ul’
m Il

l|||[| -
Tfﬁ’.“"i' Iu...lf' i

Deep Learning
on Windows

Building Deep Learning Computer Vision
Systems on Microsoft Windows

Thimira Amaratunga

Apress:

Deep Learning on
Windows

Building Deep Learning
Computer Vision Systems
on Microsoft Windows

Thimira Amaratunga

Apress’

Deep Learning on Windows: Building Deep Learning Computer Vision Systems on
Microsoft Windows

Thimira Amaratunga
Nugegoda, Sri Lanka

ISBN-13 (pbk): 978-1-4842-6430-0 ISBN-13 (electronic): 978-1-4842-6431-7
https://doi.org/10.1007/978-1-4842-6431-7

Copyright © 2021 by Thimira Amaratunga

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava

Development Editor: Matthew Moodie

Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar
Cover image designed by Pexels

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6430-0. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6431-7

To my loving wife, for all your support

Table of Contents

About the AUROKccicmmimmienmismmssssas s annas Xi
About the Technical ReVIEWETccussesssnssssnsssassssnsssassssassssasssansssansssnssssnsssassssanssas Xiii
Acknowledgments.......cccccuuisssnmmmnmmmmmmssssssssssnnnmmmsssssssssssnnnseesssssssssnnnnnnsesssssssnnnnnnnnnnss XV
11T 11T (1 . xvii
Chapter 1: What Is Deep Learning?cccccueessssssssssssnsssssssssssssssssssssssssssssssssnnsssssssssnss 1
Defining DEEP LEAMMINGccoveeeerererieserinsesesesese s e se s se s se s ses e sessesnssesessssssssssssnssnees 1
INtelligent MACKINES.......ccvicerresrre e nrnne s 2
DT VT =TT T O 3
MaCNINE LEAIMINGcecveeiriersie s rersee s s e s e s re s s e sa e s s s e e a e sae e e e e e a e sae e ae e e e nnesneeannaes 4
DEEP LEAMMING......cceeeecreir et e p e s 5
Convolutional Neural NETWOTKS..........ccovrrerrrnerereserese s s e sesssesssnens 7

o 0T o OO S 7

Is Deep Learning JUSt CNNS?.......ccciicrierrnesere s sr s se s s s sn s s e sensessnssnens 9
Why COMPULET VISION?vevecerierere st re e se s e e s e se s e s saesse e s e s snestesessesneseessssesaesnens 10
How Does It All COME TOGETNEI?evveveecirere et sere e se s s sa e e saesae e e e saennes 10

Is an Artificial Intelligence POSSIDIE? ... 13
Chapter 2: Where to Start Your Deep Learning.......ccccccunussssssssmnssssssssssssssssssssssssssnas 15
Can We Build Deep Learning Models on WindOWS?..........cccoeeennnenenenessseressesesesesesesesesessenens 15
Advantages 0f USING WINAOWSccccerrerriererenmrrescsesesesesesessesessesessssesessesessssesssssssssssesssnens 16
Limitations of USING WINAOWScccreeermrnererenerecrrsesese s sesese s sessesessssessssesessesenns 17
Programming Language: PYthoN..........cccvricnncnnesensse s sens 18
Package and Environment Management: ANACONAA..........cccueeverrererrnsersnesssesessssesesesesssessssesenns 19
Python Utility Libraries for Deep Learning and Computer ViSionccccccvverrevnnnsencesnsensensennes 19
Deep Learning FrameEWOrKS.........ccuciveriiiniinnie s sessse s s s e s s sse s ssnsssssaessnsnes 20

TABLE OF CONTENTS

L] 1150 o O 20
5] 2 T 2N 22
Other FrameWOrKS.........cccrnressise s s 23
COMPULET VISION LIDFAIIES .ceuevvererrererrerssserersessessssessessessssessessesssssssessesasssssessessesssssssessesesssssensesaes 23
00T LR 23
DD ettt R R e e 25
Optimizers and ACCEIBIALOrSccuciiri e e 26
NVIDIA CUDA and CUDNNccoereeeeesssssssssssssssssssssesesesesesesesssssssssssssssssssssssasssssssssssnsnsnsnenes 26
OPENBLAS ... e p R e e e ne s 26
What ADOUL HAFAWATIE? ..o se s sen s s sns e nensis 26
Recommended PC Hardware Configurationsc.cuoeeevvrrnnenesssssssssesssssesessssesessessssssesessesenns 28
Chapter 3: Setting Up Your TOOISccccussseenmmssssnnnmmsssssnnssssssnsnsssssssnsssssssssnssssssnnnsnsss 33
Step 1: Installing Visual Studio with C++ SUPPOIt........ccovvrirrrrrrrre e 33
Step 2: INSAllNG CMAKEcovvveeerererirserereres s sere e e s e e s s ssesae e ssesaesae e s e ssesaessssessesaees 37
Step 3: Installing Anaconda PYthoN..........co.cc e 40
Step 4: Setting up the Conda Environment and the Python Librariesccccovvvvninienninicnnenn 44
Step 5: InStalling TENSOMFIOW ..o 46
Step 6: (Optional) Installing Keras Multibackend VErSion...........cccuverennnnsenieninnensensesesessessessenns 48
Step 7: InStalling OPENCV ..o e s e s e 49
Step 8: INSTANG DDevereeeecirerere e r e sa e ae e sa e ae s ae e e e e nne s 50
Step 9: Verifying the INStallations...........cccvevrrerrrinie e s e s sse s 51
Step 10: (Optional) Manually Installing CUDA ToolKit and CUDNNccccoerivnninncnienssensennens 55
0T 0] =] a0 S 62
Matplotlib PYPIOt EFTOF......covo e s 62
Not Getting the Latest VEISIONScccovererencrnsenesesese s sese s e sennes 63
Not Using the Latest Version of OPenCVcoocoeirenrnrenreserescs e 64
DIiD BUIA EFTOFS......cceeeceeecerecesec s ssese e se e se s se e s sse s ses e nssseneens 65
BT 111 1T PSSR 66

TABLE OF CONTENTS

Chapter 4: Building Your First Deep Learning Model...........ccccusnemmnnnnsnnnnnssssssnnnnns 67
What is the MNIST DAtaSel?ccccovrmnenmrririrne e sessans 67
The LENEE MOUEL ..o e 69
Let us Build Our FirSt MOGEL........c.cocererereerieseresese s senns 69
RUNNING OUF MOEIc.veeeetrce et 81
Trying @ Different DAtasetccvievrinierinnnirrre s s s nae s 86
Clothing Image Classification using Fashion-MNISTc.ccoovvrrnrnrnnnnsnnenenessesesesessessesseens 88
Running Our Fashion-MNIST MOGEL.........ccccvrerererrerierereeserseressssessessessessssessessesssssssessessessssessesaes 95
What Can YOu DO NEXE? ... se s se s s s sennsnens 100

Chapter 5: Understanding What We Builtcccccmmmmmininnssssssssssnmnmmsnssssssssssnnnns 101
Digital IMAGES ...cucvereeerreerrese s s e e e p e e e e 102
CONVOIULIONS ..v.eeriecesresersese e sr s e e e e r e e e e e e e n e nenp e e e r s 103
NONlNEarity FUNCHION........ccoiiiiriere et se e s s r e e saesne e e e nne 107
0T 1 o SO 109
Classifier (Fully ConNECted LAYET).......cccvrerererrerrereresssserersesssssssessessessssessessesssssssessesssssssessenses 110
How Does This All Come TOGETNEr?.........ccociiicrrner s 111

Chapter 6: Visualizing ModelSuuurummmmmmmmmmmmssssssssssnmmmmsssssssssssssnssssssssssssssssnnssnnss 115
SaVving MOUEIS iN KEIaS........cueeerererrnseresesesresesessesssssessssessssesesssss s sesssssssssssssssssssssssssssssssssenns 115
Using the plot_model FUNCLION O KEIaSccvcvvreviisinine s sesse s sessessessssessessens 117
Using an Opensource tool to Visualize Model Structures: Netron..........ccccvevevvnvninevniniennens 122
Visualizing the Features Learned by Convolutional Filters..........ccocevvvrvrieriennnensensesenensenseneens 124

Chapter 7: Transfer Learning.......cccuccsssssssassssnsssansssassssnsssansssasssssssssssssassssnsssansssans 131
The Problem with Little Data...........c.oeeeeeeee 131
Using Data Augmentation...........cccvriiinininnnsse st snens 132
Build an Image Classification Model with Data Augmentationc.ccccoeernennrcneriesernsenenns 136
BOttIENECK FEALUIEScccceeeeeeirerer s s 146
Using Bottleneck Features with a Pretrained VGG16 Modelccoccvvvrvnienenniensenenensensenaens 149
Going Further with Model FINe-tUNINGccccvvrervrierererrerre s sse s ssesnes 155
Fine-tuning our VGG16 MOGE]ccccvevurrerrererensereneressessessessesessessessesssssssessesssssssessessessssensesaens 158

vii

TABLE OF CONTENTS

Making Predictions Using OUr MOGEISccccevrererrererenensersesessssessesessssessessessessssessessessssssessens 166
Trying out a Deeper Model: INCeptionV3 ... s 169
Chapter 8: Starting, Stopping, and Resuming Learning........ccccusssssssessssssssesssssnnnss 181
Using Multithreading to Increase the Training SPEedcccvverrccrrierr s 181
Using Model ChECKPOINTS.........ccovererrenerenmsesesessenesessesesesesse s ssssssessessssssessssesessssssssssssssssesssenns 185
Knowing When to Stop Trainingcoccccvvvennenesisesnsesssesssese s ssssessssssesssesssssssssssssssssssssesenns 198
Building a Robust Training SCIPL.......ccccvvvirienrrrrre s sese e s s s s ssessesnens 201
Chapter 9: Deploying Your Model as a Web Application........c.cccccmminsssnnnnrnsssnnnnns 215
SELHNG UP FIASK ...vervetrirererie s see s sese s sae e se s sae s sessessesas s ssesaesaesasnessesnessssessesaesssssssesaesses 216
Designing Your Web Application..........coccvininnnnnn e 218
Building Your Deep Learning Webh Application ... sessensens 220
Scaling Up Your Webh Application...........ccuciinninincninnn e se s s sssssssessesnes 230
Chapter 10: Having Fun with Computer ViSion........ccccccemmmssssssmssnsmmmsssssssssssssssnnns 233
WRAtWE NEEU........ceeerere e e e s n s 233
Basics of Working With IMages........coovvvvrierinnninine s ses s ssssessessesssssssessessesssssssesaens 234
Working with Video: USing WebhCamS..........cccvvrinininn s sse e s 240
Working with Video: Using Video Filescccovvririiiinini s ssssesse s sne s 242
Detecting Faces in IMAJES........cccviinninnr st 244
Detecting Faces iNVIdEO..........ccovererercrrerereses e 246
Simple Real-Time Deep Learning Object Identificationc.ccccvvrrnvenninenssesnsesenesesessenens 248
Chapter 11: Introduction to Generative Adversarial Networks.........cccursesssansssess 253
The Story of the Artist and the Art CHitiCccvevrerenrrrin e 253
Generative Adversarial NEtWOrKS..........cocvvrinmsnnssss s sesss s 254
Generating Handwritten Digits With DCGAN.........ccccoerrrrrricrre e 255
LR CTe] TS (0] TP 257

The DiSCHMINALON ..o e 260

THE FEEADACKcerveuererceriee e e nnn e 262

LT3 L UL 13T R 264
RUNNING the TraiNiNg........cccocvirieneriirrer e s e s s s e s a e s e s sn e sneenesanens 267

viii

TABLE OF CONTENTS

Can We Generate Something More COMPIEX?......coccveverrvierernnensesessssssessesessssessessessessssessesses 272
What EISE Can GANS DO7?oveererererrssesesesesssssssesesssss s e ssans 283
Chapter 12: Basics of Reinforcement Learninguccccuremsssssnssssssssnssssssssssssssssnnnss 287
What iS OPENAL GYM? ..o e sre e r e e s e e nnenens 288
Setting UP OPENAI GYIMcovveereerse s se e e e s e se e nesssnenns 289
Solving the CartPole ProbIEm ... 293
Solving the MountainGar ProbIEMccccvievirrierienie s ses s e s s sss e s e s ssesessesnesnes 301
What Can YOU DO NEXLE?......cccoiiiecriririssessse s s snsnans 309
Appendix A: A History Lesson: Milestones of Deep Learningccccsvussssnnnssssanns 311
What is the ImageNet Challenge (The ILSVRC)?.........cccoverrevrnienreseresessesese s sessesessenens 311
AIBXNEL: 20T2......eeceeeeeee e s b e e R e e R e nne s 312
4 o\ 1< U OSSOSO 313
VGG NEL: 2014 ... e e e s e bt e a e e nne s 314
GoogLeNet/Inception: 2014/2015........cccvvrierenrreriere s sae s e snes 315
Microsoft RESNEt: 2015........co s 317
DENSENEL: 2017 ... bR e 318
Why Simply Going Deeper Does NOtWOrK ... 320
AlphaGo from DEEPMINGcccceriiiriiiiere s sa e nne s 320
Dota 2 Bot from OPENAL ..o s et 322
Appendix B: Optional Setup Stepsccccimmmsemmmmnssnnnmmssssssnmmssssssnmmssssssssssssssnnessssnns 327
Switching the Backend in Multibackend Keras...........coucvirevnrnienienesessensesessssessesessesessessesses 327
Installing OpenBLAS fOr TREANO.........ccvririererirrirere e s se s s sre e e e enees 329
1T - 333

ix

About the Author

Thimira Amaratunga is an inventor, a Senior Software
Architect at Pearson PLC Sri Lanka with over 12 years
of industry experience, and a researcher in Al, machine
learning, and deep learning in education and computer
vision domains.

Thimira holds a Master of Science in Computer Science
with a Bachelor's degree in Information Technology from the
University of Colombo, Sri Lanka.

He has filed three patents to date, in the fields of
dynamic neural networks and semantics for online learning

platforms. Thimira has also published two books on deep
learning: Build Deeper: The Deep Learning Beginners’ Guide and Build Deeper: The Path
to Deep Learning.
In addition, Thimira is the author of Codes of Interest (www.codesofinterest.com),
a portal for deep learning and computer vision knowledge, covering everything from
concepts to step-by-step tutorials.
LinkedIn: www.linkedin.com/in/thimira-amaratunga.

http://www.codesofinterest.com
http://www.linkedin.com/in/thimira-amaratunga

About the Technical Reviewer

Sarani Mendis is currently working as a Software Engineer
at Pearson Lanka, with six years of industry experience. She
is an enthusiast and a researcher in UI/UX, Al and machine
learning in natural language processing, and computer
vision domains. Sarani is also an active volunteer at Lanka
Software Foundation and has worked on many of their
projects under Code for Sri Lanka-Elections.

She holds a Master of Science in Computer Science and

a Bachelor of Information Technology from University of
Colombo School of Computing-Sri Lanka.

xiii

Acknowledgments

Like many others, this book also started as a single thought. Even with experience in
publishing two earlier books, it was a challenging journey. From the beginning and
along the way, I have received support and encouragement from many, and I would like
to express my sincere gratitude here.

First, I would like to thank the team at Apress, especially Smriti Srivastava, the
acquisitions editor; Shrikant Vishwakarma, the coordinating editor; Matthew Moodie,
the developmental editor; and everyone else involved in the publishing of this book.

I would also like to thank Sarani Mendis, the technical reviewer, for the excellent
feedback and suggestions that added immense value to this book.

To my loving wife, Pramitha: Thank you for the encouragement and the motivation
you provided from the inception of the idea to the completion. Without your support
throughout the long hours and days spent writing and perfecting this book, completing it
might not have been possible.

To my managers at Pearson PLC, who have guided me throughout the years, I would
like to express my gratitude for the guidance and encouragement. And to my team and
colleagues, thank you for all your support that allowed me to achieve this.

And last but not least, to my parents and sister, thank you for the endless support
throughout the years.

Introduction

Do you wish to learn to build practical deep learning and computer vision Systems,

but are reluctant to switch to Linux for the development? Do you feel like you are more
familiar with Windows, and wish that you could build everything on Windows? Well, you
do not need to worry anymore. The latest deep learning and computer vision libraries
have matured to the point that almost everything now can be made to work seamlessly
on Windows as well. This book will show you how.

Windows OS accounts for over 70% of desktop PC usage. Windows provides many
conveniences, with a wide variety of available productivity tools, causing it to gather
a large user base. Furthermore, due to the better hardware compatibility and driver
support, most decently to high-powered personal PCs tend to run Windows. This means
that there is a large percentage of Al enthusiasts and developers out there who would
like to jump into learning the remarkable capabilities of deep learning / Al. But they
are reluctant or afraid to take the first steps because of the fear of the complexity of the
tools and a widely held belief that Al systems can only be built on developer-friendly
operating systems such as Linux. This book aims to help them move past those mental
blocks and start building practical deep learning systems.

Deep learning on Windows will help you learn to build deep learning and computer
vision systems using Python, TensorFlow, Keras, OpenCV, and more, right within the
familiar elements of Microsoft Windows. The goal of this book is to get as many of you
interested in the field of deep learning and have the OS you build upon a nonbarrier to
begin learning.

Along the way, we will learn what deep learning is and how it came to be. We will
clarify some misconceptions and confusion surrounding deep learning and look at some
of the major milestones it has achieved throughout the years. We will dive into coding,
while learning how to apply the concepts as you build. You will learn how to set up all
the tools and technologies you will need to start coding deep learning systems on a
Windows system.

xvii

INTRODUCTION

In this book, you will:

e Learn the concepts, history, and milestones behind deep learning
and how it relates to machine learning and Al while resolving some
misconceptions surrounding those Al concepts.

e Learn the tools you would require (TensorFlow, Keras, OpenCV,
CUDA, etc.) to successfully learn building deep learning systems, and
learn how to set up, configure, and troubleshoot them step by step.
Learn to get the tools working on Microsoft Windows and learn why
the OS or the hardware you are developing in does not hold you back
in building state-of-the-art Al systems. This should allow you to break
any mental barriers and apply what you have learned in any OS or
other system.

e Learn to build your first deep learning model and understand how
the concepts of each step of it work through code examples. Learn
how to visualize the internal workings and the structure of a model
to gain a deeper understanding of how they work, and apply that
experience to develop more complex models in the future.

e Learn to build real-world, practical deep learning computer vision
systems with limited amounts of data with the concepts of transfer
learning and fine-tuning. Learn how to configure training of larger
models with large datasets, and ways you can deploy your application
once trained.

e Once you have mastered the basics, learn more exciting and
advanced concepts such as generative adversarial networks, and
reinforcement learning (for basics in game programming).

The book is meant for you if you are an enthusiast of machine learning and
Al—from the beginner to intermediate level—and would like to get a taste of what
deep learning can do. It is meant for you if you prefer to jump in and learn through a
hands-on, practical way by trying out coding and are not afraid to get your hands dirty
with code. And finally, this book is meant for you if you desire to build practical,
real-world Al systems.

xviii

CHAPTER 1

What Is Deep Learning?

We live in the era of artificial intelligence (AI).

We may be born a little too late to explore earth, and born too early to explore the
universe. Yet we may be here just in time to witness the rise of Al

And we can help build that future.

Innovation in the field of Al is happening daily, from smart consumer devices to
Al personal assistants to self-driving cars. The technology giants—Google, Facebook,
Amazon, Microsoft, Apple, IBM, and Al-specialized organizations like DeepMind and
OpenAl—strive to build Al technologies in a variety of fields that solve problems and
improve the quality of life.

Deep learning is the latest iteration of Al. Although the concept itself has been
around for many years, deep learning has become popular during the past few years
due to the remarkable breakthroughs it continues to achieve. What was science fiction a
decade ago is now becoming a reality.

Thanks to deep learning, Al technologies are increasingly becoming a part of our
household. Today, most of our consumer devices and services have some sort of Al built
into them. Maybe it is time you joined the revolution. You too can start contributing to
this Al drive.

But first, we need to make sure that we understand what deep learning is.

Defining Deep Learning

Whether you are coming from a traditional Al background or just starting in the Al field,

you might be wondering what the terms “artificial intelligence,” “machine learning,” and
“deep learning” mean, as well as the other terminology surrounding it (Figure 1-1).

© Thimira Amaratunga 2021
T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_1

https://doi.org/10.1007/978-1-4842-6431-7_1#DOI

CHAPTER 1 WHAT IS DEEP LEARNING?

Comauter

ales
(mmlrll:t triracting _Recesiive
uwwam
tul pocling
(onc !J’!S Josticatons

Deeil| learnlng

= === higrarchical -z~
EBII’K]M!K‘,\

““"‘ aﬂmu lhﬂ 8053
Ay

==NMachine learnmg
Artlilclal I telllgence

Figure 1-1. The deep learning confusion

With the term “deep learning” becoming a buzzword, and becoming a part of some
consumer technologies as well, it may be hard to figure out what each of these terms
mean and how they relate to each other. You might be trying to figure out whether these
three terms can be used interchangeably, and where each of them came from.

These are common questions that come to all of us when we are beginning the deep
learning journey. Let us see how we can answer them.

Deep learning is a subset of machine learning that deals with hierarchical feature
learning.

Machine learning is an approach to artificial intelligence that aims at providing
machines with the ability to learn without explicitly programming them.

As for artificial intelligence, we should probably start from the beginning. It all
started with the idea of intelligent machines.

Intelligent Machines

The concept of intelligent machines is the idea that machines can be built with parallel
(or greater) intelligence of a human being, giving them the capacity to perform tasks that
require human intelligence.

Human beings have been obsessed with this idea since ancient times, and written
records of it can be traced back to the 1300s (from the works of Ramon Llull, 1232-1315).
By the seventeenth century, Gottfried Leibniz expanded on this idea with his calculus

CHAPTER 1 WHAT IS DEEP LEARNING?

ratiocinator—a theoretical universal logical calculation framework. By the nineteenth
century, the concept of formal reasoning had begun, with the introduction of concepts
such as propositional logic by George Boole and predicate calculus by Gottlob Frege.

However, there was no formal research concept for Al until the Dartmouth
Conference in 1956.

Artificial Intelligence

In June 1956, many experts in the field—scientists and mathematicians—came together
at Dartmouth College in New Hampshire. This conference, titled “The Dartmouth
Summer Research Project on Artificial Intelligence,” was the starting point of the formal
research field of artificial intelligence. The Logic Theorist, developed by Allen Newell,
Herbert A. Simon, and Cliff Shaw, now considered to be the first artificial intelligence
program, was also presented in the Dartmouth conference. The Logic Theorist was
meant to mimic the logical problem solving of a human and was able to prove 38 out of
the first 52 theorems in Principia Mathematica (a book on principles of mathematics
written by Alfred North Whitehead and Bertrand Russell).

By the 1960s, Al research was in full swing. It had funding from the US Department
of Defense, more and more Al research labs were being established, and researchers
were optimistic. Herbert A. Simon had predicted in 1965 that “machines will be capable,
within twenty years, of doing any work a man can do.”!

But Al did not progress quite that fast.

Around the late 1990s and early 2000s, researchers identified a problem in their
approach to Al to artificially create a machine with intelligence, one needed to first
understand how intelligence worked.

Even today, we do not have a complete definition of what we call “intelligence.”

To tackle the problem, researchers decided to work from the ground up: rather
than trying to build intelligence, they investigated building a system that could grow an
intelligence on its own.

This idea created the new subfield of Al called machine learning.

"Herbert A. Simon, The Shape of Automation for Men and Management (New York: Harper & Row,
1965), p. 96.

CHAPTER 1 WHAT IS DEEP LEARNING?

Machine Learning

Machine learning is a subset of artificial intelligence and aims at providing machines
the ability to learn without explicit programming. The idea is that such machines (or
computer programs), once built, will be able to evolve and adapt when they are exposed
to new data.

The main idea behind machine learning is the ability of a learner to generalize from
experience. The learner (or the program), once given a set of training samples, must be
able to build a generalized model upon them, which would allow it to decide upon new
cases with sufficient accuracy.

Based on this approach, there are three learning methods for machine learning systems:

e Supervised learning: The system is given a set of labeled cases (a
training set), based on which it is asked to create a generalized model
that can act on unseen cases.

o Unsupervised learning: The system is given a set of unlabeled cases
and asked to find a pattern in them. This is ideal for discovering
hidden patterns.

¢ Reinforcement learning: The system is asked to take any action and
is given a reward, or a penalty based on how appropriate that action
is to the given situation. The system must learn which actions yield
the most rewards in given situations over time.

With these techniques, the field of machine learning flourished. They were
particularly successful in the areas of computer vision and text analysis. Over the years,
many models have been introduced as means of implementing machine learning
techniques, such as artificial neural networks (models inspired by how neurons of the
brain works), decision trees (models that use tree-like structures to model decisions and
outcomes), regression models (models that use statistical methods to map input and
output variables), and so on.

Around 2010, a few things happened that influenced machine learning research:

CHAPTER 1 WHAT IS DEEP LEARNING?

o Computing power became more available, and evaluating more

complex models became easier.

e Data processing and storage became cheaper. More data became

available for consumption.

e Our understanding of how the natural brain works increased,
allowing us to model new machine learning algorithms around them.

These breakthroughs propelled us into a new area of machine learning called deep
learning.

Deep Learning

Deep learning is a subset of machine learning that focuses on an area of algorithms
inspired by our understanding of how the brain works to obtain knowledge.

It is also referred to as deep structured learning or hierarchical learning.

Deep learning builds upon the idea of artificial neural networks and scales it up,
to be able to consume large amounts of data by deepening the networks in a specific
way. Through a deeper network, a deep learning model has the capability of extracting
features from raw data and “learn” about those features little by little in each layer,
building up to a higher-level knowledge of the data. This technique is called hierarchical
feature learning, and it allows such systems to automatically learn complex features
through multiple levels of abstraction with minimal human intervention.

Following are some definitions of deep learning from some pioneering work in
the field:

A sub-field within machine learning that is based on algorithms for learning multiple
levels of representation to model complex relationships among data. Higher-level features
and concepts are thus defined in terms of lower-level ones, and such a hierarchy of features
is called a deep architecture.

—Deep Learning: Methods and Applications®

The hierarchy of concepts allows the computer to learn complicated concepts by
building them out of simpler ones. If we draw a graph showing how these concepts are

2Li Deng and Dong Yu, Deep Learning: Methods and Applications (Redmond, WA: Microsoft
Research, 2014), p. 200.

CHAPTER 1 WHAT IS DEEP LEARNING?

built on top of each other, the graph is deep, with many layers. For this reason, we call this
approach to Al, deep learning.
—Deep Learning®

One of the most distinct characteristics of deep learning—and one that made it quite
popular and practical—is that it scales well; that is, the more data given to it, the better it
performs. Unlike many older machine learning algorithms that have an upper bound to
the amount of data they can ingest—often called a plateau in performance (Figure 1-2)—
deep learning models have no such limitations (theoretically), and they may be able to
go beyond what humans can comprehend. This is evident with modern deep-learning-
based image processing systems that are able to outperform humans.

A

Deep Learning

Performance

» Traditional Machine
Learning

The Plateau in
Performance

Amount of Data

Figure 1-2. The lack of plateau in performance in deep learning

3lan Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning (Cambridge, MA: MIT
Press, 2016), p. Back Cover Text.

6

CHAPTER 1 WHAT IS DEEP LEARNING?

Convolutional Neural Networks

Convolutional neural networks (CNNs) are a prime example of deep learning. They
were inspired by how the neurons are arranged in the visual cortex (the area of the brain
which processes visual input). Here, not all neurons are connected to all the inputs from
the visual field. Instead, the visual field is “tiled” with groups of neurons (called receptive
fields) that partially overlap each other.

CNNs work in a similar way. They process their input in overlapping blocks of the
input using mathematical convolution operators, which approximates how a receptive
field works (Figure 1-3).

Convolution Convolution Fully Connected Output Predictions
Fully Connected

Pooling Pooling

Input Image
i S 1
} — 1
= 2o
| -
bl | s e

Figure 1-3. A convolutional neural network

The first convolution layer uses a set of convolution filters to identify a set of low-
level features from the input image. These identified low-level features are then pooled
(from the pooling layers) and provided as input to the next convolution layer, which uses
another set of convolution filter to identify a set of higher-level features from the lower-
level features identified earlier. This continues for several layers, where each convolution
layer uses the inputs from the previous layer to identify higher-level features than the
previous layer. Finally, the output of the last convolution layer is passed on to a set of
fully connected layers for the final classification.

How Deep?

Once you grasp the capabilities of deep learning, there is one question that usually
surfaces: If we say that deeper and more complex models give deep learning models
the capabilities to surpass even human capabilities, then how deep a machine learning
model should be to be considered a deep learning model?

CHAPTER 1 WHAT IS DEEP LEARNING?

It turns out that there is no clear response to this question. What we need to do
instead is to look at deep learning from a different angle to understand it better. Let us
take a step back and see how a deep learning model works—for example, with CNNs.

As mentioned earlier, the convolution filters of a CNN attempts to identify lower-
level features first and use those identified features to identify higher-level features
gradually through multiple steps.

This is the hierarchical feature learning we talked about earlier, and it is the key
to understanding deep learning and what differentiates it from traditional machine
learning algorithms (Figure 1-4).

Low-level Feature Extraction

Mid-level Feature Extraction

High-level Feature Extraction

Car [N
= ship
C[aSSIfylng Truck I
Airplane |
House

Output - - "Car"
Figure 1-4. Hierarchical feature learning
A deep learning model (such as a CNN) does not try to understand the entire

problem at once; that is, it does not try to grasp all the features of the input at once, as
traditional algorithms tried to do. What it does look at is the input, piece by piece, so that

CHAPTER 1 WHAT IS DEEP LEARNING?

it can derive from its lower-level patterns/features. It then uses these lower-level features
to gradually identify higher-level features, through many layers, hierarchically. This
allows deep learning models to learn complicated patterns, by gradually building them
up from simpler ones. This also allows deep learning models to comprehend the world
better, and they not only see the features but also see the hierarchy of how those features
are built upon each layer.

Of course, having to learn features hierarchically means that the model must have
many layers in it. This means that such a model will be “deep.”

That brings us back to our original question: it is not that deep models are deep
learning, but rather that to achieve hierarchical learning, the models need to be deep.
The deepness is a by-product of implementing hierarchical feature learning.

So how do we identify whether a model is a deep learning model or not?

Simply put, if the model uses hierarchical feature learning—identifying lower level
features first, and then building upon them to identify higher-level features (e.g., by
using convolution filters)—then it is a deep learning model. If not, then no matter how
many layers your model has, it is not considered a deep learning model. This means that
a neural network with 100 fully connected layers (and only fully connected layers) would
not be a deep learning model, but a network with a handful of convolutional layers
would be.

Is Deep Learning Just CNNs?

When we talk about deep learning, we talk about CNNs a lot. You might be wondering
whether deep learning is only CNNs.

The answer is no.

The following models, among others, are considered deep learning:

e Convolutional Neural Networks

e Deep Boltzmann Machine

o Deep Belief Networks

o Stacked Autoencoders

e Generative Adversarial Networks (GANSs)

o Transformers

CHAPTER 1 WHAT IS DEEP LEARNING?

We take CNNs as examples for deep learning more often because they are easier to
understand. As they were based on how biological vision works, it is easier to visualize
and apply how they are based on the cognitive workflow of vision.

But we should keep in mind that CNNs are not the whole picture of deep learning.

Why Computer Vision?

Looking at the history of deep learning and some recent achievements of it,* you will
notice that most of the projects it has been applied to deal with computer vision. Even
the ImageNet competitions focus on visual recognition.

Why is that? Does deep learning only work on computer vision?

Not really.

Vision—understanding and giving meaning to visual inputs—is something humans
are exceptionally good at. The ability to understand one’s surroundings is considered
a sign of intelligence. So when it comes to building intelligent machines, vision is one
of the core capabilities that we wish an intelligent machine to possess. It is also easy to
validate, as we can easily compare it with the ability of a human.

Therefore, exploring vision capabilities has become a core area in deep learning
research.

The achievements deep learning gathers in the vision field may shape how we
approach other fields as well. Thanks to the capability of transfer learning (which we will
discuss in a later chapter), deep learning can apply knowledge gained from one domain
to another domain. While typically this capability is used to apply knowledge from one
vision model to another, it is speculated (and there is much ongoing research) how the
knowledge from a model trained on visual input may apply in a nonvisual context.

How Does It All Come Together?

Returning to our original questions: How do the areas of artificial intelligence, machine
learning, and deep learning relate to each other?

*A more detailed look at the milestones of deep learning throughout the years is available in
Appendix 1.

10

CHAPTER 1 WHAT IS DEEP LEARNING?

Simply put, machine learning is a subset (an approach) of artificial intelligence, and
deep learning is a subset of machine learning, all working toward the common goal of
creating an intelligent machine (Figure 1-5).

Deep
Learning

Machine
Learning

Artificial
Intelligence

Figure 1-5. How artificial intelligence, machine learning, and deep learning relate
to one other

See Figure 1-6 for a quick look back at how deep learning, machine learning, and
artificial intelligence evolved through the years.

11

CHAPTER 1 WHAT IS DEEP LEARNING?

Let's build an
We need to go

Machines can one intelligent . .
day be as machine Wait... what is deeper
intelligent as ‘intelligence'?
humans

® X

19th Century 1956

ntelligent Machines™

Machine Learning

)

Figure 1-6. The evolution of deep learning

With its initiation in the early 2010s, deep learning kept on achieving groundbreaking
results, with accuracies that were thought not to be possible earlier in tasks that were
previously thought to be only possible to perform by humans, such as image recognition,
language processing, and speech recognition. Shown in Figure 1-7 are a few of the
noteworthy deep learning milestones in image recognition over the past decade.

12

100.0%

95.0%

90.0%

85.0%

80.0%

75.0%

CHAPTER 1 WHAT IS DEEP LEARNING?

Model Accuracy % Over the Years

96.4% 96.4%
93.3% 93.7%
92.7% ’
88.8%
84.6% I
2 > > x ©) A
N2 2 N 4 Y £ &y
~ ~ ~ D ~ ~ ~
& g & e O & e
\'23§ /\‘}é o \?’e S & fo&
v L 5 $ < o
& & <

Figure 1-7. Deep learning model accuracy over the years

You can learn more about these specific models and their importance to deep

learning in Appendix 1.

With the capabilities demonstrated and the success achieved by deep learning, we

may be a step closer to the ultimate goal of artificial intelligence: building a machine

with human (or greater) level intelligence.

Is an Artificial Intelligence Possible?

Despite everything Al has already achieved, there still exists some skepticism out there

as to whether true Al (also referred to as artificial general intelligence) is possible.

One of the reasons for these skepticisms is due to a misunderstanding of the term

“artificial intelligence.” This has caused doubts in the approach Al is taking toward its goals.

13

CHAPTER 1 WHAT IS DEEP LEARNING?

The term “artificial intelligence” is an unfortunate mis-term, which has led to many
misinterpretations. When the Dartmouth conference of 1956 named the new research
field as artificial intelligence, they had good intentions for that name. But, as always,
intentions are not preserved nor are they obvious.

The common misconception—by taking the name literally—is that Al aims to build
“intelligence” artificially. However, in reality, the term “artificial intelligence” was and
was always meant to be “artificial” + “Intelligence,” meaning that it was meant to bridge
artificial and intelligence. The goal of Al is to observe and understand “intelligent”
behavior inherently found in natural constructs (human or otherwise) and attempt to
build the intelligent behavior into artificial constructs. These artificial constructs could
be computer programs, machines/robots, algorithms, or theoretical frameworks.

This concept is what has brought us models such as neural networks and genetic
algorithms, among many others. If you look closely at these models, it becomes apparent
that they are all applying modified versions of natural intelligence concepts on top of
artificial constructs.

The ultimate goal of Al was—and is—to build a machine with a human or greater
level of intelligence. (Note that a “machine” is a subjective term here, which can mean
any artificial construct.) We do not want to reinvent “intelligence” for it. We just need
to adapt the character and concept of natural intelligence to the artificial constructs we
build.

We do not build intelligence artificially. We build machines inspired by nature.

14

CHAPTER 2

Where to Start Your Deep
Learning

Welcome to the exciting world of deep learning, Al, and computer vision.

With a high-level understanding of what deep learning is and its capabilities from the
last chapter, you might be eager to learn building practical deep learning and computer
vision systems.

But are you reluctant to switch to Linux for the development? Do you feel like you are
more familiar with Windows, and wish that you could build everything on Windows?

Well, you do not need to worry anymore. The latest deep learning and computer
vision libraries have matured to the point that almost everything now can be made to
work seamlessly on Windows as well.

We will look at building deep learning systems on Windows step by step.

But first, let us answer a concern you might be having.

Can We Build Deep Learning Models on Windows?

If you have been a developer for long, you might have noticed that Windows did not used
to work well with cutting-edge development, especially open-source projects.

While deep learning and computer vision frameworks weren't necessarily limited to
a particular OS, the ease of development on Linux or Unix-based systems and the pace of
which the development happened meant that the latest features and options were either
delayed or not available on Windows. And thus for a time, if you wanted to make any
serious machine learning, Al, or computer vision models, it seemed like you would have
to stick with Linux or a Unix-based system.

But fortunately, things have improved for Windows greatly in recent years.

Cutting-edge deep learning frameworks like TensorFlow and Keras, as well as computer
vision libraries like OpenCV and Dlib, now have their newer versions working natively on
Windows. Driver support and GPU acceleration also work seamlessly on Windows now.

15
© Thimira Amaratunga 2021

T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_2

https://doi.org/10.1007/978-1-4842-6431-7_2#DOI

CHAPTER 2 WHERE TO START YOUR DEEP LEARNING

In fact, in some cases, it is easier to get GPU acceleration such as NVIDIA CUDA
support working with Windows than on Linux. Windows driver support for consumer
graphics cards has been ahead for many years.

Advantages of Using Windows

Windows is the most popular operating system in the world, with over 70% of desktop
PCs using some version of it (see Figure 2-1).!

Desktop OS Usage - Mar-2019 to Mar-2020
90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00% .

-
v

L 4

L 4

o

. —

v

&
4

L 4
L 4
L 4

10.00%

000% BT T A e N R e T T T e R T TN %

C) G o o o o o o G G o o o
N & X X N N N & & & o o o
o oy oy S P oy S S P o oy Y oy
R\ N ®§ N W v\‘?o R Iy S & & & &
—>\Windows —&=—0S X Unknown Linux =+= Chrome OS --e--Other

Figure 2-1. Windows usage on desktop PCs'

IStatistics from GS Statcounter, “Desktop Operating System Market Share Worldwide, Sept.
2019-Sept. 2020,” https://gs.statcounter.com/os-market-share/desktop/worldwide,
accessed [19 Apr 2020] and Wikipedia, “Desktop/Laptop Operating System Browsing Statistics,”
https://en.wikipedia.org/wiki/Usage share of operating systemsi#Desktop and laptop
computers, accessed [17 Apr 2020].

16

https://gs.statcounter.com/os-market-share/desktop/worldwide
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems#Desktop_and_laptop_computers
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems#Desktop_and_laptop_computers

CHAPTER 2 WHERE TO START YOUR DEEP LEARNING

In most cases, unless you are a dedicated DL/ML researcher, if you already have a
decently powerful general-purpose PC—or are thinking of getting or building one—you
tend to use Windows on it. Probably you are more familiar with using Windows as the
OS of your home PC and are using other software on your PC that is only available on
Windows.

So, if you are thinking of learning to build deep learning models, it is easier when you
do not need to switch your OS to do so.

If you are planning to use GPU accelerations on your models—which we cover
later in this chapter—then getting them working on Windows is much easier than other
operating systems due to better driver support (although Linux GPU driver support is
now improving).

And if you do have a good GPU in your PC, chances are that you want to use that for
other things like gaming or productivity instread of dedicating it to deep learning. By
sticking to Windows, you get the best of both worlds.

Limitations of Using Windows

In addition to the advantages we discussed, there are some limitations in using Windows
that you should be aware of.

While most of the frameworks and libraries for deep learning and computer vision
are now available on Windows, you may find that the latest versions of them are typically
delayed more than their Linux counterparts.

If you try to customize or build the libraries from source, you may find that the
requirements to build them on Windows are a little bit strict. It is the main reason that
the native packages tend to be delayed for Windows.

Because support for Windows was recent, you may also find that the community
support for issues on Windows is also less than that for Linux. This will hopefully
improve in the future, with more people starting deep learning development on
Windows.

The bottom line is that you do not have to switch from Windows to an OS like Linux
in order to learn deep learning if you don't want to. In this book, we will see how to get
everything needed to build deep learning systems that work on Windows.

17

CHAPTER 2 WHERE TO START YOUR DEEP LEARNING

Linux is a great OS for developers. If you feel like it, you should definitely check out
developing on Linux. Serious researchers on deep learning and computer vision do tend
to use Linux systems for their development due to the flexibilities it provides. But it is not
a must for you to start learning.

You can start building practical deep learning systems right on Windows. And once
you learn how, you can later switch to any OS for your development if you prefer.

So what do you need to start?

You need to select a programming language to write your code and select a couple of
deep learning frameworks for that language, throw in a selection of utility libraries and
tools to help you, and then just start coding.

Does that sound too overwhelming?

Let us look at these requirements one at a time.

Programming Language: Python

You might wonder, why Python? Is it the only language for deep learning? Definitely not.

When you understand the concepts, you can use pretty much any language to
implement deep learning. But some languages have already established tools, libraries,
and frameworks for supporting machine learning and deep learning tasks. To avoid
reinventing already existing elements, we chose a language that has a lot of such
pre-existing support.

Is Python the best language for deep learning? That is a tricky question.

When we look for the most popular languages for machine learning, a couple of
languages stand out: Python, R, C++, C, and MATLAB. Each of them has its advantages
and disadvantages.

We chose Python for several reasons that are especially important when you are just
starting to learn deep learning.

For a beginner in deep learning—especially for someone with a programming
background—writing code in Python would be more natural. You can use most of the
familiar object-oriented and functional programming concepts. While performance may
not be as good as C or C++, Python is still quite fast. Having the capability to run the code
on multiple CPUs and GPUs helps a lot too. Another plus point is that most C and C++
libraries tend to have Python interfaces as well (e.g., OpenCV, Dlib, Caffe). Compared
to R and MATLAB, the availability of deep learning and machine learning libraries are
similar in Python. But considering the maturity of the libraries, Python libraries seem to

18

CHAPTER 2 WHERE TO START YOUR DEEP LEARNING

be more bleeding edge. Most of the latest deep learning frameworks are currently being
developed primarily targeting Python (e.g., TensorFlow).

One of the biggest advantages of using Python is its deployability. Say you build
an awesome deep learning program, and you want to deploy it as a web service. With
Python, it is fairly straightforward. With R, MATLAB, or C/C++, it will take quite a bit of
effort.

Considering all these benefits, we are going to use Python for our deep learning
experiments.

Package and Environment Management: Anaconda

Anaconda is an open source platform of Python and R languages meant for machine
learning, data science, large-scale data processing, and scientific computing. Anaconda
contains optimized versions of Python for many platforms and architectures.

Itis not only a Python distribution, but also a package, dependency, and
environment manager for Python. Through its conda package manager, Anaconda
allows easy creation of virtual isolated environments—with its Python binaries
and packages—to experiment with. You can create multiple independent Python
environments of multiple Python versions, and their own independent installed
packages, based on your needs.

Anaconda also contains hundreds of prebuilt and tested packages for machine
learning, scientific computing, and data processing that you can directly install through
the conda package manager. It removes the hassle of finding, building, installing, and
dependency managing of packages and libraries.

Python Utility Libraries for Deep Learning
and Computer Vision

When working with Python and the deep learning frameworks (which we will be looking
atin a bit), having the following set of utility libraries will make a lot of tasks easier:

e NumPy: adds support to handle large multidimensional arrays in
Python, along with a collection of high-level mathematical functions
that can be applied across arrays.

19

CHAPTER 2 WHERE TO START YOUR DEEP LEARNING

e SciPy: the scientific cousin of NumPy. SciPy adds support for
mathematical optimization, linear algebra, integral and differential
equations, interpolation, special functions, Fourier transforms, and
signal processing to Python.

o Pillow: pillow is a fork of PIL (Python Image Library), which adds
image processing capabilities to Python. It adds extensive file
format support for images, with efficient internal representation
mechanisms.

o Scikit-Image: adds a set of higher-level image processing capabilities
to Python, such as edge detection, equalization, feature detection,
and segmentation.

o h5py: adds the support of the HDF5 binary data format to Python.
The HDF5 format is used in many of the machine learning
frameworks, as it allows easy storage and handling of large,
terabyte-level data as if they were internal data arrays.

e Matplotlib: Matplotlib is a sophisticated 2D and 3D plotting
and data visualization library for Python, allowing you to create
publication-quality plots and figures on a variety of platforms.

Note These are just a few of the utility libraries that we would need to get our
code working. We will be needing more as we go along. But having these will help
make things easier from the start.

With Anaconda, we also do not need to install them one by one. Anaconda has
utility functions to quickly install these—and more—which we will investigate in
the next chapter.

Deep Learning Frameworks
TensorFlow

TensorFlow is currently one of the most actively developed machine learning libraries in
the world. At its core it is a symbolic math library, which specializes in applications such
as neural networks.

20

CHAPTER 2 WHERE TO START YOUR DEEP LEARNING

TensorFlow is the second-generation machine learning library by the Google
Brain Team, and has gained huge popularity in recent times due to its deep learning
capabilities. First released in November 2015, as the successor to DistBelief (Google
Brains first-generation machine learning library), TensorFlow initially only supported
Python and C on Linux. Since then it has added support to C++, Java, Go, JavaScript,
and experimental support for Swift. Third-party support is also available for C#, Haskell,
Julia, MATLAB, R, Scala, Rust, OCaml, and Crystal. TensorFlow now works on Windows
and Mac OS natively.

TensorFlow is capable of running on either CPU or GPU (with NVIDIA CUDA). It
also runs on Google’s proprietary Tensor Processing Units (TPUs)—application-specific
integrated circuit (ASIC) units built specifically for machine learning and tailored for
TensorFlow. TensorFlow can also run on lower-end devices like mobile phones—on
Android and iOS—and Raspberry Pi devices when running inference.

TensorFlow uses stateful data flow graphs for its numerical calculations, where
the nodes of the graph represent mathematical operations, while the edges of the
graph represent the data that flows through the nodes. The data is represented as
multidimensional arrays (tensors), hence the name “TensorFlow.”

In February 2017, TensorFlow released version 1.0.

TensorFlow.js 1.0 was released in March 2018.

TensorFlow 2.0 was released in January 2019, version 2.1 in January 2020, and
version 2.2 in May 2020.

The 2.x versions come with many new features and improvements, such as eager
execution, multi-GPU support, tighter Keras integration, and new deployment options
such as TensorFlow Serving (Figure 2-2).

21

CHAPTER 2 WHERE TO START YOUR DEEP LEARNING

Training Deployment

Data Design Madel Design

tf.data Keras
TF Datasets @ Estimators Cloud, On-prem !
TensorFlow Serving

Training
Distribution Strategy Serialization Android, iOS, Raspberry Pi
SavedModel TensorFlow Lite

Analysis Model Repository Browser and Node
Tensorboard TensorFlow Hub TensorFlow.JS

Figure 2-2. The TensorFlow 2.0 Ecosystem?

Keras

Keras is a higher-level neural networks library for Python, which can run on top of
TensorFlow, CNTK (Microsoft Cognitive Toolkit), or Theano, and has limited support
for MXNet and Deeplearning4j. The focus on Keras is to allow fast experimentation and
prototyping of code by being user-friendly, minimal, modular, and extensible. Keras
gives you a more clean and structured code than when using the backend libraries
directly.

Keras supports convolutional networks and recurrent networks, as well as
combinations of the two, and can run on both CPU and GPU, based on the capabilities of
the backend being used.

With the release of TensorFlow v1.0 in February 2017, the TensorFlow team added
dedicated support to Keras in the TensorFlow library.

With TensorFlow 2.0, released in January 2019, the Keras library is fully integrated
into the TensorFlow library and is available through the tf.keras interface. The
multibackend Keras implementation is also maintained as a separate branch, but the
main development now happens on tf.keras.

’Image is from [https://blog.tensorflow.org/2019/09/tensorflow-20-is-now-available.
html], “TensorFlow 2.0 is now available!,” [30 Sept 2019].

22

https://blog.tensorflow.org/2019/09/tensorflow-20-is-now-available.html
https://blog.tensorflow.org/2019/09/tensorflow-20-is-now-available.html

CHAPTER 2 WHERE TO START YOUR DEEP LEARNING

Other Frameworks
Scikit-Learn

Scikit-Learn (formerly scikits.learn) is a library for machine learning, data mining,
and data analytics. It gives capabilities such as classification, regression, clustering,
dimensionality reduction, model selection, and preprocessing (feature extraction and
normalization). Scikit-Learn has one of the best collections of machine learning and
utility algorithms for data processing.

Theano

Theano is a machine learning and numerical computation library developed by
the researchers at the University of Montreal. The idea behind Theano is to allow
developers to write symbolic expressions, which it would then dynamically compile
to run on various architectures. The dynamic C code generation feature of Theano
allows programs to efficiently run and take advantage of different CPU or GPU
architectures. Theano has tight integration with NumPy, which it uses to represent its
multidimensional data structures.

Theano has been in active development since 2007 and is considered as a good
alternative to TensorFlow, as both support similar features.

Computer Vision Libraries

Why do we need computer vision libraries?

As we discussed in the previous chapter, when working with deep learning, you will
run into many tasks requiring computer vision and image processing.

Having these libraries will make things easier.

OpenCV

OpenCV (open source computer vision) is the de facto standard library when it comes
to computer vision. Aimed at real-time computer vision applications, OpenCV is
loaded with vision and image processing algorithms. It also has some machine learning
capabilities built in to aid with building computer vision applications.

23

CHAPTER 2 WHERE TO START YOUR DEEP LEARNING

Originally developed by Intel and initially released in June 2000, OpenCV has
since been made open-source and is now released under the BSD license. The current
versions of OpenCV is primarily written in C++, but still contains some legacy C
components as well as C interfaces. OpenCV has interfaces for C, C++, Python, MATLAB,
and Java. It can run on Windows, Linux, Mac OS, iOS, and Android.

As well as the computer vision aspect of it, OpenCV provides excellent image
processing and manipulation options such as cropping, resizing, transforming, color
channel manipulating, and many more options on a variety of image types. This makes it
essential to many applications in which images are used, such as building deep learning
computer vision models with frameworks such as TensorFlow. OpenCV is also able to
process video streams from cameras as well as video files (Figure 2-3).

laes Blurpy & face_daracticr_imags # laadd_image_coencepy # face debaction vides.py

import nuspy a2 np
1 imort ev2
1 8ce v
5| cap - evavi

L 7 while{cap.isOpensd(}):
2 PAr P v S

& File(s) 3,708 i-nﬂ

2 Dir(s) 486,024.323,072 bytes free
F\Develcprent \Build-Deeper\Chapter S-activate deep-learning
(deeD 'I:arr nw} F:'\Deve lopment '\ Bui 1d-Deeper \Chapter %13

15 rot recognized as an ln:e nal or axternal coemand,
-:hptrabk rom aaor. bateh Tola

&1 Video SRS T

ep=learning) F:\Development' mn Id-Deeper \Chapter Sadir
x mtmmdrweruswv1 -t BB PLPPLPHY
gy Yol Serial Husbor is CBA-CARS .

Directory of £:\bevelopsent'Bulld-oeeper\Chapter 9
12/00,/2018 n 23 P “DIR

© Azj01/2018 <01R
/ 933 hcc 6e cuion i-ane w
a3

hpﬁe,L;
_rrzszfz

125

12/08/

11/25/3008 10:4
6F 3.708
2 o lr(s) 156.024,323.0?I K;'tes free

{desp-Tearning) F:'\Developsent'fuild-Desper’\Chapter Spythen opency.

{deep-learning) FiiDevelopment'Build-DeeperiChapter ®rpython apency.

Figure 2-3. OpenCV processing a video file
Currently there are two major branches of OpenCV: v3.x and v4.x. The 4.x branch

contains the latest development and is more optimized. However, the 3.x versions may
be more cross-compatible with other libraries we are using.

24

CHAPTER 2 WHERE TO START YOUR DEEP LEARNING
Dlib

Dlib is a toolkit for C++ and Python containing machine learning algorithms and tools
for creating complex software to solve real-world problems. Dlib provides algorithms
for machine learning and deep learning, multiclass classification and clustering models,
support vector machines, regression models, a large set of numerical algorithms for
areas such as matrix manipulations and linear algebra, graphical model inference
algorithms, and utility algorithms for computer vision and image processing. And due to
C++ implementations backing most of these implementations, they are optimized to the
point that can be used in some real-time applications as well.

If you're interested in facial recognition models or facial emotion processing, then
Dlib is a library you should try out, as Dlib has some of the most optimized out-of-the-
box face detection and face landmark detection models available (Figure 2-4).

Figure 2-4. Dlib Face Landmark Detection in action

Dlib also has easy to use functions to train your own object detectors, shape
predictors, and deep learning-based semantic segmentation of images.

25

CHAPTER 2 WHERE TO START YOUR DEEP LEARNING

Optimizers and Accelerators

Building and training deep learning models are computationally complex tasks, usually
taking a lot of processing power and time of a system. Optimizers and accelerators

are libraries and tools which help to perform those steps faster. Most optimizers and
accelerator tools work by giving your deep learning code direct access to the capabilities
of the hardware of the system, allowing them to harness the full potentials of the
hardware.

NVIDIA CUDA and cuDNN

CUDA is a parallel computing platform and programming model invented by NVIDIA.
It enables dramatic increases in computing performance by harnessing the power of
the GPU. cuDNN—CUDA Deep Neural Network library—is a GPU-accelerated library of
primitives for deep neural networks. cuDNN provides highly tuned implementations for
standard routines such as forward and backward convolution, pooling, normalization,
and activation layers.

Using CUDA and cuDNN along with either Theano or TensorFlow can speed up your
neural networks extensively (networks that took hours to train might take just minutes,
but this would depend entirely on your model). The only requirement is that you need to
have a CUDA supported NVIDIA GPU in your system.

OpenBLAS

OpenBLAS is an open-source implementation of the BLAS (basic linear algebra
subprograms), containing optimizations for many specific processor types. Machine
learning libraries such as Theano can speed up certain routines by utilizing BLAS
libraries. You will see a noticeable speed difference when running your models with
OpenBLAS on CPU. However, some libraries, such as TensorFlow, have their internal
optimizers, and will not see any improvements with OpenBLAS.

What About Hardware?

The next question that might strike you is: What kind of hardware do I need to do deep
learning experiments?

26

CHAPTER 2 WHERE TO START YOUR DEEP LEARNING

It is a tricky question, as we need to think about the two phases of a deep learning
system: training and inference.

To build a deep learning system—or any machine learning system—we first gather
some data to train the system on. We then build a deep learning model and run it
through the training dataset. This is where our model “learns” the characteristics of the
data. Once the system runs through the training dataset, we typically do some validation
steps to make sure it has been trained properly. These steps are called the training phase
of the system.

Once the system completes the training phase, it is ready to be put to real use. This is
where the system is presented with new, real-world data and utilizes what it has learned.
The system will use what it has learned, to infer things about the new data it is being
presented. This is called the inference phase of the system.

So how does this relate to our question about hardware?

The training phase is the most resource-intensive of the two. It requires high
computation power (either CPU or GPU) to run the training through a deep learning
model, and large amounts of memory to hold the data needed for the training. So for
training deep learning models, you will need a machine with sufficient computing power
and memory. The more power you have, the faster and the more complex the models
you can train. Having GPU-computing capable graphics card (such as a one with an
NVIDIA CUDA enabled GPU) would be a plus here.

But remember, even a moderate PC is capable of training sufficiently large deep
learning models. There are techniques you can use to handle large data sets with limited
memory. So do not let your PCs specs discourage you from experimenting. All the code
we discuss in this book can run on a standard PC or laptop.

If you feel that your local computing power is not sufficient for your experiments,
you can easily use cloud computing services to train your deep learning models. Amazon
Web Services provides their P3 GPU Compute instances, which are backed by NVIDIA
Tesla GPUs (see AWS P3 Instances®), which should be able to handle massive deep
learning models, or Google Colab Notebooks (see Google Colaboratory*).

What about the inference phase?

” o«

SAWS P3 Instances are from [https://aws.amazon.com/ec2/instance-types/p3/]” “Amazon
EC2 P3 Instances,” [20 Apr 2020.]

*Google Colaboratory, “Welcome To Colaboratory,” https://colab.research.google.com/,
[20 Apr 2020.]

27

https://aws.amazon.com/ec2/instance-types/p3/
https://colab.research.google.com/

CHAPTER 2 WHERE TO START YOUR DEEP LEARNING

A properly optimized deep learning model would be able to run inference on a
limited resource device such as a Raspberry Pi device or a smartphone. This typically
depends on the size of the final trained model. There are deep learning architectures—
such as MobileNet and SqueezeNet, which are specifically designed to be fast and
smaller in size, so they can fit into mobile devices.

Recommended PC Hardware Configurations

If you are thinking of building (or upgrading) or buying a PC that you plan to use for deep
learning, machine learning, or computer vision tasks, here are some recommendations
for the hardware.

