
Building Scalable PHP
Web Applications
Using the Cloud

A Simple Guide to Programming
and Administering Cloud-Based
Applications
—
Jonathan Bartlett

Building Scalable
PHP Web

Applications Using
the Cloud

A Simple Guide to
Programming and

Administering Cloud-Based
Applications

Jonathan Bartlett

Building Scalable PHP Web Applications Using the Cloud: A Simple Guide

to Programming and Administering Cloud-Based Applications

ISBN-13 (pbk): 978-1-4842-5211-6		 ISBN-13 (electronic): 978-1-4842-5212-3
https://doi.org/10.1007/978-1-4842-5212-3

Copyright © 2019 Jonathan Bartlett

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation. For information on
translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights, please
email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484252116.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Jonathan Bartlett
Tulsa, OK, USA

https://doi.org/10.1007/978-1-4842-5212-3

Cloud computing is really a no-brainer for any startup
because it allows you to test your business plan very quickly
for little money. Every startup, or even a division within a
company that has an idea for something new, should be

figuring out how to use cloud computing in its plan.

—Brad Jefferson, CEO of Animoto

v

Table of Contents

Chapter 1: Introduction���1

1.1 ��Prerequisites��2

1.2 ��Typographical Conventions��4

1.3 ��Typing or Downloading the Code��5

Chapter 2: What Is the Cloud���7

2.1 ��Infrastructure as a Service���8

2.2 ��Platform as a Service���10

2.3 ��Docker��11

2.4 ��Why Choose IaaS��11

2.5 ��Choosing an IaaS Vendor���13

2.6 ��Some Important Terminology���17

Chapter 3: Setting Up a Cloud Server��21

3.1 ��Creating Your Virtual Server���21

3.2 ��Logging In and Looking Around���25

3.3 ��Updating Your System��30

3.4 ��Running the Web Server��31

3.5 ��Putting Up Your Own Web Pages��33

3.6 ��Installing PHP 7�� �34

About the Author��ix

Acknowledgments��xi

vi

3.7 ��Turning Off SELinux��36

3.8 ��Setting Up a User for Development��37

3.9 ��Transmitting Files to the Server���38

Chapter 4: Creating a Simple Web App��43

4.1 ��Setting Up the Database Service���43

4.2 ��The PHP Code���46

Chapter 5: Setting Up a Basic Cloud Cluster��57

5.1 ��A Simple Two-Tier Architecture��57

5.2 ��Replicating a Node���59

5.3 ��Setting Up Your Private Network��63

5.4 ��Handling Database Connections from Other Servers�������������������������������������65

5.5 ��Setting Up a Web Server��67

5.6 ��Setting Up the Load Balancer��69

5.7 ��Measuring Scalability���74

Chapter 6: Improving Scalability with Caching�����������������������������������79

6.1 ��Understanding Caching Architectures��79

6.2 ��Implementing Caching in the Application��83

6.3 ��Reimaging the Cluster��86

6.4 ��Testing Our Caching Architecture���87

Chapter 7: Database Replication���93

7.1 ��Types of Database Replication���93

7.2 ��Replicating the PostgreSQL Database���94

7.3 ��Setting Up the Application to Utilize Master/Replica Replication�����������������100

7.4 ��Adding More PostgreSQL Replica Servers���100

7.5 ��Replicating Across Datacenters���103

7.6 ��Sharding Your Data��106

Table of ContentsTable of Contents

vii

Chapter 8: Using a Content Delivery Network�����������������������������������109

8.1 ��How Does a CDN Work?���110

8.2 ��Setting Up a Simple CDN���111

8.3 ��Using Your CDN��114

8.4 ��Caching Your Whole Site with a CDN��116

8.5 ��Putting CloudFront In Front of the Entire Application�����������������������������������119

8.6 ��Turning Your Application Inside Out��120

Chapter 9: Using S3 for Infinite Disk Space���������������������������������������125

9.1 ��Getting Started with S3�� �126

9.2 ��Folders in S3�� �127

9.3 ��Getting Credentials��127

9.4 ��Access S3 via Command Line��130

9.5 ��Connecting Your Application to S3��� �134

Chapter 10: Hosting with AWS���141

10.1 ��Using Amazon Lightsail��142

10.2 ��Hosting on Elastic Beanstalk���146

Chapter 11: Using the Google Cloud Platform�����������������������������������153

11.1 ��Setting Up Your Template Node��154

11.2 ��Setting Up Your Database Server for Remote Access��������������������������������157

11.3 ��Creating a Replication Image���157

11.4 ��Creating Load-Balanced Groups��159

11.5 ��Other GCP Services��162

Chapter 12: Server Management Techniques������������������������������������163

12.1 ��Running Commands on Multiple Servers���163

12.2 ��Syncing Files on Multiple Servers��165

12.3 ��Full-Service Solutions��166

Table of ContentsTable of Contents

viii

Chapter 13: Linux Security Basics���169

13.1 ��The Basic Considerations���169

13.2 ��Examining Your Current Server��170

13.3 ��The Root User���171

13.4 ��Installing a Web Application Firewall���173

13.5 ��Checking for Rootkits���174

13.6 ��Other Security Software���175

13.7 ��Application Security���176

Appendix A: List of Linux Commands��179

Basic Linux Commands��180

Basic System Administration���183

PostgreSQL Commands���187

Other Application-Specific Commands��188

Appendix B: Important Files and Directories�������������������������������������191

Basic Linux Filesystem Directories��191

Important Directories for Cloud Servers��194

Important Files���195

Appendix C: What to Do When It Doesn’t Work����������������������������������197

Making Sure Everything Is Typed in Correctly��197

Making Sure You Checked the Logs���198

Making Sure You Didn’t Miss a Step��198

What If I Run a Different Version/Distribution of Linux���������������������������������������199

What If I Want to Use a Different Cloud Service?���199

Where Else Can I Find Information?���200

Afterword���201

Index��203

Table of ContentsTable of Contents

ix

About the Author

Jonathan Bartlett is a technical lead at ITX, where he leads a team of

programmers doing work as diverse as building online registration

systems, modeling the physics of oil flow through a well, and developing

augmented reality body evaluation applications. Jonathan’s work

focuses on cloud development, Ruby on Rails, data modeling, and iOS

development. Jonathan is patently awful at building user interfaces, and is

thankful for the large number of more creatively minded coworkers who

cover for him on a daily basis.

Jonathan has been educating programmers for well over a decade.

His first book, Programming from the Ground Up, is an Internet classic

and was endorsed by Joel Spolsky, co-founder of Stack Exchange. It was

one of the first open source books and has been used by a generation of

programmers to learn how computers work from the inside out, using

assembly language as a starting point. Recently, Jonathan released

New Programmers Start Here which is focused on teaching brand new

programmers about computers, the Internet, and JavaScript programming,

based on his experience teaching programming to high-school and college

students. Additionally, Jonathan has written several books on the interplay

of philosophy, math, and science, including Calculus from the Ground

Up, Engineering and the Ultimate, and Naturalism and Its Alternatives in

Scientific Methodologies.

Jonathan also writes developer-focused articles for a number of

technology web sites. His articles can be found on IBM’s DeveloperWorks

web site, Linux.com, and Medium.com. Jonathan is currently writing

technology articles for a more general audience at MindMatters.ai.

x

Jonathan also participates in a variety of academic work. He is an

associate fellow of the Walter Bradley Center for Natural and Artificial

Intelligence. There, he does research into fundamental mathematics and

the mathematics of artificial intelligence. He also serves on the editorial

board for the journal BIO-Complexity, focusing on reviewing information-

theoretic papers for the journal. Jonathan served as editor for the book

Controllability of Dynamic Systems: The Green’s Function Approach, which

received the RA Presidential Award of the Republic of Armenia in the area

of “Technical Sciences and Information Technologies.” He also spends

time teaching at a homeschool co-op through Classical Conversations.

Jonathan is married to Christa. They have been together for over

20 years and have had five children, though they lost two of them due to a

genetic illness.

About the AuthorAbout the Author

xi

Acknowledgments

This book was written based on a number of experiences moving

clients from traditional hosting environments to cloud-based hosting

environments. The material here started as some notes that I put together

for other people on my team and eventually blossomed as the book that

you see here.

I would like to thank my clients for giving me the opportunity to work

with them on exciting projects and for allowing me to explore and learn

new systems on their behalf. I would also like to thank my employer, New

Medio (now part of ITX), for always having great clients to work with and

always putting up with all of my little side projects. A number of companies

look down upon employees doing side projects. They have always been

encouraging to me in my endeavors, whether it is teaching science to

homeschool co-ops, going to seminary to study theology, organizing

seminars on obscure subjects, or my steady stream of books. Thanks

especially to Adam Nemec for making all of these things possible.

I doubt I could do them from anywhere else.

Next, I want to thank my early test readers, Tavo Soto, Charles

McNamara, Garret Wilson, and Cara Waken, for taking the time to read

through the book and test out the different examples to make sure they

functioned properly. I also want to thank David Roesch and Alex Fornuto

for their help with many technical details in early drafts of this book.

Finally, I want to thank the editorial staff at Apress for their great work

helping me to make this book perfect. It is a much stronger book because

of your help.

1© Jonathan Bartlett 2019
J. Bartlett, Building Scalable PHP Web Applications Using the Cloud,
https://doi.org/10.1007/978-1-4842-5212-3_1

CHAPTER 1

Introduction
“The cloud” is the new technology buzzword. It seems like everyone is

talking about “moving to the cloud,” but few people really know what that

means, least of all how to take advantage of it. With every technology shift,

there are people who think that the new technology will solve all of their

problems, without even taking inventory of what those problems are. Many

technologies make promises, and some of those are even true, but for

them to come true, you have to use the technology in the right way.

This book is primarily for developers who want to start moving their

apps to the cloud, and want to know how to get started and different

options available to them. Secondarily, this book is for managers who

want to be conversant in cloud technology and ideas, in order to better

understand the options available and how different development decisions

will affect them. This book has a focus on PHP, but, even if PHP is not your

intended deployment language, this book will tell you what you need to

know to architect a cloud application in any language or platform.

This book will talk about several different cloud options, but will focus

on developing for Linode and similar clouds, the reasons for which we will

see in Chapter 2.

Please note that this book makes many comparisons between specific

infrastructure vendors. I do not represent any particular company, nor

do I warrant that these comparisons are foolproof or permanent. They

are, however, the results of my experience and my knowledge at the time

of writing, and I have attempted to do all due diligence to provide factual

2

information as best I can. Nonetheless, while the general considerations

discussed in this book are unlikely to change, the specific vendors,

products, and how they measure up are likely to change over time.

Additionally, while the general outlines of the tasks for setup,

programming, and configuration are likely to remain the same for a long

period of time, the specific steps and screenshots may differ from this book

as products and platforms change. Nevertheless, the steps presented here

should remain a reliable guide for what types of things you should expect

from different cloud vendors.

1.1  �Prerequisites
This book has very few prerequisites. Even if you aren’t familiar with the

specific tools we are using, this book has enough step-by-step instructions

that you should be able to follow it fairly easily.

Since it is a book on web applications, it assumes that you are familiar

with the absolute basics of HTML, CSS, and the basics of how the Internet

works (i.e., domain names, IP addresses, etc.). If you are not familiar

with these things, you should put this book down and pick up a copy of

my earlier book, New Programmers Start Here. New Programmers Start

Here doesn’t hit every topic you need to know, but if you understand its

concepts, you should be able to work through most of the examples in this

book.

The code in this book is based on PHP, but the code is simple

enough that you should be able to follow it no matter what language

you are familiar with. PHP was chosen because it is easy to write short,

understandable web applications with PHP. For instance, in my job, I

almost always program in Ruby on Rails. However, it is almost impossible

to understand a Rails application without already being familiar with the

entire Ruby on Rails system. PHP, on the other hand, is less “magic” than

Rails, but that makes it more obvious to the reader what is happening.

Chapter 1 Introduction

3

With PHP, especially at the level which this book uses it, I’m confident that

anyone who has experience with any programming language will be able

to follow what is happening.

This book also presumes that you have a basic familiarity with

databases and SQL. This is not an absolute requirement, but the database

code itself is left largely unexplained. However, the SQL code should be

self-evident to anyone with even a passing knowledge of SQL.

Finally, this book uses Linux as the operating system of choice.

However, even if you don’t know anything about Linux, this book gives

you every command you need to type, so you don’t actually have to know

anything about Linux to use this book. Appendix A has a list of common

Linux commands for reference if you want to know more.

The reason that Linux was chosen was because it is a very easy

operating system to install and use in a cloud environment. While it is

possible to use Windows in a cloud environment, Linux was built from the

ground up for this type of application. The command line, while seemingly

arcane, actually makes server management fast and painless.

Additionally, because Linux, PHP, and PostgreSQL (our database

system) are all free software, there are no licensing considerations for their

use. You just install what you need and move on with your life. You don’t

need to worry about who you need to pay when. You don’t need to worry

about whether your usage matches your license for the product. You don’t

need to worry about someone auditing your business to verify compliance.

With free software, software is just a tool—you can install it and forget it.

I don’t have a problem with proprietary software in principle, but,

because it introduces a ton of extra management issues, I try to avoid it if

possible. I am not against people being paid for their work, but I do take a

principled stand against never-ending, needless headaches, which is what

you wind up with when you rely too much on badly licensed proprietary

software.

Chapter 1 Introduction

4

This book focuses on the CentOS 7 Linux distribution because CentOS

tends to be a fairly stable and robust Linux distribution that is supported

by most vendors, and many other Linux distributions use CentOS as a

starting point.

1.2  �Typographical Conventions
This book uses a few, simple typographical conventions you should be

aware of. When referring to code, typed commands, URLs, or any other text

meant for typing, the book uses a font that looks like this: type me here.

Names of programs which are the same as their command name (which

you would type in to use) are also written in that way, as are usernames

and filenames.

However, many things that you type will need to be replaced using

your own values, such as the IP addresses for the machines that you

deploy. These things that need to be replaced are given by words with all

uppercase letters. For instance, to go to your own web site, you would type

into the browser http://YOUR.DOMAIN.HERE/, where YOUR.DOMAIN.HERE

refers to your own web site’s domain name. The meaning of these and

what they should be replaced with are described in the text.

Note that PHP actually has a few default variable names that are all

uppercase that we will be using. Therefore, $_GET, $_POST, and $_FILES are

all real variable names in PHP and should not be replaced.

This book describes how to use a variety of third-party services. When

describing the menus, buttons, and field names of user interface elements

on various web sites, these items will usually be placed in double quotes.

For instance, to print out a file from most programs, you would go to “File”

and then click “Print.”

Chapter 1 Introduction

http://your.domain.here/

5

1.3  �Typing or Downloading the Code
This book focuses around a simple guestbook application, building and

rebuilding it using different application architectures. The entire code

for the application is in this book. Honestly, I think it would do you a lot

of good to type out all of the code in this book yourself. There isn’t very

much, and it would help you think about what you are building. However,

I understand that this can get tedious when you are just trying to work the

examples, and having complete, working code is very helpful when trying

to solve problems.

Therefore, all of the code for every variation of the application we cover

in this book is available for download from www.github.com. Each branch

in the repository represents a different modification to the application in

the book. Using the repository, the only changes you would need to make

are the environment-specific changes mentioned in the text of the book,

such as setting the IP address of the database server. These are also in the

README file for each branch.

You can download the code at

https://github.com/johnnyb/cloud-example-application

If you do type in the code yourself, pay close attention to where the

spaces are used in the program. The code is written exactly as it should be

typed, with line breaks where they should be unless indicated elsewhere

by the text. Putting spaces and line breaks in the wrong place or leaving

them out where they should be is a surefire way of messing up the code.

Chapter 1 Introduction

http://www.github.com
https://github.com/johnnyb/cloud-example-application

7© Jonathan Bartlett 2019
J. Bartlett, Building Scalable PHP Web Applications Using the Cloud,
https://doi.org/10.1007/978-1-4842-5212-3_2

CHAPTER 2

What Is the Cloud
There is a little bit of confusion over what it is to “be in the cloud.” Some

people even mistakenly think that just being on the Internet is utilizing

cloud technology.

The essential difference between cloud technology and other types

of Internet hosting is that a cloud service offers at least the ability to scale

your application quickly. Historically, developers would deploy their web

application to fixed servers that they purchased or leased at a specific

facility. It was possible to get more equipment, but this always involved

quite a bit of time and effort. Oftentimes, the developer would have to put

together a large capital outlay for the servers, purchase them, configure

them, and deploy them. This process could take weeks or even months.

Even when purchasing direct from a hosting company, the process of

putting together a quote and getting everything up and running could take

more than a week.

The promise of the cloud is that, rather than having to go through

the process of physical setup for new servers, additional capacity can be

granted either instantaneously or at least within minutes or hours rather

than days, weeks, or months. With some solutions, you don’t even have

to worry about machines—the cloud solution automatically scales your

application across as many machines as you need. With others, it is just a

few clicks to request, image, and boot up a new machine that is a replica of

some existing machine and then add it to your web application.

In any case, the core idea of the cloud is instant, automated scalability

and flexibility.

8

Many cloud providers even provide access to more than one data

center. Do you want a set of servers in America and a set of servers in

Europe? No problem. With just a few clicks, you can get it done.

2.1  �Infrastructure as a Service
Cloud computing is often confusing because there are several different

types of cloud computing, each of which has its own benefits and

drawbacks. The difference between the types of cloud services is mostly

based on the level of abstraction that is being offered.

The most basic type of cloud service, which this book will focus on, is

called Infrastructure as a Service, abbreviated IaaS. IaaS means that you

can purchase and deploy pieces of infrastructure (servers, load balancers,

firewalls, etc.) with just a click of the button. This is done through server

virtualization technology.

Server virtualization allows an IaaS service company to deploy a single,

very large server and split it up into multiple, smaller servers. Each server

runs a hypervisor program, which allows the company to split up the server

quickly and automatically. A company might take a computer with 16

processors and 64 gigabytes of RAM and split it up into 4 virtual machines,

each with 4 processors and 16 gigabytes of RAM.

Doing this has three advantages. The first is space. By buying the

biggest machine, the IaaS company gives themselves the most computing

power per rack unit, which is a valuable commodity in server rooms.

Therefore, by buying a single, big machine and splitting it into four smaller

machines, they have only used a fourth of the space that they might

otherwise have done.

The second is cost per CPU core. By packing so many CPU cores and

so much memory into a single server, their cost per CPU core and cost per

gigabyte of memory go down. Therefore, by buying larger computers, they

can deliver a lower cost per CPU core to the user who buys the smaller,

virtual servers.

Chapter 2 What Is the Cloud

9

The third advantage, however, is the most important—manageability.

In order to support virtualization, a small part of each machine is

dedicated to the hypervisor—the small operating system that manages

the other virtual machines on the server. Because the machines are

virtual machines, and not real hardware devices, they are incredibly easy

to manage. An operator can send a command to a hypervisor, and it can

instantly set up a new virtual machine, clone a new boot disk, and start up

the new virtual server in minutes.

Historically, if I wanted a new server, I would have to buy the server,

then, while being physically at the console, would have to install the

relevant operating system and system software, and finally carry the

server to the rack where I plug it in and turn it on. I have to make sure the

network is plugged in and configured. I might have to configure the BIOS

to allow for keyboard-disconnected operation. If there is a problem with

the machine, I have to make a backup of the machine, find a new physical

machine, copy the backup to the new machine, install the new machine,

and physically swap it out with the old machine.

With virtualized machines, I can let the hypervisor take care of all of

that. All I need are enough extra servers running hypervisors so that when

I need a new machine, I can just tell a hypervisor to create a new virtual

machine for me, and where the copy of the disk is that I want to use.

What’s even better is that with most IaaS platforms, you don’t even

need to worry about hypervisors and capacity. The IaaS vendor does

all of that for you. The IaaS vendor provides a point-and-click interface

that allows you to boot up virtual servers just by logging in to your web

management console. You tell it how big of a machine you want (i.e.,

number of CPU cores and size of memory), and it will allocate a server for

you. You tell it what you want on it (either a base operating system or a

clone of an existing machine), and it will copy that to its boot disk and boot

it up for you. Voilà! You have a new server ready to go.

Chapter 2 What Is the Cloud

10

Additionally, with most IaaS services, if there are physical hardware

issues, the service will take care of it for you. If a severe hardware problem

is detected, they will simply turn off your server, migrate it to a new one,

start it back up, and send you an e-mail letting you know what happened.

If it is a less severe problem, some vendors will give you a notification,

requesting that you push a button to perform the migration at a time that is

most convenient for you.

Even better is the pricing model. Most IaaS vendors have an option

for hourly pricing. Do you need a machine, but just for a few hours? With

Linode, you can get a 32-core and 64 gigabyte machine for well under

$1.00 per hour!

In Chapter 3, we will look at the specific steps required to set up a

cloud server.

2.2  �Platform as a Service
Another option for scaling applications is known as Platform as a Service,

which is abbreviated as PaaS. With PaaS, rather than giving you bare

machines and letting you run whatever you wish, a PaaS defines a platform

for you to run your application on. The PaaS vendor manages the entire

platform, and you just have to worry about your application.

For instance, Heroku is a popular PaaS vendor. Heroku handles all of

the server administration and maintenance. You don’t even get to log in to

their machines! You simply push the code to them, and they deploy it on

their machines for you. Other common PaaS vendors include Google App

Engine, Windows Azure, Amazon’s Elastic Beanstalk, and OpenShift.

With PaaS, you choose how many “workers” to use, and the system will

distribute that work across however many machines are needed (a worker

is just an active process, and each PaaS vendor has their own term for it).

Thus, the PaaS vendor takes care of the platform (hardware, operating

system, installed applications), and you just manage the application code.

Chapter 2 What Is the Cloud

11

This sounds great in theory—you no longer have to manage servers

at all! It is all done for you automagically behind the scenes. However, the

reality is that PaaS platforms are not as transparent as they appear, and

PaaS vendors tend to price their value addition fairly high.

2.3  �Docker
A new technology in the field generating a lot of buzz is Docker. Docker

apps are kind of a midway between IaaS and PaaS. A Docker app is an

image containing, essentially, a full installation of all of the programs

needed to run your application.

They can be managed, deployed, and scaled similar to PaaS, where you

can just tell the service how many you want running, and it will take care

of deploying your image to the right places, but you have a much larger

degree of control, similar to IaaS.

One interesting part of Docker is the ability to “link” different services

together. Essentially, you put names on the different types of services that a

Docker container provides or needs, and then can use those names to tell your

services how to find each other. However, this is mostly only an issue during

the initial setup for your application, after which it matters little whether you

linked your application components together manually or with a fancy tool.

Docker itself is a technology, not a vendor. There are many vendors

which allow you to deploy Docker apps, including Docker Inc., the

company responsible for the Docker technology.

2.4  �Why Choose IaaS
This book concentrates on IaaS cloud models for a number of reasons.

The first is that IaaS is very flexible. No matter what type of workload you

want to run, no matter what platform you want to run, IaaS just gives you

bare servers. What you do with them is up to you. This also means that you

aren’t locked in to a specific vendor’s systems.

Chapter 2 What Is the Cloud

12

The second is that IaaS works fairly predictably. While there are

differences, the way that most IaaS vendors operate is fairly similar. You

pick a box size, you say what you want on it, and you push the button.

There is a lot of variability of the quality, cost, and flexibility of those

services, but they are all fairly similar.

With PaaS, your choices are much more limited. First of all, you are

limited to what platforms your vendor offers. If you program in Ruby on

Rails, you are limited to only Ruby on Rails PaaS. While most PaaS vendors

have opened up their systems to quite a number of different application

servers, there are still limitations. Second, you must write your code to

match the way they have their platform configured. This usually involved

little or no local file storage, certain specific types of databases to connect

to, only certain allowed platform options or extensions, and little to no

flexibility on how the server is configured. Sometimes that’s fine, but

sometimes it is too constraining.

Additionally, PaaS is usually too opaque. Access to server logs is

often difficult, and debugging troubles that are server-specific is nearly

impossible. Sometimes PaaS vendors have tools to help, but they are

nothing like being able to debug directly on the machine having the

problem. This opaqueness can sometimes lead to devastating results.

For instance, if you purchase a PaaS database system, and somehow your

database gets corrupted, your options are extremely limited. You basically

have to call the company and beg for help. Some companies are very

responsive in this regard, but it makes me really nervous.

Also keep in mind that in order for a PaaS system to work, they have to

keep upgrading their systems. In fact, that is what you are paying them to

do. However, there is no guarantee that an upgrade they make tomorrow

won’t also accidentally trash your application. Perhaps the upgrade was

necessary, but that isn’t a decision that you get to make.

Similarly, using a PaaS vendor means that you have to upgrade on

their schedule. If they decide to deprecate a piece of their infrastructure,

you have to rewrite your code to work around this. If they decide that the

Chapter 2 What Is the Cloud

13

version of a piece of software you use is out of date, you have to rewrite

your code to use the new version. In short, PaaS means that you lose

control of your technology, while IaaS means that you have full control.

While certain hassles are removed by using PaaS, they are usually

compensated for by the hassles they introduce.

Finally, PaaS is usually very expensive. For example, for four CPU

cores on Heroku (a common Ruby on Rails PaaS vendor), it costs $100 per

month. For a 4-core machine on Linode, the cost is only $40 per month,

and the Linode machines are faster. I have found that most PaaS vendors

charge around three times as much as a good IaaS vendor for equivalent

performance. The PaaS vendors do more for you, but that is only

worthwhile if you don’t possess any systems management experience in

your developer lineup, and you will often wind up paying that cost anyway

in keeping up with the PaaS platform.

If your organization has the know-how to set up and maintain servers

(and this book provides a good start to learning how to do that), IaaS is

currently the easiest, most flexible, fastest, and least expensive way to take

advantage of cloud technologies, and it doesn’t lock you in to a specific

vendor. If you decide that you really want to use a PaaS-like system, just

know that there are many open source PaaS systems that you can run on

top of your IaaS servers.

2.5  �Choosing an IaaS Vendor
There are many considerations that go into choosing an IaaS service or

vendor. The most important consideration is the reliability of the service.

It doesn’t help to have a magnificent web application if the service is down.

It doesn’t make your company money in the long term if you can’t get to

your data. Therefore, the reliability of the service should have significant

impact on your decisions.

Chapter 2 What Is the Cloud

14

This also extends into their ability to resolve tickets. Every service will

have problems at some time or another. If a company cannot respond to

or resolve tickets in a timely manner, then you shouldn’t have production

systems sitting on them.

The next main factor is the price/performance ratio. Many of the

early cloud infrastructure companies placed an extremely high value on

the flexibility of cloud computing, with the result that nearly every cloud

solution was at a horrendously high cost. Amazon Web Services (AWS) has

a cloud computing service known as EC2 that is a great example of this. As

mentioned earlier, a Linode 4-core machine with 8GB RAM is $40/month.

A similarly specified machine on EC2 (the c5.xlarge machine) is $122/

month. Historically, EC2 has tended to be much slower than Linode even

on the same specs. In the early days of cloud computing, EC2 was one of

the only big players in the field, and to get the flexibility, they made you pay

a high price. Personally, at the price EC2 is asking for, I would prefer to go

outside of the cloud and do a traditional hosting setup where I lease physical

servers. For me, the flexibility isn’t worth the price that AWS requires.

On the other side of the scale, there are cloud services whose prices are

impossibly good. That is, you can recognize from the price that there is no

way that they can deliver reliable long-term service at that price. Either the

company will go out of business, the company will have to raise prices, or

the service will eventually be oversubscribed and degrade to the point of

unusability. A great example is CloudAtCost (www.cloudatcost.com). With

CloudAtCost, you pay a one-time fee and get to keep the server forever.

For instance, for $70, you get 2 CPU cores and 1GB of RAM. But that is not

a monthly cost. That is a one-time-only cost! As I said, it is an unbelievably

good price. They do charge a $9 yearly account maintenance price, but that

is the same cost no matter how many servers you have (it was probably

instituted so they could shut off servers that were no longer maintained).

There are some things that such a service might be good for. If

you wanted a development server, for example, it doesn’t matter if the

network goes down every once in a while, or that the technicians aren’t

Chapter 2 What Is the Cloud

http://www.cloudatcost.com

15

quick to answer. And, if one day they shut their doors, you aren’t out a

whole lot. But I certainly wouldn’t bet my business on such a service. If

you want to see other services that are at impossibly cheap prices, see

www.lowendbox.com.

