

46:

47: # number of epochs to train

48: epochs = 50

49:

50: # batch size used by flow_from_directory

51: batch_size = 16

224x224 pixels is one of the standard sizes used in large-scale image classification

models such as ImageNet. We also use it here, as it allows us some flexibility later.

To use automatic data augmentations with our model training we need to define

data generator functions, like we did on our previous data augmentation example.

Using data generators gives us the added advantage of being able to use the flow_

from_directory() function, which loads the data from our directory structure as well

as provide category labels using the subdirectory names. Here, we define two data

generators: one for training and one for validation:

53: # this is the augmentation configuration we will use for training

54: train_datagen = ImageDataGenerator(

55: rescale=1. / 255,

56: shear_range=0.2,

57: zoom_range=0.2,

58: horizontal_flip=True)

59:

Chapter 7 Transfer Learning

142

60: # this is the augmentation configuration we will use for testing:

61: # only rescaling

62: test_datagen = ImageDataGenerator(rescale=1. / 255)

63:

64: train_generator = train_datagen.flow_from_directory(

65: train_data_dir,

66: target_size=(img_width, img_height),

67: batch_size=batch_size,

68: class_mode='categorical')

69:

70: validation_generator = test_datagen.flow_from_directory(

71: validation_data_dir,

72: target_size=(img_width, img_height),

73: batch_size=batch_size,

74: class_mode='categorical')

75:

76: # print the number of training samples

77: print(len(train_generator.filenames))

78:

79: # print the category/class labal map

80: print(train_generator.class_indices)

81:

82: # print the number of classes

83: print(len(train_generator.class_indices))

As we are building a multiclass image classification model, the class_mode is set to

categorical.

The <generator>.filenames contains all the filenames of the training set. By getting

its length, we can get the size of the training set.

Likewise, <generator>.class_indices is the map/dictionary for the class names and

their indexes. Getting its length gives us the number of classes.

We use these values to calculate the required training and validation steps:

85: # the number of classes/categories

86: num_classes = len(train_generator.class_indices)

87:

Chapter 7 Transfer Learning

143

88: # calculate the training steps

89: nb_train_samples = len(train_generator.filenames)

90: train_steps = int(math.ceil(nb_train_samples / batch_size))

91:

92: # calculate the validation steps

93: nb_validation_samples = len(validation_generator.filenames)

94: validation_steps = int(math.ceil(nb_validation_samples / batch_size))

Now, we can define our model:

097: # build the model

098: input_shape = (img_width, img_height, 3)

099:

100: model = Sequential()

101: model.add(Conv2D(32, (3, 3), input_shape=input_shape))

102: model.add(Activation('relu'))

103: model.add(MaxPooling2D(pool_size=(2, 2)))

104:

105: model.add(Conv2D(32, (3, 3)))

106: model.add(Activation('relu'))

107: model.add(MaxPooling2D(pool_size=(2, 2)))

108:

109: model.add(Conv2D(64, (3, 3)))

110: model.add(Activation('relu'))

111: model.add(MaxPooling2D(pool_size=(2, 2)))

112:

113: model.add(Flatten())

114: model.add(Dense(64))

115: model.add(Activation('relu'))

116: model.add(Dropout(0.5))

117: model.add(Dense(num_classes))

118: model.add(Activation('softmax'))

This is a slightly deeper model than our LeNet model, but uses the same concepts.

This uses three sets of CONV => RELU => POOL layers. Followed by a dense layer and a

softmax classifier.

Chapter 7 Transfer Learning

144

Once we have the model structure defined, we can compile it and run the training.

The model.fit() function accepts data generators just like it accepts arrays of training

data (as well as several other data formats).3

120: model.compile(loss='categorical_crossentropy',

121: optimizer='rmsprop',

122: metrics=['accuracy'])

123:

124: history = model.fit(

125: train_generator,

126: steps_per_epoch=train_steps,

127: epochs=epochs,

128: validation_data=validation_generator,

129: validation_steps=validation_steps

130:)

After the training step, we can save the trained model, evaluate it, and graph the

training history using the function we defined at the start:

132: model.save('bird_classify_augmented.h5')

133:

134: (eval_loss, eval_accuracy) = model.evaluate(

135: validation_generator, steps=validation_steps)

136:

137: print("\n")

138:

139: print("[INFO] accuracy: {:.2f}%".format(eval_accuracy * 100))

140: print("[INFO] Loss: {}".format(eval_loss))

141:

142: # visualize the training history

143: graph_training_history(history)

If we run this code now, we should be getting as accuracy value somewhere between

70% and 85%. The accuracy you will be getting can vary due to the randomness of

3�TensorFlow (Model.fit() function), https://www.tensorflow.org/api_docs/python/tf/keras/
Model#fit, [21 Nov, 2020].

Chapter 7 Transfer Learning

https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit
https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit

145

the applied data augmentations as well as the dataset being extremely small. For an

example, in the following instance we have achieved 82% accuracy (Figure 7-6).

If we look at the training history graph, we can see that the accuracy and the loss

curves have plateaued (Figure 7-7).

Figure 7-6.  The accuracy of the model using data augmentations

Chapter 7 Transfer Learning

146

This usually indicates that the model cannot go further without more data. You

may also note that the validation accuracy is higher than training accuracy. This is also

usually an indication of insufficient data.

While an accuracy of 82% is not terrible, it is clear that to achieve a better accuracy

with the given data, we would need to use more advanced techniques.

�Bottleneck Features
Should we accept the 82% accuracy that we achieved, or give up on attempting to build

our own bird image classifier?

No. Because deep learning has a solution.

Figure 7-7.  The training history graph of the model using data
augmentations

Chapter 7 Transfer Learning

147

Deep learning supports an immensely useful technique called transfer learning. This

means that you can take a pretrained deep learning model— trained on a large-scale

dataset such as ImageNet—and repurpose it to handle an entirely different problem.

Since the model has already learned certain features from a large dataset (think back to

hierarchical feature learning), it would be able to use those features as a base to learn the

new classification problem we present it with.

The basic technique to get transfer learning working is to get a pretrained model

(with the trained model weights loaded) and remove the final fully connected layers

from that model. We then use the remaining portion of the model as a feature extractor

for our smaller dataset. These extracted features are called bottleneck features, which

are the last activation maps prior to the fully connected layers in the original model. We

then train a small model with fully connected layers on top of those extracted bottleneck

features to get the classes we need as outputs for our new classification task. This

workflow is shown in Figure 7-8.

Chapter 7 Transfer Learning

148

Figure 7-8.  How bottleneck feature extraction works

As transfer learning is one of the heavily used techniques in building deep learning

models, frameworks such as TensorFlow and Keras provides methods to simplify

implementing it. TensorFlow and Keras have many of the ImageNet models built in with

Chapter 7 Transfer Learning

149

their trained weights. Their built-in implementations also provide utility functions to

remove the original top layers and to build new models around them for transfer learning.

�Using Bottleneck Features with a Pretrained VGG16
Model
Let us utilize bottleneck features in our bird image classification model.

We shall use the VGG16 model, with its ImageNet trained weights, as our base

model. You can learn more about the VGG16 model and other ImageNet models in

Appendix 1.

To train our bird image classifier using bottleneck features we will use the following

steps:

	 1.	 Create a base model using one of the built-in pretrained ImageNet

models without its final dense layers. We will use the VGG16

model for our example.

	 2.	 Define a set of new dense layers for classification (which we will

refer to as the top model) and create a new model by combining

the base model and the top model.

	 3.	 “Freeze” the layers of the base model. That is, the weights of the

layers in the base model will not be trained, as we do not want to

destroy the features already learned by the base model when it was

trained on the ImageNet dataset. This allows the base model to

reuse those learnings and output the activations—the bottleneck

features—to the new dense layers we have added on top.

	 4.	 Train the resulting new model with our new categories.

Let us start our bird classification model using bottleneck features by starting a new

code file, which we will name bird_classify_bottleneck.py, and importing the necessary

packages:

01: import tensorflow as tf

02: import numpy as np

03: from tensorflow.keras.preprocessing.image import ImageDataGenerator,

img_to_array, load_img

Chapter 7 Transfer Learning

150

04: from tensorflow.keras.models import Sequential, Model, load_model

05: from tensorflow.keras.layers import Dropout, Flatten, Dense,

GlobalAveragePooling2D, Input

06: from tensorflow.keras.applications.vgg16 import VGG16

07: from tensorflow.keras.applications.inception_v3 import InceptionV3

08: from tensorflow.keras import optimizers

09: import matplotlib.pyplot as plt

10: import math

Like before, we will define our utility functions:

12: # utility functions

13: def graph_training_history(history):

14: plt.rcParams["figure.figsize"] = (12, 9)

15:

16: plt.style.use('ggplot')

17:

18: plt.figure(1)

19:

20: # summarize history for accuracy

21:

22: plt.subplot(211)

23: plt.plot(history.history['accuracy'])

24: plt.plot(history.history['val_accuracy'])

25: plt.title('Model Accuracy')

26: plt.ylabel('Accuracy')

27: plt.xlabel('Epoch')

28: plt.legend(['Training', 'Validation'], loc='lower right')

29:

30: # summarize history for loss

31:

32: plt.subplot(212)

33: plt.plot(history.history['loss'])

34: plt.plot(history.history['val_loss'])

35: plt.title('Model Loss')

36: plt.ylabel('Loss')

Chapter 7 Transfer Learning

151

37: plt.xlabel('Epoch')

38: plt.legend(['Training', 'Validation'], loc='upper right')

39:

40: plt.tight_layout()

41:

42: plt.show()

The training parameters and data generator definitions would also be the same as

before:

44: # dimensions of our images.

45: img_width, img_height = 224, 224

46:

47: train_data_dir = 'data/train'

48: validation_data_dir = 'data/validation'

49:

50: # number of epochs to train

51: epochs = 50

52:

53: # batch size used by flow_from_directory

54: batch_size = 16

55:

56: # this is the augmentation configuration we will use for training

57: train_datagen = ImageDataGenerator(

58: rescale=1. / 255,

59: shear_range=0.2,

60: zoom_range=0.2,

61: horizontal_flip=True)

62:

63: # this is the augmentation configuration we will use for testing:

64: # only rescaling

65: test_datagen = ImageDataGenerator(rescale=1. / 255)

66:

67: train_generator = train_datagen.flow_from_directory(

68: train_data_dir,

69: target_size=(img_width, img_height),

Chapter 7 Transfer Learning

152

70: batch_size=batch_size,

71: class_mode='categorical')

72:

73: validation_generator = test_datagen.flow_from_directory(

74: validation_data_dir,

75: target_size=(img_width, img_height),

76: batch_size=batch_size,

77: class_mode='categorical')

78:

79: # print the number of training samples

80: print(len(train_generator.filenames))

81:

82: # print the category/class labal map

83: print(train_generator.class_indices)

84:

85: # print the number of classes

86: print(len(train_generator.class_indices))

87:

88: # the number of classes/categories

89: num_classes = len(train_generator.class_indices)

90:

91: # calculate the training steps

92: nb_train_samples = len(train_generator.filenames)

93: train_steps = int(math.ceil(nb_train_samples / batch_size))

94:

95: # calculate the validation steps

96: nb_validation_samples = len(validation_generator.filenames)

97: validation_steps = int(math.ceil(nb_validation_samples / batch_size))

Next, we will define the base model. We will load the VGG16 model with its

ImageNet weights, but without the top dense layers, by using the include_top=False

parameter:

100: # create the base pre-trained model

101: base_model = VGG16(weights='imagenet', include_top=False, input_

tensor=Input(shape=(img_width, img_height, 3)))

Chapter 7 Transfer Learning

153

We then define the top model, which is the dense layers and the final

classification layer:

103: # add a global spatial average pooling layer

104: x = base_model.output

105: x = GlobalAveragePooling2D()(x)

106: x = Dense(512, activation='relu')(x)

107: predictions = Dense(num_classes, activation='softmax')(x)

Once both base and the top models are defined, we combine them into a single model:

109: # this is the model we will train

110: model = Model(inputs=base_model.input, outputs=predictions)

We then set the layers of the base model nontrainable and compile the model. The

compiling of the model should only be done after the layers are marked as nontrainable:

112: # train only the top layers (which were randomly initialized)

113: # i.e. freeze all convolutional layers

114: for layer in base_model.layers:

115: layer.trainable = False

116:

117: # compile the model (should be done *after* setting layers to non-

trainable)

118: model.compile(optimizer='rmsprop', loss='categorical_crossentropy',

metrics=['accuracy'])

Finally, we run the training, save the model, evaluate, and graph the training history:

120: history = model.fit(

121: train_generator,

122: steps_per_epoch=train_steps,

123: epochs=epochs,

124: validation_data=validation_generator,

125: validation_steps=validation_steps

126:)

127:

128: model.save('bird_classify_bottleneck.h5')

129:

Chapter 7 Transfer Learning

154

130: (eval_loss, eval_accuracy) = model.evaluate(

131: validation_generator, steps=validation_steps)

132:

133: print("\n")

134:

135: print("[INFO] accuracy: {:.2f}%".format(eval_accuracy * 100))

136: print("[INFO] Loss: {}".format(eval_loss))

137:

138: # visualize the training history

139: graph_training_history(history)

Let us now run the training and see how the bottleneck model compares against the

simple model from before.

The accuracy has increased to 94% (Figure 7-9).

The training history graph also shows the improvements. The characteristics of

insufficient data which was there before are now gone (Figure 7-10).

Figure 7-9.  The accuracy of the model using bottleneck features

Chapter 7 Transfer Learning

155

Using the bottleneck features, we were able to increase our accuracy on the same

dataset from 82% to 94%.

But can we do better?

�Going Further with Model Fine-tuning
Getting an accuracy of 94% is great. But we have seen deep learning models achieve far

more impressive results.

So, how can we improve our results further?

What we did when using bottleneck features was to take a deep learning model—the

VGG16 model in our case—which was already trained using a large dataset—the ImageNet

Figure 7-10.  The training history graph of the model using bottleneck
features

Chapter 7 Transfer Learning

156

dataset in our case—and used the bottleneck features from it to train a set of dense layers to

classify our data into the categories we want. And we did get good results from it.

But how well our data will be classified in this method still depends on how well the

bottleneck features of the pretrained model can represent our categories.

As ImageNet has been trained with millions of images representing 1,000 categories,

it does have a good generalization of features. In our case, as the original 1,000 categories

contained some bird image categories as well, the model was able to adapt to our new

categories quite well. But it is still limited by its training for the original 1,000 categories,

which are not exactly the categories we want.

This is the reason why our accuracy got limited to 94%.

But what if we take that pretrained model, and teach it a little bit about the categories

we want?

This is where the idea of model fine-tuning comes from.

In model fine-tuning, we take a trained model, and retrain the top-level classifier

and the last few convolutional layers using an extremely small learning rate.

We still freeze the lower level convolutional layers as before, so that they will not

be retrained when we fine-tune. This would preserve the general, less abstract features

learned by these layers, and would prevent the entire model from overfitting.

The workflow for fine-tuning is shown in Figure 7-11.

Chapter 7 Transfer Learning

157

To fine-tune our model, we will use the following steps:

	 1.	 Define the base model (with the pretrained weights) and the top

model as before.

	 2.	 Train the entire model using the bottleneck features as we did in

the earlier section.

Figure 7-11.  The concept of model fine-tuning

Chapter 7 Transfer Learning

158

	 3.	 “Un-freeze” the last convolution block of the base model, that is,

allow it to be trained.

	 4.	 Train the entire model again with an extremely small learning rate.

When fine-tuning a model, you should always start with an already trained

model. If we attempt to fine-tune the model while the top model we added is still

untrained, because of the initial weights of those layers it will be randomly initialized,

it would potentially disrupt the already learned features of the base model due to back

propagation. As the limited data we have would be insufficient to fulfil the high learning

capacity of such a model (remember that the ImageNet models are capable of learning

from millions of training samples with thousands of categories), it would most definitely

cause the model to overfit.

Also, when fine-tuning, we would need to use an extremely small learning rate—

such as 0.0001—typically using the SGD optimizer. Using an adaptive learning rate

optimizer such as RMSProp could potentially mess up the already learned features of the

model.

�Fine-tuning our VGG16 Model
Let us add fine-tuning to our bird image classification model.

We will start a new code file, which we will name as bird_classify_finetune.py.

As we need to start with a trained model for fine-tuning, the first part of the code is

nearly the same as we did for training with bottleneck features. The only difference is at

line 91, where we save the class_indices dictionary to a file. This file will become useful

in the later sections:

001: import tensorflow as tf

002: import numpy as np

003: from tensorflow.keras.preprocessing.image import ImageDataGenerator,

img_to_array, load_img

004: from tensorflow.keras.models import Sequential, Model, load_model

005: from tensorflow.keras.layers import Dropout, Flatten, Dense,

GlobalAveragePooling2D, Input

006: from tensorflow.keras.applications.vgg16 import VGG16

007: from tensorflow.keras import optimizers

008: from tensorflow.keras.optimizers import SGD

Chapter 7 Transfer Learning

159

009: import matplotlib.pyplot as plt

010: import math

011:

012: # utility functions

013: def graph_training_history(history):

014: plt.rcParams["figure.figsize"] = (12, 9)

015:

016: plt.style.use('ggplot')

017:

018: plt.figure(1)

019:

020: # summarize history for accuracy

021:

022: plt.subplot(211)

023: plt.plot(history.history['accuracy'])

024: plt.plot(history.history['val_accuracy'])

025: plt.title('Model Accuracy')

026: plt.ylabel('Accuracy')

027: plt.xlabel('Epoch')

028: plt.legend(['Training', 'Validation'], loc='lower right')

029:

030: # summarize history for loss

031:

032: plt.subplot(212)

033: plt.plot(history.history['loss'])

034: plt.plot(history.history['val_loss'])

035: plt.title('Model Loss')

036: plt.ylabel('Loss')

037: plt.xlabel('Epoch')

038: plt.legend(['Training', 'Validation'], loc='upper right')

039:

040: plt.tight_layout()

041:

042: plt.show()

043:

Chapter 7 Transfer Learning

160

044: # dimensions of our images.

045: img_width, img_height = 224, 224

046:

047: train_data_dir = 'data/train'

048: validation_data_dir = 'data/validation'

049:

050: # number of epochs to train

051: epochs = 50

052:

053: # batch size used by flow_from_directory

054: batch_size = 16

055:

056: # this is the augmentation configuration we will use for training

057: train_datagen = ImageDataGenerator(

058: rescale=1. / 255,

059: shear_range=0.2,

060: zoom_range=0.2,

061: horizontal_flip=True)

062:

063: # this is the augmentation configuration we will use for testing:

064: # only rescaling

065: test_datagen = ImageDataGenerator(rescale=1. / 255)

066:

067: train_generator = train_datagen.flow_from_directory(

068: train_data_dir,

069: target_size=(img_width, img_height),

070: batch_size=batch_size,

071: class_mode='categorical')

072:

073: validation_generator = test_datagen.flow_from_directory(

074: validation_data_dir,

075: target_size=(img_width, img_height),

076: batch_size=batch_size,

077: class_mode='categorical')

078:

Chapter 7 Transfer Learning

161

079: # print the number of training samples

080: print(len(train_generator.filenames))

081:

082: # print the category/class labal map

083: print(train_generator.class_indices)

084:

085: # print the number of classes

086: print(len(train_generator.class_indices))

087:

088: # the number of classes/categories

089: num_classes = len(train_generator.class_indices)

090:

091: # save the class indices for use in the predictions

092: np.save('class_indices.npy', train_generator.class_indices)

093:

094: # calculate the training steps

095: nb_train_samples = len(train_generator.filenames)

096: train_steps = int(math.ceil(nb_train_samples / batch_size))

097:

098: # calculate the validation steps

099: nb_validation_samples = len(validation_generator.filenames)

100: validation_steps = int(math.ceil(nb_validation_samples / batch_size))

101:

102:

103: # create the base pre-trained model

104: base_model = VGG16(weights='imagenet', include_top=False, input_

tensor=Input(shape=(img_width, img_height, 3)))

105:

106: # add a global spatial average pooling layer

107: x = base_model.output

108: x = GlobalAveragePooling2D()(x)

109: x = Dense(512, activation='relu')(x)

110: predictions = Dense(num_classes, activation='softmax')(x)

111:

112: # this is the model we will train

Chapter 7 Transfer Learning

162

113: model = Model(inputs=base_model.input, outputs=predictions)

114:

115: # first: train only the top layers (which were randomly initialized)

116: # i.e. freeze all convolutional layers

117: for layer in base_model.layers:

118: layer.trainable = False

119:

120: # compile the model (should be done *after* setting layers to non-

trainable)

121: model.compile(optimizer='rmsprop', loss='categorical_crossentropy',

metrics=['accuracy'])

122:

123: history = model.fit(

124: train_generator,

125: steps_per_epoch=train_steps,

126: epochs=epochs,

127: validation_data=validation_generator,

128: validation_steps=validation_steps,

129: max_queue_size=10,

130: workers=8

131:)

132:

133: model.save('bird_classify_fine-tune_step_1.h5')

134:

135: (eval_loss, eval_accuracy) = model.evaluate(

136: validation_generator, steps=validation_steps)

137:

138: print("\n")

139:

140: print("[INFO] accuracy: {:.2f}%".format(eval_accuracy * 100))

141: print("[INFO] Loss: {}".format(eval_loss))

Once we have the trained model, we will define the parameters for the fine-tuning,

as well as resetting our data generators so that we can reuse them. We are setting the

number of epochs to fine-tune as 25:

Chapter 7 Transfer Learning

163

144: # Run Fine-tuning on our model

145:

146: # number of epochs to fine-tune

147: ft_epochs = 25

148:

149: # reset our data generators

150: train_generator.reset()

151: validation_generator.reset()

152:

153: # let's visualize layer names and layer indices to see how many layers

154: # we should freeze:

155: for i, layer in enumerate(base_model.layers):

156: print(i, layer.name)

We will then un-freeze the layers from the last convolutional block of the base model

to the classification layers. All other layers in the base model will remain frozen:

158: # we chose to train the last convolution block from the base model

159: for layer in model.layers[:15]:

160: layer.trainable = False

161: for layer in model.layers[15:]:

162: layer.trainable = True

We then recompile the model, to make the modifications take effect, as well as define

the SGD optimizer with the low learning rate:

164: # we need to recompile the model for these modifications to take

effect

165: # we use SGD with a low learning rate

166: model.compile(

167: optimizer=optimizers.SGD(lr=0.0001, momentum=0.9),

168: loss='categorical_crossentropy',

169: metrics=['acc']

170:)

Chapter 7 Transfer Learning

164

Finally, we run the training, evaluating, and graphing the training history:

172: history = model.fit(

173: train_generator,

174: steps_per_epoch=train_steps,

175: epochs=ft_epochs,

176: validation_data=validation_generator,

177: validation_steps=validation_steps,

178: max_queue_size=10,

179: workers=8

180:)

181:

182: model.save('bird_classify_finetune.h5')

183:

184: (eval_loss, eval_accuracy) = model.evaluate(

185: validation_generator, steps=validation_steps)

186:

187: print("\n")

188:

189: print("[INFO] accuracy: {:.2f}%".format(eval_accuracy * 100))

190: print("[INFO] Loss: {}".format(eval_loss))

191:

192: # visualize the training history

193: graph_training_history(history)

Here, we are saving the final trained and fine-tuned model as bird_classify_

finetune.h5. Keep this file, along with the class_indices.npy file we saved earlier in

the code, as they will be needed for the later sections.

Let us see how our fine-tuned model performs: our accuracy has increased to 98%

(Figure 7-12).

Chapter 7 Transfer Learning

165

The graph for the fine-tuning looks good also (Figure 7-13).

Figure 7-12.  The accuracy of the fine-tuned model

Figure 7-13.  The history graph of fine-tuning the model

Chapter 7 Transfer Learning

166

With 98% accuracy, we have achieved nearly the limit of what we can do with a

tiny dataset.

�Making Predictions Using Our Models
We now have a trained model with an excellent accuracy. Now we should look at how we

can use it to make predictions and classify images.

Recall that in our fine-tuning code we saved 2 files from the code: the class label

dictionary and the trained model file. We can now use those 2 files to rebuild the entire

trained model without having to redefine the model structure.

Let us start a new code file. We will name it bird_classify_predict.py.

We will first import the necessary packages and define the path to the test image, as

well as the image size parameters:

1: import numpy as np

2: import tensorflow as tf

3: from tensorflow.keras.preprocessing.image import img_to_array, load_img

4: from tensorflow.keras.models import Model, load_model

5: from tensorflow.keras.utils import to_categorical

6: import cv2

7:

8: image_path = 'data/validation/ALBATROSS/1.jpg'

9: img_width, img_height = 224, 224

We then load the saved model and the class label dictionary.