Note Please note that these are only recommendations. The libraries and
frameworks mentioned in this book can be set up and will work on a variety of
hardware configurations.

As mentioned earlier, the main requirements for a machine aimed at deep learning
and computer vision are processing power and memory. Processing power dictates
how fast the required calculations can be performed and is determined by how fast
your CPU and GPU are. The number of processor cores your CPU has will also have an
impact on the speed as it dictates how parallel the operations can be. Memory dictates
how complex your models can be (as they need to be loaded into the memory) as well
as how much of the training data can be loaded into the memory at a time, indirectly
affecting the training speed. The complexity of the models you will be able to train will
be determined by both the amount of RAM the machine has and the amount of VRAM
the GPU has.

Therefore, the ideal deep learning PC would consist of a faster, powerful CPU with a
high core count, with large amounts of RAM, and a faster GPU with higher VRAM.

But unless you have an unlimited amount of money to spend on the absolute
highest-end PC, you would have to balance out these requirements. So let us see what
we should practically look in to.

28

CHAPTER 2 WHERE TO START YOUR DEEP LEARNING

For the CPU, balance out the power and affordability. Something like an Intel
Core-i5 or an AMD Ryzen 5 would be sufficient as a minimum. A Core-i7 or higher
(eighth-generation or higher) for Intel,® or Ryzen 7 or higher (second-generation or
higher) for AMD,® would be a better choice if you can go for it. Consider the core count
as well as the single-core performance when selecting. An overclockable processor
(i.e., multiplier unlocked processor, such as the Intel K series) is only recommended if
you are experienced with overclocking, as we prefer stability over raw speed for deep
learning workloads. You can usually save several hundred dollars by going for a non-
overclockable processor.

Pair up the processor with a decent motherboard. You will not need a fancy gaming-
featured motherboard. But look for a one with good power distribution, with a higher
number of VRMs (voltage regulator modules). In deep learning workflows, both the CPU
and GPU would be running at their max, so better power delivery will keep them stable.
Also, look for the expandability of the motherboard as well. Having more RAM slots
would allow you to add more RAM later, while more PCle 16x slots will allow you to go
for a multi-GPU option later. However, these are optional features if you are just starting.

Go for the highest amount of RAM you can afford. It is recommended to have 16GB
of RAM at a minimum. Also, be aware of the recommended speed of the RAM that
your processor and motherboard support. Higher speed RAM with XMP profiles may
introduce instabilities if you are unfamiliar with how they work.

As mentioned with the motherboard, stable power is essential to the stability of the
system. Some deep learning training tasks can take hours, if not days. Therefore, a stable
power supply is a must. When selecting a power supply look for a one with an energy
efficiency rating of “80+ Gold” or better. Based on the processor and the graphics card
you select, typically a 500W power supply may suffice. But you may go for a higher one if,
for example, you plan to go for multiple GPUs later.

Selecting a GPU can be a bit tricky, as they are usually the most expensive
component of a PC build. Since most deep learning and machine learning frameworks
and libraries use NVIDIA CUDA for GPU processing, we would need to select an NVIDIA
graphics card.

SList of Intel microprocessors from [https://en.wikipedia.org/wiki/List_of Intel
microprocessors], “List of Intel processors,” [21 Nov 2020].

SAMD Ryzen from [https://en.wikipedia.org/wiki/Ryzen], “Ryzen,” [20 Nov 2020].

29

https://en.wikipedia.org/wiki/List_of_Intel_microprocessors
https://en.wikipedia.org/wiki/List_of_Intel_microprocessors
https://en.wikipedia.org/wiki/Ryzen

CHAPTER 2 WHERE TO START YOUR DEEP LEARNING

Note While AMD has some excellent graphics card models, their compatibility
and support with ML tasks are still experimental. So we will need to stick to NVIDIA
here.

When considering a graphics card for deep learning, machine learning, or computer
vision tasks, few things needs to be considered:

o CUDA core count: The higher the core count, the better it can
parallelize the processing.

e Memory: Higher memory allows you to fit more training data at
a time for processing. (If your dataset is bigger than the available
GPU memory, you will have to chunk it and perform incremental
learning.)

o Clock speed: The higher the clock speed, usually the better (if you're
just starting, don’t think too much about numbers such as “base
clock” and “boost clock,” as several other factors are affecting the
speed of the card).

e Other features: Having additional features such as Tensor Cores
found in GPUs with NVIDIA Turing microarchitecture (GeForce
RTX 20 series or newer), might help increase the training speed of
your models. But you may need to tune your models to utilize these
features.

Based on these factors, the following graphics cards families can be recommended:

o GeForce 10 series: An older generation, but still fairly good
performance. You may also be able to find these very cheaply
in the used market if you are comfortable getting a used
GPU. Recommended cards: GTX 1070Ti or better (1070Ti, 1080,
1080Ti).

e GeForce 16 series: The same Turing architecture as the 20
series, but without the Tensor Cores and RT Cores (Ray-Tracing).
Recommended cards: GTX 1660 or better (1660, 1660T1).

30

CHAPTER 2 WHERE TO START YOUR DEEP LEARNING

e GeForce 20 series: The latest generation of NVIDIA GeForce (at the
time of this writing). Turing architecture with Tensor Cores and RT
Cores. Recommended cards: RTX 2060 Super or better (2060 Super,
2070 Super, 2080 Super, 2080Ti, Titan RTX).

o GeForce 30 series: It is still too early to say anything about the deep
learning performance of the next generation of NVIDIA GeForce. But
with the new Ampere microarchitecture, it is expected to outperform
the previous generations.

NVIDIA graphics cards are sold either directly through NVIDIA—the “Founders
Edition” cards—or through NVIDIA partners such as ASUS, MSI, EVGA, Gigabyte, and
many more. When selecting a graphics card, it is better to select one from a well-known
brand, as those tend to have better build quality, better and stable power delivery, and
better cooling. Deep learning tasks will stress your GPU and sustain the stress more than
any game or application.

In addition to this, faster storage such as an SSD would also help to speed up your
system.

What we discussed here are only recommendations; it is possible to build deep
learning models with much older or slower hardware than this. Therefore, do not
be discouraged if your current machine does not meet these recommendations. As
mentioned in the previous section, optimizing your models plays a larger role than the
speed of the hardware you train on. So start learning, and start building.

31

CHAPTER 3

Setting Up Your Tools

Now that we know what we need to get started, let us begin setting up our tools.

Since we will be using packages from several different sources—from Anaconda
package channels, pip packages, and so on—the order in which we install them is
somewhat important in order to get a smoother installation experience without any
conflicts. We recommend the following order of operations:

1. Install Visual Studio with C++ Support

2. Install CMake

3. [Install Anaconda Python

4. Setup the Conda Environment and the Python Libraries
5. Install TensorFlow

6. (Optional) Install Keras multibackend version

7. Install OpenCV

8. Install Dlib

9. Verify Installations

Let us look at how to set up each of them.

Step 1: Installing Visual Studio with C++ Support

The first step we need to do is to install a compiler for C++.

Why do we need C++? Aren’t we going to code in Python?

Yes, we are going to use Python. And no, you do not need to learn C++ to learn deep
learning (although C++ is a wonderful language).

33
© Thimira Amaratunga 2021

T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_3

https://doi.org/10.1007/978-1-4842-6431-7_3#DOI

CHAPTER 3 SETTING UP YOUR TOOLS

But some of the more advanced Python libraries have parts that were written with
C++ to improve their performance. So to install some of the libraries, we need to have a
C++ compiler installed in our system.

On Windows, we use Visual Studio as the compiler.

Due to various compatibility issues of different Visual Studio versions with various
packages, it is recommended that we stick with an older version of Visual Studio
rather than the latest version. This older version can be downloaded from the Visual
Studio Older Versions page.! Visual Studio 2015 is a good choice (Figure 3-1). The free
community edition will be enough for our tasks.

Modeling SDK for Visual Studio 2015 Update 3

A, Nokey required @ Info Release date: 27/Jun/2016 x64 v English v EXE Vv Download ¥

Visual Studio Community 2015 with Update 3

A, No key required @ Info Release date: 27/Jun/2016 x64 English Download

Visual Studio Agents 2015 with Update 2

QA No key required @ Info Release date: 30/Mar/2016 x4 v English v EXE Download 4

Figure 3-1. Select to download “visual studio community 2015 with update 3”
Jrom the Visual Studio older versions page

When installing VS 2015, make sure to select the “custom” install option (Figure 3-2).

Visual Studio (older versions page), https://visualstudio.microsoft.com/vs/older-
downloads/, [22 Nov 2020]; you will need to register (free) for a Microsoft Online account in order
to download older versions of Visual Studio.

34

https://visualstudio.microsoft.com/vs/older-downloads/
https://visualstudio.microsoft.com/vs/older-downloads/

CHAPTER 3 SETTING UP YOUR TOOLS

oq Visual Studio

Community 2015

Choose your llation location

Setup requires up to 8 GB across all drives.

Choose the type of installation
Default
Includes C#/VB, Web and Desktop features
Custom
Allows you to customize features for your installation

You can add or remove additional features at any time after setup via
Programs and Features in the Control Panel.

Figure 3-2. Visual Studio custom install

Select to install the Visual C++ option in the next screen (Figure 3-3).

35

CHAPTER 3 SETTING UP YOUR TOOLS

oq Visual Studio

Community 2015

fio [3rd Party]

Figure 3-3. Select to install Visual C++

After the installation is completed, you can verify that C++ is available by launching
Visual Studio and checking whether the ‘Visual C++” option comes up (Figure 3-4).

36

CHAPTER 3 SETTING UP YOUR TOOLS

D Start Page - Microsoft Visual Studio YE £ Quicklauach (Culed) P - O x
File Edt View Debug Team Took Test Anahze Window Help signin [
: | 8- W g o] x L fitach.. = | AE .
w Hew Project ? x
bl St Page & X
X |-* Recent MET Framewerk 452 - Sortby Defauk ~| 3RS Search installed Ternplates (Crls £) P
e : 4 Installed :
M \isual St -z ﬁ Win32 Conscle Application Visual Co + Type: Visual Cos
| 4 Templates & project for crasting & WindZ consale
7 Viouad C# - . » application
s b Vil SGJ MFC Agplication Visual Co o
g b Visusl Basic
s
Start Visual F# Win32 Project Vigual Co e
i SQL Server “_|" Empty Project Visual Co s
Open Praject.. Pythan N YN
¢ - bt
‘Open from Scug b lavaSeript D"‘J Makefile Project Visual oo
b TypeScript
Garne
e Build Accelerator
recent b Other Preject Types
Samples
E Online
Click here to go enline and find terplates.
Hame: ConscleApgplication?
Locatian: A e | studic 1 - Browse... |
Seluti C P [Create directery for soluticn

] Add to Saurce Control

o][cma]

Sky’s the limit with Azure, ASP.NET Core,

b ELEC D=l Team Explorer Class View

Figure 3-4. Visual Studio 2015 with Visual C++

Step 2: Installing CMake

CMake is a cross-platform build tool used to compile, test, and package software
projects. CMake is used as a build tool in many open-source projects with C++ libraries,
such as Dlib. CMake requires to have a C++ compiler installed on the system, which is
why we installed Visual Studio with C++ tools before installing CMake.

In order to install CMake, head over to the CMake Downloads page® and download
the latest Windows win64-x64 installer package (Figure 3-5) and run the installation.

?CMake (downloads page), https://cmake.org/download/, [9 Apr 2020].

37

https://cmake.org/download/

CHAPTER 3 SETTING UP YOUR TOOLS

ACMake About Resources « Developer Resources ~ Download Q
Get the Software 5= Join the mailing list

You can either download binaries or source code archives for the latest stable or previous releass of access | CMake success stories

the current d P (aka nightly) through Git. This software may not be exported in % Attend a lraining course

vislation of any U.S. expart laws or regulations. For more infarmaticn regarding Export Control matters
ey ¥ B (0N} Buy the book
please ga to hitps:/femw kitware.com/legal,

:/g Purchase support

Latest Release (3.17.1)

The release was packaged with CPack which is included as part of the release. The .sh files are self extracting gziped tar files. To install a sh file, run it with /bin/sh and
follow the directions. The OS-machine.tar.gz files are gziped tar files of the install tree. The OS-machine.tar.2 files are compressed tar files of the install tree. The tar
file distributions can be untared in any directory. They are prefixed by the version of Chake. For example, the Linwex86_54 tar fil2 is all under the directory cmake-
Linux-x86_64. This prefix can be removed as long as the share, bin, man and doc directories are moved relative to each other, To bulld the source distributions.
unpack them with zip or tar and follow the instructions in Readme.txt at the top of the source tree. See also the ChMake 3.17 Release Notes. Source distributions:

Platform Files
Unix/Linux Source (has \n line feeds) cmake-3.17.1.tar.g2
Windows Source (has \rin line feeds) cmake-3.17.1.2ip

Binary distributions:

Platform Files

Windows wingd-x64 Installer: Installer tool has changed. Uninstall CMake 3.4 or lower first! cmake-3.17.1-winbe-x64.ms|
Wwindows winéd-x64 ZIP cmake-3.17.1-wind4-x64.2ip
‘Windows win32-x86 Installer: Installer tool has changed. Uninstall CMake 3.4 or lower first! cmake-3.17.1.win32-x86.msi
Windows win32-x86 ZIP cmake-3.17.1-win32-xB5.2ip

Mac 05 X 10.7 or later cmake.3,17.1-Darwin-z86_64.dmg

emake-3.17.1-Darwin-xB6_64.1ar.g2
Linux x86_64 cmake-3.17.1-Linux-186_64.5h

cmake-3.17.1-Linux-x86_64.tar.g2
Figure 3-5. Download the latest CMake package

When installing, make sure to add CMake to the system path (Figure 3-6).

38

CHAPTER 3 SETTING UP YOUR TOOLS

#2 Install Options — X

Install Options
Choose options for instaling CMake 3.17.1

By default CMake does not add its directory to the system PATH.

(O Do not add CMake to the system PATH
(® Add CMake to the system PATH for all users
(O Add CMake to the system PATH for the current user

[CJcreate cMake Desktop Icon

ok [hext] [conce

Figure 3-6. Add CMake to the system path

Once the installation is completed, you can verify the installation by running the
following on the Windows command prompt (Figure 3-7).

cmake --version

39

CHAPTER 3 SETTING UP YOUR TOOLS

[E5 Command Prompt

Microsoft Windows [Version 10.0.18363.720]
(c) 2019 Microsoft Corporation. All rights reserved.

C:\Users\Thimira>cmake --version
cmake version 3.17.1

(Make suite maintained and supported by Kitware (kitware.com/cmake).

C:\Users\Thimira>

Figure 3-7. Verify CMake version

Step 3: Installing Anaconda Python

Installing Anaconda is straightforward: simply head over to the Anaconda individual
edition downloads page® and download the latest Python 3.x 64-Bit package for
Windows (Figure 3-8). The full installer is about 470MB in size, and contains the conda
package manger, Python 3.8, and a set of prebundled commonly used packages. While
the base installer comes with Python 3.8, we will be able to use other Python versions

when creating the conda virtual environments.

*Anaconda (individual edition downloads page), https://www.anaconda.com/products/
individual, [19 Nov 2020].

*Anaconda (package lists), https://docs.anaconda.com/anaconda/packages/pkg-docs/,
[19 Nov 2020].

40

https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
https://docs.anaconda.com/anaconda/packages/pkg-docs/

CHAPTER 3 SETTING UP YOUR TOOLS

Anaconda Installers

Windows & MacOS & Linux &

Supercharge your data science
efforts with Anaconda.

By data scientists, for

Figure 3-8. The Anaconda individual edition downloads page

The list of packages bundled in the installer, as well as the full list of conda packages
available to install, can be found at the Anaconda package lists.*

Tip If you do not need the full installer with the prebundled packages, and
only need the conda package manager and Python, you can get the Miniconda
distribution,® which has a much smaller size (~60MB). The miniconda installer
package is also available with Python 3.8, but allows us to set up virtual
environments with other Python versions.

SMiniconda (distribution), https://docs.conda.io/en/latest/miniconda.html, [28 Jul 2020].

41

https://docs.conda.io/en/latest/miniconda.html

CHAPTER 3 SETTING UP YOUR TOOLS

Installing is as simple as running the downloaded graphical installer.

Tip Inthe graphical installer, the “add Anaconda to my PATH environment variable”
option might be unchecked by default (Figure 3-9). It is better to check this option, as
it allows us to run the conda commands from the Windows command prompt.

- Anaconda3 2020.02 (64-bit) Setup —_ X

Advanced Installation Options

._) ANACONDA. customize how Anaconda integrates with Windows

Advanced Options

[[]Add Anaconda3 to my PATH environment variable

Mot recommended. Instead, open Anaconda3 with the Windows Start
menu and select "Anaconda (64-bit)", This "add to PATH" option makes
Anaconda get found before previously installed software, but may
cause problems requiring you to uninstall and reinstall Anaconda.

[IRreqgister Anaconda3 as my default Python 3.7
This will allow other programs, such as Python Tools for Visual Studio

PyCharm, Wing IDE, PyDev, and MSI binary packages, to automatically
detect Anaconda as the primary Python 3.7 on the system.

< Back Cancel

Figure 3-9. The “add Anaconda to my PATH environment variable” option in the
Anaconda installer

42

CHAPTER 3 SETTING UP YOUR TOOLS

If you forget to check this option, do not worry. You can add Anaconda to the PATH
manually by adding the following to the system PATH variable (where \path\to\
anaconda3 is the Anaconda installation directory):

\path\to\anaconda\path\to\anaconda\Library\mingw-w64\bin\
path\to\anaconda\Library\usr\bin\path\to\anaconda\Library\
bin\path\to\anaconda\Scripts

For an example, if the user profile is at C:\Users\Thimira\, the paths should be:

C:\Users\Thimira\Anaconda3C:\Users\Thimira\Anaconda3\
Library\mingw-w64\binC:\Users\Thimira\Anaconda3\Library\usr\
binC:\Users\Thimira\Anaconda3\Library\binC:\Users\Thimira\
Anaconda3\Scripts

Once the installation is completed open a Windows command prompt and run the
following command:

conda list

Ifyou get a list of installed conda packages, then Anaconda is installed and working
properly.

Note If you get an error message, make sure you closed and reopened the
terminal window after installing, or do it now. Then verify that you are logged into
the same user account that you used to install Anaconda.

At this point, if you have not used Anaconda Python before, it is better to go through
the “getting started with conda” guide.® This a tutorial that should take you less than
30 minutes, and helps you get familiarized with the commands and capabilities of

Anaconda.

®Conda, “Getting Started with Conda,” https://conda.io/projects/conda/en/latest/user-
guide/getting-started.html, [31 Jan 2020].

43

https://conda.io/projects/conda/en/latest/user-guide/getting-started.html
https://conda.io/projects/conda/en/latest/user-guide/getting-started.html

CHAPTER 3 SETTING UP YOUR TOOLS

Step 4: Setting up the Conda Environment
and the Python Libraries

Once you get the hang of conda, it is time to create the conda environment and install
the necessary packages.

Note Make sure you performed the “conda update conda” command as
mentioned in the getting started guide before proceeding.

When creating the conda environment we also need to install the utility libraries we
discussed in the previous chapter. We can install them one by one. But with conda, we
do not have to.

Conda has a metapackage named ‘anaconda’ that bundles many of the commonly
used utility packages.

So we just need to run the following command to create the conda virtual
environment and install all the utility packages we want in it (this is a single command;
see Figure 3-10).

conda create --name deep-learning python=3.7 anaconda

C:\Users\Thimira>conda create --name deep-learning python=3.7 anaconda

Figure 3-10. Creating the Conda environment

44

CHAPTER 3 SETTING UP YOUR TOOLS

o --name deep-learning: We set the name of the environment to be
“deep-learning.” You can change that to anything you like.

o python=3.7: We tell conda to create the new environment with Python
3.7.You can specify another version of Python if you want to. But 3.7 is
the one that is recommended now.

¢ Anaconda: We tell conda to install the anaconda metapackage into
the created environment. This will install the bundle of commonly
used utility packages, which includes the set of utility libraries we
discussed earlier.

Note Instead of using the metapackage—uwhich installs a lot of packages that
you might not need—you can also specify the list of packages to be installed when
creating the environment:

conda create --name deep-learning python=3.7 numpy scipy
scikit-learn scikit-image pillow h5py matplotlib

Once the environment is created (which may take several minutes to download and
install all the required packages; Figure 3-11), you can activate it by running:

conda activate deep-learning

Command Prompt

s\deep-learning’, env_name: 'deep-learning’, mode: 'user', used_mode
IDEBUG menuinst w1n32 create(iZS) Short:ut cmd is %w1nd1r%\SystenSZ\wlndowsPowershe1T\v1 O\EOnershell.exe. args are ['-
xecutionPolicy’, B¥Pass , "-NoExit', "-Command', '"& \'C: \\Users\\Th1ulra\\Anacondai\\shz] \\condabin\\conda-hook.ps1\"
; conda act1vate NiGs \\Users\\Th1n1ra\\AnacondaB\\envs\\deep learning\,"
DEBUG menuinst_win32: _init__(199): Menu: name: 'Anaconda${PY_VER} S{PLATFDRM} prefix: 'C:\Users\Thimira\Anaconda3\en
s\deep- 1earn1ng env_name: 'deep-learning', mode: 'user', used_mode: 'user
DEBUG menu1nst_w1n32 create(323): Shortcut omd is C: \Users)Th1n1ra\Anaconda3\g{thon .exe, args are ['C:\\Users\\Thimira\
linaconda3\\cwp.py', 'C:\\Users\\Thimira\\Anaconda3\\envs\\deep-learning' Users\\Th1m1ra\\nnaconda3\\enus\\doep lea
rn1ng;\p¥§hon .exe', 'C:\\Users\\Thimira\\Anaconda3\\envs\\deep-learning\\Scripts\\jupyter-notebook-script.py "¥USERPR]
OFILE%®/"
/ DEBUG menuinst_win32:__init__(199): Menu: name: AnaccndaS{Pv VER} S{PLATFORM} prefix: 'C:\Users\Thimira\Anaconda3\ge]
nvs‘deep-learning’, env_name: 'deep-learning', mode: 'user’, used_mode: 'user
DEBUG menuinst w1n32 creatE{323) Shortcut cmd is C: \UserS\Th1m7ra\Anaconda!\ honw.exe, args are ["C:\\Users\\Thimira'
‘Anaconda3\ \cwp.py' : 'C:\\Users\\Thimira\\Anaconda3\\envs\\deep-learning’, p{{Users\\Th1n1ra\\anacondai\\enus\\deep e
arning'\pythonw.exe', 'C:\\Users\\Thimira\\Anaconda3\\envs\\deep- 1earn1nq\\5crlpta\\spyder script.
DEBUG menuinst wln32 createc323) Shortcut omd is C: \Users\Th1mTra\Anacondul\ on.exe, args are EXC \\Users\\Thimira\
lAnaconda3\\cwp.py', 'C:\\Users\\Thimira\\Anaconda3\\envs\\deep-learning', E(Esors\\Th1m1ra\\Anacondai\\enus\\deep lea
an1ng\\python.exe 'C:\\Users\\Thimira\\Anaconda3\\envs\\deep- 1earn1ng\\€cr1ptq\\qpyder script.py --reset’]

one
#
To activate this environment, use

§ conda activate deep-learning

To deactivate an active environment, use

BRRRRR

$ conda deactivate

C:\Users\Thimira>

Figure 3-11. Environment creation finished

45

CHAPTER 3 SETTING UP YOUR TOOLS

When an Anaconda environment is activated, the name of the environment will get
prepended to the command prompt (Figure 3-12).

You can use this to verify that you are working on the correct environment. Always
make sure that you have activated and working on the correct environment for all the
following steps.

C:\Users\Thimira>conda activate deep-learning

(deep-learning) C:\Users\Thimira>

Figure 3-12. Conda environment activated

Step 5: Installing TensorFlow

TensorFlow has both a CPU version and a GPU version. If your system has a CUDA
capable NVIDIA GPU installed, the TensorFlow GPU version is able to harness the
processing power of that GPU to accelerate the training of your models.

If you have a CUDA capable NVIDIA GPU I highly recommend installing the GPU

version, as it gives massive speed-ups to your deep learning experiments.

Tip You can check whether your NVIDIA GPU is CUDA capable from the list of
CUDA supported GPUs at the NVIDIA Developer site.” You will need a GPU with
CUDA Compute Capability 3.5 or higher in order to run TensorFlow GPU.

"[https://developer.nvidia.com/cuda-gpus], “CUDA supported GPUs,” [22 Nov 2020].
46

https://developer.nvidia.com/cuda-gpus

CHAPTER 3 SETTING UP YOUR TOOLS

As TensorFlow now has an Anaconda-native package, we will be using it to install
TensorFlow, as it simplifies the installation of its dependencies such as the CUDA Toolkit
and cuDNN libraries.

To install the GPU version of TensorFlow, run the following command (make sure
you are in the activated conda environment we created earlier):

conda install tensorflow-gpu==2.1.0

Note We are specifying the version number of the package also as tensorflow-
gpu==2.1.0 because anaconda tends to install an older version. Hopefully this will
be fixed in the future, but until then it is better to specify the package version.

Tip Always check for the latest available TensorFlow package version

from the Anaconda package lists® and install that version. At the time of

this writing the Anaconda package lists shows version 2.2.0 as the latest
TensorFlow version available. However, if you attempt to install it, you may get a
“PackagesNotFoundError” due to an issue with the conda package registry. Until
that is fixed, we will stick with TensorFlow 2.1.0.

For the CPU version:

conda install tensorflow==2.1.0

Caution Do not attempt to install both the GPU and CPU versions in the same
conda environment. If you want to switch the versions, uninstall the other version
first, or use a different conda environment.

8Anaconda (package lists), https://docs.anaconda.com/anaconda/packages/pkg-docs/,
[19 Nov 2020].

47

https://docs.anaconda.com/anaconda/packages/pkg-docs/

CHAPTER 3 SETTING UP YOUR TOOLS

Conda will take care of installing all the dependencies for you. If you opted to install
the GPU version, this will also include the CUDA Toolkit and cuDNN libraries as well
(Figure 3-13).

%] Select Command Prompt - c¢

astor

backports.os
nker

cachetools

gast
google-auth
google-auth-oauth~
google-pasta
Erpc1o
eras-applications
keras-preprocessi~
libprotobuf
markdown
cauthlib
opt_einsum
protobuf
pyasnl
pyasnl-modules
pyJwt
requests-oauthlib
rsa
tensorboard
tensor flow
tensorflow-base
tensorflow-estima~
tensorflow-gpu
termcolor

a install tensor

pkgsfma1nfw1n—
pkgs/main/win-64
pkgs /main/noarch

pkg -64
pkgs/main/noarch
pkgsfma1n£noarch
pkgs/main/noarch
pkgs/main/win-64
pkgsima1nlnoarch
pkgs/main/noarch

pkgsfma?nfu1n 64:

pkgs/main/win-64
pkgs/main/noarch
pkgs/main/noarch
pkgs /main/win-64
pkgs/main/noarch
pkgs/main/noarch

pkgs/main/win-64::
pkgsfmawnfnoarch:
pkgs/main/noarch: :

pkgs/main/noarch
pkgs/main/win-
pkgs/main/win-
pkgs/main/noarch
pkgs/main/win-64

pkgs/main/win-64::

w-gpu sorflow
astor-0.8.0-py37_0
backports.os-0.1.1-py37_0
blinker-1.4- py3? 0
cachetools-3.1

conda instal

gast-0. py3/

google- auth-1.13.1

google-auth- 0auth11E -0. 4 1-py_2
google-pasta-0.2.0 {

Erpc1o 1.27.2- py3?h3 1948d_0
eras app11cat1ons 1.0.8-py_0
keras-preprocessing-1.1.0-

py_1
:Tibprotobuf-3.11.4-h7bd577a_0

markdown-3.1.1-py37_0
oauthlib-3.1.0- y 0
opt_einsum-3.1.
protobuf-3.11.4- pyi?hiif??bd 0
pyasnl-0.4.8-py_0
pyasnl-modules-0.2.7-py_0
pyjwt-1.7.1-p

irequests- oautﬁ11b 1.3.0-py_ 0

rsa-4.0-py_0

tensorboard-2.1.0-py3_0
tensorflow-2.1.0-gpu_py37h7db9008_0
tensorflow-base-2.1.0-gpu_py37h55F5790_0
tensorflow-estimator-2.1.0-pyhd54b08b_0
tensorflow-gpu-2.1.0-h0d30eet_0
termcolor-1.1.0-py37_1

Figure 3-13. The CUDA-toolkit and cuDNN libraries being installed

Step 6: (Optional) Installing Keras Multibackend
version

This is an optional step.

With TensorFlow versions 2.0 and up, Keras is integrated into the TensorFlow library
and is available through its tf.keras Python interface.

But if you need to install the multibackend version of Keras for experimentation with
other backends such as Theano, you can install it using pip:

pip install keras

Switching the backend of Keras is done in the keras.json file, which is located at
%USERPROFILE%\.keras\keras.json on Windows. The default keras.json file looks like this:

{

"floatx"

"epsilon”

48

"float32",

1e-07,

CHAPTER 3 SETTING UP YOUR TOOLS

"backend": "tensorflow",
"image data format": "channels last"

When switching the backend, you need to be aware of the image_data_format
parameter of Keras also. You can read more about it in Appendix 2.
If you are sticking with TensorFlow, the default settings of Keras will work fine.

Step 7: Installing OpenCV

OpenCV has prebuilt binaries for Windows that can be downloaded from their official
site. But you may run into issues with getting the Python bindings working with 64-Bit
Python 3.7.

The easiest way to get OpenCV working on Windows with 64-Bit Python 3.7 is to
use the Anaconda package (Figure 3-14). As with TensorFlow, conda will handle all the
dependency management.

conda install opencv

[&5] Command Prompt - conda install tensorflow-gpu - conda

(deep-learning) C:\Users\Thimira>conda install opencv
Collecting package metadata (repodata.json): done
Solving environment: -

Figure 3-14. OpenCV being installed

49

CHAPTER 3 SETTING UP YOUR TOOLS

Step 8: Installing Dlib

With all the great features in Dlib, installing it has always been a little bit troublesome
because of some specific dependency requirements it needs that have a habit of almost
always conflicting with your other libraries. With the latest versions, however, installing
Dlib has become somewhat simple.

If you want the latest official package of Dlib installed, then using the pip package is
the way to go.

Note You need to have Visual Studio and CMake installed before attempting
to install Dlib. Make sure CMake is available in the system path by running
cmake --version.

You can install the DIib pip package with:
pip install dlib

It will collect the package, build the wheel using CMake, and then install it in your
conda environment (Figure 3-15).

%] Command Prompt - conda install tensorflow-gpu - conda install tensorflow-gpu==2.1.0 - conda install opency - conda inst

(deep-learning) C:\Users\Thimira>cmake --version
cmake version 3.17.1

KMake suite maintained and supported by Kitware (kitware.com/cmake).

(deep- 1earn1ng) c:\Users\Thimira>pip install dlib
Collecting dlib

Downloading d1ib-19.19.0.tar.gz (3.2 MB)
| | 3.2 mB 731 kB/s
Building wheels for collected pac a?es d11h

Building wheel for dlib (setup.py
Created wheel for dlib: filename=d1ib- 19 19 0-cp37-cp37m-win_amd64.wh] size=3380489 sha256=a3bee3e2042fdc0540621bee0dd
f4e0ddadf43eB825e275FF7c029F56F5730bac
bs%aagggogn directory: c:\users\thimira\appdata\local\pip\cache\wheels\37\f0\61\23636e491ad55b8f9952f87233515947a8b16404
C
Successfully built dlib
Installing collected packages: dlib
Successfu?]y installed d1ib-19.19.0

(deep-learning) C:\Users\Thimira>_

Figure 3-15. Dlib PIP installation successful

50

CHAPTER 3 SETTING UP YOUR TOOLS

Step 9: Verifying the Installations

After you install all the required packages and libraries, it is best to do some preliminary
checks to ensure that everything is installed correctly. Otherwise, you will run into issues
later when running your code and wouldn’t know whether there’s a bug in the code, or
an issue with the installation.

We will not be able to test everything without attempting to run a few deep learning
models. But these steps will help you make sure everything is ready.

First, make sure you have activated the conda environment we created earlier:

conda activate deep-learning

You can verify that the environment activated correctly by looking at the command
prompt (Figure 3-16).

C:\Users\Thimira>conda activate deep-learning

(deep-learning) C:\Users\Thimira>

Figure 3-16. Conda environment activated

Run the following to see a list of all the installed packages:
conda list

You will get a long list like the following (Figure 3-17):

51

CHAPTER 3 SETTING UP YOUR TOOLS

[&5] Command Prompt

Microsoft Windows [Version 10.0.18363.720
(c) 2019 Microsoft Corporation. All rights reserved.

€:\Users\Thimira>conda activate deep-learning

(deep-learning) C:\Users\Thimira>conda list
packages in environment at C:\Users\Thimira\Anaconda3\envs\deep-learning:
#

Name version Build channel
|_anaconda_depends 2019.03 py37_0
_tflow_select 2.1.0 gpu
abs1-py 0.9.0 py37_0
lalabaster 0.7.12 py37_0
anaconda custom py37_1
anaconda-client i BTy py37_0
anaconda-project 0.8.4 g};_ﬂ
argh 0.26.2 py3/7_0
asnlcrypto 1.3.0 py37_0
astor 0.8.0 py37_0
astroid 2.3.3 py37_0
astropy 4.0 py37he774522_0
atomicwrites 1.3.0 py37_1
attrs 19.3.0 py_0
auto?eps 1.4.4 py_0
babe 2.8.0 py_0
backcall 0.1.0 pyB;_D
backports 1.0 y_2
backports.os 0.1.1 pyl;;_o
backports.shutil_get_terminal_size 1.0.0 py37_2
berypt 3.1.7 py37he774522_0

Figure 3-17. Listing the installed packages in our Conda environment

Glance through the list to see if all the packages we installed are there.
Then run the Python interpreter, and see whether it has the correct Python version
(3.7.*) and architecture (64-Bit).

(deep-learning) C:\Users\Thimira>python

Python 3.7.6 (default, Jan 8 2020, 20:23:39) [MSC v.1916 64 bit (AMD64)]
:: Anaconda, Inc. on win32

Type "help," "copyright," "credits" or "license" for more information.
>>>

Next, within the Python interpreter, import each of the packages we installed, one at
atime:

o TensorFlow
import tensorflow as tf
e OpenCV
import cv2
e Dlib
import dlib
o Multibackend Keras (if you installed it)
import keras

52

CHAPTER 3 SETTING UP YOUR TOOLS

If everything is set up properly, all these imports should complete without any errors.
Some packages, such as TensorFlow and Keras, may display some info messages while
importing (Figure 3-18).

[&5] Command Prompt - python

(deep-learning) C:\Users\Thimira>python : i

Python 3.7.6 (default, Jan & 2020, 20:23:39) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32

Type "help", "copyright", "credits” or "license" for more information.

>>> import tensorflow as tf

2020-04-12 13:36:12.743368: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
library cudart64_101.d11

>»> import cv2

>>> import dlib

>

Figure 3-18. Test importing the installed packages

Finally, let us check TensorFlow functionality. Run each of the following commands,
one after the other, in the Python interpreter:

import tensorflow as tf

x = [[2.]]
print('tensorflow version', tf. version)
print('hello, {}'.format(tf.matmul(x, x)))

If you have the TensorFlow GPU version installed, you may see some info messages
of CUDA libraries being loaded (Figure 3-19).

53

CHAPTER 3 SETTING UP YOUR TOOLS

5] Command Prompt - python

(deep-Tearning) C:\Users\Thimira>python " i
Python 3.7.6 ?defau}t. Jan 8 2020, 20:23:39) [MSC v.1916 64 bit (AMDE4)] :: Anaconda, Inc. on win32

Type "help”, "copyright”, "credits” or "license" for more information.

>>> import tensorflow as tf

2020-04-12 13:43:41.923193: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
library cudart64_101.d11

by x = [[2.]]

>>> print('tensorflow version', tf.__version_)

tensorflow version 2.1.

>>> print('hello, {}'.format(tf.matmul(x, x)))

%QEO—04—12 15:4;5?3.435331: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
ibrary nvcuda.

2020—05—12 13:44:03.460401: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce RTX 2070 computeCapability: /.5

coreClock: 1.62GHz coreCount: 36 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 417.29GiB/s

2020-04-12 13:44:03.467515: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
library cudart64_101.d11

2020-04-12 13:44:03.475366: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
library cublas64_10.d11

2020-04-12 13:44:03.483190: I tensorflow/stream_executor/platform/default/dso_loader.cc:44
library cuffté4_10.d11

2020-04-12 13:44:03.489038: I tensorflow/stream_executor/platform/default/dso_loader.cc:44
Tibrary curand64_10.d11

2020-04-12 13:44:03.495772: I tensorflow/stream_executor/platform/default/dso_loader.cc:44
library cusolver64_10.d11

2020-04-12 13:44:03.501910: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
library cusparse64_10.d11

2020-04-12 13:44:03.513126: I tensorflow/stream_executor/platform/default/dso_loader.cc:44

library cudnné4_7.d11

v |

Successfully opened dynamic

—

Successfully opened dynamic

{ e

Successfully opened dynamic

successfully opened dynamic

—

Figure 3-19. TensorFlow GPU version loading the CUDA libraries

The final result should be shown as hello, [[4.]] (Figure 3-20):

ommand Prompt - python

2020-04-12 13:44:03.527050: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce RTX 2070 computeCapability: /.5

coreClock: 1.62GHz coreCount: 36 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 417.29GiB/s

2020-04-12 13:44:03.533966: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
library cudart64_101.d11

2020-04-12 13:44:03.538072: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
library cublas64_10.d11

2020-04-12 13:44:03.542375: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
library cufft64_10.d11

2020-04-12 13:44:03.545810: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
Tibrary curand64_10.d11

2020-04-12 13:44:03.549336: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
library cusolver64_10.d11

2020-04-12 13:44:03.553162: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
library cusparse64_10.d11

2020-04-12 13:44:03.556844: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
library cudnné4_7.d11

2020-04-12 13:44:03.560924: I tensorf]owfcorefcnmmon_runtinefgpufgpu_device,cc:169?} Adding visible gpu devices: 0
2020-04-12 13:44:04.074507: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1096] Device interconnect StreamExecutor
mwith strength 1 edge matrix:

2020-04-12 13:44:04.078984: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102 0

2020-04-12 13:44:04.081624: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] 0:

2020-04-12 13:44:04.085322: I tensorflow/core/common_runtime/gpu/gpu_device.cc;1241
alhost/replica:0/task:0/device:GPU:0 with 6304 MB memory) -> g;s1c

: 0000:01:00.0, compute capability: 7.5)

2020-04-12 13:44:04.118506: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
library cublas64_10.d11

hello, [[4.]]

B

N
5 Created TensorFlow device (/job:led
al GPU (device: 0, name: GeForce RTX 2070, pci bus id

Figure 3-20. TensorFlow test successful

If all commands ran without errors, then we are good to go.
You can run quit() to exit the Python interpreter.

54

CHAPTER 3 SETTING UP YOUR TOOLS

Step 10: (Optional) Manually Installing CUDA Toolkit
and cuDNN

When we installed the TensorFlow GPU version via the conda package, you will notice that
the CUDA Toolkit and the cuDNN library got also installed as conda dependencies. While this
works with the TensorFlow conda package (and few other conda packages), for other libraries
that might require CUDA functionality, you may need to install the CUDA toolkit globally.

You can download the CUDA Toolkit from the NVIDIA CUDA downloads page,’
which lists the latest CUDA Toolkit binaries. Older versions of CUDA can be downloaded
from the CUDA toolkit archive page.' Select the toolkit version you require, and then
select the appropriate package for your version of Windows (Figure 3-21).

& NVIDIA. HIGH PERFORMANCE COMPUTING

Select Target Platform

Click on the green buttons that describe your target platform. Only supported platforms will be shown.

P——— [viaowe [l Wit

Architecture m

| O 0 Em
Installer Type m

Download Installer for Windows 10 xB6_64

The base installer is available for download below.

> Base Installer Downtoad (2.6 6B) &

Instaliation Instructions:

1. Double click cuda_10.2.89_441.22_win10.exe
2. Follow on-screen prompts

The checksums for the installer and patches can be found in Installer Checksums.
For further informalion, see the Installation Guide for Microsoft Windows and the CUDA Quick Start Guide.

Figure 3-21. NVIDIA CUDA toolkit downloads page

*NVIDIA (CUDA downloads page), https://developer.nvidia.com/cuda-downloads, [9 Apr 2020].

"NVIDIA (CUDA toolkit archive page), https://developer.nvidia.com/cuda-toolkit-archive,
[20 Nov 2019].

55

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-toolkit-archive

CHAPTER 3 SETTING UP YOUR TOOLS

Note Selecting the exe (local) installer will greatly reduce the installation time
and is the better option if your Internet connection is slow or unreliable. Also, you
can reuse the same installation package to start the installation over if anything
goes wrong. Note that the download size is around 2.6GB in the latest version.

Next, you need to download cuDNN by heading over to NVIDIA cuDNN Page.! The
downloads page for cuDNN will list multiple versions of cuDNN. You must make sure to
download the latest version of cuDNN that is compatible with the CUDA Toolkit version
you are using. For example, if we selected CUDA Toolkit v10.2 then we need to select
Download cuDNN v7.6.5 (November 18, 2019), for CUDA 10.2 or whatever the latest
version is. The download is about 280MB is size (Figure 3-22).

@A NVIDIA. DEVELOPER

cuDNN Download

4 cuDNN is a GPU-accelerated library of primitives for deep neural networks.
¥ | Agree To the Terms of the cuDNN Software License Agreement
Mote: Please refer to the G ie for release prerequisites, including supparted GPU architectures and compute capabilities, before downloading.
For more information, refer to the cuDNN Developer Guide, Installation Guide and Release Notes on the Deep Lea g K entation web page.

Library for Windows, Mac, Linux, Ubuntu and RedHat/Centos(x86_64architecture)

Figure 3-22. The cuDNN downloads page

UNVIDIA (cuDNN page), https://developer.nvidia.com/cudnn, [12 Apr 2020]; you will need to
register (free) for a NVIDIA developer account in order to download cuDNN.

56

https://developer.nvidia.com/cudnn

CHAPTER 3 SETTING UP YOUR TOOLS

Once both packages are downloaded, start by running the installer for the CUDA
Toolkit. In the install options select the Custom Install option (Figure 3-23). In the
Custom Install Options page, deselect the options for GeForce Experience, Display
Driver (Figure 3-24), and Visual Studio Integration (Figure 3-25).

NVIDIA Installer = X

), |

nvIDIA

Installation options

@ Express (Recommended)

Installs all CUDA components and overwrites current

Options
P Display Driver.

@ Custom (Advanced)

Allows you to select the components you want to install

Note: Some flashing might occur during the installation

Figure 3-23. Select the custom install option in the CUDA toolkit installer

57

CHAPTER 3 SETTING UP YOUR TOOLS

NVIDIA Installer o X

nviDia

Custom installation options

Select driver components

New Version Current Version
Options -

Figure 3-24. Deselect GeForce experience and driver components

58

CHAPTER 3 SETTING UP YOUR TOOLS

NVIDIA Installer o X

nviDia

Custom installation options

Select driver components

Component New Version Current Version
Options P

Figure 3-25. Deselect the Visual Studio integration option under CUDA

Caution If you go with the Express Installation option, and you already have the
latest display driver for your GPU installed, the installer may attempt to overwrite
the already installed display driver with an older version driver. Therefore, if you
already have the latest driver (and GeForce Experience installed), it is better to go
in the Custom Installation path.

The Visual Studio Integration option is known to cause issues with some versions
of Visual Studio. Therefore, it is better to deselect it if you do not plan to build Visual
C++ CUDA applications.

You can keep the defaults for everything else in the CUDA installer.

59

CHAPTER 3 SETTING UP YOUR TOOLS

Once the CUDA installation is complete, you can verify the installation by running
the following command in the command prompt:

nvcc -V

(Note the uppercase “V.")
This will give an output of something like (Figure 3-26):

nvcc: NVIDIA (R) Cuda compiler driver

Copyright (c) 2005-2019 NVIDIA Corporation

Built on Wed Oct 23 19:32:27 Pacific_Daylight Time 2019
Cuda compilation tools, release 10.2, V10.2.89

(c) 2019 Microsoft Corporation. A1l rights reserved.

C:\Users\thimi>nvcc -V

nvcc: NVIDIA (R) Cuda compiler driver
Cop
8u1¥t on Wed_Oct_23_19:32:27_ pPacific_paylight_Time_2019
Cuda compilation tools, release 10.2, v10.2.89

right (c) 2005-2019 NVIDIA Corporation

C:\Users\thimi>

Figure 3-26. CUDA toolkit installation verification

Once the CUDA Toolkit is installed, you can install cuDNN.

cuDNN is not an installer. It is a zip file. You install it by extracting it and copying its
content to the CUDA installation directory. When you extract cuDNN, you get a cuda
directory, with 3 subdirectories: bin, include, and lib (Figure 3-27).

60

CHAPTER 3 SETTING UP YOUR TOOLS

This PC > New Volume (D:) > Tools > cudnn-10.2-windows10-x64-v7.6.5.32

Name Date modified

R bin 4/14/2020 12:05 PM File folder

B include 4/14/2020 12:05 PM File folder
R b 4/14/2020 12:05 PM File folder
. NVIDIA_SLA_cuDNN_Support 10y 910:11 AM Text Document

Figure 3-27. cuDNN zip file extracted

If you go to your CUDA installation directory (by default it is C: \Program Files\
NVIDIA GPU Computing Toolkit\CUDA\vx.x, where x.x. is the version you installed), you
will see that it also contains directories named bin, include, and lib, with several other
directories.

You need to copy the contents of each directory in the cuDNN to the respective
directory in the CUDA installation directory (Figure 3-28). In other words, copy the
contents of bin from cuDNN to bin of CUDA; lib of cuDNN to lib of CUDA; and include
of cuDNN to include of CUDA.

This PC * Local Disk (C) Program Files * NVIDIA GPU Computing Toolkit * CUDA > v10.2

Na

Jame Date modified Type

A bin 4/14/2020 12: File folder
R doc

R extras

l include File folder
R b File folder
. libnvvp

l nvml

R nvwm

B nwmx

B sic

B tools

. CUDA_Toolkit_Release_Notes

B eua

B version

Figure 3-28. cuDNN files extracted to the CUDA toolkit installation directory

61

CHAPTER 3 SETTING UP YOUR TOOLS

Once everything is copied, the CUDA Toolkit and cuDNN will be ready for your
CUDA experiments.

Troubleshooting

To avoid most of the installation errors, make sure you perform the conda upgrade step
before installing any packages (Figure 3-29).

conda update conda

[&5] Command Prompt - conda update a
sqlalchemy 1.3.1-py37he774522_0 -->

1.3.15- KyS?he??dSZ? 1
sqlite 3.27.2-he774522_ 0 --> 3.3 1 e774522_0
statsmodels 0.9.0-py37h452elab_0 --> 0.1 37he774522_0
sglupz 1.3-py37.0 --> 1.5.1-py37 0
th1ib pkgs/main/win-64::tblib- 1 3.2-py37_0 --> pkgs!malnjnoarch :tb1ib-1.6.0-py_0
terminado 0.8.1-py37_1 0.8.3-py37_0
testpath pkgs/main/win-64: testpath 0.4.2-py37~ --> pkgs/main/noarch: :testpath-0.4.4-py_0
toolz pkgs/main/win-64: :toolz-0.9.0-p g 7.0 pkgs/main/noarcl .'too]z 0.10.0-py._|
tornado -0.2- py3?he??4522 [1] 6.0.4-py37he77452
tqdm pkgs/main/win-64::tqdm-4.31.1-py37_1 pk sfrnam/noarch tqdm-4 44.1-py_0
tra1t1ets 4.3.2-py37_0 --> 4.3.3-py37_|
urllib3 1.24.1-py37_0 --> py37_
vs2015_runtime 14.15.26706-h3a45250_ 0 --> 14.16.27012- hFDeaFQh 1
wowidth pkgs/main/win-64: :wowidth-0.1.7-py37_0 --> pkgs/main/noarch: :wcwidth-0.1.9-py_0
werkzeug pkgsfnainfwin—54::werkzeug 0.14.1-py3~ --> pkgs{ma1n{noarch::werkzeug—l.O.D—py 0
wheel 33.1- py3? 0 -->0 5?_0
widgetsnbextension 3.4.2-py3 --> 3.5.1-py37 0
wrapt 1.11.1- S?ho?zds ==> 1,320 1- 37he774522_1
x]sxwriter pkgs/main/win-64::x1sxwriter-1.1.5-py~ --> pkgs/main/noarch: :x1sxwriter-1.2.8-py_0
xTwings 0.15.4-py37_0 --> 0.18.0-py37_0
zict pkgs/main/win-64::zict-0.1.4-py37_0 --> pkgs/main/noarch::zict-2.0.0-py_0
zipp pkgs/main/win-64::zipp-0.3.3-py37_1 --> pkgs/main/noarch::zipp-2.2.0-py_0

[The following packages will be DOWNGRADED:
anaconda 2019.03-py37_0 --> custom-py37_1
pycosat 0.6.3-py37hfabe2cd_0 --> 0.6.3-py37he774522_0
Proceed ([v]/n)?

Figure 3-29. Conda upgrade step running

Following are a set of issues that you might encounter, and how to fix them.

Matplotlib Pyplot Error

At the time of writing, there is an issue with a one specific build of the Matplotlib library
available on conda. You can check it by running the following commands in the Python
interpreter.

First, try importing the Matplotlib package. It should not generate any errors:

import matplotlib

62

CHAPTER 3 SETTING UP YOUR TOOLS
Next, try importing the matplotlib.pyplot package:
import matplotlib.pyplot as plt

If the issue exists, it will crash your python interpreter.
If you have this issue, in order to solve this, you need to uninstall the Matplotlib
library from conda and reinstall it using pip:

conda remove matplotlib
pip install matplotlib

You only need to do this if you have that error; it is possible that the faulty build will
be fixed by the time you read this.

Not Getting the Latest Versions

While you are installing packages in conda, you might notice that you are not getting the
latest available versions of the packages. This may be due to one of several reasons.

Conda package manager considers the inter compatibility between all the packages
in an environment when installing, and may decide to go with an older version of a
package for compatibility reasons.

Conda also caches the packages it downloads and installs. Therefore, it might
sometimes use an older cached version of a package rather than fetching the latest one.
You clean the cache using the following command:

conda clean -all

Cleaning the cache might allow conda to fetch the new versions.

If not, you can force conda to install the specific version of a package by specifying it
in the install command (you can find the available package versions from the Anaconda
package lists):'?

conda install tensorflow-gpu==2.1.0

Conda will analyze the package version specified and will let you know whether it is
compatible with the packages already installed in the conda environment, and whether

2Anaconda (package lists), https://docs.anaconda.com/anaconda/packages/pkg-docs/,
[19 Nov 2020].

63

https://docs.anaconda.com/anaconda/packages/pkg-docs/

CHAPTER 3 SETTING UP YOUR TOOLS

any package upgrades or downgrades are required. It will wait for you to confirm
whether to proceed with the installation or not, so that you can safely check whether the
specific version you want will work or not.

Not Using the Latest Version of OpenCV

If you recall, when we were installing OpenCV, we did not use the latest version, instead
we let conda install an older version (version 3.4.1 in this case). Why didn't we force
conda to install the latest version as we discussed in the previous section?

Well, if you try to install OpenCV v4 using the following command:

conda install opencv==4.0.1

you will get an error such as the one shown in Figure 3-30.

ommand Prompt - co install te w-gpu - conda install tenso gpu==2.1.0 - conda install opencv

(deep-learning) C:\Users\Thimira>conda install opencwv
Collecting package metadata (repodata.json): done ; 5 ’
Solving environment: failed with initial frozen solve. Retrying with flexible solve.
Solving environment: |

Found conflicts! Looking for incompatible packages.

[This can take several minutes. Press CTRL-C to abort. ,
%x;_n_?'ig'ing opencv==4.0.1: 67%| NG | 2/3 [00:00<00:00, 41.78it/s]/

aile

UnsatisfiableError: The following specifications were found
to be incompatible with the existing python installation in your environment:

Specifications:

- opencv==4.0.1 -> python[version=">=3.8,<3.9.0a0"']
Your python: python=3.7
1f python is on the left-most side of the chain, that's the version you've asked for.
when python appears to the right, that indicates that the thing on the left is somehow
not available for the python version you are constrained to. Note that conda will net
cﬂange your python version to a different minor version unless you explicitly specify
that.
The following specifications were found to be incompatible with your CUDA driver:

- feature:/win-64::__cuda==11.0=0

Your installed CUDA driver is: 11.0

Figure 3-30. OpenCV v4 Conda install error

Basically, the OpenCV v4 conda package requires Python 3.8 or higher and CUDA
version 11.0, which does not work with the other libraries—such as TensorFlow—that we
are using.

So we will stick with the 3.4.x version for now, which has all the functionality we will
be exploring in this book.

64

CHAPTER 3 SETTING UP YOUR TOOLS

Dlib Build Errors

While installing Dlib pip package, you might run into an error such as this (Figure 3-31):

Figure 3-31. Dlib build error

This happens when CMake is either not installed properly, not added to the system
path properly, or when the Windows command prompt window was not closed and
reopened after CMake was installed.

If you encounter this, make sure CMake was properly installed and added to the
path, and make sure you closed and reopened the command prompt window after it was
installed.

You can verify CMake is properly installed by running:

cmake --version

65

CHAPTER 3 SETTING UP YOUR TOOLS

Summary

In this chapter, we learned how to set up all the tools needed to start building deep
learning models.

You need to install Visual Studio, CMake, and Anaconda Python as prerequisites.
Here are all the commands needed to install everything on an Anaconda Python

environment on Windows:

create the conda environment
conda create --name deep-learning python=3.7 anaconda

activate the conda environment
conda activate deep-learning

install tensorflow (GPU version)
conda install tensorflow-gpu==2.1.0

install opencv
conda install opencv

install dlib
pip install dlib

These are only the core set of tools needed for learning to build deep learning
models. You will install many more tools as you start building.

66

CHAPTER 4

Building Your First Deep
Learning Model

We are now ready to start building our first deep learning model.

But where do we begin?

To see deep learning in action, let us start with something that deep learning systems
are extremely good at: a convolutional neural network built for image classification.
For this, we will build what’s commonly considered the “hello world” program of deep
learning—that is, to write a program to classify images of handwritten digits. Think of it
as a simple OCR system.

But don’t we need a lot of data to train the system?

Well, luckily for us, since handwritten digits classification is a very popular problem
to solve (even before deep learning), there is a publicly available dataset called the
MNIST dataset.

What is the MNIST Dataset?

Back in 1995, the National Institute of Standards and Technology (NIST) in the United
States created a dataset of handwritten characters to be used in machine learning and
image processing systems. While this dataset worked for the most part, since the training
and validation sets did not come from the same source, and due to some preprocessing
applied on the images, there were some concerns about the validity of the dataset in a
machine learning context.

In 1998, the data from the NIST dataset were cleaned up, normalized, and
reorganized to resolve its issues, and this created the MNIST dataset (Modified
National Institute of Standards and Technology dataset). The MNIST contains 70,000
images—60,000 training images and 10,000 testing/validation images—of 28x28 pixels.

67
© Thimira Amaratunga 2021

T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_4

https://doi.org/10.1007/978-1-4842-6431-7_4#DOI

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

The MNIST dataset is publicly available from its official website.! However, due to its
popularity, many machine learning and deep learning frameworks either have it built
in, or provide utility methods to fetch and read the dataset. Keras, Scikit-Learn, and
TensorFlow all provide such built-in methods, which spare us from having to retrieve,
read, and format the data ourselves. A few samples from the MNIST dataset are shown in

0|S6/43
w977 %

Figure 4-1.

S|&7 6 ¢
7927
M2

Figure 4-1. A few samples from the MNIST dataset

With a dataset at hand, we now need to decide on the architecture of the
convolutional neural network we are going to build. In deep learning, since there can be
so many variations of the way we can structure a model, it is typically better to start with
a known and proven deep learning model and then make adjustments on it. So for our
task, we will choose the LeNet architecture.

'MNIST website, http://yann.lecun.com/exdb/mnist/, [14 May 2013].

68

http://yann.lecun.com/exdb/mnist/

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

The LeNet Model

LeNet is a 7-layer Convolutional Neural Network (CNN) introduced by Y. LeCun,

L. Bottou, Y. Bengio, and P. Haffner. In 1998 they introduced LeNet-5, their fifth
successful iteration of the architecture.? It was designed specifically for handwritten and
printed character recognition, so it fits perfectly with our requirements.