The final factor is flexibility. It is one thing to be able to point and click

to set up a new machine, but what if you couldn’t store disk images and

had to rebuild a machine every time you launched one? This would be a

painstaking process, and you would lose one of the main benefits of cloud

computing. This area is one in which AWS shines. AWS consists of not

only its cloud computing services (EC2), AWS also provides configuration,

control, and automation into nearly every aspect of cloud infrastructures.

AWS provides scalable storage solutions, video transcoding services,

scalable databases, message queueing services, and search services. This

gives your cluster an external monitoring service which automatically

spawns new servers to handle the load as it increases, and removes servers

from your cluster and powers them down as the load on your network

decreases. In other words, the extra services that come with AWS are nearly

limitless.

At the end of the day, however, the flexibility of AWS is outweighed by

the terrible price/performance ratio of EC2. Thankfully, however, AWS’s

better services (such as S3 and CloudFront) can be used individually, even

if you use another provider as your primary IaaS vendor. We will discuss

how to do that in later chapters.

If you haven’t already guessed, my preference for a cloud vendor is

Linode (www.linode.com). Their price/performance ratio is unbeatable.

The reason for this is threefold. First, the equipment is newer. Second,

they only use SSD drives (i.e., solid state—no spinning disks), which are

generally an order of magnitude faster than regular disks. This is probably

one of the most important aspects to Linode’s performance. Third, they

have implemented controls to prevent “noisy neighbors.”

Chapter 2 What Is the Cloud

http://www.lowendbox.com
http://www.linode.com

16

A noisy neighbor is a virtual machine that is on the same physical

server as your machine, but is using all of the I/O resources of the

computer. On IaaS platforms, you don’t get to choose (or even know) who

else is sharing the same physical hardware. Therefore, using a service that

prevents resource hogging is very important. Linode has implemented

a number of controls to prevent any individual virtual machine from

overusing resources. This is good not only for the performance of your

own virtual server but also because it means that you don’t have to worry

yourself about being a bad neighbor to someone else!

While Linode does not have the flexibility of AWS, the flexibility is

hardly missed. Most of the important things that you want to do with AWS

are extremely simple with Linode, and the added features of AWS make

AWS’s learning curve steep and confusing. By the time someone spends

the extra money to get the flexibility in AWS (for instance, creating a system

to automatically boot new machines in response to load), they could have

spent the same money in Linode giving their cluster enough capacity so

that it won’t matter.

There are other services similar to Linode—DigitalOcean is often

considered a comparable service at a comparable price. However, my

experiences with Linode have been sufficiently positive that I haven’t felt

the need to research them all. Linode provides what I need, has an easy-to-

use interface, and does it at a great price. Therefore, this book will focus on

developing cloud applications on Linode.

When choosing a vendor, it is also important to read their terms

of service carefully to make sure that your intended use is compatible.

Not only are some workloads not allowed on certain services (i.e., some

services prohibit mass e-mail marketing), many services have limits on

how fast you are allowed to scale your network. This is mostly for abuse

prevention, but it is important to find out about ahead of time. In any

case, you may want to reach out to potential cloud vendors and make

sure that your planned usage matches their service guidelines before

settling on one.

Chapter 2 What Is the Cloud

17

2.6  �Some Important Terminology
Before we go further, I want to clarify some of the terminology that is used

in the book. With IaaS, what you are renting are basically machines. They

are virtual machines (i.e., partitions of real machines), but nonetheless

they can themselves be considered machines in the abstract. In cloud

computing lingo, they are often referred to as nodes. Since they provide

services to other machines and/or users on the network, they are also

considered to be servers. Because of this, another term often used for

nodes is VPS—virtual private server. In this book, the terms machine,

node, and server are used fairly interchangeably, though the specific term

chosen is usually based on how you are using it at the moment.

A cluster is a group of nodes that work together. Thus, we are building

a cluster in the cloud. A service that is built to be scalable in the cloud is

called a cloud cluster, or just a cloud.

The term scalability is an important term in cloud computing.

Scalability is different than just performance. Performance refers to either

efficiency or raw speed. Scalability refers to the ability of the system to

expand its processing power quickly. For instance, a program that can

handle 2,000 requests per second might be considered high performing,

but if that program’s speed cannot be increased by adding another node, it

is not scalable.

On the other hand, even a low-performing program might be scalable.

If my program only handles 1 request per second, but every node I add

increases the number of requests it can handle, then my program is

scalable. If I scale this low-performing program up to 4,000 nodes, it will

be able to handle more requests than the previous case which handled at

most 2,000 requests per second. The whole cluster (with its 4,000 nodes)

might now be considered high performance based on the throughput

of the whole cluster even though its individual parts are not high

performance.

Chapter 2 What Is the Cloud

18

Usually, scalability depends on your ability to parallelize tasks.

Parallelization refers to the ability of tasks to run independently of each

other, even on other machines. The more that two tasks need to coordinate

with each other, the less parallelizable they are. In designing applications

for scalability, you need to take particular note of the way in which

different parts of the system require coordination, and aim to minimize or

remove the impact of these coordination points.

Hopefully, the things that you build are both high performance (even

for a small number of nodes) and scalable (so that adding more nodes

increases performance). Making an application perform well is about

looking for slow code and replacing it with fast code or rewriting your

application to not need the slow code. Making an application scalable is

about looking for bottlenecks which prevent parallelization and replacing

those bottlenecks with code that can scale to multiple nodes or reworking

your architecture so that the bottleneck doesn’t arise in the first place.

The focus of this book is on scalability, though performance is also

considered.

 SKIPPING THE SERVER ROOM

Here is an amusing story of things that I don’t miss about dealing with

server rooms. In the late 1990s, I once worked as a programmer/system

administrator for a company that hosted its own servers. These servers were

not in regular server racks, but rather on essentially metal wire shelving. The

primary external-facing server was on the top shelf.

We needed some extra drive space on this server, so I had installed an external

drive pack on the server. At the time, the main mode of connecting external

storage to servers was called SCSI (pronounced “scuzzy”), and it was fraught

with problems. After some time, there started being a lot of problems with the

server accessing the drive pack, so I went to troubleshoot.

Chapter 2 What Is the Cloud

19

Since the server was on the top shelf, I stood on top of a stool to work with

the machine. I spent about a half an hour trying to figure out what was wrong.

Realize that this was happening with our main external server, so every minute

counted, because our (very active) web site was having problems.

So, I managed to move everything off of the new drive packs, then

disconnected the drives to take them back to my office to see what the

problem was. However, I had spent so much time standing on the stool

messing with the computer, I forgot that I was, you know, standing on a stool.

So, I grabbed the drive pack and just walked out of the room, or so I intended.

Thankfully, neither I nor the drive pack was injured by the fall, but my pride

certainly was.

As fun as stories such as these are to reminisce over, I’m glad that those days

are behind us.

Chapter 2 What Is the Cloud

21© Jonathan Bartlett 2019
J. Bartlett, Building Scalable PHP Web Applications Using the Cloud,
https://doi.org/10.1007/978-1-4842-5212-3_3

CHAPTER 3

Setting Up a Cloud
Server
As with most cloud providers, setting up a cloud server on Linode

is extremely simple. This chapter shows you the basic process to get

something up and running, with screenshots.

3.1  �Creating Your Virtual Server
Hopefully, if you are a web developer or manager, you can sign up for the

Linode service without too much trouble. It requires a credit card up front,

but you will find the costs of running everything in this book are likely less

than the book itself, assuming that you turn off your services when you are

done with them.

Before moving ahead, go ahead and create your account with

Linode now.

After you sign up and sign in, Linode brings you to your dashboard,

which should look something like Figure 3-1.

22

You currently have nothing set up, so your dashboard is pretty empty.

To get started, click the “Create” button. Linode calls their virtual servers

“nodes” or “Linodes,” so choose “Linode” to create a new machine.

Linode will then ask you several questions to help you configure your

node for use. While there are any number of good choices, use the ones

here in order to be able to follow along with the book:

	 1.	 Under “Choose a Distribution,” pick “CentOS 7.”

	 2.	 Under “Region,” it doesn’t matter what you choose,

but you have to pick the same one each time for

your servers to talk to each other. This book will use

the “Dallas, TX” facility.

	 3.	 Under “Linode Plan,” the cheapest one, which is

sufficient for our purposes, is the “Nanode 1GB”

plan. At the time of this writing, this plan costs less

than 1 cent per hour to operate.

Figure 3-1.  The Linux Dashboard

Chapter 3 Setting Up a Cloud Server

23

	 4.	 Under “Linode Label,” we will call this machine

template_node.

	 5.	 You can ignore the “Add Tags” section. Tags are

useful for grouping machines together when you

have a lot of them.

Figure 3-2.  Your New Node’s Dashboard

	 6.	 Under “Root Password,” add a password for this

machine. Be sure the password is secure, as there

are a lot of hackers that just go around attempting

various passwords for root accounts. It is not

unusual to have 50,000 such hack attempts each

month.

	 7.	 For the moment, you can leave “Optional Add-ons”

untouched. We will deal with backups and private IP

addresses later on in the book.

Chapter 3 Setting Up a Cloud Server

24

After setting all of these, hit the “Create” button, and Linode will start

building your machine. Linode will bring you to a dashboard for your

machine which will have, among other things, a progress bar and an

“Activity Feed” (see Figure 3-2). When the progress bar is done, you are

now the proud owner of a new server in the cloud!

 CHOOSING A SERVER

Linode categorizes their servers by (a) the kind of workload they will be

serving and (b) how much RAM the server comes with. The workload types

are “Nanode” (super-small and super-cheap instances), “Standard” (balanced

CPU/RAM), “Dedicated CPU,” and “High Memory” (there is also “GPU,” but

those are for a completely different type of cloud computing than is considered

here).

Under each workload, the servers are named by the amount of RAM they ship

with. A “Linode 4GB” comes with, you guessed it, 4 gigabytes of RAM. It will

also specify how many virtual CPUs and how much disk space it comes with

as well. Generally, the amount of memory goes up faster than the number

of cores, which makes sense considering the fact that memory is often a

much stronger limiting factor than CPU power. They also each have differing

amounts of disk space, but I consider the disk space a minor consideration,

since Chapter 8 will show how to set up a service with infinite available disk

space.

When choosing a production server, for reasons that will become more clear

going forward, I usually choose a fairly large size for databases (since they

are harder to replicate) and low to midrange sizes for web servers (since I can

easily add capacity by adding more servers).

Chapter 3 Setting Up a Cloud Server

25

3.2  �Logging In and Looking Around
So, you have a machine, but where is it and how do you access it?

Click the “Networking” tab on your dashboard. It should look

something like Figure 3-3. Under “Access” there is an area titled “SSH

Access.” This has the command you need to type into your command line

in order to log in. Use the password you created for the node to log in.

Figure 3-3.  The Networking Tab

 COMMAND LINE? WHAT IS THAT?

The command line is the old-school way of accessing computers. Long before

there were pretty graphical interfaces, people interacted with their computers

by typing. For many things, especially for system administration–related tasks,

the command line remains the best way to manage systems.

Chapter 3 Setting Up a Cloud Server

26

If you don’t have any experience with the command line, don’t worry! This

book doesn’t assume that you have expertise in this area, and will walk

you through each step. If you are just trying to figure out how to get to the

command line, here is what you do in each major operating system:

•	 Windows 10: Windows actually has two command-line systems.

The older “Command Prompt” (cmd.exe) and the newer

PowerShell. Just click the Windows icon and type PowerShell

to get started. You will need at least the April 2018 update in

order to run the commands here without further setup.

•	 MacOS X: Every Mac comes with an application called

“Terminal.” You can find it with Spotlight search, or you can go to

“Applications,” then “Utilities,” and find it there. I would suggest

that you add it to your Dock, as you will probably use it a lot.

•	 Linux: Every Linux distribution has a command-line program

installed, usually named “Terminal” or “Bash Prompt” or

something along those lines.

When you start the command line for the first time, it will show you some text,

followed by a blinking cursor. Now you are ready to start typing commands!

In case you are new to Linux, ssh is an incredibly handy tool that

allows for a remote, secure connection to your server’s command line.

That is, you can ssh into your machine, and it works just as if you were

logged in to the console. Additionally, the connection is encrypted, so you

don’t have to worry about anyone eavesdropping on you or stealing your

password. ssh is installed by default on every major operating system,

so you should already have it installed. If you are using an old version of

Windows, you may have to download a separate ssh application, such as

PuTTY, which can be freely downloaded from www.putty.org.

Chapter 3 Setting Up a Cloud Server

http://www.putty.org

27

To log in to your machine, simply open up a command line and type

in the command listed under the “SSH Access” section. It should say

something like ssh root@MY.IP.ADRESS.HERE, where MY.IP.ADDRESS.

HERE is the IP address of your Linode. Because ssh has not seen this

computer before, it will likely warn you that the authenticity of the

host can’t be established, and ask whether or not you want to continue

connecting. Just answer yes. It will only ask you this the first time, as ssh

will remember the remote computer. Then, for the password, put in the

password that you set when setting up your machine. Figure 3-4 shows

what this will likely look like.

Figure 3-4.  Logging In from the Command Line

You are now logged into your machine!

That final line is known as the “command prompt.” It gives basic

information about the current state of your session. root is your username.

This is the name of the administrative user on Linux. li1125-199 (or

whatever is after the @ symbol) is the name of your machine. Finally, ~ tells

you what directory you are in (for newer programmers, “directory” is the

old term for “folder”). ~ signifies the user’s “home” directory.

Chapter 3 Setting Up a Cloud Server

28

If you are unfamiliar with Linux, there are several commands that are

helpful to know:

pwd: This stands for “print working directory.” This tells

you what directory you are currently working in. If you

do this when you first log in, it should say /root. Linux

directories, rather than starting with a drive letter, start

with a slash (/) as the top-level directory. /root is the

home directory for the root user.

mkdir: This stands for “make directory.” This creates

a new directory inside the current directory.

cd: This stands for “change directory.” If you give it a

directory name, it will go to that directory. If you type

in the command without any parameters, it will take

you to your home directory. The command cd /

will take you to the root directory (note that the root

directory is a term for the top-level directory, not

the root user’s directory). If a directory name starts

with a slash, the cd command will assume that it is

an absolute path, starting with the root directory.

If a directory name starts with a tilde (~), the cd

command will interpret the path relative to your

home directory. Otherwise, it will interpret the path

as being relative to the current directory.

ls: This stands for “list,” which gives you a list

of files in the current directory. To see the file

permissions, add the option -l to the command.

To see hidden files as well, add the option -a.

Therefore, to see both hidden files and file

permissions, type in ls -l -a.

Chapter 3 Setting Up a Cloud Server

29

nano: Nano is your easy-to-use text editor. If you

are going to run machines as part of your job, you

should also learn vim as it will be more efficient for

you, but that is a more difficult task. Nano is easy

to use and will be sufficient for getting started. If

you want to create a file in the current directory

called test.txt, type in nano test.txt and start

typing. The key combination control-o will save (i.e.,

output) your file, and control-x will exit.

systemctl: This command handles starting

and stopping system services on certain Linux

distributions, including CentOS. You will be

introduced to how to use it later in this chapter.

logout: This exits the current user session. You can

also do this by typing exit or control-d.

I encourage you to take some time playing around with the commands

mkdir, cd, ls, and nano. Try creating a new directory, going into it, and

creating a new file there. Then, try logging out, logging back in with

ssh, finding your file, and viewing it. Do this several times until you

are completely comfortable with the process of logging in, logging out,

navigating directories, and editing files.

After you are comfortable making files and directories inside your

home directory, you should branch out and look around at other

directories. You shouldn’t edit files there yet (files outside your home

directory may mean something important to the operating system), but

there is no harm in looking around.

To get started looking around, go to the root directory (cd /) and

look around (ls). You will see a number of directories, most of which

are documented in the Linux Filesystem Hierarchy Standard (see www.

pathname.com/fhs). Even though the Filesystem Hierarchy Standard is

Chapter 3 Setting Up a Cloud Server

http://www.pathname.com/fhs)
http://www.pathname.com/fhs)

30

a good place for general information about what the directories are for,

it is no longer strictly adhered to, so don’t be surprised by some amount

of deviation. However, in short, /etc contains server configuration

information, /home contains home directories for users other than root,

/usr contains installed programs, /opt contains customized programs and

other server-specific items, and /var contains information that changes

regularly (e.g., log files, caches, queues, etc.).

3.3  �Updating Your System
The first thing you should do after your system is up and running is to

update the server with the latest upgrades and security packages. CentOS

uses yum to manage system software installations. yum handles downloading,

installing, upgrading, removing, and verifying software packages simply and

safely. When you ask yum to install or update a package, it is smart enough to

find the package on a remote server, verify the package’s authenticity, look

up and install any other software that the package depends on, and keep

track of all installed packages and their files. yum can only be run by the root

user, but so far that is the only user we have available.

The first thing you should do when you have a new server is to update

all of its installed packages to their latest versions. Fortunately, this is really

easy with yum. Just run the following command:

yum -y update

This will often download a very large number of packages—that’s just

fine. CentOS is continually fixing bugs and solving security issues in every

piece of software in the distribution, and so these updates can get large.

However, CentOS is also very careful to make sure that the revisions that

it includes do not include any incompatible upgrades. So, by running

yum update, you are keeping yourself up to date, and you are unlikely to

accidentally break anything by running it.

Chapter 3 Setting Up a Cloud Server

31

3.4  �Running the Web Server
By default, the Linux distributions that come with Linode only install the

absolute essentials. This is actually great, because one of the primary

means of maintaining security is to install only what you absolutely need,

which minimizes the number of potential vulnerabilities that you are

exposed to. However, by default the web server is not installed.

If you put in the IP address of your web server into your browser,

your browser will respond that it cannot connect to the computer. This is

because the web server is not running yet. To install the web server, we

will use CentOS’s yum package manager. This book covers the Apache web

server, known to the computer as httpd, but there are other possibilities as

well.

To install httpd, run:

yum -y install httpd

It doesn’t matter what directory you are in when you run yum. It will

install the packages to the correct directory no matter where you run it

from. yum will list the package you want to install, as well as the other

packages required to run it.

Now your web server is installed, but it is not running. To run the web

server, simply type in:

systemctl start httpd

This command also does not care what directory you are in.

Now your web server is running, but you probably still can’t connect

to it. This is because CentOS comes with a firewall running by default.

Therefore, we will need to add holes in the firewall to allow access to the

web server from outside.

Chapter 3 Setting Up a Cloud Server

32

To do this, issue the following commands:

firewall-cmd --add-service http

firewall-cmd --add-service http –permanent

firewall-cmd --add-service https

firewall-cmd --add-service https --permanent

These commands will add both HTTP and HTTPS to the list of services

that remote users can connect to. firewall-cmd manages your firewall.

Adding a service (--add-service) allows access to that service. Running

it without the --permanent flag modifies the current firewall. Adding the

--permanent flag tells the firewall to have that rule in place when the server

is rebooted. To enable the rule now and have it still enabled if the server is

rebooted, you need both commands.

You can see the list of allowed services by issuing the following command:

firewall-cmd --list-services

When these commands have been run, you can simply go to your

server’s IP address in your browser, and you should get a test screen like

Figure 3-5.

This means that your web server is up and running like it should be—

congratulations!

However, there is one more issue to consider. Even though the server

is running right now, if you reboot your machine, it won’t be running

when it starts. To make sure this service runs at startup as well, issue the

command:

systemctl enable httpd

Chapter 3 Setting Up a Cloud Server

33

To test it out, go to your node’s dashboard, and in the top-right hand

of the page, it should say “Running.” If you click that, it will show you a

“Reboot” button. Click that button to reboot your machine. While your

service is rebooting, the test web page will probably go away at some point.

However, once the progress bar for the reboot finishes, the test web page

should be available again.

Rebooting will log you off since the computer is no longer running.

However, you can just log right back in again, and you will be back in root’s

home directory.

3.5  �Putting Up Your Own Web Pages
The test page we get is automatically generated if there is no content for

the web site. To create content for the web site, you simply have to put

some in the right place.

Figure 3-5.  The Web Server’s Test Screen

Chapter 3 Setting Up a Cloud Server

34

Go into /var (type cd /var) and look around (type ls). One of the

directories you see will be www. This is the default directory for data served

from the web server (i.e., web pages). Go into www (type cd www) and look

around (type ls). The html directory is where you will put your HTML and

PHP files. Go into that directory (type cd html). To verify you are in the

right place, type pwd and it should tell you that you are in /var/www/html.

Now that you are in /var/www/html, you will create pages for the web

service to serve up. Create the file index.html using nano index.html

and put something in it (if you don’t know what to type, just type in hello

there or something similar). Use control-o to save the file and control-x to

exit the editor. As soon as you have created the file, you can go to your IP

address, and that file will show up as the default page.

3.6  �Installing PHP 7
Since this is a book on web application development, we want to do

more than just web pages. We need to enable scripting on the server

side. Therefore, we need to install the application framework we are

developing with, as well as the plugins to get it running with Apache. This

book focuses on PHP 7. Unfortunately, CentOS 7 only has PHP 5 available.

Therefore, we are going to have to load PHP 7 from another repository.

Two commonly used package repositories are the EPEL (Extra

Packages for Enterprise Linux) repository and Remi Collet’s repositories. It

is easy to load new repositories for yum to find. Each repository has a URL

that yum can load so that yum can use it for future installation commands.

To enable these repositories, just type the following (the indented lines

should be put on the same line as the previous line):

yum install -y

 �https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.

noarch.rpm

yum install -y

 https://rpms.remirepo.net/enterprise/remi-release-7.rpm

Chapter 3 Setting Up a Cloud Server

35

Now we can install PHP 7. To do this, just type:

yum install -y php74

This installs the base PHP 7 package and its dependencies, but without

much else. Once installed, while still in the /var/www/html directory, run

the command nano test.php and enter the following script:

After doing this, save the file with control-o and exit with control-x. You

can now run the file directly using the command line. Type the command:

php74 test.php

It will run the code in your file and output the string This is a test

just like the code says.

Now, open your web browser and go to http://MY.IP.ADDRESS.HERE/

test.php. Notice that it did not run it as a PHP script. That is because

Apache and PHP are not connected together.

We now need to connect PHP to Apache. This is done through the

FastCGI Process Manager (FastCGI is the protocol that allows PHP and

Apache to communicate). You can install this with the command:

yum install -y php74-php-fpm

This is a separate process, so it has to be enabled and started as well.

systemctl enable php74-php-fpm

systemctl start php74-php-fpm

Now, we have to configure Apache to connect .php files to the PHP 7

interpreter. Create a file called /etc/httpd/conf.d/php.conf using nano,

and put in this text (the indented lines should go on the same line as the

previous line).

Chapter 3 Setting Up a Cloud Server

http://my.ip.address.here/test.php
http://my.ip.address.here/test.php

36

This code tells Apache to forward (called proxying) all requests for files

ending in .php to the FastCGI service we previously installed. The last line

tells Apache that it can treat index.php as a directory index, meaning that

if someone leaves off a filename, and an index.php file is available, it can

serve that file up as the default page in that directory.

Now, to get it to all work, restart Apache:

systemctl restart httpd

Now you should be able to hit the file with your browser, and it should

be processing through PHP 7. Hooray!

While PHP is installed, you only have the base package installed. To

see all of the extensions you can install, run the command yum search

php74. This will display a list of all of the available PHP packages, each of

which can be installed with yum install -y.

3.7  �Turning Off SELinux
SELinux is a security enhancement feature for Linux. While, in theory,

SELinux can do a lot to minimize security risks on servers, in practice

it is too unwieldy for practical use. SELinux is generally not needed for

well-built sites and not enough protection for poorly built ones. Instead,

it winds up adding a large system administration headache for very little

Figure 3-6.  PHP Configuration File

Chapter 3 Setting Up a Cloud Server

37

gain. If you run SELinux, the most likely outcome is that you will spend

days trying to figure out why something isn’t working, only to find out that

SELinux is preventing some basic operation for no good reason.

To turn off SELinux, edit the file /etc/selinux/config and change the

line that says SELINUX=enforcing to say SELINUX=permissive.

Reboot your machine. When it comes back up, log in and issue the

command getenforce. It should say Permissive. You are now all set to go.

Note that if you don’t disable SELinux, the application built in this

book will not work, because SELinux will prevent the application from

connecting to the database.

3.8  �Setting Up a User for Development
So far we have used the root user (i.e., the superuser). While there are

many things for which the root user is required, normally you should

spend as little time being the root user as possible for safety reasons. Since

the root user is allowed to do anything, it is easy to violate safeguards as the

root user to either damage the system or accidentally allow unauthorized

entities access to your system.

Therefore, we will create a non-administrative user to do most of our

tasks. This user will be named fred. To create the user, type the following:

useradd fred

This sets up Fred as a user on the system, creates a home directory

for him, and gives him a user and group number. Now we need to set a

password for Fred by typing in the following:

passwd fred

Chapter 3 Setting Up a Cloud Server

38

This will prompt you for a password and make sure that you typed it

in correctly by asking you to repeat it. We want Fred to be able to add and

modify files in the /var/www/html directory, so we need to grant him the

ownership of those files. We do this with the chown command:

chown -R fred /var/www/html

This tells to change the owner of the /var/www/html directory and

all of the files under it to fred. We can now log out or we can open a new

window and ssh back into the machine as fred:

ssh fred@MY.IP.ADDRESS.HERE

This will land us in Fred’s home directory. We can now cd into /var/

www/html and modify the files as before, since they are now owned by Fred.

Note that root, since it is the superuser, can still modify the files as well

even though they are owned by Fred.

3.9  �Transmitting Files to the Server
Now, most people don’t like programming directly on their servers.

Usually, they want to write the program on their own machine and then

transmit it to the server. To do this, you will need a tool that supports the

SFTP protocol. SFTP is basically FTP over SSH.

The easiest SFTP solution that works across Windows, Macintosh, and

Linux is FileZilla (www.filezilla-project.org). You can use either the

regular (free) or the professional (paid) version. To use FileZilla, after you

install it, just open it up, click “File,” and then click “Site Manager.” Click

the “New Site” button.

Chapter 3 Setting Up a Cloud Server

http://www.filezilla-project.org

39

Fill out this screen similar to Figure 3-7. In the “Host” box, put the IP

address of your Linode server. In the “Protocol” box, select SFTP. Set the

“Logon Type” to normal, and put the username as fred and the password

as whatever you set for Fred’s password. You can also change the name of

the site to something memorable (I called mine “Linode Virtual Server”).

When you are done, click the “Connect” button.

The first time you connect, it may bring up a dialog that says,

“Unknown host key.” This is fine—it is the same idea as when you first

connected via ssh. The software just has never seen the server before.

Click the box that says, “Always trust this host,” and then click “OK.” Once it

is connected, it will look similar to Figure 3-8.

Figure 3-7.  Setting Up FileZilla to Connect

Chapter 3 Setting Up a Cloud Server

40

FileZilla operates with two panes—the left pane is your local computer,

and the right pane is the remote computer. It tells you which directory it

is looking at in each one. What you need to do is set the local directory to

wherever your files are you want to transfer, and the remote directory to

wherever you want to put those files (presumably /var/www/html). Once

these directories are set, the two panes below those list the actual files, and

you can simply drag and drop them back and forth.

As an exercise, create a few simple PHP files on your local computer

and transfer them to the server, and verify that you can see them through

your web browser.

Figure 3-8.  FileZilla Connected to Your Linode Server

Chapter 3 Setting Up a Cloud Server

41

 EDITING PHP.INI

For some applications, you may need to modify the php.ini file. The version

of PHP 7 we have installed puts the php.ini file in the directory /etc/opt/

remi/php74/. However, only root can access this file.

If you need to transfer it with FileZilla, you will need to reconnect as root,

with root’s password. You can also log in via ssh and modify it directly with

nano. In any case, always exercise care when modifying this file. Also, after

modifying the file, be sure to restart the PHP process using

systemctl restart php74-php-fpm

This may seem to be a lot of work to get set up. While there are faster

ways to get started, this method gives you several advantages. First of all, you

are now more familiar than most people with how all of these pieces connect

together. Second, you have a web server running PHP 7, and not some

decade-old version. Finally, you have everything you need, and nothing that

you don’t, which will help you with keeping your web server secure.