11: # load the trained model

12: model = load_model('bird_classify_finetune.h5')

13:

14: # load the class label dictionary

15: class_dictionary = np.load('class_indices.npy', allow_pickle=True).item()

We then load and preprocess the image:

17: # load the image and resize itto the size required by our model

18: image_orig = load_img(image_path, target_size=(img_width, img_height),

interpolation='lanczos')

Chapter 7 Transfer Learning

167

19: image = img_to_array(image_orig)

20:

21: # important! otherwise the predictions will be '0'

22: image = image / 255.0

23:

24: # add a new axis to make the image array confirm with

25: # the (samples, height, width, depth) structure

26: image = np.expand_dims(image, axis=0)

Then, we run the preprocessed image data through the loaded model, decode the

predictions, and print the predicted class as well as the confidence to the console:

28: # get the probabilities for the prediction

29: probabilities = model.predict(image)

30:

31: # decode the prediction

32: prediction_probability = probabilities[0, probabilities.argmax(axis=1)]

[0]

33: class_predicted = np.argmax(probabilities, axis=1)

34: inID = class_predicted[0]

35:

36: # invert the class dictionary in order to get the label for the id

37: inv_map = {v: k for k, v in class_dictionary.items()}

38: label = inv_map[inID]

39:

40: print("[Info] Predicted: {}, Confidence: {:.5f}%".format(label,

prediction_probability*100))

Finally, we use OpenCV to load and display the image, with the label and confidence

overlaid on top of it:

42: # display the image and the prediction using OpenCV

43: image_cv = cv2.imread(image_path)

44: image_cv = cv2.resize(image_cv, (600, 600), interpolation=cv2.INTER_

LINEAR)

45:

46: cv2.putText(image_cv,

Chapter 7 Transfer Learning

168

47: "Predicted: {}".format(label),

48: (20, 40), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 255), 2, cv2.

LINE_AA)

49: cv2.putText(image_cv,

50: "Confidence: {:.5f}%".format(prediction_probability*100),

51: (20, 80), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 255), 2, cv2.

LINE_AA)

52:

53: cv2.imshow("Prediction", image_cv)

54: cv2.waitKey(0)

55:

56: cv2.destroyAllWindows()

Running the prediction code, we would get a result like this (Figure 7-14). As expected,

based on the validation accuracy we got, the confidence for the prediction is 99+%.

Figure 7-14.  Model prediction and confidence for an image of an albatross

Chapter 7 Transfer Learning

169

Following are few more examples of the results (Figures 7-15 and 7-16).

�Trying out a Deeper Model: InceptionV3
So far, we have only attempted to run our training on the 10 classes we have selected

from the full bird image dataset at the start of the chapter.

What if we need to attempt to build a model for 50, 100, or the full 225 classes of the

dataset?

Figure 7-15.  Model prediction and confidence for an image of a d-arnauds
barbet

Figure 7-16.  Model prediction and confidence for an image of a robin

Chapter 7 Transfer Learning

170

All the transfer learning techniques we have learned here—bottleneck features,

finetuning—as well as data augmentation can be applied to a larger set of classes as well.

So far, we have only attempted them with the VGG16 model. When working with

larger sets of classes and larger datasets, it is better to try out different pretrained models

as the base to find the most optimal model structure.

Here, we will look at how we can apply the same concepts with the InceptionV3

ImageNet model.

Along with using the InceptionV3 model, we will see how we can mitigate the data

imbalance of our selected dataset as well.

If you recall, when we selected the 10 classes from the full dataset, we selected them

in a way that some of the classes we selected have higher number of samples than others.

This is a common problem with real-world datasets that we get to deal with.

When there are large discrepancies in the number of samples presented to a model,

it may get more familiar with the features of the classes with the higher number of

samples and may undermine the features of less represented classes.

One way to mitigate this by calculating a weight value for each class based on the

number of samples they have (giving higher weights to classes with less number of

samples) and pass that weight mapping to the model being trained. This allows to model

to properly learn features of the classes with less samples.

We will see how this can be achieved when going through the following code for

InceptionV3. But keep in mind that this technique can be used with any model.

We will start our new code, which we will name bird_classify_inceptionV3.py, by

importing the necessary packages:

01: import tensorflow as tf

02: import numpy as np

03: from tensorflow.keras.preprocessing.image import ImageDataGenerator,

img_to_array, load_img

04: from tensorflow.keras.models import Sequential, Model, load_model

05: from tensorflow.keras.layers import Dropout, Flatten, Dense,

GlobalAveragePooling2D, Input

06: from tensorflow.keras.applications.inception_v3 import InceptionV3

07: from tensorflow.keras import optimizers

08: from tensorflow.keras.optimizers import SGD

09: import matplotlib.pyplot as plt

10: import math

Chapter 7 Transfer Learning

171

11: import os

12: import os.path

Here, we have imported the InceptionV3 model from the built-in models instead of

the VGG16 model we used earlier.

We will define our usual utility function to graph the training history:

14: # utility functions

15: def graph_training_history(history):

16: plt.rcParams["figure.figsize"] = (12, 9)

17:

18: plt.style.use('ggplot')

19:

20: plt.figure(1)

21:

22: # summarize history for accuracy

23:

24: plt.subplot(211)

25: plt.plot(history.history['accuracy'])

26: plt.plot(history.history['val_accuracy'])

27: plt.title('Model Accuracy')

28: plt.ylabel('Accuracy')

29: plt.xlabel('Epoch')

30: plt.legend(['Training', 'Validation'], loc='lower right')

31:

32: # summarize history for loss

33:

34: plt.subplot(212)

35: plt.plot(history.history['loss'])

36: plt.plot(history.history['val_loss'])

37: plt.title('Model Loss')

38: plt.ylabel('Loss')

39: plt.xlabel('Epoch')

40: plt.legend(['Training', 'Validation'], loc='upper right')

41:

Chapter 7 Transfer Learning

172

42: plt.tight_layout()

43:

44: plt.show()

We will then define a new utility function to calculate the class weights:

46: # util function to calculate the class weights based on the number of

samples on each class

47: # this is useful with datasets that are higly skewed (datasets where

48: # the number of samples in each class differs vastly)

49: def get_class_weights(class_data_dir):

50: labels_count = dict()

51: for img_class in [ic for ic in os.listdir(class_data_dir) if ic[0]

!= '.']:

52: labels_count[img_class] = len(os.listdir(os.path.join(class_

data_dir, img_class)))

53: total_count = sum(labels_count.values())

54: class_weights = {cls: total_count / count for cls, count in

55: enumerate(labels_count.values())}

56: return class_weights

When called, this function will return a mapping of class weights that looks like the

following (Figure 7-17):

Figure 7-17.  The calculated class weights

Chapter 7 Transfer Learning

173

We then define our training parameters and generators, as before:

058: # dimensions of our images.

059: img_width, img_height = 224, 224

060:

061: train_data_dir = 'data/train'

062: validation_data_dir = 'data/validation'

063:

064: # number of epochs to train

065: epochs = 50

066:

067: # batch size used by flow_from_directory

068: batch_size = 16

069:

070: # this is the augmentation configuration we will use for training

071: train_datagen = ImageDataGenerator(

072: rescale=1. / 255,

073: shear_range=0.2,

074: zoom_range=0.2,

075: horizontal_flip=True)

076:

077: # this is the augmentation configuration we will use for testing:

078: # only rescaling

079: test_datagen = ImageDataGenerator(rescale=1. / 255)

080:

081: train_generator = train_datagen.flow_from_directory(

082: train_data_dir,

083: target_size=(img_width, img_height),

084: batch_size=batch_size,

085: class_mode='categorical')

086:

087: validation_generator = test_datagen.flow_from_directory(

088: validation_data_dir,

089: target_size=(img_width, img_height),

090: batch_size=batch_size,

091: class_mode='categorical')

Chapter 7 Transfer Learning

174

092:

093: # print the number of training samples

094: print(len(train_generator.filenames))

095:

096: # print the category/class labal map

097: print(train_generator.class_indices)

098:

099: # print the number of classes

100: print(len(train_generator.class_indices))

101:

102: # the number of classes/categories

103: num_classes = len(train_generator.class_indices)

104:

105: # calculate the training steps

106: nb_train_samples = len(train_generator.filenames)

107: train_steps = int(math.ceil(nb_train_samples / batch_size))

108:

109: # calculate the validation steps

110: nb_validation_samples = len(validation_generator.filenames)

111: validation_steps = int(math.ceil(nb_validation_samples / batch_size))

We load the class weights using the function defined earlier by passing the path to

the training directory:

113: # get the class weights

114: class_weights = get_class_weights(train_data_dir)

115: print(class_weights)

When creating the base model, we will be using InceptionV3 instead of VGG16:

118: # create the base pre-trained model

119: base_model = InceptionV3(weights='imagenet', include_top=False, input_

tensor=Input(shape=(img_width, img_height, 3)))

The code for defining the top model and compilation remains unchanged:

121: # add a global spatial average pooling layer

122: x = base_model.output

Chapter 7 Transfer Learning

175

123: x = GlobalAveragePooling2D()(x)

124: x = Dense(512, activation='relu')(x)

125: predictions = Dense(num_classes, activation='softmax')(x)

126:

127: # this is the model we will train

128: model = Model(inputs=base_model.input, outputs=predictions)

129:

130: # first: train only the top layers (which were randomly initialized)

131: # i.e. freeze all convolutional layers

132: for layer in base_model.layers:

133: layer.trainable = False

134:

135: # compile the model (should be done *after* setting layers to non-

trainable)

136: model.compile(optimizer='rmsprop', loss='categorical_crossentropy',

metrics=['accuracy'])

At the model training step, we pass the class weights calculated earlier into the

class_weight parameter of the model.fit() function:

138: history = model.fit(

139: train_generator,

140: steps_per_epoch=train_steps,

141: epochs=epochs,

142: validation_data=validation_generator,

143: validation_steps=validation_steps,

144: class_weight=class_weights

145:)

As before, the trained model is saved and evaluated, and the fine-tuning step begins:

147: model.save('bird_classify_fine-tune_IV3_S1.h5')

148:

149: (eval_loss, eval_accuracy) = model.evaluate(

150: validation_generator, steps=validation_steps)

151:

152: print("\n")

Chapter 7 Transfer Learning

176

153:

154: print("[INFO] accuracy: {:.2f}%".format(eval_accuracy * 100))

155: print("[INFO] Loss: {}".format(eval_loss))

156:

157:

158: # Run Fine-tuning on our model

159:

160: # number of epochs to fine-tune

161: ft_epochs = 25

162:

163: # reset our data generators

164: train_generator.reset()

165: validation_generator.reset()

166:

167: # let's visualize layer names and layer indices to see how many layers

168: # we should freeze:

169: for i, layer in enumerate(base_model.layers):

170: print(i, layer.name)

When fine-tuning InceptionV3, the number of layers to freeze is different than

VGG16. We will be freezing up to the 249th layer instead of the 15th layer:

172: # we chose to train the last convolution block from the base model

173: for layer in model.layers[:249]:

174: layer.trainable = False

175: for layer in model.layers[249:]:

176: layer.trainable = True

The model is then recompiled, trained and fine-tuned, evaluated, and saved. Here

also the class weights are passed to model.fit():

178: # we need to recompile the model for these modifications to take

effect

179: # we use SGD with a low learning rate

180: model.compile(

181: optimizer=optimizers.SGD(lr=0.0001, momentum=0.9),

182: loss='categorical_crossentropy',

Chapter 7 Transfer Learning

177

183: metrics=['accuracy']

184:)

185:

186: history = model.fit(

187: train_generator,

188: steps_per_epoch=train_steps,

189: epochs=ft_epochs,

190: validation_data=validation_generator,

191: validation_steps=validation_steps,

192: class_weight=class_weights

193:)

194:

195: model.save('bird_classify_finetune_IV3_final.h5')

196:

197: (eval_loss, eval_accuracy) = model.evaluate(

198: validation_generator, steps=validation_steps)

199:

200: print("\n")

201:

202: print("[INFO] accuracy: {:.2f}%".format(eval_accuracy * 100))

203: print("[INFO] Loss: {}".format(eval_loss))

204:

205: # visualize the training history

206: graph_training_history(history)

If we run this for the same 10 classes as before, we will see nearly similar results as

before (Figure 7-18 and 7-19).

Chapter 7 Transfer Learning

178

Figure 7-18.  The accuracy of the fine-tuned InceptionV3 model

Figure 7-19.  The training history graph of the fine-tuned InceptionV3 model

Chapter 7 Transfer Learning

179

However, you will start to see the improvements when you apply this model to larger

number of classes or larger datasets.

You can now try applying this to the full 225 Bird Species dataset.

Chapter 7 Transfer Learning

181
© Thimira Amaratunga 2021
T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_8

CHAPTER 8

Starting, Stopping,
and Resuming Learning
As you have probably learned by now, training deep learning models can take long times:

hours and maybe days, based on how complex the model and how large your dataset.

Sometimes it may not be practical to perform the training in one session.

Power failures, machine becoming unresponsive, OS errors, unplanned reboots, or

Windows updates may lead you to lose hours if not days of effort.

How can we mitigate that risk?

One way is to increase the speed of the model training.

�Using Multithreading to Increase the Training Speed
When we used the data generators with the model.fit() function for training, by default

we were working on a single-threaded mode for the preparation of the data batches.

Basically, in this mode, only a single CPU thread is preparing and queuing the batches of

data to be sent to the model for training. By default the queue size is set to 10, which may

result in the GPU having to wait for more batches to be queued.

While this single-threaded batch preparation mode provides more predictable

behavior and is easier to debug, most of the time it slows down the training process.

This is why the model.fit() functions support a multithreaded mode. We can

enable it by using the workers parameter to specify the number of worker threads to use,

as well as increasing the max_queue_size parameters to increase the number of batches

that are queued.

Let us see how much of a speed increase we can achieve by tweaking these

parameters.

https://doi.org/10.1007/978-1-4842-6431-7_8#DOI

182

We’ll begin with our bird classification system using the InceptionV3 model from

the last chapter, and add few code lines to measure the time taken for training. We will

import the time package for this:

13: import time

We will mark the start time at the beginning of the script just after we defined the

utility functions:

59: # start time of the script

60: start_time = time.time()

61:

62: # dimensions of our images.

63: img_width, img_height = 224, 224

64:

65: train_data_dir = 'data/train'

66: validation_data_dir = 'data/validation'

67:

At the very end of the script we will mark the end time, and calculate the time it took

for the training:

209: end_time = time.time()

210:

211: training_duration = end_time - start_time

212: print("[INFO] Total Time for training: {} seconds".format(training_

duration))

Let us see how much time it takes to run the training (both with bottleneck features

and fine-tuning) on our InceptionV3 model in the single-threaded batch mode

(Figure 8-1).

Chapter 8 Starting, Stopping, and Resuming Learning

183

It is taking around 1,101 seconds (or 18 minutes 21 seconds) for the full training.

Now let us see whether we can improve it using multithreading.

For both of our model.fit() functions, we will add two more parameters: workers

and max_queue_size:

142: history = model.fit(

143: train_generator,

144: steps_per_epoch=train_steps,

145: epochs=epochs,

146: validation_data=validation_generator,

147: validation_steps=validation_steps,

148: class_weight=class_weights,

149: max_queue_size=15,

150: workers=8

151:)

...

...

192: history = model.fit(

193: train_generator,

194: steps_per_epoch=train_steps,

195: epochs=ft_epochs,

Figure 8-1.  Time taken for training in single-threaded batch mode

Chapter 8 Starting, Stopping, and Resuming Learning

184

196: validation_data=validation_generator,

197: validation_steps=validation_steps,

198: class_weight=class_weights,

199: max_queue_size=15,

200: workers=8

201:)

The workers parameter defines how many CPU threads are working in parallel to

generate the data batches. The default is 1, so here we have increased it to 8.

The max_queue_size parameters defines how many batches are kept ready in the queue

until consumed by the training. The default is 10, and here we have increased it to 15.

Let us see how these parameter values affect our training time (Figure 8-2).

The training time is now decreased to 364 seconds, or just over 6 minutes and 3

seconds. That is about a 300% improvement in the training time.

However, there are few things that you should keep in mind when using this method.

First, the actual increase in speed you will get will depend on the model structure, as

well as the dataset you are using.

Secondly, when allocating the number of workers, you should think about the

number of threads your CPU supports in parallel. Setting the number of workers to a

value too high might lock up or freeze your machine. A good rule of thumb to follow on

Windows is to set the number of workers few numbers below the maximum thread count

Figure 8-2.  Time taken for training in multithreaded batch mode

Chapter 8 Starting, Stopping, and Resuming Learning

185

of the CPU. For example, if your CPU supports 12 threads, keep the number of workers at

8. This would allow the OS, background tasks, and the other tasks of the training to run

without locking up.

And lastly, in rare situations, you may experience nonstandard behaviors in training.

This can be either due to bugs in the version you are using, or in the Windows build of

that version. If you are experiencing problems, try disabling the multithreading first

before changing anything else in the model.

Note I n some Windows builds of TensorFlow 2.x you may experience an error
message such as “tensorflow/core/kernels/data/generator_dataset_op.cc:103]
Error occurred when finalizing GeneratorDataset iterator: Cancelled: Operation was
cancelled” when running training with multithreading (Figure 8-3). This can be
safely ignored and will hopefully be fixed in future builds.

�Using Model Checkpoints
Looking back at our original problem—mitigating potential interruptions to the

training—we can see that speeding up the training process solves only part of the

problem. Even with the speed-up provided by multithreading, interruptions can still

happen and you may lose your progress.

Figure 8-3.  Error message with multithreading

Chapter 8 Starting, Stopping, and Resuming Learning

186

This is where the concept of model checkpoints comes in: saving the state of your

model at certain points in the training process so that you can resume or recover the

model as at that point later.

We talked about how to save the entire model, including its weights, compilation,

and optimizer status, to a file using the model.save() function.

Model checkpoints works with the same principle.

But rather than having to save the model manually, you can ask the TensorFlow/

Keras framework to save them for you.

In TensorFlow/Keras, the training process supports callback functions. Callbacks

allow you to execute functions at certain stages in the training. There are several built-in

callbacks in TensorFlow/Keras, while also allowing you to define custom callbacks.

One of these built-in callbacks is ModelCheckpoint.

The ModelCheckpoint callback class allows you to automatically save your model

being trained at a given frequency or after a given condition. For example, you can tell

ModelCheckpoint to save the model after each training epoch, or after every 5 epochs, or

save only if the validation accuracy increases, and so on.

The parameters of ModelCheckpoint are as follows:

tensorflow.keras.callbacks.ModelCheckpoint(

 checkpoint_filepath,

 monitor="val_loss",

 verbose=0,

 save_best_only=False,

 save_weights_only=False,

 mode="auto",

 save_freq="epoch"

)

•	 checkpoint_filepath: the file path to save the checkpoint. This can

take some parameters from the training epoch as formatting options,

so that you can inject those values into the filename. We will discuss

these options later.

•	 monitor: what training parameter to monitor if save_best_only is set

to true.

•	 verbose: the verbosity level, 0 or 1.

Chapter 8 Starting, Stopping, and Resuming Learning

187

•	 save_best_only: whether to only save the checkpoint if the parameter

being monitored (specified by the monitor parameter) improves.

•	 save_weights_only: whether to just save the weights (similar to

model.save_weights()), or the entire model (similar to model.

save()).

•	 mode: how to monitor the improvement in the parameter being

monitored. For example, if monitor is val_acc the mode should be

max; if it is val_loss, the mode should be min. If the mode is set to

auto, it will try to derive the mode using the name of the parameter

being monitored.

•	 save_freq: at what point the checkpoint should be saved. If set to

epoch, the checkpoint would be saved after each epoch. If set to a

number, the checkpoint would be saved every time that many epochs

pass.

Note O n TensorFlow v2.1 or before, use the period parameter instead of
save_freq.

Let us add model checkpoints to our bird classification model. We will add a new

directory, checkpoints/training, to save the checkpoints. (And potentially a checkpoints/

finetune directory, to save the checkpoints in fine-tuning).

We will get a copy of our InceptionV3 fine-tuning code like before, and name

it bird_classify_inceptionV3_checkpoint.py. We will add the import to the

ModelCheckpoint callback in it. We will also make a change to the model.compile() call,

from metrics=['accuracy'] to metrics=['acc']. This is important to align with some

naming conventions that we will be using with ModelCheckpoints:

9: from tensorflow.keras.callbacks import ModelCheckpoint

...

...

136: model.compile(optimizer='rmsprop', loss='categorical_crossentropy',

metrics=['acc'])

137:

138: training_checkpoint_dir = 'checkpoints/training'

Chapter 8 Starting, Stopping, and Resuming Learning

188

139:

140: filepath = training_checkpoint_dir + "/model-{epoch:02d}-{val_

acc:.2f}-{val_loss:.2f}.h5"

141: checkpoint = ModelCheckpoint(

142: filepath,

143: verbose=1,

144: save_best_only=False,

145: save_weights_only=False,

146: save_freq="epoch"

147:)

148:

149: callbacks_list = [checkpoint]

150:

151: history = model.fit(

152: train_generator,

153: steps_per_epoch=train_steps,

154: epochs=epochs,

155: validation_data=validation_generator,

156: validation_steps=validation_steps,

157: class_weight=class_weights,

158: max_queue_size=15,

159: workers=8,

160: callbacks=callbacks_list

161:)

Note  When specifying metrics=['accuracy'], the accuracy metrices
will be reported as accuracy and val_accuracy. When specifying them as
metrics=['acc'] they will be reported as acc and val_acc, which is the naming
convention expected by many of the callback functions. Make sure you also update
the graph_training_history() function to update all references of accuracy
to acc, and val_accuracy to val_acc. If not updated, you may receive errors such as
“KeyError: 'acc.”

Chapter 8 Starting, Stopping, and Resuming Learning

189

Here, we have specified the checkpoint to be saved at each epoch. We are not

monitoring any parameters.

Since we have specified the file name pattern as model-{epoch:02d}-{val_acc:.2f}-

{val_loss:.2f }.h5, the epoch number, validation accuracy values, and validation loss

values will be injected into the file name being saved (Figure 8-4). For example, the

filename model-01-0.80-12.06.h5 would indicate that the epoch was 01, validation

accuracy was 0.80, and validation loss was 12.06. These values allow you to easily select

the best checkpoints just by checking the file name.

While there may be situations where you would need to save every training epoch

(such as when training generative adversarial networks, where we cannot rely on the

accuracy metrics directly to identify model improvements), in most cases, it is best to

only save the checkpoint if the training improves.

Let us now update our code to only save the checkpoints when the validation loss

improves (when validation loss minimizes):

9: from tensorflow.keras.callbacks import ModelCheckpoint

...

...

130: model.compile(optimizer='rmsprop', loss='categorical_crossentropy',

metrics=['acc'])

131:

132: training_checkpoint_dir = 'checkpoints/training'

133:

Figure 8-4.  Model checkpoints being saved at each epoch

Chapter 8 Starting, Stopping, and Resuming Learning

190

134: filepath = training_checkpoint_dir + "/model-{epoch:02d}-{val_

acc:.2f}-{val_loss:.2f}.h5"

135: checkpoint = ModelCheckpoint(

136: filepath,

137: monitor="val_loss",

138: verbose=1,

139: save_best_only=True,

140: save_weights_only=False,

141: mode="min"

142:)

143:

144: callbacks_list = [checkpoint]

145:

146: history = model.fit(

147: train_generator,

148: steps_per_epoch=train_steps,

149: epochs=epochs,

150: validation_data=validation_generator,

151: validation_steps=validation_steps,

152: class_weight=class_weights,

153: callbacks=callbacks_list

154:)

Here, we are setting the save_best_only parameter to True, and setting the monitor

to val_loss and the mode to min to only save the checkpoint if validation loss gets lower

than the previous epoch (Figure 8-5).

Chapter 8 Starting, Stopping, and Resuming Learning

191

This will reduce the number of checkpoint files being saved, making it easier to pick

out the best states of the model.

Based on the requirement of your model, you can do the same for any of the other

matrices of the model: acc, loss, val_acc, val_loss.

Now let us imagine that your model training was interrupted, but you have

some model checkpoints saved. How can you restart your training from one of those

checkpoints?

As an example, let us say that we have the following checkpoints saved (Figure 8-6)

and our training was interrupted sometime after epoch 33.

