Chris Buckett

Foreworn By Seth Ladd

/III MANNING

.alitebooks.co

http://www.allitebooks.org

Dart in Action

vww.allitebooks.cond

http://www.allitebooks.org

vww.allitebooks.cond

http://www.allitebooks.org

Dart in Action

CHRIS BUCKETT

MANNING
Shelter Island

vww.allitebooks.cond

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 261

Shelter Island, NY 11964
Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Development editor: Susanna Kline

/l/l Manning Publications Co. Technical proofreader: John Evans
20 Baldwin Road Copyeditor: Tiffany Taylor
PO Box 261 Proofreader: Toma Mulligan
Shelter Island, NY 11964 Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617290862
Printed in the United States of America

12345678910 - MAL- 17 16 15 14 13 12

vww.allitebooks.cond

www.manning.com
http://www.allitebooks.org

brief contents

PART 1 INTRODUCING IDART eeuveureeereereecercescncescessescscescescscessesssseseel

© 0 g o

Hello Dart 3
“Hello World” with Dart tools 24
Building and testing your own Dart app 40

Functional first-class functions and closures 71
Understanding libraries and privacy 94
Constructing classes and interfaces 119
Extending classes and interfaces 138
Collections of richer classes 158

Asynchronous programming with callbacks and futures 183

PART 3 CLIENT-SIDE DART APPS.ccueeereeceerercecescescecessesescescescscescnns 209

10 w Building a Dart web app 211

11 = Navigating offline data 237

12 = Communicating with other systems and languages 258

vi BRIEF CONTENTS

PART 4 SERVER-SIDE IDART «ecutierreereecerceceecercereecescesescescescscescnsene 281

13 wm Server interaction with files and HTTP 283
14 w Sending, syncing, and storing data 308

15 = Concurrency with isolates 331

contents

Sforeword xv

preface xvii
acknowledgments xix

about this book xxi

about the cover illustration xxv

Hello Dart 3
1.1 Whatis Dart? 3

A familiar syntax to help language adoption 5 = Single-page
application architecture 6

1.2 Alook at the Dart language 7

String interpolation 7 = Optional types in action 9
Traditional class-based structure 10 = Implied interface
definitions 11 = Factory constructors to provide default
implementations 12 = Libraries and scope 13 = Functions
as first-class objects 16 = Concurrency with isolates 17

1.3 Web programming with Dart 18

dart:html: a cleaner DOM library for the browser 18 = Dart and
HTML5 19

viii CONTENTS

1.4 The Dart tool ecosystem 20

The Dart Editor 20 = Danrt virtual machine 21 = Dartium 21
dart2js: the Dart-to-JavaScript converter 22 = Pub for package
management 22

1.5 Summary 23

2 “Hello World” with Dart tools 24
2.1 The command-line Dart VM 25
2.2 “Hello World” with the Dart Editor 26

Exploring the Dart Editor tools 27 = The relationship between Dart
and HTML files 30 = Running “Hello World” with Dartium 30
Using dart2js to convert to JavaScript 32 = Generating
documentation with dartdoc 34 = Debugging Dart with
breakpoints 34

2.3 Importing libraries to update the browser Ul 35

Importing Dart libraries 36 = Accessing DOM elements with
dart:html 37 = Dynamically adding new elements to the page 38

24 Summary 39

Building and testing your own Dart app 40
3.1 Building a UI with darthtml 41

Entry-point HTML 42 = Creating dari:html elements 42
Creating a new Element from HTML snippets 44 = Creating
elements by tag name 45 = Adding elements to an HTML
document 46

3.2 Building interactivity with browser events 49

Adding the PackList item from a button click 49 = Event handling
with Dart’s flexible function syntax 50 = Responding to dart:html
browser events 52 = Refactoring the event listener for reuse 53
Querying HTML elements in dart:html 54

3.3 Wrapping structure and functionality with classes 56

Dart classes are familiar 57 = Constructing the Packllem
class 57 = Wrapping functionality with property getters and
setters 59

3.4 Unittesting the code 62

Creating unit tests 64 = Defining test expectations 64
Creating a custom matcher 66

3.5 Summary 67

CONTENTS

Functional first-class functions and closures 71
4.1 Examining Dart functions 72

Function return types and the return keyword 74 = Providing
input with function parameters 77

4.2 Using first-class functions 82

Local function declarations 83 = Defining strong function

lypes 88

4.3 Closures 91
4.4 Summary 93

Understanding libraries and privacy 94
5.1 Defining and importing libraries in your code 95
Defining a library with the library keyword 96 = Importing
libraries with import 98
5.2 Hiding functionality with library privacy 103

Using privacy in classes 105 = Using private functions in
libraries 109

5.3 Organizing library source code 110
Using the part and part of keywords 111

5.4 Packaging your libraries 114

5.5 Scripts are runnable libraries 116

5.6 Summary 118

Constructing classes and interfaces 119
6.1 Defining a simple class 120

Coding against a class’s interface 121 = Formalizing interfaces
with explicit interface definitions 123 = Using multiple
interfaces 124 = Declaring property getters and setters 125

6.2 Constructing classes and interfaces 126

Constructing class instances 127 = Designing and using classes
with multiple constructors 128 = Using factory constructors to
create instances of abstract classes 129 = Reusing objects with
factory constructors 130 = Using static methods and properties
with factory constructors 132

CONTENTS

6.3 Creating constant classes with final, unchanging variables 134

Final values and properties 134 = The constructor initialization
block 134 = Using the const keyword to create a const
constructor 135

6.4 Summary 136

Extending classes and interfaces 138

7.1 Extending classes with inheritance 139
Class inheritance 140 = Inheriting constructors 142
Overriding methods and properties 143 = Including abstract
classes in a class hierarchy 144

7.2 Everything is an object 147
Testing the “is-an” relationship with Object 147 = Using the “is-
an” Object relationship 149 = Using toString() functionality
inherited from the base Object class 150 = Intercepting
noSuchMethod() calls 151 = Other default functionality of the
Object class 153

7.3 Introducing the dynamic type 154

Using the dynamic type annotation 156
7.4 Summary 156

Collections of richer classes 158

8.1 Working with collections of data 159
Collections of objects 160 = Using the concrete implementations of the
Collection interface 164 = Making collections specific with
generics 166 = Storing lists of key/value pairs with generic maps 170
8.2 Building your own generic classes 173

Defining a generic class 173 = Using your custom generic
class 175 = Restricting the types that can be used as
placeholders 175

8.3 Operator overloading 176

Overloading comparison operators 177 = Surprising use for
operator overloading 179 = Overloading indexer operators 179

8.4 Summary 182

Asynchronous programming with callbacks and futures 183
9.1 Why web apps should be asynchronous 185
Modifying your app to be asynchronous 187

CONTENTS

9.2 Using callbacks with async programming 190

Adding async callbacks to Dart Lottery 192 = Ensuring that all
async callbacks are complete before continuing 193 = Nesting
callbacks to enforce async execution order 195

9.3 Introducing the Future and Completer pair 197

Passing around future values 198 = Ordering async calls by
chaining futures 199 = Waiting for all futures to complete 200
Transforming nonfuture values into futures 202

9.4 Unittesting async APIs 203
Testing async callback functions 205 = Testing future values 205

9.5 Summary 207

] Building a Dart web app 211
10.1 A single-page web app design 212

Introducing DartExpense 212 = Dart application structure 216
Dart app execution flow 217

10.2 Building a UI with dart:html 220
Understanding the Element interface 220 = Element constructors
in action 223 = Building interaction with views and
elements 225 = Building a simple generic grid 228

10.3 Handling browser events with dart:html 231

Managing browser event flow 232 = Common event lypes 235
10.4 Summary 236

1 1 Navigating offline data 237

11.1 Integrating navigation with the browser 239
Using pushState() to add items to the browser history 239
Listening for popState events 241

11.2 Using browser cookies to enhance user experience 243
Storing data in a cookie 244 = Reading data from a cookie 245

11.3 Persisting data offline with Web Storage 247

Converting Dart objects to JSON strings 248 = Converting [SON
strings to Dart objects 252 = Storing data in browser web
storage 253

11.4 Summary 257

CONTENTS

1 Communicating with other systems and languages 258
12.1 Communicating with JavaScript 259

Sending data from Dart to JavaScript 262 = Receiving data in
JavaScript sent from Dart 263 = Sending data from JavaScript to
Dart 265

12.2 Communicating with external servers 268

Understanding the same-origin security restrictions 269
Using J[SONP to request data from external servers 270

12.3 Building installable, server-less browser apps 273

Using AppCache to run applications offline 273 = Packaging your
app as a Chrome web app 277

12.4 Summary 280

1 Server interaction with files and HTTP 283
13.1 Running server-side Dart scripts 284

Accessing command-line arguments 287 = Accessing files and
Jfolders with dart:io 288

13.2 Serving browser HTTP requests 294
Using the Dart HttpServer 295 = Serving static files over HI'TP 297
13.3 Serving clients with a RESTful APT 299

Sending a directory list as J[SON data 301 = Sending the file content as
JSON data 302 = Adding the client-side user interface 303

13.4 Summary 307

] Sending, syncing, and storing data 308
14.1 Serving DartExpense from the server 309
14.2 Using web sockets for two-way communication 310

Connecting web sockets on the client side 311 = Handling web
socket connections on the server 312 = Using web sockels for cross-
browser synchronization 315

14.3 Storing data with HttpClient and CouchDB 320

A quick CouchDB primer 321 = Sharing the Expense model class
between client and server 324 = Adding server support for data
persistence 324

14.4 Summary 329

CONTENTS xiii

1 Concurrency with isolates 331

15.1

15.2

15.3
15.4

appendix A
appendix B

Using isolates as units of work 332

Creating an isolate 332 = One-way isolate communication 335
Two-way isolate communication 338

Loading code dynamically 341

Spawning an isolate from a filename 343 = Defining a dynamic
source file 344

Spawning multiple workers 345

Summary 350

Core language reference 351
Defining classes and libraries 371

index 386

Joreword

When I heard that we were starting work on Dart, a structured and scalable language
with a fast virtual machine, a powerful editor, and a compiler to JavaScript, at first I
didn’t believe it. “Could this be the project to make web programming easier for
developers like me?” I hopefully wondered. Coming from a structured language back-
ground, and used to powerful developer tools, I'd been waiting for a more productive
way to build larger modern web apps. The Dart project sounded like just what I was
looking for. I grew up on object-oriented languages like C++, Java, and Ruby as I first
built interactive websites and then later rich client-side web apps. I learned to be pro-
ductive with classes, objects, and modular code. I appreciated IDEs for their analysis,
refactoring, and navigation capabilities because they helped me write more complex,
larger applications. Life was great. Looking for a new opportunity, I was lucky enough
to get a job working with the Chrome team. For the first time, I learned how to exploit
the modern browser, and I dove into the many HTML5 features. The modern web
evolves very quickly and reaches so many people that it’s an exciting place to be. Life
was even better.

Although I loved the iterative and fast-paced nature of web development, I was
missing my structured languages and helpful tools. I wanted a way to build for modern
browsers with IDEs that could perform code completion, languages that had real
classes, and more.

So when I heard about Dart, I jumped at the opportunity to help out. Build for the
most exciting platform with a development experience that I'm familiar and produc-
tive with? You bet!

XV

xvi

FOREWORD

I wasn’t the only developer who immediately joined the fun. The author of this
book, Chris Buckett, is one of our earliest adopters of Dart. He started the Dartwatch
blog on the day that Google announced Dart, and it’s still going strong. Chris has
been with the project since the beginning, so it’s only natural that he is one of the first
to write a book to help other developers learn Dart.

Chris is some sort of super author, for he has been able to write this book as the
project was going through numerous changes to its libraries and language. He’s done
a great job covering the many different aspects and features of the Dart project. I
especially enjoyed his numerous examples of not only the core language features, but
also the more advanced HTML5 features. Chris embraces the single-page app and
shows how to use Dart to build modern browser-based apps. You’ll even learn how to
program server-side Dart with this book!

After a year of hard work, tens of thousands of commits, thousands of bugs, and
great community feedback, the dream of structured web programming is a reality.
Although Dart isn’t done yet, thanks to Chris’s book, together we can have fun build-
ing great apps for the modern web. Enjoy!

SETH LADD
DEVELOPER ADVOCATE
GOOGLE

preface

In October 2011, rumor became reality when Google released a new language aimed at
developing complex, Google-scale web applications. An internal Google email titled
“Future of JavaScript” had appeared on the web a month earlier, indicating that a lan-
guage, possibly to be known as Dash, was undergoing development within Google, with
the aim of being a better language for the web than JavaScript. Born out of frustration
with the slow progress in evolving JavaScript, partly caused by the numerous interested
parties and committees, this new language aimed to be everything JavaScript could be
if it were invented now. Its key goal was to “maintain the dynamic nature of JavaScript,
but have a better performance profile and be amenable to tooling for large projects.”
Itwould also be able to cross-compile to JavaScript. This language was released as a tech-
nical preview to the wider world and given the name Dart.

I had just come out the back of a major GWT project at my employer, creating a
bespoke documentreferencing application designed for touch screens that would be
deployed in non-computerfriendly environments. Google Web Toolkit (GWT) is a
technology that Google created for cross-compiling Java to JavaScript. GWT lets devel-
opers benefit from the structure, type-safety, and tooling provided by Java, while still
being able to target browsers natively without requiring plug-ins such as Flash or Sil-
verlight. Having spent the last two years writing GWT code and coordinating develop-
ers across three countries, I knew the value of being able to use tooling to validate
code at integration points—something that was lacking when trying to achieve the
same with JavaScript. The ability to reuse code on both the client and the server also
appealed to me—I had seen the benefit.

xvii

xviii

PREFACE

Keen to know more about this new Dart language, I read all the documentation
that was available. At the time, this consisted of the source code, some sample proj-
ects, and the language specification. It seemed that if I were to make the effort of get-
ting the knowledge into my head, it would be worth sharing with the wider
community through blog posts. I started the Dartwatch blog and shared a series of
simple descriptions of how to achieve common tasks in Dart, such as how to organize
a project, how to create classes, and how to interact with the browser. One thing led to
another, and I was approached by Manning about the possibility of writing a book on
Dart. Just over a year later, the result is in print.

Over the last year, Dart has had time to mature, and its developers have been lis-
tening and responding to feedback. Dart’s Milestone 1 release is imminent, and there
have been many changes to the original language specification as a result of real-
world use by the language’s early adopters. A community of these early adopters has
also been creating tools and libraries such as database drivers, 2D and 3D graphics
libraries, and MVC frameworks, many of which can be found on GitHub or on the
Dartwatch website.

Dart Milestone 1 is a major achievement and gives Dart developers the chance to
build on the core Dart language to create a great set of libraries and APIs to turn Dart
into the “batteries included” language that the team at Google envisages. Every day,
Dart improves; and thanks to its open source nature, you can watch (and even contrib-
ute to) the commits by many developers into the Dart source code repository. I hope
that this book helps you build great Dart apps.

acknowledgments

It turns out that writing a book isn’t as straightforward as I first thought, and without
the guidance and effort of the all who were involved at Manning, it’s unlikely you
would be reading this book today. Thanks to Michael Stephens for setting me on this
path in the first place; it’s been a fun project. Many people behind the scenes at Man-
ning have contributed by proofreading, editing, preparing images, and performing
the myriad other tasks that go into producing a book such as this—thank you all.

A special mention must also go to two people at Manning. First, thanks to Bert
Bates, whose mentoring in the early days showed me how to turn what could other-
wise have been a dry reference manual into something that is more pleasing to read.
In the back of my mind when writing each chapter was the mantra, “Tell Bert why he
should care about this subject...” Second, thanks to my editor, Susanna Kline, who
kept each chapter focused and helped keep me motivated and on schedule for the
best part of a year.

Dart has a vibrant developer community centered around the dartlang mailing list
and Google+. From that community, John Evans and Kevin Moore deserve thanks for
their technical proofreading of the subject matter, along with Adam Singer, Matthew
Butler, and Ladislav Thon, whose contributions are always welcome.

Also from the developer community, thanks to all those readers who provided valu-
able feedback by reviewing the book at its various stages of development: André
Roberge, Carl Taswell, Chad Davis, Craig Lancaster, Dylan Scott, Glenn Stokol, Jon
Skeet, Olivier Nouguier, Rick Goff, Rodney Bollinger, Rokesh Jankie, Steve Pretty,
Terry Birch, and Willhelm Lehman.

ACKNOWLEDGMENTS

Thanks also to all the contributors to the book’s bulletin board, who helped spot
the inevitable typos, and to the readers of Manning’s Early Access Program (MEAP).

Finally, thanks to all those on the Dart team, including Seth Ladd, who helped me
and many other early adopters keep up to date with the various changes as Dart
evolved from its initial release to the language you see today. Special thanks to Seth
for kindly contributing the foreword to the book.

about this book

This book will help you learn the Dart language, understand the Dart ecosystem, and
write Dart code targeted to run in modern web browsers and on the server. You’ll use
the latest HTML5 technologies to build apps capable of running disconnected in the
browser and create Dart servers capable of two-way communication with browsers.

As a structured language, Dart is ideal for building large-scale apps in distributed
teams. And with tools to enable automatic checking and validation of your and your
fellow developers’ code, Dart helps make your life as a developer easier.

Audience

This book is aimed at developers who have been frustrated by the lack of structure
and tooling available to them when building browser-based apps. If you have a work-
ing knowledge of Java, C#, or JavaScript, then you’ll be able to dive right in and get
working with Dart.

Whether you prefer to build interactive user interfaces or are happier creating effi-
cient back-end code, you’ll find that Dart, combined with modern browser technol-
ogy, brings the structure of the server to the front end, and the flexibility, dynamism,
and speed of browser development to the back end.

Whether you’re a novice web developer or are experienced with writing structured
code, this book will help you get up to speed with Dart language concepts. The book
uses an example-based format, with examples throughout each chapter to introduce
new concepts. The text indicates Dart’s similarities to other languages such as Java and
JavaScript, as well as shows its differences.

xxii

ABOUT THIS BOOK

Like Java, Dart has great tools; and like JavaScript, Dart doesn’t require a compile
step, which means that with this book you can quickly get ready to start building client

and server Dart applications.

Roadmap
This book is structured to get you working with Dart as quickly as possible. It’s split

into four parts. Part 1 includes overview chapters designed to get you up and running
with Dart:

Chapter 1 provides an overview of the language features and concepts and why
Dart exists. If you’ve ever been exasperated by the lack of typing and documen-
tation that could be encoded in a browser-based language, this chapter will help
you to understand the philosophy behind Dart. This base will give you an idea
of the types of large-scale web apps you can build with Dart.

Chapter 2 discusses the wider Dart ecosystem, including the rich tooling you get
by choosing a structured web-development language created by a market-leading
web company. With the technical resources to concentrate on a whole-developer
experience, rather than just the language, Google has created an IDE, a custom
Dart browser for rapid development, a server-side virtual machine, and other
tools to help you build quality code.

In chapter 3, you’ll build an example web app, getting a taste of how Dart inter-
acts with the browser. You’ll build a user interface, listen for browser events, and
create unit tests to confirm the validity of your code.

Part 2 covers the core language features:

Chapter 4 examines functions, which are first-class objects in Dart. JavaScript
developers will be familiar with some of the techniques of functional program-
ming, but Java and C# developers will find many new ideas that are common
practice in browser-based web development.

Chapter 5 moves on to building the structure of your app by using Dart’s library
system, and shows how that relates to privacy. Dart’s privacy mechanism might
surprise Java and C# developers and will be a welcome treat to those experi-
enced with JavaScript.

Chapters 6, 7, and 8 explore Dart’s class and interface structure. Classes form
the backbone of any reasonable-size app, and knowing how to effectively build
class hierarchies and use library classes provided by other developers is an
essential skill.

Chapter 9 returns to functional programming to explore the asynchronous
nature of web APIs. You'll learn how to work with future values, that is, variables
that will have a value at some point in the future. This will leave you ready to
start working with the APIs provided by Dart’s client and server libraries.

ABOUT THIS BOOK xxiii

Part 3 discusses building client-side browser apps:

* In chapter 10, you’ll learn about Dart’s event loop and create a user-interface in
Dart.

= Chapter 11 builds on the structure of your app to add browser-based navigation,
persistent client-side storage, and interaction with the JSON data format.

= By chapter 12, you’ll be ready to start connecting your app to external systems,
such as external JavaScript and third-party server APIs. Although Dart is tar-
geted at all modern web browsers, in this chapter you’ll also learn how to pack-
age your app for deployment as a Chrome app in Google’s Web Store.

When you reach part 4, you’ll be ready to hook up your app with the server side:

= Chapter 13 introduces building a command-line Dart application, accessing the
filesystem, and serving HTTP data to build a simple file server.

= Chapter 14 builds on clientside communication by connecting the client side
to a serverside database and performing two-way communication with Web-
Sockets technology to push data to the client.

* In chapter 15, knowing how to interact with the server, you’ll be ready to learn
how Dart achieves concurrency through its system of isolates, a message-passing
threading model that provides a safer means of concurrency than the equiva-
lent in Java or C#. You’ll also use the isolate system to load Dart code dynami-
cally into your running application. This gives you a great basis for building
plug-ins and extensions into your app.

The appendixes provide a concise reference to and examples of the core Dart lan-
guage, giving you a quick guide to Dart’s specific syntax idiosyncrasies and quirks.

Code conventions and downloads

All the source code in the text uses a fi xed wi dth font |ike this. The text contains
many code snippets and diagrams, and there are complete, annotated code listings to
show key concepts. These code listings, snippets, and diagrams usually relate to the
surrounding body text and are a key part of learning Dart.

In some cases, code has been reformatted to fit the page, but in general, the code
has been written to take page width into account. Although the examples are often
simple in order to to show a key concept or example, the body text and code annota-
tions provide additional depth.

Source code for the examples in this book is avaiable for download from the pub-
lisher’s website at www.manning.com/DartinAction.

Software requirements

Working with Dart requires at the very least the Dart SDK, which is available from
www.dartlang.org. The Dart SDK is included in the Dart Editor download, which also
includes the custom Dart browser, Dartium (essential for rapid Dart development),

www.dartlang.org
www.manning.com/DartinAction

XXiv

ABOUT THIS BOOK

and the Dart to JavaScript converter. This download is available for Windows, Mac,
and Linux.

Author Online

Your purchase of Dart in Action includes free access to a private web forum run by Man-
ning Publications, where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum and
subscribe to it, point your web browser at www.manning.com/DartinAction. This page
explains how to get on the forum once you are registered, what kind of help is available,
and the rules of conduct on the forum.

Manning’s commitment to its readers is to provide a venue where a meaningful
dialogue among individual readers, and between readers and the author, can take
place. It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions, lest his interest stray!

The Author Online forum and archives of previous discussions will be accessible
from the publisher’s website as long as the book is in print.

About the author

Chris Buckett is a technical consultant responsible for delivering enterprise-scale,
web-based business applications. Chris runs the popular Dartwatch.com blog and is an
active contributor to the dartlang mailing list.

www.manning.com/DartinAction
http://Dartwatch.com

about the cover illustration

The figure on the cover of Dart in Action is captioned an “Island Woman from Zadar,
Dalmatia.” The illustration is taken from the reproduction published in 2006 of a
19th-century collection of costumes and ethnographic descriptions entitled Dalmatia
by Professor Frane Carrara (1812 - 1854), an archaelogist and historian and the first
director of the Musuem of Antiquity in Split, Croatia. The illustrations were obtained
from a helpful librarian at the Ethnographic Museum (formerly the Museum of
Antiquity), itself situated in the Roman core of the medieval center of Split: the ruins
of Emperor Diocletian’s retirement palace from around AD 304. The book includes
finely colored illustrations of figures from different regions of Croatia, accompanied
by descriptions of the costumes and of everyday life.

Zadar is an historic town located on the Adriatic coast of Croatia; its orgins date to
the Stone Age. Zadar faces the islands of Uglian and Pasman, from which it is sepa-
rated by the narrow Zadar Strait. The promontory on which the old city stands used to
be separated from the mainland by a deep moat which has since become landfilled.
The region is rich in influences of the many nation states that ruled it through the
centuries, from the Greeks and Romans to the Venetians and Austrians. Today, the
city is part of the Republic of Croatia.

Dress codes have changed since the 19th century and the diversity by region, so
rich at the time, has faded away. It is now hard to tell apart the inhabitants of different
continents, let alone different towns or regions. Perhaps we have traded cultural diver-
sity for a more varied personal life—certainly for a more varied and fast-paced techno-
logical life.

XXV

ABOUT THE COVER ILLUSTRATION

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Carrara’s pictures.

Part 1

Introducing Dart

Dart is a great language for developing web apps. In chapter 1, you’ll get
an overview of why Dart was created and how Dart solves some of the problems
experienced by many developers coming to web development. You’ll discover
some of the features the language offers and see why single-page web applica-
tions are a good architecture for building apps in Dart.

In chapter 2, you’ll start to come to grips with the rich tool ecosystem that
comes with Dart. Dart is more than a language—it’s an entire development tool-
set, including an IDE, a custom developer browser for testing and debugging,
and a Dart to JavaScript converter.

In chapter 3, you’ll build a simple Dart app, learning how to create a browser-
based, single-page web app. Through this example application, you’ll be intro-
duced to the language, including Dart’s classes, functions, and variables. By the
end of the chapter, you’ll have a Dart project with a functioning user interface
and accompanying unit tests, and you’ll be ready to start learning about the core
Dart language in Part 2.

Hello Dart

This chapter covers

= Basics of the Dart development platform
= A look at the Dart language
= Tools for building Dart applications

Dart is an exciting language that raises the possibility of building complex web
applications more quickly and accurately than ever before. In this chapter, you’'ll
find out how the Dart language and its tool ecosystem fit together, you’ll discover
some of the key features of the Dart language, and you’ll see how you can you use
Dart to begin building single-page web applications.

What is Dart?

Dart is an open source, structured programming language for creating complex,
browser-based web applications. You can run applications created in Dart either by
using a browser that directly supports Dart code or by compiling your Dart code to
JavaScript. Dart has a familiar syntax, and it’s class-based, optionally typed, and single-
threaded. It has a concurrency model called isolates that allows parallel execution,
which we discuss in chapter 15. In addition to running Dart code in web browsers and
converting it to JavaScript, you can also run Dart code on the command line, hosted

CHAPTER 1 Hello Dart

in the Dart virtual machine, allowing both the client and the server parts of your apps
to be coded in the same language.

The language syntax is very similar to Java, C#, and JavaScript. One of the primary
goals for Dart was that the language seem familiar. This is a tiny Dart script, compris-

ing a single function called nai n:

Single entry-point function main()
executes when script is fully loaded

mai n() { Optional typing

var d = "Dart"; (no type specified)

String w = "Verld"; Type annotation

print("Hello ${d} ${w}"); (String type specified)

Uses string interpolation to output "Hello
Dart World" to browser console or stdout

This script can be embedded in an HTML page’s <scri pt type="appl i cation/dart">
tags and run in the Dartium browser (a Dart developer edition of Google’s Chrome
web browser). You can convert it to JavaScript using the dart2js tool to run it in all
modern browsers, or run the script directly from a server-side command line using the
Dart Virtual Machine (Dart VM) executable.

There’s more to Dart than just the language, though. Figure 1.1 shows the ecosys-
tem of tools, which includes multiple runtime environments, language and editor
tools, and comprehensive libraries—all designed to improve the developer’s workflow
when building complex web applications.

In addition to a great tool ecosystem that helps you build applications, Dart is
designed to seem familiar, whether you’re coming from a serverside, Java and C#
world, or a clientside, JavaScript or ActionScript mindset.

Dart editor

Browser ylrtual HTML library
machine
Server virtual .
; 10 library
machine

Figure 1.1 Dart is more than just the language. The Dart project has an entire ecosystem.

Environments

111

What is Dart? 5

A key tool for Dart developers is Dartium, which lets you write or edit Dart code and
see it running by loading the file and refreshing the browser. When Dartium is com-
bined with the Dart Editor, you get the additional benefit of round-trip debugging.

A familiar syntax to help language adoption

One of the key design decisions was that Dart should be familiar to both JavaScript
and Java/C# developers. This design helps developers who are new to Dart pick up
the language quickly. If you're familiar with these other languages, you’ll be able to
read and understand the intent of Dart code without much trouble.

Java and C# developers are generally comfortable with type systems, classes, inheri-
tance, and other such concepts. JavaScript developers, on the other hand, range from
Ul designers who copy and paste code to add interactivity to a web page (and have never
used a type) to seasoned JavaScript programmers who understand closures and proto-
typical inheritance. To help with this developer diversity, Dart has an optional typing fea-
ture, which allows developers to specify absolutely no types (by using the var keyword,
as in JavaScript), or use type annotations everywhere (such as String, i nt, Qoj ect), or
use any mixture of the two approaches.

By using type information in your code, you provide documentation about your
intent, which can be beneficial to automated tools and fellow developers alike. A typi-
cal workflow when building a Dart application is to build up the type information pro-
gressively as the code takes shape. Adding or removing type information doesn’t affect
how code runs, but it does let the virtual machine validate your code more effectively.
This allows Dart’s type system to bridge the gap between JavaScript’s dynamic type sys-
tem and Java’s and C#’s static type system.

Table 1.1 provides some comparisons among Dart, Java, and JavaScript.

Table 1.1 High-level feature comparison among Dart, Java, and JavaScript

Feature Dart Java JavaScript
Type system Optional, dynamic Strong, static Weak, dynamic
First-class citizen | Yes Can simulate with anonymous | Yes
functions functions
Closures Yes Yes, with anonymous classes | Yes
Classes Yes, single inheritance | Yes, single inheritance Prototypical
Interfaces Yes, multiple interfaces | Yes, multiple interfaces No
Concurrency Yes, with isolates Yes, with threads Yes, with HTML5 web

workers

Dart is a general-purpose language, and like JavaScript or Java you can use it to build
many different types of application. Dart really shines, though, when you’re building
complex web applications.

112

CHAPTER 1 Hello Dart

Single-page application architecture

The single-page applications Google Mail, Google Instant Search, and Google Maps
are typical of the type of web application that Dart was designed to build. The source
code for the entire application (or at least all the use cases for a major portion of the
application) is loaded by a single web page. This source code, running in the browser,
is responsible for building a UI and requesting data from the server to populate that
UL, as shown in figure 1.2.