 OTHER TOOLS TO INSTALL

Personally, I like my nodes packed with tools. I have been a Linux user longer

than many of my readers have been alive, so I am pretty familiar with a large

swath of tools. Thankfully, they are all easy to install (you must be logged in as

root to do so).

In any case, the following are the install commands for the tools that I

frequently use:

yum install -y git

yum install -y screen

yum install -y telnet

Chapter 3 Setting Up a Cloud Server

42

yum install -y bind-utils

yum install -y traceroute

yum install -y nmap

yum install -y strace

yum install -y perl

This book is not an introduction to these commands, but they are worth

investigating.

Chapter 3 Setting Up a Cloud Server

43© Jonathan Bartlett 2019
J. Bartlett, Building Scalable PHP Web Applications Using the Cloud,
https://doi.org/10.1007/978-1-4842-5212-3_4

CHAPTER 4

Creating a Simple
Web App
In this chapter, we are going to be creating an extremely simple web

application to use for demonstration purposes in subsequent chapters.

The goal here is to get a full, end-to-end application up and running.

The application we are going to develop will simply be a guestbook, so

that anyone can come and post a message into the guestbook.

4.1  �Setting Up the Database Service
Any good web application has a database. My database of choice has

always been PostgreSQL (www.postgresql.org). There is a myth that

PostgreSQL is slow. There was some truth to that—in the 1990s.

However, starting with PostgreSQL 7, PostgreSQL has been a top

performer, and it just gets better with every release. Additionally,

PostgreSQL has always been fantastic with complex queries, and it

remains so today. PostgreSQL aims at no-limit programming. For instance,

in a PostgreSQL text column, you can store up to 4 gigabytes in a single

column of a single row—and still sort by it. On many databases, most of

your time is spent making the data match the preferred architecture of the

database. I have found that, with PostgreSQL, the database is much more

often already ready for your own data architecture.

http://www.postgresql.org

44

While this is not a book on PostgreSQL, we will discuss a few of its

features related to clusters of nodes.

To install PostgreSQL, simply do the following as root (all of this

section should be performed as the root user):

yum install -y postgresql-server

This will install all of the needed packages for PostgreSQL. To set up

the initial database, type in the following:

postgresql-setup initdb

This creates all of the necessary directories and files for PostgreSQL

to run. Next, we need to set up the authentication method for connecting

to our PostgreSQL databases. PostgreSQL stores both its data and its

configuration in the directory /var/lib/pgsql/data. The file which

controls access to the database is pg_hba.conf.

Edit that file (type nano /var/lib/pgsql/data/pg_hba.conf) to add

the following two lines to the top:

local all all trust

host all all all md5

The first line says to trust all connections coming in locally (i.e., not

through the network). Therefore, we won’t need a password when dealing

with the database directly on the command line. The second line says that

anyone can connect to the database over the network using an appropriate

password. This would be somewhat unsafe (we don’t want just anyone

being able to connect to our database), except that by default the database

only listens on the local address, 127.0.0.1, so right now you can’t connect

to it from outside anyway. Be sure to save the file and then exit the editor.

Note that even with the restrictions we have in place (local-only

connections, firewalls, etc.), many people would consider the preceding

configuration too exposed for their liking. The measures here are for

Chapter 4 Creating a Simple Web App

45

balancing security and ease of learning. For more information about

securing PostgreSQL, you should read the documentation on www.

postgresql.org about the pg_hba.conf file.

Now it is time to turn on our database. To do that, enter the following:

systemctl enable postgresql

systemctl start postgresql

Your database system is now up and running. You have created the

database system, but not the database itself. First, however, we need a

database user. The createuser command creates a new database user:

createuser -U postgres -d -P gbuser

The command runs as the database admin user (-U postgres) and

creates a new user named gbuser who can create databases (-d) and

prompts you to set a password for this new database user (-P). When it

prompts you, set the password to whatever you want and write it down

so you have it later. We will use the password mypassword where needed

in this book, but note that this would be a terrible password to actually

use in production. You will not need to use the password when using the

command line since we have it set to trust, but you will need it when

connecting from your application.

To create a database as this user, type:

createdb -U gbuser guestbookapp

This creates a new database as the given database user. Now, to create

the tables, we will need to log in to the database. The psql command will

give you an interactive SQL session to your database. To use it, just type:

psql -U gbuser guestbookapp

The command prompt will switch to something like guestbookapp=>,

which indicates you are in the database. To quit at any time, you can

type \q. Like many of the system administration commands, PostgreSQL

Chapter 4 Creating a Simple Web App

http://www.postgresql.org/
http://www.postgresql.org/

46

doesn’t really care where in the filesystem you are when you run its

commands. It is communicating to a database service, which is running in

its own directory.

Now that we are connected to the database, we will create a single

table using this command:

create table gb_entries(id serial primary key, name text, email

text, message text, created_at timestamp,

has_img bool default false);

The id field was created with type serial, which is PostgreSQL’s

mechanism for autonumbering. To view the table you just created, type

\d gb_entries. When you are done, exit out of the database by

entering in \q.

4.2  �The PHP Code
Before we write the PHP code, we need to install some additional PHP

libraries so that we can connect to our database. Install them with:

yum install -y php74-php-pgsql php74-php-pdo

systemctl restart php74-php-fpm

Our application will be simple:

•	 One file to hold the configuration information and

common functions

•	 One file to show a list of guestbook entries

•	 One file to show an individual guestbook entry

•	 One file to enter a new guestbook entry

•	 A CSS stylesheet

Chapter 4 Creating a Simple Web App

47

This book presumes that you know a modicum of PHP and SQL, but

even if you don’t, the code should be straightforward enough to follow

no matter what language you are familiar with. Therefore, the files will

be presented here without too much comment. You will find the figures

containing the code at the end of the chapter.

Figure 4-1 shows the common functions that are included by the other

files. It has two functions for getting database connections—one for getting

a read-only connection and one for getting a read/write connection. At

this point, they both return the same connection (and they are indeed both

read/write), but as we develop the application further, we will see how a

lot can be gained by separating out connections that are used for reads

only and those that are used for reading and writing. These functions both

simply use PDO (PHP Data Objects) to grab a connection to the database

using a connection string. Note that these connection strings contain the

password to the database. Be sure to change the password on both of these

connection strings to whatever password you entered for gbuser database

user earlier.

It also has the getHeader() and getFooter() functions so we don’t

have to write as much HTML. Also, h() is used as a shorter version of

htmlspecialchars() so that we can have more secure output.

Figure 4-2 is the PHP script that lists all of the entries in the database.

This code simply creates a database statement, executes it, and iterates

through the results.

Figure 4-3 shows getting a single entry out of the database. Again, there

is a single SQL statement that is prepared and executed, and the results are

displayed to the screen.

Figure 4-4 simply shows a form that will be used to create a new

guestbook entry. This form posts its data to the program in Figure 4-5.

That program creates a new record based on the values entered in. Then,

after performing the SQL insert statement, it redirects the user back to the

listing screen.

Chapter 4 Creating a Simple Web App

48

Finally, Figure 4-6 is a static CSS file that provides a small amount of

style to the whole procedure. As mentioned in Chapter 1, if you don’t want

to type in all of these files yourself, you can get them all from GitHub at:

https://github.com/johnnyb/cloud-example-application

To use git directly on the server, you will need to install it as the root

user with:

yum install -y git

After typing in all of the programs, send them up to the /var/www/html

folder on your new server. Then, navigate your browser to http://MY.IP.

ADDRESS.HERE/list.php and see if your program works! If it does not, you

can check the error log for PHP-FPM by logging in as root and looking at

the log file with the following command:

tail -200 /var/opt/remi/php74/log/php-fpm/error.log

This will give you the last 200 lines of PHP’s error log.

Another log that will give you good information can be accessed by

issuing:

tail -200 /var/opt/remi/php74/log/php-fpm/www-error.log

Fix any errors that you have and try again. The most likely error is that

there was something mistyped in the program, or the password listed

in the connection string doesn’t match the password you set for your

PostgreSQL user.

Another place to look for error messages is the web server’s error log.

You can look at the end of that log with the command:

tail -200 /etc/httpd/logs/error_log

Chapter 4 Creating a Simple Web App

http://my.ip.address.here/list.php
http://my.ip.address.here/list.php

49

Additional troubleshooting steps can be found in Appendix C if

needed. If all goes well, you should have a screen that prompts you to

create a new entry. Clicking the link will give you a form to fill out. Once

you fill out that form, clicking “Submit” will add the new guestbook

entry to the list. You can then click the individual entry to see the full

information. If that is not what your application does, then something was

probably entered incorrectly.

 THE LIMITATIONS OF THE APPLICATION

The goal of this book is to get you up to speed on how to scale your

applications. As such, other important aspects of development such as error

handling, logging, sanitizing data, and security hardening are not covered.

The goal is to convey an application that can be typed in quickly, is easy to

understand fully, and does not require deep platform knowledge to follow or

modify. Nonetheless, we have implemented some basic security practices,

such as using bindValue to properly escape the values sent in via $_GET

and $_POST and using htmlspecialchars() to escape them when sending

them back to the user.

Good information about programming with security in mind can be found on

the www.owasp.org web site.

Chapter 4 Creating a Simple Web App

http://www.owasp.org

50

Figure 4-1.  Configuration and Common Functions (common.php)

Chapter 4 Creating a Simple Web App

51

Figure 4-2.  List All Guestbook Entries (list.php)

Chapter 4 Creating a Simple Web App

52

Figure 4-3.  Single Guestbook Entry (single.php)

Chapter 4 Creating a Simple Web App

53

Figure 4-4.  New Guestbook Entry (new.php)

Chapter 4 Creating a Simple Web App

54

Figure 4-5.  Create the Guestbook Entry (create.php)

Chapter 4 Creating a Simple Web App

55

Figure 4-6.  CSS File (guestbook.css)

Chapter 4 Creating a Simple Web App

57© Jonathan Bartlett 2019
J. Bartlett, Building Scalable PHP Web Applications Using the Cloud,
https://doi.org/10.1007/978-1-4842-5212-3_5

CHAPTER 5

Setting Up a Basic
Cloud Cluster
At this point, we have a simple cloud application which works on a single

server. While it is nice that we can put this on a server that we built just by

pointing and clicking, this doesn’t take full advantage of the cloud. One of

the goals of the cloud is to create an application cluster—a set of servers

that work together to solve the problem, where the computing power can

be expanded and contracted as needed.

5.1  �A Simple Two-Tier Architecture
In this chapter, we will explore a simple, two-tier architecture. This

architecture will consist of

•	 A database server

•	 A set of web servers

•	 A load balancer that manages traffic among the web

servers

58

The basic structure of the architecture is shown in Figure 5-1. All of the

connections come in to a single load balancer, whose job it is to forward

connections to one of several web servers. The load balancer not only

forwards connections, but it also monitors the health of the individual

web servers and will stop sending a web server connections if it stops

responding. Each web server then shares a single database server.

In developing cloud applications, a programmer needs to know not

only how to set up a cluster but also how to analyze it. If you look at the

diagram in Figure 5-1, you can see that all of the web servers depend on a

single database server. This makes the database server the limiting factor

of the cluster. Nearly every cluster, no matter how well designed, has some

limiting factors. The goal is to minimize their impact on your architecture.

Because this application architecture is limited by the single database

node, it is best used for small- or medium-sized deployments where most

of the processing is done on the web servers rather than on the database.

The example application, because of its simplicity, actually does very little

processing on the web server. Nonetheless, this chapter will show you how

to set up the servers to deploy it in this configuration.

Figure 5-1.  Diagram of a Simple Two-Tier Architecture

Chapter 5 Setting Up a Basic Cloud Cluster

59

5.2  �Replicating a Node
The basic two-tier application described in Figure 5-1 indicates that

we will need several server nodes. We could accomplish this simply by

booting up new machines with a blank copy of CentOS, and configure each

one individually. However, since we have already spent time setting up the

current server to work the way that we want it to, we should take advantage

of the time we spent configuring everything.

Linode offers several services that can accomplish this task, each

with their own benefits and drawbacks. Linode has the ability to create

saved images which can be used to directly create new nodes (instead of

choosing an operating system, you can choose your saved image). Linode

also has a cloning service, which allows you to clone existing machines, if

both the source and destination machines are turned off (this is not a hard

and fast rule, but you can wind up with consistency problems if you try to

clone a running machine). Finally, you can make clones from a machine’s

backups.

I prefer making clones from backups because (a) you should be

backing up your servers regularly anyway, (b) you don’t have to have a

machine turned off and doing nothing while you create new servers, and

(c) this forces you to work with the backup system and be comfortable

with it while you are also learning to clone servers (someday you will need

to restore from backup, so it is good to get comfortable with the process

before you need it). The Linode image service can work for this, but it has

too many limitations for real production use. In order to prevent users

from using the image service as a backup service, they have limited the

size and number of images, but most of my machines are usually heftier

than the minimum size allowed for Linode images. Note that other cloud

services (such as DigitalOcean) offer similar services but with different sets

of restrictions.

Chapter 5 Setting Up a Basic Cloud Cluster

60

If we want to boot up a new server that is an identical clone of the

existing server, then all we have to do is back up the current server. What

we will need to do is first enable backups on our server node. To do that,

just log in to Linode, click your node in the list, and click the “Backups”

tab off of your node’s dashboard. This will give you a button that says,

“Enable backups for this Linode.” This adds a small monthly charge, but it

is certainly worth it. Click the button, and your machine will automatically

have weekly, daily, and ad hoc snapshots available. The screen should now

look similar to Figure 5-2.

Figure 5-2.  The Linode Backup Management Screen

Chapter 5 Setting Up a Basic Cloud Cluster

61

What we want to do now is to take a snapshot of our machine. Put in a

name for your backup (I called mine “snapshot-for-replication”), and click

the button that says, “Take Snapshot.” Because Linode servers are all on

SSD drives, snapshots are very quick, usually only taking 5–10 minutes.

 OTHER BACKUP SETTINGS

Because backups do in fact slow down your disk somewhat, Linode gives

you the ability to specify your backup window. You can choose both a time of

day when you want to have your backups take place and the day of the week

which will be counted as a “weekly backup.” The time of day should be when

your system is having the lightest usage, while the day of the week should be

before any major batch processing. For instance, if you do batch processing

on Fridays, setting the backup day to Thursday will make sure you have a

“before” snapshot before the major processing occurs. If you don’t do large-

scale batch processing, the day of the weekly backup doesn’t really matter.

Once the backup has started, we can go to our next task, which is

creating a new server. The new server will be our database server.

To create the machine, go to “Create” then “Linode” as we did in

Chapter 3. However, instead of choosing a distribution, under the “Images”

heading, you want to choose “My Images” and then “Backups.” This will

show a list of your nodes which have backups available. Click your node,

and then it will show the available backups, which will include the one we

just created. See Figure 5-3 to see what this should look like.

You can create as large as a machine as you want, but just for practice,

you might as well use their smallest machine size. This node needs to

be in the same datacenter as your other one (otherwise they won’t be

able to privately, cheaply, and quickly talk to each other), but Linode

will automatically put a new node created from backup into the same

datacenter.

Chapter 5 Setting Up a Basic Cloud Cluster

62

For the Linode label, let’s use the name dbmaster so that we know that

this node will be used for the master database. Having a bunch of nodes

without names (or with bad names) quickly becomes difficult to manage,

so be sure to always give your nodes descriptive names.

Figure 5-3.  Booting a New Linode from a Backup

Now click “Create” to build your new node. When creating from a

backup, you will have to boot the node yourself once it is fully created. On

the top right of the screen, it should say “Offline.” Click that, and choose

“Power On” to boot your new machine. You can now ssh to this new

machine using the same users and passwords that you set up for your

initial machine. In fact, it should also have the same application running

that you had created. It is an exact copy of the other machine, with only the

network settings having been modified.

Chapter 5 Setting Up a Basic Cloud Cluster

63

 RESTORING TO A LARGER MACHINE

If you restore a backup to a larger machine, it may not utilize all of your

purchased disk space. Since the partition was directly copied, the old partition

will be the same size it was on the server it was copied from, which may be

smaller than the space that you have available.

To solve this, first power down your server. Next, on your node’s dashboard,

click the “Advanced” tab. You can either add another disk to use the remaining

space (this is harder to manage, so I don’t recommend it) or resize your main

disk to utilize all of your space. To resize the disk, find the main disk under

“Disks.” It should be named something like “CentOS 7 Disk” (not the disk

labeled “Swap Image”). Click the ellipses (i.e., ...) next to your main disk and

choose “Resize.” You can then set the size to the maximum value it tells you,

and then click the “Resize” button.

When it is done resizing, you can power your machine back on, and you are

now all set.

5.3  �Setting Up Your Private Network
Since we have two machines, we need them to communicate. They

could communicate via their public IP address, but this leads to several

problems. First of all, if you have services that you don’t want to be

available publicly (like your database), it is more difficult to prevent the

public from getting access to them if you only have a public IP address.

Additionally, Linode charges money for traffic on your public IP address,

so, if you communicated via that IP address, Linode would charge you for

internal traffic. Having a private IP address is important, therefore, because

it lets the computers communicate with each other over a fast, free, more

secure, internal network.

Chapter 5 Setting Up a Basic Cloud Cluster

64

To get around these problems, Linode allows you to set up an internal

network for your servers. All of the servers within an account share an

internal network if they are set up for it. To add a server to your internal

network, you just need to go into your node’s “Networking” tab and click

“Add Private IPv4.” It will give you some additional information about

private addresses, and you can just click “Allocate” to continue. This will

assign a private IP address to the computer. Because all of the web servers

will be communicating with this server, you will want to write down the

private IP address that is generated. From here on out, we will refer to this

address as DB.MASTER.PRIVATE.IP, so always replace this with the private

IP address of the server that you just wrote down.

Note that on some cloud platforms (including Linode), the private

IP addresses are not completely private. That is, other cloud customers

in the same datacenter may be on that network. Therefore, while it is

certainly safer on the private network than on the public network, private

networks on clouds don’t guarantee that only our own computers will be

connecting. Therefore, on a production system, you will still need to take

precautions to prevent unwanted access even on the internal network.

However, Linode does filter traffic to each node, so you shouldn’t have to

worry about anyone snooping on data traffic on the internal network.

You will need to reboot the node to complete the process.

Once it is done booting, you can still see the application at http://

NEW.NODE.PUBLIC.IP/list.php, but you will not be able to see it on the

private IP address, because, as noted, it is private.

To see the list of addresses on the server, log in as root and issue the

command:

ip addr show

This should print out all of the IP addresses assigned to this node.

Chapter 5 Setting Up a Basic Cloud Cluster

http://new.node.public.ip/list.php
http://new.node.public.ip/list.php

65

 PRIVATE IP ADDRESSES

If you aren’t familiar with IP addressing, some IPv4 addresses have been

reserved for use in internal networks. These addresses include

•	 192.168.X.X

•	 172.16–31.X.X

•	 10.X.X.X

None of these IP addresses are allowed for public communication on the

Internet.

Therefore, when setting up your internal network, Linode will choose IP

addresses from these pools to configure your machine.

One other infamous IP address is 127.0.0.1, which is known as the

loopback address, which is an IP address that a machine can use to refer to

itself (in fact, the whole range 127.X.X.X is reserved for this purpose, but

only 127.0.0.1 is normally used).

5.4  �Handling Database Connections from
Other Servers

This machine now has a full copy of the application and the database on

it. However, it is still configured to be a single-server system. We need

to configure it to be the master database for a cluster of machines. This

section, which should be performed as the root user, will show what you

need to do to make that happen.

Since this machine is a clone of template_node, that means that all

of the users, programs, and configurations were copied over to this node.

Therefore, you can ssh into the machine as root using the password you set

previously.

Chapter 5 Setting Up a Basic Cloud Cluster

66

To use this as the database server for the other nodes, you will need to

enable the database to listen for connections from those nodes. By default,

PostgreSQL only listens for connections on the localhost interface. What

we don’t want is for PostgreSQL to listen for connections on the public

Internet. Therefore, we want to configure PostgreSQL so that it listens for

connections on both localhost and its private IP address.

To do that, as the root user, open up the file /var/lib/pgsql/data/

postgresql.conf with nano, and change the line that says listen_

addresses. Change that line to read:

listen_addresses = 'localhost,DB.MASTER.PRIVATE.IP'

Be sure to replace DB.MASTER.PRIVATE.IP with the actual private IP

address of your node. If there is a comment mark (#) at the beginning of

the line, be sure to remove it; otherwise the command won’t be active.

Save the file with control-o (just hit the return key to verify the filename

if it asks). Then, to exit, use control-x. Now restart PostgreSQL with the

command:

systemctl restart postgresql

Additionally, you will want to open up the firewall so that it can accept

remote connections for PostgreSQL. You can do this with:

firewall-cmd --add-service postgresql

firewall-cmd --add-service postgresql --permanent

Normally, I keep the web server running on the database server just so

I can check it. However, if you wanted to, you can turn off the web server

with the commands:

systemctl stop httpd

systemctl disable httpd

Chapter 5 Setting Up a Basic Cloud Cluster

67

5.5  �Setting Up a Web Server
Now that we have the database configured, it is time to set up our web

servers.

Note that we will not actually use template_node as a server. I like to

keep a small machine around that is simply used as a template for future

boxes, especially for webnodes. This way, I can have one small machine

that is up-to-date, backed up, and so on, and when I’m ready to create

a new “image,” I just create a named backup to use. Note that this will

overwrite the previous snapshot image, but for my purposes, that is usually

okay. If you need to keep old versions around, just keep a template node

around for each configuration you want to maintain.

Now we will configure template_node for being a web server template.

There are only three changes we need to make:

	 1.	 Turn off the database on this machine.

	 2.	 Change the code for the web application to point to

our new database.

	 3.	 Enable a private IP address on the machine to

enable it to use the private network.

To accomplish the first task, all we need to do is log in to the

template_node machine as root and run:

systemctl stop postgresql

systemctl disable postgresql

To accomplish the second task, we need only modify the common.php

file. I would suggest modifying it on your local machine and using SFTP

to transmit the new file. However, you can also use nano on the server to

modify it directly. All you have to do is to change the connection string.

Where it currently says host=localhost, change it to read host=DB.

MASTER.PRIVATE.IP, where DB.MASTER.PRIVATE.IP is the private IP

Chapter 5 Setting Up a Basic Cloud Cluster

68

address of your dbmaster node. You will need to make this change

twice—once in the getReadOnlyConnection() function and once in the

getReadWriteConnection() function. Once you are done, load the code

back onto the server with SFTP.

At this point, the code will not work because it cannot access the

dbmaster machine. This is because PostgreSQL is only listening on its private

IP address, and template_node does not yet have a private IP address to

communicate on. Therefore, you need to add a private IP address to the

machine, so that it can connect to dbmaster on its private IP address.

Use the process outlined in Section 5.3 to create a private IP address

for the machine (don’t forget to reboot afterward!).

Once you have completed these steps, your template_node machine

should be able to connect to dbmaster, so test it out. Go to the IP address

of your template_node server and see if it can still function. If it does, then

congratulations, because you just implemented a small, two-tier system!

Now, as I said earlier, we actually aren’t going to use template_node to

actually serve requests. The goal is to use it so that we can easily boot up

new web server nodes to expand capacity as we need to.

Therefore, now that template_node is fully set up to be a web server,

take a new backup snapshot. This step is critically important. Anytime

you make a change in template_node, you should make a new backup

snapshot so that new nodes you create from it will have your new changes

(though it doesn’t affect existing nodes at all).

We will now create three (or however many you want) web server

nodes for our cluster.

Here are the steps for each new web server node:

	 1.	 Create a new node using the steps in Section 5.2.

Be sure that (a) it gets created in the same

datacenter as dbmaster, and (b) set the name of the

node to webnode1 (or 2, or 3).

Chapter 5 Setting Up a Basic Cloud Cluster

69

	 2.	 Add a private IP address to the node so that it can

connect to dbmaster on the private network using

the steps in Section 5.3.

	 3.	 After the machine finishes booting up, verify that it

is fully functional by looking at your web application

on the public IP address of the node (i.e., http://

WEB.NODE.PUBLIC.IP/list.php).

At the end of this, you should have three machines, webnode1,

webnode2, and webnode3, each of which can act as a front end to your web

application. Now you just need to link them all together, which will be

covered in the next section.

5.6  �Setting Up the Load Balancer
Now we have three front-end machines, all connected to a single database.

How do we connect them together? One way we could do this is to set up

a DNS round-robin scheme. The way this works is to set up multiple

A records in DNS for a single hostname. Then the browsers themselves will

pick which host they want to connect to. The problem with this is that if

one of your machines goes down, there is no way to direct users away from

that IP address. Linode actually has some support for this sort of failover

now, but its usage is outside the scope of this book.

Chapter 5 Setting Up a Basic Cloud Cluster

http://web.node.public.ip/list.php)
http://web.node.public.ip/list.php)

70

Load balancers are a much more turnkey solution. A load balancer

sits out in front of your cluster and takes connections for you and then

forwards those connections to the servers that are available for handling

them. Additionally, if one of your servers fails, the load balancer will detect

this and move traffic onto the remaining servers. Then, when your server

recovers, the load balancer will also detect this and move traffic back to the

server.

Setting up a load balancer in Linode is easy. Linode calls its load

balancers “Node Balancers.” To set up a Node Balancer, click “Create” and

then select the “Node Balancer” menu item. This will bring you to the

screen shown in Figure 5-4.

Just like everything else, you need to

•	 Set the name of the balancer (we will use “primary-

balancer”).

•	 Put the balancer in the same datacenter as your nodes.

Figure 5-4.  Creating a Node Balancer

Chapter 5 Setting Up a Basic Cloud Cluster

71

Additionally, you need to add some additional configuration, as shown

in Figure 5-5. Be sure the following are selected:

•	 “Port” should be set to “80.”

•	 “Protocol” should be set to “HTTP.”

•	 “Algorithm” should be set to “Round Robin.”

•	 “Session Stickiness” should be set to “None.”

•	 “Active Health Checks” should be set to “None.”

•	 “Passive Health Checks” should be on.

After that, you need to add at least one node to your balancer (more

can be added after creating the balancer). Put in the name of the node in

the “Label” field (we’ll assume webnode1). Then, in the “IP Address” field,

choose the IP address for your node from the drop-down. Make sure the

port is set to “80.”

When these settings are completed, click “Create” to create the

balancer.

Once your balancer is created, you can add the rest of the nodes by

going into “Configurations,” then “Port 80,” and then “Add Node” at the

bottom. Add as many nodes as you created. Then click “Save” when done.

It sometimes takes a few minutes for the balancer to add a node to its

list. To check on the status, go back to the node balancer configuration

screen. Each server will have a “Status” field next to it. When the status is

“Up,” the server is successfully connected to the balancer.

If you wanted to have a load balancer for another port, you can use the

“Add Another Configuration” button for this.

Chapter 5 Setting Up a Basic Cloud Cluster

72

 OTHER NODE BALANCER OPTIONS

The node balancer has a lot of options available. Here is a description of some

of the important ones.

Port: This is the TCP port that the node balancer should forward. This will

normally be 80 (HTTP) or 443 (HTTPS). We will use port 80 for our examples.

Protocol: This is how you want the server to handle forwarding your requests.

If the protocol is set to TCP, then the only thing that the balancer does is

forward the connection on to you. If it is set to HTTP or HTTPS, then the server

will actually handle some parts of the connection for you. HTTP is what we will

use for this book. HTTPS adds an additional boost for secure sites, because

the load balancer will handle the SSL connection for you, thus removing a

significant chunk of the load from the server (you also upload the certificate

and key information to the load balancer for processing). When doing HTTPS,

Figure 5-5.  Node Balancer Additional Settings

Chapter 5 Setting Up a Basic Cloud Cluster

73

you probably want the port on the balancer to be different than the port on

the machine. In the case of HTTPS, you should set the balancer to connect to

the unencrypted port 80 on the servers. If you wanted to do HTTPS that was

handled by your machine instead of the balancer, you would just choose TCP

(instead of HTTPS) as the protocol. Because of the added complications of

obtaining and installing certificates, for the examples in this book, choose port

80 and HTTP for load balancing.

Algorithm: This is the way that the load balancer will determine which server

to forward it to. Round Robin is the default and should work fine.