Figure 8-5.  Saving only the best checkpoints

Figure 8-6.  Saved checkpoints

Chapter 8 Starting, Stopping, and Resuming Learning

192

Let us start a new code file that will allow us to continue the training from a

checkpoint. We will name it bird_classify_continue_from_checkpoint.py.

We will start by importing the packages. These will be the same imports as we did

before:

01: import tensorflow as tf

02: import numpy as np

03: from tensorflow.keras.preprocessing.image import ImageDataGenerator,

img_to_array, load_img

04: from tensorflow.keras.models import Sequential, Model, load_model

05: from tensorflow.keras.layers import Dropout, Flatten, Dense,

GlobalAveragePooling2D, Input

06: from tensorflow.keras.applications.inception_v3 import InceptionV3

07: from tensorflow.keras import optimizers

08: from tensorflow.keras.optimizers import SGD

09: from tensorflow.keras.callbacks import ModelCheckpoint

10: import matplotlib.pyplot as plt

11: import math

12: import os

13: import os.path

14: import time

We will then define our usual utility functions:

16: # utility functions

17: def graph_training_history(history):

18: plt.rcParams["figure.figsize"] = (12, 9)

19:

20: plt.style.use('ggplot')

21:

22: plt.figure(1)

23:

24: # summarize history for accuracy

25:

26: plt.subplot(211)

27: plt.plot(history.history['acc'])

28: plt.plot(history.history['val_acc'])

Chapter 8 Starting, Stopping, and Resuming Learning

193

29: plt.title('Model Accuracy')

30: plt.ylabel('Accuracy')

31: plt.xlabel('Epoch')

32: plt.legend(['Training', 'Validation'], loc='lower right')

33:

34: # summarize history for loss

35:

36: plt.subplot(212)

37: plt.plot(history.history['loss'])

38: plt.plot(history.history['val_loss'])

39: plt.title('Model Loss')

40: plt.ylabel('Loss')

41: plt.xlabel('Epoch')

42: plt.legend(['Training', 'Validation'], loc='upper right')

43:

44: plt.tight_layout()

45:

46: plt.show()

47:

48: # util function to calculate the class weights based on the number of

samples on each class

49: # this is useful with datasets that are highly skewed (datasets where

50: # the number of samples in each class differs vastly)

51: def get_class_weights(class_data_dir):

52: labels_count = dict()

53: for img_class in [ic for ic in os.listdir(class_data_dir) if ic[0]

!= '.']:

54: labels_count[img_class] = len(os.listdir(os.path.join(class_

data_dir, img_class)))

55: total_count = sum(labels_count.values())

56: class_weights = {cls: total_count / count for cls, count in

57: enumerate(labels_count.values())}

58: return class_weights

Chapter 8 Starting, Stopping, and Resuming Learning

194

We will then add a new function that will return the epoch number of a given

checkpoint:

60: # util function to get the initial epoch number from the checkpoint

name

61: def get_init_epoch(checkpoint_path):

62: filename = os.path.basename(checkpoint_path)

63: filename = os.path.splitext(filename)[0]

64: init_epoch = filename.split("-")[1]

65: return int(init_epoch)

Our training parameters will be as same as before:

68: # start time of the script

69: start_time = time.time()

70:

71: # dimensions of our images.

72: img_width, img_height = 224, 224

73:

74: train_data_dir = 'data/train'

75: validation_data_dir = 'data/validation'

76:

77: # number of epochs to train

78: epochs = 50

79:

80: # batch size used by flow_from_directory

81: batch_size = 16

Then we define the checkpoint to load and get the epoch number of it using the

function we defined earlier:

83: # the checkpoint to load and continue from

84: checkpoint_to_load = "checkpoints/training/model-33-0.94-8.92.h5"

85: # get the epoch number to continue from

86: init_epoch = get_init_epoch(checkpoint_to_load)

Chapter 8 Starting, Stopping, and Resuming Learning

195

Our data generators and parameters will be defined exactly as same as the initial

training script:

088: # this is the augmentation configuration we will use for training

089: train_datagen = ImageDataGenerator(

090: rescale=1. / 255,

091: shear_range=0.2,

092: zoom_range=0.2,

093: horizontal_flip=True)

094:

095: # this is the augmentation configuration we will use for testing:

096: # only rescaling

097: test_datagen = ImageDataGenerator(rescale=1. / 255)

098:

099: train_generator = train_datagen.flow_from_directory(

100: train_data_dir,

101: target_size=(img_width, img_height),

102: batch_size=batch_size,

103: class_mode='categorical')

104:

105: validation_generator = test_datagen.flow_from_directory(

106: validation_data_dir,

107: target_size=(img_width, img_height),

108: batch_size=batch_size,

109: class_mode='categorical')

110:

111: # the number of classes/categories

112: num_classes = len(train_generator.class_indices)

113:

114: # calculate the training steps

115: nb_train_samples = len(train_generator.filenames)

116: train_steps = int(math.ceil(nb_train_samples / batch_size))

117:

118: # calculate the validation steps

119: nb_validation_samples = len(validation_generator.filenames)

Chapter 8 Starting, Stopping, and Resuming Learning

196

120: validation_steps = int(math.ceil(nb_validation_samples / batch_size))

121:

122: # get the class weights

123: class_weights = get_class_weights(train_data_dir)

Then we use the load_model() function to load the checkpoint. Once loaded it will

be our model:

125: # load the model state from the checkpoint

126: model = load_model(checkpoint_to_load)

The checkpoint definitions will be same as before:

128: training_checkpoint_dir = 'checkpoints/training'

129:

130: filepath = training_checkpoint_dir + "/model-{epoch:02d}-

{val_acc:.2f}-{val_loss:.2f}.h5"

131: checkpoint = ModelCheckpoint(

132: filepath,

133: monitor="val_acc",

134: verbose=1,

135: save_best_only=True,

136: save_weights_only=False,

137: mode="max"

138:)

139:

140: callbacks_list = [checkpoint]

In the model.fit() function we add an additional parameter initial_epoch with

the value we derived earlier to specify from which epoch to start the training from:

142: history = model.fit(

143: train_generator,

144: steps_per_epoch=train_steps,

145: epochs=epochs,

146: validation_data=validation_generator,

147: validation_steps=validation_steps,

148: class_weight=class_weights,

Chapter 8 Starting, Stopping, and Resuming Learning

197

149: initial_epoch=init_epoch,

150: callbacks=callbacks_list

151:)

The remaining steps of the training will remain same:

153: model.save('bird_classify_fine-tune_IV3_S1.h5')

154:

155: (eval_loss, eval_accuracy) = model.evaluate(

156: validation_generator, steps=validation_steps)

157:

158: print("\n")

159:

160: print("[INFO] accuracy: {:.2f}%".format(eval_accuracy * 100))

161: print("[INFO] Loss: {}".format(eval_loss))

162:

163:

164: # Run Fine-tuning on our model

...

...

Running this code, we will see that the training now starts at epoch 34 (Figure 8-7).

Figure 8-7.  Training continuing from a checkpoint

Chapter 8 Starting, Stopping, and Resuming Learning

198

With model checkpoints, we can be sure that hours or days of our effort in training a

model will not be lost in an event of a failure.

�Knowing When to Stop Training
In all the previous models we trained, we specified the number of epochs to train as a

fixed number. We used a number that have worked well in similar models in the past.

But how do we determine the best number of epochs to train a model?

Training too much may lead to overfitting. But training too little would not give you

the best results. We need to find the best point at which to stop the training for optimal

results.

One way we can determine that is to train for different number of epochs and

comparing the results. But with deep learning models, each training session can take

hours, if not days. Therefore, it may not be practical always to run several training

sessions to determine the best.

But what if there is a way to automatically stop the training when it reaches an

optimal point?

This is where model early stopping comes in. EarlyStopping is another one of the

built-in callbacks in TensorFlow/Keras which can be used with model.fit() functions.

The way EarlyStopping works, similar to the way the metric monitoring in model

checkpointing worked, is to keep monitoring a given metric and stop the training if it

does not improve for a given number of epochs.

When implementing early stopping it is also best to implement model

checkpointing. When early stopping stops the training at a point, you can use the saved

checkpoints to get the model at its best point.

The parameters for EarlyStopping is as follows:

tensorflow.keras.callbacks.EarlyStopping(

 monitor="val_loss",

 min_delta=0,

 patience=0,

 verbose=0,

 mode="auto",

 baseline=None,

 restore_best_weights=False,

)

Chapter 8 Starting, Stopping, and Resuming Learning

199

•	 monitor: what metric to monitor, like in model checkpointing.

•	 min_delta: the minimum change in the monitored metric that will

be considered as an improvement.

•	 patience: how many epochs to wait for an improvement before

stopping the training.

•	 verbose: the verbosity level

•	 mode: min, max, or auto, as with model checkpoints.

•	 baseline: what the baseline is for the training. The training will stop if

it does not improve over this baseline.

•	 restore_best_weights: whether to restore the model back to its bast

point based on the parameter being monitored. If you set this to

False, then the model will use the weights from the last step that was

completed before stopping, which may or may not be the best.

Let us add early stopping to our model. We will take a copy of our code from bird_

classify_inceptionV3_checkpoint.py and name it bird_classify_inceptionV3_

early_stopping.py. We will then make the following modifications to it:

9: from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping

...

...

132: training_checkpoint_dir = 'checkpoints/training'

133:

134: filepath = training_checkpoint_dir + "/model-{epoch:02d}-{val_

acc:.2f}-{val_loss:.2f}.h5"

135: checkpoint = ModelCheckpoint(

136: filepath,

137: monitor="val_acc",

138: verbose=1,

139: save_best_only=True,

140: save_weights_only=False,

141: mode="max"

142:)

143:

Chapter 8 Starting, Stopping, and Resuming Learning

200

144: early_stop = EarlyStopping(

145: monitor="val_acc",

146: mode="max",

147: verbose=1,

148: patience=3,

149: restore_best_weights=True

150:)

151:

152: callbacks_list = [checkpoint, early_stop]

153:

154: history = model.fit(

155: train_generator,

156: steps_per_epoch=train_steps,

157: epochs=epochs,

158: validation_data=validation_generator,

159: validation_steps=validation_steps,

160: class_weight=class_weights,

161: max_queue_size=15,

162: workers=8,

163: callbacks=callbacks_list

164:)

Here, we are specifying EarlyStopping to monitor the validation accuracy, and stop

the training if it does not improve for three consecutive epochs. We also specify that once

stopped it should restore the model to the last best state (which would be three epochs

before in this case).

When running the model with these configurations, you will see that the training will

automatically stop when the training is not improving the model (Figure 8-8).

Chapter 8 Starting, Stopping, and Resuming Learning

201

�Building a Robust Training Script
With model checkpoints, we were able to recover our model training state in case of an

interruption. With early stopping we were able to automatically stop the training of a

model at the right point in training.

Now let us see how we can combine those to build a robust training script—one that

you can stop and start any time without losing your progress.

When building a robust training script, we will need to consider the following:

•	 Training of our module consists of two steps: training the initial

model, and fine-tuning the model.

•	 For each of those steps, we will need to determine whether that step

has been completed already, and run the remaining step.

•	 For each step that needs to run, we will need to determine where the

last training stopped, and continue from that epoch.

•	 When training we need to save checkpoints, so that training of that

step can be resumed later from those points.

With these in mind, let us build our robust training script.

Figure 8-8.  Early stopping the model training

Chapter 8 Starting, Stopping, and Resuming Learning

202

We will name our new code file bird_classify_robust_training.py, and start by

importing the packages:

01: import tensorflow as tf

02: import numpy as np

03: from tensorflow.keras.preprocessing.image import ImageDataGenerator,

img_to_array, load_img

04: from tensorflow.keras.models import Sequential, Model, load_model

05: from tensorflow.keras.layers import Dropout, Flatten, Dense,

GlobalAveragePooling2D, Input

06: from tensorflow.keras.applications.inception_v3 import InceptionV3

07: from tensorflow.keras import optimizers

08: from tensorflow.keras.optimizers import SGD

09: from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping

10: import matplotlib.pyplot as plt

11: import math

12: import os

13: import os.path

14: import time

Then we will add our utility function definitions. What is new here is that

our graph_training_history() function now take two extra parameters to save the

figure to a file rather than displaying it:

16: # utility functions

17: def graph_training_history(history, save_fig=False, save_path=None):

18: plt.rcParams["figure.figsize"] = (12, 9)

19:

20: plt.style.use('ggplot')

21:

22: plt.figure(1)

23:

24: # summarize history for accuracy

25:

26: plt.subplot(211)

27: plt.plot(history.history['acc'])

28: plt.plot(history.history['val_acc'])

Chapter 8 Starting, Stopping, and Resuming Learning

203

29: plt.title('Model Accuracy')

30: plt.ylabel('Accuracy')

31: plt.xlabel('Epoch')

32: plt.legend(['Training', 'Validation'], loc='lower right')

33:

34: # summarize history for loss

35:

36: plt.subplot(212)

37: plt.plot(history.history['loss'])

38: plt.plot(history.history['val_loss'])

39: plt.title('Model Loss')

40: plt.ylabel('Loss')

41: plt.xlabel('Epoch')

42: plt.legend(['Training', 'Validation'], loc='upper right')

43:

44: plt.tight_layout()

45:

46: if save_fig:

47: plt.savefig(save_path, bbox_inches='tight', dpi=300)

48: else:

49: plt.show()

50:

51: # clear and close the current figure

52: plt.clf()

53: plt.close()

54:

55: # util function to calculate the class weights based on the number of

samples on each class

56: # this is useful with datasets that are highly skewed (datasets where

57: # the number of samples in each class differs vastly)

58: def get_class_weights(class_data_dir):

59: labels_count = dict()

60: for img_class in [ic for ic in os.listdir(class_data_dir) if ic[0]

!= '.']:

Chapter 8 Starting, Stopping, and Resuming Learning

204

61: labels_count[img_class] = len(os.listdir(os.path.join(class_

data_dir, img_class)))

62: total_count = sum(labels_count.values())

63: class_weights = {cls: total_count / count for cls, count in

64: enumerate(labels_count.values())}

65: return class_weights

66:

67: # util function to get the initial epoch number from the checkpoint name

68: def get_init_epoch(checkpoint_path):

69: filename = os.path.basename(checkpoint_path)

70: filename = os.path.splitext(filename)[0]

71: init_epoch = filename.split("-")[1]

72: return int(init_epoch)

We then check for the existence of the saved model files to determine which step of

the training (initial training or fine-tuning) needs to run:

74: run_training = True

75: run_finetune = True

76:

77: class_indices_path = 'class_indices.npy'

78: initial_model_path = 'bird_classify_finetune_initial.h5'

79: final_model_path = 'bird_classify_finetune_final.h5'

80:

81: # check which of the training steps still need to complete

82: # if saved model file is already there, then that step is considered

complete

83: if os.path.isfile(initial_model_path):

84: run_training = False

85: print("[Info] Initial model exists '{}'. Skipping training

step.".format(initial_model_path))

86:

87: if os.path.isfile(final_model_path):

88: run_finetune = False

89: print("[Info] Fine-tuned model exists '{}'. Skipping fine-tuning

step.".format(final_model_path))

Chapter 8 Starting, Stopping, and Resuming Learning

205

For each of the steps that need running, we then determine which checkpoint to

start from:

091: load_from_checkpoint_train = False

092:

093: training_checkpoint_dir = 'checkpoints/training'

094: if run_training and len(os.listdir(training_checkpoint_dir)) > 0:

095: # the checkpoint to load and continue from

096: training_checkpoint = os.path.join(training_checkpoint_dir,

os.listdir(training_checkpoint_dir)[len(os.listdir(training_checkpoint_

dir))-1])

097: load_from_checkpoint_train = True

098:

099: init_epoch_train = 0

100: if load_from_checkpoint_train:

101: # get the epoch number to continue from

102: print(training_checkpoint)

103: init_epoch_train = get_init_epoch(training_checkpoint)

104: print("[Info] Training checkpoint found for epoch {}. Will

continue from that step.".format(init_epoch_train))

105:

106:

107: load_from_checkpoint_finetune = False

108:

109: finetune_checkpoint_dir = 'checkpoints/finetune'

110: if run_finetune and len(os.listdir(finetune_checkpoint_dir)) > 0:

111: # the checkpoint to load and continue from

112: finetune_checkpoint = os.path.join(finetune_checkpoint_dir,

os.listdir(finetune_checkpoint_dir)[len(os.listdir(finetune_checkpoint_

dir))-1])

113: load_from_checkpoint_finetune = True

114:

115: init_epoch_finetune = 0

116: if load_from_checkpoint_finetune:

117: # get the epoch number to continue from

118: init_epoch_finetune = get_init_epoch(finetune_checkpoint)

Chapter 8 Starting, Stopping, and Resuming Learning

206

119: print("[Info] Training checkpoint found for epoch {}. Will

continue from that step.".format(init_epoch_finetune))

Then, our data generators and training parameters are defined as usual:

122: # start time of the script

123: start_time = time.time()

124:

125: # dimensions of our images.

126: img_width, img_height = 224, 224

127:

128: train_data_dir = 'data/train'

129: validation_data_dir = 'data/validation'

130:

131: # number of epochs to train

132: epochs = 50

133:

134: # batch size used by flow_from_directory

135: batch_size = 16

136:

137:

138: # this is the augmentation configuration we will use for training

139: train_datagen = ImageDataGenerator(

140: rescale=1. / 255,

141: shear_range=0.2,

142: zoom_range=0.2,

143: horizontal_flip=True)

144:

145: # this is the augmentation configuration we will use for testing:

146: # only rescaling

147: test_datagen = ImageDataGenerator(rescale=1. / 255)

148:

149: train_generator = train_datagen.flow_from_directory(

150: train_data_dir,

151: target_size=(img_width, img_height),

152: batch_size=batch_size,

Chapter 8 Starting, Stopping, and Resuming Learning

207

153: class_mode='categorical')

154:

155: validation_generator = test_datagen.flow_from_directory(

156: validation_data_dir,

157: target_size=(img_width, img_height),

158: batch_size=batch_size,

159: class_mode='categorical')

160:

161: # the number of classes/categories

162: num_classes = len(train_generator.class_indices)

163:

164: # save the class indices for use in the predictions

165: np.save(class_indices_path, train_generator.class_indices)

166:

167: # calculate the training steps

168: nb_train_samples = len(train_generator.filenames)

169: train_steps = int(math.ceil(nb_train_samples / batch_size))

170:

171: # calculate the validation steps

172: nb_validation_samples = len(validation_generator.filenames)

173: validation_steps = int(math.ceil(nb_validation_samples / batch_size))

174:

175: # get the class weights

176: class_weights = get_class_weights(train_data_dir)

Based on the conditions we checked earlier, we either start training from beginning,

start from a checkpoint if checkpoints are already there, or skip the training step if the

trained model file is already there:

178: if run_training:

179: if load_from_checkpoint_train:

180: model = load_model(training_checkpoint)

181: else:

182: # create the base pre-trained model

183: base_model = InceptionV3(

184: weights='imagenet',

Chapter 8 Starting, Stopping, and Resuming Learning

208

185: include_top=False,

186: input_tensor=Input(shape=(img_width, img_height, 3))

187:)

188:

189: # add a global spatial average pooling layer

190: x = base_model.output

191: x = GlobalAveragePooling2D()(x)

192: x = Dense(512, activation='relu')(x)

193: predictions = Dense(num_classes, activation='softmax')(x)

194:

195: # this is the model we will train

196: model = Model(inputs=base_model.input, outputs=predictions)

197:

198: # first: train only the top layers (which were randomly

initialized)

199: # i.e. freeze all convolutional layers

200: for layer in base_model.layers:

201: layer.trainable = False

202:

203: # compile the model (should be done *after* setting layers to

non-trainable)

204: model.compile(optimizer='rmsprop', loss='categorical_

crossentropy', metrics=['acc'])

205:

206: filepath = training_checkpoint_dir + "/model-{epoch:02d}-{val_

acc:.2f}-{val_loss:.2f}.h5"

207: checkpoint = ModelCheckpoint(

208: filepath,

209: monitor="val_acc",

210: verbose=1,

211: save_best_only=True,

212: save_weights_only=False,

213: mode="max"

214:)

215:

Chapter 8 Starting, Stopping, and Resuming Learning

209

216: early_stop = EarlyStopping(

217: monitor="val_acc",

218: mode="max",

219: verbose=1,

220: patience=5,

221: restore_best_weights=True

222:)

223:

224: callbacks_list = [checkpoint, early_stop]

225:

226: history = model.fit(

227: train_generator,

228: steps_per_epoch=train_steps,

229: epochs=epochs,

230: validation_data=validation_generator,

231: validation_steps=validation_steps,

232: class_weight=class_weights,

233: max_queue_size=15,

234: workers=8,

235: initial_epoch=init_epoch_train,

236: callbacks=callbacks_list

237:)

238:

239: model.save(initial_model_path)

240:

241: (eval_loss, eval_accuracy) = model.evaluate(

242: validation_generator, steps=validation_steps)

243:

244: print("\n")

245:

246: print("[INFO] accuracy: {:.2f}%".format(eval_accuracy * 100))

247: print("[INFO] Loss: {}".format(eval_loss))

248:

249: graph_training_history(history, save_fig=True, save_

path='training.png')

Chapter 8 Starting, Stopping, and Resuming Learning

210

250:

251: else:

252: # training step is already completed

253: # load the already trained model

254: model = load_model(initial_model_path)

We will then do the same for our fine-tuning step:

257: # Run Fine-tuning on our model

258: if run_finetune:

259: # number of epochs to fine-tune

260: ft_epochs = 25

261:

262: # reset our data generators

263: train_generator.reset()

264: validation_generator.reset()

265:

266: if load_from_checkpoint_finetune:

267: model = load_model(finetune_checkpoint)

268: else:

269: # we chose to train the last convolution block from the base

model

270: for layer in model.layers[:249]:

271: layer.trainable = False

272: for layer in model.layers[249:]:

273: layer.trainable = True

274:

275: # we need to recompile the model for these modifications to

take effect

276: # we use SGD with a low learning rate

277: model.compile(

278: optimizer=optimizers.SGD(lr=0.0001, momentum=0.9),

279: loss='categorical_crossentropy',

280: metrics=['acc']

281:)

282:

Chapter 8 Starting, Stopping, and Resuming Learning

211

283: filepath = finetune_checkpoint_dir + "/model-{epoch:02d}-{val_

acc:.2f}-{val_loss:.2f}.h5"

284: checkpoint = ModelCheckpoint(

285: filepath,

286: monitor="val_acc",

287: verbose=1,

288: save_best_only=True,

289: save_weights_only=False,

290: mode="max"

291:)

292:

293: early_stop = EarlyStopping(

294: monitor="val_acc",

295: mode="max",

296: verbose=1,

297: patience=5,

298: restore_best_weights=True

299:)

300:

301: callbacks_list = [checkpoint, early_stop]

302:

303: history = model.fit(

304: train_generator,

305: steps_per_epoch=train_steps,

306: epochs=ft_epochs,

307: validation_data=validation_generator,

308: validation_steps=validation_steps,

309: class_weight=class_weights,

310: max_queue_size=15,

311: workers=8,

312: initial_epoch=init_epoch_finetune,

313: callbacks=callbacks_list

314:)

315:

316: model.save(final_model_path)

Chapter 8 Starting, Stopping, and Resuming Learning

212

317:

318: (eval_loss, eval_accuracy) = model.evaluate(

319: validation_generator, steps=validation_steps)

320:

321: print("\n")

322:

323: print("[INFO] accuracy: {:.2f}%".format(eval_accuracy * 100))

324: print("[INFO] Loss: {}".format(eval_loss))

325:

326: graph_training_history(history, save_fig=True, save_

path='finetune.png')

327:

328: end_time = time.time()

329:

330: training_duration = end_time - start_time

331: print("[INFO] Total Time for training: {} seconds".

format(training_duration))

This script now allows you to resume from any step in the training process

(Figures 8-9 and 8-10).

Figure 8-9.  Resuming the training step from a checkpoint

Chapter 8 Starting, Stopping, and Resuming Learning

213

With a training script such as this, you can start, stop, and resume training at any

time without fear of losing your progress due to an interruption.

Figure 8-10.  Skipping the already completed training step, and continuing from a
fine-tuning checkpoint

Chapter 8 Starting, Stopping, and Resuming Learning

215
© Thimira Amaratunga 2021
T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_9

CHAPTER 9

Deploying Your Model
as a Web Application
Over the past several chapters, we have talked about some techniques to optimize the

training of a model. We went through the steps of starting with a small dataset to get

results that can be applied in practical scenarios.

You now know the steps needed to train a practical model. Now it is time to talk

about how to make your trained model into an application.