LeNet uses two sets of convolution operations (Figure 4-2). The first set uses 20
convolutional filters, and uses ReLU (Rectified Linear Units) as the nonlinearity function
(the original LeNet architecture from the 1998 paper used Tanh as the nonlinearity
function instead of ReLU), followed by a Max-Pooling layer. The second set uses 50
convolutional filters, again followed by ReLU and Max-Pooling. The output of these are
then flattened, and sent through two fully connected (dense) layers to get the output

predictions.
Convolution Convolution Fully Connected Output Predictions
" Fully Connected
Pooling Pooling ”_Y____

Input Image § "’-L]?;H '@:‘;m—_ﬂh_‘

4 : - = =) 0] -I 4@

L I
e | (Iltig | L s I i P

Figure 4-2. The LeNet architecture

The LeNet architecture is simple, but provides excellent accuracy for small image
classification tasks. And since it is small, it can be easily trained on a CPU.

Let us Build Our First Model

We now have the data and have selected an architecture for our first deep learning
model. So let’s start building.

We will be using TensorFlow 2.1 and tf.keras (the TensorFlow version of Keras), in the
Python 3.7 environment we created earlier.

Create a new Python file and name it lenet_mnist_tf keras.py.

%Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied to document
recognition,” in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998, doi:
10.1109/5.726791.

69

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL
In this new file we will start by importing the necessary packages:

14:

15: # first, let's import tensorFlow

16: import tensorflow as tf

17: import numpy as np

18:

19: # import the mnist dataset

20: from tensorflow.keras.datasets import mnist
21:

22: # imports used to build the deep learning model
23: from tensorflow.keras.optimizers import SGD
24: from tensorflow.keras.models import Sequential
25: from tensorflow.keras.layers import Conv2D

26: from tensorflow.keras.layers import MaxPooling2D
27: from tensorflow.keras.layers import Activation
28: from tensorflow.keras.layers import Flatten
29: from tensorflow.keras.layers import Dense

30:

31: # import the keras util functions

32: import tensorflow.keras.utils as np utils

33:

34: import argparse

35: import cv2

36: import matplotlib.pyplot as plt

37:

We start with importing TensorFlow, which is needed for us to use the tf.keras
functions.

The tensorflow.keras.datasets package contains several commonly used built-in
datasets of Keras. We import the MNIST dataset from it.

The tensorflow.keras.optimizers, tensorflow.keras.models, and tensorflow.
keras.layers contains the core set of functions we would need to build our deep
learning model.

The tensorflow.keras.utils package has several utility functions which would
help us the build our model.

70

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

We import the argparse package to handle command line arguments, which allows
us to train and evaluate the model.

OpenCV (imported as cv2) is used to display the results from evaluating the
trained model.

The matplotlib package is used to visualize/graph the training performance of the
model, as it is always better to see how well a model gets trained.

There will be two phases to our digit classification system: training and evaluating
(for this application, we are not building an inference phase). The training phase takes
time and is usually the most resource intensive phase. We certainly would not want to
run the training every time we run our program. So we define a couple of command line

arguments to trigger the two phases:

37:

38: # Setup the argument parser to parse out command line arguments

39: ap = argparse.ArgumentParser()

40: ap.add_argument("-t", "--train-model", type=int, default=-1,

41: help="(optional) Whether the model should be trained on
the MNIST dataset. Defaults to no")

42: ap.add_argument("-s", "--save-trained", type=int, default=-1,

43: help="(optional) Whether the trained models weights
should be saved." +
44: "Overwrites existing weights file with the same name.

Use with caution. Defaults to no")

45: ap.add_argument("-w", "--weights", type=str, default="data/lenet_
weights.hdfs",

46: help="(optional) Path to the weights file. Defaults to
"data/lenet_weights.hdf5'")

47: args = vars(ap.parse args())

48:

We define three arguments:

e --train-model: indicates whether the model should be trained. Pass
1 to it to train the model.

o --save-trained: When the model is trained, we have the option to
save the model weights to a file to be loaded back later. Pass 1 to this
parameter, to indicate to save the weights.

71

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

o --weights: By default, we will be saving the models weights to data/
lenet_weights.hdf5 (set by the default parameter of this argument). If you
want to override that path, you can pass a custom path to this parameter.

Now, we load and preprocess our dataset:

49:

50: # Get the MNIST dataset from Keras datasets

51: # If this is the first time you are fetching the dataset, it will be
downloaded

52: # File size will be ~10MB, and will placed at ~/.keras/datasets/mnist.npz
53: print("[INFO] Loading the MNIST dataset...")

54: (trainData, trainLabels), (testData, testlLabels) = mnist.load data()
55: # The data is already in the form of numpy arrays,

56: # and already split to training and testing datasets

57:

58: # Reshape the data matrix from (samples, height, width) to (samples,
height, width, depth)

59: # Depth (i.e. channels) is 1 since MNIST only has grayscale images
60: trainData = trainData[:, :, :, np.newaxis]

61: testData = testData[:, :, :, np.newaxis]

62:

63: # Rescale the data from values between [0 - 255] to [0 - 1.0]

64: trainData = trainData / 255.0

65: testData = testData / 255.0

66:

67: # The labels come as a single digit, indicating the class.

68: # But we need a categorical vector as the label. So we transform it.
69: # So that,

-
-
-
-
-
o

-
o O O
-

o O O
-

o O O
-

o O O
-

o O O
-

o O O
-

o
—_

-

-
-

0, 0
71: # '1' will become [0, 1, O
72: # '2" will become [0, O, 1
and so on...

-
-
-
-
-
-
o

#
#
#
70: # '0" will become [1,
#
#
#

73:
74: trainLabels = np utils.to categorical(trainLabels, 10)
75: testlLabels = np utils.to categorical(testlLabels, 10)
76:

72

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

Most of the cleaning up of the dataset has been already done for us by Keras. It is
already in the format of numpy arrays, and already split to training and testing data.

If this is the first time you are using the MNIST dataset from Keras, it will be
downloaded (around 10MB file size), and placed at sJUSERPROFILE%/.keras/datasets/
mnist.npz.

The numpy arrays are in the format of [samples, height, width]. But Keras (and
TensorFlow) expects one more dimension in the data arrays, which is the depth—or the
channels—dimension. In a color image, there would be three channels—red, green, and
blue. But since our digit images are grayscale images, there will only be one channel. So
we reshape the arrays to add one more axis, so that the arrays become [samples, height,
width, depth] shaped.

Since these are image data—each value being the gray value of a pixel —the values
are in the range of 0-255. But for a neural network, it’s better to always have the values in
arange of 0-1. So we divide the entire array by 255 to get it in range.

The labels for the dataset come as single digits. But to train a neural network model,
we need them as categorical vectors. We use the util function to_categorical to
transform them so that:

'0"' will become [1, 0, 0, 0,0, 0,0, 0, 0, 0]
'1"will become [0, 1,0, 0,0, 0,0, 0, 0, 0]
'2' will become [0, 0, 1,0, 0,0, 0, 0, 0, 0]
And so on.

Now we come to the core part of the code, defining the structure of our model. We'll
define a function named build_lenet() for this:

077:

078: # a function to build the LeNet model

079: def build lenet(width, height, depth, classes, weightsPath=None):
080: # Initialize the model

081: model = Sequential()

082:

083: # The first set of CONV => RELU => POOL layers

084: model.add(Conv2D(20, (5, 5), padding="same",

085: input_shape=(height, width, depth)))
086: model.add(Activation("relu"))

73

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

087: model.add(MaxPooling2D(pool size=(2, 2), strides=(2, 2)))
088:

089: # The second set of CONV => RELU => POOL layers

090: model.add(Conv2D(50, (5, 5), padding="same"))

091: model.add(Activation("relu"))

092: model.add(MaxPooling2D(pool size=(2, 2), strides=(2, 2)))
093:

094: # The set of FC => RELU layers

095: model.add(Flatten())

096: model.add(Dense(500))

097: model.add(Activation("relu"))

098:

099: # The softmax classifier

100: model.add(Dense(classes))

101: model.add(Activation("softmax"))

102:

103: # If a weights path is supplied, then load the weights
104: if weightsPath is not None:

105: model.load weights(weightsPath)

106:

107: # Return the constructed network architecture

108: return model

109:

Our function takes five parameters: the width, height, and depth of the input; the
number of classes; and the path to the model weights file if given, and returns the model
structure (with the model weights loaded if passed via the weightsPath parameter).

We use the Keras Sequential model to build our network. The Keras Sequential
model makes building sequential network architectures (where all the layers are stacked
up sequentially) much simpler. For more complex, nonsequential architectures (such as
Inception modules) Keras provides the Functional API. But for simple sequential ones
like LeNet, the Sequential model is the easiest.

We start with the first Convolutional, ReLU, and Pooling layer set. In the sequential
model, the first layer needs to know the shape of the input to expect, so we pass it with
the input_shape parameter. The subsequent layers can infer the shape on their own.

We first define 20 convolutional filters of size 5x5, followed by a ReLU activation, and a

74

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

Max-Pooling layer of 2x2. The strides parameter defines how much the pooling window
should slide on the feature map for each pooling operation. We will go through how each
of these operations work in the next chapter.

The second set of Convolutional, ReLU, and Pooling layers are almost the same, with
the number of convolutional filters increased to 50.

We then flatten the input, and add a Dense (fully connected) layer of 500 units.

The final layer is again a Dense layer, where the number of units is equal to the
number of output classes of our data. We set a Softmax classifier as its activation.

If a path to a model weights file is passed, we load the weights to the constructed
model. Otherwise, we return just the model.

Note Don’t worry if you do not yet understand what each of these layer types
and parameters are and how they work. We will investigate them in more details
later in the book.

Once we have the function to build the model, we can specify the optimizer for the
model and then compile it:

142:

143: # Build and Compile the model

144: print("[INFO] Building and compiling the LeNet model...")
145: opt = SGD(1r=0.01)

146: model = build lenet(width=28, height=28, depth=1, classes=10,

147: weightsPath=args["weights"] \

148: if args["train_model"] <= 0 else None)
149: model.compile(loss="categorical crossentropy",

150: optimizer=opt, metrics=["accuracy"])

151:

Here, we use the SGD Optimizer (Stochastic Gradient Descent), with a learning rate
of 0.01 (set by the Ir parameter).

We specify the width and height of the input as 28x28 as those are the dimensions of
the images in the MNIST dataset. The depth parameter is set to 1, as we're dealing with
grayscale images which has only one color channel.

75

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL
Once the model is compiled, we train our model:

152: # Check the argument whether to train the model
153: if args["train_model"] > o:

154: print("[INFO] Training the model...")

155:

156: history = model.fit(trainData, trainLabels,

157: batch size=128,

158: epochs=20,

159: validation data=(testData, testLabels),
160: verbose=1)

161:

162: # Use the test data to evaluate the model

163: print("[INFO] Evaluating the model...")

164:

165: (loss, accuracy) = model.evaluate(

166: testData, testlabels, batch size=128, verbose=1)
167:

168: print("[INFO] accuracy: {:.2f}%".format(accuracy * 100))
169:

We check the command line arguments (which were handled through argparse) to
see whether we should run the training or not.

We pass our trainData and trainLabels (which we preprocessed/cleaned earlier) in to
the model.fit() function.

We set the batch size to 128, which means the model will be trained with batches of
128 images at a time. Training in batches reduces the training time significantly. Batch
size also controls the accuracy of the estimate of the error gradient when training using
gradient descent. Because of that, deep learning models are almost always trained in
batches. A batch size of 128 should work fine for our dataset here. You can change it later
to see how it affects training.

An epoch is an iteration over the entire dataset. The epochs parameter tells how
many times the model needs to be trained over the entire dataset. We set our epoch
count to 20.

76

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

Along with our trainData and trainLabels, we pass the testData and testLabels also
(using the validation_data parameter). This allows us to validate the model performance
over the epochs.

Once the training is complete, we use the model.evaluate() function to evaluate the
trained model with the full test dataset to get the final loss and accuracy of the model.

You may have noticed that the model.fit() function returns a value which we have
captured in the history variable. This history value contains the accuracy and loss values
of both training and validation for each epoch as the model trained. Using this value,
we can draw a graph of how well the model was trained. Let's define a new function—
graph_training_history()—to accept this history object and draw the graph:

109:
110: # a function to graph the training history of the model
111: def graph training history(history):

112: plt.rcParams["figure.figsize"] = (12, 9)
113:

114: plt.style.use('ggplot")

115:

116: plt.figure(1)

117:

118: # summarize history for accuracy

119:

120: plt.subplot(211)

121: plt.plot(history.history['accuracy'])
122: plt.plot(history.history['val accuracy'])
123: plt.title('Model Accuracy")

124: plt.ylabel('Accuracy')

125: plt.xlabel('Epoch")

126: plt.legend(['Training', 'Validation'], loc='lower right")
127:

128: # summarize history for loss

129:

130: plt.subplot(212)

131: plt.plot(history.history['loss'])

132: plt.plot(history.history['val loss'])
133: plt.title('Model Loss')

77

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

134: plt.ylabel('Loss")

135: plt.xlabel('Epoch")

136: plt.legend(['Training', 'Validation'], loc='upper right')
137:

138: plt.tight layout()

139:

140: plt.show()

141:

The history object contains four keys: [acc, loss, val_acc, val_loss].

We use matplotlib to draw the graph.

We start by specifying the graph size (12, 9) and style (ggplot).

We define two subplots to draw the accuracy matrices and the loss matrices for
training and validation separately. Each subplot will show the matric for both training
and validation.

We pass the history object to this function after the model training completes, right
after the print statement for the morel accuracy at line 168:

169:

170: # Visualize the training history
171: graph_training_history(history)
172:

Once all the training and validation is complete, we save the model weights to a file:

172:
173: # Check the argument on whether to save the model weights to file
174: if args["save trained"] > o:

175: print("[INFO] Saving the model weights to file...")
176: model.save weights(args["weights"], overwrite=True)
177:

178: # Training of the model is now complete

179:

We use the value of the weights command line argument as the path, which is by
default set to data/lenet_weights.hdf5 if you did not override it. If a file with a same
name is already there in the specified location the save_weights() function will not

78

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

overwrite it by default. This is to avoid accidentally overwriting your trained models.

Here we allow it to overwrite the file by setting overwrite=True.

Now our model is built, compiled, trained, and evaluated. We can use this trained

model to test a few random digits:

179:

180: # Randomly select a few samples from the test dataset to evaluate
181: for i in np.random.choice(np.arange(0, len(testlLabels)), size=(10,)):

182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
LINEAR)
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:

Use the model to classify the digit
probs = model.predict(testData[np.newaxis, i])
prediction = probs.argmax(axis=1)

Convert the digit data to a color image
image = (testData[i] * 255).astype("uint8")
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)

The images are in 28x28 size. Much too small to see properly
So, we resize them to 280x280 for viewing
image = cv2.resize(image, (280, 280), interpolation=cv2.INTER_

Add the predicted value on to the image
cv2.putText(image, str(prediction[0]), (20, 40),
cv2.FONT_HERSHEY DUPLEX, 1.5, (0, 255, 0), 1)

Show the image and prediction

print("[INFO] Predicted: {}, Actual: {}".format(
prediction[0], np.argmax(testLabels[i])))

cv2.imshow("Digit", image)

cv2.waitKey(0)

204: # close all OpenCV windows
205: cv2.destroyAllWindows ()

We pick 10 random digits from the test dataset.

79

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

We then pass each of these images to the model.predict() function to get a prediction
of what that digit is. The model.predict() function—much like the model.fit() function—
expects the input as batches for predicting. Since we are only passing one sample at
a time, we add a new axis to the data array—testData[np.newaxis, i|] —to indicate that
there’s only one sample in this input.

The predictions come as a vector of probabilities for each class in the data. So we use
the argmax function to get the array index of the class with the highest probability. Since
our classes are the digits 0 to 9, the array index is the class label of the digit.

We now have the prediction. But rather than printing it out in the console alone, we
want to display it along with the digit. We are going to use OpenCV for that. But we need
to do some slight adjustments/postprocessing to the data before we can show them on
OpenCV.

Remember that earlier we rescaled all the data to be in the range of [0.0-1.0]. Now we
need to rescale it back to [0-255], so we multiply everything by 255.

OpenCV expects the image data to be unsigned 8-bit integers. This means that we
convert the entire array to uint8 format with astype(“uint8”).

Now the image is in grayscale format. We convert it to a colour image by calling cv2.
cvtColor(image, cv2.COLOR_GRAY2RGB). The image will still look grayscale. But now,
we can draw text on it with color.

And finally, having the images at 28x28 pixels size is much too small. So we need to
resize them to 280x280 size using the cv2.resize() function.

With the image data ready, we put the predicted digit value on the top left corner of
the image and display it. By specifying cv2.waitKey(0) we keep the window open till any
key is pressed. And since we are in a loop, we can switch through the 10 random digits
we choose from the test dataset.

Along with displaying the digit, we also print the predicted digit with the actual value
of the samples to the console.

Finally, as a good coding practice, we will also add some instructions on how to run
the code as comments on the top of the file:

01: # How to use

02: #

03: # Train the model and save the model weights

04: # python lenet mnist tf keras.py --train-model 1 --save-trained 1
05: #

06: # Train the model and save the model weights to a give directory

80

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

07: # python lenet mnist tf keras.py --train-model 1 --save-trained
1 --weights data/lenet_weights.hdf5

08: #

09: # Evaluate the model from pre-trained model weights
10: # python lenet mnist tf keras.py

11: #

12: # Evaluate the model from pre-trained model weights from a give
directory
13: # python lenet_mnist tf keras.py --weights data/lenet_weights.hdf5

14:

This completes the coding for our first deep learning model.

Running Our Model

We are now ready to run our first deep learning model. Let us do a few prechecks before

we hit run to make sure it runs smoothly:

1.

Make sure you have installed all the required libraries mentioned
in the last chapter. TensorFlow, OpenCV, and Matplotlib are the
main requirements for this example.

Make sure you have activated the conda environment which you
installed all the libraries. You can double check by looking at the
command prompt to see whether the activated environment's
name is displayed.

In the directory where you have your lenet_mnist tf keras.py
file, create a directory named data if you have not done so already.
This is where the model weights will be saved by default. Make
sure this data directory is writable.

If all prechecks are good, we can run our code.

Since this is the first run of our model, we need to train the model. So we set the

command line arguments to train the model, and save the weights of the trained model:

python lenet mnist tf keras.py --train-model 1 --save-trained 1

81

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

If you have not used the MNIST dataset before, Keras will automatically download
the MNIST dataset. The download is about 10MB, so it should not take long.

Once the data is downloaded, our code will build the deep learning model, compile
it, and will start the training (Figure 4-3).

save-trained 1

_accuragy: .9141
20
60000/60000 [==== ==] - 25 33us/sample - loss: 0.2579 - accuracy: 0.9236 - val_loss: 0.1958 - val

60000,/60000 [] - 25 33us/sample - loss: 0.1810 - accuracy: 0.9463 - val_loss: 0.1426 - val

60000,/60000 [:] - 25 33us/sample - loss: 0.1419 - accuracy: 0.9584 - val_loss: 0.1226 - val

Epoch 5/2

60000/60000 [====] - 25 33us/sample - loss: 0.1174 - accuracy: 0.9654 - val_loss: 0.0965 - val|

|_accuracy: 0.9698

Epoch 6/20

60000,/60000 [:] - 25 33us/sample - loss: 0.1020 - accuracy: 0.9703 - val_loss: 0.0882 - val

._accuraC§: 0.9735

Epoch 7/20

60000/60000 [:] - 25 34us/sample - loss: 0.0900 - accuracy: 0.9736 - val_loss: 0.0814 - val

|_accuracy: 0.9740

Epoch 8/20

60000,/60000 [:] - 2s 33us/sample - loss: 0.0817 - accuracy: 0.9756 - val_loss: 0.0699 - val

|_accuracy: 0.9782

Epoch 9/20

60000/60000 [=—==——=—==—============ 1 - 25 33us/sample - loss: 0.0734 - accuracy: 0.9783 - val_loss: 0.0631 - val

|_accuracy: 0.9805

Eguch 10/20
000/60000 [s=====—=—] - 25 33us/sample - loss: 0.0684 - accuracy: 0.9794 - val_loss: 0.0643 - val

|_accuracy: 0.9799

Epoch 11/20

31232/60000 [ss============>...............] - ETA: 0s - loss: 0.0639 - accuracy: 0.9805

Figure 4-3. Our model being trained

The training will run for 20 epochs, as we specified.

If you are running this with the TensorFlow GPU version, the training will take less
than two minutes. On a CPU however, it may take up to 30 minutes.

The console will show the progress of the training, accuracy and loss of training and
validation.

Once the training is complete, it will evaluate the model on the test dataset and give
the final accuracy value (Figure 4-4).

Epoch 20/20
GgDDOHBOOOO [z============= ===] - 25 34us/sample - loss: 0.0391 - accuracy: 0.9883 - val_loss: 0.0383 - val
laccuracy: 0.9874

[1nFO] Evaluating the model.
10000/10000 [
[INFO] accuracy: 98.74%

] - Os 16us/sample - loss: 0.0383 - accuracy: 0.9874

Figure 4-4. Training completed and evaluation running

Deep learning is exceptionally good at classification of simple images such as these.
We should be getting around 98-99% accuracy with our simple model.

82

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

Once the evaluation step is done, the code will use Matplotlib to open a window to
show the training history of the model (Figure 4-5).

Model Accuracy

0.95 -

—— Training
—— Validation

0.0 2.‘.‘: 5.‘0 TTS 10‘.0 lé.ﬁ 15:.0 1':".5
Epoch
Model Loss
—— Training
— Validation
0.8 -

0.6 -

Loss

0.4 -

0.2 -

/

0.0 - ¥ ¥ T ' ' § ' "
0.0 25 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

Figure 4-5. The model training history

The validation matrices follow the trend of the training, which is a good indication,
as it does not look like the model is overfitting on the training data.

Note The code execution will be on hold until you close the Matplotlib window.
So remember to close it once you have reviewed the graph. You can also save the
graph as an image from the Matplotlib window.

Now, the fun part. OpenCV will open the 10 random test digits one at a time, along
with the predicted value of the digit (in green at the top-left of the image). Here are some
examples (Figures 4-6, 4-7, and 4-8):

83

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

Epoch 13/20
60000,/60000 [
_accuracy: 0.9832
Epoch 14/20

60000/60000 [===
_accuracy: 0.9822
Epoch 15/20
60000/60000 [===

_accuracy: 0.9842
Epoch 16/20

60000/60000 [==========

_accuracy: 0.9865
Epoch 17/20
60000,/60000 [

_accuracy: 0.9845
Epoch 18/20

60000,/60000 [
_accuracy: 0.9861
Epoch 19/20

60000,/60000 [

e

_accuracy: 0.9852
Epoch 20/20

60000/60000 [z============z================ 1

_accuracy: 0.9858

[INFO] Evaluating the model...

10000,/10000 [

e —

[INFO] accuracy: 98.58%
[INFO] Saving the model weights to file...
[INFO] Predicted: 4, Actual: 4

[
w

P
w

]
w

P
w

[~
w

33us/sample

33us/sample -

33us/sample

33us/sample

34us/sample

34us/sample

34us/sample

33us/sample

16us/sample

loss:

loss:

loss:

loss:

loss:

loss:

Toss:

loss:

loss:

.0414

.0394

.0379

accuracy: 0.9839 - val_loss: 0.0524 - val
accuracy: 0.9850 - val_loss: 0.0535 - val
accuracy. 0 9851 - wal lacs- 0 N4RT - wal

B Digit - a X

Figure 4-6. Model prediction:

Epoch 14/
60000/60000 [=====

| accuracy: 0.9822
Epoch 15/20
60000/60000 [:

| accuracy: 0.9842
Epoch 16/20
60000/60000 [==—========]

_accuracy: 0.9845
Epoch 18/20
60000,/60000 [=====
accuracy: 0.9861
Epoch 19/20
60000,/60000 [

AcCouracy': 0,9852.
Epoch 20/20
60000,/60000 [

accuracy: 0.9858

10000/10000 [
[TnFO]
[INFO}
INFO
INFO] Predicted:
INFO

INFO

[1nFO] Evaluating the model.

accuracy: 98.58%
Saving the model weights to file...
Predicted: 4, Actual: 4

3 2!
Predicted: 4, Actual: 4
Predicted: 8, Actual: 8

Actual: 2

digit 4

33us/sample

33us/sample -

33us/sample
34us/sample
34us/sample
34us/sample
33us/sample

16us/sample

loss:

loss:

loss:

loss:

loss:

loss:

loss:

.0477

.0453

L0429

.0414

.0394

.0379

.0421

.0506 -

accuracy: 0.9850 - val_loss: 0.0535 - val

accuracy: 0.9851 - val_loss: 0.0487 - wval

accuracy—0 9867 - wal los<- 0 0424 - wal
7 Digit = [u] X

accuracy|

accuracy

accuracy

accuracy|

ACCUracy

Figure 4-7. Model prediction: digit 8

84

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

us/sample - ss: 0. - accuracy: 0. 0 - val_loss: 0.0535 - va

Laccuracy: 0.9822
Epoch 15/20
60000/60000 [1 - 2s 33us/sample - loss: 0.0477 - accuracy: 0.9851 - val_loss: 0.0487 - val
accuracy: 0.9842

Epoch 16/20

60000,/60000 [======== === -- —== ==] - 25 33us/sample - loss: 0.0453 - accuracy: 0.9867 - val_loss: 0.0424 - val
accuracy: 0.9865

Epoch 17/20 i1 Digit i o %
60000,/60000 [===== ====] - 25 34us/sample - loss: 0.0429 - accuracy

|_accuracy: 0.9845
Epoch 18/20
60000/60000 [== 3 2s 34us/sample - loss: 0.0414 - accuracy
|_accuracy: 0.9861
Epoch 19/20
60000/60000 [======= e ====] - 25 34us/sample - loss: 0.0394 - accuracy
_accuracy: 0.9852
Epoch 20/20
60000/60000 [=========================—=====] - 25 33us/sample - loss: 0.0379 - accuracy
_accuracy: 0.9858

[INFO] Evaluating the model...
10000/10000 [=====] - 0s 16us/sample - loss: 0.0421 - accuracy
[INFO] accuracy: 98.58%

[InFO] Saving the mode]l weights to file...
iTNFni Predicted: 4, Actual: 4

INFO] Predicted: Actual: 2
INFO] Predicted: Actual: 4
Actual: 8
Actual: 5

INFO] Predicted:
[1nFO] Predicted:

100 s

Figure 4-8. Model prediction: digit 5

You can switch through the digits by pressing any key.

Note In some Windows builds of OpenCV, there’s a bug in the code for opening an
image window where if you try to manually close the window (by clicking the window
close button), the code execution gets stuck. So it’s better to let the code close the
window properly by just switching between the results by pressing any key.

Along with showing the digit, we also print the predicted and actual values to the
console (Figure 4-9).

85

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

60000/60000 [===—===== - 25 33us/sample - loss: 0.0474 - accuracy: 0.9858 - val_loss: 0.0448 - val
accuracy 0.9852

Epoch 17/20
68000!60000 e e] - 25 33us/sample - loss: 0.0452 - accuracy: 0.9862 - val_loss: 0.0423 - val

| accuracy: 0.9855

Epoch 18/20

60000,/60000 [] - 2s 33us/sample - loss: 0.0429 - accuracy: 0.9869 - val_loss: 0.0399 - val
|_accuracy: 0.9875

Epoch 19/20

60000/60000 [ss========] - 25 35us/sample - loss: 0.0409 - accuracy: 0.9879 - val_loss: 0.0422 - val
|_accuracy: 0.9867

Epoch 20/20

60000,/60000 [======= ==] - 25 34us/sample - loss: 0.0391 - accuracy: 0.9883 - val_loss: 0.0383 - val
| accuracy: 0.9874

[INFO] Eva]uating the model...

10000/10000 [] - 0s l6us/sample - loss: 0.0383 - accuracy: 0.9874

INFO] accuracy: 98.74%

INFO] Saving the model weights to file..

INFO] Predicted: 1, Actual: 1
INFO| Predicted: 3, Actual: 3
INFO] Predicted: 9, Actual: 9
INFO] Predicted: 2, Actual: 2
INFO] Predicted: 0, Actual: 0
INFO] Predicted: 5, Actual: 5
INFO] Predicted: 7, Actual: 7
INFO] Predicted: 9, Actual: 9
INFO] Predicted: 0, Actual: 0
INFO] Predicted: 3, Actual: 3

(deep-learning) C:\Development\book:

Figure 4-9. The testing digit predictions and actual values printed on the
console

After training our model, the model weights will be saved to data/lenet_weights.
hdf5. You can run the model again without training by running:

python lenet mnist tf keras.py

Trying a Different Dataset

Once you are satisfied with the way the LeNet model classifies digits from the MNIST
dataset, you might like to try out a different dataset that is a little bit more complex.

The Fashion-MNIST dataset would be the next best choice.

Fashion-MNIST consists of 10 classes of images of clothing. The images are in 28x28
pixel grayscale format, and has the following 10 classes labeled 0 to 9:

e 0:T-shirt/top
e 1:Trouser

e 2:Pullover

e 3:Dress

e 4:Coat

e 5:Sandal

86

e 6:Shirt

e 7:Sneaker

8: Bag

¢ 9:Ankle boot

CHAPTER 4

Following are a few examples from the dataset (Figure 4-10):

Ankle boot

T-shirt/top

BUILDING YOUR FIRST DEEP LEARNING MODEL

T-shirt/top

T-shirt/top

Pullover

T-shirtjtop

i

Sneaker

Fullover

a1

Sandal

-ﬁ !

Ankle boot

Ankle boot

)

Dress

Figure 4-10. Samples from Fashion-MNIST dataset

Trouser

Trouser

Sandal

Sneaker

T-shirt/top

"~ Coat

e

A

Coat

87

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

Like the MNIST dataset, Fashion-MNIST consists of 70,000 images—60,000 training
and 10,000 test images. Because of the similarities between the two datasets, Fashion-
MNIST can be a drop-in replacement to any model that uses the MNIST dataset.

You can download Fashion-MNIST from its official website.® But, as with MNIST, due
to the popularity of the dataset, many machine learning and deep learning frameworks
has it built-in.

Clothing Image Classification using Fashion-MNIST

Let us build a deep learning model to classify images of clothing from the Fashion-
MNIST dataset.

As we talked about earlier, Fashion-MNIST is designed to be a drop-in replacement
wherever MNIST can be used. So, we can start with the same LeNet model structure and
the code we used earlier.

Let’s create a new Python file for it and name it lenet_fashion mnist_tf keras.py.

We will start by importing the necessary packages:

01: # How to use

02: #

03: # Train the model and save the model weights

04: # python lenet fashion mnist tf keras.py --train-model 1 --save-trained
1

05: #

06: # Train the model and save the model weights to a give directory

07: # python lenet fashion mnist tf keras.py --train-model 1 --save-trained
1 --weights data/lenet_fashion weights.hdfs

08: #

09: # Evaluate the model from pre-trained model weights

10: # python lenet fashion mnist tf keras.py

11: #

12: # Evaluate the model from pre-trained model weights from a give
directory

SFashion: MNIST official website, https://github.com/zalandoresearch/fashion-mnist,
[23 May 2020].

88

https://github.com/zalandoresearch/fashion-mnist

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

13: # python lenet fashion mnist tf keras.py --weights data/lenet fashion_
weights.hdfs

14:

15: # first, let's import tensorFlow

16: import tensorflow as tf

17: import numpy as np

18:

19: # import the FASHION MNIST dataset

20: from tensorflow.keras.datasets import fashion mnist
21:

22: # imports used to build the deep learning model
23: from tensorflow.keras.optimizers import SGD

24: from tensorflow.keras.models import Sequential
25: from tensorflow.keras.layers import Conv2D

26: from tensorflow.keras.layers import MaxPooling2D
27: from tensorflow.keras.layers import Activation
28: from tensorflow.keras.layers import Flatten

29: from tensorflow.keras.layers import Dense

30:

31: # import the keras util functions

32: import tensorflow.keras.utils as np utils

33:

34: import argparse

35: import cv2

36: import matplotlib.pyplot as plt

We will then define the command line arguments:

38: # Setup the argument parser to parse out command line arguments

39: ap = argparse.ArgumentParser()

40: ap.add_argument("-t", "--train-model", type=int, default=-1,

41: help="(optional) Whether the model should be trained on
the MNIST dataset. Defaults to no")

42: ap.add_argument("-s", "--save-trained", type=int, default=-1,

43: help="(optional) Whether the trained models weights
should be saved." +

89

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

44: "Overwrites existing weights file with the same name.
Use with caution. Defaults to no")

45: ap.add_argument("-w", "--weights", type=str, default="data/lenet_
fashion_weights.hdf5",

46: help="(optional) Path to the weights file. Defaults to
'data/lenet_fashion _weights.hdf5'")

47: args = vars(ap.parse args())

Then we will load and preprocess the dataset:

50: # Getting the FASHION_MNIST dataset from Keras datasets

51: print("[INFO] Loading the FASHION MNIST dataset...")

52: (trainData, trainLabels), (testData, testlabels) = fashion mnist.load
data()

53: # The data is already in the form of numpy arrays,

54: # and already split to training and testing datasets

55:

56: # Rescale the data from values between [0 - 255] to [0 - 1.0]

57: trainData = trainData / 255.0

58: testData = testData / 255.0

59:

60: # Defining the string labels for the classes

61: class names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat’,
62: 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

63:

64: # Display a sample from the FASHION_MNIST dataset

65: plt.figure(figsize=(16,16))

66: for i in range(25):

67: plt.subplot(5,5, i+1)

68: plt.xticks([])

69: plt.yticks([])

70: plt.grid(False)

71: plt.imshow(trainData[i], cmap=plt.cm.binary)
72: plt.xlabel(class names[trainLabels[i]])

73: plt.show()

74:

90

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

75: # Reshape the data matrix from (samples, height, width) to (samples,
height, width, depth)

76: # Depth (i.e. channels) is 1 since MNIST only has grayscale images
77: trainData = trainData[:, :, :, np.newaxis]

78: testData = testData[:, :, :, np.newaxis]

79:

80: # The labels comes as a single digit, indicating the class.

81: # But we need a categorical vector as the label. So we transform it.
82: # So that,

83: # '0' will become [1, 0, O, O, O, O, O, O, 0, O]

84: # '1' will become [0, 1, O, O, O, O, O, O, 0, O]

85: # '2' will become [0, O, 1, O, O, O, 0O, O, 0, O]

86: # and so on...

87: trainLabels = np utils.to categorical(trainLabels, 10)
88: testlLabels = np utils.to categorical(testlLabels, 10)

Here, we define a list named class_names to house the text labels of the 10 classes of
the Fashion-MNIST dataset (line 61). The index of each element of the list is the class ID.

We also load 25 samples from the dataset and display (lines 65-73).

Now we build our model structure. This is the same LeNet model we used for the
MNIST dataset:

091: def build lenet(width, height, depth, classes, weightsPath=None):
092: # Initialize the model

093: model = Sequential()

094:

095: # The first set of CONV => RELU => POOL layers

096: model.add(Conv2D(20, (5, 5), padding="same",

097: input_shape=(height, width, depth)))
098: model.add(Activation("relu"))

099: model.add(MaxPooling2D(pool size=(2, 2), strides=(2, 2)))
100:

101: # The second set of CONV => RELU => POOL layers

102: model.add(Conv2D(50, (5, 5), padding="same"))

103: model.add(Activation("relu"))

104: model.add(MaxPooling2D(pool size=(2, 2), strides=(2, 2)))

91

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:

The set of FC => RELU layers
model.add(Flatten())
model.add(Dense(500))
model.add(Activation("relu"))

The softmax classifier
model.add(Dense(classes))
model.add(Activation("softmax"))

If a weights path is supplied, then load the weights
if weightsPath is not None:

model.load weights(weightsPath)

Return the constructed network architecture

return model

We also define the graph_training_history() function exactly as before:

123: def graph_training history(history):

124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:

92

plt.
plt.

plt.

rcParams["figure.figsize"] = (12, 9)
style.use('ggplot")

figure(1)

summarize history for accuracy

plt.
plt.
plt.
plt.
plt.
plt.
plt.

subplot(211)

plot(history.history['accuracy'])
plot(history.history['val accuracy'])

title('Model Accuracy')

ylabel('Accuracy")

xlabel('Epoch")

legend(['Training', 'Validation'], loc='lower right')

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

140: # summarize history for loss

141:

142: plt.subplot(212)

143: plt.plot(history.history['loss"'])
144: plt.plot(history.history['val loss'])
145: plt.title('Model Loss")

146: plt.ylabel('Loss")

147: plt.xlabel('Epoch")

148: plt.legend(['Training', 'Validation'], loc='upper right')
149:

150: plt.tight layout()

151:

152: plt.show()

Also like we did before, we build, compile, and run the training:

155: # Build and Compile the model

156: print("[INFO] Building and compiling the LeNet model...")

157: opt = SGD(1r=0.01)

158: model = build lenet(width=28, height=28, depth=1, classes=10,

159: weightsPath=args["weights"] if args["train model"]
<= 0 else None)

160: model.compile(loss="categorical crossentropy",

161: optimizer=opt, metrics=["accuracy"])

163: # Check the argument whether to train the model
164: if args["train _model"] > 0:

165: print("[INFO] Training the model...")

166:

167: history = model.fit(trainData, trainLabels,

168: batch size=128,

169: epochs=50,

170: validation data=(testData, testlLabels),
171: verbose=1)

172:

173: # Use the test data to evaluate the model

174: print("[INFO] Evaluating the model...")

93

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

175:
176:
177:
178:
179:
180:
181:
182:

(loss, accuracy) = model.evaluate(
testData, testlabels, batch size=128, verbose=1)

print("[INFO] accuracy: {:.2f}%".format(accuracy * 100))

Visualize the training history
graph_training history(history)

Here we are setting the number of training epochs to 50 (line 169).

Once training is complete, we save the model weights to a file and select few random

images from the test dataset to evaluate the trained model:

184: # Check the argument on whether to save the model weights to file
185: if args["save trained"] > o:

186:
187:
188:

print("[INFO] Saving the model weights to file...")
model.save weights(args["weights"], overwrite=True)

189: # Training of the model is now complete

190:

191: # Randomly select a few samples from the test dataset to evaluate

192: for i in np.random.choice(np.arange(0, len(testlLabels)), size=(10,)):

193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
LINEAR)
204:
205:

94

Use the model to classify the digit
probs = model.predict(testData[np.newaxis, i])
prediction = probs.argmax(axis=1)

Convert the digit data to a color image
image = (testData[i] * 255).astype("uint8")
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)

The images are in 28x28 size. Much too small to see properly

So, we resize them to 280x280 for viewing
image = cv2.resize(image, (280, 280), interpolation=cv2.INTER_

Add the predicted value on to the image

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

206: cv2.putText(image, str(class names[prediction[0]]), (20, 40),
207: cv2.FONT_HERSHEY DUPLEX, 1.5, (0, 255, 0), 1)
208:

209: # Show the image and prediction

210: print("[INFO] Predicted: \"{}\", Actual: \"{}\"".format(

211: class_names[prediction[0]], class names[np.
argmax(testLabels[i])]))

212: cv2.imshow("Digit", image)

213: cv2.waitKey(0)

214:

215: cv2.destroyAllWindows ()

We use the class_names list defined earlier to get the text class name from the
predictions (lines 206 and 210).

Running Our Fashion-MNIST Model

When our code is ready, and we have also done the same prechecks we did for the
MNIST, we can run our new model:

python lenet fashion mnist tf keras.py --train-model 1 --save-trained 1

If you have not used the Fashion-MNIST dataset before, Keras will automatically
download it. Once the dataset is loaded, our code will display few samples from the
dataset (Figure 4-11).

95

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL
‘ &
|
|
Ankle boot T-shirt/top T-shirt/top T-shirt/top
- " pullover - Sneaker T Pullover : Sandal) : “sandal
I Aankle boot sandal sandal sneaker
A
" n: aky
Ankle boot I Trouser T-;hlm‘(op : Shirt Coat

Trouser

Coat

Figure 4-11. A few samples from the dataset

The training will run for 50 epochs, and will take few minutes when
running on a GPU.
With our LeNet model you will get around 90% accuracy (Figure 4-12).

Epoch 50,50
60000,/60000 [

accuracy: 0.9013

[INFO] Evaluating the model...

10000/10000 [===

[INFO] accuracy: 90.13%

===] - Os 17us/sample - loss: 0.2832

] - 25 32us/sample -

Toss: 0.2059 - accuracy: 0.9257 -

- accuracy: 0.9013

Coat

val_loss: 0.2832 - val

Figure 4-12. Accuracy of our model on Fashion-MNIST

The training history graph will look something like the one in Figure 4-13.

96

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

Model Accuracy

0.90 -

0.85 -

o
o
=

Accuracy

0.75 -

0.70 -

0.65

Epoch
Model Loss

0.8 -

Loss

0.6 -

0.4 -

0.2-

Epoch

Figure 4-13. The training history graph of our model

—— Training
—— Validation

50

—— Training
—— Validation

50

Our code will then display 10 random samples from the test dataset along with their

predicted class from the model (Figures 4-14, 4-15, 4-16).

97

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

Epoch 43/50
60000/60000 [====

|accuracy: 0.9044
Epoch 44/50
60000/60000 [
Laccuracy: 0.8932

Epoch 45/50

60000,/60000 [: 1 -
Laccuracy: 0.8924

Epoch 46/50
60000/60000 [
Laccuracy: 0.9026

ch 47/50
65800{60000 lrmmmeee————————————————]| =
_accuracy: 0.9034

Epoch 48/50
GEOOOHGDOOO GEommmmmE e e e] -

laccuracy: 0.9039

Epoch 49/50

60000/60000 [==============

_accuracy: 0.8954
eEpoch 50/50
60000/60000 [=======
_accuracy: 0.9013
|[INFO] Evaluating the model...

=il

] - 2s

2s

10000/10000 [==—==============—============] - 0s
[InNFO] accuracy: 90.13%

TNFOJ Saving the model weights to file...

INFO] Predicted: "Sneaker", Actual: "Sneaker"

33us/sample
33us/sample
33us/sample
33us/sample
33us/sample

33us/sample

33us/sample -

32us/sample

17us/sample

loss:

Toss:

loss:

Toss:

loss:

loss:

loss:

loss:

loss:

0.2207

0.2180

0.2167

0.2146

0.2123

0.2086

0.2077 -

0.2059

0.2832

accuracy: 0.9200 - val_loss: 0.2754 - val

val_loss: 0.3047 - val

accuracy: 0.9197

= 09210
17 Digit

N 2944 - val
[m] X

val In=ss-

Figure 4-14. Model prediction: sneaker

accuracy 0. 9044

och 44/50
63000{60000 e ——] - 2s
| accuracy: 0.8932
Epoch 45/50
60000/60000 [====
| accuracy: 0.8924
Epoch 46/50
60000/60000 [==============================]
laccuracy: 0.9026
Epoch 47/50
60000/60000 [:
[acouracy:
Epoch 48/50
60000/60000 [================
| accuracy: 0.9039
Epoch 49/50
60000/

60000
| accuracy: 0.8954
Epoch 50/50

60000/60000 [=========] = 2s
| accuracy: 0.9013
INFO] Evaluating the model...
10000/10000 [=] -0s
INFO] accuracy: 90.13%
INFO] Saving the model weights to file.
TNFDJ Predicted: "Sneaker”, Actual: "Sneaker”
INFO] Predicted: "Pullover”, Actual: "Pullover”

33us/sample
33us/sample
33us/sample
33us/sample
33us/sample

33us/sample

33us/sample -

32us/sample

17us/sample

: 0.2207

loss:

loss:

loss:

loss:

Toss:

loss:

loss:

loss:

0.2180

0.2167

0.2146 -

0.2123

0.2086

0.2077 -

0.2059

0.2832

accuracy: val_loss: 0.2754 - va

accuracy: val_loss: 0.3047 - val

accuracy: val_loss: 0.2944 - val

o X

accurac

Figure 4-15. Model prediction: pullover

98

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

Epoch 44/50

BOODD /0000 f——————————————————— 33us/sample - loss: 0.218B0 - accuracy: 0.9197 - val_loss: 0.3047 - val
accuracy: 0.8932

Epoch 45/50

60000,/60000 [:] - 25 33us/sample - loss: 0.2167 - accuracy: 0.9210 - val_loss: 0.2944 - val
accuracy: 0.8924

Epoch 46/50

60000,/60000 [] - 2s 33us/sample - loss: 0.2146 -
Laccuracy: 0.9026

Epoch 47/50

60000/60000 [====================cc=—=c====-] - 2s 33us/sample - loss: 0.2123 -
accuracy 0.9034

68800{60000 [s=============================] - 2s 33us/sample - loss: 0.2086 -
_accuracy: 0.9039

Gggch 49/50

00{60000 SLSesmmmEe e e S T] - 25 33us/sample - loss: 0.2077 -
|accuracy: 0.8954

Epoch 50/50

60000/60000 [s=s====================c===c=c] - 25 32us/sample - loss: 0.2059

| accuracy: 0.9013

[INnFO] Evaiuating the mode1...

10000/10000 [===== = =============] - 0s l7us/sample - loss: 0.2832 -
INFO] accuracy: 90 13%

INFO] Saving the model weights to file..

INFO] Predicted: "Sneaker" . Actual: 'Sneaker

INFO] Predicted: "Pullover”, Actual: "Pullover”

TNFDJ pPredicted: "Pullover™, Actual: "Coat"

INFO] Predicted: "Sandal", Actual: "Sandal"

Figure 4-16. Model prediction: sandal

Along with showing the results of the samples, the code will also print the predicted
and actual values to the console (Figure 4-17).

60000/60000 [============================== - 25 33us/sample - loss: 0.2146 - accuracy: 0.9219 - val_loss: 0.2774 - va
|accuracy: 0.9026

Epoc 0

68800{60000 P] - 25 33us/sample - loss: 0.2123 - accuracy: 0.9231 - val_loss: 0.2774 - val
Laccuracy: 0.9034

Epoch 48/50
60000,

L] - 25 33us/sample - loss: 0.2086 - accuracy: 0.9241 - val_loss: 0.2733 - val
_accuracy: 0.9039
Epoch 49/50

60000/60000 [s=========================== ==] - 25 33us/sample - loss: 0.2077 - accuracy: 0.9246 - val_loss: 0.2940 - val
|_accuracy: 0.8954

Epoch 50/50

60000/60000 [==============================] - 25 32us/sample - loss: 0.2059 - accuracy: 0.9257 - val_loss: 0.2832 - val

| accuracy: 0.9013

[INFO] Eva]uatrng the model.

10000/10000 [==============================] - 0s 17us/sample - loss: 0.2832 - accuracy: 0.9013
[INFO] accuracy: 90.13%

INFO] Saving the model weights to file...

INFO] Predicted: "Sneaker", Actual: "Sneaker™

INFO]| Predicted: "Pullover”, Actual: "Pullover”

INFO] Predicted: "Pullover”, Actual: "Coat"

INFO] Predicted: "Sandal", Actual: "Sandal"

[InNFO] Predicted: "shirt"™, Actual: "Shirt"

[INFO] Predicted: "T-shirt/top", Actual: "T-shirt/top"
INFO] Predicted: "Trouser", Actual: "Trouser"

INFO] Predicted: "Sneaker"”, Actual: "Sneaker"

LINFO]| Predicted: "Pullover™, Actual: "Pullover™
[InFO] Predicted: "Ankle boot™, Actual: "Ankle boot"

(deep-learning) C:\Development\experiments>

Figure 4-17. The predictions and actual values printed on the console

After the training completes, the model weights will be saved to data/ lenet_fashion_
weights.hdf5 like it did before.

99

CHAPTER 4 BUILDING YOUR FIRST DEEP LEARNING MODEL

What Can You Do Next?

Getting a 90% accuracy on the Fashion-MNIST dataset is good—but you can definitely
try to improve that result. You can try tweaking the model and see whether it improves
the results. Here are a few things you can try out:

e Change the number of convolutional filters, and see how it affects the

training (via the training history graph).

¢ Add more convolutional layers, and see whether it improves the
model. See how it affects the training time as well. And see how many
layers you can add before the model starts to become worse.

e Add more dense layers. Is the model starting to overfit?

You can detect when the model is overfitting by looking at the loss metrics. If
the validation loss stops dropping while the training loss continues to drop as the
training progresses, then the model is overfitting. This means the model has basically
“memorized” our training samples but has not learned to generalize the problem,
causing it to fail on the unseen samples (in this case, the validation samples).

We will be talking about how we can handle much more complex datasets and
models in later chapters.

100

CHAPTER 5

Understanding What
We Built

Running our first deep learning model gave us a small glimpse of what deep learning can
do. There are many exciting projects we can build with deep learning.

But first, it is better to understand what we built, and how it works.

Let us look back at the model we built. We used the LeNet architecture, which looks
like this (Figure 5-1):

Convolution Convolution Fully Connected Output Predictions
: Fully Connected
Pooling Pooling
Input Image ==Th ~ " -
[-——- r
. 1
3 L { 1
L - e el
i T T e e

Figure 5-1. The LeNet model

Looking through the model architecture and going through our code, we see that the
workings of our model is based on few functions:

1. Input: Digital Images

2. Convolutions

3. Nonlinearity function (ReLU)

4. Pooling

5. Classifier (Fully Connected Layer)

Let us see how each of these functions work and how they contribute to our model.

101
© Thimira Amaratunga 2021

T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_5

https://doi.org/10.1007/978-1-4842-6431-7_5#DOI

UNDERSTANDING WHAT WE BUILT

Digital Images

CHAPTER 5

Our input image is the first piece of the process.

Although we consider them as images based on our perception, for a machine,

images are just another form of digital data.

A digital image consists of a collection of pixels. Each pixel is defined by the color

value of one or more color-channels. A grayscale image has only a single channel. Each

pixel in the image has a value from 0 to 255, where 0 indicates black and 255 indicates

white (Figure 5-2).

s o o

123 73 28 63 Bl 43 ©

Figure 5-2. An image is just a matrix of pixel values

A color image has three channels—red, green, and blue for an RGB image (Figure 5-3).

102

CHAPTER5 UNDERSTANDING WHAT WE BUILT

1o o 0o 0 0o 6 0o 0 0 0 0O O 0 0 0 0 0 O
’/" 0o 0 0 0 0 o 114 0 0 ©
o~ o 0 0 0 3 70 123 73 28 63 81 43 0 0 0
o 0 0 0 2 6 0 0 0 0 0 0 8 0 0 0
0 0 0o 0 0O 0O C O OGO TO0OTO0O0OTO OT 0O OO 3 0
i 0 0 0 0 0 0 14 0 0 0 E 10
P 0 0 0 0 3 70 123 73 28 63 81 43 0 0 Of 0 O O
0 0o o 213 o 00 0o 0o 8 0 0 o0f 0o 0 o
e o 0 0 0 0 00 00 00 000000 offl1383 of o o o
P 0 0 0 0 0o 0 o Ims 1 o o o o
0 0 0 0 o 0o of 0 o of 0o 0o o
0o 0 0 2 o 0o 0|l 0 o of o 0o o
o o0 o 48 g 3 ol 0o 0o o o 0 o
o 0 o 48 109 1 0| 0o o o o o o
0o 0 o0 M % 0 0o ol 0 0 o o o ©
0 0 0 o 6 0 o 0o ol 0 0o of o 0o o
0 0 0 0 3 00 00 0] 0 0o o o 0 o
0 0 0 o0 0 00 0 0o 0|l © o o o 0 o
kN 0 0 0 o 0 0o o 0o o ol 0o o of 0o 0o o
N 0 0 0 0 0 00 00 0|l 0 o o o 0 o
5 0 0 0 o 0 00 0 0o 0|l 0 o of o o
5 0 0 0 o 0 0o 0o o ol 0 0o of o o g
A 0o 0 0 15 0 00 00 0| 0 0 0
kY o 0 o 25 0 0 0 0 0 0| 0 0 o
“‘ 0 0 104] 1] 1] 0 0 0 0 0 0
K 0o o 90 0 0 0 0 0 0f 0 oc%
b o 10 77 o o 0 0 0 0 O O
“‘ 0 [8D o o o 1]] o 0 o 0
Yo o3 00 0 0 0 0 0 O Channels
“ 0 1]] (4] 0 0 0 1]] L] 0 1] 0 o o 0 0 ﬁ

Figure 5-3. A color image is a set of pixel values per each channel

Therefore, in mathematical terms, an image is a matrix of pixel values.
The operations in a deep learning model (and in neural networks in general) are
performed on these matrices of values.

Convolutions

The mathematical convolution operation on matrices is capable of extracting features
from a matrix such as an image, as it preserves the spatial relationship between the
elements of the matrix. CNNs extensively use convolution operations, which is where
they get the name convolutional neural networks. As we discussed in Chapter 1, the
mathematical convolutions on an image work like the receptive fields of the visual cortex
in humans and animals. Like the receptive fields, convolutions work by processing small
squares of the input at a time.

103

CHAPTER5 UNDERSTANDING WHAT WE BUILT

Note You can learn more about the properties of mathematical convolution
operation at the Wikipedia page for “Convolution” here: https://
en.wikipedia.org/wiki/Convolution.

To get a simple understanding of how convolutions works, think of two matrices: the
input and the convolution matrix (Figure 5-4).

0 1 1 1 0 1 0 1
0 0 1 1 1 0 1 0
0 0 1 1 0 1 0 1

Input Matrix Convolution Matrix

Figure 5-4. The input and the convolution matrices

The convolution operation happens by the convolution matrix “sliding on” the input
matrix, to produce the convoluted output (Figure 5-5).

104

https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Convolution

CHAPTER5 UNDERSTANDING WHAT WE BUILT

(Ix1)+(1xQ0)+...

0 1 | o 1_",.0 a |l 3| a
-‘-‘1——
"0 1] 1
= SENENT NN
0 lod-1"7"1 | o 2 | 3| a
“
=

Convoluted Matrix

Figure 5-5. The convolution operation

105

CHAPTER 5 UNDERSTANDING WHAT WE BUILT

As the convolution operation happens, the convolution matrix only sees part of the
input matrix, but it maintains the spatial relationship of what it sees. Various different
convolution matrices produce different outputs from the input.

What if we apply the same operation to an image?

As we discussed, a digital image is a matrix of pixel values.

Therefore, we should be able to perform the same convolution operations on an
image as well.

If we attempted the same operation—where the input is an image—with different
convolution matrices, the output of them would show various representations of the
features of the image. Following are a few examples (Figure 5-6).

0.0625 | 0.125 |0.0625

0.125 | 0.25 | 0.125 —

0.0625 | 0.125 |0.0625

Input Image
..n‘-\.-. _' = » :i
"‘s': ARE '_-
VAN < 4 >, 1

- 0 0 0 —
1 2 1
1 -1 1
1 8 1 o
1 -1 1

Figure 5-6. Effects of different convolutions on an image

106

CHAPTER5 UNDERSTANDING WHAT WE BUILT

As these different convolution operations filter and extract different features of the
images, they are typically called “filters.”

In a CNN, many filters are used to extract and learn different features from the input
images. When using deep learning libraries such as TensorFlow or Keras, we do not need
to specify what each of the filters should be. Instead, we only specify the number and the
size of the filters. The training process of the library will determine which filters get used.
Typically, the more filters you have in a network, the better it is at learning patterns from

the input.

Nonlinearity Function

Once the convolution step is complete and the various feature maps of the input image
have been generated, a CNN applies a nonlinearity function on the feature maps.
Nonlinearity is needed because real-world data is nonlinear, but the convolution
function is a linear operation. Therefore, to handle the representation of real-world data,
we need to apply a nonlinearity function.

Rectified linear unit, or ReLU, is a commonly used nonlinearity function. Other
functions such as tanh or sigmoid can also be used as nonlinearity functions. Which
function to use will depend on the architecture of your model. ReLU performs better in
most general cases when using backpropagation for training. In most cases, ReLU also
performs better with deeper model architectures than sigmoid and tanh. Therefore,
ReLU is a good starting point when developing new model architectures.

The ReLU function can be seen in Figure 5-7.

107

CHAPTER5 UNDERSTANDING WHAT WE BUILT

v b g v . g . g

-10 -8 -6 -4 -2

Figure 5-7. The ReLU function

This may look complicated, but ReLU is quite simple. It goes through each pixel and
sets the negative values to zero, and retains the positive pixel values as they are.
The function can also be shown as:

Output = max(0, Input)

When applied to a feature map, the results from ReLU looks like this (Figure 5-8):

Input Feature Map Rectified Feature Map

Darker tones = negative values

Lighter tones = positive values Ry puskive veliex

Figure 5-8. ReLU applied to a feature map

108

CHAPTER5 UNDERSTANDING WHAT WE BUILT

Pooling

After the nonlinearity is applied, the CNN does a pooling step (also known as spatial
pooling, subsampling, or downsampling). Pooling reduces the dimensionality of each
feature map by retaining only the most important information. It can be done in several
ways, such as max pooling, average pooling, and sum pooling. Out of these, max pooling
has shown better results in general.

In max pooling, we define a window (an area of the feature map) and get the max
value from the pixels in that area (Figure 5-9).

max(2, 6,5,4)=6

A\, /|

\/
Max pOOling 2X2
with a stride of 2

Figure 5-9. Max pooling

Pooling gives a CNN several benefits:
1. It makes the feature dimensions smaller and more manageable.

2. Itreduces the potential to overfit by reducing the number of
parameters and computations needed in the network.

109

CHAPTER5 UNDERSTANDING WHAT WE BUILT

3. It makes the network invariant to small transformations,
distortions, and translations in the input, which means that small
changes in the input will not significantly affect the output. This
allows the network to generalize better.