Single-page applications use a fast client-side virtual machine to move processing
from the server to the client. This allows your server to serve more requests, because
the processing involved in building the layout is moved onto the client. By using
Dart’s HTML libraries to incorporate modern HTML5 browser-storage and -caching
technologies, applications can also cache data in the browser to improve application
performance further or even allow users to work offline.

Each Dart script has a single entry-point function called nai n() that is the first
function executed by the Dart VM. Thus you can rely on all code that defines an appli-
cation when the mai n function is called; you can’t define and execute a function
within running code as you can with JavaScript—there is no eval () or other monkey-
patching of executing code. This single feature helps you write Dart applications that
fit the single-page application architecture, because you can be sure your code will
execute as a single, known unit of code. The Dart VM uses this feature to improve
application start-up time, using heap snapshots to load apps much more quickly than
the equivalent JavaScript application.

Browser Server

—_r - — — - - - - - -] — = = = = = — 4

1. Browser requests web page

2. Server sends static
HTML and Dart files

3. Server returns static files

4. Browser builds the
view by running
dart code 5. Dart app requests data

8. Browser loads
data into the
view and repeats 7. Server returns data

6. Server loads data
from the database

A\ A\

Figure 1.2 A single-page application runs in the browser, only requesting data from the server.

1.2

121

A look at the Dart language 7

Remember

= Dart is a language for web development and has a familiar syntax.

= Dart’s tool ecosystem provides greater productivity than equivalent dynamic
languages.

= Dart’s optional type system bridges the gap between JavaScript's dynamic typ-
ing and Java’s static typing.

= Type annotations can greatly aid the development process among teams of
developers by allowing tools to validate source code.

= Dart is ideal for developing single-page web applications.

Now that you’ve been introduced to Dart as a development platform, it’s time to get
hands-on with some of the key features of the Dart language.

A look at the Dart language

Dart is a fully featured, modern language. It has its roots in Smalltalk and is influ-
enced by many other languages including Java, C#, and JavaScript. This section pro-
vides a grounding in some of the core concepts and highlights several complex pieces
of the language that the book covers in detail.

Dart is an evolving language

At the time of writing, the Dart language is at a transition point between the experi-
mental “technical preview” phase and a release that Google calls Milestone 1. Mile-
stone 1 isn’t version 1 but a line in the sand to allow features such as extended
libraries surrounding the core language to be developed and enhanced. The Dart plat-
form is intended to be a fully featured “batteries included” development environment,
containing everything you need to build complex web applications. And Google, along
with members of the Dart community, is now focused on building these libraries.

Milestone 1 also provides a neat baseline to enable you to start building applications,
knowing that the breaking changes to the language syntax will be infrequent. Changes
to the surrounding libraries, however, are likely, and the Dart Editor contains a helpful
Clean-up tool that you can use to apply language and core library changes to your code.

String interpolation

Strings are used in many places throughout web applications. Dart provides a number
of ways for you to convert expressions into strings, either via the t oSt ri ng() function
that’s built into the base Qbj ect class or by using string interpolation.

String interpolation uses the $ character or ${ } expression within single or dou-
ble quotes. When you want to convert an expression to a string, you use the variable
name with the $ prefix, such as $name. If you want to use an expression that needs to
be evaluated, such as a calculation or method call, include the curly braces:

"The answer is ${5 + 10}"

CHAPTER 1 Hello Dart

You can create multiline strings by using three double quotes; and you can write string
literals (which ignore the $ evaluation) by prefixing the string with an r character,
such asr'literal string' . There is no + concatenator to join two strings together.
You must use string interpolation such as $f orenane $sur nane or, if they’'re known
string values, place them next to each other. For example,

var title = "Dart " "in " "Action";

produces a single string variable containing "Dart in Action".

The following listing shows the things you can do with strings using Dart’s built-in
print function, which outputs to standard output, serverside, or the browser debug
console when run in a browser.

Listing 1.1 String interpolation in Dart

void main() {

var h = "Hello";
final w="Wrld";
print('$h $w);

$ evaluates
simple variables

r prefix outputs literal string

print(r' $h $w); without interpolation
var helloWwrld = "Hello " "World"; Adjacent string constants
print(helloWrld); are concatenated
print("${hellowrld.toUpperCase()}"); Evaluated expressions need
print("The answer is ${5 + 10}"); to be within braces ${ }
<di\/\?ri Lr:l tglr Iele??n;' N Multiline strings ignore first
"Hel 1o Verl d" line break following
</div>""": Multiline strings can contain
print(mltiline); both single and double quotes

var o = new Obj ect();
print(o.toString());
print("$%$o0");

}
The output from this listing is

String interpolation automatically
calls toString() function

Hello World

$h $w

Hello World

HELLO WORLD

The answer is 15

<div id='greeting >
"Hello Worl d"

</ di v>

I nstance of ' (Object’

I nstance of ' Object’

You’ll use string interpolation and the print function a lot when experimenting with
Dart, logging variables to help with debugging, and inserting values into HTML snippets.

1.2.2

A look at the Dart language 9

Optional types in action

One of the key differences between JavaScript and Dart is that Dart has the concept of
types baked into the language. Fortunately, by using Dart’s option typing, you can get
the benefit of strong typing through type annotations where you use them.

Optional type annotations are used in variable declarations, for function parame-
ter definitions and return types, and in class definitions. The following snippet shows
four ways of declaring the string variable message. The first two have no type annota-
tions, and the second two provide the String type annotation, indicating to develop-
ers and tools that you intend a string value to be used in the variable:

var nmessageA; No type annotations
var messageB = "Hello Dart"; provided

String messageC, Type annotations
String messageD = "Hello Dart"; provided

In the previous snippet, two of the variable declarations initialize the value of nessage
at the time it’s declared. If the value won’t change after declaration, then you should
use the final keyword, as shown here:

Uses final with no
QJ type annotation
final messageE = "Hello Dart";
final String nessageF = "Hello Dart";
j Uses final with
type annotation

We’ll cover the final keyword in more detail later in the book.

As an example of how you can benefit from using optional typing, consider the fol-
lowing block of code, which has a truel fNul | () function that takes two parameters
and returns true if both are null (and f al se if not). This code has no type annota-
tions at present, but we’ll explain how you can use type annotations to show intent:

truelfNull (a, b) { .
return a == null & b == null; Function takes
} two values
mai n() {
final nunms = truelfNull(1,2); Stores “false” in dynamic
fi'nal(féringf)z truel fNull ("Hello ", null); variable nums
prin nuns");
, print("$strings"); ::;f:;:“;a:t':it:;: Stores “true” in dynamic

variable strings
to console 8

No type annotations are provided in the snippet, which means that when reading this
code, you have no idea about the developer’s intent. The truel f Nul | (&, b) function
could mean that truel fNull (a, b) should take two int types and return a bool
(true/fal se value), but the developer could have intended something else—for
example, to return the string "true" instead of a bool . Dart’s optional typing allows
the developer to provide documentation in the form of type information about the
parameters and return types:

10

1.2.3

CHAPTER 1 Hello Dart

bool truelfNull(int a, int b) {
return a == null && b == null; Adds return type and

} parameter types

mai n() {
final bool nums = truelfNull(1,2); Adds type information
final bool strings = truelfNull("Hello ", null); about variable declarations

print("$nunms");
print("$strings");

NOTE The previous example contains a bool type. In Dart, unlike in
JavaScript, there is a single false value: that of the keyword f al se itself. Zero
and null don’t evaluate to false.

Adding this type information doesn’t change the running of the Dart application, but
it provides useful documentation that tools and the VM can use to validate the code
and find type errors. Dart can be said to be documentary typed because the code will run
the same without the types. Any type information provided can help the tools during
static analysis (in the Editor or from the command line as part of a continuous build
system) and at runtime. Future developers who may maintain your code will also
thank you.

TIP Use specific types (for example, String, Li st, and i nt) where doing
so adds documentary value, such as for function parameters, return types,
and public class members; but use var or final without type annotations
where it doesn’t, such as inside function bodies. The Dart style guide avail-
able at www.dartlang.org recommends this approach. You should get used
to seeing a mix of code like this, because it’s the way Dart was intended to
be written.

Optional typing is core to many of Dart’s mechanisms and appears throughout the
book, where the syntax is different enough from Java and JavaScript to warrant expla-
nation. Functions are covered specifically in chapter 4.

Traditional class-based structure

Dart uses classes and interfaces in a traditional and unsurprising object-oriented way.
It supports single inheritance and multiple interfaces. If you aren’t familiar with class-
based OO programming, it would probably be useful to read about the subject at one
of the many resources on the web. At this point, it’s enough to point out that Dart’s
OO model is similar to Java/C# and not similar to JavaScript. We’ll look at classes and
their features in greater depth in chapters 6 and 7.

All Dart classes inherit by default from the Cbj ect class. They can have public and
private members, and a useful getter and setter syntax lets you use fields interchange-
ably with properties without affecting users of the class. The next listing shows a quick
example of a class.

www.dartlang.org

124

A look at the Dart language 11

Listing 1.2 A simple class in Dart

class Geeter { <+— class keyword defines new class
var greeting; <+ Public property
var. _name; Private property
sayHel 1 o() { < Public method denoted by _
return "$greeting ${this.nane}"; 47 Uses String
} interpolation
get name => _nane; Getter and setter with
set name(val ue) => _nane = val ue; shorthand syntax
}
) new keyword creates
mai n() { new instance of Greeter
var greeter = new Greeter();
greeter.greeting = "Hello "; Assigns values to fields and
greeter.name = "Wrld"; setters with same syntax
print(greeter.sayHello());
}

This simple class contains a lot of functionality. Private members are indicated by pre-
fixing the name with the _ (underscore) character. This convention is part of the Dart
language, with the benefit that you can instantly tell when you’re accessing a method
or property in private scope when you’re reading code.

The getter and setter syntax is also useful because you can use the fields of a class
the same way you use getters and setters. Thus a class designer can expose the prop-
erty (such as greeting, in listing 1.2) and later change it to use a getter and setter
(such as in name in the example) without needing to change the calling code.

The t hi s keyword, which causes a lot of misunderstanding in the JavaScript world,
is also used in a traditional OO fashion. It refers to the specific instance of the class
itself and not the owner of the class (as in JavaScript) at any given point in time.

Classes are optional

Unlike in Java and C#, classes are optional in Dart. You can write functions that exist
in top-level scope without being part of a class. In other words, you don’t need to de-
clare a class in order to declare a function. If you find that you’re writing classes that
contain utility methods, you probably don’t need a class. Instead, you can use Dart’s
top-level functions.

Implied interface definitions

Dart has interfaces just like Java and C#, but in Dart, you use the class structure to
define an interface. This works on the basis that all classes define an implicit interface
on their public members. Listing 1.3 defines a class called VeI coner and a top-level
sayHel | o() function that expects a Wl coner instance. In addition to using the
ext ends keyword to implement inheritance of the sort found in Java and C#, you can

12

1.2.5

CHAPTER 1 Hello Dart

also use the interface defined on each class by using the i npl enment s keyword. The
G eeter classinpl ement s the public methods of Wl coner, which allows it to be used
in place of a Wl coner instance. This lets you concentrate on programming against a
class’s interface rather than the specific implementation.

Listing 1.3 Every class has an implicit interface

cl ass Wl coner {
printGeeting() => print("Hello ${nane}");
var nane;

}

class Greeter inplenents Wl conmer {
printGeeting () => print("Geetings ${nane}");

Welcome class can be
created and inherited
from ...

... but also has an
implied interface that

var nane; Greeter implements.
}
voi d sayHel | o(Vel conmer wel comer) { Expects Welcomer
wel coner. printGeeting(); argument
}
mai n() {
var wel coner = new Wl coner ();
wel coner. nane = "Tont';

sayHel | o(wel comer);
Because Greeter

var greeter = new Greeter(); implements a Welcomer
greeter.nane = "Tont; interface, it can be used
sayHel | o(greeter); in place of Welcomer.

}

This ability to implement a class that doesn’t have an explicit interface is a powerful
feature of Dart. It makes mocking classes or providing your own custom implementa-
tion of a class relatively straightforward; you don’t need to inherit explicitly from a
shared base class.

Factory constructors to provide default implementations

In addition to having a constructor syntax similar to Java and C#, Dart has the concept
of factory constructors. This lets the class designer define a base class to use as an inter-
face, and supply a factory constructor that provides a default concrete instance. This is
especially useful when you intend a single implementation of an interface to be used
under most circumstances.

Listing 1.4 shows an | G eet abl e class that has a factory constructor to return an
instance of a Greeter class. The G eeter class implements the interface defined on
| Greetabl e and lets users of the interface use the default G eet er implementation
without knowing they're getting an implementation of G eeter. Thus the class
designer can change the specific implementation without users of the | G eet abl e
interface being aware of the change.

1.2.6

A look at the Dart language 13

Listing 1.4 Factory constructors for default implementations

abstract class | Geetable { <—— Defines interface
String sayHell o(String nane);
factory | Geetable() { Factory constructor P|'1'°Vides m;thod
return new Greeter(); returns instance of t atl mustt z
} Greeter implemente
}
class Greeter inplements | Greetable {
sayHel | o(nanme) { Greeter implements
return "Hello $nane"; IGreetable interface
}
} Creates instance of

IGreetable, which returns

void main() { Greeter implementation

| Geetable nyGreetable = new | Geetabl e();

var message = nyG eetable.sayHello("Dart"); 47 Uses Greeter

print (message); implementation

}
Because of this ability, it’s important to note that a number of the core classes are
interfaces—for example, Stri ng and i nt. These have specific implementation classes
that are provided using factory constructors. I cover classes, interfaces, and their inter-
action with the optional type system at length in part 2 of the book.

Libraries and scope

Dart has the ability to break source code files into logical structures. It’s possible to
write an entire Dart application in a single .dart file, but doing so doesn’t make for
great code navigation or organization. To address this issue, Dart has libraries baked
into the language. A library in Dart is a collection of source code files that could have
been a single file but have been split up to aid human interaction with the code.

I mentioned earlier that classes are optional in Dart. This is so because functions
can live in the top-level scope of a library. In Dart, a library is one or more .dart files
that you group together in a logical fashion; each file can contain zero or more classes
and zero or more top-level functions. A Dart library can also import other Dart librar-
ies that its own code uses.

A library is defined using the |ibrary keyword, imports other libraries using
i nport, and refers to other source files using part, as shown in the following listing.

Listing 1.5 Libraries and source files

|ibrary "ny_library”; 4—‘ Declares that

import "../lib/nmy_other_library.dart"; file is a library
part "greeter.dart"; Includes other source files Imports another library
part "leaver.dart"; (containing Greeter class) from a different folder
greet Func() { Defines function in top-

level library scope

14

CHAPTER 1 Hello Dart

var g = new Greeter(); Uses class from

sayhel 1 o(9); Calls function in

} top-level scope of
my_other_library

From the listing, you can see that it’s possible to define a method in the top-level
scope of a library—that is, without it being part of a class. Therefore, you need to
define classes only when you need to instantiate an object, not when you just need to

collect a group of related functions.

Libraries can pull a group of source files into the same scope. A library can be made
up of any number of source files (including zero), and all the source files put together
are equivalent to having a single library file containing all the separate files’ code. As
such, each source file can reference code that’s in another source file, as long as both
source files are part of the same library. Each source file can also reference code that’s
exposed by importing other libraries, as in the example my_other_| i brary. dart in

figure 1.3.

my_library

Source file(s)

greeter.dart file

Library file 4
class Greeter {

}...

---- import "my_other_library.dart";
class Person {

H class Leaver {

String greetFunc(Q) { --- } ‘\\\\\\\\ }-__

\.

void sayHello(g) { ---

\\\

my_other_library

Library file and other
source files

Figure 1.3 my_library.dart is made from greeter.dart and leavers.dart and uses another library

called my_other_library.dart (which in turn is constituted from various source files).

A look at the Dart language 15

To avoid naming conflicts, such as when a library that you’re writing and a library that
you’re importing both contain a class called G eet er, you can apply a library prefix
such as

inmport "../lib/ny_other_library.dart" as other;

and then refer to classes in that library using the form
ot her. ot her Li bFuncti on("bl ah");

Thus it’s possible to ensure that you name your classes and methods sensibly without
having to worry about polluting a global namespace.

A library can form the entry point of your application, but if it does, it must have
a mai n() function. You can have multiple libraries, each with its own mai n() func-
tion, but it’s the mai n function in the library referred to in the <scri pt> tag that’s
executed.

Any functions or classes in your library are made available to any importers of your
library; that is, they’re public. To stop importers of your libraries from using specific
functions or classes, mark them as private.

CLASS AND LIBRARY PRIVACY

Although libraries and classes can be useful to modularize your application, good
practice dictates that you keep the workings of your class or library private. Fortu-
nately, Dart provides a simple method for making things private: prefix the name of a
method, function, class, or property with an underscore (_). Doing so makes the item
library private, or private within the scope of a library.

PRIVATE, BUT ONLY WITHIN A LIBRARY

In our ongoing example, if something is marked as private with the underscore, it
means that if class G eeter and class Leaver are in the same library, they can access
each other’s private elements (similar to package privat e in Java). It also means that
a property or function _greeterPrivate() is accessible from any other class in the
same library. But when G eet er is imported via another library, it isn’t visible to that
other library, as shown in figure 1.4.

Private elements can include top-level (library) functions, classes, class fields, prop-
erties and methods (known as members), and class constructors. From within a
library, privacy is ignored, such that any part file can access private elements in
another part file if the | i brary brings those source files into the same library. Users
of the library can’t access any private elements of that library (or private elements of
classes within that library).

16

1.2.7

CHAPTER 1 Hello Dart

my_library

Library file Source file(s)

class Greeter {
var _greeterPrivate;

3

import "my_other_library.dart";

class Person {
void sayHello() {
Greeter g = new Greeter(); Source file(s)

g._greeterPrivate = "Hi"; class Leaver {
}

void leave() {
Greeter g = new Greeter();
g._greeterPrivate = "Bye";

my_other_library

Library file and other
source files

Figure 1.4 Private elements such as fields, methods, library functions, and classes are private within
a library. Privacy is indicated by an _ prefix. Users of the library can’t access private elements.

Functions as first-class objects

You can pass around functions in Dart as objects, in a manner similar to in JavaScript:
you can pass a function as a parameter, store a function in a variable, and have anony-
mous (unnamed) functions to use as callbacks. The next listing gives an example of
this feature in action.

Listing 1.6 Functions as first-class objects

String sayHell o(name) => "Hello $nane"; Declares function using

mai n() { Assigns function function shorthand
var myFunc = sayHel |l o; into variable
print (myFunc(*vertd”)):; ﬁ Calls function
var mySunfunc = (a, b) { stored in variable

return a+b;

}s

Defines anonymous
function

1.2.8

A look at the Dart language 17

var ¢ = nySunfunc(1, 2);

print(c); Calls anonymous

function

}

@ is a single-line function that uses => shorthand to return a value. The following two
functions are identical:
String sayHel |l o(name) {

return "Hello $nanme";

}

String sayHell o(nanme) => "Hell o $nane";

With a function defined, you can get a reference to it and store it in a variable @. You
can pass this around like any other value. Anonymous functions such as the one
stored in the variable mySunfunc are often used in event-handler callbacks. It isn’t
uncommon to see a block of code like

myButton. on. click.add((event) ({
/1 do sonething

1)

(with the anonymous function indicated in boldface).

Concurrency with isolates

Dart is a single-threaded language. Although this design may be at odds with current
hardware technology, with more and more processors being available to applications,
it means that Dart has a simple model to code against.

In Dart, the isolate (rather than the thread or process) is the unit of work. It has its
own memory allocation (sharing memory between isolates isn’t allowed), which helps
with the provision of an isolated security model. Each isolate can pass messages to
another isolate. When an isolate receives a message, which might be some data to pro-
cess, an event handler can process that message in a way similar to how it would pro-
cess an event from a user clicking a button. Within an isolate, when you pass a
message, the receiving isolate gets a copy of the message sent from the sending isolate.
Changes to the received data aren’t reflected on the sending side; you need to send
another message back.

In a web page, each separate script (containing a mai n() function) runs in its own
isolate. You might have scripts for different parts of your application, such as one for a
news feed, one for offline syncing, and so on. Dart code can spawn a new isolate from
running code in a way similar to how Java or C# code can start a new thread. Where
isolates differ from threads is that an isolate has its own memory. There’s no way to
share a variable between isolates—the only way to communicate between isolates is via
message passing.

Isolates are also used for loading external code dynamically. You can provide code
outside of your application’s core code that can be loaded into its own memory-
protected space and that will run independently of your app, communicating via mes-
sage passing. This behavior is ideal for creating a plug-in architecture.

18

1.3

1.3.1

CHAPTER 1 Hello Dart

The Dart VM implementation may use multiple cores to run the isolates, if
required. And when isolate code is converted to JavaScript, they become HTML5 web

workers.
Remember
= Dart has optional (or documentary) typing.
= Libraries help you break up source files and organize code.
= Privacy is built into the language.
= Functions are first-class and can exist without classes.

= Dart understands concurrency using message-passing isolates.

Now that you’ve seen a high-level view of what Dart looks like, let’s look at how you
can use it to program the web.

Web programming with Dart

One of Dart’s aims is to improve the life of developers. And because Dart is ultimately
a programming language for the web, a significant amount of effort has gone into
turning the browser DOM-manipulation API into something that’s a joy to use. In
JavaScript, accessing the browser DOM was a chore until jQuery was created, which
made it feel natural to work with the browser. Similarly, the dart: ht nl library was writ-
ten to ease the writing of browser code in Dart.

dart:html: a cleaner DOM library for the browser

At the time of writing, no UI widget library is available for Dart. Although the Dart team
has publicly stated that they expect Dart to be a “batteries included” language, the early
public release of Dart means that they need to spend some time getting the language
working perfectly before the focus moves to higherlevel abstractions. But they have
built what could be considered the equivalent of jQuery core, in the form ofdart: ht m .
Ifyou’ve used a framework like jQuery, then you’ll be familiar with using CSS selectors
to access DOM elements such as DIVs with i d="nyDi v" or all the <p> elements. The
dart: htnl librarymakes thiswork easy. Rather than including anumber of different calls
to get elements, such as get El ement sByl d() and get El ement sByName(), as you would
with native DOM APIs, dar t : ht m has only two methods for selecting elements: query() ,
which returns a single element, and quer yAl | (), which returns a list of elements. And
because the dart: ht m library uses Dart lists, you can use all the standard list functions
suchascont ai ns() andi sEnpt y() ,and arraysyntaxsuchasel ement. chil dren[0] . The
following listing shows some interaction with the DOM via the dart: htnl library.

Listing 1.7 Interacting with the browser

tport dart:htm’; 47 Imports dart:html
void main() { library Creates new

var button = new El enent.tag("button"); button element

1.3.2

Web programming with Dart 19

button.text = "Cick nme";
button.on.click.add((event) {
Li st buttonList = queryAll("button");
wi ndow. al ert (" There is ${buttonList.length} button");

1)
docunent . body. chi | dren. add(button); QT

Adds anonymous function
(in bold italic) as event
handler to on.click event

Adds button to

) HTML body

The listing uses a named constructor to create a button. The button is given an event
handler (using an anonymous function) and added to the document body. Running
this example produces the output shown in figure 1.5.

. O DartDomExl o

o, M) ﬁ\e‘//]* & JavaScript Alert

E
Thereis 1 button

[Click me |

Figure 1.5 The output
from clicking the buttonin
listing 1.7

By interacting with the browser in this fashion, you can create complex Uls entirely in
Dart code and CSS. We’ll explore this in chapter 4.

TIP When you’re writing browser code, remember that the print function
used in print("Hell o Wrld") sends output to the browser console, not to
the page. You can access the browser console in Chrome under the Wrench >
Tools > JavaScript Console menu option.

Dart and HTMLS

Justas you can interact with browser ele-
ments directly, the dart:htnl library :
also exposes HTML5 elements such as C i ©file///C/Use
the canvas, WebGL, device motion
events, and geolocation information.
The output shown in figure 1.6 is pro- .
duced by the code in listing 1.8, which
uses the HTML5 Canvas APIL.

The Dart code that draws this output
to the canvas adds an HTML5 <canvas>
tag to the browser DOM and then uses it Figure 1.6 Drawing on the browser canvas

O DartDomEx2 T

hello canvas

to get a 2D drawing context. The Dart
code then writes text and shapes onto the drawing context.

20

14

14.1

CHAPTER 1 Hello Dart

Listing 1.8 Drawing on the browser canvas

import 'dart:htm’';
inmport 'dart:math';

void main() { Creates new
CanvasEl enent canvas = new El enent . tag("canvas"); CanvasElement
canvas. hei ght = 300; Adds canvas to
canvas. wi dth = 300; document body
docunent . body. chi | dren. add(canvas); Gets drawing
var ctx = canvas. get Cont ext ("2d"); context from canvas
ctx.fill Text("hello canvas", 10, 10); <+—— Writes text

ct x. begi nPat h();

ctx.arc(50, 50, 20, 0, PI * 2, true); Draws filled
ctx. cl osePat h(); circle

ctx. fill();

}

By creating a CanvasEl ement and adding it to the page, you get an area that you can
draw directly onto using the standard drawing methods such as drawl mage, fil |l Text,
and | i neTo. We’ll look at this in more detail in chapter 10.

With the dart: htm library, you have ready access to all the standard browser ele-
ments that you’d expect to code against. And because the DOM library, which forms
part of the dart: htni library is generated from the WebKit IDL (Interface Definition
Language), you can be sure of getting access to the up-to-date browser functionality
available in Dart.

Remember

= dart:htm provides a Dart view of the browser DOM.
= HTML5 support is a core part of the Dart language.

Now that you have some knowledge of Dart running in the browser, it’s time to look at
the tools available to help you write Dart.

The Dart tool ecosystem

The Dart tools are considered a feature of the Dart platform and as such are undergo-
ing development as rapid as that of the language. As developers, we tend to experi-
ence any particular language through the available tools (or lack thereof), and
Google is putting a lot of effort into this area. The place to start is editing code.

The Dart Editor

Although you can use any text editor to write Dart code, you'll get the best experience
when you use the Dart Editor. The Dart Editor is built using the Eclipse Rich Client
Platform (RCP), a framework for building customized code editors. In the Dart Editor,

14.2

143

The Dart tool ecosystem 21

P ¢ S[E7 0 [tepedepdan i E fampinisnron 00 Dbupgee »

mehap
i Lamplespp sant [Samplespp] closs Sevpladpy |
& Samphapp rml

0 Lbrarie sasglesoe() |

- sem =] i) vald write(Strisg seisage) |

& Lumplaire ot gty BTt | dnseri T & sesvage
W Samglaspp cat - Samphiapn i
T s

Debugger
and watches

Locatien

Files and libraries, l)
apps, and source T
code outline views

Errors and Code suggest and
warnings autocomplete

Figure 1.7 The Dart Editor, showing a simple browser application and the code-completion
window

you get the usual features such as code completion, navigation, and code outlining,
along with static analysis such as warnings and errors. The static-analysis tool is also
available as a standalone command-line tool that you can use in your continuous-build
system to provide early indication of errors in the code. Figure 1.7 shows a typical view
of some of the features in the Dart Editor.

Using the Dart Editor, you can write code; and if that code is associated with an
HTML page, you can convert the code into JavaScript and open it in a browser of your
choice by using the dart2js tool. In the Dartium browser, which is Chrome with the
Dart VM embedded, you can skip the conversion to JavaScript and execute the code
directly in the browser. Dartium also communicates back to the Dart Editor to allow
round-trip, step-by-step debugging.

If your code isn’t associated with an HTML page, the editor will run the code as
though it were executed from the command line, outputting to the st dout console.

Dart virtual machine

The Dart VM is the core of the Dart language. One use is as an executable on the com-
mand-line VM (which allows you to run Dart code on the console), such as to start up
an HTTP server or run a simple script (equivalent to a batch file or shell script), or any
other console-based use of Dart. Another use is to embed it in another application,
such as Dartium.

Dartium

Dartium is a customized build of Chromium (the open source version of Google
Chrome) with the Dart VM embedded in it. It recognizes the script type appl i cat i on/

22

144

1.4.5

CHAPTER 1 Hello Dart

dart and executes Dart code natively in the browser without requiring conversion to
JavaScript. It includes the developer tools that are familiar to many web developers
who build websites and web applications with Chrome. Coupled with the Dart Editor,
it provides step-and-continue debugging: you can add breakpoints to the editor and
then refresh your app in the Dartium browser; the Editor’s debugger will stop on the
correct breakpoint, allowing you to inspect variables and step through instructions.

The Dartium browser makes developing Dart as simple as developing JavaScript.
A simple browser refresh is the only step you need to run your Dart code.

dart2js: the Dart-to-JavaScript converter

You use the dart2js tool to compile Dart into JavaScript, from within the Dart Editor or
standalone on the command line. The dart2js tool compiles all the various libraries
and source code files that make up a Dart application into a single JavaScript file. The
code it outputs is fairly readable, although when you use Dartium to develop natively
in Dart, you’ll seldom need to read it.

dart2js also produces JavaScript source maps, which allow you to hook back from
the output JavaScript to the original Dart code. This recent innovation is also used
successfully in other languages that convert to JavaScript, such as CoffeeScript and
Google Web Toolkit (GWT).

NOTE dart2js is the third Dart-to-JavaScript converter. The first was dartc,
and the second was a tool called frog. You may see these names in various
older documents and blog posts; they’re all tools to convert Dart to
JavaScript.

Pub for package management

Package management is a key feature of any language, with Maven for Java, NuGet for
.NET, and npm for node.js being common examples. Dart has its own package man-
ager called pub. Pub lets library developers define package metadata in a pubspec file
and publish their libraries in code repositories such as GitHub.

When you use a library, you can use the pub tool to download all the various
libraries that your app requires, including versioned dependencies. We’ll discuss this
more and show an example of using pub in chapter 5 when we look at Dart’s library
structure.

Remember

The Dart tool ecosystem forms a core part of the Dart project.