In Chapter 7, we briefly talked about how to build a script to run predictions using

the trained model (Figure 9-1).

1�Flask (handling file uploads), https://flask.palletsprojects.com/en/1.1.x/patterns/
fileuploads/#improving-uploads, [Sep 23, 2019].

Figure 9-1.  Using a script to run predictions with a model

https://doi.org/10.1007/978-1-4842-6431-7_9#DOI
https://flask.palletsprojects.com/en/1.1.x/patterns/fileuploads/#improving-uploads
https://flask.palletsprojects.com/en/1.1.x/patterns/fileuploads/#improving-uploads

216

But using a script like that is not a user-friendly way of making it an application. A

better way would be to turn your model into a web application. It would allow for better

usability, as well as allowing you to provide your new deep learning application to

multiple users.

We can use the Flask Framework to turn our model into a web application.

�Setting up Flask
Flask is a lightweight micro web framework for Python, which allows you to build

websites, web applications, APIs, and microservices. With only a few base dependencies,

you can start building your application with a simple structure and later expand upon it

with additional features and scalability using a large library of available extensions.

When we set up our deep learning environment in Chapter 3 with the Anaconda

metapackage, we installed the Flask package and few other dependency packages that

will aid us in building our application.

If you want to install Flask separately you can simply run:

conda install Flask

This will install Flask, as well as Werkzeug, Jinja2, MarkupSafe, and ItsDangerous

packages (Figure 9-2).

Figure 9-2.  Conda installing Flask and dependencies

Chapter 9 Deploying Your Model as a Web Application

217

Once installed, we can test Flask by creating a simple application. We will name this

file flask-sample.py:

01: from flask import Flask

02:

03: header_text = '''

04: <html>\n<head> <title>Flask Test Application</title> </head>\

n<body>'''

05: page_content = '''

06: <p>This is a sample webpage generated by Flask.</p>\n'''

07: footer_text = '''</body>\n</html>'''

08:

09: # request handler function for the home/index page

10: def index():

11: return header_text + page_content + footer_text

12:

13: # setting up the application context

14: application = Flask(__name__)

15:

16: # add a rule for the index page.

17: application.add_url_rule('/', 'index', index, methods=['GET', 'POST'])

18:

19: # run the app.

20: if __name__ == "__main__":

21: # Setting debug to True enables debug output. This line should be

22: # removed before deploying a production app.

23: application.debug = True

24: application.run()

Here, we are importing the Flask package, defining the application context, and

running the resulting Flask application. We define a function—index()—and bind it

to handle the requests coming to the index route of the application add_url_rule()

function. In the index() function, we are simply returning some hardcoded HTML strings

for now.

Chapter 9 Deploying Your Model as a Web Application

218

We can run this application by running:

python flask-sample.py

Flask will spin up a development webserver process to serve your application. By

default, it will run on port 5000 on localhost. You can access the application page on

http://127.0.0.1:5000/ (Figure 9-3).

With Flask up and running, we are now ready to design our deep learning web

application using Flask.

�Designing Your Web Application
As we did in Chapter 7, we can use a model file saved using the model.save() function

(e.g., the bird_classify_finetune_IV3_final.h5 file in our fine-tuning of the bird

image classification system example). By using the full model file, we can load the model

in its trained state without having to redefine the code for the model structure. Along

with the model file, we will use the class_indices.npy file saved from the same script.

The class_indices file contains the dictionary/mapping of the text labels for the classes to

their IDs. We will need the label mapping to display the text label for the predicted class

(Figure 9-4).

Figure 9-3.  Flask sample Web app running

Chapter 9 Deploying Your Model as a Web Application

219

With our model files at hand, we can start designing the application. We will need to

consider the following:

•	 As the input for our system we will need to have an HTML page with

a web form that allows uploading/submitting files.

•	 The uploaded files need to be placed in a location where the Python

code can read them.

•	 A function is needed to handle the requests which loads the

uploaded image file, runs it through the model, and responds with

the result/prediction from the model.

•	 The frontend webpage needs to be able to display the result.

•	 Loading of the model from file takes time. It is not practical to load

the model for every request. Therefore, we need a way to load the

model only once (preferably when the application starts).

•	 Using HTML strings in the code is not practical. We should use

a templating engine, which would give us more flexibility in our

frontend. Fortunately, the default installation of Flask comes with the

Jinja2 template engine.

Based on these considerations, we will define the following structure for our Flask

application (Figure 9-5):

Figure 9-4.  Model files needed to build the web application

Chapter 9 Deploying Your Model as a Web Application

220

Our application will consist of 3 directories: models, templates, and uploads, along

with a main application.py file. The models directory will contain our saved model

file, as well as the class label dictionary file for that model. The templates directory will

contain the Jinja2 template files (the Jinja2 engine expects this directory to be named

templates). The uploads directory is for keeping the uploaded files of the application.

The application.py will contain the Flask application definitions as well as the functions

to process the images and predictions using our trained model.

Following this simple application structure will allow us to extend the capabilities

of our application later, as well as allow us to upload and host our application in various

services that allow Flask applications.

�Building Your Deep Learning Web Application
To build our web application, let us begin with our template file for the main page. In the

templates directory of our application structure, create an index.html file.

Figure 9-5.  The structure of our application

Chapter 9 Deploying Your Model as a Web Application

221

In this file, start with adding the basic HTML structure of the page. We will be using

the Jinja2 templating for this:

1: <!doctype html>

2: <html lang="en">

3: <head>

4: <title>Bird Image Classification System</title>

5: </head>

6: <body>

7: <h3>Deep Learning Bird Image Identification System</h3>

At the top of the page, we will add a section to display any error messages returned

from the backend. We will use the Flash messages mechanism from the Flask framework:

08: <!-- show error messages from backend, if any -->

09: {% with messages = get_flashed_messages() %}

10: {% if messages %}

11:

12: {% for message in messages %}

13: {{ message }}

14: {% endfor %}

15:

16: {% endif %}

17: {% endwith %}

Next, we will add the main HTML form that allows us to upload the images:

18: <form action="" method="post" enctype="multipart/form-data">

19: <div>

20: <label for="bird_image">Select an image to upload

<small>(Supports .jpg, .jpeg, .gif, and .png images.)</small></label>

21: <input type="file" name="bird_image" id="bird_image"

accept=".jpg,.jpeg,.gif,.png" required="required">

22: </div>

23: <div>

24: <input type="submit" value="Process" name="submit">

25: </div>

26: </form>

Chapter 9 Deploying Your Model as a Web Application

222

Finally, we will add a section to display the results:

27: {% if label %}

28:

29:

30: <div>

31: {% if image %}

32:

33: {% endif %}

34: <h3 class="card-title">Identification</h3>

35: <p class="card-text">Predicted : {{label}}</p>

36: <p class="card-text">Confidence [0-100]% : {{prob}} %</p>

37: </div>

38: {% endif %}

39: </body>

40: </html>

One thing to note here is that we are using Base64 image data in the tag

instead of a path to an image file. This allows us to display an image with any image

manipulations applied without having to save it as a file.

Note  For simplicity, we will not be adding any style/css here.

Now we can begin the main code of our Flask application.

Start an application.py file in the root of our application structure and import the

packages:

01: from flask import Flask, request, render_template, url_for, make_

response, send_from_directory, flash, redirect, jsonify

02: from werkzeug.utils import secure_filename

03:

04: import numpy as np

05: import tensorflow as tf

06: from tensorflow.keras.preprocessing.image import img_to_array, load_img

07: from tensorflow.keras.models import Model, load_model

08: from tensorflow.keras.utils import to_categorical

09: from PIL import Image

Chapter 9 Deploying Your Model as a Web Application

223

10: from io import BytesIO

11: import os

12: import os.path

13: import sys

14: import base64

15: import uuid

16: import time

With some versions of TensorFlow there are some incompatibilities of cuDNN and

Flask. Therefore, we add the following code to avoid the incompatibilities:

18: # avoiding some compatibility problems in TensorFlow, cuDNN, and Flask

19: from tensorflow.compat.v1 import ConfigProto

20: from tensorflow.compat.v1 import InteractiveSession

21: config = ConfigProto()

22: config.gpu_options.allow_growth = True

23: session = InteractiveSession(config=config)

Note Y ou may experience errors such as “BaseCollectiveExecutor::StartAbo
rt Unknown: Failed to get convolution algorithm” if you try to run the application
without these compatibility fixes. This may be fixed in future releases.

Next, we set the application parameters, and load the model from files:

25: # dimensions of our images.

26: img_width, img_height = 224, 224

27: # limiting the allowed filetypes

28: ALLOWED_FILETYPES = set(['.jpg', '.jpeg', '.gif', '.png'])

29:

30: model_path = 'models/bird_classify_finetune_IV3_final.h5'

31:

32: # loading the class dictionary and the model

33: �class_dictionary = np.load('models/class_indices.npy',

allow_pickle=True).item()

34:

35: model = load_model(model_path)

Chapter 9 Deploying Your Model as a Web Application

224

Then we will add a function—classify_image()—that will take the image, perform the

preprocessing on the image, run it through the model, and return the result:

37: # function for classifying the image using the model

38: def classify_image(image):

39: image = img_to_array(image)

40:

41: # important! otherwise the predictions will be '0'

42: image = image / 255.0

43:

44: # add a new axis to make the image array confirm with

45: # the (samples, height, width, depth) structure

46: image = np.expand_dims(image, axis=0)

47:

48: # get the probabilities for the prediction

49: # with graph.as_default():

50: probabilities = model.predict(image)

51:

52: prediction_probability = probabilities[0, probabilities.

argmax(axis=1)][0]

53:

54: class_predicted = np.argmax(probabilities, axis=1)

55:

56: inID = class_predicted[0]

57:

58: # invert the class dictionary in order to get the label for the id

59: inv_map = {v: k for k, v in class_dictionary.items()}

60: label = inv_map[inID]

61:

62: print("[Info] Predicted: {}, Confidence: {}".format(label,

prediction_probability))

63:

64: return label, prediction_probability

When showing the results for an uploaded image, it is better to show the image in

the page as well. Therefore, we will add a utility function to return a thumbnail version

Chapter 9 Deploying Your Model as a Web Application

225

of the uploaded image in a Base64 encoded format. Base64 image data can be directly

rendered by an HTML tag without needing to supply a file location. Recall that in

our template, we specified the tag to use data:image/jpeg;base64:

66: # get a thumbnail version of the uploaded image

67: def get_iamge_thumbnail(image):

68: image.thumbnail((400, 400), resample=Image.LANCZOS)

69: image = image.convert("RGB")

70: with BytesIO() as buffer:

71: image.save(buffer, 'jpeg')

72: return base64.b64encode(buffer.getvalue()).decode()

Then we come to our main request handler, the index() function:

074: # request handler function for the home/index page

075: def index():

076: # handling the POST method of the submit

077: if request.method == 'POST':

078: # check if the post request has the submitted file

079: if 'bird_image' not in request.files:

080: print("[Error] No file uploaded.")

081: flash('No file uploaded.')

082: return redirect(url_for('index'))

083:

084: f = request.files['bird_image']

085:

086: # if user does not select a file, some browsers may

087: # submit an empty field without the filename

088: if f.filename == '':

089: print("[Error] No file selected to upload.")

090: flash('No file selected to upload.')

091: return redirect(url_for('index'))

092:

093: sec_filename = secure_filename(f.filename)

094: file_extension = os.path.splitext(sec_filename)[1]

095:

096: if f and file_extension.lower() in ALLOWED_FILETYPES:

Chapter 9 Deploying Your Model as a Web Application

226

097: file_tempname = uuid.uuid4().hex

098: image_path = './uploads/' + file_tempname + file_extension

099: f.save(image_path)

100:

101: image = load_img(image_path, target_size=(img_width,

img_height), interpolation='lanczos')

102:

103: label, prediction_probability = classify_

image(image=image)

104: prediction_probability = np.around(prediction_probability

* 100, decimals=4)

105:

106: orig_image = Image.open(image_path)

107: image_data = get_iamge_thumbnail(image=orig_image)

108:

109: with application.app_context():

110: return render_template('index.html',

111: label=label,

112: prob=prediction_probability,

113: image=image_data

114:)

115: else:

116: print("[Error] Unauthorized file extension: {}".

format(file_extension))

117: flash("The file type you selected: '{}' is not supported.

Please select a '.jpg', '.jpeg', '.gif', or a '.png' file.".format(file_

extension))

118: return redirect(url_for('index'))

119: else:

120: # handling the GET, HEAD, and any other methods

121:

122: with application.app_context():

123: return render_template('index.html')

Chapter 9 Deploying Your Model as a Web Application

227

This index() function handles both the GET request to render the initial page, as

well as the POST request from the form submit. When handling the GET requests, the

index() function renders the index.html template we defined earlier. The webform in the

index page is set to make a POST request (with the submitted file) to itself, which is again

picked up by the index() function.

When processing the POST request, we make several checks, such as whether a file

was uploaded, does it have an allowed file extension. The flash message mechanism

of the Flask framework is used to report any errors to the user. If all checks pass, the

uploaded image is then placed in the uploads directory of our application structure,

loaded using the load_img() function of Keras, and passed to the classify_image()

function we defined earlier. Once results are ready, we render the index.html template

again, this time with the result information.

Another utility function is added next to handle the HTTP 413 errors, which are

emitted when the uploaded filesize is larger than the MAX_CONTENT_LENGTH of the

application:

125: # handle 'filesize too large' errors

126: def http_413(e):

127: print("[Error] Uploaded file too large.")

128: flash('Uploaded file too large.')

129: return redirect(url_for('index'))

Note  When running our application locally, you may get a “Connection Reset” or
a “Connection Aborted” error in the browser instead of the error message we set
using the preceding function when uploading files larger than the limit we set. This
is a known limitation of the development server of Flask. You can read more about
it in the Flask documentation page on handling file uploads.1

Finally, the Flask application context, parameters, and URL rules are defined:

131: # setting up the application context

132: application = Flask(__name__)

133: # set the application secret key. Used with sessions.

134: application.secret_key = '@#$%^&*@#$%^&*'

135:

Chapter 9 Deploying Your Model as a Web Application

228

136: # add a rule for the index page.

137: application.add_url_rule('/', 'index', index, methods=['GET', 'POST'])

138:

139: # limit the size of the uploads

140: application.register_error_handler(413, http_413)

141: application.config['MAX_CONTENT_LENGTH'] = 10 * 1024 * 1024

142:

143: # run the app.

144: if __name__ == "__main__":

145: # Setting debug to True enables debug output. This line should be

146: # removed before deploying a production app.

147: application.debug = True

148: application.run()

Like our Flask sample application, we run this as:

python application.py

When the application starts, it will first load the model from file, before starting the

webserver (Figure 9-6).

Figure 9-6.  Flask application loading the model

Chapter 9 Deploying Your Model as a Web Application

229

Once the webserver is started view the webpage in browser, which by default would

be running on http://127.0.0.1:5000 (Figure 9-7).

You can now upload an image and see how well our application can recognize it

(Figure 9-8). The application will return the predicted label with the confidence for the

prediction.

Figure 9-7.  Our bird classification flask application running

Chapter 9 Deploying Your Model as a Web Application

230

If you are wondering on how you can host this application, the application structure

we build will work out-of-the-box with Flask application hosting services such as AWS

Elastic Beanstalk.2

�Scaling Up Your Web Application
The application we built here, although functional, if far from an optimal design. There

are several areas that we can improve in it, such as:

•	 The main application handles both the web functions—such as

template rendering, request handling—and the deep learning

inference tasks as well. This will bottleneck some of the functionality

as the same application threads needs to handle both sets of tasks.

Figure 9-8.  Results for an uploaded image

2�Elastic Beanstalk (deploying a Flask application to Elastic Beanstalk), [https://docs.aws.
amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html, [22 Nov, 2020].

Chapter 9 Deploying Your Model as a Web Application

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html

231

•	 Running inferencing is computationally intensive. The same can be

said for image preprocessing as well. While the web functions are

relatively less complex.

•	 By having the web and the deep learning components of the

application together, we would need to allocate processing/machine

resources unnecessarily.

•	 When implementing computationally intensive functions, it is better

to implement limit (or throttle) the number of parallel invocations of

such functions as to reduce the resource usage. Think of multiuser

scenarios.

•	 Computationally intensive functions should optimally be done

asynchronously.

Considering all these facts, it is better to split the application so that the web

components and the deep learning portions are handled by two separate micro-services.

It is also better to implement a job-queue mechanism between the two services as a

throttling mechanism.

One possible application design considering these items is shown here (Figure 9-9).

Figure 9-9.  Scaling up the application

By considering these factors when designing, you can build your application to be

able to handle thousands to millions of requests at a time.

Chapter 9 Deploying Your Model as a Web Application

233
© Thimira Amaratunga 2021
T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_10

CHAPTER 10

Having Fun
with Computer Vision
We have talked about the ways in which deep learning and computer vision go together.

In the past few chapters, we have built some computer vision models: deep learning

image classification models, from handwritten digit classification to bird identification.

In Chapter 3, when we set up our deep learning development environment, we installed

several utility libraries that aids in computer vision and image processing tasks.

But other than using OpenCV to load and display the results of our deep learning

models, we have not explored many of the functions available in these libraries.

Therefore, in this chapter, let us look at some of those functions and concepts to get

you started. While this chapter is not a full computer vision tutorial, this hopes to guide

you to start experimenting on your own, and to learn how to couple it with what we have

already learned about deep learning.

�What We Need
In Chapter 3, “Setting Up Your Tools,” we already installed everything we need for computer

vision and image processing tasks, which are OpenCV, Dlib, Pillow, and Scikit-Image.

•	 OpenCV is arguably the best computer vision library out there. It

can do simple functions, such as loading and manipulating images,

to building complex models, such as deep learning-based image

recognition, all on its own.

•	 Dlib is a machine learning library, which has some optimized and

easy-to-use computer vision functions built in.

•	 Pillow and Scikit-Image allow you to load and handle different

formats of images and allow basic manipulations such as color

channel handling.

https://doi.org/10.1007/978-1-4842-6431-7_10#DOI

234

Other than the software libraries, it is best to have a webcam attached to your

machine, as we will be looking into some real-time video processing as well.

If you are working on a laptop, then you might already have a built-in webcam, which

is sufficient. If not, you can use a USB webcam. For most USB webcams, the default

drivers that is installed by Windows will be sufficient.

Note  You can use the Camera app on Windows 10 to check whether the webcam
is working and have the working drivers loaded. You also do not need a high-end
HD webcam, as we will be working with lower resolutions (640x480).

�Basics of Working with Images
The most basic functionality of any image processing task is to load and display images.

We have already used this functionality to display the results from our models.

When working with image files, OpenCV has convenient functions to load images

and display them. The following code will use the imread function of OpenCV to load the

image:

01: import numpy as np

02: import cv2

03:

04: # Read the image...

05: # cv2.IMREAD_COLOR - load a color image, without transparency

06: # cv2.IMREAD_GRAYSCALE - load image in grayscale mode

07: # cv2.IMREAD_UNCHANGED - load image as-is, including transparency if it

is there

08: img = cv2.imread('.//images//Bird.jpg', cv2.IMREAD_COLOR)

09:

10: # Display the image

11: cv2.imshow('Image', img)

12:

13: # Wait for a keypress

14: cv2.waitKey(0)

15:

Chapter 10 Having Fun with Computer Vision

235

16: # Close all OpenCV windows

17: cv2.destroyAllWindows()

The image will be displayed in a new window by OpenCV (Figure 10-1).

OpenCV can load most image file formats, but the exact format it supports will

depend on the version and the build that you have installed.

If you do run into an image file that OpenCV is unable to open, you can always use

Pillow to open it. Pillow supports many more formats than OpenCV:

01: import numpy as np

02: import cv2

03: from PIL import Image

04:

05: # Read the image...

06: pil_image = Image.open('.//images//Bird.jpg')

07:

08: # Convert image from RGB to BGR

09: opencv_image = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)

10:

Figure 10-1.  OpenCV loading and displaying an image

Chapter 10 Having Fun with Computer Vision

236

11: # Display the image

12: cv2.imshow('Image', opencv_image)

13:

14: # Wait for a keypress

15: cv2.waitKey(0)

16:

17: # Close all OpenCV windows

18: cv2.destroyAllWindows()

Here, we have loaded the image with Pillow, converted the color format to be

compatible with OpenCV, and displayed the image using OpenCV (Figure 10-2).

When using Pillow with OpenCV we must convert the color formats, because

OpenCV uses the BGR format while Pillow uses the more common RGB format. If

you forget to convert these color channels, the images will display incorrect colors

(Figure 10-3).

Figure 10-2.  Loading an image with Pillow and displaying with OpenCV

Chapter 10 Having Fun with Computer Vision

237

Once you have loaded the image, OpenCV and Pillow allows you to do many

transformations to the image, such as resizing, rotating, color conversions, and

thresholding. The following code shows how to perform a rotation around the center

point of an image using OpenCV:

01: import numpy as np

02: import cv2

03:

04: # Read the image...

05: img = cv2.imread('.//images//Bird.jpg', cv2.IMREAD_COLOR)

06:

07: # Perform the rotation around the center point

08: rows,cols,channels = img.shape

09: M = cv2.getRotationMatrix2D((cols/2,rows/2),45,1)

10: dst = cv2.warpAffine(img,M,(cols,rows))

11:

12: # Display the image

13: cv2.imshow('Image', dst)

14:

15: # Wait for a keypress

16: cv2.waitKey(0)

Figure 10-3.  Incorrect colors if RGB to BGR color conversion is not performed

Chapter 10 Having Fun with Computer Vision

238

17:

18: # Close all OpenCV windows

19: cv2.destroyAllWindows()

This will result is a 45-degree rotation of the image (Figure 10-4).

You can read about the full set of available image transformation functions from the

OpenCV docs1 and Pillow docs.2

The next most important function you need to learn is extracting out a region of

interest from an image. The following code demonstrates how a region from the image

can be extracted:

01: import numpy as np

02: import cv2

03:

04: # Read the image...

05: img = cv2.imread('.//images//Bird.jpg', cv2.IMREAD_COLOR)

1�OpenCV (image transformations), https://docs.opencv.org/3.4.1/da/d6e/tutorial_py_
geometric_transformations.html, [Feb 23, 2018].

2�Pillow (image transformations), https://pillow.readthedocs.io/en/stable/reference/
Image.html, [Jul 24, 2020].

Figure 10-4.  Image rotation with OpenCV

Chapter 10 Having Fun with Computer Vision

https://docs.opencv.org/3.4.1/da/d6e/tutorial_py_geometric_transformations.html
https://docs.opencv.org/3.4.1/da/d6e/tutorial_py_geometric_transformations.html
https://pillow.readthedocs.io/en/stable/reference/Image.html
https://pillow.readthedocs.io/en/stable/reference/Image.html

239

06:

07: # Extract the region-of-interest from the image

08: img_roi = img[50:250, 150:300]

09:

10: # Display the extracted region-of-interest

11: cv2.imshow('Image ROI', img_roi)

12:

13: # Wait for a keypress

14: cv2.waitKey(0)

15:

16: # Close all OpenCV windows

17: cv2.destroyAllWindows()

This will extract and display a region from the image (Figure 10-5).

You can also save the extracted image region using the imwrite function.

07: # Extract the region-of-interest from the image

08: img_roi = img[50:250, 150:300]

09:

10: # Save the region-of-interest as an image

11: cv2.imwrite('.//images//Bird_ROI.jpg', img_roi)

Figure 10-5.  Extracting a region-of-interest from an image

Chapter 10 Having Fun with Computer Vision

240

The ability to extract a region-of-interest is incredibly useful when you are working

with object detection and recognition.

�Working with Video: Using Webcams
Usually, when working with hardware devices, such as when you are trying to read from a

connected camera from code, you would have to fiddle around some camera driver stuff.

But OpenCV has us covered in this instance.

OpenCV can read from any built-in or USB connected camera in the system.

A video stream from a camera is just a sequence of images in an order, and OpenCV

reads frame-by-frame. Therefore, each frame acts like loading an individual image:

01: import numpy as np

02: import cv2

03:

04: # Create the video capture object for camera id '0'

05: video_capture = cv2.VideoCapture(0)

06:

07: while True:

08: # Capture frame-by-frame

09: ret, frame = video_capture.read()

10:

11: if (ret):

12: # Display the resulting frame

13: cv2.imshow('Video Feed', frame)

14:

15: ch = 0xFF & cv2.waitKey(1)

16:

17: # Press "q" to quit the program

18: if ch == ord('q'):

19: break

20:

21: # When everything is done, release the capture

22: video_capture.release()

23: cv2.destroyAllWindows()

Chapter 10 Having Fun with Computer Vision

241

With this code, OpenCV will open a window—named Video Feed here—and load

each frame as it reads them from the camera (Figure 10-6).