Session Stickiness: This is whether or not a given user should continue to

connect to the same web server once it has made an initial connection. This is

important only if you store session information on your web servers. Imagine

if your web server has important session information, but the next request

goes to a different server! Therefore, this option allows you to configure

whether and how clients get matched to servers. Our application doesn’t have

session information, so it should be set to “None.” If your application uses

local session information (or local caching, as we will see in Section 6.1), I

would choose the HTTP Cookie method, as it won’t get in the way of your load

tests like the “Table” method will. Since all requests come from the same IP

address, the “Table” method will simply direct your entire load test to a single

server rather than spreading it out and make it look like your load balancing

isn’t giving you any help.

Active Health Checks: This allows you to specify a URL for the load balancer

to hit in order to check the status of the web server. You can configure the

balancer to either just check for an HTTP status or also look for a specific

string in the response body.

Backend Node: Weight: This sets the preference of the node balancer for this

server. A higher weight gives the server more connections.

Chapter 5 Setting Up a Basic Cloud Cluster

74

Backend Node: Mode: This sets the mode of the node in the balancer.

“Accept” is for normal operation. “Reject” essentially turns off this node,

meaning that the balancer will not send this node any more requests.

However, if you have session stickiness turned on, you might not want to move

directly from “Accept” to “Reject.” “Drain” tells the balancer to only accept

connections from clients which have sessions on this node. “Backup” says to

accept connections only if all other nodes are down.

Once you have all of the webnodes added to your node balancer, you

can now view your cluster by going through the IP address of the node

balancer itself, and the node balancer will forward your requests to one

of the machines in the cluster. You can find the IP address of your node

balancer by clicking “Node Balancers” in the main menu. The IP address

will be listed next to your balancer in the list. It is also listed on the right-

hand side of the node balancer’s “Summary” screen.

5.7  �Measuring Scalability
The simple web application we have developed does not benefit too

much from the architecture presented here. Our web application is

pretty much just a simple shell for a few database queries. Therefore,

simply adding front-end boxes won’t help the fact that our application is

database limited. Separating the database from the web servers will give

us some boost, as it allows the database server to focus on only database

connections. However, at the core, everything we do in this app is just a

thin wrapper around database queries.

But how do we measure the amount of scalability our app has?

One common, simple tool for measuring the scalability of an app is

ApacheBench. ApacheBench is standard on Macintosh and most Linux

distributions. For our case, we can actually run ApacheBench from our

template_node server to test the rest of our cluster.

Chapter 5 Setting Up a Basic Cloud Cluster

75

To do this, log in to your template_node server as either root or fred.

To run a simple ApacheBench session, just type:

ab http://BALANCER.IP.ADDRESS.HERE/list.php

Obviously, replace BALANCER.IP.ADDRESS.HERE with the IP address of

your load balancer.

This will send a single request to the load balancer and document the

amount of time that it took to process. The output will look something like

Figure 5-6.

Since this only benchmarked a single request, there is not much

interesting information in it. It says that the request took 9.674ms

(milliseconds), and, extrapolating that out, it estimates that we can serve

up to 103.37 requests per second.

Now, ApacheBench has several options that allow us to exercise

servers more fully. The -n option tells ApacheBench how many requests

to make (we did 1 by default). The -c option tells ApacheBench how

many concurrent (i.e., simultaneous) connections to make. Without -c,

ApacheBench will just run one request at a time. However, if you add -c

50, ApacheBench will always keep 50 active requests with the web server.

Therefore, to exercise the cluster, I did the following:

ab -c 50 -n 1000 http://BALANCER.IP.ADDRESS.HERE/list.php

This sends a total of 1,000 requests, making sure there are always 50

active at a time. This gave the results shown in Figure 5-7.

This says that with 50 concurrent requests, our average time per

request falls to 5.136ms, but the time for each request grows to 256.822ms.

This is not really a problem, as the average time per request is the most

important for capacity planning. We are also told that, at this pace, our

servers can handle up to 194.69 requests per second.

Chapter 5 Setting Up a Basic Cloud Cluster

76

Figure 5-6.  Example Output of ApacheBench for a Single Request

Chapter 5 Setting Up a Basic Cloud Cluster

77

Figure 5-7.  ApacheBench Results for 1,000 Requests

Chapter 5 Setting Up a Basic Cloud Cluster

78

This sounds great, except that when you measure it against a single

machine (which you can do by replacing the IP address with one of the

IP addresses of your machines), you get close to the same results. The

load balancer can handle a little higher pressure when the number of

concurrent requests skyrockets, but overall they both essentially have the

same results. This is because our app is almost entirely just a shell for the

database. Therefore, this number reflects the maximum capacity of our

database server. To see that this is true, you can temporarily resize your

database server to a larger machine.

To resize your dbmaster server, go to the dbmaster’s dashboard, click

the “Resize” tab, and choose a new plan (I chose Linode 4GB). Now click

“Resize this Linode Now.” After a few minutes of downtime, your Linode

will be resized, and it will keep its IP address! Once it is done resizing, it

will boot up and you will now have a resized server!

You can now run ApacheBench on this configuration and see that

resizing the database server gives you a huge advantage over your previous

configuration. After doing this experiment, I have resized dbmaster back

to a Nanode 1GB so that we can better see the effects of the architectures

described in the following chapters.

If the application were not so database-heavy, we should already

see some scaling benefits with this architecture. However, even with

a database bottleneck, Chapter 6 will look at improvements to the

architecture which will give dramatically better scaling abilities. The goal

here is simply to see how the architecture works and how to set it up on

Linode.

It is also good to see that just because you can add nodes to a system

doesn’t make it automatically scalable.

Chapter 5 Setting Up a Basic Cloud Cluster

79© Jonathan Bartlett 2019
J. Bartlett, Building Scalable PHP Web Applications Using the Cloud,
https://doi.org/10.1007/978-1-4842-5212-3_6

CHAPTER 6

Improving Scalability
with Caching
This chapter will cover several adjustments to the basic two-tier

architectures described in the previous chapter.

6.1  �Understanding Caching Architectures
In our current application, the database is the main bottleneck. This means

that adding more web servers will not substantially increase the load that the

cloud can handle. When you discover a bottleneck, it is good to take some

time and think about ways that the bottleneck can be avoided.

In our case, our data doesn’t really change all that often. Even if it did,

getting up-to-the-second values from a guestbook isn’t all that mission

critical. If someone had to wait seconds or even minutes to see a recent

guestbook entry, it wouldn’t be the end of the world.

When you have content that is accessed often, but can afford to be just

a little stale (or a lot stale), you can implement caching to speed things

up. Caching simply means to have a temporary store of results that we

can access quickly. Databases are slow because databases are primarily

concerned about data integrity. You want to know that your data is safe,

stored on disk, won’t go away, and can be accessed with arbitrary queries.

A cache, on the other hand, is ephemeral—they are usually just stored in

80

memory. Their goal is for fast data retrieval at all costs. Many caches, for

instance, will just start throwing away data if they fill up their memory.

That’s fine, because, if something doesn’t exist in the cache, we can go to

the database and refetch the data.

In short, databases are about permanence and reliability, and

caches are about getting what I want as fast as humanly possible. Caches

are usually implemented as simple key/value pairs, usually with an

expiration date attached. That is, each piece of data that the cache stores

has a designated “key.” For instance, since there is only one listing of

all the guestbook entries, we can have a single cache “key” for this. In

the application, this will be called entrylist. However, each individual

guestbook entry might wind up getting its own cache key (so the cache

can know that it is unique), which would include the database ID of the

entry. Cache keys are usually just regular strings, and, with most caching

systems, the content can be anything at all. Caches do not do any special

processing, they just store whatever you ask it to in a given key, so you

must be careful not to use the same key for two different things!

The way a cache is used is that the program will first figure out what

key to use for the data. The goal is to be able to easily infer the cache

key from the URL parameters. The program starts by checking to see if

the cache has a value for the cache key. If the cache contains the value,

then that value is used. If it doesn’t, the program then gets the value the

“normal” way (i.e., usually going to the database for the value, and perhaps

doing some additional calculations or manipulations) and then saves it

to the cache with an expiration date. Then, whether the value came from

the cache or the “normal” way, the value is used in the application. Once

the expiration date passes (or the cache gets too full of values), then the

cached value simply disappears for the next query, forcing the program to

get a fresh value the “normal” way.

Chapter 6 Improving Scalability with Caching

81

As you can see, this methodology of cache vs. normal accessing

makes sure that while the caching mechanism is preferred, the non-cache

mechanism is available as well, and this mechanism will fill the cache.

As noted, the database is usually considered the slow part of any

application, because it has to be very careful to handle your data correctly

and keep it forever. Caches, on the other hand, are considered ephemeral.

If we just want to clear the cache all of a sudden, it would not affect the

operation of the page, because it would just go back to the database and

get the value again.

If a site is heavily loaded and continually asking for the same content,

even caching for a few seconds can greatly increase speed and decrease

resource usage. We previously load tested this cluster as serving up

approximately 250 requests per second on the listing page. If we cached

the results of that page for 10 seconds, then that would be 2,500 fewer

database requests over that time period!

Figure 6-1 shows how we can modify our standard two-tier

architecture to add a caching layer. In this architecture, each individual

web server maintains its own cache of results. This can lead to small

inconsistencies between web servers since they may have refreshed

Figure 6-1.  Two-Tier Architecture with Local Caching

Chapter 6 Improving Scalability with Caching

82

their results at different times. However, if the expiration is not set too far

in the future, these issues are minimal. Additionally, if there are issues,

remember in Section 5.6 we discussed load balancer “Stickiness.” This ties

a specific user to a specific server, which means that user will always be on

the same server, which means they will always be using the same server

cache. Additionally, this makes the caching more efficient, as each server

only has to cache data for a subset of users.

Figure 6-2.  Two-Tier Architecture with Global Caching

What to cache and how long to cache it is very application dependent.

For many architectures, there are pieces which can be cached for minutes

or even days, and other pieces that can only be cached for seconds or can’t

be cached at all. Caching can often lead to unexpected results, so it is good

when you are developing to include a feature that can be used to turn off

caching altogether in order to see if your cache is the problem.

If keeping the cache consistent among all of your servers is important,

another architecture to consider is using a global cache, as in Figure 6-2. In

this architecture, rather than each web server maintaining its own cache,

there is a shared cache that they all access. This adds a little more network

latency since all caching calls have to run over the network, but it adds

more consistency to your results.

Chapter 6 Improving Scalability with Caching

83

Depending on how it is implemented, this sort of external cache can

also become a bottleneck. However, there are many caching servers that

can span across multiple servers and balance requests among the servers.

Nonetheless, this also adds a layer of management complexity to the

puzzle.

In nearly all cases, I find that having a single, external caching service

is difficult to set up and maintain, with little if any benefit. For most

situations, putting the cache on each web server gives you the most

scalable efficiency, even if it comes at a cost of a little consistency, which,

as mentioned, can be alleviated by using load balancer “stickiness.”

6.2  �Implementing Caching in the Application
The caching architecture we are going to implement here is the one shown

in Figure 6-1, both because it is easier to implement and because it is

easier to manage in the long run. What we are going to do is perform the

configuration change on the template_node machine, and then simply

turn off our existing webnodeX boxes and replace them with new boxes

replicated from template_node. This is a lot easier (and less error-prone)

than going through every server and making the change.

The first thing we need to do is to install the caching service. We will

use memcached for our caching service because it is straightforward to run,

access, and manage. To install memcached and turn it on, just enter the

following commands as root:

yum install -y memcached

systemctl enable memcached

systemctl start memcached

Chapter 6 Improving Scalability with Caching

84

You will also need the PHP extensions for memcached. These have to be

compiled, so we will need to install a few more extensions (again, as root).

Figure 6-3.  Memcache Connection Function

yum install -y libmemcached

yum install -y php74-php-pecl-memcached

Don’t forget the “d” at the end of memcached, because there is another

extension named just memcache which does not do what we want. Note

that this also enables the extension in PHP. It does this for us, but if you

needed to tweak the PHP side of the configuration, the file is located in the

directory /etc/opt/remi/php74/php.d.

Now we need to restart our PHP-FPM process to use the new PHP

extensions:

systemctl restart php74-php-fpm

Next, we need to modify our application to create a connection to

our local memcached service. Therefore, add the code from Figure 6-3 into

common.php. The number 11211 referred to in the code is the port that

memcached is listening on by default.

The way that your code should use the cache is as follows:

	 1.	 Create a cache key to uniquely identify the

information in the cache.

	 2.	 Check to see if the information already exists in the

cache. If so, use it.

Chapter 6 Improving Scalability with Caching

85

	 3.	 If the information doesn’t already exist in the cache,

find the information the slow way (i.e., perform the

database query).

Figure 6-4.  Rewriting list.php to Use the Cache

	 4.	 Take the information and store it in the cache using

that key with a future expiration time (in this case,

we will set the expiration to be 10 seconds from

when it was set).

Chapter 6 Improving Scalability with Caching

86

Next, we will update the list.php function to use the cache. Figure 6-4

shows how to rewrite list.php to use the cache. This is just the top portion

of the script which stores the result of the query in $result. The actual

HTML output code remains the same.

6.3  �Reimaging the Cluster
Now we need to deploy this to our cluster. To do this, we will need to first

make another snapshot backup of template_node and then perform the

following steps for every webnodeX server in our cluster:

	 1.	 Go to the node balancer and remove the webnodeX

server from the configuration.

	 2.	 Power off and delete the webnodeX server (deleting

can be done from the “Settings” tab of the node’s

screen).

	 3.	 Create a new webnodeX server in its place (with

the same name) based on our template_node

backup (be sure to add a private IP). Power it on if

necessary.

	 4.	 Add the new webnodeX server to the node balancer

configuration.

For a production system, this is not always the best way to do a code or

a system update. We will cover additional ways of doing this in Chapter 12.

This method simply removes all of your webnodeX servers and replaces

them with new ones. It is a pretty clean mechanism, though you would

want to perform it slowly to be sure your site stays up while you are

reimaging the servers.

Chapter 6 Improving Scalability with Caching

87

6.4  �Testing Our Caching Architecture
Once you have your new cloud cluster up and running, it is time to test out

the new architecture and see if we made any performance gains.

For this setup, I ran ApacheBench on individual servers and on the

balanced cluster. The individual servers, since they no longer relied on the

database for a bottleneck, were able to serve up over 800 requests per second!

Also, because there was no bottleneck on the database, the

performance was able to scale almost linearly. Linear scaling means that

each box you add gives you the same performance boost. In this case, with

a single server, our performance was 800 requests per second, two servers

yielded around 1,500 requests per second, and at three servers, we were

able to consistently serve up over 2,300 requests per second!

Note that if you are not seeing similar performance gains, check your

balancer configuration to be sure that you didn’t turn on session stickiness

at any point, as this will restrict your ApacheBench sessions to a single

server. Also, on the “Settings” tab, be sure that the “Client Connection

Throttle” isn’t turned on, either.

Figure 6-5 shows the output of ApacheBench on the full cluster.

So, what we have learned is that not only did caching improve the speed

of the application, it improved the scalability of the application. Because

we only have to hit the database when the cache expires, the speed of the

database is now relatively unimportant. In fact, even if we sped up the

database again (like we did at the end of Chapter 5), it would have relatively

little impact on our total efficiency, simply because it is rarely used.

On the downside, if you actually use the app, you will find that after you

post a guestbook entry, it won’t immediately display on the site. In fact, if

you reload the page quickly, you might find it appearing and disappearing,

depending on when the server you are on refreshes its cache.

This can be mitigated in a variety of ways. First, you can lower the

amount of time that the data is being cached for. It makes very little

difference in this benchmark whether you cache for 1 second or for 10.

Chapter 6 Improving Scalability with Caching

88

So, just changing the cache expiration line to the following (i.e., setting

the expiration time to 1 second instead of 10) will make the app very

quickly refresh without significantly impacting the performance on these

massive loads we are testing against:

$expiration_seconds = 1;

Figure 6-5.  ApacheBench Output for Cached Configuration

Chapter 6 Improving Scalability with Caching

89

Even more, if you keep sessions tied to a particular server, you can

actually tell the server to clear individual keys or even the whole cache

on certain events. Therefore, at the end of create.php, we could add the

following lines to clear out the list cache on that server:

$cache = getCache();

$cache->delete("entrylist");

Or, if an app was complex enough that there were a whole lot of keys

that had to be deleted, the code could just clear out the whole cache

altogether with $cache->flush();.

In any case, as you can see, caching architectures can make your app

slightly more complex and difficult to manage, but they are usually worth it

from the often dramatic performance and scalability boost.

 CACHE DEBUGGING TIPS

Caches, while hugely beneficial, bring in their own set of problems. In order to

better debug web pages, it is best if you always have a set of parameters that

you can pass to the application to get it to turn off caching. For instance, in

many of my own applications, passing in a no_cache=1 in the URL will turn

off caching. This is usually the first place I go to when problems are reported.

Here are some signs that you might be running into caching problems, and

what to do about them:

•	 Problem: Your application is putting out old content, even though

newer content is in the database.

Diagnosis: The cache is holding on to stale content.

Solutions: Expire your content sooner, or provide additional

cache key information to let the cache know when you need new

data.

Chapter 6 Improving Scalability with Caching

90

•	 Problem: Your application is spitting out inappropriate data given

the parameters.

Diagnosis: This often happens when your cache key is not

specific enough. For instance, if content was coming out in the

wrong language, that might mean that you need to attach the

current language as part of the cache key.

Solutions: Add more parameters to your cache key to make sure

you truly identify each piece of unique content with a unique key,

or you may decide that this content it too specific to be cached.

•	 Problem: The same page is spitting out different content on

each reload.

Diagnosis: The cache has different content on each server

depending on when it was accessed.

Solutions: There are several ways to fix this. You can (a) decrease

the amount of time until expiration, (b) increase the “stickiness”

on the load balancer to be sure that the same person is always

hitting the same server (and thus the same cache), (c) utilize a

global (or synchronized) cache instead of a local cache, and

(d) add additional cache key parameters to better coordinate what

data a user gets from the cache.

Chapter 6 Improving Scalability with Caching

91

•	 Problem: The cache is not speeding up your application as

much as you thought.

Diagnosis: Either you are never hitting your cache or you are not

caching the right things.

Solutions: As there are many ways this can go wrong, there

are many ways to fix it. Often this occurs when each user is

accessing a different set of data, and therefore nothing winds

up being pulled from the cache. This can be fixed by increasing

the cache size and/or intelligently preloading the cache with

data that is likely to be accessed. You may need to increase the

expiration time of your data as well. However, it could be that

you are having to do a lot of postprocessing of the data, and this

is taking longer than the actual query.

Chapter 6 Improving Scalability with Caching

93© Jonathan Bartlett 2019
J. Bartlett, Building Scalable PHP Web Applications Using the Cloud,
https://doi.org/10.1007/978-1-4842-5212-3_7

CHAPTER 7

Database Replication
Some things simply cannot be cached. Ad hoc reports, up-to-the-second

changes, and sites where access patterns are spread across a large number

of unrelated pages are all difficult to optimize using caching. For workloads

like this, you can deploy a bigger database server, but eventually even

those run into limits.

Therefore, many application architectures include database

replication, where there is more than one database server serving out

requests.

7.1  �Types of Database Replication
There are many types of database replication depending on your needs.

The basic types of replication include

Failover Replication: In this configuration, the

replicated servers do not help with the load, but

they do make sure that if the primary database

server goes down, there is a database with up-to-

date information ready to take over.

Master/Replica Replication: In this configuration,

the master database is the only one with read/

write access. The replica servers receive data as it

is recorded on the master (or shortly thereafter),

94

but are read-only copies of the master database. All

updates go to the master database, but queries can

go to either the master or any replica server. This is

also known as “master/slave” replication, where the

replica database is considered the “slave database.”

Multimaster Replication: In this configuration, all

databases are considered to be equally “master”

databases, and writes can be performed on any

of them. Writes to any given database are then

synchronized with the rest of the cluster.

This chapter will focus on master/replica replication because it is

the easiest to implement, has the fewest practical problems, and gives

the most results for the least effort. Multimaster replication is rarely used

because it is difficult to set up, maintain, and keep efficient, and very few

databases support it. Even when supported, multimaster replication often

introduces new, difficult to solve problems, such as data conflicts (i.e.,

when conflicted data is committed on two different servers). Therefore, to

maintain simplicity, this book will focus on master/replica configurations.

Figure 7-1 shows a conceptual view of a typical master/replica

architecture.

7.2  �Replicating the PostgreSQL Database
PostgreSQL’s replication system has advanced quite a bit over the years

both in features and in ease of use. While it is not difficult to use, it does

take some explanation to understand.

The built-in PostgreSQL replication system uses a technique known

as log streaming to replicate. PostgreSQL, in order to guarantee data

consistency, creates what is known as a write-ahead log, or WAL. Basically,

PostgreSQL writes to the WAL the changes it is about to do and then

Chapter 7 Database Replication

95

actually does the changes. This means that if the database server powers

off during an update, it has a record of what it was doing and can simply

finish the operation when it comes back on.

Figure 7-1.  Diagram of a Master/Replica Database Architecture

Interestingly, this is precisely the information that a replication server

would also need to know. Therefore, to implement database replication,

PostgreSQL simply ships the WAL files to the replication servers, which

likewise implement the changes. This type of replication is known as WAL

streaming.

To accomplish this in our cluster, we need to configure our main

database in order to receive replication connections. Log in to dbmaster as

the root user, edit the file /var/lib/pgsql/data/postgresql.conf, and set

the following settings:

wal_level = hot_standby

wal_keep_segments = 32

max_wal_senders = 4

hot_standby = on

Chapter 7 Database Replication

96

If you are using a later version (9.4 or greater) of PostgreSQL, you will

also need to set:

max_replication_slots = 4

However, this setting will break the version of PostgreSQL that ships

with CentOS 7.2 that we are working with in this book.

These configuration changes accomplish several things:

•	 wal_level adjusts PostgreSQL’s “write-ahead log” (i.e.,

WAL) so that it retains enough detail to send everything

that a replica server would need.

•	 wal_keep_segments keeps enough data from the WAL

hanging around after it is used so that the replica server

can still get to the data if it falls behind. We have set

this to 32, which is a pretty conservative setting. This

allows for a new replica to have a lot of time to get fully

synchronized and prevents minor network glitches and

slowdowns from desynchronizing the servers.

•	 max_wal_senders should be set to at least the number

of replica servers plus two (and, if you decide to

install a newer PostgreSQL, you may need to set max_

replication_slots to the same value).

•	 hot_standby = on allows the replica server to respond

to queries.

Next, we need to add a replicator user to the PostgreSQL database.

Type in psql -U postgres to access the database, then type the following

to create the user replicator for replication (all on one line):

CREATE ROLE replicator WITH REPLICATION

PASSWORD 'mypassword' LOGIN;

Then type \q to exit.

Chapter 7 Database Replication

97

Next, we need to give remote servers permission to open replication

connections to this server. Add the following line to /var/lib/pgsql/

data/pg_hba.conf:

host replication replicator all md5

Now we need to restart the database so that the new settings take

effect:

systemctl restart postgresql

Our server is now completely ready to start taking replication requests.

Now we can set up the replica server.

In order to set up a PostgreSQL replica server, the first thing we need

to do is to create a new Linode node for it to run on by replicating our

template node using the standard procedure. For this exercise, name the

new node dbreplica. You will also need to add a private IP address to this

machine and write it down (we will refer to it as DB.REPLICA.PRIVATE.IP

for the rest of this book).

Now, boot up dbreplica and log in as root.

If you have followed the instructions, this machine should not have

PostgreSQL running. If it is running, however, you can turn it off with

systemctl stop postgresql. Once PostgreSQL is off, we need to clear out

the existing PostgreSQL installation. Do that with the following command:

rm -rf /var/lib/pgsql/data/*

Now we need to request an initial binary backup from the master

system as a starting point for replication. This is accomplished with the

pg_basebackup command. To generate this initial backup starting point,

first switch to the postgres user like this:

su - postgres

Chapter 7 Database Replication

98

Next, issue the following command (all on one line):

pg_basebackup -x -U replicator -h DB.MASTER.PRIVATE.IP

 -D /var/lib/pgsql/data

It will ask you for the password, and then it will copy the entire

PostgreSQL instance from the master database, including the

configuration files. Next, you will need to tweak the configuration files after

this step is complete. The postgresql.conf file that we set up in Chapter 5

has a command listen_addresses which includes the server’s private IP

address. Unfortunately, since this was copied from the master database,

it currently has the master database’s private IP address. To fix that, just

open up /var/lib/pgsql/data/postgresql.conf and change the listen_

addresses configuration to read:

listen_addresses = 'localhost,DB.REPLICA.PRIVATE.IP'

After this concludes successfully, you need to tell PostgreSQL that this

server is to be used as a hot standby.

This is done by telling the server to go into “continuous recovery

mode” on startup. To do this, we create the file /var/lib/pgsql/data/

recovery.conf with the following contents (the last two lines should both

be typed on the same line):

standby_mode = 'on'

primary_conninfo = 'host=DB.MASTER.PRIVATE.IP port=5432

 user=replicator password=mypassword'

Once this is all in place, you need to exit back to the root user like this:

exit

Now that you are the root user again, we need to turn the PostgreSQL

database back on and make sure it will come on automatically if it reboots:

systemctl start postgresql

systemctl enable postgresql

Chapter 7 Database Replication

99

We also need to make sure there is a hole in the firewall to receive

database connections:

firewall-cmd --add-service postgresql

firewall-cmd --add-service postgresql --permanent

At this point, your system is now up and running as a replica server!

To verify this, run the following command, which will list all of your

running PostgreSQL processes:

ps afxw|grep postgres

One of the processes in the list should include the word recovering

or startup in the output. This means that the database is up, active, and

feeding off of the WAL logs of the master.

You can also check the log files, which will be in the directory /var/

lib/pgsql/data/pg_log. The end of the log file should say something like

“database system is ready to accept read only connections” and “streaming

replication successfully connected to primary.”

 A FEW NOTES ON POSTGRESQL REPLICATION

PostgreSQL implementations are called “instances” and can contain any

number of databases. If you are following the instructions in this book,

your PostgreSQL instance only contains one database (actually three, since

PostgreSQL always comes with a pair of template databases installed,

template0 and template1). It is easy enough to create a new database

using the createdb command-line program or issuing a create database

instruction while running psql.

In any case, keep in mind that since the PostgreSQL WAL file is a system-

level feature (i.e., the WAL files are shared by the entire database instance),

PostgreSQL streaming replication replicates the entire PostgreSQL instance,

not just a single database.

Chapter 7 Database Replication

100

7.3  �Setting Up the Application to Utilize
Master/Replica Replication

The application itself is already built to make use of read-only

replicas. If you remember, we actually have two connection functions,

getReadWriteConnection() and getReadOnlyConnection(). Right now,

they are both pointing to the same server. To make use of our new read-

only replica, all we have to do is change the connection information in

the getReadOnlyConnection() function, and it will shift all read-only

connections onto the replica server.

All we have to do is change the host parameter in the

getReadOnlyConnection() function to point to DB.REPLICA.PRIVATE.IP.

Once this is done, we just need to redeploy our code. As usual, we can

do this either by deploying to template_node and then re-creating the

webnode servers from it or by deploying it to each server individually.

7.4  �Adding More PostgreSQL Replica Servers
If separating out a single replica server does not give you the performance

increase that you need, you can actually have as many replica servers as you

need. You can do this by either replicating the template node and repeating

the process in Section 7.2 or by directly replicating the replica server.

Replicating the replica server is not quite as automatic as replicating

the web nodes, but it can save a few steps. In order to do this, you need to

first enable backups on your current dbreplica node and then create new

replica instances from the backups of dbreplica. After you create each

replica instance, you need to ssh into the new replica server and set the

listen_addresses value in /var/lib/pgsql/data/postgresql.conf to

its own private IP address, because it will be set to the one for dbreplica

by default. After doing this, you will need to restart PostgreSQL with

systemctl restart postgresql.

Chapter 7 Database Replication

101

After you create a number of copies of your database, you need to

modify your code to make use of your databases. It would be nice if we

could create a load balancer for our replica databases and then just point

all of our application code to the load balancer. Unfortunately, Linode

does not currently have the ability to create internal load balancers (i.e.,

a load balancer that only accepted requests on the private network), so

we will have to provide our own load distribution mechanism. We will

instead emulate this feature in the application code by selecting a server at

random when getting database connections. Because we don’t have a load

balancer, we will have to hard-code the list of servers in your application

code, and adding a new replica server will also require modifying the

application code and repushing that code to all of the web servers.