The Dart Editor provides rich tooling for developers.

Dartium makes developing in Dart as simple as a browser refresh.
Dart is designed to be converted to JavaScript.

1.5

Summary 23

Summary

At first glance, Dart might be seem like just another language. But when you take into
account the entire Dart ecosystem, Dart represents an exciting prospect in the world
of web development. With applications becoming more complex and requiring larger
development teams, Dart and its associated tools and environments promise to pro-
vide some structure in the previously overly flexible world of JavaScript.

Single-page applications hosted in a browser (such as Google Plus) become more
achievable with a language like Dart, because maintaining a large client-side code
base becomes less fragile. Dart—uwith its ability to either run natively or be converted
to JavaScript—coupled with HTMLS5 is an ideal solution for building web applications
that don’t need external plug-ins to provide features.

In the following chapters, you’ll play with the Dart ecosystem, explore the core lan-
guage, and use Dart to develop single-page web applications that target modern
HTML5-capable web browsers. By the end of the book, you’ll be developing Dart appli-
cations that run offline in the client, are served from a Dart file server, and connect to
a Dart server to persist data in a database.

“Hello World” with Dart tools

This chapter covers

Discovering the Dart tool set
Building apps with the Dart Editor
Tools for debugging apps

Running apps in the browser
Deploying apps to JavaScript

Dart has a rich tool ecosystem that enables you to write, run, and debug Dart code
in a variety of environments. Google takes a “batteries included” approach to the
Dart tools and fully intends to provide all the tools you’ll require to build complex
applications. The Dart tools are currently available for Windows, Mac, and Linux
platforms; you can find them on Google’s dartlang.org website.

The Dart tool set starts with the Dart Virtual Machine (Dart VM). The virtual
machine exists in two guises. First, it’s on the server as a command-line runtime
environment, similar to a Java, Python, or Ruby VM; you’ll use this version to run a
simple “Hello World” application. In its second incarnation, it’s embedded in a ver-
sion of the Chrome web browser called Dartium, where it has access to the browser
document object model (DOM). You’ll see Dartium when you use the Dart Editor
to edit and run the same “Hello World” application in the browser, but this time
hosting the Dart script in an HTML file.

24

www.dartlang.org

2.1

The command-line Dart VM 25

You’ll also use the Dart Editor, which is capable of building applications that run
both in the browser and on the server, to enable debugging and refactoring of the
“Hello World” app. Here, you’ll use the dart2js tool, which compiles the various Dart
source files and libraries into a single JavaScript application.

You’ll use the dartdoc tool to generate formatted HTML API documentation from
your code’s comments. This is the same tool that creates Google’s own Dart API docu-
mentation website, and you’ll use it to produce documentation for your “Hello
World” app.

When you choose Dart as a platform for writing web apps, you get more than lan-
guage features: you get to use the tools developed by Google for Google. Download
the Dart Editor, which bundles all the tools you need, including the Dart software
development kit (SDK) and the Dartium browser, and we’ll start exploring.

The command-line Dart VM

There are versions of the Dart VM for Windows, Mac, and Linux platforms. This allows
you to write Dart code that runs without a web browser and accesses the capabilities of
the machine, including the filesystem and socket-level network I/0. The VM uses an
asynchronous, eventloop model, similar to Node.js (which is a server-side VM based
on the Chrome JavaScript VM). The Dart event-loop model runs your code to comple-
tion and then passes control to the event loop, which notifies your code when some-
thing interesting happens, such as a file becoming open or data being retrieved from
a TCP socket.

Let’s start with a basic Dart script—the simplest “Hello World” script, in fact, that
you can achieve in a single line that outputs the string " Hel | o Wor [d" to the console.

Listing 2.1 HelloWorld.dart

main() => print("Hello World"); <—— print command outputs to stdout

This single-line function, called mai n(), is the entry point for all Dart applications.
You can also write it using the more traditional function syntax, with the function
body surrounded by curly braces:
mai n() {

print("Hello World");
}
To run this code, save it in a text file, give it a .dart file extension, and pass it as a
parameter to the Dart binary found in the downloaded Dart-SDK’s bin\ folder. On
Windows, this is dart.exe. The output is shown in figure 2.1.

The Dart VM can also be embedded in other applications, but this topic is outside
the scope of this book. Possible applications include providing a Dart scripting envi-
ronment in a text editor, similar to the way the Python runtime is embedded in popu-
lar editors such as Sublime Text.

26

2.2

CHAPTER 2 “Hello World” with Dart tools

The Dart VM is available
as a command-line binary.

You can pass server-side
Dart scripts into the Dart VM.

Figure 2.1 The Dart VM
as a command-line tool

Although you can run Dart scripts from the command line—and you’ll run server-side
Dart applications in a production environment from the command line—it isn’t ideal
as a development tool. Fortunately, the Dart Editor, which we’ll look at next, lets you
run command-line Dart VM executables in the Dart Editor, along with running Dart in
the browser-hosted Dart VM.

We’ll look in much more depth at server-side programming, including the event
loop and accessing server-side resources such as files, in part 4 of this book, where
you’ll build a web server and use HMTL5 web sockets to communicate with Dart run-
ning in the browser.

Remember

= The Dart VM is available as a server-side binary that runs from the command line.
= The server-side Dart VM has full access to server-side APIs, such as the filesystem
and network sockets.

“Hello World” with the Dart Editor

The Dart Editor has a growing number of essential tools to help you develop and
debug Dart code. Some of these are code navigation, code autocomplete, refactoring,
and information about errors and warnings. Although Dart—Ilike many dynamic,
interpreted languages—can be written in just about any text editor, the Dart develop-
ment team has put significant effort into providing a fully featured developer experi-
ence that is often missing from other JavaScript alternatives.

You’ll start by using the Dart Editor to run the same HelloWorld.dart script in the
server-side Dart VM, this time launched from the Dart Editor. Then you’ll modify the
script to enable it to be hosted in an HTML page and run in the browser-based Dart VM,
which is built into the Dartium web browser that comes bundled with the Dart Editor.

Figure 2.2 shows the Dart Editor that you’ll be working with throughout the rest of
the book.

221

“Hello World” with the Dart Editor 27

>

<script type="application/dart"> <script type="text/javascript'>
main(Q) { someFunction() {
//do something //do something
; 1O
</script> </script>

Figure 2.2 The Dart Editor is a lightweight version of the Eclipse tool.

Exploring the Dart Editor tools

The Dart Editor provides the standard range of developer tools such as method and
property autocomplete, refactoring, code navigation, and syntax checking and
debugging. When you edit your app with the Dart Editor, your code, and the code of
all the external libraries that make up your application, is validated for errors
and warnings. Internally, the Dart Editor uses the dart_analyzer tool to provide static
analysis of the Dart code. This tool can also be used on the command line—for exam-
ple, to integrate it into a continuous-build system such as Hudson, CruiseControl,
or Bamboo.

NOTE At the time of writing, the command-line version of the dart_analyzer
tool is available only on Mac and Linux platforms. The Windows version is
still under development.

You can use the output from dart_analyzer in the Dart Editor to highlight lines of code
that that may contain errors or could be considered warnings, as shown in figure 2.3.

This error-checking also allows the Dart Editor to provide some quick-fix capabilities.
For example, the Editor gives you the option to create anewprnt (String string) func-
tion stub based on its knowledge of the missing pr nt () method. The warning shown in
figure 2.3 is telling you thata + method is missing on the St r i ng object. This may be valid
code, as you’ll see when we look at handling noSuchMet hod() in chapter 7, so it’s flagged
as a warning rather than an error. You can execute code that contains warnings; you
can’t execute code that contains errors.

When you run the “Hello World” script, its output is redirected to the Dart Editor’s
own console instead of running in a separate console window. The Dart Editor is using
the same Dart VM binary that you used in the previous section when you ran the

28

CHAPTER 2 “Hello World” with Dart tools

Trying to concatenate
two strings with a

% Dart Editor =L
+ operator produces il Ecitn Naviatem RusimiFercisne el
a warning. This code Il Err Q- Ctri-3
will be allowed to run (@ Listing21_HelloWorld.dart 52 =
but may cause “ | L maing) { o
o . (@[22, print("Hello" + "World"); %
a runtime exception. 7 5 o prot(“Hello World™); =
B
A straightforward typo, - e
trying .to call aprnt() T2 Problems 5% & =0 i
function instead of a N AT
print () function, Description
is highlighted as an error. @ cannot resolve method ‘prat’
&, "String" has no method named "operator +"
& '+ cannot be used for string concatentation, use string interpolation or a StringBuffer inste...
e i] v
| Writable ‘ Smart Insert | 3:

Figure 2.3 Errors and warnings are shown in the Dart Editor.

“Hello World” script from the command line. Figure 2.4 shows the output in the Edi-
tor’s console window.

The Dart Editor contains a number of tools to help you navigate around code:
your own code and any external libraries you’re using, whether brought in from the
Dart SDK or open source libraries.

CODE NAVIGATION AND THE STANDARD LIBRARIES

The Dart project is open source. That philosophy is baked into the language, and as
such, all the standard library code is open source, too. Thus, using the Editor’s code-
navigation features, if you want to see what the dart: htnl ButtonEl ement class looks
like or examine the dart: core Li st code structure and comments, they’re right there
at your fingertips in plain text.

You can navigate directly from your code to the declaration site by using the Open
Declaration (F38) command. This command works for both your own code and any
other libraries you import. It’s useful, for example, to be able to navigate a hierarchy
of method calls throughout several libraries to discover the underlying reason for a
particular bug or way of working—especially when you’re developing in a team and

£ Problems % Breakpoints | =) Listing2l_HelloWorld.dart £3 X| m =0
<terminated> Listing21_HelleWorld.dart [Dart Command-line launch] /Listing 2.1 - Hello World/Listir
dart --enable-checked-mode Listing2l HelloWorld.dart -
Hello World

4 3

The output from the Dart VM is shown
in the Dart Editor’s console screen.

Figure 2.4 The Dart VM produces output in the Editor console.

“Hello World” with the Dart Editor 29

4% Dart Editor = |

File Edit MNavigate Run Tools Help

it Sy Q-

0% Outline 52 A 5 T O] @ Listing2l_HelloWorld.dart 52 =08
® main) 1=main() { "
® foop 2 rint("Hello World");

3 oo{§H
E myclass 4}
® bar() 5

6= foo() {

:4 Callers 53 =8 : : new MyClass().bar();

Members calling 'foo()' - in workspace = g

- 18 class MyClass {
$ ®EEw B - et e barg) ¢ |
4 ® fool Line Call 12 print(“bar™);
® main() 2 3 fo0 :i) i

< (o] ' L] '

Figure 2.5 The Dart Editor Callers and Outline views

someone else has implemented an underlying library or you’re using third-party
libraries from the web.

The Dart Editor also has useful Outline and Callers views. The Outline view lets
you visualize the outline of your source file, showing top-level functions, classes, and
class members. The Callers view, which you activate on a specific function or method,
shows which location in your code calls that function. This is similar to Find Refer-
ences in Java and C# tools. Figure 2.5 shows an example.

CODE SUGGEST AND AUTOCOMPLETE

Code autocomplete, although not always needed if you know the source and libraries
well enough, is incredibly useful when you’re learning a new library and its features. It
lets you see the available methods immediately, in the code, under the cursor. Is there
a Sort method on the List class? Is there a way to get a list of char codes from a
String? Code autocomplete will tell you this without your needing to leave the Edi-
tor—in fact, without leaving the text Editor pane.

This feature is useful when you’re working with someone else’s code, whether it
was written by someone else on your team or taken from other projects that you're
using. It could be said that you should not need autocomplete if you knew all the
methods and their parameters by heart, but the reality of today’s open source frame-
works is that they change rapidly, and having method and parameter information
directly in your code can only help.

Code navigation, autocomplete, and error information are common tools that
many developers have used elsewhere, and they’re unsurprising in their use. They’re
worth noting because few JavaScript editors have these features. One of Dart’s design
goals is to make developers’ lives better when developing web applications, and these
three tools help to achieve this.

30 CHAPTER 2 “Hello World” with Dart tools

2.2.2 The relationship between Dart and HTML files

Dart is designed to run in the web browser, either as native Dart or converted to
JavaScript. To enable this conversion to JavaScript, your application needs to exist sep-
arately from the HTML file that defines the host web page. Fortunately, the Dart Edi-
tor is also designed to work this way: when you create a new project in the Dart Editor,
you have the option of creating a boilerplate HTML file that contains a script tag to
run your Dart application.

Listing 2.2 shows the bare-minimum HTML that you need to enable your Dart
application to run as either a Dart or a converted JavaScript application. It contains a
script tag linking to your existing HelloWorld.dart script. It also contains another
JavaScript script called dart.js, which detects whether the host browser contains the
Dart VM. If the host browser isn’t Dart enabled, the script modifies any application/
dart scripts to application/javascript and appends a js suffix to any sr ¢ properties in
those script tags: for example, it changes HelloWorld.dart to HelloWorld.dart.js. The
following JavaScript version of your Dart app, as you’ll see shortly, is created by the
dart2js tool.

Listing 2.2 HTML file that can run your Dart app in both Dart and JavaScript

<! DOCTYPE ht ni > Script referencing your
<htm > Dart application file
<body>

<script type="application/dart" src="HelloWrld.dart"></script>
<script src="http://dart.googl ecode. con!

svn/br a_nches/ b eeFi| 'r?g_edge(dart.js JavaScript file allows non-
dart/client/dart.js"></script> Dart-enabled browsers to link to

</ body> HelloWorld.dart.js instead
</htm >

The code builtinto the linked dart.js, which is included in the HTML, contains a snippet
of JavaScript that checks to see whether the function navi gat or. webki t St art Dar t
exists in the browser. You can also use this check in your code to determine whether
you’re running in a Dart-enabled browser.

Figure 2.6 shows the relationship between the host HTML file and your “Hello
World” Dart script.

2.2.3 Running “Hello World” with Dartium

From the Dart Editor, you can run this app the same that you did with the Dart VM ver-
sion. The Dart Editor detects that there is an associated HTML file and loads the app
into the Dartium web browser, served from its own built-in server. This built-in server
lists all the Dart applications that are currently available in the Editor, as shown in fig-
ure 2.7.

“Hello World” uses the print () function to output a message. When running in a
web browser, print () outputs to the browser’s debug console, similar to the JavaScript

“Hello World” with the Dart Editor 31

Helloworld.html |
I — |

<html>
<body>
<script type="application/dart"
src="HelloWorld.dart" /> HellowWorld.dart is linked
</body> to form the host HTML file.
</html>

Helloworld.dart

main(Q) {
} print("Hello World™);

The mai n() entry point
function is executedwhen
the application’s code
is fully loaded.

Figure 2.6 HTML links to external Dart files

consol e. l og() function. The Dartium web browser can communicate with the Dart
Editor, and any text that appears in the Dartium debug console is sent back to the
Dart Editor’s console. Dartium also knows about breakpoints in the Dart Editor, and
code will pause execution in the Dart Editor when a specific breakpoint is reached.
We’ll look at this debugging feature a little later in the chapter.

[=8

@ Dart Editor x \

The Dart Editor contains a
built-in server, which serves up

Dart Edltor ;; all the web applications that

the Editor knows about.

€ > C |[}127001:3030

g
mn

2 web applications available

Hello World - HelloWorld.html
\Hello World\HelloWorld.dart

m

Simply loading the application

Listing 2.2 - Hello World with HTML - will allow Dar.tlum to load the
Listing22 HelloWorldwithHTML.html current version of the code
\Listing 2.2 - Helle World with and communicate with the Editor.

HIML4Listing22 HelloWorldwithHIML.dart

www_dartlang.org/editor Eal

Figure 2.7 Viewing the Dart Editor’s web server from Dartium

32 CHAPTER 2 “Hello World” with Dart tools

2.2.4 Using dart2js to convert to JavaScript

When your application user doesn’t use a browser that runs Dart natively, they must
use the JavaScript version of your app. Fortunately, you can convert Dart code to
JavaScript using the dart2js tool (more on that later), which outputs a . js (JavaScript)
file that contains a compiled version of the .dart app. The dart2js tool actively removes
redundant code, so you can import as many external Dart libraries as you wish, safe in
the knowledge that only the code that’s used in your app ends up as JavaScript. You
access the dart2js tool from the Editor by selecting Tools > Generate JavaScript from
the Editor’s menu.

The complete output of your “Hello World” application contains the readable
JavaScript shown in the following listing. It includes the code to start a Dart isolate (the
execution unit in Dart) and the print () functionality from the core Dart libraries. The
dart2js tool also outputs a sourcemap file, which modern browsers can use to show the
original Dart file. Thus although you can view the output JavaScript, you don't need to.

Listing 2.3 HelloWorld.dart.js: output of dart2js

/1 Generated by dart2js, the Dart to JavaScript conpiler.
/1 The code supports the foll ow ng hooks:

/1 dartPrint(nessage) - if this function is defined it is called

11 instead of the Dart [print] method.

/1 dartMai nRunner(main) - if this function is defined, the Dart [nain]
11 method wi |l not be invoked directly.

11 Instead, a closure that will invoke [main] is
1 passed to [dart Mai nRunner].

function Isolate() {}
init();

var $$ = {};
var $ = |sol ate. $i sol ateProperties;
$.Primtives_printString = function(string) {
if (typeof dartPrint == "function") {
dartPrint(string);
return;
if (typeof console == "object") {
consol e.l og(string);
return;
}
if (typeof wite == "function") {

wite(string);
wite("\n");
}
b
$.print = function(obj) {
$.Primitives_printString(obj);
b
$.main = function() {

return $.print('Hello Wrld); main() function with
¥ print statement

“Hello World” with the Dart Editor 33

var $ = null;

I solate = Isol ate. $fi ni shlsol ateConstructor(lsolate);
var $ = new |solate();
/1
/1 BEGQ N invoke [main].
/1
if (typeof document != 'undefined && docunent.readyState != "conplete') {
docunent . addEvent Li st ener (' readyst at echange', function () {
if (docunent.readyState == 'conplete') {
if (typeof dartMinRunner == 'function') {
dart Mai nRunner (function() { $.main(); });
} else {
$. main();
}
}
}, false);
} else {
if (typeof dartMinRunner == 'function') {
dart Mai nRunner (function() { $. main(); });
} else {
$. main();
}
}
/1
// END invoke [nmin].
/1

function init() {
| sol ate. $i sol ateProperties = {};
I sol ate. $f i ni shl sol at eConstructor = function(ol dl sol ate) {
var isol ateProperties = oldlsol ate. $i sol at eProperti es;
var isol atePrototype = ol dl sol ate. prototype;
var str = "{\n";
str += "var properties = |sol ate. $isol ateProperties;\n";
for (var staticNane in isolateProperties) {
if (Object.prototype. hasOwmProperty.call (isol ateProperties, staticNanme))
{

str += "this." + staticName + "= properties." + staticNane + ";\n";
}

}
str += "}\n";
var new sol ate = new Function(str);

new sol at e. prot ot ype = i sol at eProt ot ype;
i sol at eProt ot ype. constructor = new sol at e;
newl sol at e. $i sol ateProperties = isol ateProperties;
return new sol ate;
H
} Linked
/1 @ sour ceMappi ngURL=Hel | oWr | d. dart.js. map sourcemap file

Now that you have your application code available as both Dart and JavaScript code
(from a single Dart source), it’s possible to let the browser switch between the Dart
implementation of the app and the JavaScript version. If the browser understands
Dart, it will load the .dart code. If not, it will get the .js version of the code.

34

2.2.5

2.2.6

CHAPTER 2 “Hello World” with Dart tools

NOTE Unlike Google’s Java-based Google Web Toolkit (GWT) product,
which outputs different JavaScript files for each targeted browser, dart2js out-
puts a single JavaScript source. Dart is designed to convert to a single
JavaScript output for running in modern web browsers.

Generating documentation with dartdoc

Also in the Editor’s’ toolset is the dartdoc tool, which you can use to generate API doc-
umentation. If you add a doc comment to your mai n() function, as shown in the fol-
lowing snippet, you can generate the appropriate API doc:

/1l This is the entry point function Function documentation
/11 and outputs Hello Wrld to the console read by dartdoc
main() {

print("Hello World");
}

The API documentation that’s output is the same as that used by the Dart API docs
hosted at http://api.dartlang.org. The dartdoc for the “Hello World” app is shown in
figure 2.8.

Debugging Dart with breakpoints

The Dartium browser and the Dart Editor work in conjunction to enable breakpoints
and step-by-step debugging. When you set a breakpoint in the code and run your app
with Dartium, two-way communication between the Dart Editor and Dartium allows
the Dart Editor to break when your code reaches the breakpoint. In this respect, you
get functionality similar to what you might expect from Java or C# application devel-
opment. You can watch variables, browse the stack, and step over and into method
and function calls, all from the Dart Editor.

i =] & [

@ HelloWorld.dart Library / | % |

i

[= C | [1 127.0.0.1:3030/C:/Users/chrisbu/Goog e?-'&2[:3"-v-'e_.-"]a’th.iact'o'1_.-"c-1ec<ec?-é2[:u‘?j‘3 =

-
\ Dart Documentation » HelloWorld.dart _

[HelloWorld.dart

HelloWorld.dart
library

m

Methods
main()

This is the entry point function and
outputs Hello World to the console

A

Figure 2.8 Generated dartdoc for your “Hello World” application

http://api.dartlang.org

2.3

Importing libraries to update the browser UI 35

(@) dartiumtest.dart £ = O || % Debugger 5% ™
1 #import('dart:html'); 0B ®
3 class dartiumtest { ¥ & dartiumtest.html [Dart in Dartium Launch]
4 . ¥ [chrome
5 dartiumtest() { g
6 1 ¥ Call Stack
8= wvoid run() { ; .
e 9 write("Hello World!"); = RS)
10 } = main()
171 : ¥ chrome
12= void write(String message) {
13 // the HTML library defines a global "document” ‘||| Name Value
14 document.query('#status').innerHTML = message; > o this
15 s
16) @ message | Hello World!

Figure 2.9 Setting breakpoints and debugging in the Dart Editor

Figure 2.9 shows this behavior in action, with the source code on the left and the
debugger with the call stack and local variables running on the right.

Remember

= The Dart Editor comes bundled with the Dart SDK and the Dartium browser.

= Many code navigation and editing tools are available in the Editor, including code
refactoring, the Callers view, and the Outline view.

= The dart_analyzer tool is used for static analysis of the code. It produces errors
and warnings that appear in the Dart Editor.

= You can create an HTML-formatted APl document from your code comments
using the dartdoc tool.

= The Dart Editor and Dartium communicate with each other to provide an
integrated, round-trip debugging solution.

Live debugging of web apps is a powerful tool. Having the ability to set breakpoints
directly from either the Dart Editor (in which you have a quick edit, save, and refresh
cycle) is a powerful aid to getting your app working perfectly.

You’ve seen how to edit Dart using the Dart Editor tools and run Dart in the Dart
Editor. It’s time to look at using Dart to drive a user interface.

Importing libraries to update the browser Ul

In this section, we look more at how Dart communicates with the browser DOM using
the dart: htnl library. Using the Dart Editor and Dartium to provide quick updates of
your code, you’ll modify your HTML file to contain a single <di v> element with a DOM

36 CHAPTER 2 “Hello World” with Dart tools

ID of "st at us". You’ll reference this st at us <di v> in your “Hello World” script, updat-
ing the content of the scriptwith a" Hel | o Wor | d" string. The following listing shows the
new st at us <di v> you’re adding.

Listing 2.4 HelloWorld.html with st at us <di v>

<! DOCCTYPE html >

<htm > You’ll modify the content of
<body> this <div> in your Dart app.
<div id="status">Waiting for Dart...</div>

<script type="application/dart" src="HelloWrld.dart"></script>
<script src="http://dart.googl ecode. conl
svn/ branches/ bl eedi ng_edge/ dart/client/dart.js"></script>
</ body>

</htm >
Now that you have an element in your HTML page, you can modify your Dart script to
update it. You’ll replace the print statement with one that gets the <di v> element
from the page. In order to do this, you need to use one of the built-in libraries, called
dart:htnl. The dart:htn library is designed to provide all the HTML APIs that you
expect from the browser DOM, but in a consistent manner, with Dart-style API access;
you’ll see much more of this library throughout the book. If you're used to using
jQuery with JavaScript, then the dart: ht ml library should feel familiar.

2.3.1 Importing Dart libraries

To import a library, you use the i nport statement. The i nport statement comes in
three variations, which we’ll look at in more detail in chapter 5. The first is used to
import core libraries, such as dart: ht . In this case, you use the dart: prefix, in this
form:

inmport "dart:htm";

Because this library is built into the Dart SDK, the tools know automatically where to
find it.
The second flavor of i nport is used to import third-party dependencies. It uses the

package: prefix: We look at Dart’s unit-test

i nport "package:unittest/unittest.dart"; framework in chapter 3.

Libraries imported using the package: prefix are resolved using pub, Dart’s package-
manager tool, which is available for use on the command line or in the Dart Editor.

Pub can pull dependencies from the internet using code repositories such as
GitHub or Dart’s own pub.dartlang.org repository. In this form, it serves a purpose
similar to that of Java’s Maven, .NET’s NuGet, and node.js’s npm tool. The most
important commands are as follows:

pub install
pub update

http://pub.dartlang.org

23.2

Importing libraries to update the browser UI 37

The first command installs the dependencies required, and the second updates them.
Pub is a new tool and will likely evolve to provide a number of features, such as setting
up boilerplate websites and frameworks.

The final flavor of the inmport statement imports your own local or other local
libraries by file path, for example:

inport "./nyLibraries/hellolLibrary.dart";

This form uses an implicit URI to access Dart libraries, which should be accessible by
the Dart tools. When you convert Dart to JavaScript, all these imported libraries are
pulled together into a single JavaScript file, containing only the code that is used.

Accessing DOM elements with dart:html

Figure 2.10 adds i nport "dart:htm"; into your Dart code and shows the modified
mai n() function, which updates the stat us <di v> with the text "Hel [o Wrl d". The
dart: htnl library provides the query() function shown.

The query() function is similar to jQuery’s $() function, which queries the browser
DOM by using CSS selectors.

CSS selectors

CSS selectors are patterns you can use to pick items out of the browser DOM, and
the two most common are #i d and . cl ass. There are plenty of tutorials available on
the web, but the following is provided as a reminder.

Given the following two lines of HTML

<div id="firstLine" class="nyTextBl ock">This is div nunber 1</div>
<di v id="secondLi ne" class="nyTextBl ock">This is div nunber 2</div>

you can select both lines by using the CSS selector . nyText Bl ock (because they
both share the same class), but you select the lines individually by using their ID val-
ues #f i rst Li ne and #secondLi ne. IDs should be unique, but multiple elements can
share a class.

HelloWorld.html

<html>
<body>
<div id="status"></div>
<script type="application/dart" (=[5 [t
src="HelloWorld.dart" /> % Listing24_Hel x
</body> o =
</html> €« C [1270013052 =
Helloworld.dart Hello World

import “dart:html";

mainQ) {
query("#status™).innerHTML = "Hello World™;

Figure 2.10 Updating the status
of a <di v> in the browser

38

23.3

CHAPTER 2 “Hello World” with Dart tools

= | G|
@ 127.001:3030/C:/Users/cl X o

&« Q | [127.0.0.1:3030/C;/Usersfcr 3% | =

| Hello World

[am a div element
[am a div element
| 1am a div element |
| Figure 2.11 Dynamically
adding elements

b

Dynamically adding new elements to the page

You've seen how you can modify elements that already exist in the HTML page that’s
hosting the Dart app, but a single-page application is responsible for building its own
user interface from code. This means you need to be able to dynamically create ele-
ments. Let’s modify the “Hello World” app once again: this time, add a button that,
when clicked, adds a new <di v> containing the "Hel | 0 Wor | d" string. The output will
look like figure 2.11.

All browser elements inherit from a base El ement object. You have a number of
ways to create elements dynamically, by using a tag name, an HTML string, or, for com-
mon elements such as But t ons, a specific But t onEl enent class. We’ll look again at cre-
ating elements in the next chapter and in much more detail in part 3 of the book,
when we deal with building client-side web apps.

The next listing shows the modified “Hello World” app, which builds up the user
interface.

Listing 2.5 HelloWorld.dart: creating elements dynamically

inport "dart:htm"; Modifies existing
#status element Creates new

mai n() { |
query("#status").innerHTM. = "Hello World"; button element
var button = new ButtonEl ement(); Set;t::(t property
button.text = "dick ne"; on button

button.on.click.add((e) {
var div = new El ement. htm ("<div>l ama div el ement</div>");
docunent . body. el enent s. add(di v);

1) Dynamically adds
docunent . body. el enent s. add(but t on) ; button to page

}

In this snippet, you created some browser elements dynamically and hooked up your

“on click” event-handler
function creates <div>
from HTML string

button to an event handler. This event-handler function is an example of an anony-
mous function, which we’ll look at in more detail in chapter 4.

24

Summary 39

Remember

= Dart uses the dart: htm library to provide access to browser DOM APIs and
elements.

= Your app can create elements dynamically and add them to the browser DOM.

= You can use the pub package-management tool to import external libraries.

= You can import libraries directly on the filesystem.

Summary

In this chapter, we’ve examined the tools that are available to the Dart developer.
Many languages have the same aims as Dart, but few of them provide the rich tool set
that goes along with the language:

= The Dart Editor, Dartium, and the Dart VM provide tools to help you write, run,
and debug Dart code.

= dart2js converts Dart code to JavaScript, which targets modern web browsers.

= Dart has built-in libraries that let you interact with the web browser’s DOM in a
friendly manner.

Using the Dart Editor and Dartium together should aid you as you learn and experi-
ment with the Dart language and core libraries. The quick develop-and-run cycle that
you get by being able to run Dart code directly in the Dartium web browser, without
needing a compile step, gives you a great productivity boost, because it becomes sim-
ple to try parts of the language and see your results immediately.

In the next chapter, you’ll start to build a real client-side Dart application. We’ll
take a high-level look at some of the Dart language concepts you’ll see again in more
depth throughout the rest of the book, including optional typing and classes. You’ll
also see how you can use Dart’s unit-test framework to begin testing your app.