The code will loop indefinitely, or until you press the q key on the keyboard.

OpenCV uses its HighGUI module (high-level graphical user interface) to access

the cameras as well as to display the frames. HighGUI module has three sets of

functionalities: hardware, filesystem, and GUI. The hardware part is what handles

accessing hardware devices such as cameras. The filesystem part handles the loading

and saving of images as well as video files. The GUI part is what generates the windows

that display the images or frames, as well as giving you the ability to handle keyboard

and mouse events in those windows. The toolbar and the status bar of the window we

opened earlier are also components from HighGUI.3 The HighGUI modlule is installed

by default when you are installing OpenCV with conda.

Camera id 0 is your default camera. Typically, this is the built-in camera if you are

on a laptop, or whichever camera you have set as default if you have multiple cameras.

If you have more than one camera, they would have ids that would be listed as 0, 1, 2,

and so on. Just check and set the id to the camera you want. You can use multiple video

capture objects to read from multiple cameras (Figure 10-7).

3�OpenCV (HighGUI module), https://docs.opencv.org/3.4.11/d7/dfc/group__highgui.html,
[Jul 17, 2020].

Figure 10-6.  OpenCV loading the video from a webcam

Chapter 10 Having Fun with Computer Vision

https://docs.opencv.org/3.4.11/d7/dfc/group__highgui.html

242

Once you read the frame from the camera, it acts as an image. Now you can perform

any of the image transformations on that frame.

�Working with Video: Using Video Files
This is almost identical to reading from a webcam. You just need to pass the path to the

video file, instead of the camera id, in the video capture object:

01: import numpy as np

02: import cv2

03:

04: # Create the video capture object for a video file

05: cap = cv2.VideoCapture("F:\\GoPro\\Hero7\\GH010038.mp4")

06:

07: while(cap.isOpened()):

08: # Read frame-by-frame

09: ret, frame = cap.read()

Figure 10-7.  Reading from multiple cameras in OpenCV

Chapter 10 Having Fun with Computer Vision

243

10:

11: if (ret):

12: # Resize the frame

13: res = cv2.resize(frame, (960, 540), interpolation = cv2.INTER_

CUBIC)

14:

15: # Display the resulting frame

16: cv2.imshow('Video', res)

17:

18: # Press "q" to quit the program

19: if cv2.waitKey(1) & 0xFF == ord('q'):

20: break

21:

22: cap.release()

23: cv2.destroyAllWindows()

Just like the webcam code, OpenCV will open a window and load each frame as it

reads them from the video file (Figure 10-8).

Figure 10-8.  OpenCV loading a video file

Chapter 10 Having Fun with Computer Vision

244

As with images, the supported video file formats may differ with the exact

version/build of the OpenCV you have installed. OpenCV relies on FFmpeg and

GStreamer libraries to be able to work with video files, while the DirectShow library is

used on Windows to handle video from webcams. These libraries are installed when you

install OpenCV with conda. Therefore, opening standard AVI and MP4 files should not

be a problem.

You may notice that the playback of the video is either faster or slower than expected.

This is because the functions we used are not meant for playing back videos at their

natural speed. What we are doing is grabbing each frame of the video—like we did with

the webcam—and displaying it in the window with a delay added in between fetching

the next frame. That delay is added by the cv2.waitkey() function. Here we have set it

to 1 millisecond of delay between frames. You can increase or decrease the speed of the

video by adjusting this delay.

�Detecting Faces in Images
Here we are getting into some of the fun parts of computer vision.

Writing code from scratch to detect faces is a bit of a complex task as the process

involved in identifying a face from within an image reliably involves many steps. But

libraries such as OpenCV and Dlib already have the complex parts of those algorithms

built into them.

To detect any objects (such as faces) in an image, you need to have a trained object

detector. Luckily, Dlib already has a pretrained face detector built right into the library.

You can load it using dlib.get_frontal_face_detector() function.

01: import numpy as np

02: import cv2

03: import dlib

04:

05: # Load the built-in face dedector of Dlib

06: detector = dlib.get_frontal_face_detector()

07:

08: # Load the image

Chapter 10 Having Fun with Computer Vision

245

09: img = cv2.imread('.//images//Face.jpg', cv2.IMREAD_COLOR)

10: # Create a grayscale copy of the image

11: img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

12:

13: # Get the detected face bounding boxes, using the grayscale image

14: rects = detector(img_gray, 0)

15:

16: # Loop over the bounding boxes, if there are more than one face

17: for rect in rects:

18: # Get the OpenCV coordinates from the Dlib rectangle objects

19: x = rect.left()

20: y = rect.top()

21: x1 = rect.right()

22: y1 = rect.bottom()

23:

24: # Draw a rectangle around the face bounding box in OpenCV

25: cv2.rectangle(img, (x, y), (x1, y1), (0, 0, 255), 2)

26:

27: # Display the resulting image

28: cv2.imshow('Detected Faces', img)

29:

30: # Wait for a keypress

31: cv2.waitKey(0)

32:

33: # Close all OpenCV windows

34: cv2.destroyAllWindows()

Here, we are using OpenCV to load the image, and then make a grayscale copy of it.

We pass this grayscale copy of the image to the Dlib face detector object.

The grayscale image is used as it can increase the detection speed of faces. The Dlib

face detector can work with color images as well, but would be slower.

The detector would return an array of Dlib rectangle objects to denote the bounding

boxes of all the faces detected. We loop over each of these bounding boxes, extract their

coordinates, and use OpenCV to draw a rectangle around the detected face using those

coordinates. Finally, we display the resulting image, with the detected faces (Figure 10-9).

Chapter 10 Having Fun with Computer Vision

246

�Detecting Faces in Video
Once we get face detection working with images, getting it to work on a video or a

webcam feed is quite simple. All we need to do is to capture the video frame-by-frame

and pass each frame to the face detector:

01: import numpy as np

02: import cv2

03: import dlib

04:

05: # Create the video capture object for camera id '0'

06: video_capture = cv2.VideoCapture(0)

07: # Load the buil-in face dedector of Dlib

08: detector = dlib.get_frontal_face_detector()

09:

Figure 10-9.  Dlib face detection in action

Chapter 10 Having Fun with Computer Vision

247

10: while True:

11: # Capture frame-by-frame

12: ret, frame = video_capture.read()

13:

14: if (ret):

15: # Create a grayscale copy of the captured frame

16: gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

17:

18: # Get the detected face bounding boxes, using the grayscale image

19: rects = detector(gray, 0)

20:

21: # Loop over the bounding boxes, if there are more than one face

22: for rect in rects:

23: # Get the OpenCV coordinates from the Dlib rectangle

objects

24: x = rect.left()

25: y = rect.top()

26: x1 = rect.right()

27: y1 = rect.bottom()

28:

29: # Draw a rectangle around the face bounding box in OpenCV

30: cv2.rectangle(frame, (x, y), (x1, y1), (0, 0, 255), 2)

31:

32: # Display the resulting frame

33: cv2.imshow('Video Feed', frame)

34:

35: ch = 0xFF & cv2.waitKey(1)

36:

37: # press "q" to quit the program.

38: if ch == ord('q'):

39: break

40:

41: # When everything is done, release the capture

42: video_capture.release()

43: cv2.destroyAllWindows()

Chapter 10 Having Fun with Computer Vision

248

Here we are running the face detection step (as we did with an image) on each frame

of the video. On a typical machine, the Dlib’s face detector is fast enough to detect faces

in real time, allowing us to run it for each frame. You will see the detection box update in

real time for each frame (Figure 10-10).

�Simple Real-Time Deep Learning Object
Identification
Next, we will combine what we learned about deep learning models with the computer

vision capabilities of OpenCV and build a rudimentary object identification system.

We will use OpenCV to capture the video stream from a webcam and use the

ResNet50 deep learning model from TensorFlow/Keras applications to identify objects in

each frame of the video. You can learn more about the ResNet50 model in Appendix 1.

We will start by importing the necessary packages:

1: import numpy as np

2: import cv2

3: import tensorflow as tf

4: from tensorflow.keras.applications.resnet50 import ResNet50

Figure 10-10.  Face detection running on video

Chapter 10 Having Fun with Computer Vision

249

5: from tensorflow.keras.preprocessing import image

6: from tensorflow.keras.applications.resnet50 import preprocess_input,

decode_predictions

Apart from OpenCV, numpy, and the ResNet50 model, we also import some image

preprocessing functions from Keras.

Next, we load the ResNet50 model with the ImageNet weights and create the video

capture object:

08: # Load the ResNet50 model with the ImageNet weights

09: model = ResNet50(weights='imagenet')

10: # Create the video capture object

11: video_capture = cv2.VideoCapture(0)

In the main loop of the code, we convert the captured frame to RGB (since OpenCV

works in BGR) and resize it to 224x224 pixels, which is the input size required by the

ResNet50 model:

13: while True:

14: # Capture frame-by-frame

15: ret, frame = video_capture.read()

16:

17: if (ret):

18: # Convert image from BGR to RGB

19: rgb_im = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)

20: # Resize the image to 224x224, the size required by ResNet50 model

21: res_im = cv2.resize(rgb_im, (224, 224), interpolation = cv2.

INTER_CUBIC)

Then we run the image through a set of preprocessing steps, to prepare it to be

ingested by the model:

23: # Preprocess image

24: prep_im = image.img_to_array(res_im)

25: prep_im = np.expand_dims(prep_im, axis=0)

26: prep_im = preprocess_input(prep_im)

Chapter 10 Having Fun with Computer Vision

250

Next we pass the processed image to the model and make the prediction. We also

need to decode the prediction—using convenient functions from TensorFlow/Keras—to

get the class label for the prediction:

28: # Make the prediction

29: preds = model.predict(prep_im)

30:

31: # Decode the prediction

32: (class_name, class_description, score) = decode_

predictions(preds, top=1)[0][0]

Finally, we overlay the predicted label and the confidence score of the prediction on

the image itself, and print it on the console, and display the image using OpenCV:

34: # Display the predicted class and confidence

35: print("Predicted: {0}, Confidence: {1:.2f}".format(class_

description, score))

36: cv2.putText(frame, "Predicted: {}".format(class_description),

(10, 50),

37: cv2.FONT_HERSHEY_PLAIN, 2, (255, 255, 255), 2, cv2.

LINE_AA)

38: cv2.putText(frame, "Confidence: {0:.2f}".format(score), (10, 80),

39: cv2.FONT_HERSHEY_PLAIN, 2, (255, 255, 255), 2, cv2.

LINE_AA)

40:

41: # Display the resulting frame

42: cv2.imshow('Video Feed', frame)

43:

44: ch = 0xFF & cv2.waitKey(1)

45:

46: # press "q" to quit the program.

47: if ch == ord('q'):

48: break

49:

50: # When everything is done, release the capture

51: video_capture.release()

52: cv2.destroyAllWindows()

Chapter 10 Having Fun with Computer Vision

251

When you run the code, it will pass each frame of the video to the ResNet50 model,

which will try to identify the most prominent object in the frame. The code will then

display and print out the prediction along with the confidence of the prediction from the

ResNet50 model (Figure 10-11).

What we built here is a very rudimentary object identification system that has several

limitations. It can only identify one object at a time, as it takes the entire frame as the

input. It also cannot identify bounding boxes for the objects it identifies. A true object

detection system would be able to identify multiple objects within a frame and identify

their boundaries as well.

But with the concepts we learned so far, you can investigate expanding the

capabilities of the system.

The same goes for our face detection system.

How would you expand it to perform face recognition on the detected faces as well?

Think of what we learned about extracting a region-of-interest from an image. Can

you think of a way to apply that concept to extract out the detected face image and run

it through a deep learning model? Can you use the same concept to build the training

dataset for the model as well?

Figure 10-11.  Real-time object detection running

Chapter 10 Having Fun with Computer Vision

253
© Thimira Amaratunga 2021
T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_11

CHAPTER 11

Introduction to Generative
Adversarial Networks
Can an AI be creative—can it learn to create art, for example? The traditional answer

was no. But lately we are not so sure. Recently, thanks to deep learning, the definition of

creativity has been become blurred.

�The Story of the Artist and the Art Critic
Let us look at a story.

There once was a novice artist, who was learning to create artwork by taking

inspiration from existing art pieces.

The artist created a piece of art and showed it to an art critic.

The critic analyzed the artwork and declared it not good enough. But, being

conscientious, the critic also provide feedback to the artist on why it was not considered

to be good enough.

The artist absorbed this feedback and attempted again to create another piece of art

with changes based on the feedback, and showed it to the critic.

This happened over several cycles.

Every time the critic criticized the artwork, the artist gained experience about how to

improve it.

Likewise, every time the artist generated a new artwork, the critic gained experience

in how to evaluate it.

After many such iterations, the artist created an artwork that could be considered a

masterpiece.

Because of the critic, the artist became a master.

What if we can do the same to an AI?

That is the idea behind generative adversarial networks.

https://doi.org/10.1007/978-1-4842-6431-7_11#DOI

254

�Generative Adversarial Networks
A generative adversarial network (GAN) is a machine learning model where two neural

networks contest with each other to generate new data with the same characteristics of a

given training set.

•	 Generative: the model generates new data, as opposed to picking the

output from a given set.

•	 Adversarial: the two networks are adversaries of each other.

•	 Network: the model is based on neural networks.

Like our story, generative adversarial networks also consists of two elements: a

generator (the artist) and a discriminator (the art critic). The generator is trying to learn

to create items that looks “real,” while the discriminator is trying to distinguish the

generated items from real ones (Figure 11-1).

The items generated can be images, text, videos, sounds, or anything.

In such a system, the generator and the discriminator need to be trained together,

as in the artist and the art critic in our story who got experienced together. When we

are training such a system, the generator will progressively become better at generating

items that look real, and the discriminator will become better at telling them apart from

Figure 11-1.  The typical workflow of a GAN

Chapter 11 Introduction to Generative Adversarial Networks

255

the real ones. After many iterations of training like this, there will come a point where

the discriminator may no longer be able to tell the generated items from the real ones

(Figure 11-2).

To simplify the explanation, let us take a GAN than generates images. The generator

takes a random noise vector as input, while the discriminator takes a training set of real

images belonging to the class of images that we would like to generate.

�Generating Handwritten Digits with DCGAN
A DCGAN (deep convolutional generative adversarial network) is one of the simplest

GAN implementations. In it we use convolutional layers in the generator and the

discriminator, which makes DCGAN models work great with images.

Figure 11-2.  Training of a GAN

Chapter 11 Introduction to Generative Adversarial Networks

256

We will use the MNIST dataset as the input. Our target would be to generate images

that are indistinguishable from human handwritten digits.

Our workflow would look like the following (Figure 11-3).

We will start with a new code file, which we will name DCGAN_Digits.py.

We start our code by importing the necessary packages:

01: import tensorflow as tf

02:

03: from tensorflow.keras import layers

04: import glob

05: import imageio

06: import matplotlib.pyplot as plt

07: import numpy as np

08: import os

09: import PIL

10: import time

11: import cv2

Figure 11-3.  DCGAN for handwritten digit generation

Chapter 11 Introduction to Generative Adversarial Networks

257

We then load our dataset and normalize it:

13: (train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_

data()

14:

15: train_images = train_images.reshape(train_images.shape[0], 28, 28,

1).astype('float32')

16: train_images = (train_images - 127.5) / 127.5 # Normalize the images to

[-1, 1]

The MNIST pixel values are in the 0–255 range. Here we normalize it to -1–1 range.

Then we define the batch sizes, then shuffle and chunk the dataset for training:

18: BUFFER_SIZE = 60000

19: BATCH_SIZE = 256

20:

21: # Batch and shuffle the data

22: train_dataset = tf.data.Dataset.from_tensor_slices(train_images).

shuffle(BUFFER_SIZE).batch(BATCH_SIZE)

Next, we need to define the generator and discriminator models.

�The Generator
Our generator model takes in a seed of random noise and outputs a 28x28x1 image. The

model would look like this (Figure 11-4):

Chapter 11 Introduction to Generative Adversarial Networks

258

The model uses Conv2DTranspose layers to upsample the input at each layer.

LeakyReLU is used as the regularization, as it allows small amounts of negative values to

go through, as opposed to ReLU, which removes all negatives.

We will define a new function make_generator_model() for the generator model:

24: def make_generator_model():

25: model = tf.keras.Sequential()

26: model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,)))

27: model.add(layers.BatchNormalization())

Figure 11-4.  The generator model

Chapter 11 Introduction to Generative Adversarial Networks

259

28: model.add(layers.LeakyReLU())

29:

30: model.add(layers.Reshape((7, 7, 256)))

31: assert model.output_shape == (None, 7, 7, 256) # Note: None is the

batch size

32:

33: model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1),

padding='same', use_bias=False))

34: assert model.output_shape == (None, 7, 7, 128)

35: model.add(layers.BatchNormalization())

36: model.add(layers.LeakyReLU())

37:

38: model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2),

padding='same', use_bias=False))

39: assert model.output_shape == (None, 14, 14, 64)

40: model.add(layers.BatchNormalization())

41: model.add(layers.LeakyReLU())

42:

43: model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2),

padding='same', use_bias=False, activation='tanh'))

44: assert model.output_shape == (None, 28, 28, 1)

45:

46: return model

We can now use this function to create a model instance and generate an

initial image:

48: generator = make_generator_model()

49:

50: noise = tf.random.normal([1, 100])

51: generated_image = generator(noise, training=False)

52:

53: plt.imshow(generated_image[0, :, :, 0], cmap='gray')

54: plt.show()

55: plt.close()

Chapter 11 Introduction to Generative Adversarial Networks

260

As the generator model is still untrained, the output will look like noise (Figure 11-5).

�The Discriminator
The discriminator is a simple deep learning image classifier (based on a familiar

convolutional neural network). It will take a 28x28x1 image as input and classify them as

real or fake. The discriminator model would look like this (Figure 11-6):

Figure 11-5.  Output from the untrained generator

Chapter 11 Introduction to Generative Adversarial Networks

261

We will define the make_discriminator_model() function for the discriminator

model. It uses our familiar Conv2D layers:

57: def make_discriminator_model():

58: model = tf.keras.Sequential()

59: model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same',

60: input_shape=[28, 28, 1]))

61: model.add(layers.LeakyReLU())

62: model.add(layers.Dropout(0.3))

Figure 11-6.  The discriminator model

Chapter 11 Introduction to Generative Adversarial Networks

262

63:

64: model.add(layers.Conv2D(128, (5, 5), strides=(2, 2),

padding='same'))

65: model.add(layers.LeakyReLU())

66: model.add(layers.Dropout(0.3))

67:

68: model.add(layers.Flatten())

69: model.add(layers.Dense(1))

70:

71: return model

We can then use this function to create a discriminator instance and pass the image

we generated earlier:

73: discriminator = make_discriminator_model()

74: decision = discriminator(generated_image)

75: print (decision)

As the discriminator model is still untrained, this will output something like the

following:

tf.Tensor([[0.00122253]], shape=(1, 1), dtype=float32)

Once trained, the discriminator will output 1 for real images and 0 for fake.

�The Feedback
Like our story of the artist and the art critic, in order to improve, our generator and

discriminator need feedback. Here we are defining the loss values for both the generator

and the discriminator, which we will later use to calculate the gradients that will update

each of them when training:

77: # This method returns a helper function to compute cross entropy loss

78: cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)

79:

80: def discriminator_loss(real_output, fake_output):

81: real_loss = cross_entropy(tf.ones_like(real_output), real_output)

82: fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)

Chapter 11 Introduction to Generative Adversarial Networks

263

83: total_loss = real_loss + fake_loss

84: return total_loss

85:

86: def generator_loss(fake_output):

87: return cross_entropy(tf.ones_like(fake_output), fake_output)

88:

89: generator_optimizer = tf.keras.optimizers.Adam(1e-4)

90: discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)

The discriminator’s loss is defined by how well it can distinguish between real

images and generated ones. So we take in the predictions from the discriminator for

real images (the array of real_output) and for the fake images (the array of fake_

output), and compare them against the expected outputs. Once properly trained, the

discriminator should yield 1s for the real images, while yielding 0s for the generated or

fake images. Therefore, we get the difference between the outputs for the real images

with an array of 1s, and the difference between the outputs for fake images with an array

of 0s.

Similarly, we expect the generator, once properly trained, to generate images that

yields 1s from the discriminator. Like before, we compare the outputs from the generated

or fake images to an array of 1s to determine the loss for the generator.

We also define two separate Adam optimizers for the generator and the

discriminator, as the two models need to be trained separately while simultaneously.

Since training of GANs can take a long time, we configure model checkpoints to be

saved periodically, which would help to recover if the training gets disrupted. Make sure

to create a directory named training_checkpoints in the directory where your code file is:

92: checkpoint_dir = './training_checkpoints'

93: checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")

94: checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,

95: discriminator_optimizer=discriminator_

optimizer,

96: generator=generator,

97: discriminator=discriminator)

Chapter 11 Introduction to Generative Adversarial Networks

264

�The Training
Next, we define the training parameters and the random seed for the training:

100: EPOCHS = 1000

101: noise_dim = 100

102: num_examples_to_generate = 16

103:

104: # We will reuse this seed overtime (so it's easier)

105: # to visualize progress in the animated GIF)

106: seed = tf.random.normal([num_examples_to_generate, noise_dim])

We will reuse the same seed throughout the training epochs to better visualize how

each generated sample improves over the epochs (as the same seed results in same

digits to be generated).

We then define the function for the training step:

108: # Notice the use of `tf.function`

109: # This annotation causes the function to be "compiled".

110: @tf.function

111: def train_step(images):

112: noise = tf.random.normal([BATCH_SIZE, noise_dim])

113:

114: with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_

tape:

115: generated_images = generator(noise, training=True)

116:

117: real_output = discriminator(images, training=True)

118: fake_output = discriminator(generated_images, training=True)

119:

120: gen_loss = generator_loss(fake_output)

121: disc_loss = discriminator_loss(real_output, fake_output)

122:

123: gradients_of_generator = gen_tape.gradient(gen_loss, generator.

trainable_variables)

124: gradients_of_discriminator = disc_tape.gradient(disc_loss,

discriminator.trainable_variables)

Chapter 11 Introduction to Generative Adversarial Networks

265

125:

126: generator_optimizer.apply_gradients(zip(gradients_of_generator,

generator.trainable_variables))

127: discriminator_optimizer.apply_gradients(zip(gradients_of_

discriminator, discriminator.trainable_variables))

In each training step we pass a random noise vector to the generator, which

generates a set of images using it as the input. These generated images, as well as a set

of real images, are then passed through the discriminator to get their outputs. These

outputs are the predictions/classifications from the discriminator as to whether it

thinks they are real or fake. Using the loss functions we defined earlier, the loss values

are calculated for the generator and discriminator and the gradients of the loss values

are used to update them. Think of it as the “feedback” that nudges them to train in the

correct direction.

Next is the function for the main training loop:

129: def train(dataset, epochs):

130: train_start = time.time()

131: for epoch in range(epochs):

132: start = time.time()

133:

134: for image_batch in dataset:

135: train_step(image_batch)

136:

137: # Produce images for the GIF as we go

138: generate_and_save_images(generator,

139: epoch + 1,

140: seed,

141: display = True)

142:

143: # Save the model every 15 epochs

144: if (epoch + 1) % 15 == 0:

145: checkpoint.save(file_prefix = checkpoint_prefix)

146:

147: print ('Time for epoch {} is {} sec'.format(epoch + 1, time.

time()-start))

Chapter 11 Introduction to Generative Adversarial Networks

266

148:

149: print ('Time for total training is {} sec'.format(time.time()-

train_start))

Here, we are basically running through each of the training batches through number

of epochs we defined. And at the end of each training epoch, we use the seed we defined

earlier to generate a set of samples and save those images files.

The function is defined as follows, which is mainly postprocessing of the generated

images. Make sure to create a directory named output in the directory where your code

file is located:

151: def generate_and_save_images(model, epoch, test_input, display =

False):

152: # Notice `training` is set to False.

153: # This is so all layers run in inference mode.