To understand how the application code will be modified, let’s say

that we now have three replica servers, with the private IP addresses of

DB.REPLICA.PRIVATE.IP, DB.REPLICA2.PRIVATE.IP, and DB.REPLICA3.

PRIVATE.IP. To get our read-only connection to cycle between these, we will

rewrite our getReadOnlyConnection() function according to Figure 7-2.

Once this code is in place in our cluster, all of our read-only requests

will be load balanced across multiple replica servers like it shows in

Figure 7-3. This will mean that our only bottleneck is on read-write

database requests. Most applications are dominated by read-only

requests anyway, so having a bottleneck on read-write requests is usually

unproblematic.

Chapter 7 Database Replication

102

Figure 7-2.  Connecting to a Group of Replica Servers

Figure 7-3.  Diagram of a Multi-Replica Database Configuration

Chapter 7 Database Replication

103

7.5  �Replicating Across Datacenters
For very large applications, sometimes you want better geographic

coverage than can be provided in a single datacenter. Additionally,

ultracritical applications may need the reliability that comes from having

multiple datacenters so that if one datacenter goes down, the application

can continue to at least partially function.

The creation of this sort of setup is a bit more involved, so this book

will not present a step-by-step method as has been the case for other

architectures. However, these are the basic steps you will need to perform

to achieve this functionality:

	 1.	 Change dbmaster so that its listen_address is set

to *. Since it will be receiving requests from other

datacenters, it has to listen on the public IP address

as well.

	 2.	 Firewall dbmaster to prevent access from unwanted

third parties.

	 3.	 Encrypt your connections to PostgreSQL using SSL

(see later how to enable this).

	 4.	 Deploy a “primary replica” in the new datacenter,

which will be a replica to dbmaster but will also be a

master for other replicas on the network if you need

them. This is still read-only, but it is a replica that

streams to other replicas.

	 5.	 Deploy a copy of your web application to the new

datacenter, which has the public IP address of

dbmaster for read-write connections and the list of

private IP addresses of the local replicas for read-

only connections.

Chapter 7 Database Replication

104

At the end of the process, your cluster architecture should look

something like Figure 7-4.

As your deployment becomes more complex, your need for automated

deployment handling increases. See Chapter 12 for more information on

automated deployments.

Figure 7-4.  Diagram of a Multisite Architecture

If you need read-write access to the database within your local setup,

the configuration becomes still harder, as you now have to manage how

synchronization occurs between your systems and what happens if the

Chapter 7 Database Replication

105

network connection between them goes down. In cases like this, you

often separate out local (unshared) and global (shared) data into separate

database instances. For the unshared data, you will want a master database

at each location. For the shared data, you will set it up similar to Figure 7-4.

 ENABLING ENCRYPTION ON POSTGRESQL

To enable encryption on PostgreSQL, you need to go to the directory

/var/lib/pgsql/data as the root user. From there you need to edit

postgresql.conf and add the following line:

ssl = on

Next, you need to generate an SSL key and self-signed certificate. From that

same directory, issue the following command (all on one line):

openssl req -nodes -new -x509 -keyout server.key

 -out server.crt

This will require you to fill out a short form which will be encoded into your

certificate. Then, you need to set the permissions on the generated files:

chown postgres:postgres server.key server.crt

chmod 600 server.key

If you restart the database at this point, the server will allow SSL connections

but not require them. To require SSL connections, you can change any or all of

the host lines in pg_hba.conf to be hostssl instead.

Once all of your changes are made, you can restart the database with:

systemctl restart postgresql

Chapter 7 Database Replication

106

7.6  �Sharding Your Data
Another option for database scalability is data sharding. Database sharding

is relatively simple in concept—it just means that you partition your data

in such a way that not all of the data relies on the same database system.

For instance, you could shard your data so that all customers whose

names start with “A” and “B” are in one database, all customers whose

names start with “C” and “D” are in another, and so forth. You can

partition the data on whatever method you prefer, as long as the system

can easily determine which database it needs to query. The primary point

is that rather than everything being managed by the same database system,

the data itself is split out to different database systems.

In such systems, usually either the application takes care of sharding

or there is a middle layer that handles handing off connections to the

appropriate databases. Some newer tools have been developed, such as

pg_shard, which aims to operate seamlessly as a database plugin.

In any case, sharding brings with it a whole set of data management

and data integrity issues. One of the points of databases was to ensure

consistency of data. Sharding, essentially, removes many of the protections

that were offered by databases in order to achieve scale. Therefore, it is

important to be sure you know why you want to shard and how you want to

shard in order to minimize risk.

For instance, if you sharded customers to different databases, you

should also shard related records as well, so the customer is serviced by

a single database, and so that their records are managed together as well.

Imagine if you had to restore records from a backup, but some related

records were on a different database system!

Sharding is a lot of work, takes a lot of planning, and is heavily

dependent on the specifics of your usage and workload, so it is hard to

speak of it in generalities. Nonetheless, if you are looking for more ways

to scale your database, sharding is definitely an option. Sharding also

Chapter 7 Database Replication

107

can work in conjunction with other methods, such as master-replica

replication or multimaster replication, but again, it requires a lot of extra

love, care, and management to make it work well.

Sharding is easier if your login groups don’t share any data. For

instance, let’s say that you built an e-mail marketing system. Different

customers rarely share any data on such a system. Therefore, it is no

problem to keep their records completely separate.

You could potentially run several entirely independent clouds, each

one with a different set of customers. Logins from customers A, B, C, and

D would get shuffled into Cloud 1, logins from customers E, F, G, and

H would get shuffled into Cloud 2, and so forth. If these clouds are all

managed completely separately, such a setup would also allow for some

level of disaster mitigation, as you would be unlikely to have a complete

outage of all datacenters at the same time.

Chapter 7 Database Replication

109© Jonathan Bartlett 2019
J. Bartlett, Building Scalable PHP Web Applications Using the Cloud,
https://doi.org/10.1007/978-1-4842-5212-3_8

CHAPTER 8

Using a Content
Delivery Network
So far, the focus of our scalability efforts for our cloud application has

been the serving of dynamic content (i.e., content pulled from database

queries). However, for many sites, dynamic content is actually the smallest

part of their system. In fact, on any web site, most of the requests are not

even for your dynamic content, they are for your static content—your

images, stylesheets, and JavaScript. Therefore, when looking at ways to

scale your application in the cloud, it is important not to forget to also scale

your static assets.

You can scale your static assets by creating more front-end web servers,

since they are usually the ones to serve static assets anyway. However, this

can get more expensive (you have to keep more servers online) and harder

to manage (more nodes equals more management).

Scaling static assets is actually much easier than scaling dynamic

assets, since you don’t have to worry as much about what happens when

they change. Therefore, there are services that are built specifically for

scaling static assets. A service which scales your static asset delivery is

known as a “Content Delivery Network,” also known as a CDN.

110

8.1  �How Does a CDN Work?
The way most CDNs work is that they have a globally distributed network

of content servers. Let’s say that you have a 10MB image that you want to

be served by a CDN. Normally, if that user asked your server for the image,

then your server’s processing time and bandwidth would be stuck sending

that 10MB image. If the user lived on the other side of the ocean, that is an

additional problem, as your server will waste a lot of resources managing a

slow and noisy connection.

What a CDN allows you to do is to redirect your users to the URL of the

image at the CDN. The CDN, the first time it sees the URL, usually doesn’t

know anything about the image, but it has rules that tell it how to find the

original image on your service. From that point on, after the CDN grabs

the image the first time, every other time someone asks for that image, the

CDN will manage delivering the image to the users without going through

your servers at all.

Additionally, most CDNs have servers located in many different

physical localities. These locations are known as “Points of Presence”

(PoPs), and the servers there are often referred to as “edge servers”

(because of this, CDNs are often referred to as “edge caches”). Using edge

servers at a variety of PoPs allows a CDN to not only provide scalability

through a large number of servers, edge servers allows a CDN to provide

servers that are in close physical proximity to the user. This greatly speeds

up your user’s experience if they can get a lot of the data from nearby

servers, rather than having to cross oceans to retrieve the data.

CDNs provide essentially infinite scale for serving static assets—for any

big-name CDN, you don’t have to worry about overrunning their network.

As long as the asset isn’t changing, the CDN will be perfectly able to handle

any number of requests for that asset.

Chapter 8 Using a Content Delivery Network

111

Usually, the primary cost for a CDN is the bandwidth. However, many

CDNs have lower bandwidth costs than cloud servers do. Now, with Linode,

you would have to have an extremely active site to outrun your included

bandwidth. Nonetheless, if you did, you would pay slightly less for the

bandwidth if it was provided by a CDN. In any case, even when you have

plenty of included bandwidth with your server, the benefits of improved

scalability with CDNs are usually worth their small price, as you don’t need

to be continually running servers to deal with traffic that may or may not

show up. You only have to pay for the bandwidth that you actually use.

8.2  �Setting Up a Simple CDN
Thankfully, most CDNs are extremely easy to set up. In this book, we

will use Amazon’s CloudFront as the CDN, though many other options

exist (CloudFlare, StackPath, CDN77, and Fastly, just to name a few).

The nice thing about CDNs is that, since the service they provide is fairly

transparent, it is easy to mix and match service providers for CDNs.

The way that CloudFront works is very simple:

	 1.	 You host all of the static content on your main site.

This is the “official” repository of your content.

	 2.	 You create a host on CloudFront to serve your

content from (usually this will have a name such as

xyzabc.cloudfront.net).

	 3.	 You tell the CloudFront server the URL of your main

site.

Chapter 8 Using a Content Delivery Network

112

	 4.	 Every time you link to static content from your site,

you link to it using the CloudFront URL, rather

than linking to the content on your own server.

For instance, if your image was at http://mysite.

example.com/mydirectory/myimage.png, when

you linked to it, you would use the URL http://

xyzabc.cloudfront.net/mydirectory/myimage.

png. CloudFront will know from your configuration

how to find myimage.png and will cache it and serve

it to your users.

The first time that CloudFront receives the request for the image, it will

go to your site to grab it. Then, going forward, any future requests will be

served directly by CloudFront using a server near to the user requesting

the image.

Let’s look at how to actually do this using Amazon AWS and

CloudFront. The first thing you will need to do is sign up for AWS at

http://aws.amazon.com. I am going to assume that you can do the signup

process without me.

AWS has an overwhelming number of available services, such that

the dashboard, rather than listing them all, has you search for one. Type

“CloudFront” into the search bar, and it will then allow you to proceed to

the CloudFront Dashboard.

Since this is your first time to use CloudFront, it will simply give

you a button which says, “Create Distribution.” In CloudFront terms, a

distribution is simply a CDN replicator service.

After you click “Create Distribution,” CloudFront will ask you for your

delivery method and give you a choice of “Web” or “RTMP.” RTMP is the

protocol used for streaming large amounts of video content. However,

since we are just distributing basic assets like images and stylesheets, we

will choose to get started with basic Web delivery.

Chapter 8 Using a Content Delivery Network

http://mysite.example.com/mydirectory/myimage.png
http://mysite.example.com/mydirectory/myimage.png
http://xyzabc.cloudfront.net/mydirectory/myimage.png
http://xyzabc.cloudfront.net/mydirectory/myimage.png
http://xyzabc.cloudfront.net/mydirectory/myimage.png
http://aws.amazon.com/

113

Amazon then asks for details about your distribution, as shown in

Figure 8-1. There are actually a host of additional options below these,

but the only required field is the “Origin Domain Name,” which is the

DNS hostname of the site you want CloudFront to get its assets from. This

cannot be an IP address, but must be a DNS hostname of some sort. If you

have not set up a DNS hostname for your application, you can just use one

of the automatically generated ones from Linode. If you go to the Node

Balancer screen in Linode and click your balancer, it will give you an (very

long, possibly split across two lines) internally generated hostname for

your balancer (something like nb-BALANCER-PUBLIC-IP-ADDRESS.dallas.

nodebalancer.linode.com). After filling out the “Origin Domain Name,”

scroll way down to the bottom of the page.

Figure 8-1.  Creating a CloudFront Distribution

Chapter 8 Using a Content Delivery Network

114

At the bottom of the page, there is a “Create Distribution” button. After

you click this button, you will land in a list of distributions showing your

new distribution, similar to Figure 8-2. The most important part of this

screen is the “Domain Name,” which shows you how to access your newly

created distribution (you may need to adjust the size of the field in order

to see the whole name). It will also give you a status, which takes anywhere

from 5 minutes to an hour to move from “In Progress” to “Deployed.” Once

it is deployed, you have a CDN up and running!

8.3  �Using Your CDN
Once the status has changed to “Deployed,” this domain name will now

fully mirror your original site. However, it will only be a static version of

your site. If your site changes, CloudFront will not update its assets unless

you tell it to.

Let’s say that the domain name that CloudFront gave you was

xyzabc.cloudfront.net. This means that if you go to http://xyzabc.

cloudfront.net/list.php, it will show you your guestbook list.

However, if you then go and modify your guestbook list, those changes

will not be reflected on your CDN—it treats everything as a static asset.

That’s why, for the most part, CDNs serve up only static assets—images,

stylesheets, JavaScript, and the like.

Figure 8-2.  List of CloudFront Distributions

Chapter 8 Using a Content Delivery Network

http://xyzabc.cloudfront.net/list.php
http://xyzabc.cloudfront.net/list.php

115

Therefore, instead of accessing the whole site through the CDN, let’s

modify the application to serve up just our stylesheet through the CDN. All

we have to do is modify one line of common.php. In the getHeader()

function, we simply need to change the <link> tag to read:

<link rel="stylesheet" href="http://xyzabc.cloudfront.net/

guestbook.css" />

Be sure to replace xyzabc.cloudfront.net with the domain name of

your distribution! Once this is deployed on all of the servers, then your

stylesheet will now be served from the CDN.

Figure 8-3.  Removing Content from the CDN

This means that your server will almost never again serve up the

stylesheet. Occasionally, the CDN may expire some of its cached content,

but that is up to the CDN. The CDN will optimize for itself how much data

it stores for how long, and how often it re-requests your original files. For

more advanced applications, you can configure Apache to supply either

an Expires: HTTP header or a Cache-Control: HTTP header to specify a

maximum amount of time that the CDN should hold your data.

Chapter 8 Using a Content Delivery Network

116

However, let’s say that you deployed a new version of your application

which actually did have an updated stylesheet. This means that the version

the CDN is serving up for you is now out of date—it probably still has the

old version in its cache. This is not a problem at all, it just means that you

need to manually tell the CDN to “invalidate” your content so that it will

request it again.

To invalidate content on the CloudFront CDN, start by clicking the ID

of your CloudFront distribution. This will bring you to an information page

describing all of the options that are set on your distribution. Toward the

far right, there is a tab titled “Invalidations.” Click this tab, and then click

“Create Invalidation.” This will bring you to a screen similar to Figure 8-3.

In the “Object Paths” field, just clear out anything that is there, and type

only /* to invalidate everything. While CloudFront allows you fine-grained

access to invalidate and remove specific items from the CDN, I find that,

for most situations, simply invalidating the whole thing is easier and

cleaner. Click the “Invalidate” button to make it so.

It may take several minutes for the invalidation to spread across all of

CloudFront’s servers, but in short order all of the servers will be serving

your new content. You will know when it is done when the “Status” of the

invalidation changes to “Completed.”

8.4  �Caching Your Whole Site with a CDN
In addition to caching individual pieces of content like stylesheets,

JavaScript, and images, modern CDNs can actually allow you to cache your

entire web site, giving you instant scalability across the Internet. While this

doesn’t work for web applications such as ours, if you had a basic web site,

this could make your web site instantly scalable to an infinite number of

users with almost no cost or extra configuration.

Chapter 8 Using a Content Delivery Network

117

Let’s look at how to do this with CloudFront. In order for the CDN to

serve up your web site directly, you will need to point the DNS of your

main site at the CDN’s server.

You might think that you could just set the A record of your web site

to the CDN. However, CDNs don’t typically give you IP addresses for their

hosts. The reason for this is that CDNs have multiple IP addresses for the

CDN (one for each PoP), and they often rely on the DNS lookup to decide

which IP address to give to which client (i.e., it will give the client an IP

address which is geographically near to them). This means that we can’t

just specify the IP address of the CDN in our DNS to point the web site to it.

Instead, CDNs usually handle this sort of thing through DNS CNAME

records. A CNAME is a “canonical name”—it tells browsers to use a

different name for DNS queries and use the results of that name for our

own DNS lookups. If you set www to be a CNAME to your CloudFront host,

then CloudFront can still use its own DNS mechanism to give out the right

IP address to each client.

However, this creates another problem. The CDN needs to know

what hostname you may be accessing it through. That is, if you have

www.example.com CNAMEd to abcxyz.cloudfront.com, CloudFront needs

to know that when one of its machines receive a request for www.example.

com, it should serve up the cache associated with abcxyz.cloudfront.com.

This is done through the distribution settings in AWS. These settings

are under the “General” tab of your distribution. Click “Edit” and look for

a field called “Alternate Domain Names (CNAMEs).” Here you can put

any hostname that you have CNAMEd to this distribution (one per line or

comma separated).

This, however, poses a problem, because the CDN needs a place to

retrieve your data from, and you just pointed your DNS to the CDN instead

of your own servers! To get around this, you simply set up an internal

DNS name that the CDN pulls from (you can call this www2.example.com

Chapter 8 Using a Content Delivery Network

118

or www-internal.example.com), and then set the DNS for www to point to

the CDN (note that we are not using “internal” to mean only visible by us,

since it is just as much on the public Internet as the main site, but rather to

indicate that it is not the destination we are directing end users to).

Doing this, the CDN allows for limitless growth of visitors to your web

site.

 DEALING WITH BARE DOMAIN NAMES

On a technical note, you cannot create a CNAME for the root-level domain. You

can do a CNAME for www.example.com, but not example.com. While your

DNS server may allow it, it is against the specification and can cause a variety

of strange problems for clients that are not expecting this. Therefore, you will

need to make sure you have a mechanism redirecting your bare domain name

(i.e., example.com) to your CNAMEd host (i.e., www.example.com).

To get around this, many DNS providers provide a redirect service to

automatically redirect all requests for the bare domain name to the www host.

If your DNS provider doesn’t provide this service, the kind folks at wwwizer.

com provide a free service that does this for you. Essentially, if you point the

A record for your bare domain to 174.129.25.170, it will be automatically

redirected to the same domain with www in front of it.

More information about this service is available at http://wwwizer.com/

naked-domain-redirect. Also remember that, as with any overly cheap

service, you should take appropriate cautions. Letting them redirect your traffic

can simplify things, but letting a third party that you don’t have a contract with

redirect your traffic for you can also be problematic.

Chapter 8 Using a Content Delivery Network

http://www-internal.example.com
http://wwwizer.com/naked-domain-redirect
http://wwwizer.com/naked-domain-redirect

119

8.5  �Putting CloudFront In Front of the
Entire Application

With our app, the content is dynamic. This makes it difficult (but, as we will

see, not impossible) to put a CDN such as CloudFront in front of it. Using

CloudFront poses a problem—how do we prevent people from viewing

stale content?

In fact, most CDNs can be treated much in the same way as we dealt

with our local caching. We can simply set a maximum expiration date for

our content.

On CloudFront, if you look at your distribution, you will see a

“Behaviors” tab. Clicking this, you will see a single, default behavior. These

behaviors allow you to set different settings on different content paths from

your server. For this example, we only need to edit the one that is already

there. Select the current behavior and then click “Edit.”

If you scroll down, you will see a set of TTL (time-to-live) values, which

are in seconds. To change these values, first change the “Object Caching”

setting from “Use Origin Cache Headers” to “Customize.” If you don’t want

the content to be older than 5 seconds, set the “Maximum TTL” to 5. This

will mean that the cache will only keep the content around for 5 seconds

before requerying for the content. Thus, the content may be a little stale,

but not very much.

This leads to another question—how will the CDN handle sending

forms to the server? This can be handled by Behavior settings as well.

Under “Allowed HTTP Methods,” select the option to include all of the

HTTP methods. The CDN will only cache the GET and HEAD requests, but

will forward all other requests straight to your server.

Additionally, by default, CloudFront doesn’t forward cookies, HTTP

headers, or query strings to the server. This is to decrease the number of

origin requests it has to make, as well as the number of objects it has to

cache. However, in our application, the content you see is based on the

Chapter 8 Using a Content Delivery Network

120

query string. Therefore, you need to set “Query String Forwarding and

Caching” to “Forward All, Cache Based on All” to get the application to

work correctly.

Once these are all set, click “Yes, Edit” to save the changes in the

behavior.

You can now go to your CloudFront distribution’s URL and use it as if it

were the regular web site. You can also follow the instruction in Section 8.4

in order to have the user access this via your web site’s own hostname.

Before you go hog wild with application setups like this, keep in mind

that all cache setups are a balance. If you use too many keys for your cache

(i.e., paths, headers, query strings, cookies), then most of your content

will be passed through to the server (i.e., not cached), and you won’t

get the performance improvement. In fact, it will just add overhead and

cost, because you have to pay both the bandwidth of the cache and the

bandwidth at your server. However, if the cache setup is too loose, users

will see out-of-date data or, worse, someone else’s data! For example, if

your content is personalized based on a cookie, but you don’t use the

cookie as part of your cache key, then if Jim Bob requests a page and it is

put into the cache, when Jane Doe requests the same page, she will get Jim

Bob’s page!

So how does someone with a highly personalized web application

make better use of the CDN? The answer to that is by turning your

application inside out.

8.6  �Turning Your Application Inside Out
The problem we ran into in the last section was the issue of delivering

highly customized pages to users and still making good use of the cache.

Having customized pages generally means that they aren’t cacheable. This

dilemma can be solved by employing an “inside-out” page architecture for

your web site.

Chapter 8 Using a Content Delivery Network

121

Historically, web applications are built by having servers generate

pages. When a user navigates to a URL, the server takes a template,

combines it with user data, and adds in the page content to produce the

final HTML page. This HTML page is then delivered, as a whole, back to

the user.

This architecture works well for a variety of reasons:

•	 Most web application frameworks are built around this

paradigm.

•	 This architecture closely matches the way HTML is

structured.

•	 This architecture is easy to conceive of and build.

•	 This architecture requires much less planning to

implement.

•	 This architecture has very little up-front development

required.

•	 Much of the Web’s history is rooted in this architecture.

•	 Optimization of this architecture is performed last (i.e.,

premature optimization is the root of all evil).

The problem with this architecture, however, is that for most use cases,

it is very inefficient in high-traffic situations.

An alternative way to structure your application that has been made

possible through developments of Ajax techniques over the years is to turn

your page inside out. That is, in a typical architecture, the server generates

a page which contains dynamic content. In the new way, the server

generates a page that is basically static, but calls back to the server for any

dynamic content.

Chapter 8 Using a Content Delivery Network

122

Imagine, for instance, having a page that lists your products. In typical

web frameworks, your server would perform the following tasks:

	 1.	 The user’s browser requests a specific page from the

server.

	 2.	 The server begins web application process engine

(PHP, Ruby on Rails, etc.).

	 3.	 The application accesses the database to get a list of

products.

	 4.	 The application generates HTML for the product list.

	 5.	 The application accesses the database for status

information on the user (i.e., login information, cart

information, other status information, etc.).

	 6.	 The application generates HTML headers

and footers that incorporated the user’s status

information and where they were in the page

navigation.

	 7.	 The application stitches together the whole HTML

page from the generated fragments.

	 8.	 The server sends the final HTML page back to the

user.

	 9.	 The user’s browser renders the page.

As you can see, this is a fairly involved process, and the user doesn’t get

any feedback until the entire page has been rendered on the server. This

leads to a lot of waiting around for the server to finish up.

However, if we turn it inside out, we can achieve a much better

optimization strategy. What we will do is serve up the page as a static page

and then let the user’s own browser be responsible for getting user-based

content and stitching together the page.

Chapter 8 Using a Content Delivery Network

123

The new sequence would look like this:

	 1.	 The user’s browser requests the page from the CDN.

	 2.	 Assuming it is already cached, a CDN server near

the user immediately responds with the page

content (i.e., a list of products).

	 3.	 The user’s browser loads the content and displays

it immediately, with a loading spinner next to any

user-specific data.

	 4.	 The page executes JavaScript, which issues a request

back to the server for the user’s status information.

	 5.	 The server sends back the user’s JSON-encoded

status information.

	 6.	 The page renders the remaining components of the

web page.

In this sequence, the server’s burden is greatly reduced. It no longer

has to query for the product listing, generate the headers and footers,

or stitch the page together. All of those happen in a very fast transaction

between the user and the CDN. The server is only responsible for a user’s

session state (and even that can often be localized to the user’s own

browser!). This allows for a large amount of dynamic, interactive content,

with very little burden on the server.

This concept can be expanded even further, such that even the product

list is generated after the fact. API requests themselves can also be cached,

either using the same or different settings as the main web pages.

As you can see, CDNs provide a very flexible and powerful tool for

boosting web site speed if the application is judiciously architected.

Chapter 8 Using a Content Delivery Network

124

The main drawback for this approach is the amount of planning and

foresight that it takes to implement. This approach requires deciding on

an Ajax and dynamic HTML framework, laying out a nice application

architecture, developing APIs and API authentication, and planning the

page layout that will incorporate all of the pieces. On the old architecture,

you could usually just hammer out pages fairly haphazardly, and they

would still work. When using the inside-out architecture, you have to start

with a plan, and it requires a decent amount of up-front effort. This book

does not attempt to show code for what an inside-out page architecture

looks like, precisely because it requires a lot of code to implement.

In any case, no matter what your application architecture, most

applications can benefit from some sort of CDN solution.

Chapter 8 Using a Content Delivery Network

125© Jonathan Bartlett 2019
J. Bartlett, Building Scalable PHP Web Applications Using the Cloud,
https://doi.org/10.1007/978-1-4842-5212-3_9

CHAPTER 9

Using S3 for Infinite
Disk Space
For a truly scalable site, another aspect that is often needed is unlimited

disk storage. Managing large-scale storage for servers is truly a difficult

feat. Deciding on how much redundancy, how much accessibility, how

many disks per server, and how to manage the disks to make sure you

know ahead of time if a disk is failing is a tough task. Even for small-scale

sites, managing files can be difficult.

Thankfully, using a file storage service will allow you to outsource

these tasks to a third party, probably for a much smaller price than if

you tried to do it yourself. The gold standard for file storage services is

Amazon’s S3 service. S3 stands for Simple Storage Service. This acronym is

largely true—S3 is fairly easy to set up for the simple cases, but it also has

quite a bit of flexibility in there for more complicated tasks.

S3 gives you an infinite amount of space at a very low cost per gigabyte.

It will scale with you and prevent you from all of the file management

headaches that come from storing files locally.

Other cloud storage services exist as well, many with better pricing

structures. Some of the more common ones include Backblaze B2,

DigitalOcean’s Spaces, and Rackspace’s Cloud Files. Here we use S3

because it has the most widespread adoption and integration.

126

9.1  �Getting Started with S3
S3 is part of the Amazon AWS suite of tools. Therefore, you can use the

same login that you created in Chapter 8 to access AWS.

Once you sign in to AWS (the URL is http://aws.amazon.com), you can

access S3 under the “Storage” heading. When you click S3, you will get a

screen similar to Figure 9-1.

The main button for this screen is the “Create Bucket” button. S3

organizes all of its files into what they call “buckets.” A bucket is kind of

like a named hard drive. That’s where you store all of your files. Bucket

names have to be unique, not only to your account but actually across

all of Amazon. Therefore, you should not rely on any particular naming

convention for Amazon buckets which presume that you can predict what

names will be available in the future. Instead, it is better to have bucket

names be configurable in your application so that it is easier to manage.

When you click “Create Bucket,” it will ask you for a bucket name

and a region. AWS organizes almost all of its services except CloudFront

into regions. For our purposes, the region itself does not make a lot of

Figure 9-1.  The Initial S3 Screen

Chapter 9 Using S3 for Infinite Disk Space

http://aws.amazon.com

127

difference. But, if you have a specific reason for needing a bucket in a

specific physical location, AWS allows you to choose where it goes. Click

the “Create” button to create your bucket.