Buwilding and testing
your own Dart app

This chapter covers

Building a user interface in the browser
Reacting to user events

Reusing code with functions

Getting familiar with Dart classes
Writing simple unit tests

It’s time to get your hands on some real Dart code. Using the core language con-
structs of variables, functions, and classes, you’ll build a simple browser-based pack-
ing-list app called PackList to let users keep track of things to take on their
vacations. One of Dart’s design goals is to be familiar; this chapter should help you
feel comfortable with the Dart functionality around variables, functions, and classes
before we get to the more surprising and interesting features in later chapters.
Instead of building the simple user interface in raw HTML, you’ll build it using
El enent classes from the built-in dart: ht m library. At the time of writing, no GUI
or widget library is available as part of the Dart SDK, although various open source
third-party libraries are in development. It’s the Dart development team’s goal to

40

3.1

Building a UI with dart:html 41

= | B |
() PackList '
C | © filey//C/PackList/Pac| @& A PackList is a client—s_ide app
that lets a user add items to
PackList take on holiday and cross
| them off as they're packed.
£dd It can be served from any web
server as static .html and .dart files
(Camera (or dart2js converted JavaScript),
Towel because there is no server-side
E— processing involved.

Figure 3.1 The PackList application

make Dart a “batteries included” solution, and a UI library will eventually be included
in the SDK. For now, though, you can build user interfaces by manipulating HTML ele-
ments in Dart code; knowledge of how to do this will also help you when a UI library
does appear, because you’ll be more confident with the underlying mechanisms
behind the widgets.

Although the PackList example app is straightforward and simplistic for example
purposes, in the real world you would also create a single-page web application this
way. The simple UI will contain an input text box to take some input from the user, a
button for the user to click, and a <di v> to display the list of items that the user wants
to take on holiday. Your application will react to user events by adding event-listener
functions that allow the user to add items to the list and mark them as packed. Finally,
you’ll create a class to hold the item (and whether it has been packed). This design
provides the code with structure and reusability.

The PackList example isn’t concerned with the serverside part of a web app—the
app can be run in a browser directly from a local file (although you could also host the
files on a web server). PackList runs only in the client; I'll discuss sending data back
and forth between the client and the server in a chapter 14. The app should end up
looking like figure 3.1.

By the end of the chapter, you’ll have a working browser-hosted, single-page appli-
cation and a set of simple unit tests that you can use to validate your code.

Building a Ul with dart:html

A single-page application like the PackList app builds its UI by executing code in your
web browser to create and manipulate HTML elements. This approach has the advan-
tage of keeping the UI display logic in the browser (such as making layout decisions
based on the state of the user’s data), which can ultimately free up server resources to
serve more users. In the single-page application design, the server would send the
Dart application code to the browser as static files and then send data to the browser
once the app starts running.

42

311

3.1.2

CHAPTER 3 Building and testing your own Dart app

You’ll build the PackList app from an entry-point HTML file that hosts the Dart
script, and a Dart code file that creates and attaches HTML elements to the HTML doc-
ument in the browser.

Entry-point HTML

All browser-based Dart apps must be hosted by an HTML file. This is your entry-point
HTML file, which references your app’s .dart file using an HTML <scri pt > tag. The
.dart file contains the mai n() function of your application, which is called automati-
cally when the Dart code is fully loaded and ready to start. The minimal HTML file
needs to contain a <scri pt > tag referencing the Dart source code, which looks like

the following:
Dart <script> tag loads .dart file

<htni > and starts main() function running
<body>
<script type="application/dart" src="packList.dart"></script>
</ body>
</htm >

The Dart Editor can create these files for you when you use the New Application Wiz-
ard and select the Web Application option. The HTML file that’s created also has a
useful JavaScript tag that loads the packList.dart.js (JavaScript version) of your app if
the browser doesn’t natively support Dart.

TIP Dart isn’t running? The Dart Editor Wizard creates a sample HTML file
and a sample .dart file. Before you start writing your application, remove the
example class from the .dart file and the <h1> and <h2> tags from the .html
file; otherwise, you’ll see the “Dart is not running” message when you run
your app in the browser.

Now that you have the entry-point HTML file, which contains a <body> and a <scri pt >
tag to load the Dart app, it’s time to look at the how you can populate the <body> with
HTML elements from within Dart code.

Creating dart:html elements

When you’re building a Ul in Dart, use the dart: htnl library, which is one of the
Dart libraries in the Dart SDK. dart:htm provides a standardized way for you to
interact with the browser by abstracting away a number of the idiosyncrasies of the
browser DOM (in a manner similar to the jQuery library that’s popular with
JavaScript). Using dart:htnl, you can create HTML elements (such as buttons,
<di v>s, and so on) and attach them to the browser. HTML elements are represented
using the parent El ement class (and subclasses, such as Di VEl enent and But t onEl e-
ment), and you get programmatic access to all the properties and methods available
on the HTML elements. Elements can contain child elements, have IDs and styles,
and have event listeners attached.

Building a UI with dart:html 43

TIP Actually, you're working with an implementation of the El enent (and
Di vEl ement and But t onEl enent) interfaces, but this is transparent to you, the
coder—you have an instance of something that “looks like” an El enent . I’ll
talk more about interfaces and their relation to classes in chapter 6.

There are two ways of creating HTML elements in Dart; one creates an empty HTML
tag that you need to populate programmatically, such as <di v></ di v>. The other pro-
duces a prebuilt HTML tag, as in

<h2 id="title">Pack<enpLi st </ enk</ h2>

To create a new El enent, call the dart:htnl El enent constructor using the new key-
word. This step creates a new El enent object for you to store in a variable and then
attach to the body. The first way that dart: ht nl allows you to create elements creates
an empty HTML tag:

var nmyEl ement = new Element.tag('div'); <—— HTML tag name

The second way constructs an element containing the child elements and properties
that you specify in the snippet:
var nyEl ement = new El ement. htm (
"<h2 id="title">Pack<enpLi st </ enp</h2>"); <+—— HTML tag

Both approaches have their advantages, and we’ll look at them in this section as you
build up your app’s UL

The PackList application will have an <h2> title heading, a text box, a button, and
a <di v> element, to contain each of the items to take on holiday. You’ll create each of
these elements in Dart code and add them to the document body; the resulting HTML
will look something like figure 3.2.

This heading is
created as a
<body> / base dart : ht ni
. El enent type.
<h2> PackList </h2> yp

. /
<input>| Enter item | </input> <button> Add </button>

Text box to enter
items, created

with an

I nput El enent type

<div> <div> Camel’a </div> — Add button,

<div> </div> created with a
i Passport i But t onEl enent
<div> etc... </div>)
A — List of items that
</body> are added, stored

in a <di v> — this
isa Di VEl enent .

Figure 3.2 The layout of the PackList application

44

3.1.3

CHAPTER 3 Building and testing your own Dart app

Creating a new Element from HTML snippets

Creating El enent s with the constructor new El enent. htm ("...some htnl...") is
useful when you want to provide a string of HTML to create an element and one of the
following is true:

= You know in advance what the element (and its child elements) will look like.
= You don’t need to reference each child element individually as a variable in
Dart (you can still access them later by querying for them).

You can pass any string of HTML into the El enent. htm constructor, as long as it
results in a single top-level HTML element:
two top-level <p> paragraph elements

elements are wrapped in a single
<div> element

Not valid: contains Allowed because both

"<p>Sone htnm </ p><p>Anot her |ine</p>"
"<di v><p>Sone htm </ p><p>Anot her |ine</p></div>"

Declaring strings in Dart

When you declare a string in Dart, you have a number of choices. You can declare a
multiline string by using a triple quote, such as

var nyString = """<div>
<p>a multiline string</p>
</[div>""";

This stores a string that’s formatted as follows:
<di v>
<p>a multiline string</p>
</ di v>
When you declare a multiline string, the string is stored exactly as defined, including
any whitespace, which can affect readability. Thus this string
var nyString = """<di v>
<p>a nultiline string</p>
</ div>"";
outputs the following string (which probably isn’t what was intended):
<di v>
<p>a multiline string</p>
</ di v>
Fortunately, for HTML snippets, we don’t care whether the final string is multiline, but
we do care about readable code. Dart lets you automatically concatenate adjacent
string literals (if you have two strings next to each other, even across line breaks,
they’ll be concatenated). Therefore, the following two string declarations store iden-
tical (but not multiline) values:

var nmyString = "<div>" "<p>a string</p>" "</div>";
var nyString = "<div>"
"<p>a string</p>"
"</ div>";

The second nyStri ng makes for nice, readable code but doesn’t affect the HTML
output.

3.14

Building a UI with dart:html 45

An ideal use for the El enent. ht M constructor is something like

Creates multiline
var paragraphContent = "Some about box text"; QJ string with triple
El emrent infoBoxDiv = new El ement. htm (""" quotes
<div id="infoBox" > Embeds paragraphContent

<h3>About PackLi st </ h3> QJ variable into HTML snippet
<p>$par agr aphCont ent </ p> with $ prefix

</ div>""ry;

This is an ideal set of elements, because you don’t need to reference the child ele-
ments of the about Box <di v> and the text is relatively static. The par agr aphCont ent
variable is embedded within the multiline string.

Embedding variables into a String declaration
Dart also provides an easy way to embed a variable into a string: $var i abl eNane or
${ expr essi on} . This feature lets you declare a string as follows:

var nyVal ue = 1234;
var nyString = "<p>$nyVal ue</ p>";
var nyQtherString = "<p>${nmyVal ue + 1}</p>";

These examples store the value " <p>1234</p>" in nyString and " <p>1235</ p>"
in myQt her Stri ng.

When you create an element using the El enent. ht M named constructor, you can still
access all the properties and methods on the element variable, as in

Adds another child
element to the infoBox
i nf oBoxDi v. chi | dren. add(new El enent. html ("<p>a second paragraph</p>");

var id = infoBoxDiv.id,; Reads

<div id='infoBox'> value
The second way to create HTML elementsis to use the El enent . t ag() constructor, which
provides youwith an empty element that you can populate and manipulate in Dart code.
Creating elements by tag name

Sometimes you want to define all the properties dynamically at runtime. The second
way of creating an El enent is by tag name, which gives you an empty tag ready for
manipulation, as in the following code:

var item nput = new El enent.tag("input");
This example create an | nput El ement that maps to the HTML:
<i nput ></i nput >

You can then populate some of the HTML element’s properties using the i t enl nput
object’s fields:

itemnput.id = "txt-itent;
i tem nput. placehol der = "Enter an itent;

46

3.1.5

CHAPTER 3 Building and testing your own Dart app

This creates HTML that looks like the following:

<input id="txt-iteni placehol der="Enter an Iteni></input>

TIP The placeholder text in an input box is the light-gray text that disap-
pears when you start typing in the text box.

Whether you use El enent . tag() or El enent. htm (), you get back an object that looks
like adart: htm El ement. Sometimes, though, it’s useful to access the extra properties
available on specific element types, such as | nput El enent or ButtonEl enent. With
Dart’s optional typing, the running code doesn’t care if you specify the actual type of the
element, butit can be useful to declare specific types of element so the type checker can
help by providing warnings if you try to use the element in ways that don’t make sense
for that particular object. For example, you could use any of the following to create a
new text box:

var item nput = new El enent.tag("input");
El ement item nput = new El enent.tag("input");
I nput El ement item nput = new El enent.tag("input");
The third line, which specifies that the i ten nput is an | nput El enent (rather than
something else, like a But t onEl ement or Di VEl enent) lets the tools (and other readers
of your code) confirm that you intend to deal with an | nput El enent . You also get
handy code-completion with specific properties and methods for the | nput El enent
from the Dart Editor.

All the elements that you expect to find in HTML have an equivalent type defined
in the dart: htnl library, including the latest HTML5 elements such as CanvasEl enent .

TIP Dart also provides the dart: dom library. It provides direct access to
the browser DOM and acts as an equivalent to JavaScript DOM manipula-
tion, at the expense of losing the ability to work with a consistent Dart
El ement interface.

Now that you can create elements using the El enent. tag() and El enent . ht i () con-
structors, you can add them to the HTML document to show them in the browser.

Adding elements to an HTML document

An HTML document’s visible content is contained within its <body> tags. When you
create elements with the dart: htmi library, you add these elements to the document’s
<body> tag. dart:htnl defines a docunent property in the top level of the library,
which itself contains a body element property. Reference this docunent . body property
in code, using the form

docunent . body. chi | dren. add(...sone elenent...)

TIP The top-level document also defines a docunent . head property, which is
useful for dynamically attaching elements such as net a- keywor ds or docu-
menttitle elements into the HTML page header.

Building a UI with dart:html 47

Each El enent instance has a
chi | dr en property that
contains its child elements.

document.body

-children

—| <h2>PackList</h2> |
———* <input/> |
—| <button/> |
_| <div/> |

Child el ermrent s also have
e ; / their own chi | dr en property.
777777777 | .children i

Figure 3.3 The body element has a number of child elements.

El enent instances
attached to the body

N

docunent . body itself is an El enent, and all El ement s have their own chi | dren prop-
erty, which allows you to build up parent/child hierarchies of elements as shown in
figure 3.3.

The PackList app requires that you add a title, wrapped in an <h2> tag, and you’ll
use the El ement. ht ml () constructor for this. Also create the input text box and the
button using the El enent. tag() constructor. The following listing shows the lines of
code you need, wrapped in the mai n() method (which is called automatically when
the application starts running).

Listing 3.1 Adding a new El enent to the document body

import “dart:htm"; <+—— Imports dart:html library
) Creates title element
mai n() { from HTML snippet
var title = new El enent. htnl (" <h2>PackLi st </ h2>");
docunent . body. chil dren. add(title); <—— Adds title to document body
I nput El enent item nput = new El enent.tag("input"); Creates and adds
docurent . body. chi | dren. add(iteni nput); input text box
But t onEl enent addButton = new El enent.tag("button"); Creates and adds
docunent . body. chi | dren. add(addBut t on) ; Add button

Di vEl ement itenContainer = new El ement.tag("div");
docunent . body. chi |l dren. add(i t enCont ai ner);
}

When the application starts running, you get HTML that contains the following
snippet:

PP h2 node added
<body> to HTML body

<h2>PackLi st </ h2>

<i nput ></i nput >

<but t on></ but t on> Button added
</ body> to body

Input text box
added to body

48

CHAPTER 3 Building and testing your own Dart app

In addition to adding the elements to the body, you need to populate some properties
on your new elements, such as these:

i nput Button. pl acehol der = "Enter an itenf;

addButton. text = "Add";

addButton.id = "add-btn";

It doesn’t make any difference whether you do this before or after the element is
added to the browser body—the browser will update as required to reflect the current
state of the HTML elements.

Finally, to complete your UI, you need to add a <di v> element to contain your list
of holiday items. By using some el enent . styl e properties (shown in listing 3.2), you
can apply styling information directly to the <di v> (in the real world, use CSS for lay-
out formatting).

When you run your app, it produces the UI shown in figure 3.4. The following
listing shows the full code to create this UI, which creates the four elements and sets
the properties.

Listing 3.2 Building the PackList Ul

inmport "dart:htm?";

mai n() {
var title = new El ement. htm (" <h2>PackLi st </ h2>");
docunent . body. chil dren. add(title);

I nput El enent i tem nput = new El enent.tag("input");

itemnput.id = "txt-itent; Sets properties on
item nput. pl acehol der = "Enter an itenl; InputElement
docunent . body. chi | dren. add(item nput);

But t onEl enent addButton = new El enent.tag("button");

addButton.id = "btn-add"; Sets properties on
addButton. text = "Add"; ButtonElement
docunent . body. chi | dren. add(addButton);

Di vEl enent itenContainer = new El ement.tag("div");

itenContainer.id = "itens"; .
itenCont ai ner.style.w dth = "300px"; Set;s)p;:pertles
i tenCont ai ner. styl e. border = "1px solid bl ack"; on DivElement

i tenCont ai ner.i nnerHTML = " ";

docunent . body. chi | dr en. add(i t emCont ai ner): Sets content of <div> to

be a single nonbreaking
} space ()

<body>
<script ..snip.. >

<h2>PackList</h2>
PackList — <input id="txt-item"
/ placeholder="Enter an item'>
<button id="btn-add">Add</button>
[Enter an item | [Add [‘/ <div id="items"
m— / style="width:300px; border=.. snip..">
I </div>

</body>

Figure 3.4 The PackList Ul

3.2

3.21

Building interactivity with browser events 49

This code is somewhat contrived for the purpose of example. By using the El enent
.htnl constructor, you could also create the it enCont ai ner Di vEl enent more con-
cisely, as follows:
Di vEl enent itenContai ner = new Elenent. htm (' <div id="itens"

styl e="wi dt h: 300px; border: 1px solid bl ack"> </div>');
You now have a UI built from Dart code using the dart:htnl library. These are the
building blocks for all Dart Uls.

Remember

= You can create El ement types using either El ement . htm (... snippet...) or
El ement.tag(...tag name...).

= The dart:htm library defines all the elements that a modern browser
understands.

= The Dart Editor can help provide you with autocomplete information for the prop-
erties (and the APl documentation at api.dartlang.org can help provide more detail).

= Elements become HTML tags in the browser. Properties are attributes on those
tags.

= All elements (including the body) have a chi | dr en property that contains the list
of its child elements.

The current code in your app only builds a static UI, though. It doesn’t react and
change when the user interacts with it. To handle the user clicking the Add button
and add the item entered into the list, you need event listeners, which are a type of
function that we’ll look at in the next section.

Building interactivity with browser events

To let your UI react to user events, such as a button click, use event listeners. A
dart:htnl event listener is a function that takes a single event parameter, which is a
type that implements the Event interface, such as the one in the following snippet:

myEvent Li st ener Functi on(Event event) {
wi ndow. al ert ("Look — an event has been triggered");

b

The event parameter provides extra information about the event. As with the El enent
and But t onEl enent types, Event is a general-purpose type. You can handle specific
types of event depending on the element that created the event. For example, if it’s a
MouseEvent, the event parameter contains a flag to indicate whether the left or right
button was clicked. The PackList app doesn’t need to know this, though—it needs to be
aware only that the Add button was clicked, so the general-purpose Event objectis fine.

Adding the PackList item from a button click

The PackList app contains an input box, a button, and a <di v> in which to put your
PackList items. The basic use case is that when a user clicks the addBut t on, you take

http://api.dartlang.org

50

3.2.2

CHAPTER 3 Building and testing your own Dart app

PackList Clicking this...

Suncream dAdd | / ...executes this...

Camera (event) {
Towel //code to add an item
[Book 3
Figure 3.5 PackList app
...which adds the item to the list. lets the user add an item.

the text from the input box and add it into the i t enCont ai ner. You should then clear
the i nput Box. This flow is shown in figure 3.5.

You can do this in the click listener for the addBut t on by using the following code,
which creates a new <di v> (of class i t em) containing the packl t emand adds it to the
item container. You need to look out for two pieces of code:

= Where you add a click listener to the addBut t on
= The click listener function itself:

mai n() {
/! ...snip ui elenent creation code... Adds click
addBut t on. on. cl i ck. add((event) { listener
var packltem = item nput.val ue;
var |istEl ement =
new El enment. htm ("<div class="itenl >${packl ten}<di v>");
i tenCont ai ner. children.add(listEl enment);
item nput.val ue= ""

s

Click listener
function body

}

This code should be added within, and at the end of, the existing mai n() method.
Every time a user clicks your Add button, your app now adds their item to the list.

There’s a lot of syntax in that new block of code, so let’s pull back a bit and see
what’s going on. We’ll look at some of the different ways you can create functions in
Dart and how the click listener function is defined, and then we’ll examine some of
the ways you can specifically use these as click listeners.

Event handling with Dart’s flexible function syntax

Partly due to Dart’s optional typing and partly to provide syntactic sugar, which can
save on typing and aid readability, Dart provides a number of ways to define functions.
You should get used to spotting them.

TIP Syntactic sugar is a feature of a language that makes things nicer to read
Or express.

At the highest level, a function in Dart can be declared in either longhand form,
which is similar to that in JavaScript, Java, or C#, or shorthand form, which can

Building interactivity with browser events 51

contain only a single statement and uses the => (lambda) operator to execute and
return a single statement.
The longhand form looks like this:
voi d myEvent Li st ener (Event event) {
/1 do sonet hing
wi ndow. al ert ("an event");

}
And the shorthand (or single-line) form looks like this:

voi d myEvent Li st ener (Event event) => w ndow. al ert("an event");

As usual in Dart, the return type and the parameter types are all optional and have no
impact on the running of the application. You don’t even need to write voi d as a
return type.

The single-line function syntax is useful when you want to set a value or call
another function. It’s also worth noting that the single-line function syntax implicitly
returns the value of the call, whereas the longhand version must specify the return
value. The two functions here are equivalent:

int addValues(int a, int b) {

=> operator implicitly returns
return a+b; : ¢ i

value of the expression. If no
} value is created by the

int addShorthandval ues(int a, int b) => a+b; expression, it returns null.

It’s important to also note that although all the type information is optional, such as
the return type and parameter types, the parameters themselves must be named
(unlike in JavaScript, in which all parameters are optional). Also unlike in JavaScript,
there’s no function keyword—even the function name is optional. An anonymous
function (one without a name) can be stored in a variable or passed directly into
another function as a parameter, which is what you’re doing with the event handler.
In your PackList app, the line addBut t on. on. cl i ck. add() takes a function as its
parameter, and you can pass in your event handler without first giving it a name, as in

addButton.on.click.add((event) {
/1 function body

1

or
addButton.on.click.add((event) => ...single statenent...);
You can also store the function in a variable first, as in

var myEventLi stener = (event) {
/1 function body

H

addBut t on. on. cl i ck. add(nmyEvent Li st ener) ;

or

var nyEventListener = (event) => ...single statement... ;

addBut t on. on. cl i ck. add(nyEvent Li st ener);

52

3.2.3

CHAPTER 3 Building and testing your own Dart app

Longhand (multiline) function syntax Shorthand (single-line) function syntax

int someFunction(int a, int b) { int someFunction(int a, int b) => a+b;
return a+b;

b

someFunction(int a, int b) { someFunction(int a, int b) => atb;
return atb;

by

someFunction(a, b) { someFunction(a, b) => atb;
return a+b;

by

var someFunction = (a, b) { var someFunction = (a, b) => a+b;
return a+b;

s

(a. b) { (a, b) => at+b;
return a+b;

b

Figure 3.6 Identical functions in both longhand and shorthand form, with varying levels of type
information

You’ll use functions in Dart in many places, such as to provide reusable blocks of code,
and we’ll discuss functions in more detail throughout the book.

To help you spot functions when they appear, figure 3.6 shows a list of identical
functions written with varying levels of type information, in both longhand
and shorthand form. They all perform identically when called (they return the result
of a +b).

Remember

= Functions have a multiline syntax and a shorthand syntax.
= Function return type information and parameter type information are optional.
= Anonymous functions can be passed as parameters and stored in variables.

Now that you can create event listener functions, you can continue with the PackList
app as we look at some of the events that dart: html can provide.

Responding to dart:html browser events

The dart: htnl library provides a way to handle all the events that a browser can raise
on an element. You access this list of events through the el enent . on property, which
in turn contains all the events that an element can react to. For example, some of the
events your button could raise include the following:

addBut ton. on. cl i ck

addBut t on. on. dr ag
addBut t on. on. nouseMve

Building interactivity with browser events 53

Each of these events is in fact another list (specifically, an Event Li st ener Li st) that
contains a list of event listeners. You can add your event listener function to that list by
using the list’s add() method, either by function name

addBut t on. on. cl i ck. add(myEvent Li st ener Functi on);
or inline

addBut t on. on. cl i ck. add((event) {
wi ndow. al ert ("1 handle events as well");

IOF
or inline by using shorthand function syntax:
addBut t on. on. cl i ck. add(event) => w ndow. alert ("M too!"));

All three functions show a browser alert dialog. Because the click event is an
Event Li st ener Li st , it’s perfectly valid to add all three. Each function will be fired in
turn when you provide a single click to the button.

If you wanted to remove the nyEvent Li st ener Functi on (you have a handle to it by
name), you could similarly call

addBut t on. on. cl i ck. remove(myEvent Li st ener Functi on);

which would remove the same function from the event listener list.

Your PackList app currently uses an anonymous function to handle the button
click event, but you can make that function work harder by giving it a name and using
it when you get a keyboard event. You need to do some refactoring.

3.2.4 Refactoring the event listener for reuse

It would also be useful to allow the application to add an item to the list when the user
presses Enter. Adding an event listener to the text box to detect the Enter key is rela-

tively straightforward:
i tem nput . on. keypress. add((event) { keyCode I3 is
if (event.keyCode == 13) { <;J the Enter key.
var packltem = itemn nput.val ue;
var |istEl ement = g?%d(g:rl::\k
new El ement. htm ("<div class="iten >${packltent<div>"); button click
i temCont ai ner. children.add(listEl ement); listener

item nput.val ue= "";
}
b
Butyou’ve copied the blockin thei f statementfrom the addBut t on eventhandler. Copy-
ing a block of code is poor practice. You should extract that block of code into a separate
function outside of the mai n() function so it can be reused around the application:

addltem() {
var packltem = item nput.val ue; Block of extracted code
var |istEl ement = from click listener, put
new El enent. htm ("<div class="itenm >${packlten}<div>"); into function called
i tenCont ai ner. children. add(listEl enent); additem()

item nput.value = "";

}

54

3.2.5

CHAPTER 3 Building and testing your own Dart app

You can now modify the event listener functions to call the newly extracted addl t en()
function:

addButton
addButton. on.click.add((event) => addlten()); click listener
item nput.on. keypress. add((event) { .
. iteminput
if (event.keyCode == 13) { .
addl ten() : keypress listener
}
1)

This is great, except that the addlten{) function no longer works. Because the
i nput I tem text box and the itenContai ner <di v> variables were declared in the
mai n() function, they’re now out of scope in the addl t en() function.

You need to use another feature of the dart: htnl library to allow you to reference
these two HTML elements—the ability to query for elements in the browser using CSS
selectors.

Querying HTML elements in dart:html

You’ll often have elements that exist in the browser HTML but to which you don’t cur-
rently have a variable reference. These might be elements that were added as a result
of using the El ement . ht nl () constructor, or perhaps you've added elements in a dif-
ferent part of your application and you need to retrieve them from the browser. Fortu-
nately, dart: htm elements have two useful functions: el enent. query(...), which
returns a single element, and el enent. queryAl | (...), which returns a list of match-
ing child elements.

In your PackList app, you need to get a handle to both the i t eml nput text box (to
retrieve the user’s item) and the i t enCont ai ner <di v> (to add the user’s item). These
elements are both child elements of the body, as shown in figure 3.7.

The following example snippet uses the queryAl | () function to return all input
tags that are children of the body (there will be only one) and retrieve the specific sin-
gle i tems <di v> by ID (using the CSS selector #i t ens).

You will access the i nput

document. body box by its tag name...

L‘ .children

_| input | _
...and the item’s

—| id="items" / <di v> by its ID

,,,,,,,, | ... others ...

Figure 3.7 Theinputtextbox andthei t ens <di v> can both be queried for from the document
body.

Building interactivity with browser events 55

To get references to the input box and the item container <di v>, you need to add the
following lines to the top of the addl t en() function:

Queries for all input tags
that are children of body tag
additen() { Selects first (and only)

var item nput = query("input"); one into itemInput

I nput El enent item nput = itenlnputList[0]; variable
Di vEl enent itenContai ner = query("#itens"); Queries for
/[l ... snip ... rest the function body. .
element with
} ID #items

In the real world, you’d access these two items both by #i d. The # is a CSS ID selector,
which should always return a single element. By contrast, using the line it enCon-
tainer.queryA | (".itent) returns a list of elements that match the CSS class . i tem
regardless of their specific element type—in this case, they’d be all the PackList item
<di v>s that the user has added.

The complete app listing so far, which now reacts to events by letting your user add
items by either clicking the mouse or pressing Enter, is shown in the next listing.

Listing 3.3 PackList that reacts to user events

inmport 'dart:htm"';

mai n() {
var title = new El enent. ht ml (" <h2>PackLi st </ h2>");
document . body. chil dren. add(title);

I nput El enent item nput = new El enent.tag("input");
itemnput.id = "txt-itent; addItem() function
i tem nput. pl acehol der = "Enter an itent; called when user
i tem nput.on. keyPress. add((event) { presses Enter

if (event.keyCode == 13) {

addltem();

}
IOF
docurent . body. chi | dren. add(itenl nput);

But t onEl enent addButton = new El enent.tag("button");

addButton.id = "btn-add"; addltem() function
addButton. text = "Add"; QJ called from a
addBut t on. on. cl i ck. add((event) => additen()); button click
docunent . body. chi | dren. add(addBut t on) ;

Di vEl enent itenContai ner = new El enent.tag("div");

itenContainer.id = "itens";
itemContai ner.style.width = "300px";
i temCont ai ner.style.border = "1px solid bl ack";

i temCont ai ner. i nner HTM. = " ";
docunent . body. chil dren. add(i t enCont ai ner);

} Extracted

addl tem() { addltem() function
var item nputList = queryAl ("input");
I nput El enent item nput = item nputList[0];

56

3.3

CHAPTER 3 Building and testing your own Dart app

Di VEI enent itenContainer = query("#itens");

var itenfText = itenl nput.val ue;

var |istEl ement = new Elenment. htm ("<div Co.dg frlom
class="item >${i t enilext } <di v>"); g:tgtlc;‘:click

i tenCont ai ner. children.add(li stEl ement); listener

item nput.value = "";
}
You now have a client-side app that lets the user add items to the PackList. It contains
anumber of dart: htnl elements and a function to allow you to query for the input and
output elements; this function is called when the user clicks the mouse or presses Enter.
The next step is to let users tick off items as they’re packed; in the next section, you’ll
add a Packl t emclass to wrap this functionality and allow for even better code reuse.

Remember

= Aneventlistenerindart: ht m is a function that takes a single event parameter.
= You can add multiple event listeners to listen to a single event being raised.

= dart:htm allows you to query for a single element with CSS selectors using
the query() function.

= Query for multiple child elements with the quer yAl | () function.

Wrapping structure and functionality with classes

The final step in your PackList app is the ability for a user to tick off items that are
packed. A user should be able to toggle between an item being packed and not
packed by clicking the item.