154: predictions = model(test_input, training=False)

155:

156: fig = plt.figure(figsize=(4,4), facecolor='black')

157:

158: for i in range(predictions.shape[0]):

159: plt.subplot(4, 4, i+1)

160: image = predictions[i, :, :, 0] * 127.5 + 127.5

161: plt.imshow(image, cmap='gray')

162: plt.axis('off')

163:

164: plt.savefig('output/image_at_epoch_{:04d}.png'.format(epoch),

facecolor=fig.get_facecolor())

165: plt.close()

166: disp_image = cv2.imread('output/image_at_epoch_{:04d}.png'.

format(epoch))

167: disp_image = cv2.bitwise_not(disp_image)

168: cv2.imwrite('output/image_at_epoch_{:04d}.png'.format(epoch),

disp_image)

169: if (display):

170: cv2.imshow("Results", disp_image)

171: cv2.waitKey(100)

Chapter 11 Introduction to Generative Adversarial Networks

267

Once all the training utility functions are defined, we call the main training function:

173: train(train_dataset, EPOCHS)

At the end of the training we do some cleanup steps, and then combine all the

generated output images into an animated GIF file:

175: checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))

176: cv2.destroyAllWindows()

177:

178: anim_file = 'dcgan.gif'

179:

180: with imageio.get_writer(anim_file, mode='I') as writer:

181: filenames = glob.glob('output/image*.png')

182: filenames = sorted(filenames)

183: last = -1

184: for i,filename in enumerate(filenames):

185: frame = 2*(i**0.5)

186: if round(frame) > round(last):

187: last = frame

188: else:

189: continue

190: image = imageio.imread(filename)

191: writer.append_data(image)

192: cv2.imshow("Results", image)

193: cv2.waitKey(100)

194: image = imageio.imread(filename)

195: writer.append_data(image)

�Running the Training
With our DCGAN model ready, we can start the training by running:

Python DCGAN_Digits.py

The script will display the time taken for each epoch in the console, as well as the

results from each epoch in an OpenCV window (Figure 11-7).

Chapter 11 Introduction to Generative Adversarial Networks

268

When running on GPU on an RTX2070 the training took about 2 hours for 1,000

epochs (Figure 11-8).

Figure 11-8.  DCGAN training completed

Figure 11-7.  Training running for DCGAN digit generation

Chapter 11 Introduction to Generative Adversarial Networks

269

Note T raining of GANs can take a long time. Our DCGAN model may take hours to
train based on the processing power of the machine being run, as well as whether
you are running the model on CPU or GPU. Typically, it may take 7 to 10 seconds
per epoch to run on a GPU. Running GAN training on CPU may not be practical due
to the time it might take to complete the training.

If you are unsure, run the training for a smaller number of epochs first to get an
idea of how long it might take.

Tip  If the training seems to get stuck after the initial noise image is displayed,
you can try commenting out the lines 53 to 55. This can happen because our GAN
training can take large amounts of system resources and may occasionally exhaust
the resources of the machine when attempting to visualize the results. Similarly,
you can set the display parameter to False on line 141.

You can use Kaggle notebooks1 to run your code if you are having issues running
in your local machine. Kaggle provides free access to NVIDIA TESLA P100 GPUs in
their notebooks/kernels,2 which can greatly accelerate training complex models
such as GANs.

At the start of the training, the results would look like random noise (Figure 11-9).

1�Kaggle, “Notebooks Guide,” https://www.kaggle.com/docs/notebooks, [24 Nov, 2020].
2�Kaggle, “GPU Usage,” https://www.kaggle.com/docs/efficient-gpu-usage, [24 Nov, 2020].

Chapter 11 Introduction to Generative Adversarial Networks

https://www.kaggle.com/docs/notebooks
https://www.kaggle.com/docs/efficient-gpu-usage

270

After 100 epochs the distinct shapes of digits are starting to show (Figure 11-10).

Figure 11-9.  Images generated at epoch 1

Figure 11-10.  Images generated at epoch 100

Chapter 11 Introduction to Generative Adversarial Networks

271

After 200 epochs, the shapes are a bit more refined (Figure 11-11).

After 1,000 epochs, the images are almost indistinguishable from human

handwritten digits (Figure 11-12).

You can also view the generated dcgan.gif file for the amination of how the generated

results improved over the training.

Figure 11-11.  Images generated at epoch 200

Figure 11-12.  Images generated at epoch 1,000

Chapter 11 Introduction to Generative Adversarial Networks

272

�Can We Generate Something More Complex?
We have now seen how our DCGAN model can generate handwritten digits that are

nearly indistinguishable from ones drawn by humans. But can GANs generate something

more complex?

To find out, let us try to apply what we learned from our DCGAN_Digits model on to

something much more complex: generating images of human faces.

For that, we will need a large dataset with images of human faces to train our

discriminator model. We will use the CelebFaces Attributes (CelebA) dataset from

Kaggle for that purpose (Figure 11-13).

Figure 11-13.  CelebFaces attributes (CelebA) dataset from Kaggle

Chapter 11 Introduction to Generative Adversarial Networks

273

The CelebA dataset is about 1.4GB is size.3 Once downloaded, extract the zip file and

rename the top-level directory to celeba-dataset. You should end up with the following

folder structure (Figure 11-14):

With the dataset ready, let us start a new code file for our face generator, which we

will name DCGAN_Faces.py. Like before, remember to create the training_checkpoints

and output directories where your code file is located.

We will start by importing the necessary packages:

01: import tensorflow as tf

02:

03: from tensorflow.keras import layers

04: import glob

05: import imageio

06: import matplotlib.pyplot as plt

07: import numpy as np

08: import os

09: import PIL

10: import time

11: import cv2

We will then define a helper function to load each face image and crop only the face

part of it. As the images in the CelebA dataset is already aligned, we can use hard-coded

values to crop the faces:

13: # Load the image, crop just the face, and return image data as a numpy array

14: def load_image(image_file_path):

15: img = PIL.Image.open(image_file_path)

Figure 11-14.  Folder structure of the uncompressed CelebA dataset

3�You can download the CelebA dataset from Kaggle (CelebA dataset), https://www.kaggle.com/
jessicali9530/celeba-dataset, [2 June, 2018].

Chapter 11 Introduction to Generative Adversarial Networks

https://www.kaggle.com/jessicali9530/celeba-dataset
https://www.kaggle.com/jessicali9530/celeba-dataset

274

16: img = img.crop([25,65,153,193])

17: img = img.resize((64,64))

18: data = np.asarray(img, dtype="int32")

19: return data

We then load our dataset image paths, and define the batch parameters:

21: dataset_path = "celeba-dataset/img_align_celeba/img_align_celeba/"

22:

23: # load the list of training images

24: train_images = np.array(os.listdir(dataset_path))

25:

26: BUFFER_SIZE = 2000

27: BATCH_SIZE = 8

28:

29: # shuffle and list

30: np.random.shuffle(train_images)

31: # chunk the training images list in to batches

32: train_images = np.split(train_images[:BUFFER_SIZE],BATCH_SIZE)

We then define our generator model:

34: def make_generator_model():

35: model = tf.keras.Sequential()

36:

37: model.add(layers.Dense(4*4*1024, use_bias = False, input_shape =

(100,)))

38: model.add(layers.BatchNormalization())

39: model.add(layers.LeakyReLU())

40:

41: model.add(layers.Reshape((4,4,1024)))

42: assert model.output_shape == (None, 4, 4, 1024) # Note: None is the

batch size

43:

44: model.add(layers.Conv2DTranspose(512, (5, 5), strides = (2,2),

padding = "same", use_bias = False))

45: assert model.output_shape == (None, 8, 8, 512)

Chapter 11 Introduction to Generative Adversarial Networks

275

46: model.add(layers.BatchNormalization())

47: model.add(layers.LeakyReLU())

48:

49: model.add(layers.Conv2DTranspose(256, (5,5), strides = (2,2),

padding = "same", use_bias = False))

50: assert model.output_shape == (None, 16, 16, 256)

51: model.add(layers.BatchNormalization())

52: model.add(layers.LeakyReLU())

53:

54: model.add(layers.Conv2DTranspose(128, (5,5), strides = (2,2),

padding = "same", use_bias = False))

55: assert model.output_shape == (None, 32, 32, 128)

56: model.add(layers.BatchNormalization())

57: model.add(layers.LeakyReLU())

58:

59: model.add(layers.Conv2DTranspose(3, (5,5), strides = (2,2), padding

= "same", use_bias = False, activation = "tanh"))

60: assert model.output_shape == (None, 64, 64, 3)

61:

62: return model

63:

64: generator = make_generator_model()

65:

66: noise = tf.random.normal([1,100])

67: generated_image = generator(noise, training = False)

68: plt.imshow(generated_image[0], interpolation="nearest")

69: plt.show()

70: plt.close()

This uses the same concepts as the generator in our DCGAN_Digits model. But we

are using a deeper model here, as our data is more complex.

The image generated from the untrained generator will look something like this

(Figure 11-15):

Chapter 11 Introduction to Generative Adversarial Networks

276

We then define our discriminator model, a little deeper than our DCGAN_Digits

model:

72: def make_discriminator_model():

73: model = tf.keras.Sequential()

74: model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same',

input_shape=[64, 64, 3]))

75: model.add(layers.LeakyReLU())

76: model.add(layers.Dropout(0.3))

77:

78: model.add(layers.Conv2D(512, (5, 5), strides=(2, 2),

padding='same'))

79: model.add(layers.LeakyReLU())

80: model.add(layers.Dropout(0.3))

81:

82: model.add(layers.Conv2D(128, (5, 5), strides=(2, 2),

padding='same'))

83: model.add(layers.LeakyReLU())

84: model.add(layers.Dropout(0.3))

85:

86: model.add(layers.Flatten())

87: model.add(layers.Dense(1))

Figure 11-15.  Output from the untrained generator

Chapter 11 Introduction to Generative Adversarial Networks

277

88:

89: return model

90:

91: discriminator = make_discriminator_model()

92: decision = discriminator(generated_image)

93: print (decision)

94: # output will be something like tf.Tensor([[-6.442342e-05]], shape=(1,

1), dtype=float32)

The loss functions, checkpoints, and training parameters are exactly as we used before:

096: # This method returns a helper function to compute cross entropy loss

097: cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)

098:

099: def discriminator_loss(real_output, fake_output):

100: real_loss = cross_entropy(tf.ones_like(real_output), real_output)

101: fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)

102: total_loss = real_loss + fake_loss

103: return total_loss

104:

105: def generator_loss(fake_output):

106: return cross_entropy(tf.ones_like(fake_output), fake_output)

107:

108: generator_optimizer = tf.keras.optimizers.Adam(1e-4)

109: discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)

110:

111: checkpoint_dir = './training_checkpoints'

112: checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")

113: checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,

114: discriminator_

optimizer=discriminator_optimizer,

115: generator=generator,

116: discriminator=discriminator)

117:

118:

119: EPOCHS = 1000

120: noise_dim = 100

Chapter 11 Introduction to Generative Adversarial Networks

278

121: num_examples_to_generate = 16

122:

123: # setting the seed for the randomization, so that we can reproduce the

results

124: tf.random.set_seed(1234)

125: # We will reuse this seed overtime (so it's easier)

126: # to visualize progress in the animated GIF)

127: seed = tf.random.normal([num_examples_to_generate, noise_dim])

In the train step function, we use the helper function load_image to preprocess our

images. The rest of the steps are same as before:

129: # Notice the use of `tf.function`

130: # This annotation causes the function to be "compiled".

131: @tf.function

132: def train_step(images):

133: noise = tf.random.normal([BATCH_SIZE, noise_dim])

134:

135: # pre-process the images

136: new_images = []

137: for file_name in images:

138: new_pic = load_image(dataset_path + file_name)

139: new_images.append(new_pic)

140:

141: images = np.array(new_images)

142: images = images.reshape(images.shape[0], 64, 64,

3).astype('float32')

143: images = (images - 127.5) / 127.5 # Normalize the images to [-1, 1]

144:

145: with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:

146: generated_images = generator(noise, training=True)

147:

148: real_output = discriminator(images, training=True)

149: fake_output = discriminator(generated_images, training=True)

150:

151: gen_loss = generator_loss(fake_output)

Chapter 11 Introduction to Generative Adversarial Networks

279

152: disc_loss = discriminator_loss(real_output, fake_output)

153:

154: gradients_of_generator = gen_tape.gradient(gen_loss, generator.

trainable_variables)

155: gradients_of_discriminator = disc_tape.gradient(disc_loss,

discriminator.trainable_variables)

156:

157: generator_optimizer.apply_gradients(zip(gradients_of_generator,

generator.trainable_variables))

158: discriminator_optimizer.apply_gradients(zip(gradients_of_

discriminator, discriminator.trainable_variables))

159:

160: images = None

Finally, the functions for the main training loop, saving the generated images, and

generating the animation all use the same steps as we used in our DCGAN_Digits model:

162: def train(dataset, epochs):

163: tf.print("Starting Training")

164: train_start = time.time()

165:

166: for epoch in range(epochs):

167: start = time.time()

168: tf.print("Starting Epoch:", epoch)

169:

170: batch_count = 1

171: for image_batch in dataset:

172: train_step(image_batch)

173: batch_count += 1

174:

175: # Produce images for the GIF as we go

176: generate_and_save_images(generator,

177: epoch + 1,

178: seed)

179:

180: tf.print("Epoch:", epoch, "finished")

Chapter 11 Introduction to Generative Adversarial Networks

280

181: tf.print()

182: tf.print('Time for epoch {} is {} sec'.format(epoch + 1, time.

time()-start))

183: tf.print()

184:

185: # Save the model every epoch

186: checkpoint.save(file_prefix = checkpoint_prefix)

187:

188: print ('Time for total training is {} sec'.format(time.time()-

train_start))

189:

190:

191: def generate_and_save_images(model, epoch, test_input):

192: # Notice `training` is set to False.

193: # This is so all layers run in inference mode.

194: predictions = model(test_input, training=False).numpy()

195:

196: fig = plt.figure(figsize=(4,4))

197:

198: for i in range(predictions.shape[0]):

199: plt.subplot(4, 4, i+1)

200: image = predictions[i]

201: plt.imshow(image)

202: plt.axis('off')

203:

204: plt.savefig('output/image_at_epoch_{:04d}.png'.format(epoch))

205: plt.show()

206:

207: train(train_images, EPOCHS)

208:

209: checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))

210: cv2.destroyAllWindows()

211:

212: anim_file = 'dcgan_faces.gif'

Chapter 11 Introduction to Generative Adversarial Networks

281

213:

214: with imageio.get_writer(anim_file, mode='I') as writer:

215: filenames = glob.glob('output/image*.png')

216: filenames = sorted(filenames)

217: last = -1

218: for i,filename in enumerate(filenames):

219: frame = 2*(i**0.5)

220: if round(frame) > round(last):

221: last = frame

222: else:

223: continue

224: image = imageio.imread(filename)

225: writer.append_data(image)

226: cv2.imshow("Results", image)

227: cv2.waitKey(100)

228: image = imageio.imread(filename)

229: writer.append_data(image)

So, how well does our face generator perform?

At the start of the training, the generator produces pure black images (Figure 11-16).

Figure 11-16.  Images generated at epoch 1

Chapter 11 Introduction to Generative Adversarial Networks

282

After 100 epochs, some shapes are starting to appear in the output (Figure 11-17).

After 1,000 epochs, some facial feature–like shapes are being generated (Figure 11-18).

While not life-like, it is quite remarkable that our generator was able to learn to

generate features that we can associate with human faces.

Figure 11-17.  Images generated at epoch 100

Figure 11-18.  Images generated at epoch 1,000

Chapter 11 Introduction to Generative Adversarial Networks

283

To improve our model further, you can try training for a longer number of epochs. Or

try combinations of deeper models for the generator and the discriminator.

However, keep in mind that training this model for 1,000 epochs took over seven

hours on a GPU. You should plan ahead when attempting to push further.

�What Else Can GANs Do?
As we discussed earlier, DCGAN is one of the simplest implementations of GANs. And

here we have only scratched the surface of what GANs can do.

Generative adversarial networks are one of the latest research areas within deep

learning and AI. It is also one of the areas that is most actively developed in the past

few years. Many innovative GAN architectures have recently been proposed and

implemented, with more and more innovation happening in that area daily. Following

are just a few of notable GAN architectures:

•	 CycleGAN (Cycle-Consistent GANs): able to learn to transform

between images of different styles, without needing to have paired

image data for training.

•	 StyleGAN (style-based GANs): able to generate high resolution

images, by having a stacked model where the lower layers generate

lower-resolution images that are progressively enhanced by the

higher layers of the model.

•	 cGAN (conditional GANs): able to utilize additional available

information (e.g., labels for images) to learn rather than relying on

just the raw image data.

•	 lsGAN (least-squares GANs): uses the least-squares loss function

for the discriminator instead of the traditional cross-entropy loss

function, resulting in higher-quality images.

•	 DiscoGAN (discover cross-domain relations with GANs): able to

learn cross-domain relationships between related sets of images in

an unsupervised manner.

With these, and many more novel architectures, GANs have been able to produce

some groundbreaking results.

Chapter 11 Introduction to Generative Adversarial Networks

284

A project from NVIDIA named “This Person Does Not Exist”4 is able to use a

StyleGAN to generate photo-realistic images of human faces (Figure 11-19).

The GauGAN project,5 also by NVIDIA, can convert rough sketches into photo-

realistic images (Figure 11-20).

Figure 11-19.  Some samples from “This Person Does Not Exist” by NVIDIA

4�This Person Does Not Exist, https://thispersondoesnotexist.com, [23 Mar, 2020].
5�NVIDIA, “The GauGAN Project,” http://nvidia-research-mingyuliu.com/gaugan, [18 Oct, 2019].

Chapter 11 Introduction to Generative Adversarial Networks

https://thispersondoesnotexist.com
http://nvidia-research-mingyuliu.com/gaugan

285

Figure 11-20.  NVIDIA GauGAN in action

GANs are not just for image generation. The OpenAI Jukebox project6 can generate

music as well as singing using GAN models (Figure 11-21).

6�OpenAI, “The OpenAI Jukebox Project,” https://openai.com/blog/jukebox, [30 Apr, 2020].

Chapter 11 Introduction to Generative Adversarial Networks

https://openai.com/blog/jukebox

286

With the rapid advancement of GANs, there may come a day when human creativity

will be challenged.

Figure 11-21.  The OpenAI Jukebox Project

Chapter 11 Introduction to Generative Adversarial Networks

287
© Thimira Amaratunga 2021
T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_12

CHAPTER 12

Basics of Reinforcement
Learning
In Chapter 1, we briefly touched upon the concept of reinforcement learning. As we

discussed there, reinforcement learning is one of the methods in which machine

learning models are trained.

Reinforcement learning is the main concept behind game AI programming and models

like AlphaZero and OpenAI Five (see Appendix 1), as well as applications in the robotics field.

In reinforcement learning, the AI system—typically referred to as the agent—is

introduced to an environment and is given a goal to achieve. The agent is also given a set

of possible actions that can be taken to change the state of the environment. The task of

the agent is to use those actions to achieve the desired goal state. The agent is allowed

to make any of those possible actions. Based on how appropriate that action is toward

achieving the desired goal, the agent will be given a reward or a penalty. By learning to

maximize the reward or minimize the penalty, the agent will eventually learn the steps

needed to achieve the goal (Figure 12-1).

Figure 12-1.  The workflow of a reinforcement learning system

https://doi.org/10.1007/978-1-4842-6431-7_12#DOI

288

Because the agent is not given a full set of labeled data to train on, as well as given

some feedback on the actions, reinforcement learning falls in between supervised and

unsupervised learning.

If we are to experiment with reinforcement learning, we need a framework that

can define an environment, a goal to achieve, actions, and a reward mechanism for the

actions.

Luckily, there is a framework developed just for that: OpenAI Gym.

�What is OpenAI Gym?
OpenAI Gym is an open-source framework developed by OpenAI, to provide tools to

train reinforcement learning algorithms.

OpenAI provides a set of built-in environments with classic reinforcement learning

problems with their defined actions, states, and reward mechanisms (Figure 12-2). Gym

also allows you to add third-party or custom environments as well.

Figure 12-2.  Some available environments in OpenAI Gym

For the built-in environments, Gym also provides rendering/visualization of the

environment, actions, and outcomes (Figure 12-3).

Chapter 12 Basics of Reinforcement Learning

289

While providing the environments, OpenAI Gym does not limit you to use any

framework for the actual training of your reinforcement learning model. Therefore, you

can use TensorFlow/Keras, or any other machine learning framework you are familiar

with, to train out models with it.

�Setting up OpenAI Gym
OpenAI Gym is available as a PIP package. Although originally OpenAI Gym was only

meant to support Linux and Mac OS, the Windows support is now better. Most built-in

Gym environments now work on Windows.

Note S ome advanced environments, such as the MuJoCo (Multi-Joint dynamics
with Contact) environments, require extremely specific dependency setups as well
as proprietary licenses to use. So we will skip them here.

We will first install the minimal package using pip (Figure 12-4):

pip install gym

Figure 12-3.  OpenAI rendering the MountainCar problem

Chapter 12 Basics of Reinforcement Learning

290

This will give you access to the Algorithms, Toy Text, and Classic Control environments.1

Next, we can install the Atari environments by running (Figure 12-5):

pip install gym[atari]

1�Gym (OpenAI Gym environments), https://gym.openai.com/envs/#classic_control, [2 Apr, 2020].

Figure 12-4.  Installing the minimal package of Gym

Figure 12-5.  Installing the Atari environments

Chapter 12 Basics of Reinforcement Learning

https://gym.openai.com/envs/#classic_control

291

Finally, let us get the Box2D environments installed.

To get Box2D working, we need to have the Swig binaries installed. We can install it

using conda (Figure 12-6):

conda install swig

This allows us to install the Box2D environments (Figure 12-7):

pip install gym[box2d]

Figure 12-6.  Installing the swig binaries using Conda

Chapter 12 Basics of Reinforcement Learning

292

We can now test whether OpenAI Gym is correctly installed by launching one of the

environments. We will use the CartPole-v1 environment from the Classic Control set of

environments.

We will create a new code file named CartPole.py, and add the following code:

01: import gym

02: env = gym.make('CartPole-v1')

03: observation = env.reset()

04: for step_index in range(1000):

05: env.render()

06: action = env.action_space.sample() # take a random action

07: observation, reward, done, info = env.step(action)

08: print("Step {}:".format(step_index))

09: print("Action: {}".format(action))

10: print("Observation: {}".format(observation))

11: print("Reward: {}".format(reward))

12: print("Is Done?: {}".format(done))

13: print("Info: {}".format(info))

14: observation = env.reset()

15: env.close()

Figure 12-7.  Installing the Box2D environments

Chapter 12 Basics of Reinforcement Learning

293

Here we are initializing the CartPole-v1 environment and running it for 1,000 steps.

The env.action_space.sample() function will return a random action from the list

of permitted actions for that environment. We perform this action by passing it to the

env.step() function, which will return four parameters:

•	 observation: the current state of the environment

•	 reward: the reward or the penalty for the action

•	 done: whether the simulation has reached a done state; either the

goal is reached, or the task has failed and need to restart

•	 info: any additional information provided by the environment for

debugging purposes (the agent should not use this information for

training)

Running this code will result in the CartPole-v1 environment being rendered and the

results from each step being printed in the console (Figure 12-8).

�Solving the CartPole Problem
Let us now take a closer look at the CartPole problem and see how we can build a

reinforcement learning model to solve it.

In the CartPole problem there is a friction-less track, and on this track there is a cart.

A pole is attached to this cart in a way that the pole can freely rotate around the pivot

Figure 12-8.  Testing OpenAI Gym by running the CartPole environment

Chapter 12 Basics of Reinforcement Learning

294

point where it attaches to the cart. The goal of the CartPole problem is to prevent the

pole from falling over by changing the velocity of the cart (Figure 12-9).

The only two actions you can take on the environment are either 0 (push the cart to

the left) or 1 (push the cart to the right).

The simulation will fail if:2

•	 the angle of the pole goes beyond ±12°

•	 the position of the cart goes beyond the displayed area (position is

more than ±2.4)

•	 the number of steps goes beyond 500.

The observations return an array of four values, which are cart position (-2.4 to

+2.4), cart velocity (-Infinity to +Infinity), pole angle (-41.8° to + 41.8°), and pole

velocity at the tip (-Infinity to +Infinity) (Figure 12-10).

2�Github, “CartPole Overview,” https://github.com/openai/gym/wiki/CartPole-v0, [8 Feb, 2020].

Figure 12-9.  The elements of the CartPole environment

Chapter 12 Basics of Reinforcement Learning

https://github.com/openai/gym/wiki/CartPole-v0

295

The reward will be +1 for every step (i.e., the longer you can hold the pole vertical,

the better).

With all these in mind let us start building a model.