4. Itmakes the network scale invariant, allowing objects to be
detected wherever they are in the input image.

At this point the work of a single convolution layer of the CNN is complete. The next
convolution layers would take the output feature maps of the previous layer, as their
inputs and continue the same operation until they reach the fully connected layers.

Classifier (Fully Connected Layer)

The classifier (also known as a fully connected layer or dense layer) is a traditional
multilayer perceptron network. Each neuron of a layer in the classifier connects with
every neuron in the next layer. The final output layer of the classifier typically uses a
softmax activation function. Other activation functions such as sigmoid can also be
used for different scenarios. Sigmoid generally performs well with binary classification
problems, while softmax performs well with multiclass classifications.

The purpose of the classifier is to take the high-level features extracted by the
convolution and the pooling layers and combine them in order for the final classification
(Figure 5-10).

Convolution Convolution Fully Connected Output Predictions
: Fully Connected
Pooling Pooling .
Input Image
I'I_ -0
3 = ;
& ~--1I0
| |
b || F e
| J 1 J
Feature Extraction Classification

Figure 5-10. The feature extraction and classification

110

CHAPTER5 UNDERSTANDING WHAT WE BUILT

How Does This All Come Together?

How do these elements that we discussed—convolutions, ReLU, pooling, and
classifiers—work together to understand the images?

To understand this, let us take an extremely simplified example: let's see how a
neural network might learn to recognize a square shape.

Like any other training task, the neural network would need to go through hundreds,
or maybe thousands, of training images.

What it needs to learn are the defining features of a square.

For us humans, as we have a firm grasp of visual elements, the defining features of
a square would be “lines,” “length,” and “angles.” And we know—that is, our minds have
been trained to know—which of the combinations of those features results in a square
and what to look for when recognizing one (Figure 5-11).

7 /\ "Lines” Stfalg t Lines"

o =
A

"Angles"

"Squares"

Figure 5-11. A possible thought process of identifying a square

But a machine (or an untrained AI) has no concept of what a line, length, or angle is.
What the Al (the neural network in this case) would try to do is to look for any common
features that can be seen in the provided training set.

The ability to “see” features of a neural network can be greatly increased by using a
feature extraction method such as convolutions.

As you can see in the preceding diagram (Figure 5-12), the convolution filters allow
to extract out some unique elements out of the images.

111

CHAPTER 5 UNDERSTANDING WHAT WE BUILT

R

i

Figure 5-12. Possible features learned by a model using convolutions

Using feature extraction flows like this (with convolutions, ReLU, and pooling), a
neural network would be able to better generalize the identified features from the input
images. As such, it would be able to narrow down the common features of the given data
set more easily.

Our handwritten digit classifier works in the same way.

The model we built uses many convolutional filters to identify the common features
of the digits and tries to identify which combinations of them contributes to which of the
digit classes (Figure 5-13).

112

CHAPTER 5 UNDERSTANDING WHAT WE BUILT

R
\ - 1
-2 0 2
A o s
\ 1 2 1
0 0 0

Figure 5-13. Possible features learned on the digits of the MNIST dataset

This same concept can be applied to recognize more complex inputs, such as more
real-world images, as well. The following diagram shows how an image of a car might be
identified with feature extraction in a CNN (Figure 5-14).

113

CHAPTER 5 UNDERSTANDING WHAT WE BUILT

-

{1

L
a

*HEE EE-EN
ST TEL
SEECES=EN
SEE=NSS-EEN &
CEE-"EE-EN @ "
E . . = i E) . . Airplane
S..‘E.- .. House
FEE-EESHE
SEE BREEE

o - =

Amir e

K
]
X
=]

Figure 5-14. How the filters extract features

What we talked about here is the flow of our simple convolutional neural network
with just a handful of layers. But the concepts within that model—convolutions,
regularization, pooling, and so on—are used within more complex models as well. You
will notice combinations of these same concepts applied within larger, more complex
models as we start to build them.

114

CHAPTER 6

Visualizing Models

When building a deep learning model, it is often better to be able to visualize the model.
Although the model we created—the LeNet model—is simple, it is better if we can see
the structure. Especially when we are tweaking or modifying the model, we can easily
compare their structures. And when working with more complex models (which we will
look at in the next chapter), it is easier to wrap your head around them if you can see
their structure visually.

But wouldn’t it be better if there was a way to automatically draw the structure of a
model?

As it happens, TensorFlow/Keras has just the method for it. But first, we first need to
learn how to save our models properly.

Saving Models in Keras

In Chapter 4, when we build our first deep learning model, we learned of a one way to
save a Keras model, which is to use the model.save _weights() function. This method,
as the name suggests, only saves the weights of the model’s neurons. The weights of a
model are what the model has learned through the training.

But a model is more than just its weights.

In order to use the saved weights, we have to reconstruct the model structure in
code, and load the weights into it. Furthermore, the save_ weights () function does not
save the optimizer state of the model. Therefore, we cannot use it to resume the training
of amodel from a previous training state.

For those requirements Keras provides another save option: model.save().

When using model.save() it saves all of the following as a single file:

e The model’s structure, architecture, and configuration

e The model’s learned weights

115
© Thimira Amaratunga 2021

T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_6

https://doi.org/10.1007/978-1-4842-6431-7_6#DOI

CHAPTER 6 VISUALIZING MODELS

o The model’s compilation information (configuration used with
model.compile())

o The optimizer and its state of the model (allowing you to resume

training)

This provides much more versatility to the saved models.

Note The model.save_weights() function has its own usage as well. In more
advanced situations, such as when the learned weights of one model needs to be
transferred to a different model architecture, the save_weights() function is highly
useful.

Let us add model.save() function to our LeNet model. We will modify the following
code segment from our original code (lines 178, 179):

173: # Check the argument on whether to save the model weights to file
174: if args["save_trained"] > o:

175: print("[INFO] Saving the model weights to file...")
176: model.save weights(args["weights"], overwrite=True)
177:

178: # Save the entire model

179: model.save('data/lenet _model.h5")

Now, if we run training on our model, it will save the full model as lenet_model.h5
in the data directory (Figure 6-1).

Name .. Date modified Type Size

B lenet_model.h5 7/22/2020 7:28 PM HS File 4935KB
. lenet_weights.hdf5 772272020 7:28 PM HDF5 File 4931 KB

Figure 6-1. The saved model file

With the full model saved, we can now use the built-in functions of Keras to visualize
the model.

116

CHAPTER 6 VISUALIZING MODELS

Using the plot_model Function of Keras

We can use the plot_model function from the tf.keras.utils package to plot the
structure of a Keras or tf.keras model.
However, to get the plot_model function to work, we will need to install few

additional packages:
o Graphvizlibrary: an open-source graph visualization library
o Pydot: the Python bindings of the Dot language used by Graphviz

We can install both the packages in to our conda environment by running (Figure 6-2):

conda install graphviz pydot

%] Command Prompt - conda deactivate - conda activate deep-learning

(deep-learning) C:\Development\experiments>conda install graphviz pydot

Figure 6-2. Installing Graphviz and Pydot packages

Once the packages are installed, we can start a new code file to add our visualization
code. We will name it model_visualization.py.
In this new file we will start by importing the necessary packages:

: # Import the packages
import tensorflow as tf
import numpy as np

from tensorflow.keras.models import load model
from tensorflow.keras.utils import plot model

S UV AW N

117

CHAPTER 6 VISUALIZING MODELS

We will use the load_model function to load the LeNet model we saved in the earlier step.
The plot_model function is what we will use for the visualization.
We can then load our model by passing the path to our saved model file to

the load_model function:

8: # Loading the model from saved model file
9: model = load model('data/lenet model.h5")

Finally, we can generate the model structure visualization by using the plot_model
function:

11: # Visualizing the model
12: plot_model(

13: model,

14: to file="model.png',
15: show_shapes=True,

16: show_layer names=True,
17: rankdir="TB",

18: expand_nested=False,
19: dpi=96

20:)

The parameters for the plot_model function are as follows:
o model: the model object we want to visualize
o to_file: the file name for the image that generates

o show_shapes: whether to show the input and output shapes of the
layers

o show_layer_names: whether to show the layer names of the model

o rankdir: this is an argument passed on to PyDot which determines
the format of the generated plot. rankdir is the direction of the plot.
TB or Top-to-Bottom will generate a vertical plot, while LR or Left-to-
Right will generate a horizontal plot.

o expand_nested: if your model has nested models, this will specify
whether to expand them in the plot or not

o dpi: the resolution of the generated plot in dots-per-inch

118

CHAPTER 6 VISUALIZING MODELS

When we run our code, the visualization will be saved as model.png on the same
folder as the code file, and would look like this (Figure 6-3):

mput: | [(7, 28,28, 1)]
output: | [(7, 28, 28, 1)]

conv2d mput: InputLayer

y
mput: | (7,28, 28 1)

output: | (7. 28, 28, 20)

conv2d: Conv2D

4
o o input: | (7, 28, 28, 20)
activation: Activation
output: | (7, 28, 28, 20)
y

mput: | (7. 28, 28, 20)

max_pooling2d: MaxPooling2D»
output: | (7. 14, 14, 20)

4
mnput:

7,14, 14, 20y
output: | (7, 14, 14, 50)

comv2d 1 Conv2D

A

mput: | (714, 14, 50)
output: | (7, 14, 14, 50)

activation_1: Activation

mput: | (7. 14, 14, 50)
output: (7,77, 50)

max_pooling2d 1: MaxPooling2D

4
input: | (7. 7.7, 50)

flatten: F latten

output: (7, 2450)

y
mput: | (7, 2450)

dense: Dense

output: | (7. 300)

mput:

2. 500)
7, 500)

activation_2: Activation

output:

y

mput: | (7, 500)
dense 1: Dense

output: | (2, 10)

y

input: | (7, 10)

activation 3: Activation

output: | (7, 10)

Figure 6-3. The structure of the LeNet model visualized using plot_model
119

CHAPTER 6 VISUALIZING MODELS

The show_shapes and show_layer names parameters allows you to control the
amount of details that will be displayed in the generated plot (Figure 6-4).

°“"2D<o\utput; (7,28, 28, g{)}>

Layer Name l Input and Output Shapes

mput: | (?, 28, 28, 20)

output: | (?, 28, 28, 20)
I

Figure 6-4. The layer name and the shape in the visualized plot

activation: Activation

You can try turning them off:

11: # Visualizing the model
12: plot model(

13: model,

14: to_file="model no_layer details.png’,
15: show_shapes=False,

16: show_layer names=False,

17: rankdir="TB',

18: expand_nested=False,

19: dpi=96

20:)

Which would result in (Figure 6-5):

120

CHAPTER 6 VISUALIZING MODELS

InputLayer

Conv2D

Y

Activation

MaxPooling2D

X
Conv2D

Activation

MaxPooling2D

Flatten

Dense

Y

Activation

Dense

A

Activation

Figure 6-5. Plot with both show_shapes and show_layer_names off

121

CHAPTER 6 VISUALIZING MODELS
Finally, with the rankdir parameter, you can switch to generating a horizontal plot:

11: # Visualizing the model
12: plot _model(

13: model,

14: to_file="model horizontal.png',
15: show_shapes=True,

16: show_layer names=True,

17: rankdir="LR",

18: expand_nested=False,

19: dpi=96

20:)

This results in a horizontal plot (Figure 6-6).

n max_pooling2d: MaxPooling2D conv2d 1: Conv2D activation |- Activation max

P

ut: > input:] output: > input: | output: > nput: l output: -

inj

'8, 20) (7, 28, 28, 20) I (7,14, 14, 20y (7,14, 14, 20y I (7, 14, 14, 50) (7, 14, 14, 50) I (7,14, 14, 50) (7,

Figure 6-6. Horizontal plot

Because of these flexibilities of the plot_model function, it can be an excellent tool
when you are building more complex models.

Using an Opensource tool to Visualize Model
Structures: Netron

Netron is an opensource visualizer for neural network, deep learning, and machine
learning models. Netron has been created by Lutz Roeder,' and is available through its
GitHub page.?

At the time of this writing, Netron supports the following model file formats:
ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Core ML (.mlmodel), Caffe (.caffemodel,
.prototxt), Caffe2 (predict_net.pb), Darknet (.cfg), MXNet (.model, -symbol.json),

'GitHub (Lutz Roeder), https://github.com/lutzroeder, [14 Nov, 2020].
2Github (Netron), https://github.com/lutzroeder/netron, [14 Nov, 2020].

122

https://github.com/lutzroeder
https://github.com/lutzroeder/netron

CHAPTER 6 VISUALIZING MODELS

Barracuda (.nn), ncnn (.param), Tengine (.tmfile), TNN (.tnnproto), UFF (.uff), and
TensorFlow Lite (.tflite). It also has experimental support for many other formats and is
actively being developed to constantly add support to more formats.

Netron has standalone installer packages for MacOS, Linux, and Windows.? It also
has a browser version.*

Once installed (or with the browser version), you just need to open the saved model
file from its UI (Figure 6-7).

Netron - (m] x

File Edit View Help

Figure 6-7. The Netron Ul

3Github (Netron downloads), https://github.com/lutzroeder/netron/releases/latest,
[14 Nov, 2020].

‘Lutz Roeder (Netron browser version), https://www.lutzroeder.com/ai/netron, [14 Nov, 2020].

123

https://github.com/lutzroeder/netron/releases/latest
https://www.lutzroeder.com/ai/netron

CHAPTER 6 VISUALIZING MODELS

When the model is loaded, you can select nodes/layers from the visualized graph to
view their properties (Figure 6-8).

C\Development!experiments'datailenst_modelh5 - Netron = o X

File Edit View

NODE PROPERTIES

type

ATTRIBUTES

INPUTS

OUTPUTS

Figure 6-8. Netron displaying a properties of a layer

Netron gives many other visualization properties as well as the ability to export the
visualized plot.

Visualizing the Features Learned by
Convolutional Filters

In the past few chapters, we have been looking into building our first deep learning
model and learn how it uses convolutional filters to extract features from the input and
procedurally “learn” how to interpret the input using those features.

But what does convolutional filters see? What features do they learn?

124

CHAPTER 6 VISUALIZING MODELS

We can attempt to see the features learned by the filters by maximizing the
activations of them.

Let us attempt it on our LeNet model. We will start with a new code file, which we
will name lenet _filter visualization.py.

We start by importing the necessary packages:

: # importing the necessary packages
import tensorflow as tf

import numpy as np

import time

import cv2

from tensorflow.keras.preprocessing.image import save_img
from tensorflow.keras import backend as K

O 60N O VT & W N B

from tensorflow.keras.models import load model

For the technique we are going to use, we need to disable eager execution, which is

in TensorFlow v2.x:

11: # we disable eager execution of TensorFlow v2.x
12: # Ref: https://github.com/tensorflow/tensorflow/issues/33135
13: tf.compat.vi.disable eager execution()

We then set the parameters for the generated images, and select the layer from the

model we are going to visualize:

15: # dimensions of the generated pictures for each filter.
16: img width = 28

17: img_height = 28

18:

19: # the name of the layer we want to visualize

20: # (check the model.summary())

21: layer name = 'conv2d 1'

As the layer name, we need to select a convolutional layer. If we look back at
the model structure we visualized earlier, we can see that our LeNet model has two
convolutional layers: conv2d and conv2d_1. We will select conv2d_1 here.

125

CHAPTER 6 VISUALIZING MODELS

We then load our model, using the model file we saved earlier in this chapter:

23: # Loading the model from saved model file
24: model = load model('data/lenet model.h5")
25:

26: print('Model loaded.")

27:

28: # get the summary of the model

29: model.summary()

The model. summary () function will give you a text representation of the model
structure. The output would look like this (Figure 6-9):

: "sequentia
.Layer (type) Output Shape Param #
conv2d (Conv2D) (Nome, 28, 28, 20) 520
activation (Activation) (None, 28, 28, 20) [i]
max_pooling2d (MaxPooling2D) (None, 14, 14, 20) 0
conv2d_1 (ConvZD) (None, 14, 14, 50) 25050
activation_1l (Activation) (None, 14, 14, 50) 0
max_pooling2d_1 (MaxPooling2 (None, 7, 7, 50) 0
flatten (Flatten) (None, 2450) 0
dense (Dense) (None, 500) 1225500
activation_2 (Activation) (None, 500) 0
dense_1 (Dense) (None, 10) 5010
activation_3 (Activation) (None, 10) 0

Total params: 1,256,080
Trainable Earamﬁ: 1,256,080
Non-trainable params: 0

Figure 6-9. The summary of the LeNet model

We then define the input data and the dictionary of layers with their names:

31:
32:
33:
34:
35:

126

input_img = model.input

this is the placeholder for the input images

get the symbolic outputs of each "key" layer (we gave them unique names).
layer dict = dict([(layer.name, layer) for layer in model.layers[1:]])

CHAPTER 6 VISUALIZING MODELS
We then define two utility functions:

37: # utility function to normalize a tensor by its L2 norm
38: def normalize(x):

39: return x / (K.sqrt(K.mean(K.square(x))) + 1e-5)

40:

41: # util function to convert a tensor into a valid image
42: def deprocess image(x):

43: # normalize tensor: center on 0., ensure std is 0.1
44: x -= x.mean()

45: x /= (x.std() + 1e-5)

46: X *= 0.1

47:

48: # clip to [0, 1]

49: X += 0.5

50: x = np.clip(x, 0, 1)

51:

52: # convert to RGB array

53: X *= 255

54: if K.image data_format() == 'channels first':
55: x = X.transpose((1, 2, 0))

56: x = np.clip(x, 0, 255).astype('uint8")

57: return x

The normalize function normalizes a given tensor by its L2-norm to allow a smooth
gradient ascent. The deprocess_image transforms a given tensor into a valid image.

Next comes the main chunk of the code. We loop over the 50 filters of the conv2d_1
layer, obtain the loss and gradients of each, and normalize the gradients (using the
normalize function defined earlier). We then start with a gray image with random noise
and run gradient ascent for 20 steps. 20 was selected here as the number of epochs based
on the results from past experiments which resulted in sharper visualizations. You can
attempt to change the number of epochs and see how it affects the output.

Finally, the processed filters are converted to images (using the deprocess_image
function defined earlier) and added to a list named kept_filters:

059: kept filters = []
060: for filter index in range(0, 50):

127

CHAPTER 6 VISUALIZING MODELS

061:
062:
063:
064:
065:
066:
067:
068:
069:
070:
071:
072:
073:
074:
075:
076:
077:
078:
079:
080:
081:
082:
083:
084:
085:
086:
087:
088:
089:
090:
091:
092:
093:
094:
095:

128

we scan through the 50 filters in our model
print('Processing filter %d' % filter_index)
start_time = time.time()

we build a loss function that maximizes the activation
of the nth filter of the layer considered
layer output = layer dict[layer name].output
if K.image data_format() == 'channels first':

loss = K.mean(layer output[:, filter index, :, :])
else:

loss = K.mean(layer output[:, :, :, filter index])

we compute the gradient of the input picture wrt this loss
grads = K.gradients(loss, input_img)[0]

normalization trick: we normalize the gradient
grads = normalize(grads)

this function returns the loss and grads given the input picture
iterate = K.function([input_img], [loss, grads])

step size for gradient ascent
step = 1.

we start from a gray image with some random noise
input_img data = np.random.random((1, img width, img height, 1))
input_img data = (input_img data - 0.5) * 20 + 128

we run gradient ascent for 20 steps

for i in range(20):
loss value, grads value = iterate([input_img data])
input_img data += grads value * step

print('Current loss value:', loss value)
if loss_value <= 0.:

096:
097:
098:
099:
100:
101:
102:
103:
104:

CHAPTER 6 VISUALIZING MODELS

some filters get stuck to 0, we can skip them
break

decode the resulting input image
if loss_value > 0:
img = deprocess image(input_img data[o0])
kept filters.append((img, loss value))
end_time = time.time()
print('Filter %d processed in %ds' % (filter index, end time -

start time))

With the images of the filters ready, we can stitch them into a single 6x6 grid image

and enlarge to make it more visible:

106

107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:

we will stich the best 36 filters on a 6 x 6 grid.
n==o6

the filters that have the highest loss are assumed to be better-looking.
we will only keep the top 36 filters.

kept_filters.sort(key=lambda x: x[1], reverse=True)

kept filters = kept filters[:n * n]

build a black picture with enough space for

our 8 x 8 filters of size 28 x 28, with a 5px margin in between
margin = 5

width = n * img width + (n - 1) * margin

height = n * img_height + (n - 1) * margin

stitched filters = np.zeros((width, height, 3))

fill the picture with our saved filters
for i in range(n):
for j in range(n):
img, loss = kept filters[i * n + j]
stitched filters[(img width + margin) * i: (img width +

margin) * i + img width,

126:

(img_height + margin) * j: (img_height +

margin) * j + img_height, :] = img

129

CHAPTER 6 VISUALIZING MODELS

127:

128: # enlarge the resulting image to make it more visible

129: stitched filters = cv2.resize(stitched filters, (579, 579),
interpolation=cv2.INTER_LINEAR)

130:

131: # save the result to disk

132: save_img('lenet filters %dx%d.png' % (n, n), stitched filters)

The resulting image, named lenet_filters_6x6.png, will be saved in the same folder as
the code file, and will look something like this (Figure 6-10):

' %
.
3 |
"
]
]
i
-

i o 5
Ayl samee Wy

:
:
5

Figure 6-10. The visualized activations of convolutional filters of the LeNet model

While at first glance this may seem like random noise, if you look closely you can
see some subtle patterns in the output. These patterns represent attempts in matching
lines, edges, and textures of the input images from various directions. As we discussed in
the last chapter, the different filters extract different features from the images. Once the
filters “learn” the features, a combination of those are used to match the input images to
determine what the image is.

130

CHAPTER 7

Transfer Learning

We saw how exceptionally well deep learning models performed when applied to
computer vision and classification tasks. Our LeNet model with the MNIST and
Fashion-MNIST datasets was able to achieve 90%-99% accuracy under a very reasonable
amount of training time. We have also seen how the ImageNet models have achieved
record-breaking accuracy levels in more complex datasets.

Now you might be eager to try out what we learned on a more complex and practical
classification task. But what should we consider when we are going to train our own

image classification model with our own categories from scratch?

The Problem with Little Data

If you attempted to build such a system, you might find that building a classifications
system from scratch—even with deep learning—is not an easy task. To get sufficient
accuracy from your model, without overfitting, would require a lot of training data.
The ImageNet has millions of data samples, which is why the models trained on
them perform so well. But for us to find or build a training dataset of that level for the
classification task we plan on building would be practically infeasible.

The problem with having a small dataset to train a model is that when the model
sees the same few samples repeatedly through its training epochs, it tends to overfit to
those specific samples. And not having a large enough validation dataset makes
matters worse.

But do we really need that much of data to get an image classification model
working? What can we do with a little amount of data?

One method we can try is the use of data augmentation.

131
© Thimira Amaratunga 2021

T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_7

https://doi.org/10.1007/978-1-4842-6431-7_7#DOI

CHAPTER 7 TRANSFER LEARNING

Using Data Augmentation

The idea of augmenting the data is simple: we perform random transformations and
normalization on the input data so that the model being trained never sees the same
input twice.

When working with limited amounts of training data, this method can significantly
reduce the chance of the model overfitting.

But performing such transformations to our input data manually would be a tedious
task, which is why TensorFlow/Keras has built-in functions to help with just that.

The Image Preprocessing package of tf.keras has the ImageDataGenerator function,
which can be configured to perform the random transformations and the normalization
of input images, as needed. This ImageDataGenerator can then be coupled with the
flow() and flow_from directory() functions to automatically load the data, apply the
augmentations, and feed into the model.

Note When using the ImageDataGenerator of tf.keras the output of it will be
the augmented dataset. Therefore, when using an ImageDataGenerator to feed
the data to a model, the model will only see the augmented dataset. This is the
recommended way that will work for many situations. There are other techniques
that combine the augmented dataset with the original dataset, but they are used
less commonly.

Let us write a small script to see the data augmentation capabilities of
ImageDataGenerator.

We will use the following as our input image (Figure 7-1). Create a directory named
data at the same place as the script and place this input image in there. Also create
a subdirectory named augmented inside this data directory. This will be where the
augmented images that are generated will be saved.

132

CHAPTER 7 TRANSFER LEARNING

Figure 7-1. The input image bird.jpg

We will then use the following script to load the image, run data augmentations
using ImageDataGenerator on it 20 times, and save the resulting augmented images:

01: from tensorflow.keras.preprocessing.image import ImageDataGenerator,
img to_array, load img

02:

03: # define the parameters for the ImageDataGenerator

04: datagen = ImageDataGenerator(

05: rotation_range=40,

06: width_shift_range=0.2,
07: height _shift range=0.2,
08: shear range=0.2,

09: zoom_range=0.2,

10: horizontal flip=True,
11: fill mode="nearest')
12:

13: img = load_img('data/Bird.jpg') # this is a PIL image
14:

133

CHAPTER 7 TRANSFER LEARNING

15: # convert image to numpy array with shape (3, width, height)

16: img arr = img to_array(img)

17:

18: # convert to numpy array with shape (1, 3, width, height)

19: img arr = img arr.reshape((1,) + img arr.shape)

20:

21: # the .flow() command below generates batches of randomly transformed images
22: # and saves the results to the “data/augmented” directory

23: 1 =0

24: for batch in datagen.flow(

25: img arr,

26: batch size=1,

27: save_to dir='data/augmented',

28: save_prefix='Bird A',

29: save_format="7jpeg'):

30: i+=1

31: if i > 20:

32: break # otherwise the generator would loop indefinitely

Here, we have used the following parameters for our augmentations:

e rotation_range: the range (degrees) within which to apply random
rotations to the images.

o width_shift range: the range within which to apply random
horizontal shifts.

o height shift range: the range within which to apply random vertical shifts.

o shear range: the range within which to apply random shearing
transformations.

e zoom_range: the range within which to apply random zooming to
the images.

o horizontal_flip: whether to apply random horizontal flips to the images.

o fill mode=‘nearest’: the method of which the newly created pixels
are filled. Specifying as nearest will fill the new pixels with the same
values as the nearest pixels of the input image.

134

CHAPTER 7 TRANSFER LEARNING

The ImageDataGenerator has several more parameters for augmentations. You can
read about them in the official documentation page.!

The flow() function of the ImageDataGenerator is able to take in the input
images, apply the augmentations we defined, and produce batches of augmented data
indefinitely on a loop. While in this example we only have one input image, the flow()
function is really meant to be used with batches of images.

The resulting augmented images are saved into the data/augmented directory, and
would look something like this (Figure 7-2):

Figure 7-2. Some of the augmented images

TensorFlow (ImageDataGeneraor parameters), https://www.tensorflow.org/api_docs/
python/tf/keras/preprocessing/image/ImageDataGenerator, [14 Nov, 2020].

135

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator

CHAPTER 7 TRANSFER LEARNING

By using data augmentations like these, we should be able to reduce the chance of a
deep learning model overfitting when training on a small dataset.

Build an Image Classification Model with Data
Augmentation

With our understanding of data augmentations, let us apply it to building a practical
model.

But first, we will need an image dataset. For this we will use a bird image dataset
from Kaggle.

Kaggle is a community of data scientists and machine learning enthusiasts, and
lets you find and publish datasets, experiment and build models in Jupyter notebook
environments, and participate in data science and machine learning competitions.

In the vast catalog of datasets of Kaggle, we will use the 225 Bird Species dataset.? The
dataset is about 1.4GB is size and is downloadable as a zip file (Figure 7-3).

2Kaggle, “225 Bird Species Dataset,” https://www.kaggle.com/gpiosenka/100-bird-species,
[1 Mar, 2020]. You will need to register for a Kaggle account to download datasets. Registration is
free, and gives you many benefits as a machine learning enthusiast.

136

https://www.kaggle.com/gpiosenka/100-bird-species

CHAPTER 7 TRANSFER LEARNING

= kaggle Q, search
@ Hor
T Ccompete B Lt
[Data 225 Bird Species
€> Notebooks 31316 Train, 1125 Test, 1125 Validation image
B piscu
ﬂ Garry '« Updated 5 da) 30)
€ Courses

ey | BR Data Tasks MNolebooks Discussion (4] Activity Metadata Download {1 GE) m H

£ Usabllity 6.2 * Tags

idation images imo a single

different Ak

Data Explorer
137 GB < consolidated (225 directories) & 0O
v O consolidated
» Den About this directory
» O wrain
O ek directory with 225 sub directories. Each sub directory contain images of the associated bird species. Images are 224 X 224 % 3
|pg format. This director ul for those 1nat wish 1o create their own train, test and vasdation sets. It is 3 consolidation of ail

the images in the test, train and valid deectones.
— — — —

AMERICAN PIIT AMERICAN REDSTART AMHINGA AMINAS HUMMINGEBIRD
169 thes 149 fies 57 ties 149 files

Figure 7-3. The 225 Bird Species dataset from Kaggle

Note This dataset, as with many other datasets in Kaggle, is actively maintained.

While there are images of 225 bird species at the time of this writing, more species
and categories may have been added to this dataset by the time you read this. You

can also select any other dataset with a similar structure.

Once downloaded, you can extract the contents of the zip file. In the extracted
directory, you will get 4 subdirectories: consolidated, train, test, and valid (Figure 7-4).

137

CHAPTER 7 TRANSFER LEARNING

This PC Local Disk (C:) Development book 534640_1386415_bundle_archive

Name Date modified Type

l consolidated :59 PM File folder
B test PM File folder
B tain / PM File folder
l valid :59 PM File folder

Figure 7-4. The extracted dataset

The consolidated directory contains the full dataset, organized into subdirectories
for each specie/category. The train, test, and valid subdirectories contain the same
dataset split into train, test, and validation sets with the same subdirectory structure.

For our experiment, initially we will only select 10 of the categories from the 225. We
will select the following 10 as a start:

o ALBATROSS

e BANANAQUIT

o BLACK-THROATED SPARROW
¢ COCKATOO

o DARKEYED JUNCO

o D-ARNAUDS BARBET

e GOLDEN PHEASANT

e HOUSE FINCH

e ROBIN

¢ SORA

Note These 10 categories were selected because they contain different number
of samples for each category. We will see how that affects the training accuracy
and how to overcome its negative effects.

138

CHAPTER 7 TRANSFER LEARNING

Create a new directory named data and create two subdirectories named train
and validation inside it. Copy over the directories of the preceding selected categories
from the train and valid directories of the extracted dataset to the train and validation
directories you have created. The final directory structure should be like this (Figure 7-5):

v . deep_learning_on_windows

v l data

v l train
| ALBATROSS
B BANANAQUIT
| BLACK-THROATED SPARROW
B cockatoo
B DARK EYED JUNCO
| D-ARNAUDS BARBET
| GOLDEN PHEASANT
[HOUSE FINCH
B ROBIN
B sora

v l validation
B ALBATROSS
R sanANAQUIT
| BLACK-THROATED SPARROW
B cockamo
I DARK EYED JUNCO
| D-ARNAUDS BARBET
[GOLDEN PHEASANT
I HOUSE FINCH
R rROBIN
B sora

Figure 7-5. The directory structure of the dataset

Note When creating the directory structure, make sure that the subdirectory
structure of the validation directory is same as that of the train directory.

Let us start our bird classification model with data augmentation by staring a new
code file. We will name it bird classify augmented.py.

139

CHAPTER 7 TRANSFER LEARNING
We will start with importing the necessary packages:

: from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, MaxPooling2D

from tensorflow.keras.layers import Activation, Dropout, Flatten, Dense
from tensorflow.keras import backend as K

import matplotlib.pyplot as plt

import math

~N O v B WN

We then define our utility function to graph the training history using Matplotlib:

09: # utility functions
10: def graph_training history(history):

11: plt.rcParams["figure.figsize"] = (12, 9)
12:

13: plt.style.use('ggplot")

14:

15: plt.figure(1)

16:

17: # summarize history for accuracy

18:

19: plt.subplot(211)

20: plt.plot(history.history['accuracy'])
21: plt.plot(history.history['val accuracy'])
22: plt.title('Model Accuracy')

23: plt.ylabel('Accuracy")

24: plt.xlabel('Epoch")

25: plt.legend(['Training', 'Validation'], loc='lower right')
26:

27: # summarize history for loss

28:

29: plt.subplot(212)

30: plt.plot(history.history['loss'])

31: plt.plot(history.history['val loss'])
32: plt.title('Model Loss')

33: plt.ylabel('Loss")

140

CHAPTER 7 TRANSFER LEARNING

34: plt.xlabel('Epoch")

35: plt.legend(['Training', 'Validation'], loc='upper right')
36:

37: plt.tight layout()

38:

39: plt.show()

Then, we define some parameters for the training:

41: # dimensions of our images.

42: img_width, img_height = 224, 224

43:

44: train data dir = 'data/train’

45: validation_data_dir = 'data/validation’
46:

47: # number of epochs to train

48: epochs = 50

49:

50: # batch size used by flow from directory
51: batch_size = 16

224x224 pixels is one of the standard sizes used in large-scale image classification
models such as ImageNet. We also use it here, as it allows us some flexibility later.

To use automatic data augmentations with our model training we need to define
data generator functions, like we did on our previous data augmentation example.
Using data generators gives us the added advantage of being able to use the flow_
from directory() function, which loads the data from our directory structure as well
as provide category labels using the subdirectory names. Here, we define two data

generators: one for training and one for validation:

53: # this is the augmentation configuration we will use for training
54: train datagen = ImageDataGenerator(

55: rescale=1. / 255,

56: shear_range=0.2,

57: zoom_range=0.2,

58: horizontal flip=True)
59:

141

CHAPTER 7 TRANSFER LEARNING

60: # this is the augmentation configuration we will use for testing:
61: # only rescaling

62: test datagen = ImageDataGenerator(rescale=1. / 255)

63:

64: train_generator = train_datagen.flow_from directory(

65: train _data dir,

66: target size=(img width, img height),
67: batch size=batch size,

68: class_mode="categorical')

69:

70: validation generator = test datagen.flow from directory(
71: validation data dir,

72: target size=(img width, img height),
73: batch_size=batch_size,

74: class _mode="categorical')

75:

76: # print the number of training samples
77: print(len(train_generator.filenames))

78:

79: # print the category/class labal map

80: print(train_generator.class_indices)

81:

82: # print the number of classes

83: print(len(train_generator.class indices))

As we are building a multiclass image classification model, the class_mode is set to
categorical.

The <generator>.filenames contains all the filenames of the training set. By getting
its length, we can get the size of the training set.

Likewise, <generator>.class_indices is the map/dictionary for the class names and
their indexes. Getting its length gives us the number of classes.

We use these values to calculate the required training and validation steps:

85: # the number of classes/categories
86: num_classes = len(train generator.class indices)
87:

142

88:
89:
90:
91:
92:
93:
94:

097

098:

CHAPTER 7 TRANSFER LEARNING

calculate the training steps
nb_train samples = len(train_generator.filenames)
train_steps = int(math.ceil(nb_train_samples / batch_size))

calculate the validation steps
nb_validation samples = len(validation generator.filenames)
validation steps = int(math.ceil(nb validation samples / batch size))

Now, we can define our model:

: # build the model
input_shape = (img width, img height, 3)

099:

100:
101:
102:
103:

model = Sequential()

model.add(Conv2D(32, (3, 3), input shape=input_shape))
model.add(Activation('relu"))
model.add(MaxPooling2D(pool size=(2, 2)))

104:

105:
106:
107:

model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))

108:

109:
110:
111:

model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))

112:

113:
114:
115:
116:
117:
118:

model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu"))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))

This is a slightly deeper model than our LeNet model, but uses the same concepts.

This uses three sets of CONV => RELU => POOL layers. Followed by a dense layer and a
softmax classifier.

143

CHAPTER 7 TRANSFER LEARNING

Once we have the model structure defined, we can compile it and run the training.
The model.fit() function accepts data generators just like it accepts arrays of training
data (as well as several other data formats).?

120: model.compile(loss="categorical crossentropy’,

121: optimizer="rmsprop',

122: metrics=["'accuracy'])

123:

124: history = model.fit(

125: train_generator,

126: steps_per epoch=train steps,

127: epochs=epochs,

128: validation data=validation_generator,
129: validation steps=validation_ steps
130:)

After the training step, we can save the trained model, evaluate it, and graph the
training history using the function we defined at the start:

132: model.save('bird classify augmented.hs5")

133:

134: (eval loss, eval accuracy) = model.evaluate(

135: validation generator, steps=validation steps)
136:

137: print("\n")

138:

139: print("[INFO] accuracy: {:.2f}%".format(eval accuracy * 100))
140: print("[INFO] Loss: {}".format(eval loss))

141:

142: # visualize the training history

143: graph training history(history)

If we run this code now, we should be getting as accuracy value somewhere between
70% and 85%. The accuracy you will be getting can vary due to the randomness of

3TensorFlow (Model fit() function), https://www.tensorflow.org/api docs/python/tf/keras/
Model#fit, [21 Nov, 2020].

144

https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit
https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit

CHAPTER 7 TRANSFER LEARNING

the applied data augmentations as well as the dataset being extremely small. For an
example, in the following instance we have achieved 82% accuracy (Figure 7-6).

.| Command Prompt

- 14s 129ms/step - loss: 0.7042 - accuracy: 0.7994 - val_loss: 0.1313 - val_acc

4s 128ms/step - loss: 0.6525 - accuracy: 0.8068 - val_less: 0.3606 - val_acc

o
w
£

] - 14s 129ms/step - loss: 0.6968 - accuracy: 0.8239 - val_less: 0. - val_acc

- 14s 129ms/step - loss: 0.6398 - accuracy: 0.8205 - val_loss: 0.4138 - val_acc
uracy: 0
E|.--'J:_r|
110/ - 14s 128ms/step - loss: 0.6512 - accuracy: 0.8216 - val_loss: 0.3677 - val_acc
14s 129ms/step loss: 0.6737 accuracy: 0.8017 val_loss: 1.0177 val_acc

were coerced from

- R — 0s 18ms/step - loss: 1.0177 - accuracy: 0.8200

[INFO] accuracy: 8
[INFO] Loss: 1.0177310425788164

(deep-learning) C:\Development\deep_learning_on_windows>

Figure 7-6. The accuracy of the model using data augmentations

If we look at the training history graph, we can see that the accuracy and the loss
curves have plateaued (Figure 7-7).

145

CHAPTER 7 TRANSFER LEARNING

Model Accuracy

Accuracy

—— Training
—— Validation

1) 10 .!IC- 30 -JIU .JIU
Epoch
Model Loss

—— Training
— Validation

0.5

Epoch

Figure 7-7. The training history graph of the model using data
augmentations

This usually indicates that the model cannot go further without more data. You
may also note that the validation accuracy is higher than training accuracy. This is also
usually an indication of insufficient data.

While an accuracy of 82% is not terrible, it is clear that to achieve a better accuracy
with the given data, we would need to use more advanced techniques.

Bottleneck Features

Should we accept the 82% accuracy that we achieved, or give up on attempting to build
our own bird image classifier?

No. Because deep learning has a solution.

146

CHAPTER 7 TRANSFER LEARNING

Deep learning supports an immensely useful technique called transfer learning. This
means that you can take a pretrained deep learning model— trained on a large-scale
dataset such as ImageNet—and repurpose it to handle an entirely different problem.
Since the model has already learned certain features from a large dataset (think back to
hierarchical feature learning), it would be able to use those features as a base to learn the
new classification problem we present it with.

The basic technique to get transfer learning working is to get a pretrained model
(with the trained model weights loaded) and remove the final fully connected layers
from that model. We then use the remaining portion of the model as a feature extractor
for our smaller dataset. These extracted features are called bottleneck features, which
are the last activation maps prior to the fully connected layers in the original model. We
then train a small model with fully connected layers on top of those extracted bottleneck
features to get the classes we need as outputs for our new classification task. This

workflow is shown in Figure 7-8.

147

CHAPTER 7 TRANSFER LEARNING

Smaller Dataset

2

_ Convolutions

=Pooling

Convolutions

= Pooling

Convolutions

Pooling

Convolutions

Pooling

Convolutions

Pooling

________________ N
i
]
'
:
Bottleneck Features H
]
]
New Dense i Original Dense
Model ' Layers
\J

New Classification

Figure 7-8. How bottleneck feature extraction works

As transfer learning is one of the heavily used techniques in building deep learning
models, frameworks such as TensorFlow and Keras provides methods to simplify
implementing it. TensorFlow and Keras have many of the ImageNet models built in with

148

CHAPTER 7 TRANSFER LEARNING

their trained weights. Their built-in implementations also provide utility functions to
remove the original top layers and to build new models around them for transfer learning.

Using Bottleneck Features with a Pretrained VGG16
Model

Let us utilize bottleneck features in our bird image classification model.

We shall use the VGG16 model, with its ImageNet trained weights, as our base
model. You can learn more about the VGG16 model and other ImageNet models in
Appendix 1.

To train our bird image classifier using bottleneck features we will use the following
steps:

1. Create a base model using one of the built-in pretrained ImageNet
models without its final dense layers. We will use the VGG16
model for our example.

2. Define a set of new dense layers for classification (which we will
refer to as the top model) and create a new model by combining
the base model and the top model.

3. “Freeze” the layers of the base model. That is, the weights of the
layers in the base model will not be trained, as we do not want to
destroy the features already learned by the base model when it was
trained on the ImageNet dataset. This allows the base model to
reuse those learnings and output the activations—the bottleneck
features—to the new dense layers we have added on top.

4. Train the resulting new model with our new categories.

Let us start our bird classification model using bottleneck features by starting a new
code file, which we will name bird_classify_bottleneck.py, and importing the necessary
packages:

01: import tensorflow as tf

02: import numpy as np

03: from tensorflow.keras.preprocessing.image import ImageDataGenerator,
img_to_array, load_img

149

CHAPTER 7 TRANSFER LEARNING

04: from tensorflow.keras.models import Sequential, Model, load model
05: from tensorflow.keras.layers import Dropout, Flatten, Dense,
GlobalAveragePooling2D, Input

06: from tensorflow.keras.applications.vggl6 import VGG16

07: from tensorflow.keras.applications.inception v3 import InceptionV3
08: from tensorflow.keras import optimizers

09: import matplotlib.pyplot as plt

10: import math

Like before, we will define our utility functions:

12: # utility functions
13: def graph training history(history):

14: plt.rcParams["figure.figsize"] = (12, 9)
15:

16: plt.style.use('ggplot")

17:

18: plt.figure(1)

19:

20: # summarize history for accuracy

21:

22: plt.subplot(211)

23: plt.plot(history.history['accuracy'])
24: plt.plot(history.history['val accuracy'])
25: plt.title('Model Accuracy')

26: plt.ylabel('Accuracy')

27: plt.xlabel('Epoch")

28: plt.legend(['Training', 'Validation'], loc='lower right")
29:

30: # summarize history for loss

31:

32: plt.subplot(212)

33: plt.plot(history.history['loss"'])

34: plt.plot(history.history['val loss'])
35: plt.title('Model Loss")

36: plt.ylabel('Loss")

150

CHAPTER 7 TRANSFER LEARNING

37: plt.xlabel('Epoch")

38: plt.legend(['Training', 'Validation'], loc='upper right')
39:

40: plt.tight layout()

41:

42: plt.show()

The training parameters and data generator definitions would also be the same as
before:

44: # dimensions of our images.

45: img width, img height = 224, 224

46:

47: train_data dir = 'data/train’

48: validation data dir = 'data/validation’
49:

50: # number of epochs to train

51: epochs = 50

52:

53: # batch size used by flow_from directory
54: batch_size = 16

55:

56: # this is the augmentation configuration we will use for training
57: train datagen = ImageDataGenerator(

58: rescale=1. / 255,

59: shear range=0.2,

60: zoom_range=0.2,

61: horizontal flip=True)
62:

63: # this is the augmentation configuration we will use for testing:
64: # only rescaling
65: test datagen = ImageDataGenerator(rescale=1. / 255)

66:

67: train_generator = train datagen.flow from directory(
68: train data dir,

69: target_size=(img_width, img_height),

151

CHAPTER 7 TRANSFER LEARNING

70: batch_size=batch_size,
71: class_mode="categorical")
72:

73: validation generator = test datagen.flow from directory(
74: validation data dir,

75: target size=(img width, img height),
76: batch_size=batch_size,

77: class_mode="categorical")

78:

79: # print the number of training samples

80: print(len(train_generator.filenames))

81:

82: # print the category/class labal map

83: print(train_generator.class_indices)

84:

85: # print the number of classes

86: print(len(train _generator.class indices))

87:

88: # the number of classes/categories

89: num_classes = len(train_generator.class indices)

90:

91: # calculate the training steps

92: nb_train_samples = len(train_generator.filenames)

93: train_steps = int(math.ceil(nb_train_samples / batch size))
94:

95: # calculate the validation steps

96: nb_validation samples = len(validation_generator.filenames)
97: validation_steps = int(math.ceil(nb_validation_samples / batch_size))

Next, we will define the base model. We will load the VGG16 model with its
ImageNet weights, but without the top dense layers, by using the include _top=False
parameter:

100: # create the base pre-trained model
101: base model = VGG16(weights="imagenet', include top=False, input
tensor=Input(shape=(img width, img height, 3)))

152

CHAPTER 7 TRANSFER LEARNING

We then define the top model, which is the dense layers and the final
classification layer:

103:
104:
105:
106:
107: predictions = Dense(num classes, activation='softmax')(x)

add a global spatial average pooling layer
base _model.output
GlobalAveragePooling2D()(x)

Dense(512, activation="relu')(x)

X X X =
]

Once both base and the top models are defined, we combine them into a single model:

109: # this is the model we will train
110: model = Model(inputs=base model.input, outputs=predictions)

We then set the layers of the base model nontrainable and compile the model. The
compiling of the model should only be done after the layers are marked as nontrainable:

112: # train only the top layers (which were randomly initialized)

113: # i.e. freeze all convolutional layers

114: for layer in base model.layers:

115: layer.trainable = False

116:

117: # compile the model (should be done *after* setting layers to non-
trainable)

118: model.compile(optimizer="rmsprop', loss='categorical crossentropy’,
metrics=['accuracy'])

Finally, we run the training, save the model, evaluate, and graph the training history:

120: history = model.fit(

121: train_generator,

122: steps_per_epoch=train_steps,

123: epochs=epochs,

124: validation data=validation generator,
125: validation steps=validation_steps
126:)

127:

128: model.save('bird classify bottleneck.h5")
129:

153

CHAPTER 7 TRANSFER LEARNING

130: (eval loss, eval accuracy) = model.evaluate(

131: validation_generator, steps=validation steps)

132:

133: print("\n")

134:

135: print("[INFO] accuracy: {:.2f}%".format(eval accuracy * 100))
136: print("[INFO] Loss: {}".format(eval loss))

137:

138: # visualize the training history

139: graph_training history(history)

Let us now run the training and see how the bottleneck model compares against the
simple model from before.
The accuracy has increased to 94% (Figure 7-9).

Command Prompt

- bs 53ms/step - loss: 0.0/65 - accuracy: 0.9710 - va ss: 0.0894 - val_accur

3:34:38.551325: W tensorflow/core/kernels/data/generator_dataset_op.cc:103] Error occurred when finalizing G
set iterator: Cancelled: Operation was cancelled

65 53ms/step - loss:

0.0803 - accuracy: 0.9722 - val_loss: 0.0834 - val_accur

940
2020-08 3:34:44.333562: W tensorflow/core/kernels/data/generator_dataset_op.cc:103] Error occurred when finalizing ¢
ener Dataset iterator: Cancelled: Operation was cancelled .
110/ [-] - 6s 52ms/step - loss: 0.0883 - accuracy: 0.9693 - val_loss: 0.0848 - val_accur

acy: 0.9800
Epoch 50/50

2020-08-09 /core nels/data/generator_dataset_op.cc:103] Error occurred when finalizing G
eneratorDa ration cancelled
110/110 [== step - loss: 0.0828 - accuracy: 0.9733 - val_loss: 0.1514 - val_accur

acy: 0.9400
2020-08-09 13:34:55.871939: W tensorflow/core, nels/data/generator_dataset_op.cc:103] Error occurred when finalizing G
ene orDataset iterator: Cancelled: Operation cancelled

WARNING:tensorflow:sample_weight modes were coerced from

1 - 0s 45ms/step - loss: 0.1514 - accuracy: 0.9400

[INFO] accuracy: 94.00%
[INFO] Loss: 0.15139231760258554

(deep-learning) C:\Development\deep_learning_on_windows>_

Figure 7-9. The accuracy of the model using bottleneck features

The training history graph also shows the improvements. The characteristics of
insufficient data which was there before are now gone (Figure 7-10).

154

CHAPTER 7 TRANSFER LEARNING

Model Accuracy

0.9

Accuracy

—— Training
—— Validation
0 10 20 30 40 50
Epoch
Model Loss
—— Training
Validation

——

Epoch

Figure 7-10. The training history graph of the model using bottleneck
features

Using the bottleneck features, we were able to increase our accuracy on the same
dataset from 82% to 94%.
But can we do better?

Going Further with Model Fine-tuning

Getting an accuracy of 94% is great. But we have seen deep learning models achieve far
more impressive results.

So, how can we improve our results further?

What we did when using bottleneck features was to take a deep learning model—the
VGG16 model in our case—which was already trained using a large dataset—the ImageNet

155

CHAPTER 7 TRANSFER LEARNING

dataset in our case—and used the bottleneck features from it to train a set of dense layers to
classify our data into the categories we want. And we did get good results from it.

But how well our data will be classified in this method still depends on how well the
bottleneck features of the pretrained model can represent our categories.

As ImageNet has been trained with millions of images representing 1,000 categories,
it does have a good generalization of features. In our case, as the original 1,000 categories
contained some bird image categories as well, the model was able to adapt to our new
categories quite well. But it is still limited by its training for the original 1,000 categories,
which are not exactly the categories we want.

This is the reason why our accuracy got limited to 94%.

But what if we take that pretrained model, and teach it a little bit about the categories
we want?

This is where the idea of model fine-tuning comes from.

In model fine-tuning, we take a trained model, and retrain the top-level classifier
and the last few convolutional layers using an extremely small learning rate.

We still freeze the lower level convolutional layers as before, so that they will not
be retrained when we fine-tune. This would preserve the general, less abstract features
learned by these layers, and would prevent the entire model from overfitting.

The workflow for fine-tuning is shown in Figure 7-11.

156

Frozen —
No training here...

Fine Tune—
Train a little bit...

CHAPTER 7 TRANSFER LEARNING

Smaller » .t.s-t

A

I . ons

= Pooling

Convolutions

= Pooling

Convolutions
Pooling

Convolutions

Pooling

Convolutions

i

Pooling

New Dense Model

Figure 7-11. The concept of model fine-tuning

To fine-tune our model, we will use the following steps:

1. Define the base model (with the pretrained weights) and the top

model as before.

2. Train the entire model using the bottleneck features as we did in

the earlier section.

157

CHAPTER 7 TRANSFER LEARNING

3. “Un-freeze” the last convolution block of the base model, that is,
allow it to be trained.

4. Train the entire model again with an extremely small learning rate.

When fine-tuning a model, you should always start with an already trained
model. If we attempt to fine-tune the model while the top model we added is still
untrained, because of the initial weights of those layers it will be randomly initialized,
it would potentially disrupt the already learned features of the base model due to back
propagation. As the limited data we have would be insufficient to fulfil the high learning
capacity of such a model (remember that the ImageNet models are capable of learning
from millions of training samples with thousands of categories), it would most definitely
cause the model to overfit.

Also, when fine-tuning, we would need to use an extremely small learning rate—
such as 0.0001—typically using the SGD optimizer. Using an adaptive learning rate
optimizer such as RMSProp could potentially mess up the already learned features of the
model.

Fine-tuning our VGG16 Model

Let us add fine-tuning to our bird image classification model.

We will start a new code file, which we will name as bird_classify_finetune.py.

As we need to start with a trained model for fine-tuning, the first part of the code is
nearly the same as we did for training with bottleneck features. The only difference is at
line 91, where we save the class_indices dictionary to a file. This file will become useful
in the later sections:

001: import tensorflow as tf

002: import numpy as np

003: from tensorflow.keras.preprocessing.image import ImageDataGenerator,
img_to_array, load_img

004: from tensorflow.keras.models import Sequential, Model, load model
005: from tensorflow.keras.layers import Dropout, Flatten, Dense,
GlobalAveragePooling2D, Input

006: from tensorflow.keras.applications.vggl6 import VGG16

007: from tensorflow.keras import optimizers

008: from tensorflow.keras.optimizers import SGD

158

CHAPTER 7 TRANSFER LEARNING

009: import matplotlib.pyplot as plt

010: import math

011:

012: # utility functions

013: def graph training history(history):

014: plt.rcParams["figure.figsize"] = (12, 9)
015:

016: plt.style.use('ggplot")

017:

018: plt.figure(1)

019:

020: # summarize history for accuracy

021:

022: plt.subplot(211)

023: plt.plot(history.history['accuracy'])
024: plt.plot(history.history['val accuracy'])
025: plt.title('Model Accuracy")

026: plt.ylabel('Accuracy')

027: plt.xlabel('Epoch")

028: plt.legend(['Training', 'Validation'], loc='lower right")
029:

030: # summarize history for loss

031:

032: plt.subplot(212)

033: plt.plot(history.history['loss'])

034: plt.plot(history.history['val loss'])
035: plt.title('Model Loss")

036: plt.ylabel('Loss")

037: plt.xlabel('Epoch")

038: plt.legend(['Training', 'Validation'], loc='upper right")
039:

040: plt.tight layout()

041:

042: plt.show()

043:

159

CHAPTER 7 TRANSFER LEARNING

044:
045:
046:
047:
048:
049:
050:
051:
052:
053:
054:
055:
056:
057:
058:
059:
060:
061:
062:
063:
064:
065:
066:
067:
068:
069:
070:
071:
072:
073:
074:
075:
076:
077:
078:

160

dimensions of our images.
img width, img_height = 224, 224

train_data_dir = 'data/train’
validation_data dir = 'data/validation’

number of epochs to train
epochs = 50

batch size used by flow from directory
batch size = 16

this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(

rescale=1. / 255,

shear_range=0.2,

zoom_range=0.2,

horizontal flip=True)

this is the augmentation configuration we will use for testing:
only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)

train_generator = train_datagen.flow from directory(
train_data dir,
target _size=(img_width, img height),
batch _size=batch size,
class _mode="categorical')

validation_generator = test datagen.flow from directory(
validation data dir,
target size=(img_width, img height),
batch_size=batch_size,
class_mode="categorical)

079:
080:
081:
082:
083:
084:
085:
086:
087:
088:
089:
090:
091:
092:
093:
094:
095:
096:
097:
098:
099:
100:
101:
102:
103:
104:

CHAPTER 7 TRANSFER LEARNING

print the number of training samples
print(len(train_generator.filenames))

print the category/class labal map
print(train_generator.class_indices)

print the number of classes
print(len(train_generator.class_indices))

the number of classes/categories
num_classes = len(train_generator.class_indices)

save the class indices for use in the predictions
np.save('class_indices.npy', train_generator.class_indices)

calculate the training steps
nb_train samples = len(train_generator.filenames)
train_steps = int(math.ceil(nb_train_samples / batch_size))

calculate the validation steps
nb_validation samples = len(validation generator.filenames)
validation_steps = int(math.ceil(nb_validation_samples / batch_size))

create the base pre-trained model
base_model = VGG16(weights="imagenet', include_top=False, input_

tensor=Input(shape=(img width, img height, 3)))

105:
106:
107:
108:
109:
110:
111:
112:

add a global spatial average pooling layer
base_model.output
GlobalAveragePooling2D()(x)

Dense(512, activation="relu')(x)

X X X =
1

predictions = Dense(num classes, activation='softmax")(x)

this is the model we will train

161

CHAPTER 7 TRANSFER LEARNING

113: model = Model(inputs=base model.input, outputs=predictions)

114:

115: # first: train only the top layers (which were randomly initialized)
116: # i.e. freeze all convolutional layers

117: for layer in base model.layers:

118: layer.trainable = False

119:

120: # compile the model (should be done *after* setting layers to non-
trainable)

121: model.compile(optimizer="rmsprop', loss='categorical crossentropy',
metrics=["accuracy'])

122:

123: history = model.fit(

124: train_generator,

125: steps_per epoch=train steps,

126: epochs=epochs,

127: validation data=validation_generator,

128: validation steps=validation steps,

129: max_queue_size=10,

130: workers=8

131:)

132:

133: model.save('bird classify fine-tune step 1.h5")
134:

135: (eval loss, eval accuracy) = model.evaluate(
136: validation generator, steps=validation steps)
137:

138: print("\n")

139:

140: print("[INFO] accuracy: {:.2f}%".format(eval accuracy * 100))
141: print("[INFO] Loss: {}".format(eval loss))

Once we have the trained model, we will define the parameters for the fine-tuning,
as well as resetting our data generators so that we can reuse them. We are setting the
number of epochs to fine-tune as 25:

162

CHAPTER 7 TRANSFER LEARNING

144: # Run Fine-tuning on our model

145:

146: # number of epochs to fine-tune

147: ft_epochs = 25

148:

149: # reset our data generators

150: train generator.reset()

151: validation generator.reset()

152:

153: # let's visualize layer names and layer indices to see how many layers
154: # we should freeze:

155: for i, layer in enumerate(base model.layers):
156: print(i, layer.name)

We will then un-freeze the layers from the last convolutional block of the base model
to the classification layers. All other layers in the base model will remain frozen:

158: # we chose to train the last convolution block from the base model
159: for layer in model.layers[:15]:

160: layer.trainable = False
161: for layer in model.layers[15:]:
162: layer.trainable = True

We then recompile the model, to make the modifications take effect, as well as define
the SGD optimizer with the low learning rate:

164: # we need to recompile the model for these modifications to take
effect

165: # we use SGD with a low learning rate

166: model.compile(

167: optimizer=optimizers.SGD(1r=0.0001, momentum=0.9),
168: loss="categorical crossentropy’,

169: metrics=["acc']

170:)

163

CHAPTER 7 TRANSFER LEARNING
Finally, we run the training, evaluating, and graphing the training history:

172: history = model.fit(

173: train_generator,

174: steps_per epoch=train steps,

175: epochs=ft_epochs,

176: validation data=validation_generator,
177: validation steps=validation steps,

178: max_queue_size=10,

179: workers=8

180:)

181:

182: model.save('bird classify finetune.h5')

183:

184: (eval loss, eval accuracy) = model.evaluate(
185: validation generator, steps=validation steps)
186:

187: print("\n")

188:

189: print("[INFO] accuracy: {:.2f}%".format(eval accuracy * 100))
190: print("[INFO] Loss: {}".format(eval loss))

191:

192: # visualize the training history

193: graph training history(history)

Here, we are saving the final trained and fine-tuned model as bird classify
finetune.hs. Keep this file, along with the class_indices.npy file we saved earlier in
the code, as they will be needed for the later sections.