The simplest way to do this is to add another click listener to each of the items in

the list. When the user clicks the item, your click function will add a CSS style to add a
strikethrough style to the item.

To do this, refactor the app to add a simple Packl t emclass that does the following:

= Wraps the functionality of each packed item by implementing a toggle between
packed and not packed

= Stores some data about the item (its name and whether it’s packed)

Figure 3.8 shows the new flow.

PackList 1. Clicking the item that is packed will trigger
anon. cl i ck event on the item <di v>.
2. The app will react to this by adding the packed
Clansera / CSS class to the item <di v>, which applies
Towel the strikethrough style:
Seneream . packed { text-decoration:line-through; }

Fi'-,'#packltmz.packed.iten’ 3@88px = ZBEZ’.‘

3. Clicking the item again will remove
the packed CSS class from the <di v>.

<div class="packed item" id="packltemld2">Suncream</div>

Figure 3.8 The app reacts to the user clicking a packed item by adding a strikethrough.

3.3.1

3.3.2

Wrapping structure and functionality with classes 57

In order to support the strikethrough, you need to add the following CSS styles to the

HTML file (at the top of the <body> section is fine):
All pack items have a

<body> pointer cursor to indicate
<style type="text/css"> that they’re clickable.
.item{ cursor:pointer; }
. packed { text-decoration:line-through; } When item is assigned
</style> CSS .packed class, text
ete ... has strikethrough styling.

Now that you have some simple styles in your host HTML file, you can start to create the
Packl t emclass. Putit somewhere above or below your mai n() function (but notinside):

cl ass Packltem {

}

Dart classes are familiar

One of Dart’s design goals is to be familiar, which is apparent in its class syntax. If
you’ve used classes in C# or Java, then the Dart class structure will seem familiar. Of
course, Dart adds a couple of nice features in addition to being a standard, single-
inheritance, multiple-interface, class-based language.

One of these features that you may have already noticed is that classes aren’t man-
datory (unlike in G# and Java). Functions can exist without being wrapped in a class;
the mai n() and addl ten{) functions exist in the top-level scope without being part of
a class. Also unlike in C# and Java, you can put as many classes as you want into a sin-
gle Dart file—there’s no restriction, but you can break your code into separate files to
keep your source code organized, a topic covered in chapter 5.

That aside, classes in Dart have constructors, methods, and properties that can be
public or private, and they have a special syntax for getters and setters. We’ll deal with
the constructor first, which will allow you to create Packl t ens.

Constructing the Packltem class

The basic functionality required for the Packl t emclass is to store the i t enText passed
to it from your addl ten() function. You can do this using the code in listing 3.4,
which defines the class itself and an i t enffext property and initializes that property
with a value passed to the constructor. You also need to add the UI element that will be
attached to the UI Look out for the constructor initializer shorthand for initializing
the i t enifext property (the constructor is a function with the same name as the class).

Listing 3.4 Basic class structure

cl ass Packltem {

var itenfext: . itemText property (Currefltly uninitialized) Ul element
var ui El ement ; . that will be attached to Ul

Packltem(this.itenText) {
/lempty constructor body
}

Constructor that accepts single
itemText parameter (which also
initializes itemText property)

}

58

CHAPTER 3 Building and testing your own Dart app

WARNING Best practice alert! It isn’t generally good to mix UI behavior and
business logic behavior in the same class as the examples here do by adding
the data and the UI element in the same class. It makes unit testing your app
harder and represents a tightly coupled application design; but for the pur-
pose of example, the single example class will contain both the UI behavior
and the business logic (is it packed or not?). A better design would have two
classes: one responsible for UI layout and the other to hold and manipulate
your data. You could then loosely couple one to the other, a technique I use
later in the book when discussing client apps in Dart in greater depth.

You can create a new instance of this class with a line like the following:
var sonePackltem = new Packlten("Suncreant);

This is the same new keyword that you used when creating El ements from the
dart: htm library. It calls the Packl t emconstructor and passes in the item text (which
you’ll get from user input).

Some lessons were learned from how constructors are used in C# and Java, and these
have been incorporated into Dart. One of them is that a common use for constructor
parameters is to populate class properties—in this case, the i t enffext property.

Dart allows you to write the constructor in this typical (for Java developers) form:

Packl ten(itenmText) {
this.itenText = itenflext;

}
But Dart also lets you shortcut this by indicating in the parameter list that all you’ll do
is initialize a property. You can then write the constructor as follows:

Packltenm(this.itemlext) { }

This syntax is handy, and you can mix and match standard parameters and initializer
parameters:
Packltenm(this.itenmlext, color, quantity) {

this.color = color;

this.quantity = quantity;
}
Now that you have your basic class, you can begin to refactor the addl t en() method as
shown in listing 3.5. addl t en() now constructs the Packl t em passing in the item text,
and reads the ui El ement property to add it to the i t enCont ai ner. The ui El ement will
ultimately contain a <di v>, but for the moment your class leaves that unspecified with
the var keyword.

Listing 3.5 Refactoring the additem method to use your class

addltem() {
var item nputList = queryAll("input");
I nput El ement item nput = item nputList[0];

Di vEl enent itenContai ner = query("#itens");

Wrapping structure and functionality with classes 59

var packltem = new Packlten(item nput.val ue);
i t emCont ai ner. chi |l dren. add(packltem ui El ement);
item nput.value = "";
} Gets uiElement property of class

and adds it to itemContainer

Creates instance
with Packltem
constructor

Although the refactoring is valid, it has one vital problem: the ui El enment property
isn’t yet initialized and therefore contains a nul | value. You can fix that by converting
it from a property to a getter (with no further refactoring of addl t en() required).

3.3.3 Wrapping functionality with property getters and setters

Fields, getters, and setters in Dart can be used interchangeably with no change to the
calling code. This means the line

i temCont ai ner. chil dren. add(packltem ui El ement);

has no knowledge as to whether it’s reading a value from a getter or from a property.
A getter (or setter) is a method that’s prefixed with the get (or set) keyword. A getter
must take no parameters, and a setter must take a single parameter, as in the following

code: uiElement

cl ass Packltem { property renamed

i Getter using shorthand
var _ui El ement; to _uiElement g

function syntax to

Di vEl enent get ui El enent => _ui El enent; return _uiElement

set ui El ement (Di vVEl emrent val ue) => _ui El ement = val ue; .
Setter also using

} shorthand function
syntax to set _uiElement

You may have noticed that the example code renames the original ui El enent to
_ui El enent (adds the underscore prefix). This change has a particular significance
that I’ll discuss in chapter 5 when I talk about libraries and privacy; for the moment,
you can treat this as a private property by convention.

TIP Remember that optional typing means you don’t need to specify type
information. But it’s useful to users of your class to provide type information
on the public properties and methods that callers can use (as is done here).

Type information is documentation for humans and tools.
Users of your class can use code such as this: s
ets value on

var packltem = new Packlten("Sunscreen"); uiElement via Gets value of
packltem ui El ement = new El enent . tag("div"); setter uiElement via
i t emCont ai ner. chi | dren. add(pack! t em ui El enent) ; getter

Because getters, setters, and properties are interchangeable, the library designer can
start with simple properties like these

class Packltem {
var ui El enent;

60

CHAPTER 3 Building and testing your own Dart app

and then change them to getters and setters as greater functionality is required, with-
out the caller needing to change their code.

WARNING A good class designer will design getters and setters in such a way
that they execute swiftly. It’s good practice to allow a user of the class to think
they’re reading a property, even if lazy initialization or some other processing
is going on in the getter or setter.

READ-ONLY PROPERTIES WITH GETTERS

The Packl t emui El ement should be read only—that is, only code in your class should
expect to be able to modify it. Because addl t en{) currently reads the ui El ement prop-
erty, you can replace this item with a getter in the class and no setter (which effectively
means you can only read the value and not write a new ui El enent value). Use your get-
ter to “lazy initialize” the ui El enent private property as shown in the following listing.
The first time the getter is called, it creates the <di v> element and stores it in the
_ui El enent private property. Each subsequent time, it returns the same _ui El ement .

Listing 3.6 Adding a ui El enent getter

uiElement has
been renamed
to _uiElement

cl ass Packltem {
//snip... other code

var _ui El enent; If private
. .,
Di VEl ement get ui El ement { _ulE.Ie.n.1eI|.1t ';"t
if (_uiBlement == null) { yet initialized ...
_ui El ement = new El enent. tag("div"); ﬁ ... initializes it with
_ui El enent . cl asses. add("itent); new <div> element
_ui Element.text = this.itenfext; Adds CSS .item class
} so it gets a pointer
mouse style
return _ui El ement;
} - Sets text that you’ll
} Returns _uiElement show on item

to caller

Your app now runs and provides the user with a nice “click here” mouse pointer when
the mouse is moved over one of the added items. The pack-list items still don’t toggle
when someone clicks them, but you're getting closer. The next step is to store some
state data in the Packl t emclass, in the form of a Boolean i sPacked property, and to
add a click listener to toggle i sPacked, as described in figure 3.9.

UPDATING THE Ul STATE THROUGH A SETTER

Once again, you’ll use a setter and a getter to represent the i sPacked property.
There’s a requirement to perform an action (updating the UI) when you set the
i sPacked value, which you can do by adding the additional CSS class . packed to the
ui El enent property. The . packed CSS class specifies text-decoration: [|ine-
t hrough in the CSS styles that you added to your HTML file earlier.

Wrapping structure and functionality with classes 61

PackList

Add

[Eantera

Towel

[Suneream

Fi'-,'#packItEmIdZ.packed.iterr- 308px = 2B|J:<|

1. Clicking the item that is packed will trigger The click listener will call
anon. cl i ck event on the item <di v>. this.isPacked = ! this.isPacked,
to switch between true and false.

2. The app will react to this by adding the The isPacked setter will add or remove the
packed CSSclasstotheitem <div>, -packed CSS class:
which applies the strikethrough style:. packed

{ text-decoration:line-through; } set_ispacked(value) {

_isPacked = value;
if (isPacked == true) {

3. Clicking the item again will remove the — uiElement.classes.add("packed");
packed CSS class from the <di v>. }
else {
|,,—— uiElement.classes.remove("packed");
¥
¥

<div class="packed item">Suncream</div>

<div class="item">Suncream</div>
Figure 3.9 The i sPacked property adds or removes the . packed CSS class.

First, add the private _i sPacked property and the setter and getter, as shown next.

Listing 3.7 Adding the i sPacked property, getter, and setter

cl ass Packltem { Private _isPacked property,
//...snip... other code initialized with false (rather
var _isPacked = fal se; than null, which is the default)
bool get isPacked => _isPacked; 4—‘ Shorthand getter
i function syntax
set | ;Paﬁkzd(_val Iue) i { Longhand setter Y
| sracked = val ue, function syntax

if (_isPacked == true) {
ui El enent . cl asses. add(" packed");

} Adds and removes

el se { CSS .packed class
ui El enent . cl asses. renove(" packed");

}

}
}

Your final task is to add a click listener to the ui El enent to perform the toggle
between packed and not packed. The ui El enent, as a <di v>, can react to on. cl i ck

62

3.4

CHAPTER 3 Building and testing your own Dart app

events, so you need to add a click listener into the ui El ement getter. The code in bold
is the click listener itself, defined in function shorthand, which changes the i sPacked
value from true to false, and vice versa:

Di VEl enent get ui El enent { Uses ! (not) operator to

if (_uiElement == null) { reverse isPacked value. Has
_ui El ement = new El ement . tag("div"); the effect of calling isPacked
_ui El ement . cl asses. add("itent); setter with new value.
_ui Elenent.text = this.itenfText;
_ui El enent. on.click.add((event) => isPacked = !isPacked);

}

return _ui El ement;

}

And with that final flourish, you now have a working client-side app that can be
converted to JavaScript and deployed on any web server as a set of static files to run in
all modern browsers. It uses a single Dart class containing a constructor and getters
and setters.

Remember

Dart classes are similar to C# and Java classes.

Constructor parameters can automatically initialize property values.

Getters and setters are interchangeable with properties.

It's good practice to use type information on getters, setters, and properties and
other methods that you expect people to use.

Unit-testing the code

Testing the code that you’ve written is a standard best practice in software develop-
ment. The Dart tools provide static analysis of the code, with help from the type infor-
mation provided, but being able to run repeatable unit tests both in the browser and
in server-side code from the console helps verify the quality of your code. In Dart, a
unit-test suite is another app that you write that sits alongside your actual app. You can
then run your unit-test app in the browser, where it executes each test and outputs the
results to the browser.

Let’s look at some code. You’ll add a new app to your source folder to sit alongside
the PackList.dart and PackListhtml files. Your unit-test PackListTest.html file is
straightforward and minimal, containing only a script reference to the PackList-
Test.dart unit-test application, and is shown in the following listing.

Listing 3.8 PackListTest.html: entry-point HTML file for your unit test

<! DOCTYPE htmi >

<htm >
<head>
<meta charset="utf-8">
<title>PackListTest</title>

Unit-testing the code 63

</ head>
<body>
<script type="application/dart" src="PackLi st Test.dart"></script> <Fw

o rbody> Link to PackListTest.dart

application entry-point file
Now that you have the test app’s HTML file, you can start to add code to PackList-
Test.dart. This file imports the PackList.dart application, which you’ll be testing, and
also imports Dart’s unit-test framework and a unit-test configuration script that’s pro-
vided by the unit-test framework. The unit-test configuration links the unit-test library
to a set of output functions, which outputs the results either into the browser window
or into the server console.

Client vs. server restrictions

Although Dart can run in the browser (client side) and on the server, a number of spe-
cific libraries can run only on the client side, and some are valid only on the server.
The dart: htnl library interacts with the browser DOM and is available for use only
when Dart is running in the web browser. The dart : ht m library won’t run on the serv-
er-side Dart executable, because no browser DOM is available.

Testing any code that imports dart: ht M won’t work as a server-side test, because
the server-side virtual machine doesn’t contain the browser DOM for HTML interaction.

Listing 3.9 shows the minimal code required to get a client-side test suite app up and
running. When you import the real PackList.dart app, you need to provide an i npor t
prefix, because otherwise there’d be a clash between the two top-level mai n() func-
tions—one in the PackList app and one in the PackListTest app. The i nport prefix
lets you differentiate the two different mai n() functions. (We’ll visit this topic in more
depth in chapter 5.) Import the unit-test framework using the pub instal | command
from the command line or Dart Editor menu option.

Listing 3.9 PackListTest.dart: client-side test suite boilerplate code

side HTML

inport "package:unittest/unittest.dart"; <—— Imports unit-test framework Imports client-
configuration

i nport "package:unittest/htm _config.dart";

/1 inmport "package:unittest/vmconfig.dart"; Q—‘ If you were testing on the

i mport “PackList.dart" as packLi st App; server-side VM, you'd import
the VM configuration.
mai n() {

useHt m Confi guration(); lmp,orts library that
you’re testing

/1 useVnConfiguration();
Sets up client-side
/'l todo: Add tests here HTML configuration

This is where If you were testing on the server-side
you'll add tests. VM, you'd set up the VM configuration.

64

34.1

3.4.2

CHAPTER 3 Building and testing your own Dart app

To enable package management, you need to specify that you're using the unit test
dependency in the pubspec.yaml file created by the Editor. Chapter 5 discusses
the pub package manager and pubspec syntax in greater detail. For this test, you just
need to add a dependency section to your application’s pubspec.yaml file, as shown in
this snippet:

dependenci es:

unittest: any

Then run pub install from the Editor’s menu to pull the unit-test dependency into
the project.

Creating unit tests

You now have all the boilerplate necessary to start writing unit tests. A test is a function
that you create and that is passed into the test () function, which comes from the
uni ttest library, which comes as part of the unit-test framework. We’ll look more at
passing functions around in the next chapter; for the moment, the syntax for creating
a test is shown in figure 3.10.

The test name is passed The second argument is an
as the first argument to anonymous function, wrapping
the t est () function. the actual test code.
X 5
test("test name”, Q { Your unit-test code goes within

// test code goes here // the anonymous function.

T)

Figure 3.10 The code required to set up a unit test

Defining test expectations

In your unit test, you can call any valid Dart code. Typically, unit tests should check
expectations—for example, thatavalue isn’t null, or that an object’s propertyis assigned
correctly. For this, you use the expect () function (also provided by the unittest
library), which takes two parameters: the actual value you’ve generated in your test and
a matcher that lets you provide the value you expect. A simple version of this setup is
shown in listing 3.10, which contains two tests. The first expects that a newly created
instance of Packltemisn’t null, and the second validates that the iteniText value
assigned in the constructor is correctly returned by the property on the class.

Listing 3.10 Testing for expectations in unit tests

/'l snip boilerplate inports

main() {
useHt M Configuration(); Defines

t est ("Packltem constructor", () { unit test

Unit-testing the code 65

var item = new Packlten("Towel ");

Expect.isNotNull (iten); Standard Dart

: Expects that new item code to create
IO isn’t null (using static Packltem
test("Packltemitenilext property", () { isNotNull method)

var item = new Packlten("Towel "); In second test
expect (itemitenilext, equal s("Towel")); creates anothe,r

1)
Expects that itemText has been Packltem

} correctly assigned the value “Towel”
using the built-in equals() function

You can see the output of this code in figure 3.11. The output of each test is displayed
in the browser window, along with a stack trace for failing tests.

Automating test runs

Browser-based unit tests can be automated with the aid of an external client-side test
framework, such as Selenium (www.seleniumhq.org), which you can launch from a
continuous build server. Selenium can navigate the unit-test page in your app, where
the unit tests run in the browser. You can configure Selenium to pass or fail based
on the browser content rendered. Dart also provides Selenium web-driver bindings,
allowing Selenium scripts to be written in Dart directly. See the Dart webdriver API at
api.dartlang.org for more details.

The i sNot Nul I and equal s matchers are built into the unit-test framework. Table 3.1
lists some other built-in matchers.

/ 4% PackListTest

« ¢ [}127.001 Each test result is output to the

| pass / browser window (or server-side
1 PASS Expectation: Packltem constructor. console for server-side teStS)'

2 PASS Expectation: Packltem itemText property.

All 2 tests passed
|

4% PackListTest

| € = C [127.001:3030/

| FALL PN — When a test fails, you also
1PASS Expectation: Packltem constructor.

get a stack output to aid

| 2FAIL Expectation: Packltem itemText property. Expected: 'Towel but: was 'Towell'. diagnosis
I 0. Function: 'DefaultFailureHandler.fail' url: 'http://127.0.0.1:3030/C:/Use:

fc i DefaultFailureHandler.failMatch' url: 'http://127.0.0.1:3030/C
| 2 expect' url: 'htep://127.0.0.1:3030/C:/Users/chrisbu/Dropbox,

3. function' url: 0.1:3030/C: /Users/chrisbu/Dropbt

4. estCase.run' url 0.0.1:3030/C: /Users/chrisbu/Dra]

3e TestCase.run' url 0.0.1:3030/C:/Users/chrisbu/Dra]

6. ::function' url: 0.1:3030/C: /Users/chrisbu/Dropb

7. Function: '::guardAsync' url: 'http://127.0.0.1:3030/C:/Users/chrisbu/Droy

| Total 1 passed. 1 failed 0 errors

Figure 3.11 Viewing unit test results in the browser

www.seleniumhq.org
http://api.dartlang.org

66

3.4.3

CHAPTER 3 Building and testing your own Dart app

Table 3.1 Provided unit-test matchers

Matcher Description

i sNul |
i sNot Nul |

i sTrue
i sFal se

same(expect ed)

equal s(expect ed)

i SEmpty
cont ai ns(expect ed)

t hr ows
t hr owsNul | Poi nt er Excepti on

anyt hi ng

Expects the actual value to be null or not null

Expects the actual value to be true or false

Expects the actual object to be the same object instance as
the expected object

Expects the actual object to be equal to the expected object

Expects the actual list to be empty or contain a specific
expected object

Expects that any exception was thrown
Expects that a specific exception was thrown (other matchers
exist for other core exceptions)

Expects any value

Creating a custom matcher

Creating a custom matcher is a matter of extending the provided BaseMat cher class.
We’ll look more at extending classes in chapters 6 and 7, but to extend the base
matcher, you can create a class that provides two functions: a mat ches() function
and a describe() function. The mat ches() function returns a bool value depend-
ing on whether the expectation was matched. The following listing shows a custom
matcher class that validates whether two different Packl t ems contain the equivalent

i tenText value.

Listing 3.11 Creating a custom PackList matcher

/1 snip boilerplate CustomMatcher
cl ass Customat cher extends BaseMatcher { extends BaseMatcher
Packl t em _expect ed; Constructor that takes

Cust onivat cher (thi s. _expected);

expected value

bool matches(Packltem actual) {

if (_expected.itenText ==
return true;

actual .itenfText) { matches() function,

which returns true if

} expected and actual
el se { item text match
return fal se;

}

}

Descri ption describe(Description description) { Adds description
description.add("itenText"); for use in Ul

}

3.5

Summary 67

mai n() {
useHt m Configuration();

test ("Packltem custont, () {
var packlteml = new Packltenm(" Towel");
var packlten2 = new Packlten(" Towel "); Uses custom matcher

expect (packl t em2, new Cust omvat cher (packl tentl));

b
}

in unit-test code

This section has offered you a quick look at unit tests in Dart. By creating unit tests
alongside your code and running them when your code changes, unit tests become

another tool in your toolbox for creating correct code that runs as expected.

Remember

You can run unit tests in the browser or on the server.

Browser-based unit tests can import libraries that use dart: htm .

Server-side unit tests can’t import libraries that use dart: htm .

Unit tests use the expect () function in conjunction with a matcher to validate
your test’s expectations.

You can build custom matchers by extending the BaseMat cher class.

Summary

You now know about constructs such as classes and the shorthand function syntax that
I’ll use throughout the book. We’ve covered a lot of ground in this chapter, touching
the surface of a number subjects that we’ll return to in greater depth. Let’s summarize

what’s been discussed:

The dart: htnl library provides a neat way to interact with the browser, using
Dart classes, properties, and lists to allow you to create and manipulate browser
DOM elements.

dart:htnl defines a number of events that eventlistener functions can listen
to. Event listeners are functions that take a single event parameter, and you can
add multiple event listeners to listen to a single event.

Dart functions have a single-line shorthand that also automatically returns the
result of the expression.

Classes in Dart are similar to classes in Java and C# and have properties and meth-
ods. They also have special get and set keywords to define getters and setters.
Getters and setters on classes can be used interchangeably with properties by
calling code, which has no knowledge of whether it’s using a property or a get-
ter or setter.

We looked at unit tests in Dart, which can run in the browser and on the
server. You use unit tests to create expectations around your code, and you
match the actual output against the expected output using either a builtin or
a custom matcher.

68

CHAPTER 3 Building and testing your own Dart app

In the real world, you’d add the ability to store the data across browser sessions, perhaps
in browser local storage, and to send data back to the server. These topics are covered
in parts 3 and 4 of the book, which discuss building applications in greater depth.

Now that you’ve seen the basics of a web app in Dart, it’s time to change tack a lit-
tle and examine Dart language concepts in more detail. These concepts are equally
applicable for Dart in the browser or on the server. In the next chapter, we’ll examine
functions in Dart, which are the building blocks of any application; for instance, you’ll
find that functions can also be variables.

Part 2

Core Dart

In this, the largest part of the book, you’ll learn about the core concepts, lan-
guage features, and structure required for building Dart applications.

Chapter 4 introduces functions and closures, key concepts in Dart that will
be new to developers more familiar with class-based languages such as Java and
C#. Functions are core to the language, and anonymous functions are used
everywhere, such as handling events from the browser or other systems.

In chapter 5, you’ll see how to create structured Dart applications by organiz-
ing your Dart project into libraries. Although Dart is a class-based language,
libraries form the smallest unit of privacy in a Dart codebase, rather than classes;
you’ll see how this can be used to good effect.

Chapters 6 and 7 introduce and expand on Dart’s class and interface struc-
ture and how you can achieve duck typing with Dart’s optional type system.
Dart’s dynani ¢ and Qbj ect types will make an appearance, and you’ll see how
you can build rich type inheritance hierarchies.

Chapter 8 builds on the previous two chapters to show how you can overload
the standard operators and build generic, general-purpose versions of your
classes. It also explains how this technique is used in the generic collection
classes and how you can use generics in your own apps.

By chapter 9, you’ll be familiar enough with Dart’s syntax to revisit functions.
This time we’ll look at their use in asynchronous programming, where function
callbacks and Dart’s Fut ure type are used to make async programming more
structured.

By the end of this part of the book, you’ll have the core knowledge of the
Dart language and structure that will let you effectively use APIs provided by the
Dart ecosystem that will help you build web apps.

Functional firsi-class
Junctions and closures

This chapter covers

Declaring functions and return types
Specifying mandatory and optional parameters
Storing first-class functions in variables

Using functions as closures

Dart is similar in many ways to languages such as Java and G#, but its function syntax
is more similar to that found in JavaScript than in more strongly typed languages. In
Dart, everything is an object, including functions, which means you can store a func-
tion in a variable and pass it around your application the same way that you might
pass a String, an i nt, or any other object. This is known as having first-class func-
tions, because they’re treated as equivalent to other types and aren’t second-class cit-
izens in the language.

First, we’ll examine Dart’s function syntax options, which have a longhand and
a shorthand notation and various forms, depending on how much optional type
information you provide. You’ll take these functions and use them as variables and
pass functions around as parameters and return types.

71

72

4.1

CHAPTER 4 Functional first-class functions and closures

Once you have a grounding in using functions as first-class objects by storing them
in variables, we’ll look at how you can define function types to provide strong type
information. These definitions help the type system validate that functions you’re
passing around your application match the developers’ intentions.

Finally, we’ll look at closures, which occur when a function is created and uses vari-
ables that exist outside of its own scope. When you pass that function (stored in a vari-
able) to another part of the application, it’s known as a closure. This can be a complex
topic; it’s used extensively in JavaScript to emulate features such as getters and setters,
and class privacy—features that are already built into the Dart language.

NOTE In general, everything you’ll discover about functions is also applicable
to methods, which are a special type of function that’s associated with a class.
We’ll look in detail at classes in chapter 6.

Examining Dart functions

A computer program is a list of instructions or steps that the computer must execute
in a certain order, sometimes using the output of one step as the input to another
step. In the real world, you perform functions with inputs and outputs all the time.
For example, when mixing concrete for a garden project (I often find myself doing
more garden construction than tending to actual plants), I follow this recipe to make
great general-purpose concrete. Each function takes inputs and outputs, and the func-
tions I perform are highlighted in bold:

Measure the quantity of cement (the cement volume).

Measure the quantity of sand as twice the cement volume.
Measure the quantity of gravel as three times the cement volume.
Mix the cement and sand to create a mortar mix.

Mix the mortar mix with the gravel to create a dry concrete mix.
Mix the concrete mix with water to create wet concrete.

N 0O a0~ WON PR

Lay the concrete before it sets.

The measure() and nix() functions are reused throughout these steps, taking the
input of a previous step to produce a new output. When I mix two ingredients, such as
cement and sand, this gives me a new ingredient (mortar) that I can use elsewhere in
the recipe. There is also a | ay() function, which I use only once. The initial volume of
the starting quantity of cement depends on the job; for example purposes, I use a bag
as an approximate unit of measure.

You can represent these functions in Dart using the code in listing 4.1. The listing
omits the various | ngredi ent classes that the functions return, but for this example,
they’re unnecessary (you can find them in the source code associated with this book).
The set of concrete-mixing instructions is followed in the mai n() function, which is
the first function to execute in all Dart applications.

Examining Dart functions 73

Listing 4.1 Mixing concrete in Dart

Both mix() and measureQty()

I ngredient mix(lngredient itenml, Ingredient itenR) { 4—‘
functions output ingredients.

return iteml + iten®;
}

I ngredi ent neasureQy(Ilngredient ingredient,
i nt nunber O Cenent Bags,
int proportion) {
return ingredient * (nunberCOf Cenent Bags * proportion);

} measureQty() returns a new ingredient
voi d | ay(ConcreteM x concreteM x) { by calculating a proportion based on
/1 snip — inplenentation not required number of cement bags.

}

main() { Ente; start'_tl:'ng Calculate amount of
I ngredient cement = new Cenent(); number ot bags other ingredients
cenent. bags = 2; of cement. based on number
print(cement. bags); of bags of cement.
I ngredi ent sand = neasureQy (new Sand(), cenent.bags, 2);
I ngredient gravel = neasureQy (new Gravel (), cenent.bags, 3);
Ingredient nortar = nmix(cenment, sand); Mix ingredients, using output of
I ngredient dryConcrete = mix(nortar, gravel); previous function as input to the next.
ConcreteM x wet Concrete = new ConcreteM x(dryConcrete, new Water());
| ay(wet Concrete);

}

Dart functions are similar in declaration to Java and C#, in that they have a return
type, a name, and a list of parameters. Unlike JavaScript, they don’t require the key-
word function to declare that they're functions; unlike Java and C#, the parameter
types and return types are all optional, as part of Dart’s optional type system.

Now that some example functions are defined, let’s look at some other ways these
functions could be defined in Dart, taking into account Dart’s optional typing and long-
hand and shorthand function syntax. Chapter 3 briefly examined Dart’s longhand and
shorthand function syntax: the shorthand syntax allows you to write a single-line func-
tion that automatically returns the output of the single line. Dart’s optional typing also
means the return type and the parameter types are both optional. Figure 4.1 shows var-
ious combinations of type information for the longhand and shorthand versions of the
m x functions.

You can use Dart’s shorthand function syntax only for single-line functions,
whereas you can use the longhand function syntax for single or multiline functions.
The shorthand syntax is useful for writing concise, clear code. And as you’ll see in
the following section, shorthand functions automatically return the result of the sin-
gle line.

74

4.1.1

CHAPTER 4 Functional first-class functions and closures

Longhand function

|

Equivalent shorthand function ‘

Return type and parameter

Ingredient mix(Ingredient iteml, Ingredient item2) { types are specified.
return iteml + item2;

I

Ingredient mix(Ingredient iteml, Ingredient item2) => iteml + item2; |

Return type is not

mix(Ingredient iteml, Ingredient item2) { specified, but par.a.meter
return iteml + item2; types are specified.