We will start with a new code file, which we will name CartPole_Train.py, and

import the necessary packages:

1: import gym

2: import random

3: import numpy as np

4: import tensorflow as tf

5: from tensorflow.keras.models import Sequential

6: from tensorflow.keras.layers import Dense

7: from tensorflow.keras.optimizers import Adam

8: import tensorflow.keras.utils as np_utils

9: import matplotlib.pyplot as plt

We will then define our training parameters:

11: env = gym.make('CartPole-v1')

12: env.reset()

13: goal_steps = 500

Figure 12-10.  Observations from the CartPole environment

Chapter 12 Basics of Reinforcement Learning

296

14: score_requirement = 50

15: intial_games = 20000

Here, we will initially play 20,000 games and shortlist the actions that resulted in at

least 50 steps in the simulation before failing. We will define a function model_data_

preparation() to iterate through and gather those step data:

17: def model_data_preparation():

18: training_data = []

19: accepted_scores = []

20: for game_index in range(intial_games):

21: score = 0

22: game_memory = []

23: previous_observation = []

24: for step_index in range(goal_steps):

25: action = random.randrange(0, 2)

26: observation, reward, done, info = env.step(action)

27:

28: if len(previous_observation) > 0:

29: game_memory.append([previous_observation, action])

30:

31: previous_observation = observation

32: score += reward

33: if done:

34: break

35:

36: if score >= score_requirement:

37: accepted_scores.append(score)

38: for data in game_memory:

39: output = np_utils.to_categorical(data[1], 2)

40: training_data.append([data[0], output])

41:

42: env.reset()

43:

44: print(accepted_scores)

45:

Chapter 12 Basics of Reinforcement Learning

297

46: return training_data

47:

48: training_data = model_data_preparation()

We then build a simple model, and train it by using the step-sequences from those

successful initial games:

50: def build_model(input_size, output_size):

51: model = Sequential()

52: model.add(Dense(128, input_dim=input_size, activation='relu'))

53: model.add(Dense(52, activation='relu'))

54: model.add(Dense(output_size, activation='linear'))

55: model.compile(loss='mse', optimizer=Adam())

56:

57: return model

58:

59: def train_model(training_data):

60: data_x = np.array([i[0] for i in training_data]).reshape(-1,

len(training_data[0][0]))

61: data_y = np.array([i[1] for i in training_data]).reshape(-1,

len(training_data[0][1]))

62: model = build_model(input_size=len(data_x[0]), output_

size=len(data_y[0]))

63:

64: model.fit(data_x, data_y, epochs=20)

65: return model

66:

67: trained_model = train_model(training_data)

When trained, the model will be able to predict the next step to be taken, based on a

sequence of previous steps as input.

We then take this trained model and run 100 games on it. If the model was able to

run the game past 400 steps without failing, we will consider it as a successful run:

069: scores = []

070: choices = []

071: success_count = 0

Chapter 12 Basics of Reinforcement Learning

298

072: for each_game in range(100):

073: score = 0

074: prev_obs = []

075: print('Game {} playing'.format(each_game))

076: for step_index in range(goal_steps):

077: # Keep the below line uncommented if you want to see how our

bot is playing the game.

078: env.render()

079: if len(prev_obs)==0:

080: action = random.randrange(0,2)

081: else:

082: action = np.argmax(trained_model.predict(prev_obs.

reshape(-1, len(prev_obs)))[0])

083:

084: choices.append(action)

085: new_observation, reward, done, info = env.step(action)

086: prev_obs = new_observation

087: score += reward

088: if done:

089: print('Final step count: {}'.format(step_index + 1))

090: if (step_index + 1) > 400:

091: # if achieved more than 400 steps, consider successful

092: success_count += 1

093: break

094:

095: env.reset()

096: scores.append(score)

097: env.close()

098:

099: print(scores)

100: # since we ran 100 games, success count is equal to percentage

101: print('Success percentage: {}%'.format(success_count))

102:

103: print('Average Score:',sum(scores)/len(scores))

Chapter 12 Basics of Reinforcement Learning

299

104: print('choice 1:{} choice 0:{}'.format(choices.count(1)/

len(choices),choices.count(0)/len(choices)))

105:

106: # draw the histogram of scores

107: plt.hist(scores, bins=5)

108: plt.show()

At the end of the 100-game run we will print out the success percentage and the

average scores, and display the histogram of the scores for the 100 games.

Note  Using env.render( ) significantly slows down the simulation. Therefore, if
you do not need to visually inspect the simulation, it is better to not call the render
method.

Running our code, we will be able to see that the trained model is able to achieve the

goal by keeping the pole straight by applying the appropriate velocity changes to the cart

(Figure 12-11).

Out of the 100 games, 51% have achieved our success condition of 400 or more steps,

with an average score of 351.77 (Figure 12-12).

Figure 12-11.  The trained CartPole model

Chapter 12 Basics of Reinforcement Learning

300

While at first glance this may seem like not such a great result, looking at the

histogram of scores shows that our model is skewing towards the success criteria

(Figure 12-13).

Figure 12-12.  The success rate of our CartPole model

Figure 12-13.  The histogram of scores of our CartPole model

Chapter 12 Basics of Reinforcement Learning

301

Since we used an initial set of games to retrieve the step sequences as the training

data, it is normal for the models not to achieve higher success rates with just one round

of training. You can attempt to increase the success rate using several different methods:

	 1.	 increasing the initial game count used to gather the training data

	 2.	 adjusting the score requirements of the initial training data

	 3.	 adjusting or trying a different model structure

	 4.	 usin the outputs from the first round of training as training data to

train a new model

	 5.	 going further by training for multiple rounds.

�Solving the MountainCar Problem
The CartPole problem we just solved is one of the simplest problems in reinforcement

learning. Let us now step it up a bit and attempt a slightly more complex one: the

MountainCar problem.

Let us create a script to first look at the MountainCar environment:

01: import gym

02: env = gym.make('MountainCar-v0')

03: observation = env.reset()

04: for step_index in range(1000):

05: env.render()

06: action = env.action_space.sample()

07: observation, reward, done, info = env.step(action)

08: print("Step {}:".format(step_index))

09: print("action: {}".format(action))

10: print("observation: {}".format(observation))

11: print("reward: {}".format(reward))

12: print("done: {}".format(done))

13: print("info: {}".format(info))

14: if done:

15: break

16: observation = env.reset()

17: env.close()

Chapter 12 Basics of Reinforcement Learning

302

This is like what we did for the CartPole environment, the difference being that

MountainCar-v0 is used as the environment name. This will render the MountainCar

environment with random actions as we did before (Figure 12-14).

In the MountainCar problem, you need to push a car up the top of a steep hill

marked by the flag. The car starts close to the bottom of the valley. There is a less steep

hill to the left of the environment that you can use to gather enough momentum to climb

the steeper hill.

The actions you can take are push left (0), push right (2), or not push (1). The

position of the goal is 0.5 (Figure 12-15).

Figure 12-14.  Testing the MountainCar environment

Chapter 12 Basics of Reinforcement Learning

303

Figure 12-15.  The elements of the MountainCar environment

The simulation will fail if you take more than 200 steps to reach the goal.3

The observations return an array of 2 values, which are the position of the car (-1.2 to

+0.6) and the velocity of the car (-0.07 to +0.07).

At the beginning of the simulation the car will be at a random position between -0.6

and -0.4, with no initial velocity.

The reward would be -1 for every step (i.e., the fewer the steps taken to reach

the goal, the better). There will be no penalty for climbing the left hill, as it is needed

sometimes to achieve the goal.

Let us start a new code file, which we will name MountainCar_Train.py, and import

the necessary packages:

1: import gym

2: import random

3: import numpy as np

4: import tensorflow as tf

5: from tensorflow.keras.models import Sequential

6: from tensorflow.keras.layers import Dense

3�Github, “MountainCar Overview,” https://github.com/openai/gym/wiki/MountainCar-v0,
[1 May, 2020].

Chapter 12 Basics of Reinforcement Learning

https://github.com/openai/gym/wiki/MountainCar-v0

304

7: from tensorflow.keras.optimizers import Adam

8: import tensorflow.keras.utils as np_utils

9: import matplotlib.pyplot as plt

Our training parameters are like those we used for the CartPole problem. But here,

we are specifying the score requirement as -198. We will see why in the next step:

11: env = gym.make('MountainCar-v0')

12: env.reset()

13: goal_steps = 200

14: score_requirement = -198

15: intial_games = 20000

As we discussed, the reward value in the MountainCar problem is -1 for every step

taken. Therefore, the minimum score a MountainCar game can have is -199 (as the game

will end if 200 steps are reached). To shortlist the acceptable step data from the initial

games we need a way to determine the games that has progressed towards the goal. As

the position of the goal is 0.5, and the initial position of the car is between -0.6 and -0.4,

we chose games that have achieved the position -0.2 (which is partway up the large hill)

at least once. This makes our score requirement -198 or greater.

The data preparation function therefore would look like this:

17: def model_data_preparation():

18: training_data = []

19: accepted_scores = []

20: for game_index in range(intial_games):

21: score = 0

22: game_memory = []

23: previous_observation = []

24: for step_index in range(goal_steps):

25: action = random.randrange(0, 3)

26: observation, reward, done, info = env.step(action)

27:

28: if len(previous_observation) > 0:

29: game_memory.append([previous_observation, action])

30:

31: previous_observation = observation

Chapter 12 Basics of Reinforcement Learning

305

32:

33: if observation[0] > -0.2:

34: reward = 1

35:

36: score += reward

37: if done:

38: break

39:

40: if score >= score_requirement:

41: accepted_scores.append(score)

42: for data in game_memory:

43: output = np_utils.to_categorical(data[1], 3)

44: training_data.append([data[0], output])

45:

46: env.reset()

47:

48: print(accepted_scores)

49:

50: return training_data

51:

52: training_data = model_data_preparation()

The model building and training steps are identical to what we did on the CartPole

problem:

54: def build_model(input_size, output_size):

55: model = Sequential()

56: model.add(Dense(128, input_dim=input_size, activation='relu'))

57: model.add(Dense(52, activation='relu'))

58: model.add(Dense(output_size, activation='linear'))

59: model.compile(loss='mse', optimizer=Adam())

60:

61: return model

62:

63: def train_model(training_data):

Chapter 12 Basics of Reinforcement Learning

306

64: data_x = np.array([i[0] for i in training_data]).reshape(-1,

len(training_data[0][0]))

65: data_y = np.array([i[1] for i in training_data]).reshape(-1,

len(training_data[0][1]))

66: model = build_model(input_size=len(data_x[0]), output_

size=len(data_y[0]))

67:

68: model.fit(data_x, data_y, epochs=20)

69: return model

70:

71: trained_model = train_model(training_data)

Like before, we run 100 games using the step predictions from the trained model.

If the game was able to achieve the goal in less than 200 steps, we consider it to be

successful:

073: scores = []

074: choices = []

075: success_count = 0

076: for each_game in range(100):

077: score = 0

078: prev_obs = []

079: print('Game {} playing'.format(each_game))

080: for step_index in range(goal_steps):

081: # Uncomment below line if you want to see how our bot is

playing the game.

082: # env.render()

083: if len(prev_obs)==0:

084: action = random.randrange(0, 3)

085: else:

086: action = np.argmax(trained_model.predict(prev_obs.

reshape(-1, len(prev_obs)))[0])

087:

088: choices.append(action)

089: new_observation, reward, done, info = env.step(action)

090: prev_obs = new_observation

Chapter 12 Basics of Reinforcement Learning

307

091: score += reward

092: if done:

093: print('Final step count: {}'.format(step_index + 1))

094: if (step_index + 1) < 200:

095: # if goal achieved in less than 200 steps, consider

successful

096: success_count += 1

097: break

098:

099: env.reset()

100: scores.append(score)

101:

102: print(scores)

103:

104: # since we ran 100 games, success count is equal to percentage

105: print('Success percentage: {}%'.format(success_count))

106: print('Average Score:', sum(scores)/len(scores))

107: print('choice 0:{} choice 1:{} choice 2:{}'.format(choices.

count(0)/len(choices), choices.count(1)/len(choices), choices.count(2)/

len(choices)))

108:

109: # draw the histogram of scores

110: plt.hist(scores, bins=5)

111: plt.show()

If we run our model, you can see that once trained it can push the car to the desired

goal position (Figure 12-16).

Chapter 12 Basics of Reinforcement Learning

308

The score histogram shows that a significant portion of games reached the goal

around the 120-step range, a much better score than our target 198 (Figure 12-17).

We are now achieving a success percentage of 99% (Figure 12-18).

Figure 12-16.  MountainCar reaching the goal

Figure 12-17.  The histogram of scores of our MountainCar model

Chapter 12 Basics of Reinforcement Learning

309

�What Can You Do Next?
We have now explored the basics of how to apply reinforcement learning in two

environments of OpenAI Gym: CartPole and MountainCar. Although these two are some

of the simplest problems to solve with reinforcement learning, the concepts that we

learned to apply here are the same for much more complex problems. The cutting-edge

models like OpenAI Five (see Appendix 1) were built upon the same concepts.

There are many other environments available in OpenAI Gym. Once you have

gone through the Classic Control environments, try out some of the other sets of

environments we installed, such as Atari (Figure 12-19).

Figure 12-18.  The success rate of our MountainCar model

Chapter 12 Basics of Reinforcement Learning

310

Another option is one of the Box2D environments (Figure 12-20).

Figure 12-19.  The Atari Assault-v0 Environment

Figure 12-20.  The Box2D BipedalWalker-v3 environment

Chapter 12 Basics of Reinforcement Learning

311
© Thimira Amaratunga 2021
T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7

APPENDIX A

A History Lesson:
Milestones of Deep
Learning
Deep learning has been around for over a decade now. Since its inception, it has taken

the world by storm due to its success. To understand how deep learning got to where it is

today, we should look at some of its more significant achievements through the years.

When looking at the achievements of deep learning we should also talk about the

ImageNet Challenge.

�What is the ImageNet Challenge (The ILSVRC)?
The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is the annual

computer vision challenge conducted by the ImageNet project. The ImageNet project

was started around 2007, with the intention of providing a complete and easily accessible

image database for visual object recognition research. ImageNet organizes the images

based on WordNet, a lexical database for the English language, which groups English

words into sets of synonyms called synsets. The ImageNet project aims at providing

at least 1,000 images for each synset, and has about 14 million images as of now, all of

which are hand-annotated and with bounding boxes.

The ILSVRC is held annually by the ImageNet project, where institutions and

research groups both from the industry and academia compete against each other with

their machine learning and computer vision algorithms. The task is to correctly classify

over 100,000 images into 1,000 categories, with a training set of about a million labeled

images. The objective of the competition is to allow the competitors to measure and

https://doi.org/10.1007/978-1-4842-6431-7#DOI

312

compare their applications and algorithms. A secondary objective is to measure and

document the progress of machine learning for computer vision at a higher level over

the years.

In 2017, as the models from 29 of the 38 teams competing gained greater than 95%

accuracy, ImageNet started to build a more difficult challenge and a dataset. Therefore,

the last formal ImageNet Challenge happened in 2017. The ImageNet challenge is still

available to be participated to those who are interested at the Kaggle ImageNet Object

Localization Challenge.1

The original ImageNet dataset is also available—both via the ImageNet downloads

pages,2 and through the Kaggle competition mentioned earlier—if you are interested in

trying it out yourself.

Over the years, there were many achievements in deep learning that were directly

related to the ImageNet challenge. Some of those milestones are presented here.

�AlexNet: 2012
AlexNet marked the start of an era, by popularizing the success of deep learning among

the AI enthusiasts. It is notable for the following:

•	 Proved that Convolutional Neural Networks work practically. AlexNet

is commonly considered to be what brought deep learning into the

mainstream.3

•	 Won 2012 ILSVRC (ImageNet Large-Scale Visual Recognition

Challenge) with a 15.3% error rate. (For reference, the second-best

entry at ILSVRC had a 26.2% error rate.)

•	 8 layers: 5 convolutional, 3 fully connected.

1�Kaggle, “Kaggle ImageNet Object Localization Challenge,” https://www.kaggle.com/c/
imagenet-object-localization-challenge, [March 26, 2020].

2�ImageNet, (downloads pages), http://image-net.org/download-imageurls, [7 April, 2017].
3�See Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” Advances in Neural Information Processing Systems 25(2)
(January 2012), doi 10.1145/3065386.

Appendix A A History Lesson: Milestones of Deep Learning

https://www.kaggle.com/c/imagenet-object-localization-challenge
https://www.kaggle.com/c/imagenet-object-localization-challenge
http://image-net.org/download-imageurls

313

•	 Used ReLU for the nonlinearity function rather than the conventional

tanh function used until then.

•	 Introduced the use of dropout layers, and data augmentation to

overcome overfitting.

The Alexnet architecture is shown in Figure A1-1.

�ZF Net: 2013
With AlexNet starting the trend, ZF Net kept it going. While continuing the success

of AlexNet, the ZFNet attempted to answer the question of why convolutional neural

networks perform so well.4 ZFNet was notable for the following:

•	 Won the ILSVRC 2013 with error rates from 14.7 to 11.2%.

•	 Similar to the AlexNet architecture, with some tweaks and fine-

tuning to improve the performance.

•	 Introduced the deconvolutional network (DeConvNet), a

visualization technique for viewing the inner workings of a CNN,

which allowed better understanding of why CNNs perform well.

4�Zeiler M.D., Fergus R. (2014) Visualizing and Understanding Convolutional Networks.
In: Fleet D., Pajdla T., Schiele B., Tuytelaars T. (eds) Computer Vision – ECCV 2014. ECCV 2014.
Lecture Notes in Computer Science, vol 8689. Springer, Cham. https://doi.org/10.1007/
978-3-319-10590-1_53.

Figure A1-1.  The AlexNet architecture

Appendix A A History Lesson: Milestones of Deep Learning

https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53

314

The ZF Net architecture is shown in Figure A1-2.

The Deconvolutional technique is still used today to view how the internal

convolutions perform in a network.

�VGG Net: 2014
VGG Net was one of the most popular deep learning architectures, due to its simplicity.5

It is notable for the following:

•	 Won the Classification + localization category of the ILSVRC 2014

(not the overall winner), with an error rate of 7.3%.

•	 The VGG architecture worked well with both image classification and

localization.

•	 Had 2 variations: VGG16 (16 layers), and VGG19 (19 layers).

•	 Used 3x3 filters (compared to 11x11 filters of AlexNet, and 7x7 filters

of ZF Net).

•	 Proved that simple deep structures work for hierarchical feature

extraction.

The VGG16 architecture is shown in Figure A1-3.

5�Simonyan, K. and Zisserman, A., “Very Deep Convolutional Networks for Large-Scale Image
Recognition”, arXiv e-prints, 2014.

Figure A1-2.  The ZF Net architecture

Appendix A A History Lesson: Milestones of Deep Learning

315

The VGG Net architectures are still popular, as they are easy to construct and the

training time is less compared to more complex models. They are good candidates for

experimenting with transfer learning.

�GoogLeNet/Inception: 2014/2015
This is where deep learning became creative in terms of network architectures. The authors of

GoogLeNet introduced a unique architecture to increase the computational efficiency,6 which

disrupted the idea that deep learning models need to always be sequential (Figure A1-4).

6�C. Szegedy, et al., “Going deeper with convolutions,” in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015 pp. 1-9. doi: 10.1109/
CVPR.2015.7298594.

Figure A1-4.  The GoogLeNet architecture

Figure A1-3.  The VGG Net architecture

Appendix A A History Lesson: Milestones of Deep Learning

316

GoogLeNet was notable for the following:

•	 Won the ILSVRC 2014, with an error rate of 6.7%.

•	 Introduced the inception module (Figure A1-5), which emphasized

that the layers of a CNN need not always be stacked up sequentially.

•	 Had 22 blocks of layers (over 100 layers when considered

individually).

•	 Had no fully connected layers.

•	 Proved that optimized nonsequential structures may work better

than sequential ones.

While the original architecture was named GoogLeNet, two improved models were

released subsequently and were named Inception V2, and Inception V3.

Figure A1-5.  The inception module

Appendix A A History Lesson: Milestones of Deep Learning

317

�Microsoft ResNet: 2015
Typically, if you keep adding layers sequentially to a model, they tend to worsen after

a certain point, as the model starts to overfit. ResNet (Figure A1-6) was an attempt

to overcome this limitation by introducing the Residual Block, which resulted in an

impressively deep network and even more impressive accuracy.7

ResNet was notable for the following:

•	 ResNet50 won ILSVRC 2015.

•	 With an error rate of 3.6%, the ResNet had a higher accuracy rate

than a human being (a typical human is said to have an error rate of

5 to 10%).

•	 Ultra-deep (quoting the authors) architecture with 152 layers.

•	 Introduced the Residual Block, to reduce overfitting (Figure A1-7),

which gave the name to the network Residual Network (ResNet).

7�K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image Recognition,” 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp.
770-778, doi: 10.1109/CVPR.2016.90.

Figure A1-6.  The ResNet architecture

Appendix A A History Lesson: Milestones of Deep Learning

318

The ResNet architecture is proven to be scalable. There have been successful

attempts to increase up to 1,000 layers.

�DenseNet: 2017
With ResNet attempting to go deeper using the Residual Block, why would not one

attempt to go even further? DenseNet8 takes it to the extreme (Figure A1-8).

The DenseNet architecture consists of several Dense Blocks within which each of

the layers are connected to every other layer in that block in a feed forward manner

(Figure A1-9).

8�G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger, “Densely Connected Convolutional
Networks,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, 2017, pp. 2261-2269, doi: 10.1109/CVPR.2017.243.

Figure A1-7.  The residual block

Figure A1-8.  The DenseNet architecture

Appendix A A History Lesson: Milestones of Deep Learning

319

DenseNet is notable for the following:

•	 In each dense block, the input feature maps are passed to each layer

in the block, and the feature maps from each layer also gets passed to

all subsequent layers.

•	 On smaller datasets like CIFAR10 or CIFAR100, DenseNet yields

state-of-the-art accuracies: a 3.46% error rate on CIFAR10 and 17.18%

on CIFAR100 (with data augmentation), which is a higher accuracy

than ResNet.

•	 On ImageNet dataset, the DenseNet achieves a similar accuracy to

that of ResNet, but utilizes less than half the number of parameters

and FLOPs (FLoating-point OPerations).

Figure A1-9.  A dense block with 5 layers

Appendix A A History Lesson: Milestones of Deep Learning

320

Tip F LOPs is often used as a performance indicator of machine learning models.
FLOPs are the number of floating-point operations performed within the model. The
fewer the number of floating-point operations required to perform a certain task,
the model is considered more optimized.

�Why Simply Going Deeper Does Not Work
If you look at the deep learning architectures we just reviewed, you might notice that

after a certain point the architectures stopped becoming directly deep, instead starting

to come up with more unique structures. The Inception Module, the Residual Block, and

the Dense Block are good examples of these.

This is due to a limitation in the method used to train neural networks. A deep

neural network is typically trained using a method called backpropagation, where, when

a batch of training data gets passed through the network, a gradient signal is passed

back from the final layer to the first layer, adjusting the weights of each layer as it passes

through. This is how the network “learns” of a batch of training data. The gradient signal

reduces as it passes through each layer.

While this is practical in networks with just a couple of layers, when it comes to deep

networks with 20+ layers, it becomes harder for backpropagation to keep up, as the

gradient signal diminishes to nothing before it reaches the layers at the start.

To overcome this, the Inception Modules, Residual Block, and Dense Blocks all provide

shortcuts in the architecture for the gradient signal to propagate back more efficiently. We

can expect similar techniques in future deep learning architectures as well.

�AlphaGo from DeepMind
AlphaGo—developed by the DeepMind team of Google—is an AI program that plays the

board game Go.

The Go board game is an abstract strategy game that was invented in China more

than 2,500 years ago. Despite its simple set of rules, Go is considered to be much more

complex than Chess and is one of the most studied strategy games of all time.

The AlphaGo uses a Monte Carlo tree search algorithm to find moves using

the trained deep neural network, which works as its knowledge core. AlphaGo was

initially trained on a training set of over 30 million go piece moves data from human

Appendix A A History Lesson: Milestones of Deep Learning

321

Go matches. It was then further trained by letting it compete against copies of itself

using reinforcement learning.

AlphaGo’s first victory was in October 2015. It was against three-time European

champion, Fan Hui, on a full-sized (19x19 grid) board. AlphaGo won with a score of 5–0,

and became the first computer Go program to beat a human professional.

In March 2016 AlphaGo competed against Lee Sedol, an 18-time world champion

and a 9-dan professional (highest professional rank) Go player. In this five-game match

AlphaGo won 4–1, earning it an honorary 9-dan title.