Let us see how our fine-tuned model performs: our accuracy has increased to 98%
(Figure 7-12).

164

CHAPTER 7 TRANSFER LEARNING

Command Prompt
110/110 |==============s===============] - /s bUms/step - loss: 0.001Z - accuracy: 1.0000 - val_loss: 0.0Z23 - val_acc
acy: 0.98
Epoch 23/25
2020-08-09 127 rnels/data/generator_dataset_op.cc:103] Error occurred when finalizing

eneratorD.
110
acy: 0.6
[Epoch 24
2020-08-09 15:5
eneratorDataset

Operation was cancelled .
75 60ms/step - loss: 0.0016 - accuracy: 1.0000 - val_loss: 0.0312 - val_acc

W tensorflow/core/kernels/data/generator_dataset_op.cc:103] Error occurred when finalizing
iterator: Cancelled: Operatiol s cancelled i
=] - 7s 6lms/step - loss: 0.0017 - accuracy: 1.0000 - val_loss: 0.0381 - val_acc

els/data/generator_dataset_op.cc:103] Error occurred when finalizing
as cancelled

loss: 0.0016 - accuracy: 1.0000 - val_loss: 0.0152 -

acc
acy: 0.9800

2020-08-09 15:59:47.218658: W
eneratorDataset iterator:
MARNING:tensorflow:sample_weight m

celled

00%

72285253356677

[INFO] accuracy: 9
[INFO] Loss: 0.015

Development\deep_learning_on_win

(deep-learning) C:

ur

ur

y

s/data/generator_dataset_op.cc:103] Error occurred when finalizing G

Figure 7-12. The accuracy of the fine-tuned model

The graph for the fine-tuning looks good also (Figure 7-13).

Model Accuracy

Accuracy

093
/ —— Training

0,92 v —— Validation

Epoch
Model Loss

—— Training
—— Validation

Loss

o
o

Epoch

Figure 7-13. The history graph of fine-tuning the model

165

CHAPTER 7 TRANSFER LEARNING

With 98% accuracy, we have achieved nearly the limit of what we can do with a
tiny dataset.

Making Predictions Using Our Models

We now have a trained model with an excellent accuracy. Now we should look at how we
can use it to make predictions and classify images.

Recall that in our fine-tuning code we saved 2 files from the code: the class label
dictionary and the trained model file. We can now use those 2 files to rebuild the entire
trained model without having to redefine the model structure.

Let us start a new code file. We will name it bird_classify_predict.py.

We will first import the necessary packages and define the path to the test image, as
well as the image size parameters:

import numpy as np

import tensorflow as tf

from tensorflow.keras.preprocessing.image import img to array, load img
from tensorflow.keras.models import Model, load model

from tensorflow.keras.utils import to categorical

import cv2

image path = 'data/validation/ALBATROSS/1.jpg’
img width, img_height = 224, 224

OW 00 N O U1 & W N B

We then load the saved model and the class label dictionary.

11: # load the trained model

12: model = load model('bird classify finetune.h5")

13:

14: # load the class label dictionary

15: class_dictionary = np.load('class_indices.npy', allow pickle=True).item()

We then load and preprocess the image:

17: # load the image and resize itto the size required by our model
18: image orig = load_img(image path, target size=(img width, img height),
interpolation="1lanczos")

166

CHAPTER 7 TRANSFER LEARNING

19: image = img to_array(image orig)

20:

21: # important! otherwise the predictions will be '0'
22: image = image / 255.0

23:

24: # add a new axis to make the image array confirm with
25: # the (samples, height, width, depth) structure

26: image = np.expand dims(image, axis=0)

Then, we run the preprocessed image data through the loaded model, decode the
predictions, and print the predicted class as well as the confidence to the console:

28: # get the probabilities for the prediction

29: probabilities = model.predict(image)

30:

31: # decode the prediction

32: prediction probability = probabilities[0, probabilities.argmax(axis=1)]
[0]

33: class predicted = np.argmax(probabilities, axis=1)

34: inID = class predicted[0]

35:

36: # invert the class dictionary in order to get the label for the id
37: inv_map = {v: k for k, v in class dictionary.items()}

38: label = inv_map[inID]

39:

40: print("[Info] Predicted: {}, Confidence: {:.5f}%".format(label,
prediction_probability*100))

Finally, we use OpenCV to load and display the image, with the label and confidence
overlaid on top of it:

42: # display the image and the prediction using OpenCV

43: image cv = cv2.imread(image path)

44: image_cv = cv2.resize(image cv, (600, 600), interpolation=cv2.INTER_
LINEAR)

45:

46: cv2.putText(image cv,

167

CHAPTER 7 TRANSFER LEARNING

47: "Predicted: {}".format(label),

48: (20, 40), cv2.FONT HERSHEY DUPLEX, 1, (0, 0, 255), 2, cv2.
LINE_AA)

49: cv2.putText(image cv,

50: "Confidence: {:.5f}%".format(prediction probability*100),
51: (20, 80), cv2.FONT HERSHEY DUPLEX, 1, (0, 0, 255), 2, cv2.
LINE_AA)

52:

53: cv2.imshow("Prediction”, image cv)

54: cv2.waitKey(0)

55:

56: cv2.destroyAllWindows ()

Running the prediction code, we would get a result like this (Figure 7-14). As expected,
based on the validation accuracy we got, the confidence for the prediction is 99+%.

T tensorflow/strean_executor /plat forn/ 1t/dio_loader .cc:44] Fully opened dymasic
tensar low/strean_executor /plat form/defant/dho_loader .cc:44] Successfully opened dynasic
tensor flow/strean_executor /platform/default/dso_Toader .cc:44] Successfully opened dymamic
tensor Flow/stream_executor (plat form/default/dsa_loader _cc:44] Successfully opened dynasic
tensorFlow/strean_sxecutor /platform/default /dvo_loader .cc:44] Successfully opened dymasic
tensor low/strsan_executer fplat form/delanlt /dso_loader .ce:44] Successfully opened dynasic

tensor £l ow/cor e/ common_runt jme/gpu/gpu_device cc: m;i adding visible gpu devices:
tonsorflow/cor e/ comson_runt ima,'gpu,/gpu_dovice.cc: 1096] Device imtorcomnect stma‘-mar

(mvﬂo-nkue!mnnlq!wdw_ﬂvi‘e €
o f 1 ow/'Cor e/ Common_runt e, 11
:orﬂa—r«n.fcm_rmim! 1241
)I| g;a.
i

o:

. crened TensorFlow device [/job:lod
.u'I P GaForce RTX 2070, pci b-u id
secute -ma- formfdefault /dso_loader . cc:44] Successfully opened dynasic

Mo /str wam_executor /plat form/default /dsa_loader cc:44] Success fully opened dynasic

o0
ibrar: 1

'020-08- 333329: w lmsurf‘wr‘s rean_executor ge,redzone_allocator . ce:312] Internal: Dnvoking GPU asm compil
ation is swnf:e! aﬂ Cuda non-Windows platforms anly

el © perform ptx compilation. This message will ba only Togged once.
[In¥e] wedﬁueé us-\mm (mfnder-(e 99.96217%

Figure 7-14. Model prediction and confidence for an image of an albatross

168

CHAPTER 7 TRANSFER LEARNING

Following are few more examples of the results (Figures 7-15 and 7-16).

1 tensorflow/strean_executor fplatform/default/dso_loader . cc:44] Successfully opened dynamic
tensor flow/stream_executor /platform/default/deo_loader.cc:44] Successfully opened dynamic

tonsor flow/strean_executar /platform/dofault/dso_loader. cc:44] Successfully opened dynamic
tonsor flow/stream_executor fplatform/dofault/dso_loader. cc:44] Successfully opened dynamic

i rensor tream_executor /platf o loader . ce:44] successfully opened dynamic
1 tensorflow/stream_executor (platform/default/dso_loader.cc:44] Successfully opened dymamic

tensorf]ow/core/common_runt ime/gpu,/gpu_device. cc: Adding wisible gou devices: 0
tensar 1 ow/cor e/ common._rnt i me,/gpu/ gpu_device. o Srd e bl el

1 tensor Flo/cor e/ commen runt ime/gp/gpu_device. n
nensorf]ow/cor e/ common_runtime, Gpu, gpu_dev
or f1ow/cor o/ comson_ rmn-fm devic crnt-d TensorFlow device (J‘an Ll
fl with 6304 ME memory) -> ?:1

capab

2020 08-22 2. !} > tuuorf'lmﬂ’l ream_executor /platform/default/dso_loader.cc144) successfully opened dynamic
library cublastd 10.d11

120-01 7:37.669745: 1 tensorflow/stream_executor/platform/default/dso_loader.cc:44] successfully opened dynamic

wy ce: 0, name: GeForce RIX 2070, pci

5 -G8L10Z: W vensorflow/strean_executor gpu/redzone_allocator.cc:302] Intermal: Imveking cPU asm compdl)
it ion i supperted on Cuda et [placfocns only

et to perform ptx compilation. This message will be only logged once.

[EFa] e adictads DoARNALDS BARRET, Contidence. 100

barbet

tensorflow/strean_executor /platform/default/dsa_loader.cc:44] Successfully opened dynamic
tensorflow/strean_executor /platforn/default /dso_loader . cc:44] Successfully cpened dymamic
tensor Flow/strean_sxecutor fplatforn/default fdio loader. cc:44] Successfully opened dynamic
tensor Flow/stresm_executor fplatforn/defalt /dso_loader . cc:44] Succesafully opened dynasic
tensorflow/strean_executor fplatforn/default dso_loader. cc:44] Successfully opened dymamic

tonsorflow/strean_executor /platforn/default /dso_loader.cc:44] Successfully opened dynamic

tensor Flow/cor e, common_runt \ .

fopadavica.ce:1627] adiing visible s devices: 0
ol Cor e/ common Uity g/ B ol

Device interconmect Streamkxecutor

t.ensnrﬂw.-’onre..l’m-sz'uM -e.fwu.-’wu_ﬂw . 02 [}
Lerssor o sor)/ comon_runt -."wutj«_ ce.
: .1 tensorflow/core,/common_runtise/, w«‘.
task : 0/ device: GPU:0 with 6304 vB memory) - Tcal oPu (d'
A (e-wtc copnbmt
l0 d]l B38: T temsor lIo-u’skrenll_cw:ntw;"plar_forlr’d.lm'lk Jdso_loader . cc:44] Successfully opened dynamic

40745922 T temsorflow/strean_executor fplat form/default /dso_loader . cc:44] Successfully opened dynamic
1

: %
Created TenserFlow device (/job:lod
, Mame: GeForce RTX 2070, pei bus

.dil
41.755269: W tenmsorflow/strean_executor/gpu/redzone_allocator.cc:312] Internal: Invoking GPU ase compill
i pported mc..:[ia non Windoes platforms only e
o parform ptx compilation. This message w only logged cnce.
rm] ‘predicted: mn Confidence: 39

Figure 7-16. Model prediction and confidence for an image of a robin

Trying out a Deeper Model: InceptionV3

So far, we have only attempted to run our training on the 10 classes we have selected
from the full bird image dataset at the start of the chapter.

What if we need to attempt to build a model for 50, 100, or the full 225 classes of the
dataset?

169

CHAPTER 7 TRANSFER LEARNING

All the transfer learning techniques we have learned here—bottleneck features,
finetuning—as well as data augmentation can be applied to a larger set of classes as well.
So far, we have only attempted them with the VGG16 model. When working with
larger sets of classes and larger datasets, it is better to try out different pretrained models

as the base to find the most optimal model structure.

Here, we will look at how we can apply the same concepts with the InceptionV3
ImageNet model.

Along with using the InceptionV3 model, we will see how we can mitigate the data
imbalance of our selected dataset as well.

If you recall, when we selected the 10 classes from the full dataset, we selected them
in a way that some of the classes we selected have higher number of samples than others.
This is a common problem with real-world datasets that we get to deal with.

When there are large discrepancies in the number of samples presented to a model,
it may get more familiar with the features of the classes with the higher number of
samples and may undermine the features of less represented classes.

One way to mitigate this by calculating a weight value for each class based on the
number of samples they have (giving higher weights to classes with less number of
samples) and pass that weight mapping to the model being trained. This allows to model
to properly learn features of the classes with less samples.

We will see how this can be achieved when going through the following code for
InceptionV3. But keep in mind that this technique can be used with any model.

We will start our new code, which we will name bird classify inceptionV3.py, by
importing the necessary packages:

01: import tensorflow as tf

02: import numpy as np

03: from tensorflow.keras.preprocessing.image import ImageDataGenerator,
img to array, load img

04: from tensorflow.keras.models import Sequential, Model, load model
05: from tensorflow.keras.layers import Dropout, Flatten, Dense,
GlobalAveragePooling2D, Input

06: from tensorflow.keras.applications.inception_v3 import InceptionV3
07: from tensorflow.keras import optimizers

08: from tensorflow.keras.optimizers import SGD

09: import matplotlib.pyplot as plt

10: import math

170

CHAPTER 7 TRANSFER LEARNING

11: import os
12: import os.path

Here, we have imported the InceptionV3 model from the built-in models instead of
the VGG16 model we used earlier.
We will define our usual utility function to graph the training history:

14: # utility functions
15: def graph training history(history):

16: plt.rcParams["figure.figsize"] = (12, 9)
17:

18: plt.style.use('ggplot")

19:

20: plt.figure(1)

21:

22: # summarize history for accuracy

23:

24: plt.subplot(211)

25: plt.plot(history.history['accuracy'])

26: plt.plot(history.history['val accuracy'])
27: plt.title('Model Accuracy")

28: plt.ylabel('Accuracy')

29: plt.xlabel('Epoch")

30: plt.legend(['Training', 'Validation'], loc='lower right")
31:

32: # summarize history for loss

33:

34: plt.subplot(212)

35: plt.plot(history.history['loss'])

36: plt.plot(history.history['val loss'])

37: plt.title('Model Loss")

38: plt.ylabel('Loss")

39: plt.xlabel('Epoch")

40: plt.legend(['Training', 'Validation'], loc='upper right")
41:

171

CHAPTER 7 TRANSFER LEARNING

42: plt.tight layout()
43:
44: plt.show()

We will then define a new utility function to calculate the class weights:

46: # util function to calculate the class weights based on the number of
samples on each class

47: # this is useful with datasets that are higly skewed (datasets where
48: # the number of samples in each class differs vastly)

49: def get class weights(class data dir):

50: labels count = dict()

51: for img class in [ic for ic in os.listdir(class data dir) if ic[o0]
I= "'

52: labels count[img class] = len(os.listdir(os.path.join(class_
data_dir, img class)))

53: total count = sum(labels count.values())

54: class weights = {cls: total count / count for cls, count in

55: enumerate(labels count.values())}

56: return class weights

When called, this function will return a mapping of class weights that looks like the
following (Figure 7-17):

cv]| Select Command Prompt

INFO] accuracy: 98.00%
[INFO] Loss: 0.02558717284591694

(deep-learning) C:\Development\deep_learning_on_windows\Chapter_07>python bird_classify_inceptionv3.p

2020-08-22 23:03:46.434421: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfu*]y opened dynamic
library cudart64_101.d11

Found 1760 images belonging to 10 classes.
F?ggd 50 images belonging to 10 classes.
ik

D-ARNAUDS BARBET : 4, DARK EYED JUNCO :

) §

:03:49, opened dynamic
[library nvcuda.d11 y b5
[2020-08-22 23:03:49.054479: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce RTX 2070 computeCapability: 7.5

lcoreClock: 1.62GHz coreCount: 36 deviceMemorySize: B.00GiB deviceMemoryBandwidth: 417.29GiB/s

[2020-08-22 23:03:49.061404: tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
library cudart64_101.d11

2020-08-22 23:03:49.071213: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
Tibrary cublas64_10.d11

[2020-08-22 23:03:49.079070: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
Tibrary cufft64_10.d11

2020-08-22 23:03:49.084662: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
[library curand64_10.d11

%Q§£-08-22 23:03:49 tensor flow/stream_executor/platform/default/dso_loader.cc: Successfully opened dynamic
library cuso

tensorflow/stream_executor/platform/default/dso_loader.cc:: Successfully opened dynamic

Figure 7-17. The calculated class weights
172

058:
059:

CHAPTER 7 TRANSFER LEARNING

We then define our training parameters and generators, as before:

dimensions of our images.
img_width, img_height = 224, 224

060:

061:
062:

train_data dir = 'data/train’
validation_data_dir = 'data/validation’

063:

064:
065:

number of epochs to train
epochs = 50

066:

067:
068:

batch size used by flow from directory
batch _size = 16

069:

070:
071:
072:
073:
074:
075:

this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(

rescale=1. / 255,

shear range=0.2,

zoom_range=0.2,

horizontal flip=True)

076:

077:
078:
079:

this is the augmentation configuration we will use for testing:
only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)

080:

081:
082:
083:
084:
085:

train_generator = train_datagen.flow from directory(
train_data dir,
target size=(img width, img height),
batch_size=batch_size,
class_mode="categorical)

086:

087:
088:
089:
090:
091:

validation generator = test datagen.flow from directory(
validation data dir,
target size=(img width, img height),
batch_size=batch_size,
class_mode="categorical')

173

CHAPTER 7 TRANSFER LEARNING

092:

093: # print the number of training samples

094: print(len(train_generator.filenames))

095:

096: # print the category/class labal map

097: print(train_generator.class_indices)

098:

099: # print the number of classes

100: print(len(train generator.class indices))

101:

102: # the number of classes/categories

103: num_classes = len(train generator.class indices)

104:

105: # calculate the training steps

106: nb_train samples = len(train generator.filenames)

107: train steps = int(math.ceil(nb_train samples / batch size))
108:

109: # calculate the validation steps

110: nb_validation samples = len(validation generator.filenames)
111: validation steps = int(math.ceil(nb validation samples / batch size))

We load the class weights using the function defined earlier by passing the path to
the training directory:

113: # get the class weights
114: class weights = get class weights(train data dir)
115: print(class_weights)

When creating the base model, we will be using InceptionV3 instead of VGG16:

118: # create the base pre-trained model
119: base model = InceptionV3(weights="imagenet', include top=False, input_
tensor=Input(shape=(img width, img height, 3)))

The code for defining the top model and compilation remains unchanged:

121: # add a global spatial average pooling layer
122: x = base_model.output

174

CHAPTER 7 TRANSFER LEARNING

123: x = GlobalAveragePooling2D()(x)

124: x = Dense(512, activation="relu')(x)

125: predictions = Dense(num classes, activation='softmax')(x)

126:

127: # this is the model we will train

128: model = Model(inputs=base model.input, outputs=predictions)

129:

130: # first: train only the top layers (which were randomly initialized)
131: # i.e. freeze all convolutional layers

132: for layer in base model.layers:

133: layer.trainable = False

134:

135: # compile the model (should be done *after* setting layers to non-
trainable)

136: model.compile(optimizer="rmsprop', loss='categorical crossentropy’,
metrics=["'accuracy'])

At the model training step, we pass the class weights calculated earlier into the
class_weight parameter of the model.fit() function:

138: history = model.fit(

139: train_generator,

140: steps_per epoch=train_steps,

141: epochs=epochs,

142: validation_data=validation_generator,
143: validation steps=validation steps,
144: class _weight=class _weights

145:)

As before, the trained model is saved and evaluated, and the fine-tuning step begins:

147: model.save('bird classify fine-tune IV3 S1.h5")
148:

149: (eval loss, eval accuracy) = model.evaluate(

150: validation generator, steps=validation steps)
151:

152: print("\n")

175

CHAPTER 7 TRANSFER LEARNING

153:

154:
155:

print("[INFO] accuracy: {:.2f}%".format(eval accuracy * 100))
print("[INFO] Loss: {}".format(eval loss))

156:
157:

158:

Run Fine-tuning on our model

159:

160:
161:

number of epochs to fine-tune
ft_epochs = 25

162:

163:
164:
165:

reset our data generators
train_generator.reset()
validation generator.reset()

166:

167:
168:
169:
170:

let's visualize layer names and layer indices to see how many layers
we should freeze:
for i, layer in enumerate(base model.layers):

print(i, layer.name)

When fine-tuning InceptionV3, the number of layers to freeze is different than

VGG16. We will be freezing up to the 249th layer instead of the 15th layer:

172
173

174:

175

176:

: # we chose to train the last convolution block from the base model
: for layer in model.layers[:249]:

layer.trainable = False

: for layer in model.layers[249:]:

layer.trainable = True

The model is then recompiled, trained and fine-tuned, evaluated, and saved. Here

also the class weights are passed to model.fit():

178

: # we need to recompile the model for these modifications to take

effect

179
180

181:
182:

176

: # we use SGD with a low learning rate

: model.compile(

optimizer=optimizers.SGD(1r=0.0001, momentum=0.9),
loss="categorical crossentropy’,

183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:

CHAPTER 7 TRANSFER LEARNING

metrics=['accuracy']

)

history = model.fit(
train_generator,
steps_per epoch=train steps,
epochs=ft_epochs,
validation data=validation_generator,
validation steps=validation steps,
class weight=class weights

)

model.save('bird classify finetune IV3_final.h5")

(eval loss, eval accuracy) = model.evaluate(
validation generator, steps=validation steps)

print("\n")

print("[INFO] accuracy: {:.2f}%".format(eval accuracy * 100))
print("[INFO] Loss: {}".format(eval loss))

visualize the training history
graph training history(history)

If we run this for the same 10 classes as before, we will see nearly similar results as

before (Figure 7-18 and 7-19).

177

CHAPTER 7 TRANSFER LEARNING

mand Prompt

eneratorDataset 1terator: Cancelled: Operation was cancelled

110/110 [1 - 95 84ms/step - loss: 0.0401 - accuracy: 0.9989 - val_loss: 0.4272 - val_accu
acy: 0.9800

Epoch 23/25

2020-08-22 23:01:13.806231: W tensorf]ow!corefkerne1sfdataf§eﬂerator _dataset_op.cc:103] Error occurred when finalizing ¢
eneratorDataset iterator: Cancelled: Operation was cancelle

110/110 [] - 95 84ms/step - loss: 0.0515 - accuracy: 0.9977 - val_loss: 0.2017 - val_accu

acy: 1.0000

Epoch 24/25

2020-08-22 23:01:22.999282: W tensorflow/core/kernels/data/generator_dataset_op.cc:103] Error occurred when finalizing g
eneratorDataset iterator: Cancelled: Operation was cancell ege

110/110 [1 - 95 84ms/step - loss: 0.0445 - accuracy: 0.9994 - val_loss: 0.3207 - val_accu

acy: 1.0000

Epoch 25/25

2020-08-22 23:01:32.193648: W tensorflowfcurefkerne1sfdata}generator dataset_op.cc:103] Error occurred when finalizing g
leneratorDataset iterator: Cancelled: Operation was cancelle

110{1309%00] - 9s 83ms/step - loss: 0.1447 - accuracy: 0.9949 - val_loss: 0.3578 - val_accu

acy:

2020-08-22 23:01:41.343898: w tensorf]ow/core/kerne]sfdataf enerator_dataset_op.cc:103] Error occurred when finalizing g
eneratorDataset iterator: Cancelled: Operation was cancel eg

WARNING:tensorflow:sample_weight modes were coerced from

[se-1]

/4 [] - 1s 294ms/step - loss: 0.0256 - accuracy: 0.9800

INFO] accuracy: 98.00%
INFO] Loss: 0.02558717284591694

Figure 7-18. The accuracy of the fine-tuned InceptionV3 model

Model Accuracy

1.000 -

0.975 -

0.950 -

0.925 -

0.900 -

Accuracy

0.875 -

0.850 -

0.825 -
—— Training
0.800 - —— Validation

0 5 10 15 20 25
Epoch

Model Loss

—— Training
6 —— Validation

Loss

Epoch

Figure 7-19. The training history graph of the fine-tuned InceptionV3 model
178

CHAPTER 7 TRANSFER LEARNING

However, you will start to see the improvements when you apply this model to larger
number of classes or larger datasets.
You can now try applying this to the full 225 Bird Species dataset.

179

CHAPTER 8

Starting, Stopping,
and Resuming Learning

As you have probably learned by now, training deep learning models can take long times:
hours and maybe days, based on how complex the model and how large your dataset.

Sometimes it may not be practical to perform the training in one session.

Power failures, machine becoming unresponsive, OS errors, unplanned reboots, or
Windows updates may lead you to lose hours if not days of effort.

How can we mitigate that risk?

One way is to increase the speed of the model training.

Using Multithreading to Increase the Training Speed

When we used the data generators with the model.fit() function for training, by default
we were working on a single-threaded mode for the preparation of the data batches.
Basically, in this mode, only a single CPU thread is preparing and queuing the batches of
data to be sent to the model for training. By default the queue size is set to 10, which may
result in the GPU having to wait for more batches to be queued.

While this single-threaded batch preparation mode provides more predictable
behavior and is easier to debug, most of the time it slows down the training process.

This is why the model.fit() functions support a multithreaded mode. We can
enable it by using the workers parameter to specify the number of worker threads to use,
as well as increasing the max_queue_size parameters to increase the number of batches
that are queued.

Let us see how much of a speed increase we can achieve by tweaking these

parameters.

181
© Thimira Amaratunga 2021

T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_8

https://doi.org/10.1007/978-1-4842-6431-7_8#DOI

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

We'll begin with our bird classification system using the InceptionV3 model from
the last chapter, and add few code lines to measure the time taken for training. We will
import the time package for this:

13: import time

We will mark the start time at the beginning of the script just after we defined the
utility functions:

59: # start time of the script

60: start time = time.time()

61:

62: # dimensions of our images.

63: img_width, img_height = 224, 224

64:

65: train_data_dir = 'data/train’

66: validation data dir = 'data/validation’
67:

At the very end of the script we will mark the end time, and calculate the time it took
for the training:

209: end time = time.time()

210:

211: training duration = end_time - start time

212: print("[INFO] Total Time for training: {} seconds".format(training
duration))

Let us see how much time it takes to run the training (both with bottleneck features
and fine-tuning) on our InceptionV3 model in the single-threaded batch mode
(Figure 8-1).

182

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

5
110/110 [=———————— =] - 15s 133ms/step - loss: 0.0047 - accuracy: 1.0000 - val_loss: 0.3148 - val_acc|

110/110 [] - 14s 131ms/step - loss: 0.0115 - accuracy: 0.9989 - val_loss: 0.1724 - val_acc

110/110 [] - 155 133ms/step - loss: 0.0490 - accuracy: 0.9983 - val_loss: 0.2161 - val_acc

110/110 [==============================] - 15s 132ms/step - loss: 0.0295 - accuracy: 0.9983 - val_loss: 0.4686 - val_acc

110/110 [s===================c—c——oooo2] - 155 132ms/step - loss: 0.0087 - accuracy: 0.9994 - val_loss: 0.5341 - val_acq

IR =] - 14s 130ms/step - loss: 0.0117 - accuracy: 0.9994 - val_loss: 0.6702 - val_acc
uracy: 0.9800
WARNING:tensorflow:sample_weight modes were coerced from

to
B
/4 [s=============================] - 1s 284ms/step - loss: 0.0362 - accuracy: 0.9800
[INFO] accuracy: 98.00%

[INFO] Loss: 0.03617729049046048
[INFO] Total Time for training: 1101.4000144004822 seconds

(deep-learning) C:\Development\deep learning_on_windows\Chapter 08>

Figure 8-1. Time taken for training in single-threaded batch mode

It is taking around 1,101 seconds (or 18 minutes 21 seconds) for the full training.

Now let us see whether we can improve it using multithreading.

For both of our model.fit() functions, we will add two more parameters: workers
and max_queue size:

142: history = model.fit(

143: train generator,

144: steps_per epoch=train_steps,

145: epochs=epochs,

146: validation data=validation generator,
147: validation steps=validation steps,
148: class weight=class weights,

149: max_queue_size=15,

150: workers=8

151:)

192: history = model.fit(
193: train_generator,
194: steps_per epoch=train steps,
195: epochs=ft_epochs,

183

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

196: validation data=validation_generator,
197: validation steps=validation steps,
198: class weight=class weights,

199: max_queue_size=15,

200: workers=8

201:)

The workers parameter defines how many CPU threads are working in parallel to
generate the data batches. The defaultis 1, so here we have increased it to 8.

The max_queue_size parameters defines how many batches are kept ready in the queue
until consumed by the training. The default is 10, and here we have increased it to 15.

Let us see how these parameter values affect our training time (Figure 8-2).

0000
Epoch ZSIZS .
2020-08-23 11:45:24.907659: W tensorf]owfcore{kerne1Sfdatafgenerator dataset_op.cc:103] Error occurred when finalizing @
eneratorDataset iterator: Cancelled: Operation was cancelle

110/110 [] - 55 46ms/step - loss: 0.0291 - accuracy: 0.9994 - val_loss: 3.3631e-05 - val_a
ccuracg 1 0000

Epoch 24/2

2020-08- 23 11:45:29.929521: W tensorflow/core/kernels/data/generator_dataset_op.cc:103] Error occurred when finalizing g
eneratorDataset iterator: Cancelled: Operation was cancel eg

110/110 [s=============================] - 55 45ms/step - loss: 0.0644 - accuracy: 0.9977 - val_loss: 5.3955e-05 - val_a
ccuracy: 1.0000

Epoch 25/25

2020-08-23 11:45:34.922125: W tensorflow/core/kernels/data/generator_dataset_op.cc:103] Error occurred when finalizing G
eneratorDataset iterator: Cancelled: Operation was cancel eg

110!110 =] - 55 45ms/step - loss: 0.1216 - accuracy: 0.9966 - val_loss: 7.4892e-05 - val_a
ccuracy: 1.0000

2020-0i 23 11:45:39.895575: W tcnsurfIowfcorefkerne]sfdataf enerator_dataset_op.cc:103] Error occurred when finalizing 6
eneratorDataset iterator: Cancelled: Operation was cancel og

WARNING:tensorflow:sample_weight modes were coerced from

to

i
/4 [s=============================] - 1s 340ms/step - loss: 9.6225e-06 - accuracy: 1.0000

[INFO] accuracy: 100.00%
LINFO] Loss: 9.622452767032996e-06
[InFO] Total Time for training: 364.1093587875366 seconds

(deep-learning) C:\Development\deep learning_on_windows\Chapter_ 08>

Figure 8-2. Time taken for training in multithreaded batch mode

The training time is now decreased to 364 seconds, or just over 6 minutes and 3
seconds. That is about a 300% improvement in the training time.

However, there are few things that you should keep in mind when using this method.

First, the actual increase in speed you will get will depend on the model structure, as
well as the dataset you are using.

Secondly, when allocating the number of workers, you should think about the
number of threads your CPU supports in parallel. Setting the number of workers to a
value too high might lock up or freeze your machine. A good rule of thumb to follow on
Windows is to set the number of workers few numbers below the maximum thread count

184

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

of the CPU. For example, if your CPU supports 12 threads, keep the number of workers at
8. This would allow the OS, background tasks, and the other tasks of the training to run
without locking up.

And lastly, in rare situations, you may experience nonstandard behaviors in training.
This can be either due to bugs in the version you are using, or in the Windows build of
that version. If you are experiencing problems, try disabling the multithreading first
before changing anything else in the model.

Note In some Windows builds of TensorFlow 2.x you may experience an error
message such as “tensorflow/core/kernels/data/generator_dataset_op.cc:103]
Error occurred when finalizing GeneratorDataset iterator: Cancelled: Operation was
cancelled” when running training with multithreading (Figure 8-3). This can be
safely ignored and will hopefully be fixed in future builds.

d: Operation was cancelled
] - 55 47ms/step - loss: 0.1078 - accuracy: 0.9960 - val_loss: 0.0039 - val_accur|

pﬁdm 21/25

2020-08-23 11:45:14.743573: W tensorf]ow!corefkerne1sfdataf§enerator _dataset_op.cc:103] Error occurred when finalizing ¢
eneratorDataset iterator: Cancelled: Operation was cancelle

] - S5 46ms/step - loss: 0.1247 - accuracy: 0.9949 - val_loss: 0.0031 - -

- accuracy: 0.9977 - val_loss: 4.9125e-05 - val_

Epoch

2020-08- 23 11:45:24.907659: W tensorf]owfcunefkerne]sfdatafgenerator dataset_op.cc:103] Error occurred when finalizing g
eneratorDataset iterator: Cancelled: Operation was cancelle

[110/110 [=====] - 5s 46ms/step - loss: 0.0291 - accuracy: 0.9994 - val_loss: 3.3631e-05 - val_a
kcuracy: 1.0000

Epoch 24/25

[2020-08-23 11:45:29.929521: W tensorflow/core/kernels/data/generator_dataset_op.cc:103] Error occurred when finalizing g

eneratorDataset 1terator Lance11ed Operation was cancell eg

110/110 [== e =======] - 55 45ms/step - loss: 0.0644 - accuracy: 0.9977 - val_loss: 5.3955e-05 - val_a

kccura 1.0000

Epochcgs

2020-08- 23 11:45:34.922125: W tensorflow/core/kernels/data/generator_dataset_op.cc:103] Error occurred when finalizing g

eneratorDataset iterator: Cancelled: Operation was cancel cg

th Pl [] - 55 45ms/step - loss: 0.1216 - accuracy: 0.9966 - val_loss: 7.4892e-05 - val_a

kcuracy: 1.0000

2020-08-23 11:45:39.895575: W tensorf]owfcore/kerne1sfdata/generator dataset_op.cc:103] Error occurred when finalizing §
eratorDataset iterator: Cancelled: Operation was cancel

Figure 8-3. Error message with multithreading

Using Model Checkpoints

Looking back at our original problem—mitigating potential interruptions to the
training—we can see that speeding up the training process solves only part of the
problem. Even with the speed-up provided by multithreading, interruptions can still
happen and you may lose your progress.

185

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

This is where the concept of model checkpoints comes in: saving the state of your
model at certain points in the training process so that you can resume or recover the
model as at that point later.

We talked about how to save the entire model, including its weights, compilation,
and optimizer status, to a file using the model.save() function.

Model checkpoints works with the same principle.

But rather than having to save the model manually, you can ask the TensorFlow/
Keras framework to save them for you.

In TensorFlow/Keras, the training process supports callback functions. Callbacks
allow you to execute functions at certain stages in the training. There are several built-in
callbacks in TensorFlow/Keras, while also allowing you to define custom callbacks.

One of these built-in callbacks is ModelCheckpoint.

The ModelCheckpoint callback class allows you to automatically save your model
being trained at a given frequency or after a given condition. For example, you can tell
ModelCheckpoint to save the model after each training epoch, or after every 5 epochs, or
save only if the validation accuracy increases, and so on.

The parameters of ModelCheckpoint are as follows:

tensorflow.keras.callbacks.ModelCheckpoint(
checkpoint_filepath,
monitor="val loss",
verbose=0,
save_best_only=False,
save_weights only=False,
mode="auto",
save_freq="epoch"

o checkpoint_filepath: the file path to save the checkpoint. This can
take some parameters from the training epoch as formatting options,
so that you can inject those values into the filename. We will discuss
these options later.

e monitor: what training parameter to monitor if save_best_only is set
to true.

» verbose: the verbosity level, 0 or 1.

186

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

o save_best_only: whether to only save the checkpoint if the parameter
being monitored (specified by the monitor parameter) improves.

o save_weights_only: whether to just save the weights (similar to
model.save weights()), or the entire model (similar to model.
save()).

e mode: how to monitor the improvement in the parameter being
monitored. For example, if monitor is val_acc the mode should be
mayx; if it is val_loss, the mode should be min. If the mode is set to
auto, it will try to derive the mode using the name of the parameter
being monitored.

o save_freq: at what point the checkpoint should be saved. If set to
epoch, the checkpoint would be saved after each epoch. If set to a
number, the checkpoint would be saved every time that many epochs
pass.

Note On TensorFlow v2.1 or before, use the period parameter instead of
save_freq.

Let us add model checkpoints to our bird classification model. We will add a new
directory, checkpoints/training, to save the checkpoints. (And potentially a checkpoints/
finetune directory, to save the checkpoints in fine-tuning).

We will get a copy of our InceptionV3 fine-tuning code like before, and name
itbird classify inceptionV3_checkpoint.py. We will add the import to the
ModelCheckpoint callback in it. We will also make a change to the model.compile() call,
frommetrics=["accuracy'] tometrics=["acc"]. This is important to align with some
naming conventions that we will be using with ModelCheckpoints:

9: from tensorflow.keras.callbacks import ModelCheckpoint

136: model.compile(optimizer="rmsprop’, loss='categorical crossentropy’,
metrics=['acc'])

137:

138: training_checkpoint dir = 'checkpoints/training’

187

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

139:

140: filepath = training checkpoint dir + "/model-{epoch:02d}-{val_
acc:.2f}-{val loss:.2f}.h5"

141: checkpoint = ModelCheckpoint(

142: filepath,

143: verbose=1,

144: save_best_only=False,
145: save_weights only=False,
146: save_freq="epoch"
147:)

148:

149: callbacks list = [checkpoint]

150:

151: history = model.fit(

152: train generator,

153: steps_per epoch=train_ steps,

154: epochs=epochs,

155: validation _data=validation_generator,

156: validation steps=validation steps,

157: class weight=class weights,

158: max_queue_size=15,

159: workers=8,

160: callbacks=callbacks list

161:)

Note When specifying metrics=["accuracy'], the accuracy metrices

will be reported as accuracy and val_accuracy. When specifying them as
metrics=['acc'] they will be reported as acc and val_acc, which is the naming
convention expected by many of the callback functions. Make sure you also update
the graph_training history() function to update all references of accuracy
to acc, and val_accuracy to val_acc. If not updated, you may receive errors such as
“KeyError: 'acc.”

188

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

Here, we have specified the checkpoint to be saved at each epoch. We are not
monitoring any parameters.

Since we have specified the file name pattern as model-{epoch:02d}-{val_acc:.2f}-
{val_loss:.2f}.h5, the epoch number, validation accuracy values, and validation loss
values will be injected into the file name being saved (Figure 8-4). For example, the
filename model-01-0.80-12.06.h5 would indicate that the epoch was 01, validation
accuracy was 0.80, and validation loss was 12.06. These values allow you to easily select
the best checkpoints just by checking the file name.

g model to checkpoints/traiming/model-01-0,80-12.06.h5 .
=] - 21s 188ms/step - loss: 11.B074 - acc: 0.6710 - val_loss: 12.0565 - val_acc:

ssssssssssssssses,.] - ETA; Os - loss: 4.9171 - acc: 0.B463
g mode] to checkpoints/training/model-02-0,80-11.22.h5
=] - 155 133ms/step - loss: 4.8889 - acc: 0.8466 - val_loss: 11.2244 - val_acc: 0.

ETA: Os - Toss: 3.7496 acc: 0.6813

saving model to rhe(LpoMti_."train‘n:g_*’mdel 03-0.88-13.86.h5
& 1

155 3ms/step - loss: 3.7205 - acc: 0.8824 - val_loss: 13.859%4 - val_acc: 0.

] - : 05 - loss: 3.5568 - acc: 0.B951
: ining/model-04-0.92-6.00.h5
1

55 133ms/step Toss: 3.5355 - acc: 0.8949 - val_loss:

- - =>.] - ETA; Os - loss: 2.5787 - acc: 0.9151
: saving model to chr_'{.kpom:5,"tram-.n?3’modr:1-DS-O.M-l-!.SG.hS
=] 1 133ms/step - loss: 2.5614 - acc: 0.9159 - val_loss: 14

>.] - ETA: Os - loss: 2.4454 - acc: 0.9335
sing mode] to chackpoints/training/model-06-0.86-15.16.hS
====m==m——ms=m—e—=—====] - 155 133ms/step - loss: 2.4236 - acc: 0.9341 - val_loss:
EE00
Epoch 7,50
44/110 [e .iiiieieceessssaa.] - ETA: 85 - loss: 1.9806 - acc: 0.9432

Figure 8-4. Model checkpoints being saved at each epoch

While there may be situations where you would need to save every training epoch
(such as when training generative adversarial networks, where we cannot rely on the
accuracy metrics directly to identify model improvements), in most cases, it is best to
only save the checkpoint if the training improves.

Let us now update our code to only save the checkpoints when the validation loss
improves (when validation loss minimizes):

9: from tensorflow.keras.callbacks import ModelCheckpoint

130: model.compile(optimizer="rmsprop', loss='categorical crossentropy’,
metrics=["'acc'])

131:

132: training_checkpoint_dir = 'checkpoints/training’

133:

189

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

134: filepath = training checkpoint dir + "/model-{epoch:02d}-{val_
acc:.2f}-{val loss:.2f}.h5"
135: checkpoint = ModelCheckpoint(

136: filepath,

137: monitor="val loss",
138: verbose=1,

139: save_best only=True,
140: save_weights only=False,
141: mode="min"

142:)

143:

144: callbacks list = [checkpoint]

145:

146: history = model.fit(

147: train generator,

148: steps_per epoch=train_steps,

149: epochs=epochs,

150: validation_data=validation_generator,

151: validation steps=validation steps,

152: class _weight=class _weights,

153: callbacks=callbacks list

154:)

Here, we are setting the save_best_only parameter to True, and setting the monitor
to val_loss and the mode to min to only save the checkpoint if validation loss gets lower
than the previous epoch (Figure 8-5).

190

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

%] Command Prompt - python bird_classify_inceptionV3_checkpoint_best.py

[*..."]

WARNING:tensorflow:sample_weight modes were coerced from
to

[l..."]]
Mrain for 110 steps, validate for 4 steps
Epoch 1/50
2020-08-24 13:49:47.208877: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
library cublas64_10.d11
2020-08-24 13:49:47.586225: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
library cudnné4_7.d11
2020-08-24 13:49:48.589152: W tensor flow/stream_executor/gpu/redzone_allocator.cc:312] Internal: Invoking GPU asm compil

ation is supported on Cuda non-Windows platforms only
Relying on driver to perform ptx compilation. This message will be only logged once.

109/110 [== >.] - ETA: 0s - loss: 13.0251 - acc: 0.6313,
Epoch 00001: val_loss improved from 1nF to 13.31967, saving model to checkp01nts7tra!n1ngfmnde] 01-0.82-13.32.h5
110/110 [—————] - 21s 183msfstep - loss: 12.9886 - acc: 0.6318 - val_loss: 13.3197 - val_acc: O
.8200
Epoch 2/50
109/110 [==================ccc=c==ccc»] - ETA: 0s - loss: 4.9129 - acc: 0.8383
Epoch 00002: val 1055 1mproved from 13.31967 to 7. 03?34 saving model to checkpoints/training/model-02-0.92-7.04.h5
110/110 [====== ==== =] - 15s 133msfstep - loss: 4.9053 - acc: 0.8386 - val_loss: 7.0373 - val_acc: 0.9
200
Epoch 3/50
109/110 [——— >.] - ETA: Os - loss: 3.4438 - acc: 0.8859
Epoch 00003: val_loss did not improve from 7.03734
11010] - 145 129ms/step - loss: 3.4581 - acc: 0.8858 - val_loss: 14.5397 - val_acc: 0.
7800
Epoch 4/50
76/110 [ss=================>..........] - ETA: 45 - loss: 2.5278 - acc: 0.9128

Figure 8-5. Saving only the best checkpoints

This will reduce the number of checkpoint files being saved, making it easier to pick
out the best states of the model.

Based on the requirement of your model, you can do the same for any of the other
matrices of the model: acc, loss, val_acc, val_loss.

Now let us imagine that your model training was interrupted, but you have
some model checkpoints saved. How can you restart your training from one of those
checkpoints?

As an example, let us say that we have the following checkpoints saved (Figure 8-6)
and our training was interrupted sometime after epoch 33.

Name Date modified Type Size

@ model-01-0.80-15.35 0 3:54 PM H5 File 94,250 KB
@ model-05-0.88-6.49 1/24/2020 3:54 PM H5 File 4,250 KB
@ model-06-0.90-6.78 020 3:54 PM H5 File 94,250 KB
@ model-18-0.92-7.08 /24/2020 3:55 PM HS File 4,250 KB
@ model-33-0.94-8.92 24/2020 3:56 PM H5 File 94,250 KB

Figure 8-6. Saved checkpoints

191

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

Let us start a new code file that will allow us to continue the training from a
checkpoint. We will name it bird_classify continue_from checkpoint.py.

We will start by importing the packages. These will be the same imports as we did
before:

01: import tensorflow as tf

02: import numpy as np

03: from tensorflow.keras.preprocessing.image import ImageDataGenerator,
img to array, load img

04: from tensorflow.keras.models import Sequential, Model, load model
05: from tensorflow.keras.layers import Dropout, Flatten, Dense,
GlobalAveragePooling2D, Input

06: from tensorflow.keras.applications.inception _v3 import InceptionV3
07: from tensorflow.keras import optimizers

08: from tensorflow.keras.optimizers import SCD

09: from tensorflow.keras.callbacks import ModelCheckpoint

10: import matplotlib.pyplot as plt

11: import math

12: import os

13: import os.path

14: import time

We will then define our usual utility functions:

16: # utility functions
17: def graph_training history(history):

18: plt.rcParams["figure.figsize"] = (12, 9)
19:

20: plt.style.use('ggplot")

21:

22: plt.figure(1)

23:

24: # summarize history for accuracy

25:

26: plt.subplot(211)

27: plt.plot(history.history['acc'])

28: plt.plot(history.history['val acc'])

192

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

29: plt.title('Model Accuracy")

30: plt.ylabel('Accuracy')

31: plt.xlabel('Epoch")

32: plt.legend(['Training', 'Validation'], loc='lower right")
33:

34: # summarize history for loss

35:

36: plt.subplot(212)

37: plt.plot(history.history['loss'])

38: plt.plot(history.history['val loss'])

39: plt.title('Model Loss")

40: plt.ylabel('Loss")

41: plt.xlabel('Epoch")

42: plt.legend(['Training', 'Validation'], loc='upper right")
43:

44: plt.tight layout()

45:

46: plt.show()

47:

48: # util function to calculate the class weights based on the number of
samples on each class

49: # this is useful with datasets that are highly skewed (datasets where
50: # the number of samples in each class differs vastly)

51: def get class weights(class data dir):

52: labels count = dict()

53: for img class in [ic for ic in os.listdir(class data dir) if ic[o0]
I= "'

54: labels count[img class] = len(os.listdir(os.path.join(class
data_dir, img class)))

55: total count = sum(labels count.values())

56: class_weights = {cls: total count / count for cls, count in

57: enumerate(labels count.values())}

58: return class_weights

193

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

We will then add a new function that will return the epoch number of a given
checkpoint:

60: # util function to get the initial epoch number from the checkpoint
name
61: def get init epoch(checkpoint path):

62: filename = os.path.basename(checkpoint path)
63: filename = os.path.splitext(filename)[0]

64: init_epoch = filename.split("-")[1]

65: return int(init_epoch)

Our training parameters will be as same as before:

68: # start time of the script

69: start time = time.time()

70:

71: # dimensions of our images.

72: img width, img height = 224, 224

73:

74: train_data dir = 'data/train’

75: validation_data dir = 'data/validation’
76:

77: # number of epochs to train

78: epochs = 50

79:

80: # batch size used by flow from directory
81: batch_size = 16

Then we define the checkpoint to load and get the epoch number of it using the
function we defined earlier:

83: # the checkpoint to load and continue from

84: checkpoint_to_load = "checkpoints/training/model-33-0.94-8.92.h5"
85: # get the epoch number to continue from

86: init _epoch = get init_epoch(checkpoint to load)

194

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

Our data generators and parameters will be defined exactly as same as the initial
training script:

088: # this is the augmentation configuration we will use for training
089: train datagen = ImageDataGenerator(

090: rescale=1. / 255,
091: shear_range=0.2,

092: zoom_range=0.2,

093: horizontal flip=True)
094:

095: # this is the augmentation configuration we will use for testing:
096: # only rescaling

097: test datagen = ImageDataGenerator(rescale=1. / 255)

098:

099: train generator = train datagen.flow from directory(

100: train_data_dir,

101: target size=(img width, img height),
102: batch _size=batch size,

103: class _mode="categorical')

104:

105: validation generator = test datagen.flow from directory(
106: validation_data_dir,

107: target _size=(img width, img height),
108: batch size=batch size,

109: class _mode="categorical')

110:

111: # the number of classes/categories

112: num_classes = len(train generator.class indices)

113:

114: # calculate the training steps

115: nb_train samples = len(train generator.filenames)

116: train steps = int(math.ceil(nb_train samples / batch size))
117:

118: # calculate the validation steps

119: nb_validation_samples = len(validation_generator.filenames)

195

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

120: validation steps = int(math.ceil(nb validation samples / batch size))
121:

122: # get the class weights

123: class weights = get class weights(train data_dir)

Then we use the load_model () function to load the checkpoint. Once loaded it will
be our model:

125: # load the model state from the checkpoint
126: model = load model(checkpoint to load)

The checkpoint definitions will be same as before:

128: training_checkpoint dir = 'checkpoints/training’

129:

130: filepath = training checkpoint dir + "/model-{epoch:02d}-
{val acc:.2f}-{val loss:.2f}.h5"

131: checkpoint = ModelCheckpoint(

132: filepath,

133: monitor="val acc",

134: verbose=1,

135: save_best only=True,
136: save_weights only=False,
137: mode="max"

138:)

139:

140: callbacks list = [checkpoint]

In the model. fit() function we add an additional parameter initial epoch with
the value we derived earlier to specify from which epoch to start the training from:

142: history = model.fit(

143: train_generator,

144: steps_per_epoch=train_steps,

145: epochs=epochs,

146: validation data=validation_generator,
147: validation_steps=validation_steps,
148: class weight=class weights,

196

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

149: initial epoch=init_epoch,
150: callbacks=callbacks list
151:)

The remaining steps of the training will remain same:

153: model.save('bird classify fine-tune IV3 S1.h5")

154:

155: (eval loss, eval accuracy) = model.evaluate(

156: validation generator, steps=validation steps)
157:

158: print("\n")

159:

160: print("[INFO] accuracy: {:.2f}%".format(eval accuracy * 100))
161: print("[INFO] Loss: {}".format(eval loss))

162:

163:

164: # Run Fine-tuning on our model

ntinue_from_checkpoint.py

2020-08- 24 16 40: 55 638477: I tensorflow/stream_executor/platform/default/dso_

library cusparse64_10.d11

2020-08-24 16:40:55.642160: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic

library cudnné4_7.d11

2020-08-24 16:40:55.645791: I tensorf]w!corefcmn_runt‘ine;‘gpufgpu_dwice,cc:169?] Adding visible gpu devices: 0

2020-08-24 16:40:56.147974: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1096] Device interconnect StreamExecutor

with strength 1 edge matrix:

2020-08-24 16:40:52.152029: I tensorflow/core/common_runtime/gpu/gpu_i dev1ce.cc:11021 0
I

oader.cc:44] Successfully opened dynamic

2020-08-24 16:40:56.154295: tensorﬂow/core;"cmn_rununefgpufg:u_dev'lce.cc 1115] 0: N

2020-08-24 16:40:56.157046: I tensorflow/core/common_runtime/ ggu gpu_device.cc:1241] Created TensorFlow device (/job:lod

a'Ihost,-’rep‘hca 0/task:0/device:GPU:0 with 6304 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2070, pci bus id
0000:01:00.0, compute capabﬂ‘lty 7:5)

WARNING: tensor flow: sample_weight modes were coerced from

t.O

' 0

n’nRMiP.lc.::tensorﬂm:salp'lq_wight modes were coerced from

rto .
Train for 110 steps, validate for 4 steps
Epoch 34/50
2020-08-24 16:41:02.837850: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
library cublas64_10.d11
2020-08-24 16:41:03.229234: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
library cudnné4_7.d11
2020~ Og 24 16:41:04.228953: W tensor flow/stream_executor/gpu/redzone_allocator.cc:312] Internal: Invoking GPU asm compil
tion is supported on Cuda non-Windows platforms only
Re]y‘lng on driver to perform ptx compilation. This message will be only 1ogged once.
r FF b DR L N R R, b o] - ETA: 255 - loss: 1.2478 - acc: 549

Figure 8-7. Training continuing from a checkpoint

197

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

With model checkpoints, we can be sure that hours or days of our effort in training a
model will not be lost in an event of a failure.

Knowing When to Stop Training

In all the previous models we trained, we specified the number of epochs to train as a
fixed number. We used a number that have worked well in similar models in the past.

But how do we determine the best number of epochs to train a model?

Training too much may lead to overfitting. But training too little would not give you
the best results. We need to find the best point at which to stop the training for optimal
results.

One way we can determine that is to train for different number of epochs and
comparing the results. But with deep learning models, each training session can take
hours, if not days. Therefore, it may not be practical always to run several training
sessions to determine the best.

But what if there is a way to automatically stop the training when it reaches an
optimal point?

This is where model early stopping comes in. EarlyStopping is another one of the
built-in callbacks in TensorFlow/Keras which can be used with model.fit() functions.

The way EarlyStopping works, similar to the way the metric monitoring in model
checkpointing worked, is to keep monitoring a given metric and stop the training if it
does not improve for a given number of epochs.

When implementing early stopping it is also best to implement model
checkpointing. When early stopping stops the training at a point, you can use the saved
checkpoints to get the model at its best point.

The parameters for EarlyStopping is as follows:

tensorflow.keras.callbacks.EarlyStopping(
monitor="val loss",
min_delta=0,
patience=0,
verbose=0,
mode="auto",
baseline=None,
restore best weights=False,

198

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

e monitor: what metric to monitor, like in model checkpointing.

o min_delta: the minimum change in the monitored metric that will
be considered as an improvement.

e patience: how many epochs to wait for an improvement before
stopping the training.

o verbose: the verbosity level
e mode: min, max, or auto, as with model checkpoints.

o Dbaseline: what the baseline is for the training. The training will stop if
it does not improve over this baseline.

o restore_best_weights: whether to restore the model back to its bast
point based on the parameter being monitored. If you set this to
False, then the model will use the weights from the last step that was
completed before stopping, which may or may not be the best.

Let us add early stopping to our model. We will take a copy of our code from bird
classify inceptionV3_checkpoint.py and nameitbird classify inceptionV3_
early stopping.py. We will then make the following modifications to it:

9: from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping

132: training_checkpoint dir = 'checkpoints/training’

133:

134: filepath = training checkpoint dir + "/model-{epoch:02d}-{val_
acc:.2f}-{val loss:.2f}.h5"

135: checkpoint = ModelCheckpoint(

136: filepath,

137: monitor="val acc",

138: verbose=1,

139: save_best_only=True,
140: save_weights only=False,
141: mode="max"

142:)

143:

199

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

144: early stop = EarlyStopping(

145: monitor="val acc",

146: mode="max",

147: verbose=1,

148: patience=3,

149: restore best weights=True
150:)

151:

152: callbacks list = [checkpoint, early stop]

153:

154: history = model.fit(

155: train generator,

156: steps_per epoch=train_steps,

157: epochs=epochs,

158: validation data=validation generator,
159: validation steps=validation_steps,
160: class_weight=class_weights,

161: max_queue_size=15,

162: workers=8,

163: callbacks=callbacks list

164:)

Here, we are specifying EarlyStopping to monitor the validation accuracy, and stop
the training if it does not improve for three consecutive epochs. We also specify that once
stopped it should restore the model to the last best state (which would be three epochs
before in this case).

When running the model with these configurations, you will see that the training will
automatically stop when the training is not improving the model (Figure 8-8).