I

mix(Ingredient iteml, Ingredient item2) => iteml + item2; |

Parameter types are not

Ingredient mix(iteml, item2) { specified but return
return iteml + item2; type is specified.

I

Ingredient mix(iteml, item2) => iteml + item2; |

Return type and parameter

mix(itemlZ item2)_{ types are not specified.
return iteml + item2;

I

mix(iteml, item2) => iteml + item2; |

Figure 4.1 Longhand and shorthand versions of the ni x functions in Dart

Function return types and the return keyword

All Dart functions return a value. For single-line shorthand functions, this value is
always the result of the single-line expression. For longhand functions, the return
value defaults to nul | unless you actively return a value.

Single-line shorthand functions automatically return the result of the single-line
expression; for example, the shorthand nix(itendl, iten2) function returns the
result of i teml + i t en? without explicitly stating that the function will return a value.
The shorthand syntax, which uses the form

Sfunction_name() => expression;

can be read as “return the result of the expression.” This is always the case for short-
hand syntax functions, even if the expression doesn’t obviously produce a value, such
as calling another function with no return value. Because the default return value is
nul |, you always end up with a nul | value returned in the absence of any other value.

Longhand functions, on the other hand, always return the default nul | if you
don’t actively return another value by using the r et ur n keyword. The r et ur n keyword
can also specify an optional value to return (which replaces the nul | default), such as
in this longhand mi x() function:

return iteml + iten®;

Examining Dart functions 75

Longhand function ‘ ‘ Shorthand function

mix(iteml, item2) {
return iteml + item2;
¥ mix(iteml, item2) => iteml + item2;

H_/

mix(iteml, item2) {
if (iteml == item2) {
return;

3
3

‘mix(iteml, item2) { A
' iteml + item2; !

B i

Figure 4.2 Longhand functions require the r et ur n keyword to return a value, whereas shorthand func-
tions return the result of their single-line expression automatically.

When return is used, it immediately returns the result to the calling code. If a long-
hand function does explicitly return a value with the r et ur n keyword, then the function
returns nul | . Figure 4.2 shows the r et ur n keyword used in alonghand function and the
expression that’s evaluated for a return value in the shorthand style. It also shows a com-
mon error that can occur in your code: forgetting to use the r et ur n keyword.

SPECIFYING A RETURN TYPE

You can specify the return type of the function by prefixing the function name with
the type you’re expecting to return. Dart’s optional typing means if you don’t explic-
itly specitfy a return type, then you’re returning a dynani ¢ type, as in

Return type can be
specified for function.

Ingredient mix(itenml, itenR) {...snip...} 6—‘
mx(itenl, itenR) {...snip...}
dynamic mix(iteml, iten2) {...snip...}
No return type specified = specifying
dynamic return type.
When you specify a return type, the tools can validate code in three ways: first by pro-
viding a warning if you haven’t explicitly returned a value in longhand functions
(using the ret urn keyword), and second by validating that the type you’re returning
is the type that was expected to be returned—for example, that you’re indeed return-
ing an I ngredi ent object. The third validation method is provided to users of your

76

CHAPTER 4 Functional first-class functions and closures

function. Because Dart’s type system provides documentation, the explicit return type
is used to validate that the calling code is correctly handling the return type. For
example, you might try to assign the result of mi x(), which is an | ngredi ent, into a
Concret eM x type variable, which you might then try to | ay. Without a return type
specified, this code would be valid but incorrect. But when you document your func-
tion with the proper | ngr edi ent return type, the tools can alert you to your error:

I ngredient mxture = m x(new Sand(), new Gavel()); Tools will warn you

lay(m xture); that | dient
Sand and gravel alone aren’t at type Ingredien

lid base f . isn’t assignable to
a solid base for construction. type ConcreteMix.

The mi x() function explicitly returns an | ngredi ent type, but the | ay() function
explicitly expects a ConcreteM x type. Without the explicit type information, Dart
would allow this code to run (until the code failed later in another flow).

USING THE VOID TYPE TO INDICATE NO RETURN VALUE
This behavior raises a new problem: how do you explicitly state that you aren’t expect-
ing to return a value from a function? All Dart functions return a value, but you can
provide documentation to the type checker with the voi d type to indicate that you
aren’t expecting to return a value.

Imagine that you’re going to use a small cement mixer to do the mixing for you.
You can create a function to start the mixer that returns no value:

startM xer (speed) {
M xer. start (speed);

}

Because all Dart functions return a value, this code automatically returns a default
nul | value to the calling code. Users of the startM xer () function as it’s currently
declared can’t tell whether the designer of that function intended a nul | value to be
returned or left out the r et urn keyword in front of the call to M xer.start () (which
might be a coding bug). When you try to store the return value of start M xer, it con-
tains nul | :

var runningMxer = startMxer("slow'); runningMixer variable contains null

because startMixer() function doesn’t
explicitly return a value.

Fortunately, when you use the explicit return type voi d, you provide documentation
to the user that you didn’t intend to return a value. Doing so also provides the type
checker with information that it can use to provide warnings if you try to use the
return value. It doesn’t stop the function from returning the default nul | value, but it
does warn you that you shouldn’t be using that returned value. You can modify the
function as follows:

void startM xer(speed) {

M xer . start (speed) void keyword explicitly

declares that you aren’t
} returning a value

4.1.2

Examining Dart functions 77

Providing voi d as a return type also validates that the function code doesn’t use the
return keyword to return a value.

Providing input with function parameters

In addition to returning values, Dart functions take parameters as inputs. Unlike in
JavaScript, you must specify all the parameter names in a function definition. In
JavaScript the parameter list is optional, because all the arguments passed to a func-
tion can be accessed dynamically using an internal arguments variable. Dart is much
more structured, requiring all the parameters to be defined in the function definition
in a manner similar to that of Java or C#. Dart doesn’t have function (or method)
overloading, but it does have optional parameters.

TIP There is no difference in the parameter definitions for longhand and
shorthand functions, so the examples show only the longhand syntax in this
section, but they apply equally to either syntax.

The measur eQ y(i ngredi ent, nunber O Cement Bags, proportion) function currently
takes three parameters: i ngr edi ent , number Of Cenent Bags, and pr opor ti on. The func-
tion can use them in the same way it would use variables in the scope of the function.
The typed and untyped versions of the function signature look like the following:
measureQ y(1 ngredient ingredient,

i nt nunber O Cenent Bags,

int proportion) {
/[l ...snip...

Typed version indicates
parameter type information

}

cal culateQy (ingredient,
nurmber O Cerrent Bags,
proportion) {

I snip... Untyped and dynamic
} versions are equivalent

cal cul ateQy (dynam c ingredient,

dynam ¢ nunber O Cenent Bags,

dynami ¢ proportion) {

/Il ...snip...

}
When you provide type information such as | ngr edi ent and i nt for function parame-
ters, you're declaring that the input types should have an is-an relationship with
I ngredi ent and i nt, respectively. This allows the type checker to validate that the call-
ing code is passing correctly typed arguments to the measureQ y() function. Calling
code must pass all the arguments in the same order in which they appear in the func-
tion declaration; in the example, this means i ngr edi ent must come first, then num
ber O Cenent Bags, and finally proporti on:

var sand = neasureQy(new Sand(), cenent.bags, 2);

ARGUMENTS ARE PASSED BY REFERENCE
When you call the neasureQ y() function to pass in arguments, each argument—for
example, a sand ingredient—contains a reference to the value passed in. Therefore,

CHAPTER 4 Functional first-class functions and closures

Ingredient measureQty(ingredient,
numberOfCementBags,
proportion) {

ingredient.bags = ingredient.bags / 2;
return ingredient;

T

var bagOfCement = new Cement();
cement.bags = 10;
var cement = measureQty(bagOfCement, cement.bags, 1);

print(cement.bags);

Figure 4.3 When you pass an object by reference, you can change the properties of that object but
not the object itself.

you can change the properties of the ingredient (such as the quantity remaining) but
not the ingredient itself, as shown in figure 4.3.

For example, what happens if you create a new bag of sand in the measureQy()
function, realize that the bag passed in doesn’t contain enough, and grab some more
from the store? It turns out that in this case, the original bag of sand remains
untouched. The following listing demonstrates this concept in action.

Listing 4.2 Checking parameters passed by reference

I ngredi ent neasureQy(ingredi ent, nunber Of Cenent Bags, proportion) {
if (ingredient.bags == 0) {

i ngredient = new Ingredient(); Function detects

if not enough of an

i ngredi ent. bags = nunber O Cenent Bags * proportion; < . - € .
return ingredient; . ingredient is passed in.
} ... but df)es so 'or'lly in the. scope of the New ingredient
} function. Original bag is still empty. overwrites one
; passed in ...
mai n() {
var enptyBagOf Cenent = new Cenent () ; Pass empty bag of Original
enpt yBagOf Cenent . bags = O; cement anyway. emﬁtyBagOfCement
var cement = measureQ y(enptyBagOf Cenent, 1, 1); -« is unmodified
print (enpt yBagOf Cenent . bags) ; outside the function.

}

This code works the same regardless of whether you’re modifying an object, such as the
i ngredi ent instance, or a more primitive type, such as an i nt. You lose the reference
to the new type on return because everything is an object (as discussed in the previous
chapter); when you change the reference to the object being passed in, all you’re doing
in the function is losing the original reference and creating a new reference. The code
outside the function still has a handle on the original object reference.

OPTIONAL POSITIONAL PARAMETERS

Dart functions can have optional parameters with default values. When you’re creat-
ing a function, you can specify parameters that calling code can provide; but if the
calling code chooses not to, the function uses the default values.

Examining Dart functions 79

When measuring out the quantity of ingredients, which are proportional to the
number of bags of cement, you call the neasureQ y() function, which returns a new
ingredient based on the number of bags of cement and the required proportion.
Sometimes you want a 1:1 ratio between the number of bags of cement and your
input ingredient. Without using optional parameters, you can modify the function to
check if nunber Of Cenent Bags and proportion are nul | and then default them to 1
as follows:

neasureQ@y(ingredient, int nunberOf Cenent Bags, int proportion) {

i f (nunber O Cenent Bags == null) nunber O Cenent Bags = 1; Default to
if (proportion == null) proportion = 1; 1 if null
return ingredient * (nunber O CenentBags * proportion);

}

The calling code needs to know the number of bags and proportion values to pass into
the measur eQ y() function. This is true even if the calling code wants to pass in a stan-
dard, default value, such as a proportion of 1. Calling code can make calls like this:

nmeasureQ@y(new Sand(), null, null);
measureQy(new Sand(), 1, null);
measureQy(new Sand(), null, 1);

nmeasureQ@y(new Sand(), 1,1);

These are known as positional arguments; their position in the calling code matters. For
example, the third argument is the proportion, and the first is the ingredient.

It would be better if the calling code could pass in only the values it needed to,
such as the ingredient and the proportion, without passing in the number of bags if it
wasn’t required. Dart lets us achieve this with optional parameters. Optional parame-
ters must appear in a block together after all positional parameters are defined. The
optional parameters block is defined within a pair of square brackets and, like posi-
tional parameters, is a comma-separated list. For example, you can change the exam-
ple function to support optional parameters (shown in bold) as follows:
neasureQ@y(ingredient, [int nunberOf Cenent Bags, int proportion]) {

[l ... snip ...
}
Now calling code can provide values for nunber O Cenent Bags and proporti on only if
it needs to.

You can refer to optional parameters by position, by providing arguments for them
in the order in which they’re declared:
measureQy(new Sand(), 2, 1);

measureQ y(new Sand(), 2);
measure@ y(new Sand());

Optional parameters may
be omitted if not required.

Of course, in this code the parameter values will still be initialized to nul | if they
aren’t provided, which means neasureQy() still has to check for nul | values and
default them to 1. Fortunately, you can also provide default values as part of the
named parameter’s function declaration:

CHAPTER 4 Functional first-class functions and closures

measureQy(ingredient, [int nunberOf Cenent Bags=1, int proportion=1]) ({
return ingredient * (nunberOf Cenent Bags * proportion);
} Provide default values
for optional parameters.

Now calling code can opt to either provide the parameters or not, and your function is
simplified by not requiring a nul I check on the parameters. As noted earlier, the man-
datory parameters must all be passed in, and in the correct order. But this isn’t true for
optional parameters. Calling code can use optional parameters in one of two ways:

= Not provide values at all. The function uses the default value or nul | if no
default value is specified.

= Provide a value for each optional parameter in the order in which they’re
declared, reading from left to right. The calling code can provide arguments to
populate each of the optional parameters. Any parameters not populated
default to nul | or the specified default value.

OPTIONAL NAMED PARAMETERS
An alternative to optional positional parameters is to use optional named parameters.
These allow calling code to specify the parameters into which it’s passing values, in any
order. As before, mandatory parameters come first, but this time the optional parame-
ters are specified between curly braces, with default values provided in this form:
measureQ y(ingredient, {int nunber O CenmentBags:1, int proportion:1}) {

return ingredient * (nunberOf Cenent Bags * proportion);

} Optional named parameters
are specified in curly braces.

Note that unlike the optional positional parameters, the default values for optional
named parameters use a colon (:) to separate the parameter name and value.
Calling code can now call the measureQy() function, passing in the mandatory
i ngredi ent argument and optionally the nunber Of Cement Bags and proportion
arguments, in any order:

measure@ y(new Sand(), nunber Of Cenent Bags: 2, proportion: 1); Named optional
neasur eQ y(new Sand(), nunber O Cenent Bags: 2); arguments passed by
neasureQ y(new Sand(), proportion: 1); calling code use the
measureQ@ y(new Sand()); parameter name.

Unlike optional positional parameters, calling code must specify the parameter name
for all supplied optional named parameter values. This means the following function
call isn’t valid

measur eQ y(new Sand(), 2, 1);
because the optional values must be named.

NOTE With mandatory positional parameters, calling code has no knowledge
about the parameter names. Optional named parameters, on the other hand,
form part of your code’s API, so you should spend as much time naming
optional parameters as you’d spend on other API names, such as function and
method names. Changing the name of an optional parameter once you’ve
released your code could affect other users of your code in the same way as
changing a function name.

var

var

var

var

var

sand =

sand =

sand =

sand =

sand =

measureQty(new

measureQty(new

measureQty(new

measureQty(new

measureQty(new

Examining Dart functions 81

SandQ));

Sand(), 2);

Sand(), 2, 1);

Sand(), numberOfCementBags: 2);

Sand(), proportion: 1, numberOfCementBags: 2);

Figure 4.4 The different ways that calling code can supply values for optional positional and named
function parameters

You can’t define both optional named parameters and optional positional parameters
in the same function definition. You should make a choice based on the likely use

cases for your function.
Figure 4.4 shows different ways to call the measureQ y() function.

Remember

Shorthand functions automatically return the value created by the single-line
expression that forms the function body.

Longhand functions should use the r et ur n keyword to return a value; otherwise,
nul | is automatically returned.

You can tell the type checker that you aren’t intending to return a value by using
the return type voi d.

Type information on parameters is optional.

You can declare optional parameters as a comma-separated list within square
brackets after the mandatory parameters are declared.

Calling code can refer to optional parameters by name, using a nare: val ue syntax.

Now that you know what a function looks like, how to call it, how to specify return
types, and how to use and mandatory and optional parameters, it’s time to look at
what else you can do with functions: specifically, how to store functions in a variable
and pass them into other functions as function arguments.

82

4.2

CHAPTER 4 Functional first-class functions and closures

Using first-class functions

The term first-class functions means you can store a function in a variable and pass it
around your application. There’s no special syntax for first-class functions, and all func-
tions in Dart are first class. To access the function object (rather than call the function),
refer to the function name without the parentheses that you’d normally use to supply
parameters to the function. When you do this, you have access to the function object.

Consider the | ngredi ent mi x(iteml, iten?) function from earlier in the chapter.
You can call it by following the function name with parentheses and passing values for
the function arguments, such as mi x(sand, cenent); . You can also refer to it just by
name, without the parentheses and parameters; this way you get a reference to the
function object that you can use just like any other value, such asa String oranint.
Once you have the function object stored in a variable, you use that new reference to
call the function again, as shown in the following snippet:

Calls mix function and stores its
var mortar = mix(sand, cement); return value in mortar variable
var mxFunction = mx; Stores function itself in
var dryConcrete = mi xFunction(mortar, gravel); mixFunction variable
print(mx is Object); Function is an Object and a Calls mixFunction variable
print(mx is Function); Function, so it prints true. to return more mortar

You can see from the example that the nmi x() function (and the ni xFunction vari-
able) has an is-an relationship with both the Qbj ect type (remember, everything is-an
object), and it also has an is-an relationship with a class called Functi on, which repre-
sents the function type.

This concept raises an interesting possibility. If you can store a function in a vari-
able, do you need to declare the function in the top-level scope first? No, you can
declare a function inline (within another function body) and store it in a variable,
rather than declare a function in the top-level library scope. In fact, there are three
ways to declare a function inline and one way to do so in the top-level library scope, as
shown in figure 4.5; the function declarations are highlighted in bold. We’ll go
through each of these examples in the next few pages.

Function scope vs. library scope

The largest block of scope in Dart is the Library, and all functions that aren’t
wrapped inside another block, such as another function or a class definition (where
they’re called methods), exist in library scope. These are considered to be at the top
level of the Li brary.

You can also declare functions inside another function. These are considered to be
in function scope like any other variable declared in a function, such as a Stri ng or
anint. You can access these function-scoped functions only in the block where they
were declared, unless you pass them to another function as a parameter or return
value (just like other variables). You’ll see examples of this when we discuss closures
later in the chapter.

4.2.1

Using first-class functions 83

m x1() function is declared in top-level
function scope: that is, not within
another function or class

1
Dart script or library file | mai n() function begins a
new function scope in which variables
mixl(iteml, item2) { and functions can be declared
return iteml + item2;
b) : : —
m x2() is a function definition
N within another function scope. The
main() { syntax is the same as mi x1() .
mix2(iteml, item2) {
return iteml + item2;
} Note the absence of a ;

following the declaration.

var mix3 = (iteml, item2) {
return iteml + item2;
35 This function is declared anonymously
and assigned to a variable caled m x3.
var mix4 = mixer(iteml, item2) { Note the ; used to terminate the
return iteml + item2; variable assignment.
}:
mixl(new Sand(), new Gravel()); This function, called mi xer (), is
mix2(new Sand(), new Gravel()); declared and assigned to a
mix3(new Sand(), new Gravel()); variable called mi x4. The mi xer ()
mix4(new Sand(). new Gravel()): function doesn'’t exist outside of the
// mixer(new Sand(), new Gravel());))
scope of the function assignment.
print(mix1); Also note the ; used to terminate
print(mix2); the variable assignment.
print(mix3);
rint(mix4); . .
3 P () A Because mi xer () doesn't exist

outside its own scope, calling
it here would be an error. m xer ()
is assigned to the variable m x4.

You now have references to
all four functions and can use
them in your application.

Figure 4.5 The four different ways to declare a function. ni x1() is in the top-level scope, and the other
three are declared in a function body.

You’ve already used the top-level library scope to declare functions such as ni x1(),
which is known as a library function. The other three function declarations, all within
the body of another method, are known as local functions, which need more explana-
tion. They're a part of Dart that looks deceptively simple but, like closures, can

be complex.

Local function declarations

Local functions are functions that you declare within the body of another function.
Unlike library functions, you can’t explicitly reference them outside of the function in
which they were declared. But you can pass them into other functions and use them as

CHAPTER 4 Functional first-class functions and closures

return values from the function you declared them in and store them in a list so that
some code block can dynamically execute them in turn.

Listing 4.3 defines and uses the conbi nel ngredi ents() function, which takes a
mixing function and a pair of ingredients as its parameters. By accepting an arbitrary
mixing function as a parameter, the conbi nel ngredi ents() function allows you to
mix ingredients with any implementation of that function you want, such as mixing
with a shovel or mixing with a cement mixer. I'll refer to combi nel ngredi ent s()
throughout this section.

Listing 4.3 Function that takes a function object as a parameter

I ngredi ent conbi nel ngredi ents(m xFunc, itenl, itenR) { First parameter defines

mixing function that will
be used. Other parameters
are items to be mixed.

return m xFunc(itenl, itenR); mixFunc() function

} mixes two items and
returns the result.

Now that you have a use for a function object stored in a variable, let’s look at the
three ways of declaring local functions, starting with the most basic: the simple local
function declaration. In the following sections, the examples all use the longhand syn-
tax, but the rules apply equally to the shorthand function syntax.

SIMPLE LOCAL FUNCTION DECLARATION

The simple local function declaration shown in figure 4.6 shares the same syntax as
library functions declared in the top-level scope, except that they happen to exist
within another function. Their name is also their reference, as with m x2() ; and their
own name exists in their own scope, so they can be recursive (I’ll discuss recursive
functions a little later in this chapter).

When you’re declaring a simple local function in the scope of another function,
you don’t need to provide a terminating semicolon, because the closing brace pro-
vides the terminator—it’s the same as declaring a function in the top-level scope.
This is an important point, because the other two methods of declaration—which
explicitly assign a function to a variable—do require a semicolon following the clos-
ing brace.

mix2(iteml, item2) {
return iteml + item2;

¥

A

Figure 4.6 Simple local function declaration syntax

Using first-class functions 85

You can strongly type a function by providing type information in the same manner as
top-level, library-scoped functions. The following listing defines a strongly typed func-
tionm x2() within the mai n() function, which is passed into the conbi nel ngr edi ent s()
function.

Listing 4.4 Outer mai n() function uses the inner m x() function

mai n() {
mx2(iteml, itenR) { Local function defined Can pass mix2 function
return iteml + iteng; as mix2(), which creates object into other
} a function object functions in the same

way as other variables
var cenment = new Cenent();

var sand = new Sand();

. .) Can also call mix2()
var nortar = conbi nel ngredi ents(mi x2, cement, sand); directly in declaring
var dryCenent = mix2(nortar, new Gravel ()); function’s scope

}

The method name mi x2() exists in the scope of the ni x2() function itself. This setup
allows m x2() to call itself (creating recursion) or refer to its own function object.

Recursion

A recursive function is a function that calls itself. It’s a technique often used in sort
and search functions to traverse trees of data. Consider the following recursive func-
tion called stir (), which calls itself while the stir count is less than 10:

stir(ingredient, stirCount) { If current stirCount is
print("Stirring $ingredient") QJ less than 10 ...
if (stirCount < 10) ({
stirCount ++; <—— ... increment stirCount ...
stir(ingredient, stirCount);
} QT ... and call stir()
} again (recurse).

There are a number of good resources on the internet about recursion as a computer
science topic—it isn’t a technique found only in Dart. What’s important is that for this
technique to work, the name of the function must be available in its own scope; that
is, the method stir() must exist and must be valid to refer to it when it’s called.
Simple local function declarations, in common with top-level, library-scoped function
declarations, have their own name in scope and can therefore recurse.

ANONYMOUS FUNCTION DECLARATION
An anonymous function is declared without a function name; see figure 4.7. Like any
other function declaration, you can assign it to a function object variable, pass it directly
into another function, or use it as the return type of the declaring function. But you
can’t use it recursively, because the function has no name for itself in its own scope.
The longhand version of this function requires a terminating semicolon because
you’re assigning a value to a variable (m x3), and that variable assignment statement
needs to be terminated before the code can move onto the next statement.

86

CHAPTER 4 Functional first-class functions and closures

var mix3 = (iteml, item2) {
return iteml + item2;

}:
Figure 4.7 Anonymous function declaration

An anonymous function starts with the opening parenthesis and continues to the end
of the function body. With function shorthand, you can declare an anonymous func-
tion in the following form:

() => null;

This function, declared as is, can never be called, because it has no name to reference
it by. But this is a valid anonymous function that takes no parameters and returns a
null value.

Anonymous functions are often used to pass a function directly into another func-
tion as a parameter or store functions in a list. These two methods work because the
reference to the function object is preserved by either the parameter name of the
receiving function or the element in the list. Listing 4.5 shows this concept in action
by creating a list of anonymous functions for processing extra ingredients. You then
call each function in the list in turn. The anonymous functions are highlighted in
bold, and longhand and shorthand versions are shown. The anonymous functions are
passed as parameters into the Li st. add() method, where they can be referred to later
(justlike a String, an i nt, or any other object).

Listing 4.5 Storing anonymous functions in a list

mai n() {

List taskList = new List(); Adds shorthand anonymous

taskList.add((item) => item pour()); function to list

taskList.add((item {
itemlevel (); Adds longhand anonymous
itemstore(); function to list

P

var aggregate = new Aggregate(); lterates

foreach(task in taskList) { through list
task(aggregate); Calls each

} function in turn

}

This pattern is used extensively with the browser event handlers. You can add multiple
functions to specific events, such as but t on. on. cl i ck. add() , which takes a function as
its parameter and adds that function to a list of handlers that are called when the button
is clicked. You can still use this pattern by passing in a reference to a function by name,
but often—especially for single-line functions—it’s simpler and more readable to pass

Using first-class functions 87

This function, called m xer (),
is declared and assigned to a

var mix4 = mixer(iteml, item2) { varlable called m X_4‘ The m xer ()
return iteml + item2; .____— function doesn’t exist outside of the
: scope of the function assignment.

Also note the ; used to
terminate the variable assignment.

Figure 4.8 Named function assignment declaration

the function in anonymously, as in the following call to conbi nel ngredi ent's, which
takes a function as a parameter. The anonymous function is in bold:

conmbi nel ngredients((iteml, item2) => iteml + iten2, sand, gravel);

You’re still able to provide type information for the parameters in the parameter list
but not for the return type, because Dart thinks any text to the left of the opening
parenthesis is the function name (thus making it a named function rather than an
anonymous function). The following would be a function called | ngredi ent, rather
Doesn’t provide a return

type because it thinks the

than an anonymous function that returns an ingredient:
; function name is Ingredient

Ingredient (item) => item openBag();

This issue can be resolved with the third and final way of declaring local functions:
function assignment.

NAMED FUNCTION ASSIGNMENT DECLARATION

The third way of declaring a function is a hybrid of both of the previous versions in
that it declares a named function and immediately assigns that function to a variable.
Because this is an assignment, like the previous example, you must also terminate this
assignment with a semicolon, as shown in figure 4.8.

This approach has the advantages that you can declare the return type and you
have a function name that’s in the scope of the function, allowing recursion if
required. In this example, the function name in the scope of the function is m xer (),
and this name is available only in the scope of the function. To refer to the function
elsewhere, you must use the name mi x4.

You can rewrite the ni x4() function to use recursion and provide type information
if you pass it as an argument to the conbi nel ngr edi ent s() function, as shown next.

Listing 4.6 Recursive, typed, named function

mai n() {
var m x4 = Ingredient mxer(lngredient itentl,
Ingredient itemR) { Function is declared with name
mixer(), with return and parameter
if (iteml is Sand) { type information provided, and
return mixer(iten2, itentl); assigned to variable mix4.
}
el se (Function name mixer() is in scope,

return iteml + iten®; which allows you to use recursion.

88

422

CHAPTER 4 Functional first-class functions and closures

)

}

var sand = new Sand(); Passes in mix4() function,
var gravel = new Gravel (); whic!| is your reference
conbi nel ngr edi ent s(mi x4, sand, gravel); to mixer() function

}

The name ni xer () is essentially a throwaway. It’s available only in the scope of the func-
tion and isn’t valid elsewhere. When you declare the ni xer () function directly into
another function as an argument, you can’t refer to m xer () anywhere but within itself.
This example looks nearly identical to the simple, local function declaration that we
looked at first but is subtly different by virtue of the function being assigned implicitly
to the parameter of the conbi nel ngredi ent s() function, as shown in figure 4.9.

We’ve looked at declaring functions and assigning them to variables and function
parameters, but what about Dart’s type system? How do you know that the
conbi nel ngredi ents() function takes another function as its first parameter?
Fortunately, Dart allows strong function typing and provides a new keyword,
t ypedef , which I'll discuss next.

Defining strong function types

So far, you’ve been storing your function objects in dynamically typed variables and
passing the functions’ objects into other functions as dynamic parameters. This
approach presents a problem in that Dart’s optional typing allows you to specify the
type of a variable or a function parameter: what happens when you want to specify
that the type is a function? You've already seen that a function “is-an” Qbj ect and a
function “is-a” Funct i on, so you can use these types as shown in the following listing.

main() {
mix2(iteml, item2) {
return iteml + item2;
3

return iteml + item2;

}.
sand,
gravel);

combinelngredients(mixer(iteml, item2) { :|

Figure 4.9 A named function declared as an argument to another function can refer to itself by
name. That name isn’t available for use elsewhere.

Using first-class functions 89

Listing 4.7 Function type strongly types a function variable or parameter

I ngredi ent conbi nel ngredi ents(Function mi xFunc, itenml, itenR) {
return m xFunc(itentl, itenR);

} mixFunc parameter is

strongly typed as a Function.

mai n() {

Function mix = (itend, itenR2) { Stores function in mix
return itenl + iten®; variable, which is strongly L.
} typed as a Function. Wher! you pass mix into
combinelngredients, type

var sand = new Sand(); checker can validate whether
var gravel = new G avel (); you’re providing a function
combi nel ngredi ents(mi x, sand, gravel); as first parameter.

}

When you use a function object stored in a variable, you're using an instance of a
Functi on class. Not all function instances are the same, however. The ni x() function is
different from the neasureQ y() function, which is different from the | ay() function.
You need away to strongly type the mi x() function parameter on conbi nel ngr edi ent s()
to specify that it wants a m x() function and not one of the others.

Dart provides two ways to achieve this. The first is lighter weight but slightly more
verbose: provide the function signature as the function parameter definition, as
shown in figure 4.10.

This approach is a verbose way of declaring that a function parameter must have a
specific signature. Imagine if you had 10 functions that all accepted a mi x() function;
you’d need to write the function 10 times. Fortunately, Dart allows you to declare a
function signature by using the t ypedef keyword, which lets you create a custom func-
tion type. typedef declares that you're defining a function signature, not a function
or a function object. You can use typedef only in the library’s top-level scope, not
within another function. The following listing shows how you can use typedef to
define a function signature that you can use to replace the m xFunc parameter decla-
ration on the conbi nel ngredi ent s() parameter list.