Once you successfully create your bucket, you should get a list of your

buckets (with just your one bucket). If you click your bucket, you can

browse your empty bucket. To get a feel for S3, just go ahead and upload a

file from your hard drive to the bucket. Click the “Upload” button, and you

can then drag and drop files from your computer up to your bucket. Click

“Upload” to get them uploading.

9.2  �Folders in S3
If you look around on the S3 console, you will notice that you have the

ability to create folders/directories in your buckets. However, in S3, folders

are not actually real. S3 buckets in reality have a completely flat structure

with just filenames and files (technically, the filenames are called “keys”

and the files themselves are called “objects”). However, the filename can

contain a slash character. The AWS user interface then uses the slash

characters to show you the files as if they are in folders. When you “create a

folder” in S3, it is actually creating an empty file of the folder’s name, with

the name ending in a slash. In short, the S3 console makes it look like you

have folders and subfolders, but really it is just a giant wad of files, some of

them having slashes in their names that the S3 console uses to separate out

into fake folders to make it easier to look through.

9.3  �Getting Credentials
Before we connect our S3 account to our server, we need to create a set

of security credentials. For this, AWS uses a system known as IAM, or

“Identity and Access Management.” IAM allows you to create users that

have restricted privileges so that if your security keys get compromised,

Chapter 9 Using S3 for Infinite Disk Space

128

it does not let an attacker take total control of your environment. As with

other services, IAM can be found by searching under their service list for

IAM. When you first load the IAM screen, it will look like Figure 9-2.

Figure 9-2.  IAM Initial Dashboard

IAM manages permissions mostly using “Groups,” which are

essentially containers for permissions. Therefore, we will start by creating

a group. Start by clicking “Groups” on the left panel, which will bring

up an empty group listing. Then Click “Create New Group.” This brings

up a screen that asks for a name for the group. We will use the name

guestbook-access (the name doesn’t matter, we will just have to reference

that name later). Click “Next Step” to continue.

Next you will attach policies to the group. Policies are complicated

permission groups. Thankfully, AWS has very helpful predefined policies.

For our purposes, we only need the policy called “AmazonS3FullAccess.”

You can search for it in the filter box and then select it when you find it.

Figure 9-3 shows what this looks like.

Finally, it will ask you to review and finalize your group. Click “Create

Group” to finish.

Chapter 9 Using S3 for Infinite Disk Space

129

Now you can add a user to the group. On the left-hand side of the

screen, click the “Users” link. This will bring you to an empty list of IAM

users. To get started, click the “Add User” button.

Figure 9-3.  Attaching a Policy to a Group

In the next screen, it will ask for the user name and the access type,

as shown in Figure 9-4. We will call the user application-user, though

the actual name doesn’t really matter. Under “Access Type,” select

“Programmatic Access.” This means that the created user won’t be able to

log in, but will only be able to use the API.

In the next screen, it will ask you to add the user to a group. Simply

select the group that you previously created (we called ours guestbook-

access). The next screen allows you to set up tags for this user. We don’t

need any, so you can continue on past this screen. Finally, it will ask you to

review your information. At this point, you can click “Create User,” and it

will create the user for you.

After your user is created, you can now download their credentials.

The screen looks like Figure 9-5. It lists the user and then two special

fields: “Access Key ID” and “Secret Access Key.” These two fields essentially

operate as a resettable username (“Access Key ID”) and password (“Secret

Access Key”) for the API for this user. You can either download the

credentials or copy them from the fields on the screen.

Chapter 9 Using S3 for Infinite Disk Space

130

Going forward, we will refer to the actual Access Key ID as

MYACCESSKEYID and the actual Secret Access Key as MYSECRETACCESSKEY.

Figure 9-4.  Creating an IAM User

If you later lose those credentials, you won’t be able to obtain them

again. However, you can go back into the user’s record and create a new set

of credentials. If, at a later time, your server’s security is compromised, you

can deactivate the old credentials and issue new ones for the same user.

9.4  �Access S3 via Command Line
AWS has a command-line tool that allows access to not only S3 but a wide

range of their scalability APIs. To install this, issue the following command

as root on the template node:

yum install -y awscli

The AWS command line has two main ways to specify your Access Key

ID and Secret Access Key. You can either do it via environment variables or

via a configuration file. Environment variables are more flexible, so we will

do that route.

Chapter 9 Using S3 for Infinite Disk Space

131

If you are not familiar with the command line, an environment variable

is a variable that is set in your command-line session. Not only that, but

commands that you call have access to all of your environment variables.

Additionally, any environment variables that you set go away when you log

out, so they will need to be reset every time you log in (if you want them to

be set automatically upon login, you can put the commands to set them in

a file called .bash_profile).

The environment variables that the aws command uses for your

credentials are AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY. To set

these variables, enter the following commands in your terminal (replacing

MYACCESSKEYID and MYSECRETACCESSKEY with your actual keys):

export AWS_ACCESS_KEY_ID=MYACCESSKEYID

export AWS_SECRET_ACCESS_KEY=MYSECRETACCESSKEY

Now you can use the aws command to manipulate your S3 buckets. To

get a list of your buckets, issue the following command:

aws s3 ls s3://

It should list the bucket that you created in Section 9.1.

Figure 9-5.  Retrieving IAM Credentials

Chapter 9 Using S3 for Infinite Disk Space

132

To list the contents of that bucket, issue the following command

(replace BUCKET with the actual name of your bucket):

aws s3 ls s3://BUCKET/

To understand the way the command works, aws is the main command

we are using, s3 tells which group of subcommands to work with, ls is just

like the ls command on Linux (it lists the contents), and s3://BUCKET/ is

the location that we would like to look at.

The aws command also gives other common commands for

manipulating files. Instead of ls, we can use cp to copy files in and out

of the bucket. If you had a file called test.txt, you could copy it to your

bucket with the command:

aws s3 cp test.txt s3://BUCKET/

To copy a file from your bucket to your node, just switch the places of

s3://BUCKET/ and test.txt.

Additionally, you can create temporary access URLs for your files.

These URLs are signed URLs. This means that AWS knows that an

authorized person generated the URL, and AWS will trust that URL for a

specified amount of time as a valid means of accessing that file.

This allows you to direct people directly to the AWS site to retrieve data

that they need, instead of having to transfer it to your server and then send

it yourself. It saves processing power, bandwidth, and response time.

However, in order to do this, we will need to know what region the

bucket is in. You specified a region when you created the bucket, but AWS

doesn’t always show the “computerized” version of the region, which you

will need for the command line. Issue the following command to find the

region of your bucket (replacing BUCKET with your bucket name):

aws s3api get-bucket-location --bucket BUCKET

This will return a JSON-encoded value. The key is called

LocationConstraint, and the value is the name of the region that the

Chapter 9 Using S3 for Infinite Disk Space

133

bucket is hosted in. Some common values for the region are strings like

us-east-1, us-east-2, ca-central-1, eu-west-2, and others. We will use

REGION to represent whatever your region is.

To get a URL to access your file, use the following command:

aws s3 presign s3://BUCKET/FILE --region REGION

This will generate a URL that you can copy and paste into your browser.

Lo and behold—the file will appear! However, this URL will only be good

for 3600 seconds (1 hour). If you want the URL to be good for a different

amount of time, you can tell it using the --expires-in flag. So, if you want

the URL to expire in 20 seconds, you would just add --expires-in 20 to

the command.

 SPECIFYING ENVIRONMENT VARIABLES INLINE

Before we start coding, I wanted to take a quick sidebar and let you know

another way to set environment variables. You can set an environment variable

so that it will be valid only for one application by specifying the environment

variables to set on the same line as a given command before the command

itself.

So, for instance, if I were to run the command example-command, and I

wanted to set the environment variable MYVAR to myval, I could run the

command like this:

MYVAR=myval example-command

This would set the environment variable, but only for running the command.

You can actually set as many environment variables as you wish when running

commands, they just have to be separated by spaces. So, for instance, to set

two values, we could do:

MYVAR1=val1 MYVAR2=val2 example-command

Chapter 9 Using S3 for Infinite Disk Space

134

This is how we will be setting our credentials in the application we will

create. For configuration purposes, it is actually best to leave the credentials

(and other configuration information) out of your code and set them all via

environment variables on the server. However, that requires more in-depth,

server-specific configuration details than is appropriate for this book.

9.5  �Connecting Your Application to S3
Now that we know how to talk to S3 from our server, we will now connect

our guestbook application to S3 so that users can upload an image with

their message. This is actually fairly straightforward. All we have to do is

	 1.	 Create some common functions to grab AWS

configuration information.

	 2.	 Allow our form to have an image field.

	 3.	 Check for an image upload when a guestbook entry

is created.

	 4.	 Transfer the image to S3.

	 5.	 Create a signed S3 URL for the image when viewing

a guestbook entry.

The first step is creating some helper functions in common.php for

handling AWS credentials and configuration. Figure 9-6 shows the

functions for that. Remember to replace BUCKET, ACCESSKEY, and

SECRETKEY with your own values for these items.

Chapter 9 Using S3 for Infinite Disk Space

135

The function getAWSCredentials() will return the credentials as

a string which can set the environment variables when prepended to a

command string.

The next step is putting an image field on the form in new.php.

There are two parts to this. The first thing we must do is modify the

<form> tag so that it will allow a file upload. To do that, add the attribute

enctype="multipart/form-data" to the <form> tag. Without that, the file

input tags will not actually upload files.

Next, we need to add a file upload field. Right before the submit

button, add the following lines:

<label>Image (JPEG)</label>

<input type="file" name="imagefile" />

Now your form is configured to have a file upload. Next, we will

configure create.php to accept the file upload.

Figure 9-6.  Additions to common.php for AWS Configuration

Chapter 9 Using S3 for Infinite Disk Space

136

There are two parts we have to change. First, replace the line $has_

img = false; with the code in Figure 9-7. This code detects if a file was

uploaded and, if so, makes sure the database is updated to reflect that.

Second, add the code in Figure 9-8 immediately after the line that says

$stmt->execute();. This is the code that actually transmits the file to S3.

Figure 9-7.  Modification to create.php to Detect File Upload

Figure 9-8.  Modification to create.php to Transmit File to S3

Now we just need to provide a way to view the image if you click the

guestbook entry. To do this, we need to modify single.php. Just add the

code in Figure 9-9 right before the line that says getFooter().

Chapter 9 Using S3 for Infinite Disk Space

137

This code will request a signed URL for the upload and then put it in an

image tag for viewing.

Note that for a real application, we would want to validate that the

uploaded file was indeed a JPEG file. Otherwise, anybody could upload

anything, and hackers could easily abuse the system as a free file-sharing

site, or for other nefarious purposes. Additionally, you would probably

want to have an administrative function which verifies that the images

uploaded are appropriate. Otherwise, someone could easily turn your

guestbook into a porn-sharing site. Those are outside the scope of our

simple example application, but they are good things to keep in mind.

Also remember that you will wind up paying for not only storage

space but also usage bandwidth for all traffic in and out of S3. Failure to be

vigilant can wind up being costly.

Figure 9-9.  Modification to single.php to Show Image

Chapter 9 Using S3 for Infinite Disk Space

138

Now you need to test out your new code on template_node, and then,

when it is working, deploy it to your cloud cluster by reimaging the servers

as described in Section 6.3.

Now try out your application—it now has infinite file storage with

Amazon S3!

Note that there is also an AWS library for PHP which has S3

functionality with it. Here, we used the command line since we already

learned that tool in the preceding section. Information about the AWS PHP

library is available at https://docs.aws.amazon.com/sdk-for-php/.

 A NOTE ON S3 SIGNATURE EXPIRATION

One thing to keep in mind when dealing with signed URL is to be wary of

how they interact with caching. In this case, single.php is not cached, so

there is no real worry. However, if it was, it is important to make sure that the

expiration time of the URL is significantly longer than the amount of time that

the rendered code might sit in the cache.

For instance, if the URL was only valid for 30 seconds, but the cache lasts an

hour, then, after the first 30 seconds is over, for the rest of the hour users will

be getting URLs that they cannot make use of. Just keep this in mind when (or,

preferably, before) problems start arising.

 S3 FILE PERMISSIONS

In addition to signed URLs, it is also possible to allow access to S3 files

through granting public access to the files. This works, but it isn’t the best

approach to sharing files. The problem is that if you just provide a publicly

shared URL for people to access, then this URL could be shared around, and

people could just use your S3 resources for their own purposes, bypassing

your web application altogether. This means that you might wind up paying to

be someone else’s file server.

Chapter 9 Using S3 for Infinite Disk Space

https://docs.aws.amazon.com/sdk-for-php/

139

Even if you don’t implement careful controls over file access in your

application immediately, forcing everyone to use signed URLs controlled by

your application to access S3 objects (as we have shown here) means that

when you are ready to implement access controls, everything is ready to do

so. At minimum, it prevents the simple sharing of S3 URLs publicly on the

Internet which use your AWS account resources for large file downloads.

If you really prefer doing this over signed URLs, you can manage this by first

enabling public access on the bucket itself and then setting individual files to

be readable by everyone. It also means that you will need to set permissions

on newly uploaded files. You can do this on the aws s3 cp command by

adding the following flag to the end of the command (the URL should be on the

same line as the rest of the line, with no space after either equal sign):

--grants read=uri=http://acs.amazonaws.com/groups/global/

AllUsers

However, this only works if the bucket itself has been configured to allow

public access.

Chapter 9 Using S3 for Infinite Disk Space

141© Jonathan Bartlett 2019
J. Bartlett, Building Scalable PHP Web Applications Using the Cloud,
https://doi.org/10.1007/978-1-4842-5212-3_10

CHAPTER 10

Hosting with AWS
While most of this book has focused on hosting your application on

Linode, since so much of the cloud hosting is based on AWS, I think it is

worthwhile to look at some of the hosting options on AWS.

One of the issues with AWS is simply its massive number of options.

The number of options available actually makes it quite difficult to

administer.

As an example of this, one time I was working on a team and needed

access to the logs. After much searching, we finally found the option to

grant access to the log files. However, it turned out that looking at the log

files was actually a different permission than the permission needed to

retrieve the log files. So, while I had permission to look at the log files,

I didn’t have permission to actually get them. They finally gave up fine-

grained control and made me an administrator. That’s not to say that AWS

doesn’t have this ability, it’s just that trying to manage it turns out to cost

as much in time as effort as you might have saved doing it some other, less

“automated” way. Having lots of options and trying to be everything to

everyone can easily make it so that you drown in options and settings that

no one has the time and opportunity to master.

There are so many fine-grained controls, each with their own issues,

quirks, and bugs. The number of different platforms and systems that

AWS “supports” is very large. However, I find that oftentimes there are

large holes in that support, which, while they can be worked around, the

workarounds sometimes make me wish that I had just done it all manually

to begin with.

142

10.1  �Using Amazon Lightsail
Amazon’s first foray into cloud hosting is called EC2—the Elastic Compute

Cloud. Like most of AWS, this is a very flexible option for cloud hosting.

However, it suffers from the problem inherent in a lot of AWS—it is

really complicated to set up and use successfully. Not only is the setup

complicated, the pricing is ridiculously complicated. They charge you not

only for computer time but also for hardware I/O requests. That’s right,

they keep track and bill you for the number of hard drive accesses.

In order to better compete with easier-to-use services like Linode and

DigitalOcean, AWS introduced Amazon Lightsail. Lightsail’s feature set

and pricing structure is very similar to what we have looked at on Linode.

Lightsail is accessible from the same AWS management console that

contains CloudFront and S3. Just search for Lightsail, and the dashboard

should look similar to Figure 10-1.

There are a few minor differences between Lightsail and Linode to be

aware of for our purposes:

	 1.	 Lightsail instances by default connect via a public

key instead of a password, and connect you to a

regular user instead of connecting as root.

	 2.	 Lightsail’s CentOS distribution has a slightly

different set of preinstalled packages than Linode.

Chapter 10 Hosting with AWS

143

	 3.	 All Lightsail instances are automatically added to

Amazon’s private network. In fact, when you are on

the box, the only IP address you see is the private

network address. The external IP that you receive

just gets routed to that internal IP address.

	 4.	 Backups of Lightsail instances have to be made

manually.

	 5.	 Lightsail has a separate database service that you

can use if you don’t want to manage your database

server yourself.

To launch and set up a new instance, click the “Create Instance”

button. This brings you to a screen similar to Figure 10-2.

Here, you will need to choose the datacenter (instance location) which

will host your node. This is slightly different than Linode, as AWS has both

datacenters and availability zones. In AWS, datacenters are organized into

multiple availability zones. These zones can easily share resources for

load balancing, but each availability zone has a separate line for power

and external Internet connections. Essentially, they act like they are in the

Figure 10-1.  The Initial Dashboard of Amazon Lightsail

Chapter 10 Hosting with AWS

144

same datacenter, but servers in different availability zones are unlikely to

be affected by the same event (such as loss of power or Internet). So, for

instance, you could have your master database in one availability zone,

and a replica database in another. Then, if the availability zone of your

master goes down, the replica (since it is in a different availability zone)

can be promoted and serve as the master.

Figure 10-2.  Creating a Lightsail Instance

The platform we want to choose is “Linux/Unix.” Then, select “OS

Only” (the other options allow for preconfigured servers for specific tasks).

After that, select “CentOS.”

Scrolling down, you can ignore most of the other questions, and select

whichever size of node you wish. Then, to identify your instance, call it

template-node as we did before. Click “Create Instance” to create the

machine.

It may take AWS a while to create your machine. When it does, you can

click the machine, and you will get a dashboard similar to Figure 10-3.

Chapter 10 Hosting with AWS

145

To log in, just click the button labeled “Connect Using SSH.” This will bring

up a terminal window, with you connected to the node as the user centos.

You can use this centos user in place of the fred user in the examples

in this book. Or, you can go ahead and create fred when requested. You

will still need to use the box as root to configure it, however. To log in as

root, just issue the command:

sudo su -

Figure 10-3.  Lightsail Node Dashboard

And now your session will be as the root user.

Lightsail nodes come with a slightly different set of packages than

Linode nodes. To get your Lightsail node similar to the starting point of

Linode’s system, issue the following commands:

yum install -y nano

yum install -y firewalld

systemctl start firewalld

systemctl enable firewalld

From this point, you can follow the node setup instructions from

Chapters 3 and 4 essentially identically.

Chapter 10 Hosting with AWS

146

In Chapter 5, the mechanism for creating new instances from backups

is only slightly different. In Lightsail, backups are created using the

“Snapshots” feature. All you have to do is go to the “Snapshots” tab of your

node, give your snapshot a name, and create it. Once created, you can create

a new node from this snapshot as shown in Figure 10-4. Load balancers can

be created from Lightsail under the “Networking” tab off of the main screen.

Figure 10-4.  Creating a Node from a Snapshot

After that, the rest of the information about creating a cloud doesn’t

change, as it is all about what happens on the nodes themselves.

10.2  �Hosting on Elastic Beanstalk
While most of this book has been focused on Infrastructure-as-a-Service

(IaaS) clouds, I did want to spend at least some time introducing a Platform-

as-a-Service (PaaS) cloud. AWS has a PaaS cloud called “Elastic Beanstalk”

which runs a variety of different application types, one of which is PHP.

Chapter 10 Hosting with AWS

147

A PaaS cloud takes away all of the system administration work from

cloud computing. The problem, though, is that most advanced cloud

systems wind up requiring some amount of system administration

anyway. It’s not that a PaaS system is unusable when you have strange

configuration requirements, but rather the amount of effort to configure

your PaaS system correctly, maintainably, and in sync with what your

platform provider is also doing winds up being more than if you had

just taken full control like you do with an IaaS cloud. In any case, in this

section, we will go over what it takes to get our application up and running

with Elastic Beanstalk.

In a PaaS system, we have no control over the machines. Therefore, we

can’t designate a particular machine as a database server, a job server, and

so on. Instead, each application can be scaled up or down across as many

machines as the PaaS system wishes. This generally means that the PaaS

system will manage the database.

For AWS, this means using their relational database service—RDS.

Connecting the application to RDS is pretty straightforward. Elastic

Beanstalk will set up environment variables for all of the connection

information, and we just have to program our app to read them.

In order to do this, we just have to change common.php and replace the

getReadOnlyConnection() and getReadWriteConnection() functions.

Both of those functions should look like Figure 10-5.

Figure 10-5.  Accessing a Database with RDS

Chapter 10 Hosting with AWS

148

This will put together a connection string based on the environment

variables that RDS sends in.

Second, since you will not have direct access to the database, we need

a PHP script which will create the database tables for us. Create a file called

createdb.php that has the following code in it.

Figure 10-6.  Creating a Database with RDS

Note that, since we don’t have a specific server, these changes are being

made to a local copy of the application on our personal computer’s hard

drive. Once those changes have been made, you are ready to get started.

To start with Elastic Beanstalk (EB), go back to the AWS management

console and search for “Elastic Beanstalk.” On the dashboard, click the

button titled “Create New Application.” Give it a name, and click “Create.”

On EB, applications can be compartmentalized into “environments.”

Environments can be used for all sorts of things, including having

staging vs. production environments, having different groups of

servers for different tasks, and having fast switching between different

Chapter 10 Hosting with AWS

149

versions of your application. For our purposes, we will only have one

environment. Therefore, click the button to create a new environment. It

will ask you what type of environment to create. We want a “Web Server

Environment.”

Figure 10-7.  Creating a New Environment

Chapter 10 Hosting with AWS

150

The next screen is a configuration screen, as shown in Figure 10-7. You

can name your environment if you want, but the only important setting

on that screen is to select a “Preconfigured Platform.” We, obviously, want

“PHP.” By default, it will load a sample application. That is what we want

for now. Click “Create Environment” to finish the process.

Once created, you will have a dashboard that looks like Figure 10-8.

In the “Overview” section, it gives the basic health of the app, the version,

and the platform. Under “Recent Events,” it lists all of the actions that the

system has recently undergone. Note that everything in EB winds up taking

a lot longer than you might think, but “Recent Events” helps you keep tabs

on it and gives you something to watch while you wait. On the left side, the

three areas we will concentrate on are “Dashboard” (where we are now),

“Configuration” (how the app is set up), and “Logs.”

Figure 10-8.  EB Environment Dashboard

Since we started with a sample application, you can already load up

the sample application in your web browser. On the dashboard, it has a

link to your application’s URL. You can click it, and it will take you to the

sample application.

Chapter 10 Hosting with AWS

151

Before we upload our application, we need to first set up the database.

To do this, go to the “Configuration” section, and then go to the “Database”

and click “Modify.” This will allow you to create an RDS instance for your

application. Set the “Engine” to be postgres, give it a username and

password (be sure to write these down!), and then click “Apply.” When the

health status comes back as a checkmark (which can take 10–20 minutes),

you are ready to upload your application.

To upload your application, zip up all of your files together into a single

zip archive. Then, on the dashboard, click the button that says “Upload

and Deploy.” Choose the zip file from your hard drive, give the version

a name (the specific name doesn’t matter), and then click “Deploy.”

The health status will change to a refresh spinner, and it will deploy

your application. When the spinner changes back to a checkmark, your

application is deployed!

However, we’re not quite done yet. When you click the link, it will give

you a “Forbidden” message. This is because we don’t have an index.php

file (though you can add one if you wish). However, we need to create our

database, so we need to first navigate to the createdb.php file to create the

database (just add /createdb.php to the end of the URL in your browser

and hit enter). This should bring you a blank page, which is fine.

Now, if you change the URL to go to list.php, everything should be in

working order!

There are now many things that you can do with your application

to make it scalable. These are all available from the “Configuration”

tab of your environment. By default, EB creates environments that are

single server. To upgrade it to a load-balanced application, just go into

the “Capacity” section and change the “Environment Type” to “Load

Balanced.” This will give you a lot of options that you can play with. The

most simple (and most important) is the “minimum” and “maximum”

number of instances. Set the minimum to 2 to make sure that it starts up

at least two machines for you. Click “Apply,” wait a few minutes, and your

application is now load balanced.

Chapter 10 Hosting with AWS

152

Other changes you can make include

•	 Under “Instances,” you can change the size of each

individual instance.

•	 Under “Load Balancer,” you can change a lot of

variables, including the balancing mechanisms.

•	 Under “Rolling Updates and Deployments,” you can

change the deployment policy to eliminate downtime

during updates (the “Immutable” option is the best

for production, but it takes a long time to perform

updates).

•	 Under “Software,” you can set environment variables

and web server configuration options.

•	 Under “Database,” you can change the size of your

database. You can also click the “Endpoint” link to take

you to the RDS management console for additional

database management utilities.

After making configuration changes, hitting “Apply” will redeploy your

application with the given changes, which may take several minutes. If you

have any problems with your running application, you can go to the “Logs”

section and download and view the most recent log messages.

Chapter 10 Hosting with AWS

153© Jonathan Bartlett 2019
J. Bartlett, Building Scalable PHP Web Applications Using the Cloud,
https://doi.org/10.1007/978-1-4842-5212-3_11

CHAPTER 11

Using the Google
Cloud Platform
Now that you have experience with multiple cloud providers, I hope that

you are realizing that the basic components of clouds don’t really change

all that much from provider to provider. Each one may call something

different, may have a little different process for setting something up, or

may have a few additional abilities or limitations compared to someone

else. However, at their core, the basics of IaaS cloud hosting are pretty

similar from provider to provider.

This is itself an advantage of IaaS. It means that if you want to migrate

from one IaaS to another, it is actually a fairly straightforward process. It

may take planning and execution time, but, since the nodes themselves

are under your control, you can make the environments pretty identical to

each other.

The next provider we are going to take a look at is the Google Cloud

Platform (GCP). GCP is the new kid on the block, having been established

in 2008 (Linode started in 2003, and AWS came online in 2006). GCP is

very similar to AWS, although it is a bit more cumbersome to configure.

You can get started with GCP by signing up at https://cloud.google.com.

https://cloud.google.com

154

11.1  �Setting Up Your Template Node
The first thing to know about GCP is that everything is organized into

“Projects.” Each project is kind of like its own account, each with their own

resources, services, and so on, but all accessible within the same login.

When you log in to the Google Cloud Platform, it should look

something like Figure 11-1. Notice on the top bar, next to the text “Google

Cloud Platform,” it lists the name of your current project. You can click the

current project to change projects or create a new one. For this example,

I am going to create a new project called Book Examples Project.

The left-hand side of the screen lists the GCP services. To create

a new machine, go to the “Compute” section of the services, click

“Compute Engine,” and then click “VM Instances.” GCP calls its

machines (or nodes, as Linode calls them) “VM Instances.” To create a

new machine, click the “Create Instance” button. That will bring up a

screen similar to Figure 11-2

Figure 11-1.  The GCP Welcome Screen

Chapter 11 Using the Google Cloud Platform

155

We will call our machine template-node and choose the smallest

machine type (“f1-micro” in this case). For the boot disk, we will choose

CentOS 7. As you scroll down, there is a “Firewall” section. Make sure that

“Allow HTTP Traffic” and “Allow HTTPS Traffic” are both enabled. The rest

of the defaults you can leave alone. When everything is set, click “Create”

and GCP will create a new machine for you, and return you to the VM

Listing screen.

When the machine is created, you can log in using the “Connect”

option. In the drop-down menu in the “Connect” column, choose “Open

in Browser Window,” and it will give you an ssh session in your browser.

Figure 11-2.  Creating a GCP VM Instance

Chapter 11 Using the Google Cloud Platform

156

This installation of CentOS is very similar to the Linode installation,

except that (a) it doesn’t include nano (which you can fix with a simple yum

install -y nano), and (b) it autocreates a user for you and logs you in as

that user. You can easily switch to root by running the command:

sudo su -

From that point, you can install nano and perform all of the

configuration steps outlined in Chapters 3 and 4 essentially identically.

 PUBLIC VS. PRIVATE IP ADDRESSES

One interesting difference between GCP and Linode is that, on Linode, your

node’s public IP address is physically attached to your node. That is, when you

issue ip addr show, it shows the public IP address. When you add a private

IP address, it adds that private IP address to your node.

However, in GCP, your node starts out with both a private address and a

public address. However, the private address is the only one that is physically

mapped to the device. The public IP address is configured on the networking

equipment to forward those requests to your machine.

Therefore, on all your configurations on your machine, you will use the

private IP address that comes on your box. Additionally, you don’t have to

worry about only listening on your private IP address, because that’s really all

you have anyway. The GCP networking controls what services can get to your

box from outside (this is why you checked the HTTP and HTTPS boxes when

setting up your VM Instances—to tell GCP to route these types of requests to

your private IP address).