200

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

%] Command Prompt

ow/stream_executor /platform/default/dso_loader.cc:44] Successfully opened dynamic
ibrary cudnn64_
020-08-24 20:01:54.369711: W tensorflow/stream executor/gpu/redzone_allocator.cc:312] Internal: Invoking GPU asm compil
ation is supported on Cuda non-Windows platforms only
Relying on driver to perform ptx compilation. This message will be only 1ogged once.
109/110 [= .] - ETA: 0s - loss: 13.3087 - acc: 6198
poch 00001: val_acc improved from -inf to 0.82000, saving model to checkpoints/training/model-01-0.82-10.31.h5
1;25%10 [] - 21s 194ms/step - loss: 13.2011 - acc: 0.6227 - val_loss: 10.3064 - val_ace:

>.] - ETA: Os - loss: 4.8296 - acc: 0.8486
poch 0000 al_acc did not 1mprove from 0.82000
110/110 [===] - 145 129ms/step - loss: 4.8242 - acc: 0.8477 - val_loss: 7.4449 - val_acc: 0.8

>.] - ETA: 0s - loss: 3.9780 : 0.8756
: val_acc did not improve from 0.82000
] - 145 129ms/step - loss: 3.97 acc: 0.8744 - val_loss: 9.7034 - val_acc: 0.8

>.] - ETA: Os - loss: 2.7944 : 0.9048
poch 00004: val_acc did not improve from 0.82000
R model weights from the end of the best epoch.
================== ====] - 14s 131lms/step - loss: 2.773: acc: 0.9057 - val_loss: 25.0820 - val_acc: 0.

.poch 00004: early stupq1ng

JARNING: tensorflow:s e_weight modes were coerced from

Figure 8-8. Early stopping the model training

Building a Robust Training Script

With model checkpoints, we were able to recover our model training state in case of an
interruption. With early stopping we were able to automatically stop the training of a
model at the right point in training.

Now let us see how we can combine those to build a robust training script—one that
you can stop and start any time without losing your progress.

When building a robust training script, we will need to consider the following:

o Training of our module consists of two steps: training the initial
model, and fine-tuning the model.

o For each of those steps, we will need to determine whether that step
has been completed already, and run the remaining step.

o For each step that needs to run, we will need to determine where the
last training stopped, and continue from that epoch.

e When training we need to save checkpoints, so that training of that
step can be resumed later from those points.

With these in mind, let us build our robust training script.

201

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

We will name our new code file bird classify robust training.py, and start by
importing the packages:

01: import tensorflow as tf

02: import numpy as np

03: from tensorflow.keras.preprocessing.image import ImageDataGenerator,
img to_array, load img

04: from tensorflow.keras.models import Sequential, Model, load model
05: from tensorflow.keras.layers import Dropout, Flatten, Dense,
GlobalAveragePooling2D, Input

06: from tensorflow.keras.applications.inception v3 import InceptionV3
07: from tensorflow.keras import optimizers

08: from tensorflow.keras.optimizers import SGD

09: from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
10: import matplotlib.pyplot as plt

11: import math

12: import os

13: import os.path

14: import time

Then we will add our utility function definitions. What is new here is that
our graph_training history() function now take two extra parameters to save the
figure to a file rather than displaying it:

16: # utility functions
17: def graph_training_history(history, save fig=False, save path=None):

18: plt.rcParams["figure.figsize"] = (12, 9)
19:

20: plt.style.use('ggplot")

21:

22: plt.figure(1)

23:

24: # summarize history for accuracy

25:

26: plt.subplot(211)

27: plt.plot(history.history['acc'])

28: plt.plot(history.history['val acc'])

202

29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

plt.title('Model Accuracy")

plt.ylabel('Accuracy')

plt.xlabel('Epoch")

plt.legend(['Training', 'Validation'], loc='lower right')

summarize history for loss

plt.subplot(212)

plt.plot(history.history['loss'])
plt.plot(history.history['val loss'])

plt.title('Model Loss")

plt.ylabel('Loss")

plt.xlabel('Epoch")

plt.legend(['Training', 'Validation'], loc='upper right")

plt.tight layout()

if save_fig:

plt.savefig(save path, bbox_inches='tight', dpi=300)
else:

plt.show()

clear and close the current figure
plt.clf()
plt.close()

55: # util function to calculate the class weights based on the number of
samples on each class

56:
57:

58

this is useful with datasets that are highly skewed (datasets where
the number of samples in each class differs vastly)

: def get class weights(class data dir):

59:
60:

labels count = dict()
for img class in [ic for ic in os.listdir(class data dir) if ic[o0]

203

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

61:

labels count[img class] = len(os.listdir(os.path.join(class_

data_dir, img class)))

62:
63:
64:
65:

total count = sum(labels count.values())

class weights = {cls: total count / count for cls, count in
enumerate(labels count.values())}

return class weights

66:

67
68

69:
70:
71:
72:

: # util function to get the initial epoch number from the checkpoint name
: def get _init epoch(checkpoint path):

filename = os.path.basename(checkpoint path)

filename = os.path.splitext(filename)[0]

init_epoch = filename.split("-")[1]

return int(init_epoch)

We then check for the existence of the saved model files to determine which step of

the training (initial training or fine-tuning) needs to run:

74: run_training = True

75: run_finetune = True

76:

77: class_indices _path = 'class_indices.npy'

78: initial model path = 'bird classify finetune initial.h5'

79: final model path = 'bird classify finetune final.hs'

80:

81: # check which of the training steps still need to complete

82: # if saved model file is already there, then that step is considered
complete

83: if os.path.isfile(initial model path):

84: run_training = False

85: print("[Info] Initial model exists '{}'. Skipping training
step.".format(initial model path))

86:

87: if os.path.isfile(final model path):

88: run_finetune = False

89: print("[Info] Fine-tuned model exists '{}'. Skipping fine-tuning

step.".format(final_model path))

204

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

For each of the steps that need running, we then determine which checkpoint to
start from:

091: load from checkpoint train = False

092:

093: training_checkpoint_dir = 'checkpoints/training’

094: if run_training and len(os.listdir(training checkpoint dir)) > o:
095: # the checkpoint to load and continue from

096: training checkpoint = os.path.join(training checkpoint dir,
os.listdir(training_checkpoint_dir)[len(os.listdir(training_checkpoint_
dir))-1])

097: load from checkpoint train = True

098:

099: init epoch train = 0

100: if load from checkpoint train:

101: # get the epoch number to continue from

102: print(training_checkpoint)

103: init_epoch train = get init epoch(training checkpoint)
104: print("[Info] Training checkpoint found for epoch {}. Will
continue from that step.".format(init_epoch train))

105:

106:

107: load_from checkpoint finetune = False

108:

109: finetune_checkpoint dir = 'checkpoints/finetune’

110: if run_finetune and len(os.listdir(finetune_checkpoint dir)) > o:
111: # the checkpoint to load and continue from

112: finetune_checkpoint = os.path.join(finetune checkpoint dir,
os.listdir(finetune_checkpoint_dir)[len(os.listdir(finetune_checkpoint_
dir))-1])

113: load from checkpoint finetune = True

114:

115: init _epoch finetune = 0

116: if load from checkpoint finetune:

117: # get the epoch number to continue from

118: init _epoch finetune = get init epoch(finetune_checkpoint)

205

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

119: print("[Info] Training checkpoint found for epoch {}. Will
continue from that step.".format(init epoch finetune))

Then, our data generators and training parameters are defined as usual:

122: # start time of the script

123: start time = time.time()

124:

125: # dimensions of our images.

126: img width, img_height = 224, 224

127:

128: train_data_dir = 'data/train’

129: validation_data_dir = 'data/validation’
130:

131: # number of epochs to train

132: epochs = 50

133:

134: # batch size used by flow_from_directory
135: batch size = 16

136:

137:

138: # this is the augmentation configuration we will use for training
139: train datagen = ImageDataGenerator(

140: rescale=1. / 255,
141: shear_range=0.2,

142: zoom_range=0.2,

143: horizontal flip=True)
144:

145: # this is the augmentation configuration we will use for testing:
146: # only rescaling

147: test_datagen = ImageDataGenerator(rescale=1. / 255)

148:

149: train generator = train_datagen.flow from directory(

150: train data dir,

151: target size=(img width, img height),

152: batch _size=batch size,

206

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

153: class_mode="categorical')

154:

155: validation generator = test datagen.flow from directory(
156: validation_data_dir,

157: target size=(img width, img height),
158: batch_size=batch size,

159: class_mode="categorical')

160:

161: # the number of classes/categories

162: num_classes = len(train_generator.class indices)

163:

164: # save the class indices for use in the predictions

165: np.save(class_indices path, train generator.class indices)
166:

167: # calculate the training steps

168: nb_train_samples = len(train_generator.filenames)

169: train steps = int(math.ceil(nb_train samples / batch size))
170:

171: # calculate the validation steps

172: nb_validation_samples = len(validation_generator.filenames)
173: validation steps = int(math.ceil(nb_validation_samples / batch size))
174:

175: # get the class weights

176: class weights = get class weights(train_data_dir)

Based on the conditions we checked earlier, we either start training from beginning,
start from a checkpoint if checkpoints are already there, or skip the training step if the
trained model file is already there:

178: if run_training:

179: if load from checkpoint train:

180: model = load model(training checkpoint)
181: else:

182: # create the base pre-trained model
183: base model = InceptionV3(

184: weights="imagenet',

207

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

185: include_top=False,

186: input_tensor=Input(shape=(img width, img height, 3))
187:)

188:

189: # add a global spatial average pooling layer

190: X = base_model.output

191: x = GlobalAveragePooling2D()(x)

192: x = Dense(512, activation="relu")(x)

193: predictions = Dense(num_classes, activation='softmax')(x)
194:

195: # this is the model we will train

196: model = Model(inputs=base model.input, outputs=predictions)
197:

198: # first: train only the top layers (which were randomly
initialized)

199: # i.e. freeze all convolutional layers

200: for layer in base_model.layers:

201: layer.trainable = False

202:

203: # compile the model (should be done *after* setting layers to
non-trainable)

204: model.compile(optimizer="rmsprop', loss='categorical
crossentropy', metrics=["acc'])

205:

206: filepath = training checkpoint dir + "/model-{epoch:02d}-{val_
acc:.2f}-{val loss:.2f}.h5"

207: checkpoint = ModelCheckpoint(

208: filepath,

209: monitor="val acc",

210: verbose=1,

211: save_best only=True,

212: save_weights only=False,

213: mode="max"

214:)

215:

208

216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

early stop = EarlyStopping(
monitor="val acc",
mode="max",
verbose=1,
patience=5,
restore best weights=True

)

callbacks list = [checkpoint, early stop]

history = model.fit(
train_generator,
steps_per epoch=train_steps,
epochs=epochs,
validation data=validation generator,
validation steps=validation_steps,
class _weight=class_weights,
max_queue_size=15,
workers=8,
initial _epoch=init_epoch_train,
callbacks=callbacks list
)

model.save(initial model path)

(eval loss, eval accuracy) = model.evaluate(
validation generator, steps=validation steps)

print("\n")

print("[INFO] accuracy: {:.2f}%".format(eval accuracy * 100))
print("[INFO] Loss: {}".format(eval loss))

graph_training history(history, save fig=True, save_

path="training.png")

209

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

250:

251: else:

252: # training step is already completed
253: # load the already trained model

254: model = load model(initial model path)

We will then do the same for our fine-tuning step:

257: # Run Fine-tuning on our model
258: if run finetune:

259: # number of epochs to fine-tune

260: ft_epochs = 25

261:

262: # reset our data generators

263: train_generator.reset()

264: validation generator.reset()

265:

266: if load from_checkpoint finetune:

267: model = load model(finetune checkpoint)

268: else:

269: # we chose to train the last convolution block from the base
model

270: for layer in model.layers[:249]:

271: layer.trainable = False

272: for layer in model.layers[249:]:

273: layer.trainable = True

274:

275: # we need to recompile the model for these modifications to
take effect

276: # we use SGD with a low learning rate

277: model.compile(

278: optimizer=optimizers.SGD(1lr=0.0001, momentum=0.9),
279: loss="categorical crossentropy’,

280: metrics=["'acc']

281:)

282:

210

283:

acc

284:

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

:.2f}-{val loss:.2f}.h5"

285:
286:
287:
288:
289:
290:
291:
292:

293:

early stop = EarlyStopping(

294:
295:
296:
297:
298:
299:
300:

301:

302:

303:
304:
305:
306:
307:
308:
309:
310:
311:
312:
313:
314:

history = model.fit(

)

315:

316:

workers=
initial
callbacks=callbacks list

model.save(final model path)

filepath = finetune_checkpoint dir + "/model-{epoch:02d}-{val_

checkpoint = ModelCheckpoint(

filepath,

monitor="val acc",
verbose=1,

save_best only=True,
save_weights only=False,
mode="max"

)

monitor="val acc",
mode="max",

verbose=1,

patience=5,
restore best weights=True

)

callbacks list = [checkpoint, early stop]

train_generator,

steps_per epoch=train steps,
epochs=ft_epochs,

validation data=validation generator,
validation steps=validation steps,
class weight=class weights,
max_queue_size=15,

8,
epoch=init_epoch finetune,

211

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

317:

318: (eval loss, eval accuracy) = model.evaluate(

319: validation generator, steps=validation steps)
320:

321: print("\n")

322:

323: print("[INFO] accuracy: {:.2f}%".format(eval accuracy * 100))
324: print("[INFO] Loss: {}".format(eval loss))

325:

326: graph_training_history(history, save fig=True, save_
path="finetune.png")

327:

328: end time = time.time()

329:

330: training duration = end time - start time

331: print("[INFO] Total Time for training: {} seconds"

format(training duration))

This script now allows you to resume from any step in the training process
(Figures 8-9 and 8-10).

ommand Prompt

(deep-learning) C:\Development\deep_learning_on_windows\Chapter_08>python bird_classify_robust_trainin
020-08-25 00:28:20.852876: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successful
library cudart64_101.d11
heck«o1nts!tra -\mode] -02- 0 88 6.11. hS

?y opened dynamic

60 elonging
ound 50 images belonging to 10 classes.
POED 08-25 00 28: %3 .611765: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
ibrary nvcuda.
2020~ Og 25 00: 28 23.639559: I tensorflow/core/common_ runt1nefgpu{gpu device.cc:1555] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce RTX 2070 computeCapability: 7.5
oreClock: 1.62GHz coreCount: 36 deviceMemorySize: 8.00GiB_deviceMemoryBandwidth: 417.29GiE/s
2020-08-25 00:28:23.647607: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
cudart64_101.d11
-25 00:28:23.656831: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
cublas64_10.d11
-25 00:28:23.663998:
0.d11

-
e

Successfully opened dynamic

tensorflow/stream_executor /platform/default/dso_loader.cc:44

-
—

successfully opened dynamic

tensorflow/stream_executor /platform/default/dso_loader.cc:44

-
—

tensor flow/stream_executor /platform/default/dso_loader.cc:44] Successfully opened dynamic

(nar

Successfully opened dynamic

-

tensor flow/stream_executor/platform/default/dso_loader.cc:44

cusparseb4_10.d11
-25 00:28: 231694(}49:
1

-
{rer]

Successfully opened dynamic

tensor flow/stream_executor/platform/default/dso_loader.cc:44

22 - : I tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] Adding visible gpu devices: 0
020-08-25 00:28:23.701601: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that thi
5 TensorFlow binary was not compiled to use: AVX AvX2

Figure 8-9. Resuming the training step from a checkpoint

212

CHAPTER 8 STARTING, STOPPING, AND RESUMING LEARNING

INFO] Tota] Time for training: 73.81819725036621 seconds

(deep-learning) C:\Development\deep_learning_on_windows\Chapter_| 08>p¥thon hird_cTassify_rnbust_trainin?.
2020-08-25 00:18:28. 55%%85 I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
i 64_10

d 1760 images belonging to 10 classes.

ound 50 ima es belonging to 10 classes.
'Qgﬂ -08-25 0§ 18:31.247401: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully
ibrary nvcuda.

020- Dg 25 00: 13 31 273371: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce RTX 2070 computeCapab111t¥ ??

oreClock: 1.62GHz coreCount: 36 deviceMemorySize: 8.00GiB_deviceMemoryBandwidth: 417.29GiB/s
2020-08-25 00:18:31.280640: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
i cudart64_101.d11

-25 00:18:31.289351: I tensorflow/stream_executor/platform/default/dso_loader.cc:44

ibrary cublas64_10.d11

020-08-25 00:18:31.297760: I tensorflow/stream_executor/platform/default/dso_loader.cc:44
ibrary cufft64_10.d11
2020-08-25 00:18:31.303449:
ibrary curand64_10.d11
020-08-25 00:18:31.311526:
i cusolver64_10.d11

-25 00:18:31.318209:

library cusparseé4_10.d11
2020-08-25 00:18:31.330108: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
ibrary cudnn64_7.d11

020-08-25 00:18:31.334067: I tensorflow/core/common_runtime/qpu/gpu_device.cc:1697] Adding visible gpu devices: 0

opened dynamic

e

Successfully opened dynamic

—

successfully opened dynamic

-
—

tensor flow/stream_executor /platform/default/dso_loader.cc:44] Successfully opened dynamic

-
(nar

tensor flow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic

-
{rer]

tensor flow/stream_executor /platform/default/dso_loader.cc:44] Successfully opened dynamic

Figure 8-10. Skipping the already completed training step, and continuing from a
fine-tuning checkpoint

With a training script such as this, you can start, stop, and resume training at any
time without fear of losing your progress due to an interruption.

213

CHAPTER 9

Deploying Your Model
as a Web Application

Over the past several chapters, we have talked about some techniques to optimize the
training of a model. We went through the steps of starting with a small dataset to get
results that can be applied in practical scenarios.

You now know the steps needed to train a practical model. Now it is time to talk
about how to make your trained model into an application.

In Chapter 7, we briefly talked about how to build a script to run predictions using
the trained model (Figure 9-1).

: T tensorflow/strean executor /plat forn/default/dro_loader .cc:44] Successfully opened dynasic

11
0092: T tensorflow/strean_executor/plat form/default/dsa_loader.co:44] Successfully opemed dymamic

T tensorflow/strean_executor fplatforn/default/dso_loader cc:44] Successfully opened dynawic
T tensorflow/strean_evecutor plat form/default/dso_loader cc:44] Successfully opened dynasic

tensor Flow/str san_sxecuter fplat form/dofaut /dso_loader .cc:44] Successfully opemed dymasic
T temsor Mow/stream_executer /plat form/defas1t /dso_loader .cc:44] Successfully opened dynasic

T tensorflow/core/comon._ rumt e/ gou/gpu.device. cc: m;{ adding visible gpa devices:
I tonserflow/core//comson_runt ime/apu,/gpu_device.cc: 1096] Device intorcomnect stmatnw:er

wu dcvice i (rened TensorFlow device ra iet
ical G (de name: GeForce RTX 2070,

_evecutor /plat form/default /dvo_Toader .cc:44] Successfully .,..n..: dymasic
wam_executon /plat form(defalt/dsa_Toader .cc:44] Success fu n,. e chyrimi

e lying on driver to perform ptx
o] Predicted: ALIATRUSS, Confid

Figure 9-1. Using a script to run predictions with a model

'Flask (handling file uploads), https://flask.palletsprojects.com/en/1.1.x/patterns/
fileuploads/#improving-uploads, [Sep 23, 2019].

215
© Thimira Amaratunga 2021

T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_9

https://doi.org/10.1007/978-1-4842-6431-7_9#DOI
https://flask.palletsprojects.com/en/1.1.x/patterns/fileuploads/#improving-uploads
https://flask.palletsprojects.com/en/1.1.x/patterns/fileuploads/#improving-uploads

CHAPTER9 DEPLOYING YOUR MODEL AS A WEB APPLICATION

But using a script like that is not a user-friendly way of making it an application. A
better way would be to turn your model into a web application. It would allow for better
usability, as well as allowing you to provide your new deep learning application to
multiple users.

We can use the Flask Framework to turn our model into a web application.

Setting up Flask

Flask is a lightweight micro web framework for Python, which allows you to build
websites, web applications, APIs, and microservices. With only a few base dependencies,
you can start building your application with a simple structure and later expand upon it
with additional features and scalability using a large library of available extensions.

When we set up our deep learning environment in Chapter 3 with the Anaconda
metapackage, we installed the Flask package and few other dependency packages that
will aid us in building our application.

If you want to install Flask separately you can simply run:

conda install Flask

This will install Flask, as well as Werkzeug, Jinja2, MarkupSafe, and ItsDangerous
packages (Figure 9-2).

[E%] Command Prompt - conda install Flask

environment location: C:\Users\Thimira\Anaconda3\envs\flask-env

added / updated specs:
- flask

The following packages will be downloaded:

package | build
........................... P e
click-7.1.2 | py-0 67 KB
flask-1.1.2 | py_0 74 KB
jinja2-2.11.2 | £ 97 KB
markupsafe-1.1.1 | py37hfabelcd_1 22 KB
werkzeug-1.0.1 | py_0 243 KB
Total 502 kB
The following NEW packages will be INSTALLED:
click pkgs/main/noarch::click-7.1.2-py_0
flask pkgs/main/noarch::flask-1.1.2-py_0
itsdangerous pkgs/main/win-64:: itsdangerous-1.1.0-py37_0
jinja2 pkgs/main/noarch::jinja2-2.11.2-py 0
markupsafe pkgs/main/win-64: :markupsafe-1.1.1-py37hfabe2cd_1

werkzeug pkgs/main/noarch: :werkzeug-1.0.1-py_0

proceed ([yl/n)?

Figure 9-2. Conda installing Flask and dependencies

216

CHAPTER9 DEPLOYING YOUR MODEL AS A WEB APPLICATION

Once installed, we can test Flask by creating a simple application. We will name this

file flask-sample.py:

01: from flask import Flask

02:

03: header text = "'’

04: <html>\n<head> <title>Flask Test Application</title> </head>\
n<body>"""'

05: page content = "'’

06: <p>This is a sample webpage generated by Flask.</p>\n'"'

07: footer text = '''</body>\n</html>""’

08:

09: # request handler function for the home/index page

10: def index():

11: return header_ text + page content + footer text

12:

13: # setting up the application context

14: application = Flask(__name)

15:

16: # add a rule for the index page.

17: application.add url rule('/', 'index', index, methods=["'GET', 'POST'])
18:

19: # run the app.

20: if _name_ == " main_":

21: # Setting debug to True enables debug output. This line should be
22: # removed before deploying a production app.

23: application.debug = True

24: application.run()

Here, we are importing the Flask package, defining the application context, and

running the resulting Flask application. We define a function—index()—and bind it

to handle the requests coming to the index route of the application add_url rule()

function. In the index() function, we are simply returning some hardcoded HTML strings

for now.

217

CHAPTER9 DEPLOYING YOUR MODEL AS A WEB APPLICATION
We can run this application by running:
python flask-sample.py

Flask will spin up a development webserver process to serve your application. By

default, it will run on port 5000 on localhost. You can access the application page on
http://127.0.0.1:5000/ (Figure 9-3).

(flask-env

* Serving Flask app "flask-sample” (lazy loading)

* Environment: production)
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.

3 Debug mode: on

* Restarting with stat

* Debugger i1s active!

* pebugger PIN: 163-410-674

\Devel opment ‘\deep_learning_on_windows\Chapter_0%python flask-sample.py

0[37mGET / en':wl,ln)[oﬂ" 2

* Running on http://127.0.0.1:5000 SPress CTRL+C to quit
127.0.0.1 - - [26/Aug/2020 13:28:51 00 -
127.0.0.1 - - [26/Aug/2020 13:28:51] "0[33mGET /favicon.ico HTTP/1.10[0m" 404 -

Figure 9-3. Flask sample Web app running

With Flask up and running, we are now ready to design our deep learning web
application using Flask.

Designing Your Web Application

As we did in Chapter 7, we can use a model file saved using the model.save() function
(e.g., the bird classify finetune IV3 final.hs file in our fine-tuning of the bird
image classification system example). By using the full model file, we can load the model
in its trained state without having to redefine the code for the model structure. Along
with the model file, we will use the class_indices.npy file saved from the same script.
The class_indices file contains the dictionary/mapping of the text labels for the classes to
their IDs. We will need the label mapping to display the text label for the predicted class
(Figure 9-4).

218

CHAPTER9 DEPLOYING YOUR MODEL AS A WEB APPLICATION

@ bird_classify_finetune_IV3_final 8/22/2020 11:09 PM H5 File 137,761 KB

. class_indices.npy 8/22/2020 9:03 PM NPY File 1KB

Figure 9-4. Model files needed to build the web application

With our model files at hand, we can start designing the application. We will need to

consider the following:

As the input for our system we will need to have an HTML page with
a web form that allows uploading/submitting files.

The uploaded files need to be placed in a location where the Python
code can read them.

A function is needed to handle the requests which loads the
uploaded image file, runs it through the model, and responds with
the result/prediction from the model.

The frontend webpage needs to be able to display the result.

Loading of the model from file takes time. It is not practical to load
the model for every request. Therefore, we need a way to load the
model only once (preferably when the application starts).

Using HTML strings in the code is not practical. We should use

a templating engine, which would give us more flexibility in our
frontend. Fortunately, the default installation of Flask comes with the
Jinja2 template engine.

Based on these considerations, we will define the following structure for our Flask
application (Figure 9-5):

219

CHAPTER9 DEPLOYING YOUR MODEL AS A WEB APPLICATION

bird_classify

— models

. —{_}‘ <model>.h5

.
{} class_indices.npy

— templates

|—
&)

</> index.html

— uploads

— func()l application.py

Figure 9-5. The structure of our application

Our application will consist of 3 directories: models, templates, and uploads, along
with a main application.py file. The models directory will contain our saved model
file, as well as the class label dictionary file for that model. The templates directory will
contain the Jinja2 template files (the Jinja2 engine expects this directory to be named
templates). The uploads directory is for keeping the uploaded files of the application.
The application.py will contain the Flask application definitions as well as the functions
to process the images and predictions using our trained model.

Following this simple application structure will allow us to extend the capabilities
of our application later, as well as allow us to upload and host our application in various
services that allow Flask applications.

Building Your Deep Learning Web Application

To build our web application, let us begin with our template file for the main page. In the
templates directory of our application structure, create an index.html file.

220

CHAPTER9 DEPLOYING YOUR MODEL AS A WEB APPLICATION

In this file, start with adding the basic HTML structure of the page. We will be using
the Jinja2 templating for this:

1: <!doctype html>
2: <html lang="en">

3: <head>

4: <title>Bird Image Classification System</title>

5: </head>

6: <body>

7: <h3>Deep Learning Bird Image Identification System</h3>

At the top of the page, we will add a section to display any error messages returned
from the backend. We will use the Flash messages mechanism from the Flask framework:

08: <!-- show error messages from backend, if any -->
09: {% with messages = get flashed messages() %}

10: {% if messages %}

11:

12: {% for message in messages %}

13: <1i>{{ message }}</1i>

14: {% endfor %}

15:

16: {% endif %}

17: {% endwith %}

Next, we will add the main HTML form that allows us to upload the images:

18: <form action="" method="post" enctype="multipart/form-data">
19: <div>

20: <label for="bird image">Select an image to upload
<small>(Supports .jpg, .jpeg, .gif, and .png images.)</small></label>
21: <input type="file" name="bird image" id="bird image"
accept=".]jpg, .jpeg, .gif, .png" required="required">

22: </div>

23: <div>

24: <input type="submit" value="Process" name="submit">
25: </div>

26: </form>

221

CHAPTER9 DEPLOYING YOUR MODEL AS A WEB APPLICATION

Finally, we will add a section to display the results:

27: {% if label %}

28:

29: <bx/>

30: <div>

31: {% if image %}

32:
33: {% endif %}

34: <h3 class="card-title">Identification</h3>

35: <p class="card-text">Predicted : {{label}}</p>

36: <p class="card-text">Confidence [0-100]% : {{prob}} %</p>
37: </div>

38: {% endif %}

39: </body>

40: </html>

One thing to note here is that we are using Base64 image data in the tag
instead of a path to an image file. This allows us to display an image with any image
manipulations applied without having to save it as a file.

Note For simplicity, we will not be adding any style/css here.

Now we can begin the main code of our Flask application.
Start an application.py file in the root of our application structure and import the
packages:

01: from flask import Flask, request, render template, url for, make_
response, send from directory, flash, redirect, jsonify

02: from werkzeug.utils import secure_ filename

03:

04: import numpy as np

05: import tensorflow as tf

06: from tensorflow.keras.preprocessing.image import img to array, load img
07: from tensorflow.keras.models import Model, load model

08: from tensorflow.keras.utils import to_categorical

09: from PIL import Image

222

CHAPTER9 DEPLOYING YOUR MODEL AS A WEB APPLICATION

10: from io import BytesIO
11: import os

12: import os.path

13: import sys

14: import base64

15: import uuid

16: import time

With some versions of TensorFlow there are some incompatibilities of cuDNN and
Flask. Therefore, we add the following code to avoid the incompatibilities:

18: # avoiding some compatibility problems in TensorFlow, cuDNN, and Flask
19: from tensorflow.compat.vl import ConfigProto

20: from tensorflow.compat.vi import InteractiveSession

21: config = ConfigProto()

22: config.gpu options.allow growth = True

23: session = InteractiveSession(config=config)

Note You may experience errors such as “BaseCollectiveExecutor::StartAbo
rt Unknown: Failed to get convolution algorithm” if you try to run the application
without these compatibility fixes. This may be fixed in future releases.

Next, we set the application parameters, and load the model from files:

25: # dimensions of our images.

26: img width, img height = 224, 224

27: # limiting the allowed filetypes

28: ALLOWED FILETYPES = set(['.jpg', '.jpeg', '.gif', '.png'l)

29:

30: model path = 'models/bird classify finetune IV3_final.h5'

31:

32: # loading the class dictionary and the model

33: class_dictionary = np.load('models/class_indices.npy’,
allow pickle=True).item()

34:

35: model = load model(model path)

223

CHAPTER9 DEPLOYING YOUR MODEL AS A WEB APPLICATION

Then we will add a function—classify_image()—that will take the image, perform the
preprocessing on the image, run it through the model, and return the result:

37: # function for classifying the image using the model
38: def classify image(image):

39: image = img_to_array(image)

40:

41: # important! otherwise the predictions will be 'O’

42: image = image / 255.0

43:

44: # add a new axis to make the image array confirm with
45: # the (samples, height, width, depth) structure

46: image = np.expand_dims(image, axis=0)

47:

48: # get the probabilities for the prediction

49: # with graph.as_default():

50: probabilities = model.predict(image)

51:

52: prediction_probability = probabilities[0, probabilities.
argmax(axis=1)][0]

53:

54: class_predicted = np.argmax(probabilities, axis=1)

55:

56: inID = class_predicted[0]

57:

58: # invert the class dictionary in order to get the label for the id
59: inv_map = {v: k for k, v in class dictionary.items()}
60: label = inv_map[inID]

61:

62: print("[Info] Predicted: {}, Confidence: {}".format(label,
prediction probability))

63:

64: return label, prediction probability

When showing the results for an uploaded image, it is better to show the image in
the page as well. Therefore, we will add a utility function to return a thumbnail version

224

CHAPTER9 DEPLOYING YOUR MODEL AS A WEB APPLICATION

of the uploaded image in a Base64 encoded format. Base64 image data can be directly
rendered by an HTML tag without needing to supply a file location. Recall that in
our template, we specified the tag to use data:image/jpeg;base64:

66: # get a thumbnail version of the uploaded image
67: def get iamge thumbnail(image):

68: image.thumbnail((400, 400), resample=Image.LANCZOS)

69: image = image.convert("RGB")

70: with BytesIO() as buffer:

71: image.save(buffer, 'jpeg')

72: return base64.b64encode(buffer.getvalue()).decode()

Then we come to our main request handler, the index() function:

074: # request handler function for the home/index page
075: def index():

076: # handling the POST method of the submit

077: if request.method == "POST':

078: # check if the post request has the submitted file
079: if 'bird image' not in request.files:

080: print("[Error] No file uploaded.")

081: flash('No file uploaded.")

082: return redirect(url for('index"))

083:

084: f = request.files['bird image']

085:

086: # if user does not select a file, some browsers may
087: # submit an empty field without the filename

088: if f.filename == '":

089: print("[Error] No file selected to upload.")
090: flash('No file selected to upload.')

091: return redirect(url for('index'))

092:

093: sec_filename = secure filename(f.filename)

094: file extension = os.path.splitext(sec_filename)[1]
095:

096: if f and file extension.lower() in ALLOWED FILETYPES:

225

CHAPTER9 DEPLOYING YOUR MODEL AS A WEB APPLICATION

097:
098:
099:
100:
101:

file tempname = uuid.uuid4().hex
image path = './uploads/' + file_tempname + file extension
f.save(image path)

image = load img(image path, target size=(img width,

img _height), interpolation='lanczos")

102:
103:

label, prediction probability = classify

image(image=image)

104:

prediction probability = np.around(prediction probability

* 100, decimals=4)

105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:

orig image = Image.open(image path)

image_data

get_iamge_thumbnail(image=orig_image)

with application.app_context():
return render template('index.html’,
label=1abel,
prob=prediction probability,
image=image_data
)
else:
print("[Error] Unauthorized file extension: {}".

format(file extension))

117: flash("The file type you selected: '{}' is not supported.
Please select a '.jpg', '.jpeg', '.gif', or a '.png' file.".format(file
extension))

118: return redirect(url for('index'))

119: else:

120: # handling the GET, HEAD, and any other methods

121:

122: with application.app_context():

123: return render template('index.html")

226

CHAPTER9 DEPLOYING YOUR MODEL AS A WEB APPLICATION

This index() function handles both the GET request to render the initial page, as
well as the POST request from the form submit. When handling the GET requests, the
index() function renders the index.html template we defined earlier. The webform in the
index page is set to make a POST request (with the submitted file) to itself, which is again
picked up by the index() function.

When processing the POST request, we make several checks, such as whether a file
was uploaded, does it have an allowed file extension. The flash message mechanism
of the Flask framework is used to report any errors to the user. If all checks pass, the
uploaded image is then placed in the uploads directory of our application structure,
loaded using the load_img() function of Keras, and passed to the classify image()
function we defined earlier. Once results are ready, we render the index.html template
again, this time with the result information.

Another utility function is added next to handle the HTTP 413 errors, which are
emitted when the uploaded filesize is larger than the MAX_CONTENT_LENGTH of the
application:

125: # handle 'filesize too large' errors
126: def http 413(e):

127: print("[Error] Uploaded file too large.")
128: flash('Uploaded file too large.')
129: return redirect(url for('index'))

Note When running our application locally, you may get a “Connection Reset” or
a “Connection Aborted” error in the browser instead of the error message we set
using the preceding function when uploading files larger than the limit we set. This
is a known limitation of the development server of Flask. You can read more about
it in the Flask documentation page on handling file uploads.’

Finally, the Flask application context, parameters, and URL rules are defined:

131: # setting up the application context

132: application = Flask(__name)

133: # set the application secret key. Used with sessions.
134: application.secret key = '@#$% &*@#$% &*'

135:

227

CHAPTER9 DEPLOYING YOUR MODEL AS A WEB APPLICATION

136: # add a rule for the index page.

137: application.add url rule('/', 'index', index, methods=['GET', 'POST'])
138:

139: # limit the size of the uploads

140: application.register error handler(413, http 413)

141: application.config['MAX_CONTENT LENGTH'] = 10 * 1024 * 1024

142:

143: # run the app.

144: if _name__ == " main_ ":
145: # Setting debug to True enables debug output. This line should be

146: # removed before deploying a production app.
147: application.debug = True
148: application.run()

Like our Flask sample application, we run this as:
python application.py

When the application starts, it will first load the model from file, before starting the
webserver (Figure 9-6).

] Command Prompt - python application.py

(deep-learning) C:\Development'\deep_learning_on_windows\Chapter_09\bird_classify>python application.

2020-08-27 19946 :01.944050: I tensorﬂwfst?eam_executon"p'latforllfdefau'ltfdso mder cc:44 Successf'up‘\l"ly opened dynamic
library cudart64_101.d11

2020~ ﬂg 27 19:46:08.519958: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that thi
5 TensorFlow binary was not compiled to use: AVX AVX2

%ng—OS—EF 13:455{? .534935: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
ibrary nvcuda.

2020-08-27 19:46:08.585816: I tensorﬂowfcore;"cmn_runumefgpuf?u_dev'lce .cc:1555] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce RTX 2070 computeCapability:

coreClock: 1.62GHz coreCount: 36 deviceMemorySize: 8.00GiB_deviceMemoryBandwidth: 417.29GiB/s

2020-08-27 19:46:08.593360: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
library cudart64_101.d11
2020-08-27 19:46:08.758570:
library cublas64_10.d11
2020-08-27 19:46:08.960233:
library cufft64_10.d11
2020-08-27 19:46:09.001876:
library curand64_10.d11
2020-08-27 19:46:09.229476:
library cusolver64_10.d11
2020-08-27 19:46:09.313467:
library cusparse64_10.d11
2020-08-27 19:46:09.690446:
library cudnn64_7.d1]
2020-08-27 19:46:09.701571:
2020-08-27 19:46:17.008123:
ith strength 1 edge matrix:
2020-08-27 19:46:17.011313: I tensorflow/core/common_runtime/gpu/gpu_i dev'lr_e.cc:lltlz] 0
2020-08-27 19:46:17.013457: I tensorflow/core/common_runtime/qpu/gpu_device.cec:1115] 0 N

- e

tensorflow/stream_executor /platform/default/dso_loader.cc:44] Successfully opened dynamic

-

tensor flow/stream_executor /platform/default/dso_loader.cc:44] Successfully opened dynamic

-

tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic

-

tensorflow/stream_executor /platform/default/dso_loader.cc:44] Successfully opened dynamic

-

tensor flow/stream_executor /platform/default/dso_loader.cc:44] Successfully opened dynamic

-
[nar

tensorflow/stream_executor /platform/default/dso_loader.cc:44] Successfully opened dynamic

-

tensorﬂw,-’core,’cmon_runt'ine,’gpu,fgpu_dev‘ice.cc:169?} Adding visible gpu devices: 0
tensorflow/core/common_runtime/gpu/gpu_device.cc:1096] Device interconnect StreamExecutor

Figure 9-6. Flask application loading the model

228

CHAPTER9 DEPLOYING YOUR MODEL AS A WEB APPLICATION

Once the webserver is started view the webpage in browser, which by default would
be running on http://127.0.0.1:5000 (Figure 9-7).

@ Bidl

< C @ 127001

Deep Learning Bird Image Identification System

Select an image to upload (Supports jpg. jpeg. .gif. and .pug images.) | Choose File | No file chosen
Process

& Command Prompt - python application.py

2020-08-27 19:46:27.312042: I tensortlow/stream_executor/plattorm/detault/dso_loader.cc:44] Successfully opened dynamic
library cusparsef4_10.d11

2020-08-27 19:46:27.315698: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic
Tibrary cudnn64_7.d11

2020-08-27 19:46:27.319013: I tensorflow/core/common_runtime/gpu/gpu_ dev1ce.cc:16'3?1 Adding visible gpu devices: 0
2020-08-27 19:46:27.321502: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1096] Device interconnect StreamExecutor
with strength 1 edge matrix:

2020-08-27 19:46:27.325318: I tensorflow/core/common_runtime/gpu/gpu_ dewce.cc:llﬂ?% 1]
2020-08-27 19:46:27.327362: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] 0: N
2020-08-27 19:46:27.329834: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1241] Created TensorFlow device (/job:lo
a]host,ﬂ'rephca 0/task:0/device:GPU:0 with 6304 ME memory) -> yslca'l GPU (device: 0, name: GeForce RTX 2070, pci bus id|
0000:01:00.0, compute capability: 7.5)

* Debugger is active!
.. Dehugger PIN: 229-001-993

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

127.0.0.1 - - [27/Aug/2020 19:47:27] "0[37mGET / HTTP/1.10[0m" 200 -

127.0.0.1 - - [27/Aug/2020 19:47:27] "0[33mGET /favicon.ico HTTP/1.10[0m" 404 -

Figure 9-7. Our bird classification flask application running
You can now upload an image and see how well our application can recognize it

(Figure 9-8). The application will return the predicted label with the confidence for the
prediction.

229

CHAPTER9 DEPLOYING YOUR MODEL AS A WEB APPLICATION

@ Bird Image Classification System X+

& 5 G ® 127001

Deep Learning Bird Image Identification System

Select an image to upload (Supperts jpe, jpeg, zif and png images) | Choose File | Mo file chosen
Process

mand Prompt
Z 08-27 19:46 ow/stream_executor,/platform
ar)st cusparse6d_10.d11
2020 27 19 46:27.315698: I tensorflow/stream_executor/platform/default/dso_loader.
Tibrary cudnnéd_7.d11
2020~ 08 27 19:46:27.319013: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1697
2020-08-27 19:46:27.321502: I tensorflow/core/common_runtime/gpu,/gpu_device.cc:1096
with strength 1 edge matrix:
2020-08-27 19:46:27.325318: I tensorflow/core/common_runtime/gpu,/gpu_device.cc:1102]
2020-08-27 19:46:27.327362: 1 tensorflow/core/common_runtime/gpu,/gpu_device.cc:1115
2020-08-27 _19:46:27.329834: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1241
a'lhostfrephca 0/task:0/device:GPU:0 with 6304 MB memory) -» pr:;smﬂ GPU (device: 0,
0000:01:00 cmpute capability: 7.5)

(= Debugger 15 "activ
* Debugger PIN: 229 OOL 993
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
127.0.0.1 - - [2 Aug.-"2020 19:47:27] "0[37mGET / HTTP/1.10[0m" 200 -
127.0.0.1 - - [zmmgfzuzo 19:47:27] "0[33mGET /favicon.ico HTTP/1.10[0m
2020 08-27 20 22:58 19645 I :ensorﬂw{strean,.exe:utorfp‘latForm,.-’de'Fau'Itfdso ‘Ioader
Identification cublas64_10.d

2020:"% -27 20:23:01. 0?7270 I tensorflow/stream_executor/platform/default/dso_loader.

Tibrary cudnné4_7.d11
2020-08-27 20:23:06.724678: W tensorflow/stream_executor/gpu/redzone_allocator.cc:31%
ation is supported on Cuda non-Windows platforms only
Confidence [0-100]% : 100.0 %% Relying on driver to per‘Fcrm ptx compilation. ‘I'hls message will be only logged once.
[Info]l Predicted: GOLDEN PHEASANT, Confidence: 1.0
127.0.0.1 - - [27/Aug/2020 20:23:07] "0[37mPOST / HTTP/1.10[0m" 200 -

Predicted : GOLDEN PHEASANT

Figure 9-8. Results for an uploaded image

If you are wondering on how you can host this application, the application structure
we build will work out-of-the-box with Flask application hosting services such as AWS
Elastic Beanstalk.?

Scaling Up Your Web Application

The application we built here, although functional, if far from an optimal design. There

are several areas that we can improve in it, such as:

e The main application handles both the web functions—such as
template rendering, request handling—and the deep learning
inference tasks as well. This will bottleneck some of the functionality
as the same application threads needs to handle both sets of tasks.

?Elastic Beanstalk (deploying a Flask application to Elastic Beanstalk), [https://docs.aws.
amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html, [22 Nov, 2020].

230

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html

CHAPTER9 DEPLOYING YOUR MODEL AS A WEB APPLICATION

e Running inferencing is computationally intensive. The same can be
said for image preprocessing as well. While the web functions are
relatively less complex.

e By having the web and the deep learning components of the
application together, we would need to allocate processing/machine
resources unnecessarily.

e When implementing computationally intensive functions, it is better
to implement limit (or throttle) the number of parallel invocations of
such functions as to reduce the resource usage. Think of multiuser

scenarios.

o Computationally intensive functions should optimally be done
asynchronously.

Considering all these facts, it is better to split the application so that the web
components and the deep learning portions are handled by two separate micro-services.

It is also better to implement a job-queue mechanism between the two services as a
throttling mechanism.

One possible application design considering these items is shown here (Figure 9-9).

Page i i
Templates Deep
i i Learning
Model

Web Browser

Request
Handler

Job Handler

........... i & s
30‘:?;0@ -.‘.-@
&* & & &
&
N

Figure 9-9. Scaling up the application

By considering these factors when designing, you can build your application to be
able to handle thousands to millions of requests at a time.

231

CHAPTER 10

Having Fun
with Computer Vision

We have talked about the ways in which deep learning and computer vision go together.
In the past few chapters, we have built some computer vision models: deep learning
image classification models, from handwritten digit classification to bird identification.
In Chapter 3, when we set up our deep learning development environment, we installed
several utility libraries that aids in computer vision and image processing tasks.

But other than using OpenCV to load and display the results of our deep learning
models, we have not explored many of the functions available in these libraries.

Therefore, in this chapter, let us look at some of those functions and concepts to get
you started. While this chapter is not a full computer vision tutorial, this hopes to guide
you to start experimenting on your own, and to learn how to couple it with what we have
already learned about deep learning.

What We Need

In Chapter 3, “Setting Up Your Tools,” we already installed everything we need for computer
vision and image processing tasks, which are OpenCV, Dlib, Pillow, and Scikit-Image.

e OpenCV is arguably the best computer vision library out there. It
can do simple functions, such as loading and manipulating images,
to building complex models, such as deep learning-based image

recognition, all on its own.

e DIlib is a machine learning library, which has some optimized and
easy-to-use computer vision functions built in.

o Pillow and Scikit-Image allow you to load and handle different
formats of images and allow basic manipulations such as color
channel handling.

233
© Thimira Amaratunga 2021

T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_10

https://doi.org/10.1007/978-1-4842-6431-7_10#DOI

CHAPTER 10 HAVING FUN WITH COMPUTER VISION

Other than the software libraries, it is best to have a webcam attached to your
machine, as we will be looking into some real-time video processing as well.

If you are working on a laptop, then you might already have a built-in webcam, which
is sufficient. If not, you can use a USB webcam. For most USB webcams, the default
drivers that is installed by Windows will be sufficient.

Note You can use the Camera app on Windows 10 to check whether the webcam
is working and have the working drivers loaded. You also do not need a high-end
HD webcam, as we will be working with lower resolutions (640x480).

Basics of Working with Images

The most basic functionality of any image processing task is to load and display images.
We have already used this functionality to display the results from our models.

When working with image files, OpenCV has convenient functions to load images
and display them. The following code will use the imread function of OpenCV to load the
image:

01: import numpy as np

02: import cv2

03:

04: # Read the image...

05: # cv2.IMREAD COLOR - load a color image, without transparency
06: # cv2.IMREAD GRAYSCALE - load image in grayscale mode

07: # cv2.IMREAD_UNCHANGED - load image as-is, including transparency if it
is there

08: img = cv2.imread('.//images//Bird.jpg', cv2.IMREAD_COLOR)

09:

10: # Display the image

11: cv2.imshow('Image', img)

12:

13: # Wait for a keypress

14: cv2.waitKey(0)

15:

234

CHAPTER 10 HAVING FUN WITH COMPUTER VISION

16: # Close all OpenCV windows
17: cv2.destroyAllWindows ()

The image will be displayed in a new window by OpenCV (Figure 10-1).

(deep-learning) C:\Development\deep_learning_on_windows\Chapter_10>python load_image_cpencv.py

57 Image

Figure 10-1. OpenCV loading and displaying an image

OpenCYV can load most image file formats, but the exact format it supports will
depend on the version and the build that you have installed.

If you do run into an image file that OpenCV is unable to open, you can always use
Pillow to open it. Pillow supports many more formats than OpenCV:

01: import numpy as np

02: import cv2

03: from PIL import Image

04:

05: # Read the image...

06: pil image = Image.open('.//images//Bird.jpg")

07:

08: # Convert image from RGB to BGR

09: opencv_image = cv2.cvtColor(np.array(pil image), cv2.COLOR_RGB2BGR)
10:

235

CHAPTER 10 HAVING FUN WITH COMPUTER VISION

11: # Display the image

12: cv2.imshow('Image', opencv_image)
13:

14: # Wait for a keypress

15: cv2.waitKey(0)

16:

17: # Close all OpenCV windows

18: cv2.destroyAllWindows ()

Here, we have loaded the image with Pillow, converted the color format to be
compatible with OpenCV, and displayed the image using OpenCV (Figure 10-2).

(deep-learning) C:\Development\deep_learning_on_windows\Chapter_10>python load_image_opencv.py

(deep-learning) C:\Development\deep_learning_on_windows\Chapter_l10>python load_image_pillow.py

51 Image

Figure 10-2. Loading an image with Pillow and displaying with OpenCV

When using Pillow with OpenCV we must convert the color formats, because
OpenCV uses the BGR format while Pillow uses the more common RGB format. If
you forget to convert these color channels, the images will display incorrect colors
(Figure 10-3).

236

CHAPTER 10 HAVING FUN WITH COMPUTER VISION

(deep-learning) C:\Development'deep_learning_on_windows\Chapter_10>python load_image_pillow.py

Figure 10-3. Incorrect colors if RGB to BGR color conversion is not performed

Once you have loaded the image, OpenCV and Pillow allows you to do many
transformations to the image, such as resizing, rotating, color conversions, and
thresholding. The following code shows how to perform a rotation around the center
point of an image using OpenCV:

01: import numpy as np

02: import cv2

03:

04: # Read the image...

05: img = cv2.imread('.//images//Bird.jpg', cv2.IMREAD_COLOR)
06:

07: # Perform the rotation around the center point
08: rows,cols,channels = img.shape

09: M = cv2.getRotationMatrix2D((cols/2,rows/2),45,1)
10: dst = cv2.warpAffine(img,M, (cols,rows))

11:

12: # Display the image

13: cv2.imshow('Image', dst)

14:

15: # Wait for a keypress

16: cv2.waitKey(0)

237

CHAPTER 10 HAVING FUN WITH COMPUTER VISION

17:
18: # Close all OpenCV windows
19: cv2.destroyAllWindows ()

This will result is a 45-degree rotation of the image (Figure 10-4).

(deep-Tlearning) C:\Development\deep_learning_on_windows\Chapter_10>python rotate_image_opencv.py

B Image

Figure 10-4. Image rotation with OpenCV

You can read about the full set of available image transformation functions from the
OpenCV docs' and Pillow docs.?

The next most important function you need to learn is extracting out a region of
interest from an image. The following code demonstrates how a region from the image
can be extracted:

01: import numpy as np

02: import cv2

03:

04: # Read the image...

05: img = cv2.imread('.//images//Bird.jpg", cv2.IMREAD_COLOR)

'0OpenCV (image transformations), https://docs.opencv.org/3.4.1/da/d6e/tutorial py
geometric_transformations.html, [Feb 23, 2018].

?Pillow (image transformations), https://pillow.readthedocs.io/en/stable/reference/
Image.html, [Jul 24, 2020].

238

https://docs.opencv.org/3.4.1/da/d6e/tutorial_py_geometric_transformations.html
https://docs.opencv.org/3.4.1/da/d6e/tutorial_py_geometric_transformations.html
https://pillow.readthedocs.io/en/stable/reference/Image.html
https://pillow.readthedocs.io/en/stable/reference/Image.html

06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:

CHAPTER 10 HAVING FUN WITH COMPUTER VISION

Extract the region-of-interest from the image
img roi = img[50:250, 150:300]

Display the extracted region-of-interest
cv2.imshow('Image ROI', img roi)

Wait for a keypress
cv2.waitKey(0)

Close all OpenCV windows
cv2.destroyAllhWindows ()

This will extract and display a region from the image (Figure 10-5).

(deep-learning) C:\Development‘deep_learning_on_windows'\Chapter_10=python image_roi.py

Figure 10-5. Extracting a region-of-interest from an image

07:
08:
09:
10:
11:

You can also save the extracted image region using the imwrite function.

Extract the region-of-interest from the image
img roi = img[50:250, 150:300]

Save the region-of-interest as an image
cv2.imwrite('.//images//Bird ROI.jpg', img roi)

239

CHAPTER 10 HAVING FUN WITH COMPUTER VISION

The ability to extract a region-of-interest is incredibly useful when you are working
with object detection and recognition.

Working with Video: Using Webcams

Usually, when working with hardware devices, such as when you are trying to read from a
connected camera from code, you would have to fiddle around some camera driver stuff.
But OpenCV has us covered in this instance.
OpenCV can read from any built-in or USB connected camera in the system.
Avideo stream from a camera is just a sequence of images in an order, and OpenCV
reads frame-by-frame. Therefore, each frame acts like loading an individual image:

01: import numpy as np

02: import cv2

03:

04: # Create the video capture object for camera id 'O’
05: video capture = cv2.VideoCapture(0)

06:

07: while True:

08: # Capture frame-by-frame

09: ret, frame = video capture.read()
10:

11: if (ret):

12: # Display the resulting frame
13: cv2.imshow('Video Feed', frame)
14:

15: ch = OxFF & cv2.waitKey(1)

16:

17: # Press "q" to quit the program
18: if ch == ord('q"):

19: break

20:

21: # When everything is done, release the capture
22: video capture.release()
23: cv2.destroyAllWindows ()

240

CHAPTER 10 HAVING FUN WITH COMPUTER VISION

With this code, OpenCV will open a window—named Video Feed here—and load
each frame as it reads them from the camera (Figure 10-6).

B Video Feed = (=] x

* =t +E@BPPLPLHY

(x=129, y=211) ~ R:79 G:83 B:84

Figure 10-6. OpenCV loading the video from a webcam

The code will loop indefinitely, or until you press the q key on the keyboard.

OpenCV uses its HighGUI module (high-level graphical user interface) to access
the cameras as well as to display the frames. HighGUI module has three sets of
functionalities: hardware, filesystem, and GUI. The hardware part is what handles
accessing hardware devices such as cameras. The filesystem part handles the loading
and saving of images as well as video files. The GUI part is what generates the windows
that display the images or frames, as well as giving you the ability to handle keyboard
and mouse events in those windows. The toolbar and the status bar of the window we
opened earlier are also components from HighGUI.? The HighGUI modlule is installed
by default when you are installing OpenCV with conda.

Camera id 0 is your default camera. Typically, this is the built-in camera if you are
on a laptop, or whichever camera you have set as default if you have multiple cameras.
If you have more than one camera, they would have ids that would be listed as 0, 1, 2,
and so on. Just check and set the id to the camera you want. You can use multiple video
capture objects to read from multiple cameras (Figure 10-7).

%0OpenCV (HighGUI module), https://docs.opencv.org/3.4.11/d7/dfc/group__highgui.html,
[Jul 17, 2020].

241

https://docs.opencv.org/3.4.11/d7/dfc/group__highgui.html

CHAPTER 10 HAVING FUN WITH COMPUTER VISION

* cpency_multicampy X
1 import numgy as np
wng 1 2 import cv2

videa_capture 8 = cv2.

3
F
5 video_capture_1 = cvi.

B Cam

= t4EBPLLHY s tIdE@BLPLPHY

(x=120, y=211) ~ R:79 G:83 B:84 (e=32, y=B9) ~ R156 G164 BIEE

Figure 10-7. Reading from multiple cameras in OpenCV

Once you read the frame from the camera, it acts as an image. Now you can perform
any of the image transformations on that frame.

Working with Video: Using Video Files

This is almost identical to reading from a webcam. You just need to pass the path to the
video file, instead of the camera id, in the video capture object:

01: import numpy as np

02: import cv2

03:

04: # Create the video capture object for a video file

05: cap = cv2.VideoCapture("F:\\GoPro\\Hero7\\GH010038.mp4")
06:

07: while(cap.isOpened()):

08: # Read frame-by-frame

09: ret, frame = cap.read()

242

CHAPTER 10 HAVING FUN WITH COMPUTER VISION

10:

11: if (ret):

12: # Resize the frame

13: res = cv2.resize(frame, (960, 540), interpolation = cv2.INTER
CUBIC)

14:

15: # Display the resulting frame

16: cv2.imshow('Video', res)

17:

18: # Press "q" to quit the program

19: if cv2.waitKey(1) & OxFF == ord('q"):
20: break

21:

22: cap.release()
23: cv2.destroyAllWindows ()

Just like the webcam code, OpenCV will open a window and load each frame as it
reads them from the video file (Figure 10-8).

Figure 10-8. OpenCV loading a video file

243

CHAPTER 10 HAVING FUN WITH COMPUTER VISION

As with images, the supported video file formats may differ with the exact
version/build of the OpenCV you have installed. OpenCV relies on FFmpeg and
GStreamer libraries to be able to work with video files, while the DirectShow library is
used on Windows to handle video from webcams. These libraries are installed when you
install OpenCV with conda. Therefore, opening standard AVI and MP4 files should not
be a problem.

You may notice that the playback of the video is either faster or slower than expected.
This is because the functions we used are not meant for playing back videos at their
natural speed. What we are doing is grabbing each frame of the video—like we did with
the webcam—and displaying it in the window with a delay added in between fetching
the next frame. That delay is added by the cv2.waitkey() function. Here we have set it
to 1 millisecond of delay between frames. You can increase or decrease the speed of the
video by adjusting this delay.

Detecting Faces in Images

Here we are getting into some of the fun parts of computer vision.

Writing code from scratch to detect faces is a bit of a complex task as the process
involved in identifying a face from within an image reliably involves many steps. But
libraries such as OpenCV and Dlib already have the complex parts of those algorithms
built into them.

To detect any objects (such as faces) in an image, you need to have a trained object
detector. Luckily, Dlib already has a pretrained face detector built right into the library.
You can load it using d1ib.get frontal face detector() function.