Listing 4.8 Using t ypedef to declare a function signature

typedef |ngredi ent M xFunc(lngredient, I|ngredient); typedef declares
I ngredi ent conbi nel ngredi ents(M xFunc m xFunc, iteml, iten?) { ::;:owr:};:::tlon

return m xFunc(itentl, itenR);
} Uses new MixFunc type to
strongly type parameter
With t ypedef , you can create shorthand for a specific function signature that you can
use in variable and parameter definitions, which can let the type checker validate that
the correct function objects are being passed around your application.

Now that you’re familiar with the different ways to declare functions in the local
scope of another function, it’s time to tackle closures: when a function object refers to
another variable that was declared outside of its own immediate scope. Closures are a
powerful functional programming concept.

CHAPTER 4 Functional first-class functions and closures

1. Declaring combinelngredients()
You can declare a mixFunc() parameter to accept a function with a specific type signature.)
Parameter list

Ingredient combinelngredients(contains a function
Ingredient mixFunc(Ingredient, Ingredient), called ni xFunc()
iteml, .
item2) { and two items

of dynami c type.
print('mixing $iteml with $item2 using $mixFunc');
—The m xFunc() parameter is
declared as a function type
that takes two | ngr edi ent
parameters and returns

2. Calling combinelngredients() anlngredient.
The type checker can validate that you're passing in a function with the correct function signature.

return mixFunc(iteml, item2);

Return type Function parameter types

/ /\

This m x() function has the
Ingredient mix(Ingredient iteml, Ingredient item2) { 0 . .
return iteml + item2: correct function signature

} to be passed to the
conbi nel ngredi ent s()
function.

var sand = new Sand();
var gravel = new Gravel();

combinelngredients(mix, sand, gravel); ﬁ

The mi x() function matches the type
signature and can be passed to the

Ingredient mixFunc(Ingredient, Ingredient), conbi nel ngredi ent s() function.

The type-checking tools can
validate that the m xFunc() function
has the correct type signature.

Figure 4.10 The parameters of a function can be defined to accept another function with a
specific signature.

Remember

= When you use a function by name, without the parameter brackets, you get a
reference to its function object.

= Simple local functions declared in a similar manner to top-level, library-scoped
functions are able to refer to themselves by name and can make full use of
parameter and return type information to provide type information to the tools.

= Anonymous functions have no name and can’t use recursion or specify strong
return type information, but they do provide useful shorthand for adding
functions into lists or passing to other functions as parameters.

= You can use a named function in place of an anonymous function to allow
recursion and strong return type information, but its name is available only in the
scope of itself.

= You can use the t ypedef keyword to declare a specific function signature so the
type checker can validate function objects.

4.3

Closures 91

Closures

Closures are a special way of using functions. Developers often create them without
realizing it when passing a function object around an application. Closures are used
extensively in JavaScript to emulate various constructs found in class-based languages,
such as getters, setters, and private properties, by creating functions whose sole pur-
pose is to return another function. But Dart supports these constructs natively; you’re
therefore unlikely to need closures for this purpose when writing new code. A large
amount of code is likely to be ported from JavaScript to Dart, though, and Dart’s clo-
sure support is similar to JavaScript, which will aid this effort.

When you declare a function, it isn’t executed immediately; it’s stored in a variable
as a function object in the same way that you might store a String or an i nt in a vari-
able. Likewise, when you declare a function, you can also use other variables that
you’ve declared before it, as in the following snippet:

mai n() { Declares cement variable
var cement = new Cenent(); in local function
mx(iteml, itenR) { . .
return cenent + iteml + itenR; Peclares m|x() function
} ’ in local function
} You can still use cement variable,

even in a local function.

This code lets you create a mi x() function that always mixes two ingredients with
cenent . Instead of passing in cenent as a separate ingredient every time, you declare
cenent first and then use cement from within the function.

When you call the ni x() function, passing in sand and gr avel , you still have access
to the cenent variable that was declared outside the ni x() function’s scope. You can
pass this function back to your conbi nel ngredi ent s() function, where it will happily
mix the other two ingredients with the cenment without ever knowing cement was
involved. Figure 4.11 shows this happening.

This design is essentially a closure; it’s a function that retains a reference to vari-
ables that were in its scope when it was declared.

Why “closure”?

The term closure derives from close-over, which is one way of thinking about how a
closure works. It “closes over” or wraps any nonlocal variables that were valid in its
scope at the time it was declared.

As you just saw with the cenent example, one of the times a closure is useful is when
you want to provide some implementation details while keeping them hidden from
the function that’s using that closure.

Closures are also formed when one function is returned by another function. You
might have a get Shovel () function that returns a shovel. You can use the shovel as a

92 CHAPTER 4 Functional first-class functions and closures

]
Dart script or library file |

main() { <_/—f cenent is declared in the
var cement = new Cement(); mai n() function scope.
mix(iteml, item2) { H— cenent is still available
return cement + iteml + item2; / within the scope of the

+ m x() function declaration.

var sand = new Sand();
var gravel = new Gravel();
var mixture = combinelngredients(mix, sand, gravel);

\ m x() still retains a

reference to cenent
even when it's passed
out of the scope of the

combinelngredients(mixFunc, iteml, item2) {
return mixFunc(iteml, item2);

} (mai n() function.
m xFunc() contains cenent, The conbi nel ngr edi ent s()
because it retains references function is using cenent
to the variables that were in even though it's not in the
its scope when it was declared. function’s scope.

Figure 4.11 Them x() function retains a reference to the cenent variable even whenmi x() is passed
out of the scope of the nai n() function that declared it.

function to mix your ingredients, but—as shown in listing 4.9—the shovel also has
some sticky mud on it. When the get Shovel () function returns, the mi x() function
retains a reference to sti ckyMid, which is mixed with your ingredients even though
the get Shovel () function has exited.

Listing 4.9 Creating a closure with a function as a return type

get Shovel () {
var stickyMud = new Mid(); <—— Creates mud in shovel()

var mx = (itenml, itenR) {
return stickyMud + iteml + iteng;
}

return mix; <+—— Returns mix()

} Calls getShovel(), which
returns mix(), still containing
a reference to stickyMud

Declares mix() function
that uses stickyMud

mai n() {
var m xFunc = get Shovel ();

var sand = new Sand(); Uses mix() to ensure that
var cement = new Cement(); cement and sand are mixed

var nuddyMortar = ni xFunc(sand, cement); with more than each other

4.4

Summary 93

Closures can occur accidentally because it’s perfectly valid to use variables that a func-
tion sees in its own scope and the scope of its parent. When you pass the child func-
tion out of its parent, either as a return type or as a function parameter, you’ll find
that you’re working with a closure.

Remember

= A function that uses variables that weren’t declared in its own scope has the
potential to become a closure.

= A function becomes a closure when that function is passed out of the scope
from which it was declared, by either passing it into another function or returning
from the function that declared it.

Summary

This chapter showed you how to declare functions using both shorthand and longhand
syntax. When you use shorthand syntax, it also implicitly returns the value of the single-
line expression that forms the shorthand function body. But when using longhand syn-
tax, you must explicitly use the r et ur n keyword to return the value of an expression.

All functions return a value—nul | if no other value is specified—but you can tell
the Dart tools that you aren’t expecting to specify a return value by using the voi d
return type.

Functions can be stored in a variable or referenced by accessing them by name
without the parentheses. This approach gives you a variable containing a function
object, which you can pass around your app like any other variable. You can return a
function object stored in a variable or pass it into another function, where it can be
called like any other declared function. Function objects share an “is-an” relationship
with the Functi on class.

To strongly type a function object variable or parameter so the type checker can
validate your code, use the keyword t ypedef in the library’s top-level scope to define a
named function signature. You can then use the name of the function signature the
same way you would any other type.

We also looked at closures, which are created when a function uses variables that
weren’t declared within that function, and that function is passed to another part of
the code. You can use closures to use implementation details that the receiving func-
tion shouldn’t or can’t know about.

Now that you know all about functions, in the next chapter we’ll look at Dart’s
library and privacy mechanisms. This information is important because the names of
functions and classes that you’ll use in libraries have a strong bearing on privacy. The
two concepts are closely linked, and it’s a topic that you need to understand before
you start to look at Dart’s classes and interfaces.

Understanding
libraries and privacy

This chapter covers

Organizing your code into reusable packages
Importing libraries into your application
Hiding functionality with library privacy

Using multiple source files

Using scripts as runnable libraries

Most programming languages have a library structure that allows code to be split
over multiple files and published to other developers, which promotes modularity
and code reuse and improves the ability of developers to work on different parts of
the same codebase by hiding the internal implementation of a library. Dart is no
exception; but in Dart, the library mechanism also has a big impact on privacy,
especially class and function privacy. In languages such as Java and C#, privacy is
centered around the class; but in Dart, this privacy exists at the library level rather
than the class level. That’s why we’re discussing libraries and privacy this early in
this book.

94

5.1

Defining and importing libraries in your code 95

In this chapter, you’ll learn how to create and use libraries of code in Dart and how
these libraries relate to Dart’s privacy model, which you can use to hide the internal
workings of a library. The library is the smallest unit of deployable code and can be as
small as a single class or function or as large as an entire application. In the real world,
all but the most trivial application should have its code split into multiple libraries,
because this design promotes a good, loosely coupled architecture, reusability, and
testability. By building a simple logger framework that you can import into your own
code, you'll explore these features as you go through this chapter.

When you’re building a package of code for reuse, there are often internal work-
ings that you don’t want third-party users to be able to access except via a published
and agreed-on interface—for example, the internal state of some class data. In Dart,
you can publish a library of code to your team members or web users with only the
parts that you want to make visible available to those end users. This setup allows the
internals of the library to change without affecting end users. It’s different from that
in Java and C#, which have a different, class-centric privacy model. In these languages,
the class internals can change without affecting end users.

Why doesn’t Dart have a class-centric privacy model?

This is one of the areas of Dart that’s particularly influenced by JavaScript and web
development. In JavaScript, there is no notion of privacy, except by following certain
conventions such as returning closures from other functions. For this reason, the Dart
privacy model should be thought of as an improvement to JavaScript, as opposed to
comparing it to more traditional class-based languages such as Java and C#.

Dart’s optional typing allows you to provide documentary type information in the
code at the point where users interact with your library, such as on function parame-
ters and return types, or class properties, while letting you use only as much type infor-
mation in the library as you feel is necessary. As noted earlier in the book, type
information doesn’t change how your application runs, but it does provide documen-
tation to tools and other developers.

In chapter 3, you were already importing the built-in dart: htm library using the
i mport keyword, and it turns out that it’s just as easy to import your own library.

Defining and importing libraries in your code

In this section, you’ll create a logger library called | ogl i b. It will provide a simple
debug/warn/info logger that allows you to output log messages to the web browser’s
debug console. A logger library with varying levels of log output is available for most
languages: for example, nLog for .NET and | 0g4j for Java. The simplest way to log in
Dart is to use the print () function; the | ogl i b example will wrap this function.

In order to properly experiment with libraries, you need some third-party code to
call your library, such as the PackList application from chapter 3, a simple Dart app

96

511

CHAPTER 5 Understanding libraries and privacy

loglib

info(msg)
Functions and classes Hidden

that the | ogl i b library internal
makes available for functionality

third-party code to use

debug (msg)

class Logger {
log(msg)
}

Figure 5.1 | ogl i b functions and classes made available for external code

containing only a mai n() function. Because the PackList app already has some basic
functionality that can be logged, it’s an ideal third-party app to use your new | oglib
library. It has the following functionality, which provides useful items to log:

= Build UI (debug level)

= User adds an item (info level)

= User adds an item with no title (warn level)

= User marks item as packed or no longer packed (info level)

This use case gives you a set of functions that your library should make available,
shown in figure 5.1.

I oglib will contain three top-level functions—i nfo(), warn(), debug() —and a
single class, Logger. A top-level function is a function that exists outside a class (just like
the mai n() function). Libraries can be built of functions as well as classes, and a func-
tion doesn’t need to be wrapped in a class (as it does in C# or Java). Thus it’s perfectly
valid for a library to consist entirely of functions. (It’s equally valid to have a library
with no top-level functions that consists only of classes.)

You structure your code into libraries in order to let third-party code use packaged,
abstracted functionality. When you use existing libraries, such as the dart : ht m library
in chapter 3, you don’t need to know how it creates HTML elements and triggers
browser events—only that it does. By building code into sensible libraries, you’re able
to package and version them for others to use, providing a published interface to your
library’s functionality.

Defining a library with the library keyword

A Dart library is a .dart file that has ali brary | i brary_nane; declaration at the start
of the file. The |i brary declaration announces to Dart that this file represents the
root file of a library and must be the first statement (before other code such as class
declarations and functions), as shown in figure 5.2.

The library name’s purpose is to identify the reusable block of code. The library
name must be in lowercase, with multiple words separated by underscores. The library

Defining and importing libraries in your code 97

library_file.dart

// Optional comments

The | i brary declaration must
be the first statement in the .dart

library library name; — library file (comments aren’t

considered statements).
// fTunctions and classes

Figure 5.2 | i brary is the first statement in a library.

name doesn’t need to be the same as the filename, although by convention Dart files
are also all lowercase, with multiple words separated by underscores. Unlike in Java,
there’s no relationship between filename and folder structure in Dart. Figure 5.3
shows some of the values you can and can’t use as library names.

The library name
is mandatory. \Invalid library names
String interpolation library

isn't allowed. \

String concatenation

library LogLib ${version};

isn’t allowed. I ——————————— library "LogLib" "1.0";
Mixed case - — library MixedCase;
isn’t allowed.

Valid library names

These are all static strings.

library loglib; No runtime evaluation is
library in_action_loglib; required to determine the
library name.

Figure 5.3 Valid and invalid library names

In addition to being able to call a library by any string, it’s also possible to create a library
in any folder, with no restriction placed on the number of libraries in a folder. To define
the | ogl i b library, you need a single file, loglib.dart, containing this single line:

library loglib; <+ library definition defines this file as a library.

The Dart Editor helpfully identifies library .dart files (as opposed to nonlibrary .dart
files) by making them bold in the Editor’s Files view, as shown in figure 5.4.

(@ Files 32 = = 8| @ Loglib.dart &2
1= LoglLib ; library Loglib;
Loglib.dart [LogLib] =
@] otherFile.dart 4
Iz Dart SDK g
L T — 3 Pl

Library files are indicated Figure 5.4 The Dart Editor indi-
by the Editor. cates library files in bold.

98

5.1.2

CHAPTER 5 Understanding libraries and privacy

Now that you have a library file defined, you can start to populate it with code. Your

top-level logger functions at present will call the built-in pri nt ("") function to output
the log message to the browser console and use the Dart shorthand function syntax
discussed in chapter 4. The Logger class will have a function that can do the same, as

shown in the following listing.

Listing 5.1 loglib.dart functions and classes

library loglib;

debug(nsg) => print("DEBUG $nsg");
warn(nmeg) => print("WARN: $nsg");
info(nmsg) => print("INFO $nsg");

Top-level functions (which don’t
need to be wrapped in a class)

cl ass Logger {

log(msg) => print("LOG $nsg"); Logger class, which

contains a log() function

The | ogl i b library at present doesn’t add much value over the builtin print () func-
tion; you’ll expand on it as you progress through the chapter.

TIP The builtin print () function sends its output either to st dout when it’s
running as a server-side script or to the browser’s debug console (accessible
through Tools > JavaScript console in Chrome/Dartium or Web Developer >
Web Console in Firefox).

Now that you have a library with some usable functions and classes, it’s time to use
them. You can let third-party code use your library.

Importing libraries with import

Import the loglib library using the inport "loglib.dart"; statement if the
loglib.dart file is in the same folder. This i nport statement is deceptively powerful: it
allows you to reference a library filename by URI, either directly from the filesystem or
via HTTP over the web. The following i nport statements are all valid but offer differ-

ent degrees of flexibility: Relative file path

import . /libs/loglib/loglib.dart"; Website URL
import "http://ww.nysite.confloglib.dart";
inport "file:///c:/loglib/loglib.dart"; <+—— Absolute file path

Package (discussed

inmport "package:/loglib/loglib.dart"; 47
later in the chapter)

WARNING Using an absolute file path to a specific folder on a specific drive
doesn’t promote great reuse; it means that another developer who wants to
use your app’s code needs to have the same filesystem structure (and the
same drive letters if they’re running Windows). It’s better to use relative paths
or package management.

The PackList app from chapter 3 can import the | oglib library. In the following
examples, you’ll use the directory structure shown in figure 5.5, which will allow for a
relative i nport statement.

Defining and importing libraries in your code 99

Examples/
PackList/

packlist.html
packlist.dart

loglib/

loglib.dart

The relative path from
packlist.dart to loglib
is ../loglib/loglib.dart.

Figure 5.5 The folder
structure for the | ogl i b
and PackList example

By using the relative path from the packlist.dart file to the loglib.dart file, PackList can
import the | ogl i b library with the following statement:

import "../loglib/loglib.dart";

Listing 5.2 shows the i nport statement that packlist.dart will use, in addition to the
existing dart:htnl library import from chapter 3. The order of the imports isn’t
important, because all the imports are loaded before code starts executing, but they
must appear before any code statements.

Listing 5.2 packlist.dart importing the loglib.dart library

inport "../loglib/loglib.dart"; <'T| :
' . _ mports loglib
inmport "dart:htn"; into PackList app

main() { . .
/1 todo: output debug message Imports built-in dart:html library
/1 ...snip rest of file... (import order isn’t important)

LIBRARIES IMPORTING OTHER LIBRARIES

A library can import many other libraries, too. Your | ogli b library could import a

number of other libraries (if it needed to), but the i nport statement must appear

after the | i brary declaration and before any code statements, as shown in figure 5.6.
If | ogl i b were to import the dart: htm library, then the dart: htn library would

become available only to the | ogl i b library. If the rest of your application also wanted

~‘ library_file.dart The library declaration must be
// Optional comments -

the first statement in the .dart
e T library file (comments aren’t
library library name; - considered statements).

import "some_library.dart";

- - _ import statements must appear
import "http://libs.com/my_lib.dart"; <

before code statements but
// functions and classes after the library declaration.

\/\

Figure 5.6 The i nport statement must appear before code statements.

100

CHAPTER 5 Understanding libraries and privacy

to use the dart:htnl library, then you'd also need to specify another i nport state-
ment elsewhere in your application file. Imports are local to the library that declares
the i mport statement.

Circular references between library imports are also allowed. For example, Library
A can import Library B, and Library B can also import Library A, because the Dart
libraries are fully loaded before the application starts running, so the Dart tools can
understand this type of dependency.

USING THE TOP-LEVEL IMPORTED FUNCTIONS
The first use case for using | ogl i b in your PackList app was to output a debug message
when you started building the UI The ideal place to put this code is at the beginning
of the mai n() function where you have the t odo marked, as shown in figure 5.7. Running
the PackList app will now put a message onto the browser console. Figure 5.7 also shows
the relationship between the PackList debug() method call and the | ogl i b library.
Dart is designed to be converted to JavaScript so it can run in browsers that don’t
natively support Dart. JavaScript doesn’t natively support libraries: a multilibrary Dart
application becomes a single JavaScript file on conversion, with each imported library
in its own annotated section, commented with the library name, as in listing 5.3. Note
in the JavaScript output that only the debug(nmsg) function exists in the | ogli b sec-
tion—this is because you aren’t yet using the other functions or classes, so it knows not
to convert them.

Listing 5.3 Generated JavaScript extract of the PackList app and | ogl i b library

...snip...

// *kkkkkkk kK L| brary |Og||b LR R R R R EEEEEE

// kkkkkkkkkk Code for top Ievel Ak kkhkkkhkkhkkkkkkkk

functi on debug(nsg) { debug() function exists
return print$(("DEBUG " + nsg)); in loglib section.

}

[xxxxxkxkxx Jjprary C\DartlnAction\ PackLi st ***x**kkkkxxskx

// * ok kkkkkk kK (bde for Packltem Ak kkkkhkkkkkkx*k

// kkkkkkkkkk Code for top Ievel kkkkkhkkkhkkkkkkk*k

function main() { But debug() only exists because
debug("Starting building U"); it’s called elsewhere in the code.

...snip...

library loglib;

info(msg) %\\

warn(msg) —
import "loglib.dart";

calls
mainQ { —— | debug (msg)

debug("Building ui™); |
.snip..

// PackList

class Logger {

b log(msg)

}

Figure 5.7 PackList calls the top-level function in the | ogl i b library.

Defining and importing libraries in your code 101

You can now flesh out the logging use cases in your PackList app. The remaining ones
are as follows:

= User adds an item (info level)

= User adds an item with no title (warn level)

= User marks item as packed or no-longer packed (info level)

You can achieve this by adding the following lines to your existing Packlt em class.
First, check the i tenfText length in the constructor and output either an info or a
war ni ng message; second, add another event handler to listen to the UI item being
clicked by the user, which adds an i nf 0 message.

Listing 5.4 Adding logging method calls to the PackList application

cl ass Packltem {
[l ...snip...

Packltem(this.itenText) {
if (itenflext.length == 0) {
warn(" User added an enpty itent);

} Adds logging to
el se { Packltem constructor
info("User added an item $itenilText");
}
}
Di vEl enent get ui El enent {
if (_uiElement == null) {
_u? El ement = new El ement : tag("div"); Existing event
_ui El ement . cl asses. add(| tent); listener function
_uiElenent.text = this.itenText;
_ui El enent.on.click.add((event) => isPacked = !isPacked);
_ui El enent.on.click.add((event) => info("ltem updated");
}
return _ui El enent; Adds second click event
} listener, which logs
Il ...snip... “item updated” message

}

USING TOP-LEVEL IMPORTED CLASSES

Your PackList app is now using the publicly exposed functions. You also have a Logger
class in | ogl i b, which you’ve ignored so far. You can add another log message when
you’ve finished building the UI, but this time (for the sake of example) use the Logger
class. Create an instance of the class using the new keyword just as if you’d declared it
in the same PackList file, as shown next.

Listing 5.5 packlist.dart using the Logger class imported from | ogl i b

inport "../loglib/loglib.dart";

mai n() { Creates new instance
debug("Started building U"); of Logger class that’s
/1 ...snip building the U imported from loglib
var | ogger = new Logger();
| ogger. | og("Finished building U"); 47 Calls log() method
1 ...snip... on Logger class

102

CHAPTER 5 Understanding libraries and privacy

_LJ___-"{ O PackList| @ Developer Tools - file:///C/Users/chris

crllEE < e

- | Elements | Resources Network Scripts
PackList
¥ <html>

» <head>.</head>
¥ <body>

7| himi m '
Sunglasses DEBUG: Starting building UT Logging messages from code in Figure 5.8 The
T% Fnisnes g 1E the | ogl i b library are shown in logging messages
WARN: user added empty item

the Developer Console as the output by the Pack-

INFO: user added Sunglasses .
5l PackList app runs.

List app

You’ve now wired in the | ogli b library with the PackList app. The PackList app now
logs a variety of messages as it starts up and the user interacts with it. Figure 5.8 shows
some of the logging that appears in the developer console.

USING LIBRARY PREFIXES TO PREVENT NAME CLASHES

Now that you have a working library, you can let other developers use it—they have a
well-defined interface into your library. Unfortunately, there’s nothing to stop another
developer from also using a different library that also contains a Logger class and a
top-level i nf o() method. This is where i nport prefixes are used.

Aninport prefix allows you to import multiple libraries that may contain top-level
functions and classes with the same names. Imagine a scenario in which a developer
wants to use another (hypothetical) Logger library called ebLogger , which is able to
send log messages to a server somewhere and also contains the i nf o() function.

Dart wouldn’t know which of the i nf o() functions you intended to call, as demon-

strated in figure 5.9.

web_logger.dart

loglib.dart

library loglib; library web_logger;

info(msg) => print("INFO:

info(msg) {

//send msg to a server somewhere

¥

my_app.dart

import "loglib.dart";
import "web_logger.dart";

main() {
info(""App Started");

TN

Which library i nf o() function
are you calling?

Figure 5.9 Multiple imported libraries can sometimes contain the same function names, so you
need a mechanism to deal with these clashes.

5.2

Hiding functionality with library privacy 103

‘I my_app.dart I
as web

web info \
/ info

3. A call without a prefix
refers to the library that
also has no prefix defined
in the import statement.

— 1. The prefix value indicates
how you will reference this
library in code.

2. You canthen — |
use that prefix
to refer to the
specific library.

Figure 5.10 You can declare a library prefix for use when referring to the code in an imported library.

Fortunately, Dart provides an as statement, which forms part of the i nport declara-
tion. This feature allows you to deal with namespace clashes by giving all the code in a
specific library a name that you can reference. The as statement is followed by a pre-
fix name that becomes your reference when you refer to any code in that specific
library elsewhere in code, as shown in figure 5.10.

Once you use the prefix defined by the as statement, you must always refer to any
class or function in that library with the prefix. Although it’s possible to always use a
prefix with every i nport declaration, doing so could cause your code to become clut-
tered because every reference to every class and method in the imported library
would need to use the prefix. The pragmatic approach is best: add library prefixes
only when doing so aids readability and/or prevents naming clashes, rather than
using library prefixes everywhere.

Currently, your | ogl i b logging library has all its functions and classes available to
users of the library. Nothing is hidden from any app that imports the library—all your
functionality is publicly available. In the next section, you’ll make some items private
so they aren’t accessible from outside the library.

Remember

= Thelibrarylibrary_name; statement must be the first statement in a library.

= Libraries can use the inport "uri/to/lib.dart"; statement to import other
libraries.

= |ibrary andinport statements must appear before other code.

= You can use library prefixes to avoid naming clashes between different libraries.

Hiding functionality with library privacy

When you’re building a library of functionality, it’s likely that there will be some inter-
nal implementation details that you won’t want to expose to end users of that library.
The Logger library currently contains a basic function of outputting data to the

104

CHAPTER 5 Understanding libraries and privacy

browser console. Suppose you want to add a feature to your Logger library that sends
the log messages to a server somewhere. You don’t want external users of your library
to call this server logging code directly; it needs to be called internally by your entry-
point functions. If you just declare classes and functions in your library, they will be
accessible to end users; but fortunately Dart lets you declare items as private by prefix-
ing their names with an underscore (_).

NOTE Privacy in the context of this chapter refers to the object-orientated
notion of privacy, which through language structures hides the internals of
one system from another system. Making your library private so your code
can’t be read by prying eyes is a different concept and may be addressed by
code obfuscation and minification, both of which are under development by
the Dart team. In addition, privacy isn’t related to security—all imported
library code runs as part of a single codebase. In chapter 15, you’ll see how
you can create separate isolates, which provide a degree of security.

As shown in figure 5.11, privacy exists at a library level rather than a class level. Any-
thing declared to be private is accessible from within its own library but can’t be refer-
enced by name from outside that library.

Privacy in a library can be applied to top-level functions and classes and in classes
to their properties and methods by adding the underscore prefix to the name. Calling

LogLib.dart

inf)
info(msg) _logToServer(level ,msg); Functions, classes

properties, and
methods can all be
marked private in a
library by prefixing
3 with an underscore
“_" character.

warn(msg) _— class _ServerLogger {

debug (msg)

i

class Logger {
log(msg)

var _isEnabled;
void _checkServer() [~ Properties and methods in a class

3 can also be marked as private by
prefixing with an underscore.

l

But privacy exists at a library level,
so they're still accessible from
other classes and functions in

the same library.

Figure 5.11 Privacy is achieved by prefixing the class, function, property, or method name with
an underscore, which allows access only from other code in the same library.

5.2.1

Hiding functionality with library privacy 105

code also needs to include the underscore prefix when using these private elements,

as in

i nfo(nmsg) { Calls private
print("INFO $nsgQ); _logToServer() function

I ogToSer ver ("I NFO', msg) ; from loglib info method
}

Building a language feature around a naming convention?

The underscore prefix is a common (but not necessarily universal) naming convention
to indicate privacy, especially in languages that don’t have privacy built in (such as
JavaScript and Python). Dart takes this naming convention further by making it a lan-
guage feature.

This feature has been the subject of some debate in the Dart community—it's per-
haps one of the biggest points of contention. On the one hand, you get privacy with
little developer overhead; and at the call site you can see where something being
called is private, which is useful when you’re exploring the internals of new libraries
because you don’t need to seek out the declaration. On the other hand, it does affect
readability, and it's possible to have code that looks like this:

var sonmeVal ue = new _M/C ass()._get Val ue()._doAction(_w thProperty);

Another argument against using the underscore prefix is that if you need to change
something from public to private (or vice versa), it must be renamed everywhere that
it’s used. The other side to this argument is that if you're renaming from private to
public, then the renaming will happen only in your library (if it’s currently private in
your library, then no external user will be using it). If you're changing from public to
private, then there are more fundamental issues (such as breaking your library users’
code by removing a function) than just renaming.

The two rules to remember are as follows:

= Code in a library can access any other code in the same library.

= Code outside a library can access only nonprivate code in that library.

These rules are particularly important for classes, which have a mixture of public and
private properties and methods.

Using privacy in classes

Privacy in classes is different than in G# and Java. The first rule about Dart privacy
means that two different classes both have access to each other’s private methods and
properties (similar to Java’s package-private feature).

In the | ogl i b library, you currently have a Logger class. Perhaps you want to deter-
mine whether the logger is enabled or disabled by storing an internal _i SEnabl ed
property: its internal state. Other classes using the Logger class that are in the same
library can access the internal state directly, but users of your library can’t access that

106

CHAPTER 5 Understanding libraries and privacy

—| packlist.dart

import "loglib.dart";

1. Creating a Logger and a
WebSer vi ceLogger
mainQ) {

var logger = new Logger(Q);

var wsLogger = new WebServerLogger(); 2. Passing the Logger instance

» to the WebSer vi ceLogger
wsLogger . logToServer (logger,"Building UI"™);

//1ogger._isEnabled = false;

}\/—\
—| loglib.dart

library web_loglib ;

class Logger {
| ~ bool _isEnabled;

//snip..
3. _i sEnabl ed is private / b

within Logger .
class WebServerLogger {

logToServer(Logger logger, msg) {
if (logger._isEnabled) {

//send the log message

P
4. But WebSer ver Logger //to the server

is in the same library, so it }
can still access _i sEnabl ed }

from the Logger class. }\/_\

Figure 5.12 \WebSer ver Logger can access private properties of the Logger class because they’re
in the same library.

internal state. Other parts of the app should have no knowledge about the workings of
Logger class, only that it does work. Figure 5.12 illustrates this relationship.