Basically, unless otherwise specified, everything in GCP is restricted to the

local network.

Chapter 11 Using the Google Cloud Platform

157

11.2  �Setting Up Your Database Server
for Remote Access

In order to use our template-node as a database server, we will need to

prepare the box for remote access to our database. To do that, we need to

do the following:

	 1.	 Modify /var/lib/pgsql/data/postgresql.conf

and set listen_addresses='*'. We don’t have to set

it to the private IP address specifically, because that

is the only IP address we have anyway, and it won’t

be accessible from the Internet unless we configure

GCP to allow it. Restart PostgreSQL with systemctl

restart postgresql so that the changes take effect.

	 2.	 Change the firewall so that we allow connections to

the PostgreSQL server. This will be the commands

firewall-cmd --add-port 5432/tcp and the same

command with the --permanent flag attached.

	 3.	 Modify the PHP code getReadOnlyConnection()

and getReadWriteConnection() so that they

connect to the correct private IP address.

Now the server is ready to be used by a load-balanced cluster.

11.3  �Creating a Replication Image
Creating a replication image in GCP is a somewhat overly complicated

three-step process. First you need to create a “snapshot” of your

instance, then you need to create an “image” out of that snapshot, and

finally you will need to create an “instance template.” The snapshot is

essentially a backup of a machine. The image is essentially a snapshot

Chapter 11 Using the Google Cloud Platform

158

that is intended to be used for creating new boot images for machines.

Finally, the instance template combines an image together with machine

settings (size, configuration, etc.) that can be used to very quickly deploy

identical machines.

Creating a snapshot is a fairly straightforward process. From the main

menu (click the three bars next to where it says “Google Cloud Platform”),

go to the “Compute” section, choose “Compute Engine,” and then choose

“Snapshots.” Click the “Create Snapshot” button. It will ask for a name for

your snapshot, a source disk, and location. Name it whatever you wish,

choose your existing VM Instance as the source disk, and you can leave the

location alone (“Multi-regional” is the most flexible choice). Click “Create”

and GCP will create a new snapshot for you.

Now, GCP does allow you to create instances out of snapshots.

However, to make use of even more features of GCP, it is best to create what

GCP calls an “image” out of your snapshot. In order to do this, go to the

main menu, then the “Compute” section, choose “Compute Engine,” and

then choose “Images.” It will load with a huge list of preconfigured images.

You can ignore those. We want to make our own image. Click the “Create

Image” button to get started.

Give the image a name (e.g., template-image) and set the “Source” to

be “Snapshot.” This will bring up a menu asking which snapshot you want

to create the image from. Choose the snapshot that you just created. If

you want, you can add in a “Family” name. This will enable you to create

updated versions of this instance which carry the same “Family” name.

Now click “Create.” From here you can create new machines from the

image. When creating a new machine, under “Boot Disk,” your image will

be available under the “Custom Images” tab.

Finally, we need to package this image into an instance template.

Instance templates are found under the main menu under “Compute

Engine” and “Instance Templates.” The process for creating an instance

Chapter 11 Using the Google Cloud Platform

159

template is the same as for creating a regular VM Instance. The difference

is that it will not immediately create any instances, but instead can be

used later to quickly deploy fully preconfigured machines. Be sure when

creating your instance template that you set the Boot Image to be the

image you just created in the previous step.

 BEING MORE CAREFUL WITH OUR TEMPLATE

Just as a note, because we set up the database on the machine that became

our template, each new web server in the cluster will actually have an unused

copy of the database with PostgreSQL running on it. This isn’t a problem

per se, but if you were going to make a production deployment, you would

probably want to be sure that PostgreSQL was turned off on the template.

Since GCP has a lot of steps anyway, the goal of this chapter was to reduce

the number of steps you had to achieve in order to get a running configuration.

11.4  �Creating Load-Balanced Groups
However, you can also create an automatically scaling, load-balanced

group of machines called an “instance group.” This is similar to what

we did in Chapter 5, but GCP will actually manage scaling your app for

you. In other words, as the load on your machines increases, GCP will

automatically boot new, identical machines and add them under the load

balancer.

Chapter 11 Using the Google Cloud Platform

160

You can find instance groups on the main menu under “Compute

Engine.” Click “Create Instance Group” to start the process. Figure 11-3

shows what the process looks like.

Give your instance group a name. To ensure increased failure

tolerance, select “Multiple Zones” under Location. Select the instance

template that we created in Section 11.3. Be sure that “Autoscaling” is set

to “On.” If you like, you can set the minimum number of instances to be

higher than one, in order to make sure that GCP is load balancing your app

across multiple servers. Click “Create” to build your instance group.

By default, the instance group does very little. What we need is a way to

bring traffic to the instance group. This is done with a load balancer.

To create a load balancer, under the main menu, look for “Network

Services,” and then “Load Balancing.” Click “Create Load Balancer” to

Figure 11-3.  Creating an Instance Group

Chapter 11 Using the Google Cloud Platform

161

get started. Next choose “HTTP(S) Load Balancing.” Next choose “From

Internet to My VMs” since we want this load balancer to serve as the

gateway between the Internet and your machines.

The next screen gives you the main areas of configuration. First,

give your balancer a name. Next, under “Backend Configuration,” select

“Backend Services” and then “Create a Backend Service.” You will need to

name your backend service (the name doesn’t really matter), then choose

your instance group, and then create a health check (the health check

just needs to be set to TCP port 80). Then click “Create” and it will create

your backend service. You can leave “Host and path rules” and “Frontend

configuration” to their default values. Click “Review and Finalize” to see

all of your settings. Finally, click “Create” to build your load balancer. You

can access the generated IP address, and it will balance the load across

your machines.

Keep in mind that GCP takes quite a while to actually finish creating

your load balancer. Even after GCP “thinks” that it is all the way created,

and tells you that all of the instances have been added to the load balancer,

it still takes several minutes for this actually to be the case. So, for the first

several minutes that your load balancer is active, GCP may report errors

when accessing URLs.

 REMOVING LOAD BALANCERS

Removing a GCP load balancer` is harder than it seems it should be. To remove

a load balancer that we have created in this way, we need to do the following:

	1.	D elete the load balancer itself from the list of load balancers.

	2.	O n the load balancer listing screen, there is a tab called

“Backends.” Click that to view your backend services.

	3.	 Under the “Backends” tab, click the backend you created for

your load balancer, and delete that.

Chapter 11 Using the Google Cloud Platform

162

	4.	N ow your balancer is removed, but you also need to get rid of

your instance groups as well, or else you will continue to be

charged for your machines (you won’t be able to remove your

instances or instance groups before the other steps are done).

	5.	I f you want to not be charged for your image, you will also have

to delete your instance template, and then delete your image,

as well as your snapshot.

11.5  �Other GCP Services
GCP, like AWS, has a number of other services that can be useful when

creating cloud applications. Several similar services include

•	 Cloud SQL (similar to RDS)

•	 Storage (similar to S3)

•	 Memorystore (similar to ElastiCache)

Additionally, GCP also provides PaaS services through a service called

Google App Engine.

In all, GCP has many of the same services as Linode and AWS, but

they are a little more complicated to use. In certain extreme cases, that

complexity can add to additional configurability, but it is rarely needed.

As an example, GCP makes it relatively straightforward to map different

subdirectories onto different instance groups. This makes it easier to host

multiple applications under the same hostname and have each application

be a different instance group.

For most applications, GCP’s complexity outweighs the configurability

that it offers.

Chapter 11 Using the Google Cloud Platform

163© Jonathan Bartlett 2019
J. Bartlett, Building Scalable PHP Web Applications Using the Cloud,
https://doi.org/10.1007/978-1-4842-5212-3_12

CHAPTER 12

Server Management
Techniques
So far, any time we have wanted to push an update to our cloud, we have

had to reimage all of our servers. That isn’t terrible, but neither is it the best

option. If you imagine running a server farm with 20 different servers, do

you really want to go and reimage them all every time you redeploy code?

Probably not. If you want to install a server patch, do you want to go and

reimage all your servers? Again, probably not.

Thankfully, there are a number of tools which can aid the management

of a number of machines. They all have a variety of different focuses—

some are focused on just making repetitive tasks easier, while others are

full management solutions. I’m a simple guy, and I usually prefer the

simpler tools to the large, all-encompassing ones.

12.1  �Running Commands on Multiple
Servers

Let’s say that we wanted to install a new piece of software on every

machine in the cluster. ImageMagick is a popular package for image

manipulation. If we wanted to install ImageMagick on all of the nodes,

the process is rather straightforward. We just ssh in to each box, run yum

install -y ImageMagick, and then exit.

164

Thankfully, there is a piece of software that will do that for us, called

pssh, which stands for Parallel SSH. You don’t need to install anything

new on the server. pssh installs on your local machine and then just uses

the regular ssh mechanisms for running the same command on all of the

remote machines.

However, it might be simpler to install pssh on your template_node

machine so you can use it from anywhere (i.e., you can log in to your

template node and run pssh from there). pssh is available in the EPEL

packages, so we can install it onto template_node just by doing the following:

yum install -y pssh

To use it, we need to create a file (we will call it servers.txt) that lists

all of our servers that we are managing. Use nano to create the file, and put

the public IP addresses of each server in the file. To use pssh all you have to

do is type:

pssh -A -h servers.txt --user root COMMAND

Just replace COMMAND with the command you want to run. Therefore, we

can issue the following command to install ImageMagick to each server:

pssh -A -h servers.txt --user root yum install -y ImageMagick

pssh will ask us for the password (that’s what -A does), and then it will

let us know when it has completed its tasks. Now all you have to do is make

sure you keep the servers.txt file up to date, and you can easily perform

most management tasks from a single machine.

When the commands are run, it will tell you the status on each server,

and, if there is a failure, it will tell you the error code given by the command.

For example, for three servers, the output could look like the following:

[1] 23:00:32 [SUCCESS] 45.79.7.179

[2] 23:00:32 [SUCCESS] 45.79.7.180

[3] 23:00:32 [FAILURE] 45.79.7.181 Exited with error code 1

Chapter 12 Server Management Techniques

165

Then you would want to look into the machine(s) that failed the

command and determine what went wrong.

12.2  �Syncing Files on Multiple Servers
Since running a command on every server is now easy, it would be nice to

be able to copy a set of files to every server. Thankfully, pssh comes with

two file-copying utilities called pscp and prsync so that you can easily copy

files out to remote servers. That way, when you deploy a new version of

your software, you won’t have to reimage every server. The pscp program is

sometimes called pscp.pssh, so if after installing pssh the command pscp

is not found, try using pscp.pssh.

Let’s say you had the file testme.html and you wanted it to be copied

to /var/www/html on every server as user fred. To perform that task, just

type the following (all on one line):

pscp -A -h servers.txt --user fred

 testme.html /var/www/html/testme.html

If you want to copy a whole directory, you can use the same process,

but add -r for recursive copying.

One issue with pscp, however, is that it won’t delete files for you. If you

want to keep two directories in full sync with each other, for both additions

and deletions, you can use prsync, though its syntax is a little tougher.

If I want to mirror a local directory mirror_me to the servers at /var/www/

html/mirror_me, I would issue the following command (all on one line):

prsync -A -a -x --delete --user fred

 -h hosts.txt mirror_me /var/www/html/

By using pssh for commands, pscp for individual files, and prsync for

entire directories, it is fairly easy to do basic management of a set of servers.

Chapter 12 Server Management Techniques

166

There are also several tools available specifically for application

deployment on multiple servers. One of the more popular of these is

Capistrano. Capistrano is written and customized in Ruby, though it can

deploy applications in any language. Capistrano automates many tasks

concerned with file deployment including

•	 Synchronizing with git repositories

•	 Maintaining previous versions of the application on the

server for fast rollbacks

•	 Using symlinks to manage the deployment so that the

entire deployment switches over in an instant

•	 Running custom tasks and scripts associated with the

deployment

As your app gets more and more complex, your tooling needs will

become more complex as well, and having a tool such as Capistrano will

satisfy many of these needs.

12.3  �Full-Service Solutions
While pssh allows you to issue commands to a group of machines and

Capistrano allows you to automate deployments in a more robust manner,

there are additional solutions that go further and completely manage the

target systems for you. These are known as “configuration management”

systems. These systems, while they handle a wide variety of situations,

also come with complications. For most systems, I think that configuration

management systems are overkill, and they add more complexity than they

solve. However, one thing that they do well is to force you to document

what your configuration is (and hopefully why it is set that way). Simply

having a properly configured server does not communicate to future

admins (or yourself in the future) which parts of your configuration were

Chapter 12 Server Management Techniques

167

set by default and which parts are specifically configured for a purpose.

With configuration management tools, your system configuration can be

both documented and version controlled.

As someone who likes minimalist approaches, for system

configuration I really appreciate the Ansible system, which does not

even require anything to be installed on the remote servers. Ansible does

all of its configuration via ssh, and is fairly easy to get up and running.

There is a nice UI available from http://ansible.com/ but it comes with

additional monetary costs (though there are open source GUIs available

as well). However, if all you need is a command-line tool, the open source

version has one of the most minimal footprints of all of the configuration

management tools.

You can even install it from the EPEL repository just with a simple:

yum install -y ansible

However, if you want to go full scale, while there are several other

choices available, the one that many developers choose is Chef. Chef is

based on the Ruby programming language, and lets developers make

configurations as complicated as they wish. Chef also has a number of

feedback mechanisms which allow you to view the status of all of your

managed servers. With Chef, not only can you configure servers however

you wish, you can also collect data and analytics on them as well.

For applications just getting off the ground, I suggest just keeping

a manual log of configuration changes. As your application grows and

matures (and hopefully gets millions and millions of users), being explicit

about your configuration management becomes more important, and it

might be worthwhile to move to a more all-encompassing solution.

Some of the cloud systems we have looked at have some amount

of configuration management built in. GCP’s Instance Template/

Instance Group system can be thought of as a minimalistic configuration

management system. Essentially, as you keep your instance template up

Chapter 12 Server Management Techniques

http://ansible.com/

168

to date, GCP will deploy it across your instance group. Elastic Beanstalk

allows customization of the machines that it deploys your application

on using environment customizations called “EB Extensions.” Even

though Elastic Beanstalk is technically a PaaS, these extensions allow

you to perform configuration management on the platform that you are

deploying to.

Chapter 12 Server Management Techniques

169© Jonathan Bartlett 2019
J. Bartlett, Building Scalable PHP Web Applications Using the Cloud,
https://doi.org/10.1007/978-1-4842-5212-3_13

CHAPTER 13

Linux Security Basics
This chapter is not meant to be a complete guide to cloud security, but

merely to point you in the right direction. Security is more of a process and

way of thinking than it is a series of steps, so this chapter will focus on how

you need to think to protect your servers’ integrity and your data’s integrity.

13.1  �The Basic Considerations
The most important security considerations for system administrators are

the following:

•	 How can I mitigate the risks of being connected to

the Internet?

•	 What is the minimum set of services I can run on my

system and still have it function?

•	 How can I limit access to the server for services that are

not needed by everyone?

•	 Is all of my software patched with the latest security

patches?

•	 What are ways that someone could abuse the

services that are deployed on the server, and how

can I mitigate that?

170

The key to security is to identify what the server is used for and then to

remove anything that does not directly contribute to that function in order

to prevent unwanted consequences. Every service that you have running is

a potential security hole—it is something that someone may one day find

out how to exploit. Therefore, you don’t want exposure on points that do

not contribute directly to function.

13.2  �Examining Your Current Server
The best tool for checking what services are currently running and

listening on your server is ss (socket statistics). To find every TCP service

that is listening for a connection, run the following command as root:

ss -plnt

Every line that says LISTEN is a service that is listening for an IP

connection. If the “Local Address” is 127.0.0.1, ::1 (for IPv6 addresses),

or the node’s private IP address, that means that the service is protected—

only applications on the machine itself can see the service (on on the

private network, in the case of the private IP address). However, if the

local address is *, 0.0.0.0, or :: (for IPv6 addresses), that means that it is

available for anyone to connect to.

Similarly, for UDP connections, you can do:

ss -plnu

For each service (TCP or UDP) that is available to connect to, you

should be sure that it is not permitted by your firewall unless you are

absolutely sure you want people connecting. To get a list of services that

your firewall allows, issue the command:

firewall-cmd –list-all

Chapter 13 Linux Security Basics

171

The items that are listed under “services” and “ports” are what

the firewall is letting through. The services that you should allow are

dhcpv6-client (used by the cloud for configuring networking), ssh

(so you can log in), http (for non-SSL HTTP connections), and https

(for SSL-enabled HTTP connections).

Even though the firewall will prevent connections to anything not listed,

if you have any service running that is listening for connections that you don’t

specifically need running, you should disable the service. Additionally, you

should periodically check your firewall to make sure it is configured correctly.

Additionally, you should take inventory of all of the running processes,

even if they aren’t listening for connections. The best way to do this on

Linux is using the command ps -afxww. Note that everyone has their own

favorite way of calling ps, but this is mine.

I can’t give you a list of everything that should/shouldn’t be running.

However, it is best to learn what each piece does and turn off the pieces

that you don’t need. The fewer services running, the better.

You can also list out all of the packages that you have installed using

the command rpm -qa. As you become more experienced, you should be

able to uninstall programs that you don’t need.

13.3  �The Root User
The most dangerous part of a Linux installation is the root user. It is

dangerous for two reasons. First, it is the superuser, so it has power over

everything else. Second, everyone knows its username, which makes it

easier for automatic hacking tools to breach.

There are several ways to mitigate problems with the root user. They

include

	 1.	 The root password should be secure (i.e., difficult

even for a computer to guess). In fact, the passwords

of every user should be secure.

Chapter 13 Linux Security Basics

172

	 2.	 The server should not permit remote direct root

logins. To prevent direct root logins via ssh, modify

/etc/ssh/sshd_config. If there is already a line

that says PermitRootLogin, change the value from

yes to no. If there is not a line there, add a line that

says PermitRootLogin no. After saving the file,

do systemctl restart sshd and the change will

take effect. After this, you will need to log in as an

ordinary user and use the su command to switch

user to root.

	 3.	 Services should rarely run as the root user unless

there is an overwhelming reason to do so. If a

service must do something as root, the part of the

service which directly talks to remote computers

should not be root.

	 4.	 Users should not spend much time as the root user.

In this book, most of our time has been spent as the

root user. Instead, users should log in under their

own accounts and then switch to the root user using

su or sudo for temporary root privileges.

	 5.	 You should install some sort of service denial

program such as fail2ban, which disables logins

from particular IP addresses after a certain number

of failed attempts.

By preventing people from becoming the root user, running services

that don’t run as the root user, and by protecting the root account

from outside access, the ability of an intruder to do damage is greatly

diminished.

Most administrators use sudo to manage access to the root user. The

sudo command gives a user temporary access to the root user using their

Chapter 13 Linux Security Basics

173

own password, or without a password once logged in. It is already installed

on your machine and will allow any user that is in the wheel group to run

any command as root. To add a user (say, fred) to the wheel group, issue

the command:

usermod -a -G wheel fred

Now, the fred user can run any command as the root user by just

prepending sudo to the beginning of the command. For instance, if fred

wanted to display the file /etc/sudoers (the configure file for the sudo

command), Linux would not normally let him. If he did cat /etc/sudoers,

the operating system would give him an error. But, if fred is in the wheel

group, and he issued the command sudo cat /etc/sudoers, the operating

system would ask him for his password and, after reauthenticating him,

would run the command for him.

In order to use pssh with PermitRootLogin=no, you will need to use

sudo to switch users. However, pssh doesn’t like interaction and will cause

problems when the user is asked for the password. Therefore, you need to

modify the default configuration of sudo in order to allow the user to utilize

sudo without supplying a password (they will still need their password to

log in). To do this, as the root user, add the following line to /etc/sudoers:

%wheel ALL=(ALL) NOPASSWD: ALL

Now, to use pssh, you would log in as fred and sudo to perform your

system administration command, like this:

pssh -A -h servers.txt --user fred sudo put_your_command_here

13.4  �Installing a Web Application Firewall
A web application firewall is a piece of software that sits between your web

application and the Internet. The purpose of a web application firewall is

to check incoming traffic for patterns that are known to be consistent with

Chapter 13 Linux Security Basics

174

malicious intent, and then block those requests. A web application firewall

does not make up for bad programming in a web application, but it will

often prevent automated hacking tools from finding holes.

Apache has a web application firewall available for it that is easy to

install. To install it, just do the following as root:

yum install -y mod_security mod_security_crs

systemctl restart httpd

However, with our test site, the web application firewall will likely

block requests that use the IP address in the URL, as that is a characteristic

of many hack attempts! In fact, I have found that for many production

systems I have to disable several individual rules to get the web application

firewall to work with my application. This can be painful, but on the whole

it is worthwhile to do.

The web application firewall will log which rule denied the request in

the log file /var/log/httpd/error_log. Therefore, you can find the rule ID

number in the log and then disable it in the configuration. Just add the line

SecRuleRemoveById IDNUM to the file /etc/httpd/conf.d/mod_security.

conf to disable unwanted rules.

13.5  �Checking for Rootkits
A rootkit is a piece of software installed by someone who has broken

into your server that makes it easier to control your server for nefarious

deeds. If your server is secure, it is unlikely that someone will break in, but

nonetheless it is good to periodically check.

The two standard pieces of software for rootkit checking are

rkhunter and chkrootkit. rkhunter is currently a part of EPEL and can

be installed with:

yum install -y rkhunter

Chapter 13 Linux Security Basics

175

To run the program, just do rkhunter --check. Be aware that it can

generate false warnings and false positives, so be sure to check the logs to

see what, specifically, it found when it was looking at an issue.

13.6  �Other Security Software
There are a host of other security packages that you can install and use.

The important thing is to know what measures are available, and to see

whether or not they are cost-effective for your needs.

Some additional common security packages for Linux include

logwatch: This tool analyzes log files and e-mails

administrators when suspicious activity is recorded.

fail2ban: This program looks for repeated login

failures and other suspicious behaviors and will

block IP addresses that look like they are attempting

to break in.

SELinux: Security-Enhanced Linux is an operating

mode where the Linux kernel gives very fine-grained

access control to programs, limiting what each

program and user can do significantly more than

normal. SELinux can provide a lot of risk mitigation,

but it is fairly complex to set up, and it is easy to

accidentally block your own applications from doing

what they need to do. We have disabled SELinux in

this book because of the amount of configuration

issues it entails.

FirewallD: This is the standard firewall

administration application used in this book.

Chapter 13 Linux Security Basics

176

AuditD: This program looks for and logs suspicious

activity by application programs.

Remote Syslog: This is not a program, but the

system logger can be configured to log to a remote

server, so that intruders cannot cover their tracks by

modifying log files.

13.7  �Application Security
The hardest thing to secure is the application itself. Realistically, I can’t

offer a whole lot of tips without writing another book. Nonetheless, the

most important things to remember are

	 1.	 Code defensively.

	 2.	 Verify every piece of data from the user.

	 3.	 Properly escape everything sent to the user.

	 4.	 Always double-check the privilege of a user before

performing an operation or showing data. Make

sure that simply knowing a URL or a parameter

doesn’t automatically give a user undue power.

	 5.	 Be very careful about anything that is sent to an

external command or program. Double-check that

you have properly escaped or filtered everything.

	 6.	 Always imagine what would happen for every

piece of data and every request if someone were

maliciously manipulating it.

Chapter 13 Linux Security Basics

177

	 7.	 Always try to code using “best practices” (e.g.,

https://phptherightway.com/). Using best

practices when coding can save you from security

problems that other people introduce, including

those that you accidentally introduce yourself later

down the line as your application grows and turns

what is currently safe code into unsafe code due to

changes elsewhere in the codebase.

Also be sure to check the list of common vulnerabilities at

www.owasp.org

There are many other things that you can and should do to secure your

server and your application, but hopefully this has given you a starting

list of things to be thinking about. PHP sometimes gets an unwarranted

bad reputation for security problems. However, the reason for it is not the

language, but rather that it is often the first language learned by newer web

programmers who have less security experience.

A few resources to help you get started in this direction include

	 1.	 Securing PHP Apps by Ben Edmunds: This is

a short and to-the-point guide to secure practices

in PHP.

	 2.	 Pro PHP Security by Chris Snyder, Thomas
Myer, and Michael Southwell: This is a more

comprehensive guide to security and security

principles with a PHP focus. It is an older book,

but the core security principles have not changed.

	 3.	 Mastering Linux Security and Hardening by
Donald Tevault: Writing secure PHP code won’t

help you if your server isn’t configured properly.

Chapter 13 Linux Security Basics

https://phptherightway.com/
http://www.owasp.org/

178

	 4.	 Practical Information Security Management by
Tony Campbell: This book will help you understand

at a higher level what is being secured, what is being

protected, how to manage tradeoffs, and what the

ultimate goals of security are.

The most important thing, however, is to always be thinking about

how your application could be abused and always be learning new ways to

proactively guard against those things.

Chapter 13 Linux Security Basics

179© Jonathan Bartlett 2019
J. Bartlett, Building Scalable PHP Web Applications Using the Cloud,
https://doi.org/10.1007/978-1-4842-5212-3

APPENDIX A�

List of Linux
Commands
This appendix contains lists of the Linux commands that were used in this

book, plus a few extra that are frequently important when working with

Linux and the CentOS Linux distribution.

Linux commands usually follow the same basic format, based largely

after human communication. The command is listed first because that

is the name of the program which runs the command. Most commands

take one or more arguments which can be considered similar to direct

objects of a sentence. Additionally, many commands take options (also

called flags, modifiers, or parameters) which modify the behavior of the

command. These are very similar to adverbs. Options are usually given

by prefixing them with a dash. For instance, to change the “list directory”

command (ls) to show a long-form listing, you add the -l option to the

command. Thus, the command to show the long-form listing is ls -l.

Sometimes options themselves take arguments. However, if they don’t,

you can oftentimes stack them. For instance, ls can also show hidden files

with -a. You can do both options with ls -l -a, but you can also squeeze

them together with ls -la. Many commands have both long options and

short options, with the longer version of the option usually preceded by

https://doi.org/10.1007/978-1-4842-5212-3

180

two dashes. For instance, instead of doing ls –a, you could instead type ls

--all. If you don’t know how to invoke a command, most commands have

a help screen that you can invoke by doing COMMAND -h or COMMAND --help.

While each command has its own quirks and abilities, this general

command format is common to most commands in Linux.

Additionally, you can get fuller information about a command by

looking it up in the manual using the man command. For instance, to get

the manual page on ls, type in man ls. Type q to exit the manual pages.

�Basic Linux Commands
cat: This command simply spits out a given file to

the screen.

cd: This changes your current directory. If the

argument starts with a /, then it is an absolute path

starting from the root of the filesystem hierarchy. If

the argument starts with a ~, it is a path that starts

from your home directory. Otherwise, it is a relative

path starting from your current directory. The

special directory .. represents the parent directory,

and the special directory . represents the current

directory. Therefore, to get to the parent directory of

your current directory, just do cd .. .

chgrp: This is like chown, but just for group

ownership.

chmod: This changes the permissions on a file. Each

file has separate permissions for the user owner (u),

the group owner (g), and everybody else (o). The

basic set of permissions is read (r), write (w), and

execute (x). To add execute permission to the owner

Appendix A List of Linux Commands

181

of a file, you would type chmod u+x FILENAME. To

add read permission to everybody on a file, you

would type chmod a+r FILENAME, where a refers

to all users (u, g, and o). To remove group write

permission on a directory and every file/directory

under it, you would do chmod -R g-w FILENAME.

chown: This changes the user and group ownership

of a file. If you do chown fred FILENAME, then fred

becomes the owner of the file. If you do chown

fred:stonemasons FILENAME, then fred becomes

the owner and the group stonemasons becomes the

group owner of the file. You can add the -R option

to change the ownership of a directory and all of the

file/directories underneath it.

head: This command gives you the first few lines of

a file. head -n NUM FILENAME will give you the first

NUM lines of the FILENAME file.

ls: This command lists all of the files in your current

directory. Using the -a switch will show all files,

including special and hidden files (files starting

with a .), and the -l switch will show additional

information about the files. You can also specify a

specific directory to list at the end of the command.

man: This command gives the manual page for

a given command or configuration file. man ls

tells you about the ls command. To get out of the

manual, just type q.

mkdir: This creates a new directory within your

current directory (or anywhere at all if you give it an

absolute path starting with / or ~).