01: import numpy as np

02: import cv2

03: import dlib

04:

05: # Load the built-in face dedector of Dlib
06: detector = dlib.get frontal face detector()
07:

08: # Load the image

244

09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

CHAPTER 10 HAVING FUN WITH COMPUTER VISION

img = cv2.imread('.//images//Face.jpg', cv2.IMREAD COLOR)
Create a grayscale copy of the image
img gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

Get the detected face bounding boxes, using the grayscale image
rects = detector(img gray, 0)

Loop over the bounding boxes, if there are more than one face
for rect in rects:
Get the OpenCV coordinates from the Dlib rectangle objects
x = rect.left()
y = rect.top()
x1 = rect.right()
yl = rect.bottom()

Draw a rectangle around the face bounding box in OpenCV
cv2.rectangle(img, (x, y), (x1, y1), (0, 0, 255), 2)

Display the resulting image
cv2.imshow('Detected Faces', img)

Wait for a keypress
cv2.waitKey(0)

Close all OpenCV windows
cv2.destroyAllWindows ()

Here, we are using OpenCV to load the image, and then make a grayscale copy of it.

We pass this grayscale copy of the image to the Dlib face detector object.

The grayscale image is used as it can increase the detection speed of faces. The Dlib

face detector can work with color images as well, but would be slower.

The detector would return an array of Dlib rectangle objects to denote the bounding

boxes of all the faces detected. We loop over each of these bounding boxes, extract their

coordinates, and use OpenCV to draw a rectangle around the detected face using those

coordinates. Finally, we display the resulting image, with the detected faces (Figure 10-9).

245

CHAPTER 10 HAVING FUN WITH COMPUTER VISION

Figure 10-9. Dlib face detection in action

Detecting Faces in Video

Once we get face detection working with images, getting it to work on a video or a
webcam feed is quite simple. All we need to do is to capture the video frame-by-frame
and pass each frame to the face detector:

01: import numpy as np

02: import cv2

03: import dlib

04:

05: # Create the video capture object for camera id 'o'
06: video capture = cv2.VideoCapture(0)

07: # Load the buil-in face dedector of Dlib

08: detector = dlib.get frontal face detector()

09:

246

10: while True:
Capture frame-by-frame
ret, frame = video capture.read()

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
objects
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

CHAPTER 10 HAVING FUN WITH COMPUTER VISION

if (ret):
Create a grayscale copy of the captured frame
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

Get the detected face bounding boxes, using the grayscale image
rects = detector(gray, 0)

Loop over the bounding boxes, if there are more than one face
for rect in rects:

Get the OpenCV coordinates from the Dlib rectangle

x = rect.left()
y = rect.top()
x1 = rect.right()
yl = rect.bottom()

Draw a rectangle around the face bounding box in OpenCV
cv2.rectangle(frame, (x, y), (x1, y1), (0, 0, 255), 2)

Display the resulting frame
cv2.imshow('Video Feed', frame)

ch = OxFF & cv2.waitKey(1)

q" to quit the program.

if ch == ord('q"):
break

41: # When everything is done, release the capture

42: video capture.release()
43: cv2.destroyAllWindows ()

247

CHAPTER 10 HAVING FUN WITH COMPUTER VISION

Here we are running the face detection step (as we did with an image) on each frame
of the video. On a typical machine, the Dlib’s face detector is fast enough to detect faces
in real time, allowing us to run it for each frame. You will see the detection box update in
real time for each frame (Figure 10-10).

B Detected Faces - o x

¥ tIE@PPLALHY

(=2, y=362) ~ R:29 G:30 B:34

Figure 10-10. Face detection running on video

Simple Real-Time Deep Learning Object
Identification

Next, we will combine what we learned about deep learning models with the computer
vision capabilities of OpenCV and build a rudimentary object identification system.

We will use OpenCV to capture the video stream from a webcam and use the
ResNet50 deep learning model from TensorFlow/Keras applications to identify objects in
each frame of the video. You can learn more about the ResNet50 model in Appendix 1.

We will start by importing the necessary packages:

import numpy as np

import cv2

import tensorflow as tf

: from tensorflow.keras.applications.resnet50 import ResNet50

A W N R

248

CHAPTER 10 HAVING FUN WITH COMPUTER VISION

5: from tensorflow.keras.preprocessing import image
6: from tensorflow.keras.applications.resnet50 import preprocess input,
decode_predictions

Apart from OpenCV, numpy, and the ResNet50 model, we also import some image
preprocessing functions from Keras.

Next, we load the ResNet50 model with the ImageNet weights and create the video
capture object:

08: # Load the ResNet50 model with the ImageNet weights
09: model = ResNet50(weights="imagenet")

10: # Create the video capture object

11: video capture = cv2.VideoCapture(0)

In the main loop of the code, we convert the captured frame to RGB (since OpenCV
works in BGR) and resize it to 224x224 pixels, which is the input size required by the
ResNet50 model:

13: while True:

14: # Capture frame-by-frame

15: ret, frame = video capture.read()

16:

17: if (ret):

18: # Convert image from BGR to RGB

19: rgb _im = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)

20: # Resize the image to 224x224, the size required by ResNet50 model
21: res_im = cv2.resize(rgb_im, (224, 224), interpolation = cv2.

INTER _CUBIC)

Then we run the image through a set of preprocessing steps, to prepare it to be

ingested by the model:

23: # Preprocess image

24: prep im = image.img to array(res im)

25: prep_im = np.expand_dims(prep_im, axis=0)
26: prep_im = preprocess input(prep im)

249

CHAPTER 10 HAVING FUN WITH COMPUTER VISION

Next we pass the processed image to the model and make the prediction. We also
need to decode the prediction—using convenient functions from TensorFlow/Keras—to
get the class label for the prediction:

28: # Make the prediction

29: preds = model.predict(prep_im)

30:

31: # Decode the prediction

32: (class_name, class description, score) = decode

predictions(preds, top=1)[0][0]

Finally, we overlay the predicted label and the confidence score of the prediction on
the image itself, and print it on the console, and display the image using OpenCV:

34: # Display the predicted class and confidence

35: print("Predicted: {0}, Confidence: {1:.2f}".format(class_
description, score))

36: cv2.putText(frame, "Predicted: {}".format(class description),
(10, 50),

37: cv2.FONT HERSHEY PLAIN, 2, (255, 255, 255), 2, cv2.
LINE_AA)

38: cv2.putText(frame, "Confidence: {0:.2f}".format(score), (10, 80),
39: cv2.FONT _HERSHEY PLAIN, 2, (255, 255, 255), 2, cv2.
LINE_AA)

40:

41: # Display the resulting frame

42: cv2.imshow('Video Feed', frame)

43:

44: ch = OxFF & cv2.waitKey(1)

45:

46: # press "q" to quit the program.

47: if ch == ord('q"):

48: break

49:

50: # When everything is done, release the capture
51: video capture.release()
52: cv2.destroyAllWindows ()

250

CHAPTER 10 HAVING FUN WITH COMPUTER VISION

When you run the code, it will pass each frame of the video to the ResNet50 model,
which will try to identify the most prominent object in the frame. The code will then
display and print out the prediction along with the confidence of the prediction from the
ResNet50 model (Figure 10-11).

» Confidence:
, Confidence:
, Confidence:
. Confidence:
, Confidence:
, Confidence:
, Confidence:
. Confidence:
, Confidence:
, Confidence:

Confidence:
, Confidence:
» Confidence:
, Confidence:

Confidence:
. Confidence:
: monitor, Confidence:
: monitor, Confidence:
: monitor, Confidence:
: monitor, Confidence:
: monitor, Confidence:
: monitor, Confidence:
: monitor, Confidence:
: monitor, Confidence:
: monitor, Confidence:
: monitor, Confidence:
: monitor, Confidence:
: momitor, Confidence:
: monitor, Confidence:

Video Feed

A

Wi
BO=CoW

Predicted: monitor
nfidence: 0.5

C b
(I 1Y v

COo0000O0O0COOO0000O00DO0O00O000000

AN OAVADVAEEAOR NN
B0 MDD o O N = e P D

T B

Figure 10-11. Real-time object detection running

What we built here is a very rudimentary object identification system that has several
limitations. It can only identify one object at a time, as it takes the entire frame as the
input. It also cannot identify bounding boxes for the objects it identifies. A true object
detection system would be able to identify multiple objects within a frame and identify
their boundaries as well.

But with the concepts we learned so far, you can investigate expanding the
capabilities of the system.

The same goes for our face detection system.

How would you expand it to perform face recognition on the detected faces as well?

Think of what we learned about extracting a region-of-interest from an image. Can
you think of a way to apply that concept to extract out the detected face image and run
it through a deep learning model? Can you use the same concept to build the training
dataset for the model as well?

251

CHAPTER 11

Introduction to Generative
Adversarial Networks

Can an Al be creative—can it learn to create art, for example? The traditional answer
was no. But lately we are not so sure. Recently, thanks to deep learning, the definition of
creativity has been become blurred.

The Story of the Artist and the Art Critic

Let us look at a story.

There once was a novice artist, who was learning to create artwork by taking
inspiration from existing art pieces.

The artist created a piece of art and showed it to an art critic.

The critic analyzed the artwork and declared it not good enough. But, being
conscientious, the critic also provide feedback to the artist on why it was not considered
to be good enough.

The artist absorbed this feedback and attempted again to create another piece of art
with changes based on the feedback, and showed it to the critic.

This happened over several cycles.

Every time the critic criticized the artwork, the artist gained experience about how to
improve it.

Likewise, every time the artist generated a new artwork, the critic gained experience
in how to evaluate it.

After many such iterations, the artist created an artwork that could be considered a
masterpiece.

Because of the critic, the artist became a master.

What if we can do the same to an AI?

That is the idea behind generative adversarial networks.

253
© Thimira Amaratunga 2021

T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_11

https://doi.org/10.1007/978-1-4842-6431-7_11#DOI

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

Generative Adversarial Networks

A generative adversarial network (GAN) is a machine learning model where two neural
networks contest with each other to generate new data with the same characteristics of a
given training set.

e Generative: the model generates new data, as opposed to picking the
output from a given set.

o Adversarial: the two networks are adversaries of each other.
¢« Network: the model is based on neural networks.

Like our story, generative adversarial networks also consists of two elements: a
generator (the artist) and a discriminator (the art critic). The generator is trying to learn
to create items that looks “real,” while the discriminator is trying to distinguish the
generated items from real ones (Figure 11-1).

A random noise vector as "The Artist"
a starting ¢ eInt

‘ The Generator =) Generated

. "Real" or "Fake"
Real ltems LW TheDiscriminator [sy

"The Art Critic"

Figure 11-1. The typical workflow of a GAN

The items generated can be images, text, videos, sounds, or anything.

In such a system, the generator and the discriminator need to be trained together,
as in the artist and the art critic in our story who got experienced together. When we
are training such a system, the generator will progressively become better at generating
items that look real, and the discriminator will become better at telling them apart from

254

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

the real ones. After many iterations of training like this, there will come a point where
the discriminator may no longer be able to tell the generated items from the real ones
(Figure 11-2).

Few iterations Many iterations
later later

First Iteration

Discriminator Discriminator

1

"Fake" "Fake" "Real"

Figure 11-2. Training of a GAN

To simplify the explanation, let us take a GAN than generates images. The generator
takes a random noise vector as input, while the discriminator takes a training set of real
images belonging to the class of images that we would like to generate.

Generating Handwritten Digits with DCGAN

A DCGAN (deep convolutional generative adversarial network) is one of the simplest
GAN implementations. In it we use convolutional layers in the generator and the
discriminator, which makes DCGAN models work great with images.

255

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

We will use the MNIST dataset as the input. Our target would be to generate images
that are indistinguishable from human handwritten digits.
Our workflow would look like the following (Figure 11-3).

Generated Images
A random noise vector as o

a starting point

"The Artist"

- The Generator .

H?

™
0

‘ :Lj ? The Discriminator FSSSEN "T:T::;ﬁi:;;k:"
j 8 “The Art Critic"

Real Images

Figure 11-3. DCGAN for handwritten digit generation

We will start with a new code file, which we will name DCGAN_Digits.py.
We start our code by importing the necessary packages:

01: import tensorflow as tf

02:

03: from tensorflow.keras import layers
04: import glob

05: import imageio

06: import matplotlib.pyplot as plt
07: import numpy as np

08: import os

09: import PIL

10: import time

11: import cv2

256

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS
We then load our dataset and normalize it:

13: (train_images, train labels), (_,) = tf.keras.datasets.mnist.load
data()

14:

15: train_images = train_images.reshape(train_images.shape[0], 28, 28,
1).astype('float32")

16: train_images = (train_images - 127.5) / 127.5 # Normalize the images to
['1: 1]

The MNIST pixel values are in the 0-255 range. Here we normalize it to -1-1 range.
Then we define the batch sizes, then shuffle and chunk the dataset for training:

18: BUFFER_SIZE = 60000

19: BATCH SIZE = 256

20:

21: # Batch and shuffle the data

22: train dataset = tf.data.Dataset.from tensor slices(train_images).
shuffle(BUFFER_SIZE).batch(BATCH SIZE)

Next, we need to define the generator and discriminator models.

The Generator

Our generator model takes in a seed of random noise and outputs a 28x28x1 image. The
model would look like this (Figure 11-4):

257

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

Input Noise Vector

5 _EE N E N

v

BatchNormalization

LeakyReLU

u

ConvZDTranspose
BatchNormalization

LeakyRelL|

Conv2DTranspose
BatchNormalization

LeakyReLU

Conv2DTranspose

Output 28x28x1 Image

Figure 11-4. The generator model

The model uses Conv2DTranspose layers to upsample the input at each layer.
LeakyReLU is used as the regularization, as it allows small amounts of negative values to
go through, as opposed to ReLU, which removes all negatives.

We will define a new function make_generator _model() for the generator model:

24: def make_generator model():

25: model = tf.keras.Sequential()
26: model.add(layers.Dense(7*7*256, use bias=False, input shape=(100,)))
27: model.add(layers.BatchNormalization())

258

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

28: model.add(layers.LeakyReLU())

29:

30: model.add(layers.Reshape((7, 7, 256)))

31: assert model.output shape == (None, 7, 7, 256) # Note: None is the
batch size

32:

33: model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1),
padding="same', use_bias=False))

34: assert model.output shape == (None, 7, 7, 128)

35: model.add(layers.BatchNormalization())

36: model.add(layers.LeakyReLU())

37:

38: model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2),
padding="same', use bias=False))

39: assert model.output shape == (None, 14, 14, 64)

40: model.add(layers.BatchNormalization())

41: model.add(layers.LeakyReLU())

42:

43: model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2),
padding="same', use bias=False, activation="tanh"))

44: assert model.output shape == (None, 28, 28, 1)

45:

46: return model

We can now use this function to create a model instance and generate an
initial image:

48: generator = make_generator model()

49:

50: noise = tf.random.normal([1, 100])

51: generated image = generator(noise, training=False)
52:

53: plt.imshow(generated image[0, :, :, 0], cmap='gray')
54: plt.show()

55: plt.close()

259

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

As the generator model is still untrained, the output will look like noise (Figure 11-5).

Figure 11-5. Output from the untrained generator

The Discriminator

The discriminator is a simple deep learning image classifier (based on a familiar
convolutional neural network). It will take a 28x28x1 image as input and classify them as
real or fake. The discriminator model would look like this (Figure 11-6):

260

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

Input 28x28x1 Image

LeakyReLU

LeakyReLU

"Real"” or "Fake"
Classification

Figure 11-6. The discriminator model

We will define the make_discriminator_model() function for the discriminator
model. It uses our familiar Conv2D layers:

57: def make_discriminator model():

58: model = tf.keras.Sequential()

59: model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding="same',
60: input_shape=[28, 28, 1]))

61: model.add(layers.LeakyReLU())

62: model.add(layers.Dropout(0.3))

261

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

63:

64: model.add(layers.Conv2D(128, (5, 5), strides=(2, 2),
padding="same"))

65: model.add(layers.LeakyReLU())

66: model.add(layers.Dropout(0.3))

67:

68: model.add(layers.Flatten())

69: model.add(layers.Dense(1))

70:

71: return model

We can then use this function to create a discriminator instance and pass the image
we generated earlier:

73: discriminator = make discriminator model()
74: decision = discriminator(generated image)
75: print (decision)

As the discriminator model is still untrained, this will output something like the
following:

tf.Tensor([[0.00122253]], shape=(1, 1), dtype=float32)

Once trained, the discriminator will output 1 for real images and 0 for fake.

The Feedback

Like our story of the artist and the art critic, in order to improve, our generator and
discriminator need feedback. Here we are defining the loss values for both the generator
and the discriminator, which we will later use to calculate the gradients that will update
each of them when training:

77: # This method returns a helper function to compute cross entropy loss
78: cross_entropy = tf.keras.losses.BinaryCrossentropy(from logits=True)
79:

80: def discriminator loss(real output, fake output):

81: real loss = cross_entropy(tf.ones like(real output), real output)
82: fake _loss = cross_entropy(tf.zeros like(fake output), fake output)

262

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

83: total loss = real loss + fake loss

84: return total loss

85:

86: def generator loss(fake output):

87: return cross_entropy(tf.ones like(fake output), fake output)
88:

89: generator optimizer = tf.keras.optimizers.Adam(1e-4)
90: discriminator optimizer = tf.keras.optimizers.Adam(1e-4)

The discriminator’s loss is defined by how well it can distinguish between real
images and generated ones. So we take in the predictions from the discriminator for
real images (the array of real output) and for the fake images (the array of fake
output), and compare them against the expected outputs. Once properly trained, the
discriminator should yield 1s for the real images, while yielding Os for the generated or
fake images. Therefore, we get the difference between the outputs for the real images
with an array of 1s, and the difference between the outputs for fake images with an array
of 0s.

Similarly, we expect the generator, once properly trained, to generate images that
yields 1s from the discriminator. Like before, we compare the outputs from the generated
or fake images to an array of 1s to determine the loss for the generator.

We also define two separate Adam optimizers for the generator and the
discriminator, as the two models need to be trained separately while simultaneously.

Since training of GANs can take a long time, we configure model checkpoints to be
saved periodically, which would help to recover if the training gets disrupted. Make sure
to create a directory named training_checkpoints in the directory where your code file is:

92: checkpoint _dir = './training checkpoints'
93: checkpoint prefix = os.path.join(checkpoint dir, "ckpt")
94: checkpoint = tf.train.Checkpoint(generator optimizer=generator optimizer,

95: discriminator_optimizer=discriminator_
optimizer,

96: generator=generator,

97: discriminator=discriminator)

263

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

The Training

Next, we define the training parameters and the random seed for the training:

100: EPOCHS = 1000

101: noise_dim = 100

102: num_examples to_generate = 16

103:

104: # We will reuse this seed overtime (so it's easier)

105: # to visualize progress in the animated GIF)

106: seed = tf.random.normal([num_examples to generate, noise dim])

We will reuse the same seed throughout the training epochs to better visualize how
each generated sample improves over the epochs (as the same seed results in same
digits to be generated).

We then define the function for the training step:

108: # Notice the use of "tf.function®

109: # This annotation causes the function to be "compiled".
110: @tf.function

111: def train_step(images):

112: noise = tf.random.normal([BATCH SIZE, noise dim])

113:

114: with tf.GradientTape() as gen tape, tf.GradientTape() as disc_
tape:

115: generated images = generator(noise, training=True)

116:

117: real output = discriminator(images, training=True)

118: fake output = discriminator(generated images, training=True)
119:

120: gen_loss = generator loss(fake output)

121: disc_loss = discriminator loss(real output, fake output)
122:

123: gradients_of generator = gen tape.gradient(gen loss, generator.
trainable variables)

124: gradients of discriminator = disc_tape.gradient(disc_loss,

discriminator.trainable variables)

264

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

125:

126: generator optimizer.apply gradients(zip(gradients of generator,
generator.trainable variables))

127: discriminator optimizer.apply gradients(zip(gradients of

discriminator, discriminator.trainable variables))

In each training step we pass a random noise vector to the generator, which
generates a set of images using it as the input. These generated images, as well as a set
of real images, are then passed through the discriminator to get their outputs. These
outputs are the predictions/classifications from the discriminator as to whether it
thinks they are real or fake. Using the loss functions we defined earlier, the loss values
are calculated for the generator and discriminator and the gradients of the loss values
are used to update them. Think of it as the “feedback” that nudges them to train in the
correct direction.

Next is the function for the main training loop:

129: def train(dataset, epochs):

130: train start = time.time()

131: for epoch in range(epochs):

132: start = time.time()

133:

134: for image_batch in dataset:

135: train_step(image batch)

136:

137: # Produce images for the GIF as we go

138: generate and_save images(generator,

139: epoch + 1,

140: seed,

141: display = True)

142:

143: # Save the model every 15 epochs

144: if (epoch + 1) % 15 == 0:

145: checkpoint.save(file prefix = checkpoint_prefix)
146:

147: print ('Time for epoch {} is {} sec'.format(epoch + 1, time.

time()-start))

265

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

148:
149: print ('Time for total training is {} sec'.format(time.time()-
train_start))

Here, we are basically running through each of the training batches through number
of epochs we defined. And at the end of each training epoch, we use the seed we defined
earlier to generate a set of samples and save those images files.

The function is defined as follows, which is mainly postprocessing of the generated
images. Make sure to create a directory named output in the directory where your code
file is located:

151: def generate and save_images(model, epoch, test input, display =
False):

152: # Notice "training is set to False.

153: # This is so all layers run in inference mode.

154: predictions = model(test input, training=False)

155:

156: fig = plt.figure(figsize=(4,4), facecolor="'black")

157:

158: for i in range(predictions.shape[0]):

159: plt.subplot(4, 4, i+1)

160: image = predictions[i, :, :, 0] * 127.5 + 127.5

161: plt.imshow(image, cmap="gray")

162: plt.axis('off")

163:

164: plt.savefig('output/image_at _epoch {:04d}.png'.format(epoch),
facecolor=fig.get facecolor())

165: plt.close()

166: disp_image = cv2.imread('output/image at_epoch {:04d}.png’.
format(epoch))

167: disp_image = cv2.bitwise not(disp_ image)

168: cv2.imwrite('output/image_at_epoch {:04d}.png'.format(epoch),
disp image)

169: if (display):

170: cv2.imshow("Results”, disp image)

171: cv2.waitKey(100)

266

173:

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

Once all the training utility functions are defined, we call the main training function:

train(train_dataset, EPOCHS)

At the end of the training we do some cleanup steps, and then combine all the

generated output images into an animated GIF file:

175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:

checkpoint.restore(tf.train.latest checkpoint(checkpoint dir))
cv2.destroyAllhWindows ()

anim_file = 'dcgan.gif'

with imageio.get writer(anim file, mode="I") as writer:
filenames = glob.glob('output/image*.png")
filenames = sorted(filenames)
last = -1
for i,filename in enumerate(filenames):
frame = 2*(i**0.5)
if round(frame) > round(last):
last = frame
else:
continue
image = imageio.imread(filename)
writer.append data(image)
cv2.imshow("Results”, image)
cv2.waitKey(100)
image = imageio.imread(filename)
writer.append_data(image)

Running the Training

With our DCGAN model ready, we can start the training by running:

Python DCGAN_Digits.py

The script will display the time taken for each epoch in the console, as well as the

results from each epoch in an OpenCV window (Figure 11-7).

267

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

elying on driver to perform ptx C 1lation. This message wi ogged once.

f.Tensor ([[-0.00294512]], shape=(1, 1), dtype=float32)

ime for epoch 1 is 9.139730453491211 sec

i for epoch 2 is 6.875277519226074 sec
for epoch 3 is 7.015596389770508 sec
for epoch 4 is 6.889963150024414 sec
for epoch 5 is 7.046755075454712 sec
for is 7.015287399291992 sec
for is 7.0798118114471436 sec
for is 7.0922160148620605 sec
for is 7.064154863357544 sec
for is 6.95289421081543 sec
for is 6.905693292617798 sec
for is 6.906862020492554 sec
for is 7.264364004135132 sec
for is 7.234650373458862 sec
for is 7.467440128326416 sec
for is 7.158557653427124 sec
for is 7.123363733291626 sec
for is 7.500018119812012 sec
for is 7.328236103057861 sec
for is 7.3904314041137695 sec
for is 6.938835144042969 sec
for is 7.280362844467163 sec
for is 7.374575614929199 sec
for is 7.1262054443359375 sec
for is 6.92057728767395 sec
for is 6.968956470489502 sec
for is 7.062726736068726 sec

Figure 11-7. Training running for DCGAN digit generation

When running on GPU on an RTX2070 the training took about 2 hours for 1,000
epochs (Figure 11-8).

.17099404335022 sec

.46801233291626 sec

.172439098358154 sec
.187213182449341 sec
.281859874725342 sec
.172733306884766 sec
.171485662460327 sec
.170857667922974 sec
i .172488451004028 sec
Time for epoch .31260347366333 sec

Time for epoch .172551155090332 sec

ime for epoch ;
7
T
7
7
7
T
7
7
7
Time for epoch i ;.13662?62541906? sec
T
T
7
i
7
T
7
i
7
T

[Time for epoch
Time for epoch
Time for epoch
[Time for epoch
Time for epoch
Time for epoch
Time for epoch
Time for epoch

Time for epoch .202823638916016 sec
Time for epoch .1721649169921875 sec
Time for epoch .296671152114868 sec
Time for epoch .20255708694458 sec

Time for epoch .466541767120361 sec
[Time for epoch .174056529998779 sec
[Time for epoch .171220064163208 sec
Time for epoch .31331992149353 sec

Time for epoch .187746524810791 sec
Time for epoch .186347007751465 sec
.188196420669556 sec

Time for epoch
[Time for epoch is 7.2034759521484375 sec
[Time for epoch is 7.328276634216309 sec
Time for epoch is 7.1877899169921875 sec
Time for epoch 1000 is 7.201543807983398 sec
Time for total training is 7158.384120941162 sec

(deep-learning) C:\Development\deep learning_on_windows\Chapter_11-

Figure 11-8. DCGAN training completed

268

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

Note Training of GANs can take a long time. Our DCGAN model may take hours to
train based on the processing power of the machine being run, as well as whether
you are running the model on CPU or GPU. Typically, it may take 7 to 10 seconds
per epoch to run on a GPU. Running GAN training on CPU may not be practical due
to the time it might take to complete the training.

If you are unsure, run the training for a smaller number of epochs first to get an
idea of how long it might take.

Tip If the training seems to get stuck after the initial noise image is displayed,
you can try commenting out the lines 53 to 55. This can happen because our GAN
training can take large amounts of system resources and may occasionally exhaust
the resources of the machine when attempting to visualize the results. Similarly,
you can set the display parameter to False on line 141.

You can use Kaggle notebooks' to run your code if you are having issues running
in your local machine. Kaggle provides free access to NVIDIA TESLA P100 GPUs in
their notebooks/kernels,? which can greatly accelerate training complex models
such as GANSs.

At the start of the training, the results would look like random noise (Figure 11-9).

'Kaggle, “Notebooks Guide,” https://www.kaggle.com/docs/notebooks, [24 Nov, 2020].
’Kaggle, “GPU Usage,” https://www.kaggle.com/docs/efficient-gpu-usage, [24 Nov, 2020].

269

https://www.kaggle.com/docs/notebooks
https://www.kaggle.com/docs/efficient-gpu-usage

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

" m« | s s smms | s ams | salsmms
"
e = L s EARS L AR L AN M
LN B B L B B LN B LB]

- s 0 8 EEEEs Maes « 0 s afedes

----- . - o -
. . L] - [B B] " -

- hm s’ B s afamm

- -

- B’ . g W Mees s e Tade e
----- M . - LI
LI B B B LR R] [N B B B LI e B]

- - . - Ry
----- - b e o

LI LI | g B

Figure 11-9. Images generated at epoch 1

After 100 epochs the distinct shapes of digits are starting to show (Figure 11-10).

Figure 11-10. Images generated at epoch 100

270

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

After 200 epochs, the shapes are a bit more refined (Figure 11-11).

2 8 Y7
g2 o7
! 9 ¢ Y
89 3 F

After 1,000 epochs, the images are almost indistinguishable from human

Figure 11-11. Images generated at epoch 200

handwritten digits (Figure 11-12).

Y0 27

d 2 .
! ¢ 4
00 g

Q. N
‘-J“LN

Figure 11-12. Images generated at epoch 1,000

You can also view the generated dcgan.gif file for the amination of how the generated
results improved over the training.

271

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

Can We Generate Something More Complex?

We have now seen how our DCGAN model can generate handwritten digits that are
nearly indistinguishable from ones drawn by humans. But can GANs generate something
more complex?

To find out, let us try to apply what we learned from our DCGAN_Digits model on to
something much more complex: generating images of human faces.

For that, we will need a large dataset with images of human faces to train our
discriminator model. We will use the CelebFaces Attributes (CelebA) dataset from
Kaggle for that purpose (Figure 11-13).

@ Datasat

CelebFaces Attributes (CelebA) Dataset

Over 200k images of celebrities with 40 binary attribute annotations

' I JessicaLi « updated 2 y Version 2)

Data Tasks MNolebooks Discussion Activity Metadatla Download (1 GB) New Notebook H

£ Usability 7.6 2 License Other (specified in description) % Tags
and 1 more

Context

one with your

Data Explorer

1.35GB < list_attr_celeba.csv (23.76 MB) & B
v O img_align_celeba
D rist_attr_celeba.csv Detail Compact Column 10 of 41 columns
D ist_bbox .0
[list_eval_partition.csv About this file
0D list landmarks alian cel..

Figure 11-13. CelebFaces attributes (CelebA) dataset from Kaggle

272

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

The CelebA dataset is about 1.4GB is size.> Once downloaded, extract the zip file and
rename the top-level directory to celeba-dataset. You should end up with the following
folder structure (Figure 11-14):

v | celeba-dataset

v [} img_align_celeba

l img_align_celeba

Figure 11-14. Folder structure of the uncompressed CelebA dataset

With the dataset ready, let us start a new code file for our face generator, which we
will name DCGAN_Faces.py. Like before, remember to create the training_checkpoints
and output directories where your code file is located.

We will start by importing the necessary packages:

01: import tensorflow as tf

02:

03: from tensorflow.keras import layers
04: import glob

05: import imageio

06: import matplotlib.pyplot as plt
07: import numpy as np

08: import os

09: import PIL

10: import time

11: import cv2

We will then define a helper function to load each face image and crop only the face
part of it. As the images in the CelebA dataset is already aligned, we can use hard-coded
values to crop the faces:

13: # Load the image, crop just the face, and return image data as a numpy array
14: def load image(image file path):
15: img = PIL.Image.open(image file path)

%You can download the CelebA dataset from Kaggle (CelebA dataset), https://www.kaggle.com/
jessicalig530/celeba-dataset, [2 June, 2018].

273

https://www.kaggle.com/jessicali9530/celeba-dataset
https://www.kaggle.com/jessicali9530/celeba-dataset

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

16: img = img.crop([25,65,153,193])

17: img = img.resize((64,64))

18: data = np.asarray(img, dtype="int32")
19: return data

We then load our dataset image paths, and define the batch parameters:

21: dataset_path = "celeba-dataset/img align celeba/img align celeba/"
22:

23: # load the list of training images

24: train _images = np.array(os.listdir(dataset path))

25:

26: BUFFER_SIZE = 2000

27: BATCH SIZE = 8

28:

29: # shuffle and list

30: np.random.shuffle(train_images)

31: # chunk the training images list in to batches

32: train_images = np.split(train_images[:BUFFER_SIZE],BATCH SIZE)

We then define our generator model:

34: def make generator model():

35: model = tf.keras.Sequential()

36:

37: model.add(layers.Dense(4*4*1024, use bias = False, input shape =
(100,)))

38: model.add(layers.BatchNormalization())

39: model.add(layers.LeakyReLU())

40:

41: model.add(layers.Reshape((4,4,1024)))

42: assert model.output shape == (None, 4, 4, 1024) # Note: None is the
batch size

43:

44: model.add(layers.Conv2DTranspose(512, (5, 5), strides = (2,2),
padding = "same", use bias = False))

45: assert model.output shape == (None, 8, 8, 512)

274

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

46: model.add(layers.BatchNormalization())

47: model.add(layers.LeakyReLU())

48:

49: model.add(layers.Conv2DTranspose(256, (5,5), strides = (2,2),
padding = "same", use bias = False))

50: assert model.output shape == (None, 16, 16, 256)

51: model.add(layers.BatchNormalization())

52: model.add(layers.LeakyReLU())

53:

54: model.add(layers.Conv2DTranspose(128, (5,5), strides = (2,2),
padding = "same", use bias = False))

55: assert model.output _shape == (None, 32, 32, 128)

56: model.add(layers.BatchNormalization())

57: model.add(layers.LeakyReLU())

58:

59: model.add(layers.Conv2DTranspose(3, (5,5), strides = (2,2), padding
= "same", use bias = False, activation = "tanh"))

60: assert model.output shape == (None, 64, 64, 3)

61:

62: return model

63:

64: generator = make_generator model()

65:

66: noise = tf.random.normal([1,100])

67: generated image = generator(noise, training = False)

68: plt.imshow(generated image[0], interpolation="nearest")

69: plt.show()

70: plt.close()

This uses the same concepts as the generator in our DCGAN_Digits model. But we

are using a deeper model here, as our data is more complex.

The image generated from the untrained generator will look something like this

(Figure 11-15):

275

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

0

10

20

0 10 20 30 40 50 60

Figure 11-15. Output from the untrained generator

We then define our discriminator model, a little deeper than our DCGAN_Digits
model:

72: def make_discriminator model():

73: model = tf.keras.Sequential()

74: model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding="same',
input_shape=[64, 64, 3]))

75: model.add(layers.LeakyReLU())

76: model.add(layers.Dropout(0.3))

77:

78: model.add(layers.Conv2D(512, (5, 5), strides=(2, 2),
padding="same"))

79: model.add(layers.LeakyReLU())

80: model.add(layers.Dropout(0.3))

81:

82: model.add(layers.Conv2D(128, (5, 5), strides=(2, 2),
padding="same'))

83: model.add(layers.LeakyReLU())

84: model.add(layers.Dropout(0.3))

85:

86: model.add(layers.Flatten())

87: model.add(layers.Dense(1))

276

88:
89:
90:
91:
92:
93:
94:
1))

096:
097:
098:
099:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

return model

discriminator = make_discriminator_model()

decision = discriminator(generated image)

print (decision)

output will be something like tf.Tensor([[-6.442342e-05]], shape=(1,
dtype=float32)

The loss functions, checkpoints, and training parameters are exactly as we used before:

This method returns a helper function to compute cross entropy loss
cross_entropy = tf.keras.losses.BinaryCrossentropy(from logits=True)

def discriminator loss(real output, fake output):
real loss = cross_entropy(tf.ones like(real output), real output)
fake loss = cross_entropy(tf.zeros like(fake output), fake output)
total loss = real loss + fake loss
return total loss

def generator loss(fake output):
return cross_entropy(tf.ones like(fake output), fake output)

generator optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator optimizer = tf.keras.optimizers.Adam(1e-4)

checkpoint dir = './training checkpoints'

checkpoint_prefix = os.path.join(checkpoint dir, "ckpt")

checkpoint = tf.train.Checkpoint(generator optimizer=generator optimizer,
discriminator_

optimizer=discriminator optimizer,

115:
116:
117:
118:
119:
120:

generator=generator,
discriminator=discriminator)

EPOCHS = 1000
noise_dim = 100

277

CHAPTER 11

INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

121: num_examples to_generate = 16

122:

123: # setting the seed for the randomization, so that we can reproduce the
results

124:
125:
126:
127:

tf.random.set_seed(

1234)

We will reuse this seed overtime (so it's easier)
to visualize progress in the animated GIF)

seed = tf.random.normal([num examples to generate, noise dim])

In the train step function, we use the helper function load_image to preprocess our

images. The rest of the steps are same as before:

129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:

Notice the use of “tf.function”

This annotation c

@tf.function

def train_step(imag
noise = tf.rand

pre-process t
new_images = []
for file name i
new pic =1
new_images.

images

images = images

3).astype('float32")
images = (images - 127.5) / 127.5 # Normalize the images to [-1, 1]

143:
144:
145:
146:
147:
148:
149:
150:
151:

278

auses the function to be "compiled".

es):
om.normal([BATCH SIZE, noise dim])

he images
n images:

oad_image(dataset_path + file_name)
append(new_pic)

np.array(new_images)

.reshape(images.shape[0], 64, 64,

with tf.GradientTape() as gen tape, tf.GradientTape() as disc_tape:

generated i

real output
fake output

gen loss =

mages = generator(noise, training=True)

discriminator(images, training=True)
discriminator(generated _images, training=True)

generator loss(fake output)

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

152: disc_loss = discriminator loss(real output, fake output)
153:

154: gradients of generator = gen tape.gradient(gen loss, generator.
trainable_variables)

155: gradients of discriminator = disc_tape.gradient(disc_loss,
discriminator.trainable variables)

156:

157: generator optimizer.apply gradients(zip(gradients of generator,
generator.trainable variables))

158: discriminator optimizer.apply gradients(zip(gradients of
discriminator, discriminator.trainable variables))

159:

160: images = None

Finally, the functions for the main training loop, saving the generated images, and
generating the animation all use the same steps as we used in our DCGAN_Digits model:

162: def train(dataset, epochs):

163: tf.print("Starting Training")

164: train_start = time.time()

165:

166: for epoch in range(epochs):

167: start = time.time()

168: tf.print("Starting Epoch:", epoch)
169:

170: batch count = 1

171: for image batch in dataset:

172: train_step(image_batch)

173: batch count += 1

174:

175: # Produce images for the GIF as we go
176: generate and_save images(generator,
177: epoch + 1,
178: seed)

179:

180: tf.print("Epoch:", epoch, "finished")

279

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

181: tf.print()

182: tf.print('Time for epoch {} is {} sec'.format(epoch + 1, time.
time()-start))

183: tf.print()

184:

185: # Save the model every epoch

186: checkpoint.save(file prefix = checkpoint_prefix)

187:

188: print ('Time for total training is {} sec'.format(time.time()-
train start))

189:

190:

191: def generate and save_ images(model, epoch, test input):

192: # Notice “training™ is set to False.

193: # This is so all layers run in inference mode.

194: predictions = model(test input, training=False).numpy()

195:

196: fig = plt.figure(figsize=(4,4))

197:

198: for i in range(predictions.shape[0]):

199: plt.subplot(4, 4, i+1)

200: image = predictions[i]

201: plt.imshow(image)

202: plt.axis('off")

203:

204: plt.savefig('output/image at epoch {:04d}.png'.format(epoch))
205: plt.show()

206:

207: train(train_images, EPOCHS)

208:

209: checkpoint.restore(tf.train.latest checkpoint(checkpoint dir))
210: cv2.destroyAllWindows ()

211:

212: anim_file = 'dcgan_faces.gif'

280

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

213:

214: with imageio.get writer(anim file, mode='I") as writer:
215: filenames = glob.glob('output/image*.png")
216: filenames = sorted(filenames)

217: last = -1

218: for i,filename in enumerate(filenames):
219: frame = 2*(i**0.5)

220: if round(frame) > round(last):

221: last = frame

222: else:

223: continue

224: image = imageio.imread(filename)

225: writer.append data(image)

226: cv2.imshow("Results”, image)

227: cv2.waitKey(100)

228: image = imageio.imread(filename)

229: writer.append_data(image)

So, how well does our face generator perform?
At the start of the training, the generator produces pure black images (Figure 11-16).

Figure 11-16. Images generated at epoch 1

281

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

After 100 epochs, some shapes are starting to appear in the output (Figure 11-17).

Figure 11-17. Images generated at epoch 100

After 1,000 epochs, some facial feature-like shapes are being generated (Figure 11-18).

Figure 11-18. Images generated at epoch 1,000

While not life-like, it is quite remarkable that our generator was able to learn to
generate features that we can associate with human faces.

282

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

To improve our model further, you can try training for a longer number of epochs. Or
try combinations of deeper models for the generator and the discriminator.

However, keep in mind that training this model for 1,000 epochs took over seven
hours on a GPU. You should plan ahead when attempting to push further.

What Else Can GANs Do?

As we discussed earlier, DCGAN is one of the simplest implementations of GANs. And
here we have only scratched the surface of what GANs can do.

Generative adversarial networks are one of the latest research areas within deep
learning and Al It is also one of the areas that is most actively developed in the past
few years. Many innovative GAN architectures have recently been proposed and
implemented, with more and more innovation happening in that area daily. Following
are just a few of notable GAN architectures:

e CycleGAN (Cycle-Consistent GANs): able to learn to transform
between images of different styles, without needing to have paired
image data for training.

o StyleGAN (style-based GANS): able to generate high resolution
images, by having a stacked model where the lower layers generate
lower-resolution images that are progressively enhanced by the
higher layers of the model.

¢ cGAN (conditional GANSs): able to utilize additional available
information (e.g., labels for images) to learn rather than relying on
just the raw image data.

o IsGAN (least-squares GANs): uses the least-squares loss function
for the discriminator instead of the traditional cross-entropy loss
function, resulting in higher-quality images.

e DiscoGAN (discover cross-domain relations with GANs): able to
learn cross-domain relationships between related sets of images in

an unsupervised manner.

With these, and many more novel architectures, GANs have been able to produce
some groundbreaking results.

283

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

A project from NVIDIA named “This Person Does Not Exist”* is able to use a
StyleGAN to generate photo-realistic images of human faces (Figure 11-19).

Figure 11-19. Some samples from “This Person Does Not Exist” by NVIDIA

The GauGAN project,® also by NVIDIA, can convert rough sketches into photo-
realistic images (Figure 11-20).

*This Person Does Not Exist, https://thispersondoesnotexist.com, [23 Mar, 2020].
SNVIDIA, “The GauGAN Project,” http://nvidia-research-mingyuliu.com/gaugan, [18 Oct, 2019].

284

https://thispersondoesnotexist.com
http://nvidia-research-mingyuliu.com/gaugan

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

Filltbrush color: [l Brush shape: oné Brushsizes 24 == GANVIDIA. GauGAN Beta

Building
Ground

Plant

Clouds
Fog

Hill
Mountain

) O[S

River

Sea
Sky
Snow

Stone
Water

li. -
L QR < S i =T
PEEEE < .

s | / Upload Landscape Image @
c Browse., Nofile chosen Upload .| e -

Figure 11-20. NVIDIA GauGAN in action

GANSs are not just for image generation. The OpenAl Jukebox project® can generate

music as well as singing using GAN models (Figure 11-21).

S0OpenAl, “The OpenAl Jukebox Project,” https://openai.com/blog/jukebox, [30 Apr, 2020].
285

https://openai.com/blog/jukebox

CHAPTER 11 INTRODUCTION TO GENERATIVE ADVERSARIAL NETWORKS

ABOUT PROGRESS RESOURCES BLOG

Jukebox

We're introducing Jukebox, a neural net that generates music
including rudimentary ng, as audio in a variety of genres and
artist styles. We're releasing the model weights and code, along with a
tool to explore the generated samples.

D rREAD PAPER 4> VIEW CODE

APRIL 30, 2020
12 MINUTE READ, 10 DAY LISTEN

Figure 11-21. The OpenAl Jukebox Project

With the rapid advancement of GANSs, there may come a day when human creativity
will be challenged.

286

CHAPTER 12

Basics of Reinforcement
Learning

In Chapter 1, we briefly touched upon the concept of reinforcement learning. As we
discussed there, reinforcement learning is one of the methods in which machine
learning models are trained.

Reinforcement learning is the main concept behind game Al programming and models
like AlphaZero and OpenAl Five (see Appendix 1), as well as applications in the robotics field.

In reinforcement learning, the Al system—typically referred to as the agent—is
introduced to an environment and is given a goal to achieve. The agent is also given a set
of possible actions that can be taken to change the state of the environment. The task of
the agent is to use those actions to achieve the desired goal state. The agent is allowed
to make any of those possible actions. Based on how appropriate that action is toward
achieving the desired goal, the agent will be given a reward or a penalty. By learning to
maximize the reward or minimize the penalty, the agent will eventually learn the steps
needed to achieve the goal (Figure 12-1).

Environment

State

Observation Action

Reward/Penalty

Figure 12-1. The workflow of a reinforcement learning system

287
© Thimira Amaratunga 2021

T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7_12

https://doi.org/10.1007/978-1-4842-6431-7_12#DOI

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

Because the agent is not given a full set of labeled data to train on, as well as given
some feedback on the actions, reinforcement learning falls in between supervised and
unsupervised learning.

If we are to experiment with reinforcement learning, we need a framework that
can define an environment, a goal to achieve, actions, and a reward mechanism for the
actions.

Luckily, there is a framework developed just for that: OpenAl Gym.

What is OpenAl Gym?

OpenAl Gym is an open-source framework developed by OpenAl, to provide tools to
train reinforcement learning algorithms.

OpenAl provides a set of built-in environments with classic reinforcement learning
problems with their defined actions, states, and reward mechanisms (Figure 12-2). Gym
also allows you to add third-party or custom environments as well.

Classlc control | MuloCo

-
s
.

Figure 12-2. Some available environments in OpenAl Gym

For the built-in environments, Gym also provides rendering/visualization of the
environment, actions, and outcomes (Figure 12-3).

288

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

observation: [-0.38332891 0.01833943
reward: -1.0

idone: False

info: {}

Step 131:

action: 0

lobservation: [-0.36701073 0.01631818]
reward: -1

idone: False

info: {}

Step 132:

action: 2

lobservation: [-0.35082424 0.01618649]
reward: -1.0

done: False

info: {}

Step 133:

action: 2

lobservation: [-0.33487631 0.01594793]
reward: -1.0

observation: [-0.31926938 0.01560693]
reward: -1.0

done: False

info: {}

Step 135:

Figure 12-3. OpenAl rendering the MountainCar problem

While providing the environments, OpenAl Gym does not limit you to use any
framework for the actual training of your reinforcement learning model. Therefore, you
can use TensorFlow/Keras, or any other machine learning framework you are familiar
with, to train out models with it.

Setting up OpenAl Gym

OpenAl Gym is available as a PIP package. Although originally OpenAI Gym was only
meant to support Linux and Mac OS, the Windows support is now better. Most built-in

Gym environments now work on Windows.

Note Some advanced environments, such as the MuJoCo (Multi-Joint dynamics
with Contact) environments, require extremely specific dependency setups as well
as proprietary licenses to use. So we will skip them here.

We will first install the minimal package using pip (Figure 12-4):

pip install gym

289

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

%] Command Prompt

C:\Development\deep_learning_on_windows\Chapter_12>conda activate deep-learning

(deep-learning) C:\Development\deep_learning_on_windows\Chapter_12>pip install gym
Co]]e(tlng‘gym
1

Downloadin -0.17.2.tar.gz (1.6 MB)
| ———————— 16 o 255 L/
igquirement already satisfied: scipy in c:\users\thimira\anaconda3\envs\deep-learning\lib\site-packages (from gym) (1.4.

Requirement already satisfied: numpy>=1.10.4 in c:\users\thimira\anaconda3\envs\deep-learning\lib\site-packages (from g
m) (1.18.1)
Co]1ectin3‘pyg1et<=1.S,O.>=1‘4.0

i

Down loadin. let-1.5.0-py2.py3-none-any.whl (1.0 MB)
| S| 10 G .} /s e Lol
Requirement already satisfied: cloudpickle<1.4.0,>=1.2.0 in c:\users\thimira\anaconda3\envs\deep-learning\lib\site-packa

ges (from gym) (1.3.0)
REq;ireTe:L0a1reagy(aaiésgged: future in c:\users\thimira\anaconda3\envs\deep-learning\lib\site-packages (from pyglet<=
.5.0,>=1.4.0->gym .18.
Building wheels for collected packages: gym
Building wheel for gym (setup.py) ... done
Created wheel for gym: filename=gym-0.17.2-py3-none-any.whl size=1650896 sha256=a222cflad49d34aaBed969551ac3a262664166
df1leed191077abac4d7 367121
4§é§;e§1;n directory: c:\users\thimira\appdata\local\pip\cache\wheels\18\e1\58'89a2aa24ebc2ccB00204fc02010612afdf200926
(= e
Successfully built gym
Installing collected packages: pyglet, gym
Successfully installed gym-0.17.2 pyglet-1.5.0

(deep-learning) C:\Development\deep_learning_on_windows\Chapter_12>_

Figure 12-4. Installing the minimal package of Gym

This will give you access to the Algorithms, Toy Text, and Classic Control environments.
Next, we can install the Atari environments by running (Figure 12-5):

pip install gym[atari]

%] Command Prompt

(deep-learning) C:\Development\deep_learning_on_windows\Chapter_12>pip install gyw{atari] e

Fequirement already satisfied: gym[atari] in c:\users\thimira\anaconda3\envs\deep-learning\lib\site-packages (0.17.2)

%?qu1reme?t a]rﬁid{ sat1§f1ed: pyglet<=1,5.0,>=1.4.0 in c:\users\thimira\anaconda3\envs\deep-learning\lib\site-packages
rom gym[atari 1.5.0

quuirngnE a15eagy satisfied: numpy>=1.10.4 in c:\users\thimira\anaconda3\envs\deep-learning\lib\site-packages (from g

m[atari 1.18.1

Requirement already satisfied: cloudpickle<1.4.0,>=1.2.0 in c:\wsers\thimira\anaconda3\envs\deep-learning\lib\site-packal

ges (from gymgatar1]) (1.3.0)

Requirement already satisfied: scipy in c:\users\thimira\anaconda3\envs\deep-learning\lib\site-packages (from gym[atari]

1.4.1)
Requirement already satisfied: Pillow; extra == "atari" in c:\users\thimira\anaconda3\envs\deep-learning\1ib\site-packag
s (from gym[atari{) (7.0.0)
:o]1ectin3 atari-py-=0.2.0; extra == "atari"

Downloading atari -0.2.6-cp37-cp37m-win_amd64.whl (1.8 MB)

| | 1.8 M8 297 ke/s
Co]?ectlnglopencv-pyt on; extra == =
i

atari
Downloading opencv_python-4.4.0.42-cp37-cp37m-win_amd64.wh1 (33.5 MB)
_r%! 33.5 M8 3.3 MB/s e,

Requirement already satistied: future in c:\users\thimira\anaconda3\envs\deep-learning\lib\site-packages (from pyglet<=
.5.0,>=1.4.0->gym[atari]) (0.18.2)

Requirement already satisfied: six in c:\users\thimira\anacondai\envs'\deep-learning\lib\site-packages (from atari-py~=0.
2.0; extra == ”atari"—sgzm[atari]) (1.14.0)

cka

Tnstalling collected packages: atari-py, opencv-python
Successfu?1y installed atari-py-0.2.6 opencv-python-4.4.0.42

(deep-learning) C:\Development\deep_learning_on_windows\Chapter_12>

Figure 12-5. Installing the Atari environments

!Gym (OpenAl Gym environments), https://gym.openai.com/envs/#classic_control, [2 Apr, 2020].

290

https://gym.openai.com/envs/#classic_control

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

Finally, let us get the Box2D environments installed.
To get Box2D working, we need to have the Swig binaries installed. We can install it

using conda (Figure 12-6):

conda install swig

%] Command Prompt - conda install swig

(deep-learning) C:\Development‘deep_learning_on_windows\Chapter_12>conda install swig
Collecting package metadata (repodata.json): done
Solving environment: done

==> WARNING: A newer version of conda exists. <=
current version: 4.8.3

latest version: 4.8.4

Please update conda by running

§ conda update -n base -c defaults conda

22 Package Plan ##
environment location: C:\Users\Thimira\Anaconda3\envs\deep-learning
added / updated specs:

- swig

The following packages will be downloaded:

package | build
___________________________ e e
openss1-1.1.1g | he774522_1 5.8 MB
swig-3.0.12 | h047fa9f_3 1.3 MB

Figure 12-6. Installing the swig binaries using Conda

This allows us to install the Box2D environments (Figure 12-7):

pip install gym[box2d]

291

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

¢+ Command Prompt - conda install swig

(deep-learning) C:\Development\deep_learning_on_windows\Chapter_12>pip install g)m{boxzd]

Requirement already satisfied: gym?hox?d] in c:\users\thimira\anaconda3\envs\deep-learning\lib\site-packages (0.17.2)

Rfﬂuiggﬁn‘ha}gegy satisfied: numpy>=1.10.4 in c:\users\thimira\anaconda3\envs\deep-learning\lib\site-packages (from g

m[box .18.

?e uiremgnt already satisfied: scipy in c:\users\thimira\anaconda3\envs\deep-learning\lib\site-packages (from gym[box2d]
1.4.1

Requirement already satisfied: pyglet<=1.5.0,>=1.4.0 in c:\users\thimira\anaconda3\envs\deep-learning\lib\site-packages

(from gym[box2d]) (1.5.0)

Requirement already satisfied: cloudpickle<1.4.0,>=1.2.0 in c:\users\thimira\anaconda3\envs'\deep-learning\lib\site-packa

ges (from gzm[hox?d]) (1.3.0)

Co]1ectin3 ox2d-py~=2.3.5; extra == "box2d"

Downloading box2d-py-2.3.8.tar.gz (374 kB)
i#l 374 k8 297 k8/s
Requirement already satistied: future in c:\users\thimira\anaconda3d\envs\deep-learning\lib\site-packages (from pyglet<=

‘5.0,>=1‘4.0—>gw[gox2d]) (0.18.2)
Building wheels for collected packages: box2d-py
Building wheel for box2d-py (setup.py) ... done
Created wheel for box2d-py: filename=box2d_py-2.3.8-cp37-cp37m-win_amd64.wh] size=423531 sha256=9d01c2c0ect5faeb441e83]
2c4e61422b329ab31dfc605ad006e40286db82c101
b gtgrgg in directory: c:\users\thimira\appdata\local\pip\cache\wheels'3b\b0\14\ed70a19a3f74b1d57d20eaeca638c15e14878188d|
a7lbe2lee
Successfully built box2d-py
Tnstalling collected packages: box2d-py
Successfu?1y installed box2d-py-2.3.8

(deep-learning) C:\Development\deep_learning_on_windows\Chapter_12>

Figure 12-7. Installing the Box2D environments

We can now test whether OpenAlI Gym is correctly installed by launching one of the
environments. We will use the CartPole-vl environment from the Classic Control set of
environments.

We will create a new code file named CartPole.py, and add the following code:

01: import gym

02: env = gym.make('CartPole-v1')
03: observation = env.reset()

04: for step index in range(1000):

05: env.render()
06: action = env.action space.sample() # take a random action
07: observation, reward, done, info = env.step(action)

08: print("Step {}:".format(step_index))
09: print("Action: {}".format(action))

10: print("Observation: {}".format(observation))
11: print("Reward: {}".format(reward))
12: print("Is Done?: {}".format(done))

13: print("Info: {}".format(info))
14: observation = env.reset()
15: env.close()

292

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

Here we are initializing the CartPole-v1 environment and running it for 1,000 steps.

The env.action_space.sample() function will return a random action from the list
of permitted actions for that environment. We perform this action by passing it to the
env.step() function, which will return four parameters:

o observation: the current state of the environment
o reward: the reward or the penalty for the action

o done: whether the simulation has reached a done state; either the
goal is reached, or the task has failed and need to restart

o info: any additional information provided by the environment for
debugging purposes (the agent should not use this information for
training)

Running this code will result in the CartPole-vl environment being rendered and the

results from each step being printed in the console (Figure 12-8).

ation: [-0.00773509 -0.35144493 -0.00615382 0.61683381]

ion: [-0.01476399 -0.54648038 0.00618286 0.90757222]

ion: [-0.02569359 -0.74168548 0.0243343 1.20219203]

ion: [-0.0405273 -0.54688651 0.04837814 0.91723367]

ion: [-0.05146503 -0.35245087 0.06672282 0.64013907]

Figure 12-8. Testing OpenAl Gym by running the CartPole environment

Solving the CartPole Problem

Let us now take a closer look at the CartPole problem and see how we can build a
reinforcement learning model to solve it.

In the CartPole problem there is a friction-less track, and on this track there is a cart.
A pole is attached to this cart in a way that the pole can freely rotate around the pivot

293

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

point where it attaches to the cart. The goal of the CartPole problem is to prevent the
pole from falling over by changing the velocity of the cart (Figure 12-9).

P
Cart Pole
Friction-less
Track Pivot Point
-2.4 +2.4
Action '0' - Push to Left Action '1' - Push to Right

Figure 12-9. The elements of the CartPole environment

The only two actions you can take on the environment are either 0 (push the cart to
the left) or 1 (push the cart to the right).
The simulation will fail if:

o the angle of the pole goes beyond +12°

o the position of the cart goes beyond the displayed area (position is
more than +2.4)

o the number of steps goes beyond 500.

The observations return an array of four values, which are cart position (-2.4 to
+2.4), cart velocity (-Infinity to +Infinity), pole angle (-41.8° to + 41.8°), and pole
velocity at the tip (-Infinity to +Infinity) (Figure 12-10).

2Github, “CartPole Overview,” https://github.com/openai/gym/wiki/CartPole-v0, [8 Feb, 2020].

294

https://github.com/openai/gym/wiki/CartPole-v0

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

]
Pole : 3 Pole
Angle - : ¢ Angle+
Pole Tip . : Pole Tip
Velocity - o~ :}'E ~. Velocity +
|
-2.41 +2.4
-
- >
Cart Velocity - | Cart Velocity +

Cart Position

Figure 12-10. Observations from the CartPole environment

The reward will be +1 for every step (i.e., the longer you can hold the pole vertical,
the better).