In January 2017, an improved version of AlphaGo called AlphaGo Master was set up

(without revealing its identity) to compete in an online series of Go games against some

of the top international Go players, and it managed to win at 60–0.

At the “Future of Go” summit in May 2017, AlphaGo competed against Ke Jie, the

world’s number-1 ranked player at the time. AlphaGo won 3–0 in this three-game match.

The Chinese Weiqi Association awarded the professional 9-dan status to AlphaGo after

this victory.

Ke Jie later praised AlphaGo’s unique play style, and has stated: “After humanity

spent thousands of years improving our tactics, computers tell us that humans are

completely wrong . . . I would go as far as to say not a single human has touched the edge

of the truth of Go.”9

After the win with Ke Jie, AlphaGo retired from the Go arena.

In October 2017, DeepMind introduced AlphaGo Zero. While being the latest version

of AlphaGo, AlphaGo Zero has been built from scratch. Rather than training it on data

from millions of moves from human matches, AlphaGo Zero was trained to play by

competing against copies of itself by starting with random play.

Using this technique, AlphaGo Zero surpassed the level of AlphaGo Master in just 21

days and achieved superhuman-level in 40 days.

In December 2017, DeepMind generalized the algorithm of AlphaGo Zero and

introduced AlphaZero, which has achieved superhuman levels of gameplay in Chess, Go,

and Shogi, with just 24 hours of training.

These generalizations allow AlphaZero to learn and master anything, even

beyond games.

By December 2018, the final version of AlphaZero competed against Stockfish v8

(then considered to be the strongest open-source chess engine in the world) on Chess,

9�“Ke Jie vs. AlphaGo: 8 things you must know”. 27 May 2017 http://chuansong.me/n/1840585451964.

Appendix A A History Lesson: Milestones of Deep Learning

http://chuansong.me/n/1840585451964

322

and Elmo (a world champion Shogi program) on Shogi. Against Stockfish, AlphaZero

managed to achieve 155 wins and 6 losses in a 1,000-game chess tournament, with all

the other matches resulting in draws. Against Elmo, AlphaZero achieved a 91.2% win rate

on Shogi.

DeepMind published the next generation of the algorithm in 2019 named MuZero,

which was able to play Atari games in addition to Chess, Go, and Shogi.

�Dota 2 Bot from OpenAI
OpenAI—a nonprofit AI research company founded by Elon Musk and Sam Altman,

which focuses on developing friendly AI—unveiled their Dota 2 AI Bot in 2013, capable

of defeating top Dota professional players.

Dota 2 is a multiplayer online battle arena (MOBA) game developed by the Valve

Corporation. First released in July 2013, the game is a sequel to the community game

Defence of the Ancients (DotA), which was released back in 2003 as a mod for the game

Warcraft III.

A typical match of Dota 2 is played by five-verses-five (5v5), although other variations

of the game such as 1v1 exist. Each of the players chooses a hero from 115 playable

characters, each with its strengths and weaknesses, various abilities, and powers. The

game is played in a real-time strategy manner, where each team battles the other and

attempts to destroy the Ancient (large structure on the base) of the opposing team while

defending their own.

The diverse characters available, their abilities, strengths, weaknesses, and the

real-time way the game is played makes Dota 2 one of the most complex and competitive

multiplayer games available. The required permutations of moves to program a bot

manually makes it impractical, which makes Dota 2—quoting the engineers of

OpenAI—“the perfect test bed for AI.”10

So how did OpenAI achieve their Dota 2 bot?

OpenAI has used self-play (playing against a copy of itself) to entirely train the bot

from scratch. They have not used imitation learning or tree search mechanisms in any

way. It is worth noting that creating a dataset for any other types of training might also

not be practical due to the complexities we discussed earlier.

10�“OpenAI reveals self-play information after successful Dota 2 test” August 16, 2017
https://www.teslarati.com/openai-self-play-dota-2-musk/.

Appendix A A History Lesson: Milestones of Deep Learning

https://www.teslarati.com/openai-self-play-dota-2-musk/

323

Quoting the engineers of OpenAI: “Supervised deep learning systems can only be

as good as their training datasets, but in self-play systems, the available data improves

automatically as the agent gets better.”11

The bot training uses completely random moves and by competing with a copy of

itself. As part of “coaching” for the training of the bot, the team has added a set of white-

listed item builds (part of the gameplay of Dota 2) into the training. The training of the

bot began in March 2017, and by July, it was starting to beat top-level professionals.

On August 7, 2017, the bot competed against three professional pros—Blitz, Pajkatt,

CC&C—and won 3–0, 2–1, and 3–0, respectively.

On August 9, 2017, the bot took on Arteezy, the top overall Dota 2 player in the world,

and won 10–0.

On August 10, 2017, the bot won against SumaiL, the top 1v1 Dota 2 player in the

world, by 6–0 (Figure A1-10). SumaiL then played against the Aug 9 version of the bot

and won 2–1, showcasing how the bot had advanced with just one day’s training.

On August 11, 2017, the bot won against Dendi, the former world champion, by 2–0.

11�“OpenAI reveals self-play information after successful Dota 2 test” August 16, 2017
https://www.teslarati.com/openai-self-play-dota-2-musk/.

Figure A1-10.  Screencap from the Game Between the Bot and SumaiL

Appendix A A History Lesson: Milestones of Deep Learning

https://www.teslarati.com/openai-self-play-dota-2-musk/

324

Most of these players have expressed that the bot felt unbeatable, and that they have

learned new moves from the games with the bot.

OpenAI’s next goal was to train a set of 5 AI bots that could take on a professional

Dota 2 team on a 5v5 match. This was a massive task, as the five bots not only needed

to be individually skilled, but they would also need to coordinate with each other to

entertain hopes of winning.

It would not be a case of just adding four more bots to the game. The bots need to

work as a team, in other words.

Dota 2 is a team game. It is won by coordination, and not by the skill of any single

player. Typically, each player needs to bring a different set of skills and tactics to the team.

It seems that OpenAI has tackled that problem as well.

By January 2018, their set of five bots—named the OpenAI Five—managed to win

against a set of scripted bots.

By April 2018, OpenAI Five managed to win against OpenAI’s in-house human Dota

team on a restricted match.

By June 2018, OpenAI Five continued to win in matches with fewer and fewer

restrictions.

On August 5, 2018, the OpenAI Five managed to win a best of three vs a team of

99.95th percentile Dota players in front of a live audience (Figure A1-11).

Figure A1-11.  Screencap from the game OpenAI Five vs. Humans

Appendix A A History Lesson: Milestones of Deep Learning

325

OpenAI managed this entirely by self-play training, using their general-purpose AI

Training system named Rapid. Each bot received 180 years’ worth of training each day,

running on 256 GPUs and 128,000 CPU Cores.

In August 2018, OpenAI Five participated in the International 2018, the annual

Dota 2 World Championship. Initially, the bots were defeated by pro player teams from

Brazil and China. But with further improvements and training, in April 2019, the bots

competed against OG, the world champions of the International 2018, and won 2–1. In

the same month, OpenAI allowed the public to play against OpenAI Five in an online

event. The bots managed to win 38,654 out of the 42,729 public games against teams

from all over the world.

Appendix A A History Lesson: Milestones of Deep Learning

327
© Thimira Amaratunga 2021
T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7

�APPENDIX B

Optional Setup Steps
Following are a few optional steps in setting up your tools that may become useful in

some scenarios.

�Switching the Backend in Multibackend Keras
This is how to switch the backend of Keras is done in the keras.json file, which is

located at %USERPROFILE%\.keras\keras.json on Windows. The default keras.json file

looks like this:

{

 "floatx": "float32",

 "epsilon": 1e-07,

 "backend": "tensorflow",

 "image_data_format": "channels_last"

}

Switching which backend Keras uses—which by default is TensorFlow—can be done

using the backend parameter. You can set the backend parameter to either tensorflow,

Theano, or cntk in the keras.json file, and Keras will start using the specified backend

when a Keras code runs next time.

However, when switching the backend, we need to make sure to switch the

image_data_format parameter too. For tensorflow or cntk backends, it should be

channels_last. For theano, it should be channels_first.

https://doi.org/10.1007/978-1-4842-6431-7#DOI

328

So a keras.json for CNTK should look like:

{

 "floatx": "float32",

 "epsilon": 1e-07,

 "backend": "cntk",

 "image_data_format": "channels_last"

}

And a keras.json for Theano should look like:

{

 "floatx": "float32",

 "epsilon": 1e-07,

 "backend": "theano",

 "image_data_format": "channels_first"

}

Why is this image_data_format parameter so important?

The image_data_format parameter affects how each of the backends treat the data

dimensions when working with multidimensional convolution layers (such as Conv2D,

Conv3D, Conv2DTranspose, Copping2D, and any other 2D or 3D layer). Specifically, it

defines where the channels dimension is in the input data.

Both TensorFlow and Theano expect a four-dimensional tensor as input.

But where TensorFlow expects the channels dimension as the last dimension (index

3, where the first is index 0) of the tensor—that is, tensor with shape (samples, rows,

cols, channels)—Theano will expect channels at the second dimension (index 1)—that

is, tensor with shape (samples, channels, rows, cols). The outputs of the convolutional

layers will also follow this pattern.

So the image_data_format parameter, once set in keras.json, will tell Keras which

dimension ordering to use, in its convolutional layers.

Mixing up the channels order would result in your models being trained in

unexpected ways.

Apart from setting the parameter in keras.json, you can manipulate it in the code as

well. You can get and set the image_data_format through the keras.backend package.

Appendix B Optional Setup Steps

329

To get the image_data_format, you can use the image_data_format() function:

from keras import backend as K

print(K.image_data_format())

To set the image_data_format, pass the string either channels_first or channels_last

to set_image_data_format() function:

from keras import backend as K

K.set_image_data_format('channels_first')

You can also set it per layer, using the data_format parameter in the 2D and 3D

convolutional layers:

model.add(Conv2D(20, (5, 5),

 padding="same",

 input_shape=(height, width, depth),

 data_format="channels_first"))

When manipulating the image_data_format programmatically, just make sure to

keep track of what you change it in to, and keep it consistent throughout your models

code. Otherwise you might mess up training of your model.

�Installing OpenBLAS for Theano
Installing OpenBLAS is only needed if you are running Theano on CPU. TensorFlow has

its own internal CPU optimizers, and thus does not need (or use) OpenBLAS. But with

Theano, it is recommended to have OpenBLAS setup, as it sometimes doubles the speed

at which deep learning models train on it when using CPU.

This is for your reference only, as we have not used Theano or OpenBLAS in this book.

OpenBLAS has prebuilt binaries for Windows available only for some of its versions.

Therefore, you will have to use an older version. The last version with all the required

Windows binaries was OpenBLAS v0.2.15, which you can download from the OpenBLAS

SourceForge Page.1

1�“OpenBLAS - Browse /v0.2.15 at SourceForge.net,” https://sourceforge.net/projects/
openblas/files/v0.2.15/, [27 Oct, 2015].

Appendix B Optional Setup Steps

https://sourceforge.net/projects/openblas/files/v0.2.15/
https://sourceforge.net/projects/openblas/files/v0.2.15/

330

You will need to download both the OpenBLAS-v0.2.15-Win64-int32.zip and the

mingw64_dll.zip files (Figure A2-1).

Once downloaded, first extract the OpenBLAS-v0.2.15-Win64-int32.zip file to

a globally accessible location on your hard disk (something like C:\Dev_Tools\

openblas\).

Then extract the mingw64_dll.zip, and copy its contents (3 DLL files) to the bin

directory of your extracted OpenBLAS directory (Figure A2-2).

Figure A2-1.  OpenBLAS downloads page

Appendix B Optional Setup Steps

331

If you extracted OpenBLAS to C:\Dev_Tools\openblas\, then C:\Dev_Tools\

openblas\bin will have the libopenblas.dll in it. When you extract mingw, it will have 3

more DLLs—libgcc_s_seh-1.dll, libgfortran-3.dll, and libquadmath-0.dll. Copy those to

C:\Dev_Tools\openblas\bin also.

Finally, add the C:\Dev_Tools\openblas\bin directory to your system path.

Figure A2-2.  Mingw DLL files added to OpenBLAS bin directory

Appendix B Optional Setup Steps

333
© Thimira Amaratunga 2021
T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7

Index

A
AlexNet, 312, 313
AlphaGo, 320, 321
Anaconda, 19, 20, 33
Artificial intelligence (AI), 1–3, 13, 14
Atari assault-v0 environment, 310

B
Bottleneck features

definition, 147
VGG16 model

accuracy, 154
bird_classify_bottleneck.py, 149
compiling, 153
data generator, 151, 152
layers, 153
load, 152
packages, 149, 150
save/evaluate/graph, 153, 154
training history graph, 154, 155
training parameters, 151, 152
training steps, 149
utility functions, 150, 151

workflow, 147, 148
Box2D BipedalWalker-v3

environment, 310
build_lenet() function, 73

C
CartPole problem

build model, 297, 298
definition, 293
elements, 294
histogram, 300
methods, 301
packages, 295, 296
trained, 299

CelebFaces Attributes (CelebA), 272
Classifier, 101, 110
classify_image(), 224, 227
Computer vision, 10

detecting faces, images, 244–246
detecting faces, video, 246–248
image processing tasks, 233
images, 234–239
libraries, 23–25
OpenCV, 233
real-time deep learning object, 248–251
software libraries, 234
video files, 242–244
Webcams, 240–242

Convolutional filters, 69, 74, 75, 112,
124, 125, 130

Convolutional neural networks (CNNs),
7, 69, 260, 312, 313

cv2.resize() function., 80

https://doi.org/10.1007/978-1-4842-6431-7#DOI

334

D
Data augmentation

data/augmented directory, 135
flow() function, 132, 135
flow_from_directory() function, 132
ImageDataGenerator, 132
images, 135
input image, 132, 133
load image, 133, 134
parameters, 134
tf.keras, 132

Deep convolutional generative
adversarial network (DCGAN)

architectures, 283
CelebA, 272, 273
dataset image paths, 274
definition, 255
discriminator, 260, 262, 276
feedback, 262, 263
generator, 257–260, 274, 275
handwritten digit generation, 256
images generated, 282
importing packages, 256, 257, 273
loss functions, 277
OpenAI Jukebox, 286
running training, 267–270
training, 264–267
training loop, 279, 280
train step functions, 278

Deep learning
accuracy, 12, 13
AI, 11
capability, 5
characteristics, 6
definition, 2
definitions, 5
evolution, 11, 12

higher level patterns/features, 9
lower-level patterns/features, 9
machine learning, 11
models, 9
plateau, 6

Deep learning architectures, 320
Deep learning frameworks

Keras, 22
Scikit-Learn, 23
TensorFlow, 20–22
Theano, 23

Deep learning models
advantages using Windows, 16, 17
limitations using Windows, 17, 18
running, 81–86

Defence of the Ancients (DotA), 322–325
DenseNet, 318, 319
Digital image, 102, 103
Digit classification system, 71
Downsampling, 109

E
env.step() function, 293

F
Fashion-MNIST dataset, 86, 87

classify image, 88, 90, 91, 93, 94
improvement, 100
running, 95–99

Feature extraction method, 111–114, 148
Fine-tuning model

idea, 156
ImageNet, 156
layers, 156
learning capacity, 158
learning rate, 158

Index

335

steps, 157, 158
VGG16 Model

accuracy, 164, 165
bird_classify_finetune.py, 158
class_indices dictionary, 158
epochs, 162
history graph, 165
layers, 163
packages, 158–162
run/evaluate/graph, 164
save, 164
SGD optimizer, 163

workflow, 156, 157
Fully connected layer, 110

G
Generative adversarial network (GAN), 9

artist/art critic, 253
characteristics, 254
DCGAN, 255
definition, 254
training, 255
typical workflow, 254

GoogLeNet, 315, 316
graph_training_history()

function, 77, 92, 188, 202

H
Hierarchical feature learning, 2, 5, 8, 9, 147
Horizontal plot, 122

I, J
Image classification model

accuracy, 145
categories, 138

class names, 142
consolidated directory, 138
create directory/subdirectories, 139
data generators, 141, 142, 144
dataset, 136, 137
definition, 143
directory structure, 139
extraction, 137, 138
filenames, 142
flow_from_directory() function, 141
packages, 140
parameters, 141
save, 144
size, 141
training history graph, 145, 146
training/validation steps, 142
utility function, 140, 141

image_data_format parameter, 49, 327,
328

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC), 311, 312

InceptionV3 model
accuracy, 177, 178
base model, 174
bird_classify_inceptionV3.py, 170
class weights, 172, 174–177
data imbalance, 170
discrepancies, 170
fine-tuning, 175
history graph, 178
layers, 176
mitigation, 170
packages, 170
parameters/generators, 173, 174
top model/compilation, 174
training history, 171, 172

index() function, 217, 225, 227

Index

336

Installation errors
Dlib build errors, 65
latest version, OpenCV, 64
latest versions missing, 63, 64
Matplotlib Pyplot error, 62

Intelligent machines, 2, 3, 10

K
Kaggle, 136, 137
Keras Sequential model, 74
Keras, switching the backend, 327

L
LeNet architecture, 69
LeNet model, 101, 126, 130
load_img() function, 227
load_model() function, 118, 196

M
Machine learning, 2, 4
Machine learning system

computer vision tasks, 30, 31
inference phase, 27, 28
PC hardware, 28, 29
training phase, 27

Mathematical convolution
operation, 103–107

matplotlib package, 69, 71
Model checkpoints

epoch, 189
epoch number, 194
generators/parameters, 195
importing packages, 192
load, 196
naming conventions, 187, 188
parameters, 186, 187

running code, 197
saving, 191
speed-up, 185
training parameters, 194
utility functions, 192, 193
validation loss, 189, 190

model_data_preparation(), 296
model.fit() function, 77, 144, 175, 181, 183,

196, 198
model.predict() function, 80
Model predictions

bird_classify_predict.py, 166
and confidence, 168, 169
load, 166
load image, 166
OpenCV, 167, 168
packages, 166
run image, 167

model.save() function, 115, 116, 187, 218
model.save_weights() function, 115
model.summary() function, 126
Modified National Institute of

Standards and Technology
dataset (MNIST), 67, 68

MountainCar problem
building/training, 305–307
code file, 303
data preparation function, 304
elements, 303
histogram, 308
script, 301
testing, 302

Multiplayer online battle
arena (MOBA), 322

Multithreading
CPU thread, 181
error message, 185
multi-threaded batch mode, 184

Index

337

script, 182
single-threaded batch mode, 183
stop training, 198–200

N
National Institute of Standards and

Technology (NIST), 67
Netron, 122–124
Nonlinearity function, 69, 107, 108, 313

O
OpenAI Gym

definition, 288
environments, 288
setting up, 289–293

OpenBLAS
bin directory, 331
download page, 330
installation, 329

Open source computer
vision (OpenCV), 23, 24

Optimizers and accelerators
cuDNN—CUDA, 26
NVIDIA, 26
OpenBLAS, 26

P, Q
plot_model function, 117–119, 122
Pooling, 109, 110
Pydot packages, 117
Python, 18–20

R
Rectified Linear Units (ReLu), 69, 108
Reinforcement learning, 287–289, 293

ResNet, 317, 318
Robust training script

build, 201
checkpoint, 205
generators/training

parameters, 206–210, 212
process, 212, 213
saved model files, 204
utility function, 202, 203

S
save_ weights () function, 78, 115
set_image_data_format() function, 329
Spatial pooling, 109
Subsampling, 109

T, U
tensorflow.keras.utils package, 70
Theano, 23
Tool setup

CUDA Toolkit, 55–61
install Anaconda Python, 40–43
install CMake, 37–40
install Dlib, 50
install Keras multibackend

version, 48, 49
install OpenCV, 49
install TensorFlow, 46–48
install Visual Studio, C++, 33–37
setup conda, Python libraries, 44–46
verifying installations, 51–54

Transfer learning, 131–147

V
VGG Net, 314, 315
Visualize layers, 125

Index

338

W, X, Y
Web application

deep learning, 220, 222, 224–226, 229
designing, 218–220
scaling up, 230, 231

script, 215
setting up flask, 216–218

Z
ZFNet, 313, 314

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: What Is Deep Learning?
	Defining Deep Learning
	Intelligent Machines
	Artificial Intelligence
	Machine Learning
	Deep Learning
	Convolutional Neural Networks
	How Deep?
	Is Deep Learning Just CNNs?
	Why Computer Vision?
	How Does It All Come Together?
	Is an Artificial Intelligence Possible?

	Chapter 2: Where to Start Your Deep Learning
	Can We Build Deep Learning Models on Windows?
	Advantages of Using Windows
	Limitations of Using Windows

	Programming Language: Python
	Package and Environment Management: Anaconda
	Python Utility Libraries for Deep Learning and Computer Vision
	Deep Learning Frameworks
	TensorFlow
	Keras
	Other Frameworks
	Scikit-Learn
	Theano

	Computer Vision Libraries
	OpenCV
	Dlib

	Optimizers and Accelerators
	NVIDIA CUDA and cuDNN
	OpenBLAS

	What About Hardware?
	Recommended PC Hardware Configurations

	Chapter 3: Setting Up Your Tools
	Step 1: Installing Visual Studio with C++ Support
	Step 2: Installing CMake
	Step 3: Installing Anaconda Python
	Step 4: Setting up the Conda Environment and the Python Libraries
	Step 5: Installing TensorFlow
	Step 6: (Optional) Installing Keras Multibackend version
	Step 7: Installing OpenCV
	Step 8: Installing Dlib
	Step 9: Verifying the Installations
	Step 10: (Optional) Manually Installing CUDA Toolkit and cuDNN
	Troubleshooting
	Matplotlib Pyplot Error
	Not Getting the Latest Versions
	Not Using the Latest Version of OpenCV
	Dlib Build Errors

	Summary

	Chapter 4: Building Your First Deep Learning Model
	What is the MNIST Dataset?
	The LeNet Model
	Let us Build Our First Model
	Running Our Model
	Trying a Different Dataset
	Clothing Image Classification using Fashion-MNIST
	Running Our Fashion-MNIST Model
	What Can You Do Next?

	Chapter 5: Understanding What We Built
	Digital Images
	Convolutions
	Nonlinearity Function
	Pooling
	Classifier (Fully Connected Layer)
	How Does This All Come Together?

	Chapter 6: Visualizing Models
	Saving Models in Keras
	Using the plot_model Function of Keras
	Using an Opensource tool to Visualize Model Structures: Netron
	Visualizing the Features Learned by Convolutional Filters

	Chapter 7: Transfer Learning
	The Problem with Little Data
	Using Data Augmentation
	Build an Image Classification Model with Data Augmentation
	Bottleneck Features
	Using Bottleneck Features with a Pretrained VGG16 Model
	Going Further with Model Fine-tuning
	Fine-tuning our VGG16 Model
	Making Predictions Using Our Models
	Trying out a Deeper Model: InceptionV3

	Chapter 8: Starting, Stopping, and Resuming Learning
	Using Multithreading to Increase the Training Speed
	Using Model Checkpoints
	Knowing When to Stop Training
	Building a Robust Training Script

	Chapter 9: Deploying Your Model as a Web Application
	Setting up Flask
	Designing Your Web Application
	Building Your Deep Learning Web Application
	Scaling Up Your Web Application

	Chapter 10: Having Fun with Computer Vision
	What We Need
	Basics of Working with Images
	Working with Video: Using Webcams
	Working with Video: Using Video Files
	Detecting Faces in Images
	Detecting Faces in Video
	Simple Real-Time Deep Learning Object Identification

	Chapter 11: Introduction to Generative Adversarial Networks
	The Story of the Artist and the Art Critic
	Generative Adversarial Networks
	Generating Handwritten Digits with DCGAN
	The Generator
	The Discriminator
	The Feedback
	The Training
	Running the Training

	Can We Generate Something More Complex?
	What Else Can GANs Do?

	Chapter 12: Basics of Reinforcement Learning
	What is OpenAI Gym?
	Setting up OpenAI Gym
	Solving the CartPole Problem
	Solving the MountainCar Problem
	What Can You Do Next?

	Appendix A:
A History Lesson: Milestones of Deep Learning
	What is the ImageNet Challenge (The ILSVRC)?
	AlexNet: 2012
	ZF Net: 2013
	VGG Net: 2014
	GoogLeNet/Inception: 2014/2015
	Microsoft ResNet: 2015
	DenseNet: 2017
	Why Simply Going Deeper Does Not Work
	AlphaGo from DeepMind
	Dota 2 Bot from OpenAI

	Appendix B:
Optional Setup Steps
	Switching the Backend in Multibackend Keras
	Installing OpenBLAS for Theano

	Index