Appendix A List of Linux Commands

182

nano: This is a simple text editor that comes with

many Linux distributions. Common commands to

use within nano are control-o which saves (outputs)

the file, control-x which quits, and control-w which

searches.

pwd: This prints out your current directory. It stands

for “print working directory.”

rm: Removes a given file. If you want to remove a

whole directory tree (the directory and all of the

files/directories in it), add the -r switch. Just be

careful!

scp: This command (known as “secure copy”)

remote copies a file from one machine to another

over an encrypted channel. The basic format is scp

LOCALFILE USERNAME@REMOTE.MACHINE.NAME:/

PATH/TO/DESTINATION.

ssh: This command (known as “secure shell”)

allows you to remote access other machines over

an encrypted channel. The general format is ssh

USERNAME@MACHINE.HOST.NAME.

tail: This command gives you the last few lines of

a file. tail -n NUM FILENAME gives you the last NUM

lines of the file FILENAME.

telnet: Telnet used to be the way that you accessed

machines remotely, before encryption became

a necessity. Now it is often used to make direct

connections with remote servers for testing. For

instance, to talk to a web server directly, you can

type in telnet REMOTE.MACHINE.NAME 80, and it

Appendix A List of Linux Commands

183

will connect you directly to port 80 on the remote

machine. Remember that telnet will display

information directly to your screen, so be careful if

sensitive data may be returned.

vim: This application (or its older brother, vi) is an

editor that you will find on nearly any Linux-like

system. It is very powerful, but please read a tutorial

on it before attempting to use it. Its primary benefits

are that its keyboard interface is based on where

your hands naturally sit on the keyboard and that its

small footprint and longstanding heritage mean that

you will never be on a Linux or UNIX machine that

doesn’t have it installed.

�Basic System Administration
passwd: This command changes the password of

users. Without an argument, this changes your own

password. Otherwise, it changes the password of the

user you specify.

useradd: This creates a new user on the system.

useradd fred adds a new user with the name fred.

Use the passwd command to set their password.

usermod: This modifies a user on the system,

normally to add them to a group. Use usermod

-a -G thegroup theusername to add the user

theusername to the group thegroup.

systemctl: This command handles starting and

stopping background services on Linux. This

command usually has the form systemctl CMD

Appendix A List of Linux Commands

184

SERVICE where CMD is the command you want to

give, and SERVICE is the service you want to issue

the command to. Service commands include start,

stop, restart, enable (make sure the service starts

on bootup), and disable (make sure the service

does not start on bootup). The main services

covered in this book include httpd, postgresql, and

memcached.

firewall-cmd: This command handles the

firewall. This command has several options. The

option --add-service SERVICENAME allows you to

open up a service to outside connections, where

SERVICENAME is the specific service you want to

allow outside users to connect to. The list of services

is available by running firewall-cmd --get-

service. If you just want to open up a port (i.e.,

one for which there is no service description), you

can just use firewall-cmd --add-port 1234/tcp

in order to open up TCP port 1234. To make the

service available on reboot, you need to re-issue the

command with the --permanent flag added. You can

show everything enabled on the current firewall by

using --list-all.

yum: The yum command is the automated package

installer for CentOS and other Linux distributions.

yum allows you to quickly and easily search, find, and

install Linux packages onto your system. yum focuses

on finding packages on the Internet and resolving

dependencies between packages, and then uses rpm

to do all of the dirty work of actually installing the

packages. yum includes several subcommands, such

Appendix A List of Linux Commands

185

as search, install, update, and uninstall. yum

update updates all of your installed packages, yum

search TERM gives you a list of all available packages

whose description includes the word TERM, and yum

install PACKAGENAME will install PACKAGENAME and

all of its dependencies for you. If for some reason

yum stops working correctly, usually you can fix it by

running yum clean all.

rpm: The rpm command is the low-level package

manager for CentOS. It handles the work of

actually taking a package file and installing it onto

the system. This is pretty rare, as this is usually

handled through yum. However, rpm also has a way

of querying installed packages. A list of all of your

installed packages can be found by running rpm

-qa, and a list of all files that were modified after

installation can be found by running rpm -Va.

rkhunter: This command, if installed, checks your

system for various types of malware by running

rkhunter --check.

su: This command stands for “switch user.” Without

any arguments, this switches the user to the root

user. You usually want to add the -l option, which

means to act as if you logged in with this user, which

will take you to the user’s home directory and run

other login tasks. If you give it an argument, it will be

the name of the user you want to switch to. You must

enter that user’s password in order to switch users.

Appendix A List of Linux Commands

186

sudo: This command lets you temporarily run a

command as another user (normally as root). The

configuration of this command is beyond the scope

of this book, but man sudo should give you good

information.

pssh: This command performs a parallel ssh session

across multiple hosts. See Chapter 12 for more

information about this command.

pscp: This command performs a parallel scp copy

from a local file or directory to multiple destination

hosts. See Chapter 12 for more information about

this command.

prsync: This command does a parallel

synchronization between a local directory and

multiple destination hosts. See Chapter 12 for more

information about this command.

ss: This command gives information about open

sockets on your machine. The two commands we

focus on are ss -plnt for looking at listening TCP

connections and ss -plnu for looking at listening

UDP connections. This command is critical for

knowing potential attack vectors that an attacker

may use to gain access to your system.

netstat: This is an older version of the ss

command. This command gives you lots of

information about active network connections on

the system. The two ways this is normally called are

netstat -plant (which gives a list of TCP session

and listening sockets) and netstat -planu (which

gives a similar list for UDP).

Appendix A List of Linux Commands

187

ps: This command gives you information about

processes running on the system. This has

numerous options that can give you almost any

piece of information you want to know. However,

my favorite way of calling it is ps -afxww which gives

you a list of all of the processes currently running

displayed as a tree so you know which process

spawned which other process.

top: This command gives you information about

which processes are using the most system

resources. Use q to leave top.

free: This gives a short rundown of the current

memory usage on the system. free -h gives the

most readable output.

uptime: This gives a short rundown of the current

load on the system. In Linux, the load is the number

of processes that are wanting CPU time at any

given moment. Therefore, for a machine with x

processors, the machine is fully loaded near x and

is falling behind when it goes above that number. I

usually try to keep my machines only half loaded at

most.

�PostgreSQL Commands
createdb: This command creates a new database

in PostgreSQL, usually called with the parameter -U

PGUSER, where PGUSER is the PostgreSQL user who

will create (and therefore own) this database.

Appendix A List of Linux Commands

188

createuser: This command creates new users in

PostgreSQL. This takes the -U PGUSER parameter

to tell which user to run as. The -d flag will give

the new user permission to create new databases,

and the -P parameter will prompt you to type in a

password for the new user.

pg_basebackup: This command creates a binary

backup of PostgreSQL. In this book, we use this

command as a starting point for replication.

postgresql-setup: This is a script that aids the

installation of PostgreSQL instances. In this book,

we just use postgresql-setup initdb to create the

initial instance data for PostgreSQL.

psql: This command gives you access to the

PostgreSQL interactive SQL prompt. The -U PGUSER

indicates which PostgreSQL user you will access

the database as, and the command argument will

be which database to connect to. The -h HOSTNAME

option can allow you to access a PostgreSQL

database on a different host.

�Other Application-Specific Commands
ab: The ApacheBench command simulates a large

number of requests to a web site and gathers

response statistics. It is normally called ab -n

NUMREQUESTS -c NUMCONNS FULL_URL, where

NUMREQUESTS are the total number of requests for

ApacheBench to make, NUMCONNS is the number of

simultaneous connections to keep going, and FULL_

URL is the destination URL you are trying to test.

Appendix A List of Linux Commands

189

convert: This command is a part of the

ImageMagick package, and is a Swiss army knife for

converting and modifying image files. To convert

a JPEG file called testme.jpg to a PNG file, just do

convert testme.jpg testme.png.

pecl: This is a package manager for PHP. This

allows you to install add-ons to the system’s PHP

environment that aren’t available via yum.

Appendix A List of Linux Commands

191© Jonathan Bartlett 2019
J. Bartlett, Building Scalable PHP Web Applications Using the Cloud,
https://doi.org/10.1007/978-1-4842-5212-3

�APPENDIX B

Important Files
and Directories
This book mentions a number of important files and directories on

CentOS. This appendix lists the files and directories from the book that

you need to remember, plus a few more. Remember, each distribution

has its own special way of doing things, so a file’s location on CentOS

may be slightly different than its location on Ubuntu. Additionally, each

cloud provider may also set things up in certain ways. Custom-installed

applications sometimes can wind up just about anywhere, depending

on the application author, the person who packaged it, or the user who

installed it. The Remi packages used in this book are a case in point—the

/opt/remi hierarchy is entirely an invention of the packager.

�Basic Linux Filesystem Directories
The first part of knowing where to find things is to know where Linux

likes to put things. This section is a brief introduction to the standard

structure of the Linux filesystem. Note that on Linux hard drives do not

exist separately, but are instead “mounted” at certain locations on the

https://doi.org/10.1007/978-1-4842-5212-3

192

filesystem. In other words, there is a single filesystem hierarchy even with

multiple hard drives. The drives simply represent specific folders within

the hierarchy.

/: This is the root of the filesystem tree. Every file

and directory is contained somewhere in here.

/boot: This directory holds basic files for booting up

(like the Linux kernel). You should usually stay out

of this directory.

/dev: In Linux, devices are represented as files, and

they live here.

/etc: This directory contains most of the

configuration files for the computer.

/proc: This directory contains a file for every

running process on the computer, plus files to

represent operating system status information.

/tmp: This directory is used to store temporary files.

/var: This directory holds variable files—files that

are tied to programs and are intended to change

during the operation of a program. For instance,

your database is stored in a subdirectory of /var

because it is changing and it is managed by the

database software instead of by the user.

/var/log: This directory holds most of the log files

for the system.

/var/spool: This directory is mostly used for

transient data within a system, such as current mail

for a mail server, jobs for a print service, and so on.

Appendix B Important Files and Directories

193

/usr: This directory is a mostly read-only directory

used to store programs used by the machine in the

course of its operation.

/usr/bin: The files in this directory are the

programs (i.e., binaries) that are normally used

on the server by users and other programs. Also

note that there is a directory /bin which has the

programs that are necessary for proper bootup.

/usr/sbin: The files in this directory are the system

programs (e.g., daemons and system tools) that are

available for use on this machine. Also note that

there is a directory /sbin which has the system

programs that are necessary for proper bootup.

/usr/lib: The files that live here are the system

libraries that support the applications. There is often

a /usr/lib64 directory for 64-bit libraries. Also note

that there is a directory /lib which has the libraries

that are necessary for proper bootup.

/usr/local: This directory has almost an identical

structure to /usr, but the programs installed here

are usually compiled by the system administrator.

Unlike /opt (where each program gets an entire

directory to themselves), the programs installed

here all share the same bin, lib, and sbin

directories.

/home: This directory holds the home directory of

each user on the machine except root.

/root: This is root’s home directory.

Appendix B Important Files and Directories

194

/opt: This is a directory that often has custom-

installed applications.

In /opt, each program usually has its own directory.

�Important Directories for Cloud Servers
These directories are special-purpose directories that you will want to

know about for operating a cloud server. Different Linux distributions may

put these in different locations, but these are the default CentOS locations.

/etc/httpd: This is the directory that holds the

configuration files for the Apache web server.

/etc/postfix: This is the mail server’s configuration

directory.

/etc/sysconfig: This directory holds additional

configuration of many system services.

/etc/systemd: This directory contains the

configuration information that managed the

systemctl command.

/etc/ssh: This directory contains the configuration

of both the ssh client and server.

/var/lib/pgsql/data: This is the directory that

holds PostgreSQL’s database files.

/var/lib/pgsql/data/pg_log/: This is the

directory that holds PostgreSQL’s log information.

/var/log/httpd: This is the directory that holds

Apache’s server logs.

Appendix B Important Files and Directories

195

/var/www/html: This is the default directory for

holding a web site.

/opt/remi/php74/root: This is the directory

that holds the PHP 7.4 installation from the Remi

repository that is used in this book.

�Important Files
This book has covered many different files that have to be configured for

properly running a server.

/var/lib/pgsql/data/pg_hba.conf: This file

configures access controls for PostgreSQL.

/var/lib/pgsql/data/postgresql.conf: This is the

main configuration file for PostgreSQL.

/var/lib/pgsql/data/recovery.conf: This file

controls a PostgreSQL instance running as a replica

server.

/var/log/httpd/access_log: This is the default

location that logs every time your web server is

accessed.

/var/log/httpd/error_log: This is the default

location for errors from Apache and PHP.

/var/log/maillog: This is the log of all mail

messages sent out from the system.

/var/log/messages: This is the default location for

system error messages.

Appendix B Important Files and Directories

197© Jonathan Bartlett 2019
J. Bartlett, Building Scalable PHP Web Applications Using the Cloud,
https://doi.org/10.1007/978-1-4842-5212-3

APPENDIX C�

What to Do When It
Doesn’t Work
There are all sorts of things that can go wrong when following code from

a book. This appendix focuses on the most common issues and what you

can do about them.

�Making Sure Everything Is Typed
in Correctly
In any programming book, the first thing to check when something doesn’t

go right is to make sure it is typed in correctly.

•	 Be sure that everything is typed correctly.

•	 Make certain that everything is on the line that it is

supposed to be (sometimes this matters, sometimes it

doesn’t—better safe than sorry).

•	 Check to see that everything uses the right punctuation

(i.e., that you used colons and semicolons properly and

used single and double quotes correctly).

https://doi.org/10.1007/978-1-4842-5212-3

198

•	 Verify that your computer didn’t autocorrect your

punctuation into something more pretty. If you type

in "hello" and your computer spits out “hello”, then

that will not work. Turn off automatic punctuation or

whatever it is.

•	 If you are writing the PHP files locally, be sure that you

are using a text editor, not a word process, and that the

files are being saved text-only, using either an ASCII or

UTF-8 character set.

�Making Sure You Checked the Logs
If you think that you did everything right, and it still isn’t working out

for you, check the logs. This is the easiest way to spot a mistake. For PHP

programs, the log files to check are /var/log/httpd/error_log and

/var/opt/remi/php74/log/php-fpm/www-error.log. For PostgreSQL

startup errors, the log files are in the directory /var/lib/pgsql/data/

pg_log. Finally, for general system messages, check /var/log/messages.

Many log files are very long, and you only need to see the last few lines.

The tail command will help you by just giving you the last few lines of

a file. tail /var/log/messages or tail /etc/httpd/logs/error_log

will potentially give you a lot of information about any problems you are

having on your system.

�Making Sure You Didn’t Miss a Step
The instructions in this book contain a number of steps, and care was

taken to be sure that they all worked when done in order. Therefore, be

sure that you follow the steps in order when you are first learning. After

you get the first thing up and running, then you should take the time and

initiative to branch out and try variations.

APPENDIX C What to Do When It Doesn’t Work

199

Additionally, this book has a lot of things for you to install, and it is

possible you missed one. Just in case, you might go each chapter and make

sure you installed everything.

�What If I Run a Different Version/
Distribution of Linux
Of course, there are a ton of different Linux distributions, and the specifics

even within a distribution change for each version. If you are running a

different version of Linux, be aware that the commands might be slightly

different, that there may be slightly different ways of doing things, different

things might come standard, and directories might be located in different

places.

This book was written around the latest CentOS distribution at

the time, so it will hopefully be perfectly suitable for several years.

Nonetheless, the basic ideas will still work even if you need to tweak the

directions slightly for the Linux distribution you are working with.

�What If I Want to Use a Different Cloud
Service?
While this book focuses on Linode, AWS, and GCP, there is very little in

this book that doesn’t directly translate to other services. I am a huge fan

of Linode because they have a service that is simple yet powerful, and their

servers are top quality. Most cloud services, however, are structured in

essentially the same way. Therefore, if you are using a different service for

some reason, the basic ideas in this book should still continue to hold. The

point of this book is to get your mind thinking about cloud architecture—

using a specific service merely helps you get started with a concrete

starting point.

APPENDIX C What to Do When It Doesn’t Work

200

�Where Else Can I Find Information?
Information abounds on the Web about troubleshooting programs

that have gone awry. The first try for anything that happens that I don’t

understand is to Google the error message. If that doesn’t work (or if you

don’t even have an error message to start from), the next step is probably

a message board. The biggest message board is Stack Exchange, but there

are other good ones as well.

Each of the technologies that this book deals with has excellent

reference manuals. Most of these are really good, though it sometimes

takes a while to find the specific solution that you need. The PHP reference

manual even has an interactive section, where developers can ask

questions and get answers.

Finally, you can go to a local developer meetup. Nearly every city has

one. Even if it isn’t PHP specific, if you find a developer group, chances are

one of them will know enough PHP, Apache, or Linux to help you out.

Don’t be stuck by yourself—get help and improve your skillset!

APPENDIX C What to Do When It Doesn’t Work

201© Jonathan Bartlett 2019
J. Bartlett, Building Scalable PHP Web Applications Using the Cloud,
https://doi.org/10.1007/978-1-4842-5212-3

�Afterword

Now that you have taken our small guestbook app through a variety of

cloud configurations, you should be able to apply these principles to

scaling any other application in the cloud.

A few tips to keep in mind as you go forward are

•	 Always look for ways to restructure your application so

as to prevent a bottleneck of any one location or action.

•	 Keep an eye out for parts of your application that can

be easily replicated to infinite scale through CDNs or

similar services.

•	 Measure the scalability of different configurations of

your application to find out where your problems are

and where you quickly max out your system.

If you have followed through the exercises in this book, you can

consider yourself experienced at scaling web applications in the cloud!

https://doi.org/10.1007/978-1-4842-5212-3

203© Jonathan Bartlett 2019
J. Bartlett, Building Scalable PHP Web Applications Using the Cloud,
https://doi.org/10.1007/978-1-4842-5212-3

Index

A
Access Key ID, 130
Active health checks, 73
Ajax techniques, 121
Amazon lightsail, 142

availability zones, 143
datacenters, 143
initial dashboard, 143
instance, creation, 144
Linode, 142
node, creation, 146
node dashboard, 145

AmazonS3FullAccess, 128
Amazon Web Services

(AWS), 14
ApacheBench, 87, 88
Application security, 176–178
Application-Specific

commands, 188, 189
Availability zones, 143
AWS Configuration, 135

B
Backups settings, 61

C
Cache debugging, 89–91
Cache keys, 80
Caching architectures

implementing,
application, 83–85

key/value pairs, 80
load balancer stickiness, 83
testing, 87–89
two-tier, 81, 82

Caching service, 83
CentOS 7 Linux, 4
CloudAtCost, 14
Cloud cluster, 17
CloudFront, 142
Cloud providers, 8
Cloud security

application, 176–178
current server, 170, 171
packages for Linux, 175, 176
rootkits, 174, 175
root user, 171–173
system administrators, 169, 170
web application firewall,

installation, 173, 174

https://doi.org/10.1007/978-1-4842-5212-3

204

Cloud server, Linode
CentOS, 30
file transmission, 38–41
networking tab, 25–30
PHP 7 installation, 34–36
running the web server, 31–33
virtual server creation, 21–24

Cloud servers
directories, 194, 195

Cloud SQL, 162
Cloud storage services, 125
Cluster, reimaging, 86
Content Delivery Network (CDN)

Ajax techniques, 121
architecture, 121
cache, 116–118
CloudFront Distribution,

119, 120
creation, 113
dashboard, 112
list, 114
working, 111, 112

dynamic content, 121
multiple IP addresses, 117
removing content, 115
server, 117
use, 114–116
user-based

content, 122, 123
web applications, 121
web frameworks, 122, 124
working, 110, 111

CSS, 2, 48, 55

D
Database

PHP code, 46–55
PostgreSQL, 43–46

Database replication
datacenters, 103–105
PostgreSQL, 94–99
types, 93, 94
user replicator, creation, 96

Datacenters, 103–105, 143
Data integrity, 79
Data sharding, 106, 107
DNS mechanism, 117
Docker, 11
Dynamic content, 109

E
EB Extensions, 168
EC2—the Elastic Compute

Cloud, 142
Elastic Beanstalk

createdb.php, 148
Elastic Beanstalk

AWS management console and
search, 148

configuration changes, 152
database with RDS

accessing, 147
creation, 148

EB environment dashboard, 150
environment variables, 147, 148
load balanced, 151

INDEX

205

IaaS cloud, 146, 147
upload and deploy, 151
web server environment, 149

Environment variables, 133, 134
Extra Packages for Enterprise Linux

(EPEL), 34

F
Failover replication, 93
File permissions, 138, 139
firewall-cmd, 184
Full-Service solutions, 166–168

G
$_GET and $_POST, 49
getAWSCredentials() functions, 135
getFooter() functions, 47
getHeader() functions, 47, 115
getReadOnlyConnection()

functions, 68, 100, 147
getReadWriteConnection()

functions, 68, 147
Google Cloud Platform (GCP)

instance groups, 159, 160
load-balanced group,

creation, 159–161
remote access, database, 157
removing, load balancer, 161
replication image,

creation, 157, 158
services, 162
template node, 154, 155

VM Instance, creation, 155
welcome screen, 154

H
Hosting, AWS

EB (see Elastic Beanstalk)
Lightsail, 142–144, 146

htmlspecialchars(), 49
HTTP methods, 119

I, J, K
IaaS vendor

AWS, 15
CloudAtCost, 14
DigitalOcean, 16
Linode, 15, 16
price/performance ratio, 14
SSD drives, 15

Identity and Access Management
(IAM), 127

ImageMagick, installation, 164
Image manipulation, 163
Infrastructure as a Service

(IaaS), 146
advantages, 8
bare servers, 11
charges, 13
CPU cores, 8
defined, 8
pricing model, 10
vendor, 9
virtualization, 9

Index

206

Instance groups, 159, 160
Instance templates, 158
Internal load balancers,

creation, 101

L
Lightsail nodes, 145
Limiting factor, 58
Linode backup management

screen, 15, 61
Linux commands, 3, 180–183
Linux filesystem

directories, 192, 193
Load-balanced

cluster, 157
Load-balanced group, 159
Load balancer

stickiness, 83, 159, 161
Log files, 141
list directory command (ls), 179

M
Master/replica replication, 93

application to utilize, 100
architecture, 95

Memcache Connection
Function, 84

Memorystore, 162
Minimalistic configuration

management system, 167
Multimaster replication, 94
Multisite Architecture, 104

N, O
Node balancer

active health checks, 73
algorithm, 73
protocol, 72, 73
session, 73
TCP port, 72

P, Q
IaaS cloud hosting, 153
PaaS vendors, 12, 13
pg_basebackup command, 97
PHP Data Objects (PDO), 47
Platform-as-a-Service (PaaS)

cloud, 10, 11, 146
PostgreSQL

configuration, 44
database, creation, 45
documentation, 45
id field, 46
installation, 44

PostgreSQL commands, 187, 188
PostgreSQL Replica Servers,

100–102
PostgreSQL’s replication, 94–99
Private IP addresses, 65
pscp.pssh, 165
Public vs. private IP addresses, 156

R
Rackspace’s Cloud Files, 125
README file, 5

INDEX

207

Relational database
service—RDS, 147

Reliability, 80
Rootkits, 174, 175
Root user, 171–173
rpm command, 185
Ruby on Rails system, 2

S
Scalability, 18, 87
Scaling static assets, 109
Secret Access Key, 130
SELinux, 36
Server Management Techniques

full-service solutions, 166, 167
running commands, 163, 164
syncing files, 165, 166

Server room, 18, 19
Signature expiration, 138
Simple Storage Service (S3)

Amazon AWS suite, 126
Amazon’s service, 125
Application, 134–138
CloudFront, 126
command-line tool, 130–133
fields, 129
file management, 125
flexibility, 125
folders, 127
IAM Initial Dashboard, 128
programmatic access, 129
server’s security, 130

Stack Exchange, 200

Storage, 162
System administration, 183–187
systemctl, 183

T, U
tail command, 198
Telnet, 182
Text editor, 198
Two-tier architecture, 58

database connections, 65, 66
Linode, 59, 62
private network, setup, 63, 64
web server, setup, 67–69

Two-tier architecture,
caching, 81, 82

V
Virtual machines, 17

W, X
WAL streaming, 95
Web application firewall, 116,

 173, 174
Web Server

node, 68
template_node, configuration, 67

Windows, 3

Y, Z
yum command, 184

Index

	Table of Contents
	About the Author
	Acknowledgments
	Chapter 1: Introduction
	1.1 Prerequisites
	1.2 Typographical Conventions
	1.3 Typing or Downloading the Code

	Chapter 2: What Is the Cloud
	2.1 Infrastructure as a Service
	2.2 Platform as a Service
	2.3 Docker
	2.4 Why Choose IaaS
	2.5 Choosing an IaaS Vendor
	2.6 Some Important Terminology

	Chapter 3: Setting Up a Cloud Server
	3.1 Creating Your Virtual Server
	3.2 Logging In and Looking Around
	3.3 Updating Your System
	3.4 Running the Web Server
	3.5 Putting Up Your Own Web Pages
	3.6 Installing PHP 7
	3.7 Turning Off SELinux
	3.8 Setting Up a User for Development
	3.9 Transmitting Files to the Server

	Chapter 4: Creating a Simple Web App
	4.1 Setting Up the Database Service
	4.2 The PHP Code

	Chapter 5: Setting Up a Basic Cloud Cluster
	5.1 A Simple Two-Tier Architecture
	5.2 Replicating a Node
	5.3 Setting Up Your Private Network
	5.4 Handling Database Connections from Other Servers
	5.5 Setting Up a Web Server
	5.6 Setting Up the Load Balancer
	5.7 Measuring Scalability

	Chapter 6: Improving Scalability with Caching
	6.1 Understanding Caching Architectures
	6.2 Implementing Caching in the Application
	6.3 Reimaging the Cluster
	6.4 Testing Our Caching Architecture

	Chapter 7: Database Replication
	7.1 Types of Database Replication
	7.2 Replicating the PostgreSQL Database
	7.3 Setting Up the Application to Utilize Master/Replica Replication
	7.4 Adding More PostgreSQL Replica Servers
	7.5 Replicating Across Datacenters
	7.6 Sharding Your Data

	Chapter 8: Using a Content Delivery Network
	8.1 How Does a CDN Work?
	8.2 Setting Up a Simple CDN
	8.3 Using Your CDN
	8.4 Caching Your Whole Site with a CDN
	8.5 Putting CloudFront In Front of the Entire Application
	8.6 Turning Your Application Inside Out

	Chapter 9: Using S3 for Infinite Disk Space
	9.1 Getting Started with S3
	9.2 Folders in S3
	9.3 Getting Credentials
	9.4 Access S3 via Command Line
	9.5 Connecting Your Application to S3

	Chapter 10: Hosting with AWS
	10.1 Using Amazon Lightsail
	10.2 Hosting on Elastic Beanstalk

	Chapter 11: Using the Google Cloud Platform
	11.1 Setting Up Your Template Node
	11.2 Setting Up Your Database Server for Remote Access
	11.3 Creating a Replication Image
	11.4 Creating Load-Balanced Groups
	11.5 Other GCP Services

	Chapter 12: Server Management Techniques
	12.1 Running Commands on Multiple Servers
	12.2 Syncing Files on Multiple Servers
	12.3 Full-Service Solutions

	Chapter 13: Linux Security Basics
	13.1 The Basic Considerations
	13.2 Examining Your Current Server
	13.3 The Root User
	13.4 Installing a Web Application Firewall
	13.5 Checking for Rootkits
	13.6 Other Security Software
	13.7 Application Security

	Appendix A: List of Linux Commands
	Basic Linux Commands
	Basic System Administration
	PostgreSQL Commands
	Other Application-Specific Commands

	Appendix B: Important Files and Directories
	Basic Linux Filesystem Directories
	Important Directories for Cloud Servers
	Important Files

	Appendix C: What to Do When It Doesn’t Work
	Making Sure Everything Is Typed in Correctly
	Making Sure You Checked the Logs
	Making Sure You Didn’t Miss a Step
	What If I Run a Different Version/Distribution of Linux
	What If I Want to Use a Different Cloud Service?
	Where Else Can I Find Information?

	Afterword
	Index