With all these in mind let us start building a model.

We will start with a new code file, which we will name CartPole_Train.py, and
import the necessary packages:

: from tensorflow.keras.optimizers import Adam
import tensorflow.keras.utils as np_utils
import matplotlib.pyplot as plt

1: import gym

2: import random

3: import numpy as np

4: import tensorflow as tf

5: from tensorflow.keras.models import Sequential
6: from tensorflow.keras.layers import Dense

7

8:

9:

We will then define our training parameters:

11: env = gym.make('CartPole-v1')
12: env.reset()
13: goal steps = 500

295

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

14: score_requirement = 50
15: intial_games = 20000

Here, we will initially play 20,000 games and shortlist the actions that resulted in at
least 50 steps in the simulation before failing. We will define a function model data_
preparation() to iterate through and gather those step data:

17: def model data preparation():

18: training data = []

19: accepted_scores = []

20: for game_index in range(intial_games):

21: score = 0

22: game_memory = []

23: previous observation = []

24: for step index in range(goal steps):

25: action = random.randrange(0, 2)

26: observation, reward, done, info = env.step(action)
27:

28: if len(previous observation) > 0:

29: game_memory.append([previous observation, action])
30:

31: previous observation = observation

32: score += reward

33: if done:

34: break

35:

36: if score >= score requirement:

37: accepted scores.append(score)

38: for data in game memory:

39: output = np utils.to categorical(data[1], 2)
40: training data.append([data[0], output])

41:

42: env.reset()

43:

44: print(accepted scores)

45:

296

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

46: return training data
47:
48: training data = model data preparation()

We then build a simple model, and train it by using the step-sequences from those
successful initial games:

50: def build model(input size, output size):

51: model = Sequential()

52: model.add(Dense(128, input dim=input size, activation='relu'))
53: model.add(Dense(52, activation='relu'))

54: model.add(Dense(output_size, activation='linear'))

55: model.compile(loss="mse', optimizer=Adam())

56:

57: return model

58:

59: def train model(training data):

60: data x = np.array([i[0] for i in training data]).reshape(-1,
len(training_data[0][0]))

61: data_y = np.array([i[1] for i in training data]).reshape(-1,
len(training data[0][1]))

62: model = build model(input size=len(data x[0]), output
size=len(data y[0]))

63:

64: model.fit(data x, data_ y, epochs=20)

65: return model

66:

67: trained model = train model(training data)

When trained, the model will be able to predict the next step to be taken, based on a
sequence of previous steps as input.

We then take this trained model and run 100 games on it. If the model was able to
run the game past 400 steps without failing, we will consider it as a successful run:

069: scores = []
070: choices = []
071: success_count = 0

297

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

072:
073:
074:
075:
076:
077:

bot

078:
079:
080:
081:
082:

for each_game in range(100):
score = 0
prev_obs = []
print('Game {} playing'.format(each game))
for step_index in range(goal steps):
Keep the below line uncommented if you want to see how our
is playing the game.
env.render()
if len(prev_obs)==0:
action = random.randrange(0,2)
else:
action = np.argmax(trained model.predict(prev obs.

reshape(-1, len(prev obs)))[0])

083:
084:
085:
086:
087:
088:
089:
090:
091:
092:
093:
094:
095:
096:
097:
098:
099:
100:
101:
102:
103:

298

choices.append(action)
new_observation, reward, done, info = env.step(action)
prev_obs = new _observation
score += reward
if done:
print('Final step count: {}'.format(step _index + 1))
if (step_index + 1) > 400:
if achieved more than 400 steps, consider successful
success_count += 1
break

env.reset()
scores.append(score)
env.close()

print(scores)
since we ran 100 games, success count is equal to percentage

print('Success percentage: {}%'.format(success count))

print('Average Score:',sum(scores)/len(scores))

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

104: print('choice 1:{} choice 0:{}'.format(choices.count(1)/
len(choices),choices.count(0)/1len(choices)))

105:

106: # draw the histogram of scores

107: plt.hist(scores, bins=5)

108: plt.show()

At the end of the 100-game run we will print out the success percentage and the
average scores, and display the histogram of the scores for the 100 games.

Note Using env.render() significantly slows down the simulation. Therefore, if
you do not need to visually inspect the simulation, it is better to not call the render
method.

Running our code, we will be able to see that the trained model is able to achieve the

goal by keeping the pole straight by applying the appropriate velocity changes to the cart
(Figure 12-11).

B CanPoke_ Taingy

nt:
]

step co
ame 19 playin

Figure 12-11. The trained CartPole model

Out of the 100 games, 51% have achieved our success condition of 400 or more steps,
with an average score of 351.77 (Figure 12-12).

299

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

Fina steg count: 500
lGame 91 playing
Final steg count: 500
aying
Final ste? count: 500
lGame 93 playing
Final step count: 116
lGame 94 playing
Final 5t2§ count: 500
Game 95 playing
Final steg count: 120
\Game 96 playing
Final ste? count: 198
lGame 97 playing
Final step count: 500
iGame 98 playing
Final ste? count: 235
lGame 99 playing
Final step count: 500
[131.0, 198.0, 426.0, 116.0, 280.0, 500.0, 212.0, 295.0, 484.0, 500.0, 238.0, 316.0, 500.0, 406.0, 136.0, 500.0, 135.0,

.0, 255.0, 276.0, 500.0, 500.0, 500.0, 147.0, 500.0, 500.0, 238.0, 500.0, 204.0, 500.0, 189.0, '500. 0 '198. 0 210.0,
0, 500.0, 500.0, 500.0, 303.0, "500. 0, 500.0, 500.0, 116.0, 500.0, 120.0, 198.0, 500.0, 235.0, 500.0]

Success percentage 51%

lAverage Score:

choice 1:0. 49506??999&29434 choice 0:0.5049322000170566
(deep-learning) C:\Development\deep_learning on_windows\Chapter_12-

Figure 12-12. The success rate of our CartPole model

While at first glance this may seem like not such a great result, looking at the
histogram of scores shows that our model is skewing towards the success criteria
(Figure 12-13).

20 A

10

0 -
100 150 200 250 300 350 400 450 500

Figure 12-13. The histogram of scores of our CartPole model

300

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

Since we used an initial set of games to retrieve the step sequences as the training

data, it is normal for the models not to achieve higher success rates with just one round

of training. You can attempt to increase the success rate using several different methods:

1.

2.

increasing the initial game count used to gather the training data
adjusting the score requirements of the initial training data
adjusting or trying a different model structure

usin the outputs from the first round of training as training data to
train a new model

going further by training for multiple rounds.

Solving the MountainCar Problem

The CartPole problem we just solved is one of the simplest problems in reinforcement

learning. Let us now step it up a bit and attempt a slightly more complex one: the

MountainCar problem.

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:

Let us create a script to first look at the MountainCar environment:

import gym

env

= gym.make('MountainCar-vo")

observation = env.reset()

for step_index in range(1000):

env.render()
action = env.action_space.sample()
observation, reward, done, info = env.step(action)
print("Step {}:".format(step index))
print("action: {}".format(action))
print("observation: {}".format(observation))
print("reward: {}".format(reward))
print("done: {}".format(done))
print("info: {}".format(info))
if done:

break

16: observation = env.reset()
17: env.close()

301

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

This is like what we did for the CartPole environment, the difference being that
MountainCar-v0 is used as the environment name. This will render the MountainCar

environment with random actions as we did before (Figure 12-14).

P MountainCar.py - b

laction: 1
bservation: [-0.77493172 -0.00902761]
eward: -1.0

one: True

info: {'TimeLimit.truncated': True}

bservation: [-0.78224794 -0.00731621]
eward: -1.0

one: True

info: {'TimeLimit.truncated': True}
tep 313:

action: 2

bservationa [-0.78681317 -0.00456523]

info: {"TimeLimit.truncated': True}
Step 314:
action: 1
bservation: [-0.78960315 -0.00278998]
eward: -1.0

info: {'TimeLimit.truncated': True}
Step 315:

action: 0

lobservation: [-0.7916032 -0.00200005]
reward: -1.0

jdone: True

info: {'TimeLimit.truncated': True}

Figure 12-14. Testing the MountainCar environment

In the MountainCar problem, you need to push a car up the top of a steep hill
marked by the flag. The car starts close to the bottom of the valley. There is a less steep
hill to the left of the environment that you can use to gather enough momentum to climb
the steeper hill.

The actions you can take are push left (0), push right (2), or not push (1). The
position of the goal is 0.5 (Figure 12-15).

302

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

P MountainCar.py - X

Goal 0.5

Car Velocity

Figure 12-15. The elements of the MountainCar environment

The simulation will fail if you take more than 200 steps to reach the goal.?

The observations return an array of 2 values, which are the position of the car (-1.2 to
+0.6) and the velocity of the car (-0.07 to +0.07).

At the beginning of the simulation the car will be at a random position between -0.6
and -0.4, with no initial velocity.

The reward would be -1 for every step (i.e., the fewer the steps taken to reach
the goal, the better). There will be no penalty for climbing the left hill, as it is needed
sometimes to achieve the goal.

Let us start a new code file, which we will name MountainCar_Train.py, and import
the necessary packages:

1: import gym

2: import random

3: import numpy as np

4: import tensorflow as tf

5: from tensorflow.keras.models import Sequential
6: from tensorflow.keras.layers import Dense

3Github, “MountainCar Overview,” https://github.com/openai/gym/wiki/MountainCar-v0,
[1 May, 2020].

303

https://github.com/openai/gym/wiki/MountainCar-v0

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

: from tensorflow.keras.optimizers import Adam
: import tensorflow.keras.utils as np utils
: import matplotlib.pyplot as plt

Our training parameters are like those we used for the CartPole problem. But here,

we are specifying the score requirement as -198. We will see why in the next step:

11:
12:
13:
14:
15:

env = gym.make('MountainCar-vo")
env.reset()
goal steps = 200

score_requirement = -198
intial games = 20000

As we discussed, the reward value in the MountainCar problem is -1 for every step

taken. Therefore, the minimum score a MountainCar game can have is -199 (as the game

will end if 200 steps are reached). To shortlist the acceptable step data from the initial

games we need a way to determine the games that has progressed towards the goal. As

the

position of the goal is 0.5, and the initial position of the car is between -0.6 and -0.4,

we chose games that have achieved the position -0.2 (which is partway up the large hill)

at least once. This makes our score requirement -198 or greater.

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

304

The data preparation function therefore would look like this:

def model data preparation():
training data = []
accepted scores = []
for game_index in range(intial games):
score = 0
game_memory = []
previous observation = []
for step index in range(goal steps):
action = random.randrange(0, 3)
observation, reward, done, info = env.step(action)

if len(previous_observation) > o0:
game_memory.append([previous observation, action])

previous_observation = observation

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

32:

33: if observation[0] > -0.2:

34: reward = 1

35:

36: score += reward

37: if done:

38: break

39:

40: if score >= score_requirement:

41: accepted_scores.append(score)

42: for data in game_memory:

43: output = np utils.to categorical(data[1], 3)
44: training data.append([data[0], output])
45:

46: env.reset()

47:

48: print(accepted scores)

49:

50: return training data

51:

52: training data = model data preparation()

The model building and training steps are identical to what we did on the CartPole
problem:

54: def build model(input_size, output size):

55: model = Sequential()

56: model.add(Dense(128, input dim=input_size, activation='relu'))
57: model.add(Dense(52, activation="relu"))

58: model.add(Dense(output _size, activation="linear'))

59: model.compile(loss="mse', optimizer=Adam())

60:

61: return model

62:

63: def train model(training data):

305

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

64: data x = np.array([i[0o] for i in training data]).reshape(-1,
len(training_data[0][0]))

65: data y = np.array([i[1] for i in training data]).reshape(-1,
len(training data[0][1]))

66: model = build model(input size=len(data x[0]), output
size=len(data y[0]))

67:

68: model.fit(data_x, data_y, epochs=20)

69: return model

70:

71: trained model = train model(training data)

Like before, we run 100 games using the step predictions from the trained model.
If the game was able to achieve the goal in less than 200 steps, we consider it to be
successful:

073: scores = []

074: choices = []

075: success_count = 0

076: for each game in range(100):

077: score = 0

078: prev _obs = []

079: print('Game {} playing'.format(each game))

080: for step_index in range(goal steps):

081: # Uncomment below line if you want to see how our bot is
playing the game.

082: # env.render()

083: if len(prev_obs)==0:

084: action = random.randrange(0, 3)

085: else:

086: action = np.argmax(trained model.predict(prev_obs.
reshape(-1, len(prev obs)))[0])

087:

088: choices.append(action)

089: new observation, reward, done, info = env.step(action)
090: prev_obs = new_observation

306

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

091: score += reward

092: if done:

093: print('Final step count: {}'.format(step_index + 1))
094: if (step_index + 1) < 200:

095: # 1if goal achieved in less than 200 steps, consider
successful

096: success_count += 1

097: break

098:

099: env.reset()

100: scores.append(score)

101:

102: print(scores)

103:

104: # since we ran 100 games, success count is equal to percentage
105: print('Success percentage: {}%'.format(success count))

106: print('Average Score:', sum(scores)/len(scores))

107: print('choice 0:{} choice 1:{} choice 2:{}'.format(choices.
count(0)/len(choices), choices.count(1)/len(choices), choices.count(2)/
len(choices)))

108:

109: # draw the histogram of scores

110: plt.hist(scores, bins=5)

111: plt.show()

If we run our model, you can see that once trained it can push the car to the desired
goal position (Figure 12-16).

307

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

Eﬁg'l Sgtg ai;ﬁﬂt: ey P MountasinCar_trainpy - %
Saxty oA
F;::'l s;t;ﬁta;?:;t: 172
ot Dy
Final step count: 91
CiRal Stey caune: 171
Finel Stoo count: 172
Eiie] 2t cus 171
Final zgtgq:’;ﬁ}ﬁgt 174
Final st_e? count: 98
S Pl
F'ina'lailtg az;:gt: 197
R
Final step count: 170
ame 64 playing

Figure 12-16. MountainCar reaching the goal

The score histogram shows that a significant portion of games reached the goal
around the 120-step range, a much better score than our target 198 (Figure 12-17).

50.

20 A1

10

0.

—200 —-180 —-160 -140 -120 —-100

Figure 12-17. The histogram of scores of our MountainCar model

We are now achieving a success percentage of 99% (Figure 12-18).

308

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

v Command Promp

Game 91 playing
Final steq count: 118
Game 92 playing
Final ste? count: 121
Game 93 playing
Final step count: 114
Game 94 playing
Final ﬁtpq count: 119
Game 95 playing
Final step count: 154
Game 96 p?aying
Final steq count: 114
Game 97 playing
Final step count: 114
Game 98 playing
Final step count: 116
Game 99 pgay1ng
Final step count: 161
-158.0, -116. -118.0, -114.0, -156.0, -120.0, -121.0, -115.0, -161.0, -93.0, -121.0, -178.0, -186.0, -177.0, -164.0,
-115.0, -153.0, -115.0, -116.0, -114.0, -196.0, -117.0, -116.0, -165.0, -169.0, -115.0, -161.0, -163.0, -121.0, -163.0,
-122.0, -116.0, -114.0, -119.0, -115.0, -114.0, -114.0, -156.0, -114.0, -160.0, -114.0, -156.0, -157.0, -167.0, -153.0,
-121.0, -98.0, -116.0, -121.0, -117.0, -115.0, -116.0, -114.0, -164.0, -163.0, -158.0, -116.0, -121.0, -116.0, -119.0, -
153.0, - -116.0, -115.0, -118.0, -163.0, -119.0, -118.0, -120.0, -182.0, -116.0, -119.0, -161.0, -99.0, -118.0, -
87.0, -179.0, -183.0, -116.0, -153.0, -114.0, -119.0, -174.0, -119.0, -118.0, -118.0, -172.0, -116.0, -115.0, -200.0, -
15.0, -118.0, -121.0, -114.0, -119.0, -154.0, -114.0, -114.0, -116.0, -161.0]
Success percentagc 99%
JAverage Score:
\choice 0:0. 3603203794473?41 choice 1:0.12582633885463865 choice 2:0.5138527816979871

deep-learning) C:\Development\deep_learning_on_windows\Chapter_12>

Figure 12-18. The success rate of our MountainCar model

What Can You Do Next?

We have now explored the basics of how to apply reinforcement learning in two
environments of OpenAl Gym: CartPole and MountainCar. Although these two are some
of the simplest problems to solve with reinforcement learning, the concepts that we
learned to apply here are the same for much more complex problems. The cutting-edge
models like OpenAl Five (see Appendix 1) were built upon the same concepts.

There are many other environments available in OpenAI Gym. Once you have
gone through the Classic Control environments, try out some of the other sets of
environments we installed, such as Atari (Figure 12-19).

309

CHAPTER 12 BASICS OF REINFORCEMENT LEARNING

[oooi
000
000
000
000
0 0 0]]
[[o 00
000
000
00 0]
ooo]
0 0 01]
[[0oo
[onn]
{0 0 0]
6'001
000
0 0 0111
Feward: 0.0

bone: False
finfo: {'ale.lives': 2}

Figure 12-19. The Atari Assault-v0 Environment

Another option is one of the Box2D environments (Figure 12-20).

done: True P At py b X

action: L 0.09463596 -0.2208708 0.9532797 -0.8696765] |
observation: [-0.46828675 -0.0039634 -0.0080814 0.00723)

0.33886147 -0.10382519 0. -0.81281823 -0.205260{
-0.44693629 0. 0.14332192 0.14494954 0.150022
0.17365289 0.19587822 0. 2305656? 0.28804311 0.395525]
eward: -100

lone: True

info: {}

IStep 410: .

laction: [0.4359455 0.26140565 0.0376066 -0.9058054]

jobservation: [-0.46953627 -0.00303031 -0.00241592 0.00552|
0.45770955 1.00000079 1. -0.79376823 0.037666|
-0.99999658 0. 0.14355786 0.14518817 0.150269
0.17393877 0.19620068 0.23094523 0.28851733 0.396177|

reward: -100
lone: True

info: {}

[Step 411:

laction: [0 9548614 0.8344774 0.01306499 0.18791024] |
observation: [-0.47389147 -0.00872884 -0.00607001 0.0158%
0.58294189 1.00002964 0. -0.80502361 -0.134622
-0.28839556 0. 0.14428537 0.14592394 0.151030
0. 15482023 0.19719496 0.23211558 0.28997943 0.398184
ewar -100

[iome ¥ rvie
'?nlo {3

Figure 12-20. The Box2D BipedalWalker-v3 environment

310

APPENDIX A

A History Lesson:
Milestones of Deep
Learning

Deep learning has been around for over a decade now. Since its inception, it has taken
the world by storm due to its success. To understand how deep learning got to where it is
today, we should look at some of its more significant achievements through the years.

When looking at the achievements of deep learning we should also talk about the
ImageNet Challenge.

What is the ImageNet Challenge (The ILSVRC)?

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is the annual
computer vision challenge conducted by the ImageNet project. The ImageNet project
was started around 2007, with the intention of providing a complete and easily accessible
image database for visual object recognition research. ImageNet organizes the images
based on WordNet, a lexical database for the English language, which groups English
words into sets of synonyms called synsets. The ImageNet project aims at providing

at least 1,000 images for each synset, and has about 14 million images as of now, all of
which are hand-annotated and with bounding boxes.

The ILSVRC is held annually by the ImageNet project, where institutions and
research groups both from the industry and academia compete against each other with
their machine learning and computer vision algorithms. The task is to correctly classify
over 100,000 images into 1,000 categories, with a training set of about a million labeled
images. The objective of the competition is to allow the competitors to measure and

311
© Thimira Amaratunga 2021

T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7

https://doi.org/10.1007/978-1-4842-6431-7#DOI

APPENDIXA A HISTORY LESSON: MILESTONES OF DEEP LEARNING

compare their applications and algorithms. A secondary objective is to measure and
document the progress of machine learning for computer vision at a higher level over
the years.

In 2017, as the models from 29 of the 38 teams competing gained greater than 95%
accuracy, ImageNet started to build a more difficult challenge and a dataset. Therefore,
the last formal ImageNet Challenge happened in 2017. The ImageNet challenge is still
available to be participated to those who are interested at the Kaggle ImageNet Object
Localization Challenge.!

The original ImageNet dataset is also available—both via the ImageNet downloads
pages,” and through the Kaggle competition mentioned earlier—if you are interested in
trying it out yourself.

Over the years, there were many achievements in deep learning that were directly
related to the ImageNet challenge. Some of those milestones are presented here.

AlexNet: 2012

AlexNet marked the start of an era, by popularizing the success of deep learning among
the Al enthusiasts. It is notable for the following:

e Proved that Convolutional Neural Networks work practically. AlexNet
is commonly considered to be what brought deep learning into the
mainstream.?

e Won 2012 ILSVRC (ImageNet Large-Scale Visual Recognition
Challenge) with a 15.3% error rate. (For reference, the second-best
entry at ILSVRC had a 26.2% error rate.)

e 8layers: 5 convolutional, 3 fully connected.

'Kaggle, “Kaggle ImageNet Object Localization Challenge,” https://www.kaggle.com/c/
imagenet-object-localization-challenge, [March 26, 2020].

’ImageNet, (downloads pages), http://image-net.org/download-imageurls, [7 April, 2017].

3See Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” Advances in Neural Information Processing Systems 25(2)
(January 2012), doi 10.1145/3065386.

312

https://www.kaggle.com/c/imagenet-object-localization-challenge
https://www.kaggle.com/c/imagenet-object-localization-challenge
http://image-net.org/download-imageurls

APPENDIXA A HISTORY LESSON: MILESTONES OF DEEP LEARNING

e Used RelU for the nonlinearity function rather than the conventional
tanh function used until then.

o Introduced the use of dropout layers, and data augmentation to

overcome overfitting.

The Alexnet architecture is shown in Figure A1-1.

3 e S| S
! 192 192 128 2048 Joag \dense
128 — —
27
1y 13-, 13
- 13 dense’ | [|dense]
0
128 Max t L
Max 38 Max pooling 29%¢ 2048
pooling pooling

Figure A1-1. The AlexNet architecture

ZF Net: 2013

With AlexNet starting the trend, ZF Net kept it going. While continuing the success
of AlexNet, the ZFNet attempted to answer the question of why convolutional neural
networks perform so well.* ZFNet was notable for the following:

¢ Won the ILSVRC 2013 with error rates from 14.7 to 11.2%.

o Similar to the AlexNet architecture, with some tweaks and fine-
tuning to improve the performance.

e Introduced the deconvolutional network (DeConvNet), a
visualization technique for viewing the inner workings of a CNN,
which allowed better understanding of why CNNs perform well.

1Zeiler M.D., Fergus R. (2014) Visualizing and Understanding Convolutional Networks.
In: Fleet D., Pajdla T., Schiele B., Tuytelaars T. (eds) Computer Vision - ECCV 2014. ECCV 2014.
Lecture Notes in Computer Science, vol 8689. Springer, Cham. https://doi.org/10.1007/
978-3-319-10590-1_53.

313

https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53

APPENDIXA A HISTORY LESSON: MILESTONES OF DEEP LEARNING

The ZF Net architecture is shown in Figure A1-2.

image size 224 110 26 13 13 13 _ _
filter size 7 ' \l' 3 vlr 3
1 w384 1 w384 256
e "\ N N
stride 2 9% 33ma 33 max c
3x3 max pool| | contras pool| |contrast pool 4096 4096 class
: stride 2] |norm. stride 2 units| | unity | softmax
" @3 6 256
Input Image \36 L "\2‘56 - -
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Output

Figure A1-2. The ZF Net architecture

The Deconvolutional technique is still used today to view how the internal

convolutions perform in a network.

VGG Net: 2014

VGG Net was one of the most popular deep learning architectures, due to its simplicity.

It is notable for the following:

e Won the Classification + localization category of the ILSVRC 2014

(not the overall winner), with an error rate of 7.3%.

e The VGG architecture worked well with both image classification and

localization.

e Had 2 variations: VGG16 (16 layers), and VGG19 (19 layers).

e Used 3x3 filters (compared to 11x11 filters of AlexNet, and 7x7 filters

of ZF Net).

e Proved that simple deep structures work for hierarchical feature

extraction.

The VGG16 architecture is shown in Figure A1-3.

*Simonyan, K. and Zisserman, A., “Very Deep Convolutional Networks for Large-Scale Image

Recognition’; arXiv e-prints, 2014.

314

APPENDIXA A HISTORY LESSON: MILESTONES OF DEEP LEARNING

Conv. Block 1
64 Oulput
Filters Fully
Conv. Block 2 Connected
128 Quiput
Eilters Conv. Block 3
256 Output
Filters. Conv. Block 4
512 Qutput
Filters Conv. Block 5
512 Output
Filters
Input b I I wam) Predictions.
Max i
Pooling
Max
Pooling
Max
Pooling
Max
Pagling

Figure A1-3. The VGG Net architecture

The VGG Net architectures are still popular, as they are easy to construct and the
training time is less compared to more complex models. They are good candidates for
experimenting with transfer learning.

GoogLeNet/Inception: 2014/2015

This is where deep learning became creative in terms of network architectures. The authors of
GoogLeNet introduced a unique architecture to increase the computational efficiency,® which
disrupted the idea that deep learning models need to always be sequential (Figure A1-4).

cnujuaje

Figure A1-4. The GoogLeNet architecture

°C. Szegedy, et al., “Going deeper with convolutions,” in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015 pp. 1-9. doi: 10.1109/
CVPR.2015.7298594.

315

APPENDIXA A HISTORY LESSON: MILESTONES OF DEEP LEARNING

GooglLeNet was notable for the following:

¢ Won the ILSVRC 2014, with an error rate of 6.7%.

e Introduced the inception module (Figure A1-5), which emphasized

that the layers of a CNN need not always be stacked up sequentially.

Filter
concatenation

/\

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

4

4

1x1 convolutions

1x1 convolutions

:

3x3 max pooling

e

Previous layer

Figure A1-5. The inception module

» Had 22 blocks of layers (over 100 layers when considered
individually).

e Had no fully connected layers.

o Proved that optimized nonsequential structures may work better

than sequential ones.

While the original architecture was named GoogLeNet, two improved models were

released subsequently and were named Inception V2, and Inception V3.

316

APPENDIXA A HISTORY LESSON: MILESTONES OF DEEP LEARNING

Microsoft ResNet: 2015

Typically, if you keep adding layers sequentially to a model, they tend to worsen after
a certain point, as the model starts to overfit. ResNet (Figure A1-6) was an attempt
to overcome this limitation by introducing the Residual Block, which resulted in an

impressively deep network and even more impressive accuracy.’

34-layer residual
-

e
| T coew, 84,2

Figure A1-6. The ResNet architecture

ResNet was notable for the following:
o ResNet50 won ILSVRC 2015.

e With an error rate of 3.6%, the ResNet had a higher accuracy rate
than a human being (a typical human is said to have an error rate of
5t010%).

o Ultra-deep (quoting the authors) architecture with 152 layers.

e Introduced the Residual Block, to reduce overfitting (Figure A1-7),
which gave the name to the network Residual Network (ResNet).

K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image Recognition,” 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp.
770-778, doi: 10.1109/CVPR.2016.90.

317

APPENDIXA A HISTORY LESSON: MILESTONES OF DEEP LEARNING

X
Y
weight layer
F(X) Il relu X%
weight layer identity

F(x) +x

Figure A1-7. The residual block

The ResNet architecture is proven to be scalable. There have been successful

attempts to increase up to 1,000 layers.

DenseNet: 2017

With ResNet attempting to go deeper using the Residual Block, why would not one
attempt to go even further? DenseNet® takes it to the extreme (Figure A1-8).

Input

o]

Figure A1-8. The DenseNet architecture

Prediction
Dense Block 3

0 VB vB 40 (>

Dense Block 2
@ vl v0 v

Dense Block 1

s e . B I ‘horse”

unoog
JEaUT]

UORN|OAUDT)
Guoog
Uonn iAoy
Bunoag

UoHNOAIDg

The DenseNet architecture consists of several Dense Blocks within which each of
the layers are connected to every other layer in that block in a feed forward manner
(Figure A1-9).

8G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger, “Densely Connected Convolutional
Networks,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honoluluy, HI, 2017, pp. 2261-2269, doi: 10.1109/CVPR.2017.243.

318

APPENDIXA A HISTORY LESSON: MILESTONES OF DEEP LEARNING

Figure A1-9. A dense block with 5 layers

DenseNet is notable for the following:

In each dense block, the input feature maps are passed to each layer
in the block, and the feature maps from each layer also gets passed to
all subsequent layers.

On smaller datasets like CIFAR10 or CIFAR100, DenseNet yields
state-of-the-art accuracies: a 3.46% error rate on CIFAR10 and 17.18%
on CIFAR100 (with data augmentation), which is a higher accuracy
than ResNet.

On ImageNet dataset, the DenseNet achieves a similar accuracy to
that of ResNet, but utilizes less than half the number of parameters
and FLOPs (FLoating-point OPerations).

319

APPENDIXA A HISTORY LESSON: MILESTONES OF DEEP LEARNING

Tip FLOPs is often used as a performance indicator of machine learning models.
FLOPs are the number of floating-point operations performed within the model. The
fewer the number of floating-point operations required to perform a certain task,
the model is considered more optimized.

Why Simply Going Deeper Does Not Work

If you look at the deep learning architectures we just reviewed, you might notice that
after a certain point the architectures stopped becoming directly deep, instead starting
to come up with more unique structures. The Inception Module, the Residual Block, and
the Dense Block are good examples of these.

This is due to a limitation in the method used to train neural networks. A deep
neural network is typically trained using a method called backpropagation, where, when
a batch of training data gets passed through the network, a gradient signal is passed
back from the final layer to the first layer, adjusting the weights of each layer as it passes
through. This is how the network “learns” of a batch of training data. The gradient signal
reduces as it passes through each layer.

While this is practical in networks with just a couple of layers, when it comes to deep
networks with 20+ layers, it becomes harder for backpropagation to keep up, as the
gradient signal diminishes to nothing before it reaches the layers at the start.

To overcome this, the Inception Modules, Residual Block, and Dense Blocks all provide
shortcuts in the architecture for the gradient signal to propagate back more efficiently. We
can expect similar techniques in future deep learning architectures as well.

AlphaGo from DeepMind

AlphaGo—developed by the DeepMind team of Google—is an Al program that plays the
board game Go.

The Go board game is an abstract strategy game that was invented in China more
than 2,500 years ago. Despite its simple set of rules, Go is considered to be much more
complex than Chess and is one of the most studied strategy games of all time.

The AlphaGo uses a Monte Carlo tree search algorithm to find moves using
the trained deep neural network, which works as its knowledge core. AlphaGo was

initially trained on a training set of over 30 million go piece moves data from human

320

APPENDIXA A HISTORY LESSON: MILESTONES OF DEEP LEARNING

Go matches. It was then further trained by letting it compete against copies of itself
using reinforcement learning.

AlphaGo’s first victory was in October 2015. It was against three-time European
champion, Fan Hui, on a full-sized (19x19 grid) board. AlphaGo won with a score of 5-0,
and became the first computer Go program to beat a human professional.

In March 2016 AlphaGo competed against Lee Sedol, an 18-time world champion
and a 9-dan professional (highest professional rank) Go player. In this five-game match
AlphaGo won 4-1, earning it an honorary 9-dan title.

In January 2017, an improved version of AlphaGo called AlphaGo Master was set up
(without revealing its identity) to compete in an online series of Go games against some
of the top international Go players, and it managed to win at 60-0.

At the “Future of Go” summit in May 2017, AlphaGo competed against Ke Jie, the
world’s number-1 ranked player at the time. AlphaGo won 3-0 in this three-game match.
The Chinese Weiqi Association awarded the professional 9-dan status to AlphaGo after
this victory.

Ke Jie later praised AlphaGo’s unique play style, and has stated: “After humanity
spent thousands of years improving our tactics, computers tell us that humans are
completely wrong . . . [would go as far as to say not a single human has touched the edge
of the truth of Go.”

After the win with Ke Jie, AlphaGo retired from the Go arena.

In October 2017, DeepMind introduced AlphaGo Zero. While being the latest version
of AlphaGo, AlphaGo Zero has been built from scratch. Rather than training it on data
from millions of moves from human matches, AlphaGo Zero was trained to play by
competing against copies of itself by starting with random play.

Using this technique, AlphaGo Zero surpassed the level of AlphaGo Master in just 21
days and achieved superhuman-level in 40 days.

In December 2017, DeepMind generalized the algorithm of AlphaGo Zero and
introduced AlphaZero, which has achieved superhuman levels of gameplay in Chess, Go,
and Shogi, with just 24 hours of training.

These generalizations allow AlphaZero to learn and master anything, even
beyond games.

By December 2018, the final version of AlphaZero competed against Stockfish v8
(then considered to be the strongest open-source chess engine in the world) on Chess,

9“Ke Jie vs. AlphaGo: 8 things you must know” 27 May 2017 http://chuansong.me/n/1840585451964.

321

http://chuansong.me/n/1840585451964

APPENDIXA A HISTORY LESSON: MILESTONES OF DEEP LEARNING

and Elmo (a world champion Shogi program) on Shogi. Against Stockfish, AlphaZero
managed to achieve 155 wins and 6 losses in a 1,000-game chess tournament, with all
the other matches resulting in draws. Against Elmo, AlphaZero achieved a 91.2% win rate
on Shogi.

DeepMind published the next generation of the algorithm in 2019 named MuZero,
which was able to play Atari games in addition to Chess, Go, and Shogi.

Dota 2 Bot from OpenAl

OpenAl—a nonprofit Al research company founded by Elon Musk and Sam Altman,
which focuses on developing friendly Al—unveiled their Dota 2 Al Bot in 2013, capable
of defeating top Dota professional players.

Dota 2 is a multiplayer online battle arena (MOBA) game developed by the Valve
Corporation. First released in July 2013, the game is a sequel to the community game
Defence of the Ancients (DotA), which was released back in 2003 as a mod for the game
Warcraft II1.

A typical match of Dota 2 is played by five-verses-five (5v5), although other variations
of the game such as 1v1 exist. Each of the players chooses a hero from 115 playable
characters, each with its strengths and weaknesses, various abilities, and powers. The
game is played in a real-time strategy manner, where each team battles the other and
attempts to destroy the Ancient (large structure on the base) of the opposing team while
defending their own.

The diverse characters available, their abilities, strengths, weaknesses, and the
real-time way the game is played makes Dota 2 one of the most complex and competitive
multiplayer games available. The required permutations of moves to program a bot
manually makes it impractical, which makes Dota 2—quoting the engineers of
OpenAl—“the perfect test bed for AL"*

So how did OpenAlI achieve their Dota 2 bot?

OpenAl has used self-play (playing against a copy of itself) to entirely train the bot
from scratch. They have not used imitation learning or tree search mechanisms in any
way. It is worth noting that creating a dataset for any other types of training might also
not be practical due to the complexities we discussed earlier.

10“OpenAl reveals self-play information after successful Dota 2 test” August 16, 2017
https://www.teslarati.com/openai-self-play-dota-2-musk/.

322

https://www.teslarati.com/openai-self-play-dota-2-musk/

APPENDIXA A HISTORY LESSON: MILESTONES OF DEEP LEARNING

Quoting the engineers of OpenAl: “Supervised deep learning systems can only be
as good as their training datasets, but in self-play systems, the available data improves
automatically as the agent gets better.”!!

The bot training uses completely random moves and by competing with a copy of
itself. As part of “coaching” for the training of the bot, the team has added a set of white-
listed item builds (part of the gameplay of Dota 2) into the training. The training of the
bot began in March 2017, and by July, it was starting to beat top-level professionals.

On August 7, 2017, the bot competed against three professional pros—Blitz, Pajkatt,
CC&C—and won 3-0, 2-1, and 3-0, respectively.

On August 9, 2017, the bot took on Arteezy, the top overall Dota 2 player in the world,
and won 10-0.

On August 10, 2017, the bot won against Sumail, the top 1v1 Dota 2 player in the
world, by 6-0 (Figure A1-10). SumaiL then played against the Aug 9 version of the bot
and won 2-1, showcasing how the bot had advanced with just one day’s training.

Figure A1-10. Screencap from the Game Between the Bot and SumailL

On August 11, 2017, the bot won against Dendi, the former world champion, by 2-0.

1“OpenAl reveals self-play information after successful Dota 2 test” August 16, 2017
https://www.teslarati.com/openai-self-play-dota-2-musk/.

323

https://www.teslarati.com/openai-self-play-dota-2-musk/

APPENDIXA A HISTORY LESSON: MILESTONES OF DEEP LEARNING

Most of these players have expressed that the bot felt unbeatable, and that they have
learned new moves from the games with the bot.

OpenAl’s next goal was to train a set of 5 Al bots that could take on a professional
Dota 2 team on a 5v5 match. This was a massive task, as the five bots not only needed
to be individually skilled, but they would also need to coordinate with each other to
entertain hopes of winning.

It would not be a case of just adding four more bots to the game. The bots need to
work as a team, in other words.

Dota 2 is a team game. It is won by coordination, and not by the skill of any single
player. Typically, each player needs to bring a different set of skills and tactics to the team.

It seems that OpenAl has tackled that problem as well.

By January 2018, their set of five bots—named the OpenAl Five—managed to win
against a set of scripted bots.

By April 2018, OpenAl Five managed to win against OpenAl’s in-house human Dota
team on a restricted match.

By June 2018, OpenAl Five continued to win in matches with fewer and fewer
restrictions.

On August 5, 2018, the OpenAl Five managed to win a best of three vs a team of
99.95th percentile Dota players in front of a live audience (Figure A1-11).

OPENAI FIVE BENCHMARK

Figure A1-11. Screencap from the game OpenAl Five vs. Humans
324

APPENDIXA A HISTORY LESSON: MILESTONES OF DEEP LEARNING

OpenAl managed this entirely by self-play training, using their general-purpose Al
Training system named Rapid. Each bot received 180 years’ worth of training each day,
running on 256 GPUs and 128,000 CPU Cores.

In August 2018, OpenAl Five participated in the International 2018, the annual
Dota 2 World Championship. Initially, the bots were defeated by pro player teams from
Brazil and China. But with further improvements and training, in April 2019, the bots
competed against OG, the world champions of the International 2018, and won 2-1. In
the same month, OpenAl allowed the public to play against OpenAl Five in an online
event. The bots managed to win 38,654 out of the 42,729 public games against teams
from all over the world.

325

APPENDIX B

Optional Setup Steps

Following are a few optional steps in setting up your tools that may become useful in

some scenarios.

Switching the Backend in Multibackend Keras

This is how to switch the backend of Keras is done in the keras. json file, which is
located at %USERPROFILE%\.keras\keras.json on Windows. The default keras.json file
looks like this:

{
"floatx": "float32",
"epsilon”: 1e-07,
"backend": "tensorflow",
"image_data_format": "channels_last"
}

Switching which backend Keras uses—which by default is TensorFlow—can be done
using the backend parameter. You can set the backend parameter to either tensorflow,
Theano, or cntk in the keras.json file, and Keras will start using the specified backend
when a Keras code runs next time.

However, when switching the backend, we need to make sure to switch the
image_data_format parameter too. For tensorflow or cntk backends, it should be
channels_last. For theano, it should be channels_first.

327
© Thimira Amaratunga 2021

T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7

https://doi.org/10.1007/978-1-4842-6431-7#DOI

APPENDIXB OPTIONAL SETUP STEPS

So a keras.json for CNTK should look like:

{

"floatx": "float32",

"epsilon": 1e-07,

"backend": "cntk",

"image data_format": "channels last"
}

And a keras.json for Theano should look like:

{

"floatx": "float32",

"epsilon": 1e-07,

"backend": "theano",

"image data format": "channels first"
}

Why is this image_data_format parameter so important?

The image_data_format parameter affects how each of the backends treat the data
dimensions when working with multidimensional convolution layers (such as Conv2D,
Conv3D, Conv2DTranspose, Copping2D, and any other 2D or 3D layer). Specifically, it
defines where the channels dimension is in the input data.

Both TensorFlow and Theano expect a four-dimensional tensor as input.

But where TensorFlow expects the channels dimension as the last dimension (index

3, where the first is index 0) of the tensor—that is, tensor with shape (samples, rows,
cols, channels)—Theano will expect channels at the second dimension (index 1)—that
is, tensor with shape (samples, channels, rows, cols). The outputs of the convolutional
layers will also follow this pattern.

So the image_data_format parameter, once set in keras.json, will tell Keras which
dimension ordering to use, in its convolutional layers.

Mixing up the channels order would result in your models being trained in
unexpected ways.

Apart from setting the parameter in keras.json, you can manipulate it in the code as
well. You can get and set the image_data_format through the keras.backend package.

328

APPENDIXB OPTIONAL SETUP STEPS
To get the image data_format, you can use the image_data_format() function:

from keras import backend as K
print(K.image data_format())

To set the image_data_format, pass the string either channels_first or channels_last
to set_image data format() function:

from keras import backend as K
K.set_image data_format('channels first")

You can also set it per layer, using the data_format parameter in the 2D and 3D
convolutional layers:

model.add(Conv2D(20, (5, 5),
padding="same",
input_shape=(height, width, depth),
data_format="channels first"))

When manipulating the image _data_format programmatically, just make sure to
keep track of what you change it in to, and keep it consistent throughout your models
code. Otherwise you might mess up training of your model.

Installing OpenBLAS for Theano

Installing OpenBLAS is only needed if you are running Theano on CPU. TensorFlow has
its own internal CPU optimizers, and thus does not need (or use) OpenBLAS. But with
Theano, it is recommended to have OpenBLAS setup, as it sometimes doubles the speed
at which deep learning models train on it when using CPU.

This is for your reference only, as we have not used Theano or OpenBLAS in this book.

OpenBLAS has prebuilt binaries for Windows available only for some of its versions.
Therefore, you will have to use an older version. The last version with all the required
Windows binaries was OpenBLAS v0.2.15, which you can download from the OpenBLAS
SourceForge Page.!

“OpenBLAS - Browse /v0.2.15 at SourceForge.net,” https://sourceforge.net/projects/
openblas/files/v0.2.15/, [27 Oct, 2015].

329

https://sourceforge.net/projects/openblas/files/v0.2.15/
https://sourceforge.net/projects/openblas/files/v0.2.15/

APPENDIXB OPTIONAL SETUP STEPS

You will need to download both the OpenBLAS-v0.2.15-Win64-int32.zip and the
mingw64_dll.zip files (Figure A2-1).

OpenBLAS

OpenBLAS is an optimized BLAS library based on GotoBLAS2.
Brought to you by:

Summary Files Reviews Support

Download Latest Version

Home /v0.2.15

J Parent folder

OpenBLAS-v0.2.15-Winé4-int32.zip 2015-10-28 19.4 MB 73 L @
OpenBLAS-v0.2.15-Win32.zip 2015-10-28 12.1MB 6 @
mingwé4_dll.zip 2015-10-28 550.4 kB 111 @
mingw32_dll.zip 2015-10-28 622.6 kB 4] @
OpenBLAS 0.2.15 version.tar.gz 2015-10-27 10.0MB 1 @
OpenBLAS 0.2.15 version.zip 2015-10-27 20.5MB 0 @
README.md 2015-10-27 24kB o @
Totals: 7 Items 63.1MB 21

Figure A2-1. OpenBLAS downloads page

Once downloaded, first extract the OpenBLAS-v0.2.15-Win64-int32.zip file to
a globally accessible location on your hard disk (something like C: \Dev_Tools\
openblas\).

Then extract the mingw64_dll.zip, and copy its contents (3 DLL files) to the bin
directory of your extracted OpenBLAS directory (Figure A2-2).

330

APPENDIX B OPTIONAL SETUP STEPS

This PC Local Disk (C:) Tools OpenBLAS-v0.2.15-Winb4-int32 bin

Name Date modified Type

. libgee_s_seh-1.dll 4/13/2020 10:44 PM Application exten...
. libgfortran-3.dli 4/13/2020 10:44 PM Application exten...
B libopenblas.dil 10/28/2015 2:33 AM Application exten...
. libquadmath-0.dli 4/13/2020 10:44 PM Application exten...

Figure A2-2. Mingw DLL files added to OpenBLAS bin directory

If you extracted OpenBLAS to C:\Dev_Tools\openblas\, then C:\Dev_Tools\
openblas\bin will have the libopenblas.dll in it. When you extract mingw, it will have 3
more DLLs—libgcc_s_seh-1.dll, libgfortran-3.dll, and libquadmath-0.dll. Copy those to
C:\Dev_Tools\openblas\bin also.

Finally, add the C:\Dev_Tools\openblas\bin directory to your system path.

331

Index

A

AlexNet, 312, 313

AlphaGo, 320, 321

Anaconda, 19, 20, 33

Artificial intelligence (AI), 1-3, 13, 14
Atari assault-v0 environment, 310

B

Bottleneck features
definition, 147
VGG16 model
accuracy, 154
bird_classify_bottleneck.py, 149
compiling, 153
data generator, 151, 152
layers, 153
load, 152
packages, 149, 150
save/evaluate/graph, 153, 154
training history graph, 154, 155
training parameters, 151, 152
training steps, 149
utility functions, 150, 151
workflow, 147, 148
Box2D BipedalWalker-v3
environment, 310
build_lenet() function, 73

© Thimira Amaratunga 2021

C

CartPole problem
build model, 297, 298
definition, 293
elements, 294
histogram, 300
methods, 301
packages, 295, 296
trained, 299
CelebFaces Attributes (CelebA), 272
Classifier, 101, 110
classify_image(), 224, 227
Computer vision, 10
detecting faces, images, 244-246
detecting faces, video, 246-248
image processing tasks, 233
images, 234-239
libraries, 23-25
OpenCV, 233
real-time deep learning object, 248-251
software libraries, 234
video files, 242-244
Webcams, 240-242
Convolutional filters, 69, 74, 75, 112,
124,125, 130
Convolutional neural networks (CNNs),
7,69, 260, 312, 313
cv2.resize() function., 80

333

T. Amaratunga, Deep Learning on Windows, https://doi.org/10.1007/978-1-4842-6431-7

https://doi.org/10.1007/978-1-4842-6431-7#DOI

INDEX

D

Data augmentation
data/augmented directory, 135
flow() function, 132, 135
flow_from_directory() function, 132
ImageDataGenerator, 132
images, 135
input image, 132, 133
load image, 133, 134
parameters, 134
tf.keras, 132

Deep convolutional generative

adversarial network (DCGAN)
architectures, 283
CelebA, 272,273
dataset image paths, 274
definition, 255
discriminator, 260, 262, 276
feedback, 262, 263
generator, 257-260, 274, 275
handwritten digit generation, 256
images generated, 282
importing packages, 256, 257, 273
loss functions, 277
OpenAl Jukebox, 286
running training, 267-270
training, 264-267
training loop, 279, 280
train step functions, 278

Deep learning
accuracy, 12, 13
Al 11
capability, 5
characteristics, 6
definition, 2
definitions, 5
evolution, 11, 12

334

higher level patterns/features, 9
lower-level patterns/features, 9
machine learning, 11
models, 9
plateau, 6
Deep learning architectures, 320
Deep learning frameworks
Keras, 22
Scikit-Learn, 23
TensorFlow, 20-22
Theano, 23
Deep learning models
advantages using Windows, 16, 17
limitations using Windows, 17, 18
running, 81-86
Defence of the Ancients (DotA), 322-325
DenseNet, 318, 319
Digital image, 102, 103
Digit classification system, 71
Downsampling, 109

E

env.step() function, 293

F

Fashion-MNIST dataset, 86, 87
classify image, 88, 90, 91, 93, 94
improvement, 100
running, 95-99

Feature extraction method, 111-114, 148

Fine-tuning model
idea, 156
ImageNet, 156
layers, 156
learning capacity, 158
learning rate, 158

steps, 157, 158

VGG16 Model
accuracy, 164, 165
bird_classify_finetune.py, 158
class_indices dictionary, 158
epochs, 162
history graph, 165
layers, 163
packages, 158-162
run/evaluate/graph, 164
save, 164
SGD optimizer, 163

workflow, 156, 157

Fully connected layer, 110

G

Generative adversarial network (GAN), 9

artist/art critic, 253

characteristics, 254

DCGAN, 255

definition, 254

training, 255

typical workflow, 254
GoogLeNet, 315, 316
graph_training_history()

function, 77, 92, 188, 202

H

Hierarchical feature learning, 2, 5, 8, 9, 147

Horizontal plot, 122

I, J
Image classification model

accuracy, 145
categories, 138

INDEX

class names, 142

consolidated directory, 138

create directory/subdirectories, 139
data generators, 141, 142, 144
dataset, 136, 137

definition, 143

directory structure, 139

extraction, 137, 138

filenames, 142
flow_from_directory() function, 141
packages, 140

parameters, 141

save, 144

size, 141

training history graph, 145, 146
training/validation steps, 142
utility function, 140, 141

image_data_format parameter, 49, 327,

328

ImageNet Large Scale Visual Recognition

Challenge (ILSVRC), 311, 312

InceptionV3 model

accuracy, 177,178

base model, 174
bird_classify_inceptionV3.py, 170
class weights, 172, 174-177

data imbalance, 170
discrepancies, 170

fine-tuning, 175

history graph, 178

layers, 176

mitigation, 170

packages, 170
parameters/generators, 173, 174
top model/compilation, 174
training history, 171, 172

index() function, 217, 225, 227

335

INDEX

Installation errors
Dlib build errors, 65
latest version, OpenCV, 64
latest versions missing, 63, 64
Matplotlib Pyplot error, 62
Intelligent machines, 2, 3, 10

K

Kaggle, 136, 137
Keras Sequential model, 74
Keras, switching the backend, 327

L

LeNet architecture, 69

LeNet model, 101, 126, 130
load_img() function, 227
load_model() function, 118, 196

Machine learning, 2, 4
Machine learning system
computer vision tasks, 30, 31
inference phase, 27, 28
PC hardware, 28, 29
training phase, 27
Mathematical convolution
operation, 103-107
matplotlib package, 69, 71
Model checkpoints
epoch, 189
epoch number, 194
generators/parameters, 195
importing packages, 192
load, 196
naming conventions, 187, 188
parameters, 186, 187

336

running code, 197

saving, 191

speed-up, 185

training parameters, 194

utility functions, 192, 193

validation loss, 189, 190
model_data_preparation(), 296

model.fit() function, 77, 144, 175, 181, 183,

196, 198
model.predict() function, 80
Model predictions

bird_classify_predict.py, 166
and confidence, 168, 169
load, 166

load image, 166

OpenCV, 167, 168

packages, 166

run image, 167

model.save() function, 115, 116, 187, 218

model.save_weights() function, 115
model.summary() function, 126
Modified National Institute of
Standards and Technology
dataset (MNIST), 67, 68
MountainCar problem
building/training, 305-307
code file, 303
data preparation function, 304
elements, 303
histogram, 308
script, 301
testing, 302
Multiplayer online battle
arena (MOBA), 322
Multithreading
CPU thread, 181
error message, 185

multi-threaded batch mode, 184

INDEX

script, 182 ResNet, 317, 318
single-threaded batch mode, 183 Robust training script
stop training, 198-200 build, 201
checkpoint, 205
N generators/training

parameters, 206-210, 212

National Institute of Standards and process, 212, 213

Technology (NIST), 67 saved model files, 204
Netron, 122-124 utility function, 202, 203
Nonlinearity function, 69, 107, 108, 313
(o) S . .
save_ weights () function, 78, 115
OpenAl Gym set_image_data_format() function, 329
definition, 288 Spatial pooling, 109
environments, 288 Subsampling, 109
setting up, 289-293
OpenBLAS
bin directory, 331 T! u
download page, 330 tensorflow.keras.utils package, 70
installation, 329 Theano, 23
Open source computer Tool setup
vision (OpenCV), 23, 24 CUDA Toolkit, 55-61
Optimizers and accelerators install Anaconda Python, 40-43
cuDNN—CUDA, 26 install CMake, 37-40
NVIDIA, 26 install Dlib, 50
OpenBLAS, 26 install Keras multibackend
version, 48, 49
install OpenCYV, 49
P’ Q install TensorFlow, 46-48
plot_model function, 117-119, 122 install Visual Studio, C++, 33-37
Pooling, 109, 110 setup conda, Python libraries, 44-46
Pydot packages, 117 verifying installations, 51-54
Python, 18-20 Transfer learning, 131-147
R \/
Rectified Linear Units (ReLu), 69, 108 VGG Net, 314, 315
Reinforcement learning, 287-289, 293 Visualize layers, 125

337

INDEX

W XY script, 215

setting up flask, 216-218

Web application
deep learning, 220, 222, 224-226, 229
designing, 218-220 Z
scaling up, 230, 231 ZFNet, 313, 314

338

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: What Is Deep Learning?
	Defining Deep Learning
	Intelligent Machines
	Artificial Intelligence
	Machine Learning
	Deep Learning
	Convolutional Neural Networks
	How Deep?
	Is Deep Learning Just CNNs?
	Why Computer Vision?
	How Does It All Come Together?
	Is an Artificial Intelligence Possible?

	Chapter 2: Where to Start Your Deep Learning
	Can We Build Deep Learning Models on Windows?
	Advantages of Using Windows
	Limitations of Using Windows

	Programming Language: Python
	Package and Environment Management: Anaconda
	Python Utility Libraries for Deep Learning and Computer Vision
	Deep Learning Frameworks
	TensorFlow
	Keras
	Other Frameworks
	Scikit-Learn
	Theano

	Computer Vision Libraries
	OpenCV
	Dlib

	Optimizers and Accelerators
	NVIDIA CUDA and cuDNN
	OpenBLAS

	What About Hardware?
	Recommended PC Hardware Configurations

	Chapter 3: Setting Up Your Tools
	Step 1: Installing Visual Studio with C++ Support
	Step 2: Installing CMake
	Step 3: Installing Anaconda Python
	Step 4: Setting up the Conda Environment and the Python Libraries
	Step 5: Installing TensorFlow
	Step 6: (Optional) Installing Keras Multibackend version
	Step 7: Installing OpenCV
	Step 8: Installing Dlib
	Step 9: Verifying the Installations
	Step 10: (Optional) Manually Installing CUDA Toolkit and cuDNN
	Troubleshooting
	Matplotlib Pyplot Error
	Not Getting the Latest Versions
	Not Using the Latest Version of OpenCV
	Dlib Build Errors

	Summary

	Chapter 4: Building Your First Deep Learning Model
	What is the MNIST Dataset?
	The LeNet Model
	Let us Build Our First Model
	Running Our Model
	Trying a Different Dataset
	Clothing Image Classification using Fashion-MNIST
	Running Our Fashion-MNIST Model
	What Can You Do Next?

	Chapter 5: Understanding What We Built
	Digital Images
	Convolutions
	Nonlinearity Function
	Pooling
	Classifier (Fully Connected Layer)
	How Does This All Come Together?

	Chapter 6: Visualizing Models
	Saving Models in Keras
	Using the plot_model Function of Keras
	Using an Opensource tool to Visualize Model Structures: Netron
	Visualizing the Features Learned by Convolutional Filters

	Chapter 7: Transfer Learning
	The Problem with Little Data
	Using Data Augmentation
	Build an Image Classification Model with Data Augmentation
	Bottleneck Features
	Using Bottleneck Features with a Pretrained VGG16 Model
	Going Further with Model Fine-tuning
	Fine-tuning our VGG16 Model
	Making Predictions Using Our Models
	Trying out a Deeper Model: InceptionV3

	Chapter 8: Starting, Stopping, and Resuming Learning
	Using Multithreading to Increase the Training Speed
	Using Model Checkpoints
	Knowing When to Stop Training
	Building a Robust Training Script

	Chapter 9: Deploying Your Model as a Web Application
	Setting up Flask
	Designing Your Web Application
	Building Your Deep Learning Web Application
	Scaling Up Your Web Application

	Chapter 10: Having Fun with Computer Vision
	What We Need
	Basics of Working with Images
	Working with Video: Using Webcams
	Working with Video: Using Video Files
	Detecting Faces in Images
	Detecting Faces in Video
	Simple Real-Time Deep Learning Object Identification

	Chapter 11: Introduction to Generative Adversarial Networks
	The Story of the Artist and the Art Critic
	Generative Adversarial Networks
	Generating Handwritten Digits with DCGAN
	The Generator
	The Discriminator
	The Feedback
	The Training
	Running the Training

	Can We Generate Something More Complex?
	What Else Can GANs Do?

	Chapter 12: Basics of Reinforcement Learning
	What is OpenAI Gym?
	Setting up OpenAI Gym
	Solving the CartPole Problem
	Solving the MountainCar Problem
	What Can You Do Next?

	Appendix A:
A History Lesson: Milestones of Deep Learning
	What is the ImageNet Challenge (The ILSVRC)?
	AlexNet: 2012
	ZF Net: 2013
	VGG Net: 2014
	GoogLeNet/Inception: 2014/2015
	Microsoft ResNet: 2015
	DenseNet: 2017
	Why Simply Going Deeper Does Not Work
	AlphaGo from DeepMind
	Dota 2 Bot from OpenAI

	Appendix B:
Optional Setup Steps
	Switching the Backend in Multibackend Keras
	Installing OpenBLAS for Theano

	Index