By using the underscore prefix, you can build rich functionality into your library
and ensure that only the functionality that users of your library need is exposed
through a well-defined and consistent interface of classes, methods, and top-level
functions.

ACCESSING PRIVATE FIELDS WITH GETTERS AND SETTERS

As discussed in chapter 3, getters and setters provide a way to access fields. They too
can be made public or private through the use of the underscore. If you want to allow
external users read-only access to the _i sEnabl ed property, you can add a public get-
ter to your class. Likewise, when you add a public setter, the value becomes writable.
It’s interesting to note that it’s perfectly valid to have read-only or write-only values by
providing only a getter or a setter. Figure 5.13 shows how your library can show and
hide a class’s properties through getters and setters.

Hiding functionality with library privacy 107

library loglib;

Fully private — only accessible ' . c
e : ~J class Logger

within the library bool _isEnabled:

s

Getter allows read-only access library loglib;
from outside the library:

var logger = new Logger(Q);
if (logger.isEnabled) {

class Logger {
bool _isEnabled;

//snip.. \\\ bool get isEnabled() => _isEnabled;
¥ }
Setter allows write-only access library loglib;

from outside the library:
class Logger {

var logger = new Logger(); bool _isEnabled;

logger .isEnabled = true;
set isEnabled(value) => _isEnabled = value;

¥

Getter and setter allow read/write library loglib;
access from outside the library:
class Logger {

var logger = new Logger(); bool _isEnabled:

logger .isEnabled = true;
ifT (logger.isEnabled) {
//snip..

4y }
¥/\

Figure 5.13 Using getters and setters to provide varying levels of field access to external users of
a class

\\\ bool get isEnabled => isEnabled;

void set isEnabled(value) => _isEnabled = value;

USING PRIVATE METHODS
In addition to private fields wrapped with getters and setters, private methods in
classes can also be defined, again, by prefixing the method name with an underscore.
A useful effect of this is that it makes refactoring of long methods possible, because
the extracted methods, when marked private, can’t be called from outside the library.
Figure 5.14 takes a typically long method, extracts a block of code, and refactors it
into a private method called _sendToServer (). The _sendToServer () method can’t
be called from outside the library, but the original | og() function still works exactly
the same way, with external users of the library being unaware of the change.

A PUZZLER WITH PRIVATE CLASSES

In the same way that you can have private methods and private properties in a class,
it’s also possible to create private classes in a library by prefixing the class name with
an underscore, as shown with the _Server Logger class in listing 5.6. Private classes can
be useful in that they can be created only in your library. You can’t use the new key-
word to create a new instance of a private class from outside your library.

108

CHAPTER 5 Understanding libraries and privacy

library loglib library loglib
class Logger { class Logger {
void log(msg) { log(msg) {
_logToConsole(msg) ; _logToConsole(msg);
if (_isEnabled) { if (_isEnabled) {
Lo _sendToServer(mnsg);
//some really long | }

| //code to send data to | }
i //the web server
Extracting some

~_ — ' functionality into

a private method _sendToServer(msg) {

R S

j //some really long
' //code to send data to

//the web server

L}, o
J\

Figure 5.14 To keep your code readable and maintainable, you can extract a block of code
into a private method of the same class that isn’t visible from outside the library.

Private classes can have public methods and properties. The _Server Logger class has
a private property called _server | p and a public property called ser ver Nane.

An interesting puzzler is why a private class (which is accessible only in a library)
can have public methods and properties. When you’re in the same library, it makes no
difference whether a property is public or private; and if the class is private, how can it
be referenced from outside the library? The following listing shows how this can hap-
pen, in the get Server Logger () function, which returns a new instance of the private
_Server Logger class.

Listing 5.6 mixed_loglib.dart: library containing both public and private classes

library m xed_| oglib; Logger class is public and can be
directly referenced in calling code.

cl ass Logger {

_ServerLogger get ServerLogger () {
return new _Server Logger();

Method on public Logger class can still return a
private _ServerLogger instance, which can be
used by calling code but not directly referenced.

}
}

cl ass _ServerLogger {
var server Nane;
var _serverlp;

}

Although you can directly access private classes outside of a library, a public method

Private _ServerLogger class contains both public
and private properties; this has no effect in the
library because the whole class is private.

or function in that library may return an instance of a private class. This pattern
should be avoided, but Dart still handles it through optional typing.

Hiding functionality with library privacy 109

TIP It’s valid to return a public class from a library, but such a class is gener-
ally referred to by a public, implicit interface, rather than its implementation
class name. I discuss this idea in the next chapter.

The calling code in a separate library can see (and instantiate) the Logger class, but it
hasno knowledge of the _Ser ver Logger private class. It can call the get Ser ver Logger ()
function and use the private _Server Logger returned, as long as it doesn’t use the
class name directly—storing the _ServerLogger instance in an untyped variable, as
in the following snippet, which stores the returned _ServerLogger in the variable
named pri vat el nst ance:

You can store the result only
Logger | ogger = new Logger(); QJ in a dynamic optionally

var privatelnstance = | ogger. get Server Logger () ; typed variable.

Even though you can’t refer to the _Server Logger class by name, once you have an
instance of it you can access its public properties on that private instance with no com-
plaint from the tools. You won’t get autocomplete help, though, because you’re
unable to provide the type information to the tools. If you tried to access the
privatel nstance._serverlp property, you'd get a noSuchMethod error, because
you’re trying to access a private property from outside the library. Accessing
privatel nstance. server Name, though, will work fine, because that isn’t marked pri-
vate. Writing libraries with the intention of their being used this way should be consid-
ered bad practice unless used in conjunction with public interfaces, because there’s
no way for end users of your library to find out how your private classes should be used
(other than looking at the source).

5.2.2 Using private functions in libraries

Functions in the top level of a library can also be public and private in the same way as
classes. Prefixing a private function with an underscore makes it private to a library,
meaning it can be accessed from anywhere in the library. This can be useful when you
want to provide private utility functions in a library but there’s no associated data, so
they don’t warrant becoming methods in a class.

You can see this by adding a private function to the | ogl i b library, as shown in the
following listing, which is called by the public-facing i nfo(), warn(), and debug()
functions and your Logger class.

Listing 5.7 loglib.dart with a private function

orary Tootth J s actesible any rom within
_l ogMsg(neg) { same library
_ServerLogger serverlLogger = new _ServerLogger(); Creates new instance
server Logger. send(nsg); T every time a message is
} logged, for example only

info(nsg) => _l ogMsg("!|NFO $ns8g");
warn(nsg) => _l ogMsg(" DEBUG $nsg");
debug(nmsg) => _l ogMsg("WARN $ns8g");

Existing public functions
now call _logMsg

110

5.3

CHAPTER 5 Understanding libraries and privacy

class _ServerLogger {

/Il ...snip...

}

cl ass Logger { Existing Logger class
log(msg) => _| ogMsg(nsQ); now calls _logMsg

}

The private _| ogMsg() top-level function is accessible only from within the | oglib
library—external users of the library can’t access this function. In the example, an
instance of the private class _Ser ver Logger is created for each call for the purposes of
example only—a print () function would suffice.

Remember

= The private
properties.

= Code marked as private can be accessed only from within the same library.

= Code not marked as private can be accessed by external users of that library.

prefix can be applied to functions, classes, methods, and

Building reusable libraries with hidden internal functionality is standard practice in
most applications, and Dart enables this feature by taking the underscore convention
and baking it into the language.

Although you can now split your application into reusable libraries, a library can
still consist of many thousands of lines of code. Keeping track of all that code in a sin-
gle library file can be awkward. Fortunately, Dart provides a way to divide libraries
even further: into collections of source files.

Organizing library source code

The | ogli b library now contains a mix of public and private classes and functions.
If you were to add even more functionality, it wouldn’t be long before the library
file would become hard to navigate, even with the tools. Even more of an issue
when developing in teams is that any major refactoring to the file can easily
cause issues for other developers on the team if you're working on the same library
simultaneously.

Fortunately, Dart allows you to split a library into multiple source files. External
users of your library have no knowledge of this, and it makes no difference to users of
your library whether it’s constructed of a single file, 100 files containing a class or
function each, or any combination of classes and functions.

In this section, you’ll take the loglib.dart file, which currently contains two classes
and four functions, as shown in figure 5.15, and split it into separate source files.

53.1

Organizing library source code 111

Classes and functions are
all contained within the
single loglib.dart file.

floglib class Logger //snip...

class _ServerLogger //snip..

‘D

loglib.dart info(msg) //snip...

warn(msg) //snip... . .
debug(msg) //snip. . . Figure 5.15 loglib.dart

_logMsg(msg) //snip... contains a growing num-
ber of classes

~_ —— ! and functions.

These functions and classes will be split into two separate source files, with the
loglib.dart library file linking them together. The goal is to end up with three files in
total, as demonstrated in figure 5.16.

Noglib

class Logger //snip...
loglib.dart

class _ServerLogger B
//snip..

(s]
[|

functions.dart info(msg) //snip_ .

warn(msg) //snip. .. <

debug(msg) //snip... !:lgure 5.16 :I'he

_logMsg(msg) //snip. - - mtt.endedg.oal isto
split the library

~____—— " into three files.

This is just one way to split the library. You could split each class and function into
its own file or split all the public functions and classes into one file and all the private
functions and classes into another.

TIP In libraries, there are likely to be multiple units of functionality, each of
which may consist of a few classes. As a best practice, it’s these units of func-
tionality that you should wrap into a single source file.

Using the part and part of keywords

Dart provides the part keyword to allow you to split code into separate files in a library.
It’s used in the same file as the | i br ary keyword and needs to provide a relative path
to the othersource files thatmake up the library: for example, part "f uncti ons. dart"; .
You can create new, empty text files for classes.dart and functions.dart and cut and
paste the classes and functions into them. They need no extra keyword. The following
listing shows the complete functions.dart file.

112

CHAPTER 5 Understanding libraries and privacy

Listing 5.8 Complete functions.dart source file

part of loglib;

Indicates that this
_logMsg(msg) { file is part of loglib
print(nsg); library

_ServerLogger serverlLogger = new _ServerLogger();

server Logger. send(nsg);
}
info(nmsg) => _| ogMsg("I NFO $nsg");
warn(msg) => _| ogMsg(" DEBUG $nmsg");
debug(nsg) => _| ogMsg("WARN $nsg");
We call this a part file. You can only use it in the context of a library—it achieves noth-
ing on its own. It’s important to note that a source file is an extract of code that could
have remained in the original library file but has been extracted into a separate file
for developer convenience. It has no bearing on how the code is used in terms of
either public and private visibility of classes and functions or conversion to JavaScript.

After extracting your functions and classes into their respective files, import them

as demonstrated in figure 5.17.

The two part files
(classes.dart and functions.dart)
are brought back into the library

by using the part indicator.
They are each part of loglib.

The single loglib.dart
file is split into

three separate files. | loglib.dart

library loglib;

part "classes.dart";
part "functions.dart";

loglib.dart

library loglib;

f ‘ _‘ classes.dart
! class Logger { . class Logger {
//snip.. ' //snip..
} ! 3
class _ServerLogger { class _ServerLogger {
//snip I //snip

Y | g
info(msg) => //snip | -
warn(msg) => //snip ‘ functions.dart

debug(msg) => //snip info(msg) => _logMsg("INFO: $msg™);
JOQMSQ(mSg) { ! warn(msg) => _logMsg(""WARN: $msg');
//snip | debug(msg) => _logMsg("'DEBUG: $msg™);
P} - T _logMsg(msg) {
“ T //snip
3

w

Figure 5.17 Splitting a single library file into separate source files

Organizing library source code 113

4 library_file.dart The | i brary declaration must

//0pti I be the first statement in the
Optional comments _--=777"" .dart library file (comments

library library name ; EE aren’t considered statements).
import "some_library.dart"; o import statements must appear
import "http://libs.com/my_lib.dart"; “---- before code statements but

after the I i br ary declaration.
part "source_filel.dart";

part "src/source_file2._.dart"; \

\ Source files must be declared

//functions and classes before any code statements but
after any i nport declarations.

_/\

source_filel.dart

part of library_name;

Source files can indicate the
library they belong to

by using the part of annotation.

// more functions
// and classes

Figure 5.18 part statements must come before any other source code.

The part "classes. dart"; keyword takes a filename as its parameter, which should
be a filename that’s relative to the |ibrary file; for example, you could put all the
linked source files into a subfolder from the main loglib.dart | i brary file:

part “"sourceFiles/classes.dart";

The loglib.dart file now contains only a series of |ibrary, i nport, and part state-
ments. This setup is perfectly valid and is a pattern you’ll see around the built-in Dart
source libraries. Remember that in section 5.1 we noted that a library can import
other libraries. If your | ogli b library needed to import other libraries, the i nport
statements also appear in this file:

library loglib; Imports external library
import “other library.dart"; into loglib library

part "classes.dart";

part "functions.dart";

The order of the statements is important, as shown in figure 5.18.

Any classes and functions imported from external libraries such as inport
"dart:htm"; become available to all part files that belong to | ogl i b. Thus the rela-
tionship between each class and function in the library remains unchanged, although
they’re organized in source files.

Source-file restrictions

You should be aware of the following restrictions when using the part keyword:

= Files imported into a library with the part command need to be treated as
though they’re part of the original library file. That is, they can’t contain any
statements of their own. If they did, they’d potentially break the strict ordering of
thelibrary,inport, and part keywords.

114

5.4

CHAPTER 5 Understanding libraries and privacy

(continued)

= Source files can belong to only a single library in an application. | ogl i b and
webl ogl i b couldn’t both use part "cl asses. dart";.

= A class or function must exist in a single file. There is no way to make a class or
a function span multiple files (there are no partial classes as in C#).

If you think of part files as being part of the same logical library file, then these re-
strictions make sense. You couldn’t have one part of a file also be part of a different
file, and you couldn’t have a library file contain another | i br ary statement halfway
down. It would also be impossible to split a class or function into two separate parts
in the same file.

It’s important to remember that having classes and functions in different part files has
no effect on privacy. They’re all considered to be in the same library, and privacy
exists at the library level.

Remember

= A single library file can be split into many part files.

= External users of the library have no knowledge that the library has been spilit.

= Dart treats a library file split into multiple physical part files as though it were a
single library file.

In addition to encapsulating functionality into your library and making that available
for third-party code to use, it’s also possible to run a library directly, like a script.

Packaging your libraries

In Dart, a package is a standalone application or one or more libraries put together
into a single unit with a version number. Packages serve two purposes: they allow your
application to easily import other people’s packages, and they let you format your
own file structure in such a way as to allow your code to be packaged and imported by
third parties.

The pub tool, which is built into the Dart Editor and is also available from the com-
mand line, lets you import packages that your code depends on. These packages may
be hosted on a web server, in GitHub (or other Git repository), and in the pub.dart-
lang.org repository. If you’ve used other package managers, such as Java’s Maven or
Node.js’s npm, pub performs a similar function: it automatically downloads your
application’s dependencies and any nested dependencies. Pub also manages version-
ing conflicts, including highlighting conflicts in nested dependencies.

A file called pubspec.yaml, which is found in the root of your source’s file struc-
ture, contains all the important information to enable pub to find and download
dependencies. It uses a YAML file format: a human-readable markup language that
uses indentation to define sections and subsections. Listing 5.9 shows an example

http://pub.dartlang.org
http://pub.dartlang.org

Packaging your libraries 115

pubspec.yaml file. The nane field is mandatory, and the versi on and description
fields are also mandatory if you want your package hosted on pub.dartlang.org. The
other fields are optional, but the important one is dependenci es, which tells pub
about your dependencies (if you have no dependencies outside the core Dart SDK,
then you can omit the dependenci es field).

Listing 5.9 Example pubspec.yaml for | ogl i b

nanme: loglib <—— Package name
version: 1.2.3 <+—— Package version
description: >
; . : Description You can use
Provides a sinple Iogging framework of library authors: with
to log to the console YAML list of

author: You <you@our. enail . comp multiple authors

hormepage: http://your.website.conmloglib <+—— Library homepage
dependenci es: Dependencies
hosted_library: Packages hosted on pub.dartlang.org, section for pub
versioned_library: '1.2.3 with or without version numbers to download
unittest: Deploys package as part of
any Dart SDK but not part of core

nmy_security_ library:
host ed:
url: http://your.internal.server.com
version: '>=1.0.0 <2.0.0'

Private package hosted
on internal server with
specific version range

sone_opensource_library Package hosted on GitHub
git: (Git must be installed in
url: git://github.con ny/open_source_library.git your computer’s path)

Pub works by using convention over configuration, and it expects a specific layout for
your application. The key files and folders are shown in figure 5.19; fortunately, the
Dart Editor creates this structure for you when you create a new project.

To pull the various dependencies into your project, you need to use the pub i nst al |
and pub updat e commands, which both exist in the Dart Editor menus. These com-
mands install or pull newer versions of the dependencies into your application’s struc-
ture and create a pubspec.lock file. Packages are downloaded into a cache, normally
the .pub-cache/ folder in your home directory. The pubspec.lock file contains the
actual versions of the different dependencies that pub installed (useful when you’ve
specified a version range). This file can be committed into source control, which
ensures that other developers on your team use the same version of any dependencies.

Once the dependencies are installed, you can refer to them using the i nport key-
word in your library code. For example, the PackList app can use the | ogl i b package,

as shown in this snippet: Maps to loglib

i mport "package:loglib/loglib.dart"; package’s /lib/ folder

http://pub.dartlang.org

116 CHAPTER 5 Understanding libraries and privacy

loglib/
The package configuration file
—
A lock file containing
/ exact versions of
dependencies installed

\ Areadme file about your

package (essential if
you're hosting on GitHub)

The lib folder contains your
T] / actual library (or libraries)
that users will import,
such as loglib.dart.
loglib.dart
The scr folder contains any part
scr/ — files that make up your library.

Other optional folders
/ are allowed.
\ Unit tests

The root folder for your package

/,/ Contains any shell scripts
or runnable versions of
loglib_viewer.dart your package
example/ L A working example that uses
your package
Figure 5.19 A package structure is defined by convention.

5.5 Scripts are runnable libraries

The | ogl i b library provides logging functions to external users by providing a num-
ber of classes and functions that external code can use. It’s also possible to run the

library directly—remember that a Dart script is no more than a .dart file containing a
top-level mai n() function.

Scripts are runnable libraries 117

An example using the | ogl i b library is to allow it to replay a series of log messages
loaded from a web server back into the developer console. You can provide a publicly
accessible function such as replay(url) that calls a server and sends each of the
returned log messages to the existing private _| ogMsg() function.

One way of running this new replay functionality is to write a separate app that
imports the | ogl i b library and then calls r epl ay() . This seems like a lot of work in
order to call a single function. Fortunately, Dart provides another alternative. A library
can also contain a mai n() function, and a mai n() function is all Dart needs in order to
let the library become runnable (a mai n() function is the entry-point function for all
Dart scripts). The following listing shows mai n() added to the | ogl i b library.

Listing 5.10 Library containing a mai n() method

library loglib;
import "dart:htm";

part "classes.dart";

part "functions.dart"; main() appears
in library

mai n() {

replay("http://ww. soneserver.coni | ogMessages"); <1§‘ main() now calls
} replay() function
replay(url) {

//snip... load megsFromrl |ist

for (msg in msgsFromurl) { replay() calls private

1 ogMsg(Q) ; _logMsg() function

}

}

You can now use this functionality from within an HTML file by including a scri pt tag
in the associated HTML, such as

<script type="application/dart" src="loglib.dart"></script>

This calls the mai n() function once the code is fully loaded and ready to run.

Although it’s best practice to keep mai n() in the library file (that is, the file con-
taining the | i brary statement), you can put mai n() in a different part file. Remem-
ber, a function or class in a part file performs exactly the same as if it were in the main
library file, and the mai n() function is just the same.

The implication is that every Dart app that you create can also become a library by
the addition of a | i brary declaration at the top. In this way, it becomes trivial to take
an existing Dart app and turn it into a library that can be embedded in some other
application by making the existing Dart app also function as a library. By adding a
l'i brary statement to your PackList app, you can include it in a mashup of other appli-
cations, each of which provides independent functionality, brought together by a
common theme (see figure 5.20).

Dart comeswith modularity and flexibility builtin, and regardless of whetheryou start
by building a library or an app, it’s incredibly easy to switch between one and the other.

118

5.6

CHAPTER 5 Understanding libraries and privacy

loglib
Library
Packing

App

Mashup
“we. Holiday (%,

App

Mapping Figure 5.20 You can take an existing
LR app and turn it into a library by adding
al i brary statement.

Summary

Dart provides a library structure for organizing and reusing your source code. With
library and part files, you can structure your code in a way that makes sense for team
development and third-party reuse.

The i mport statement allows apps and libraries to import other libraries in a sim-
ple fashion while avoiding naming clashes through the use of library prefixes. Library-
based privacy allows you to share libraries of code and functions and classes in that
library that are private from code that uses your library. Libraries can also become
standalone applications through the addition of a mai n() function, which is the entry
point for any Dart script.

Remember

Libraries can import other libraries.

= A library can also be used as a runnable script.

= A library’s source code can be split across multiple part files.

= Any code declared as private in a library is accessible from within any other part
of that library.

= Any code not declared as private can also be used by code that uses the library.

Now that you know enough Dart to build a structured app consisting of multiple
libraries and files and you understand how Dart’s privacy mechanism relates to librar-
ies rather than classes, it’s time to take a deeper look at Dart’s class, interface, and
inheritance mechanisms and how they fit into the dynamic world of optional typing.

Constructing
classes and interfaces

This chapter covers

= Defining classes
= Dart’s implied interfaces
= Constructing classes

Dart is a single-inheritance, class-based, object-oriented language. It has many simi-
larities to Java and C# in terms of its class and interface mechanisms. In this chapter,
we’ll look at the features of Dart’s classes that enable you to design flexible libraries
of classes and interfaces that promote best practices, such as coding against inter-
faces and providing named constructors for different, specific purposes.

We’ll deal with the different ways to construct classes, including what appears to
be the ability to construct an instance of an abstract class, rather than a specific
implementation class, and why you might get the same instance of an object back
when calling a constructor. In the discussion of factory constructors, we’ll also look
at static properties and methods, which share their state across all instances of a
class. When we get to constant constructors, you’ll see that you must use them in
conjunction with final, read-only properties to provide a simple way to create fixed,
unchanging class instances.

119

120

6.1

CHAPTER 6 Constructing classes and interfaces

We’ll also look at interfaces, which are also used extensively in Java and C# but
don’t appear in JavaScript. By following some of the lessons learned from using inter-
faces in Java and C#, the Dart designers have created a number of pleasing ways to
make coding against interfaces easier—for example, the fact that every class is also an
implied interface. In this chapter, you’ll see how you can follow the maxim to “code
against interfaces instead of classes.” By designing your library to use interfaces, you
provide the ability for users of your library to easily unit-test functions and switch
implementations of classes in your library.

NOTE If you’re already familiar with Java or C# you might want to skim this
chapter, but keep an eye out for implicit interfaces, where a class definition is
also an implied interface. Dart’s class and interface structure shares most of
its logical concepts with those found in Java and C#. Remember to look at the
appendix for a quick syntax reference.

First, let’s look at how to define a simple class and see what Dart has to offer.

Defining a simple class

A class in Dart can contain simple fields, getter and setter accessors for those fields,
and methods. Generically, these are known as a class’s members. In an example user-
profile scenario, you may define a User class to have firstname and | ast nane fields
and a method to return a full name, which is a concatenation of the firstnane and
| ast nane fields (see the following listing). In use, you would use the new keyword to
create an instance of this class, also shown in the mai n() method.

Listing 6.1 A simple User class

Private field, denoted

class User { <+ Class name
String _forenane; by underscore
String get forenane => _forenaneg; Public getter and setter, accessing
set forename(value) => _forename = val ue; private _forename field

String surnane; ! Public field,

String getFul | Name() { defined as String

" . Method returning forename
return "$f orenane $surnane";

and surname as String

}
} .
‘ Creates instance
mai n() { of User class
User user = new User();
user. forenarre_:" AI . C?_ ; Sets value of fields
user.surname = "Smith";

var full Nane = user. get Ful | Nane(); Calls method on

} user instance

This is a very simple class. The important observation is that the class’s members, in
the form of the get Ful | Nane() method and the f or ename and sur nane fields, imply
an interface. Dart uses this implied interface to allow the best practice of program-
ming against interfaces rather than specific class implementations. At any point, you

Defining a simple class 121

can switch your User implementation with a different class that implements the same
interface. This is an important distinction between Dart and Java or C#, which require
explicit interface definitions to be used. Let’s see an example of this in practice.

6.1.1 Coding against a class’s interface

Imagine a | ogi n library that uses your User class. The implementation details of both
the User class and the authentication service class are contained in an external library,
provided by another development team in a library called LogonLi brary. You write
your own code to use the Aut hServi ce class and the User class, as shown in the follow-
ing listing, without needing to be aware of the specific implementation details.

Listing 6.2 logon.dart: using an example Aut hSer vi ce

Imports LogonLibrary library
with implementation details

hidden using library privacy Passes into function an

instance of a class that
i mport "logon_library.dart"; looks like AuthService

User doLogon(AuthService authSvc, String username, String password) {

User user = authSvc. aut h(usernane, password);
. .) auth function forms
print("User is authenticated: ${user==null}"); interface point that

return user; Prints “true” or “false” AuthService implements

} depending on whether service
buttonCl i ckHandl er (event) { has authenticated user
Aut hServi ce authSvc = new Aut hService(); Example click
User user = doLogon(authSvc, handler that
query("#usernane") . val ue, calls doLogon()
query("#password"). val ue);
}

As long as the AuthService instance has an auth() method that returns a User
instance, your doLogon() function will run just fine.

Dependency injection or inversion of control?

The doLogon() function takes an aut hSvc object as one of its parameters. This is
an example of dependency injection, which allows you to switch implementations.
For example, when testing the doLogon() function, you could provide a mock object
for the aut hSvc parameter. When testing locally, you can use a simple aut hSvc ob-
ject, and when deploying your production system, you can provide an enterprise
aut hSvc object.

If you wrote the doLogon() function without the aut hSvc parameter, you’d have to
create a concrete instance in the function. This would mean that you couldn’t switch
implementations of the Aut hSer vi ce, making it harder to unit-test and harder to pro-
vide different deployment scenarios.

122 CHAPTER 6 Constructing classes and interfaces

The Aut hSer vi ce class is
publically visible to users
of the | ogon_l i brary, but
the details are kept hidden.

logon_library
class AuthService { Hidden
User auth(String username, internal
String password) { functionality
//. ..
h
3

The implied interface is
defined by the public
members of the class.

class AuthService {
User auth(String username, String password);
¥

Figure 6.1 The implied interface is defined by the public members of the class.

Let’s say you want to test your doLogon() function. By using dependency injection,
you can decide which implementation of Aut hServi ce is used. Instead of using the
Aut hSer vi ce that hits some real servers to provide authentication, you can provide a
mock implementation that implements Aut hService’s implied interface, which is
shown in figure 6.1.

The public interface of Aut hSer vi ce contains a single method that takes two string
parameters and returns an instance of a class called User. Using the i npl enent s key-
word, you can make a mock version, called MockAut hSer vi ce, which you’ll use to test
doLogon(). The following listing shows the mock class and the simple test, which is
wrapped in the mai n() function.

Listing 6.3 Using a mock authentication service

import "logon_library.dart”; Mock class implements another

cl ass MbckAut hService inpl ements Aut hService { class’s implied interface

User auth(String usernane, String password) {
var user = new User();

— Mock class’s
user.forenane = "test Forenane"; implementation of auth()
user.surnanme = "test Surname";
return user;

} Existing doLogon()
} function

User doLogon(Aut hService authSvc, String usernane, String password) {
User user = authSvc. auth(username, password);
Uses mock
j implementation

print("User is authenticated: ${user==null}");
return user;

}

6.1.2

Defining a simple class 123

mai n() {
Aut hServi ce aut hService = new MdckAut hService(); Uses mock
var user = doLogon(authService, "Alice", "password"); 4—‘ implementation
print (user. forenane); in doLogon() call
print (user. surnane);
1 Creates instance of
MockAuthService

When a class explicitly implements an interface, the Dart tools can validate that if the
interface changes, anything that implements the interface has also changed. If the
Aut hServi ce class changed its aut h() method to include a third parameter, the Dart
Editor tools would indicate that the Enterpri seLogonServi ce class also needed to
change, whereas the MbckLogonSer vi ce, which doesn’t use the i npl enent s keyword,
wouldn’t fail until runtime.

TIP Although it’s valid Dart code to write a class definition with no type infor-
mation explicitly specified for the class’s members (by using dynamic typing),
it’s good practice to specify explicit type information on your class’s public
interface. Doing so allows you to get the most benefit from the tools and pro-
vides documentation about the intention of your code.

Formalizing interfaces with explicit interface definitions

An interface defines the contract that a class will fulfill or the requirements that a class
must meet to properly implement that interface. So far, you’ve been using an inter-
face implied by the class definition. Dart allows you to define an interface explicitly,
independent of the class that actually provides the implementation. Defining an inter-
face explicitly is similar to defining a class—you define the public class members with-
out an implementation (known as an abstract class). Let’s change Aut hSer vi ce into an
interface and create an implementation of it called EnterpriseAuthService, as
shown next. Your MockAut hSer vi ce class remains unchanged.

Listing 6.4 Defining an explicit interface

abstract class AuthService { <+—— Defines abstract AuthService class
User auth(String username, String password); An auth() method
} definition without
an implementation

User auth(String username, String password) ({

class EnterpriseAuthService inplenments AuthService { <’—‘
/] some enterprise inplenentation

Implements AuthService

} Implemented
} version of auth()

The abstract keyword is important because it lets Dart know that this is a class with
methods that have no implementation. This makes it impossible to create an instance
of Aut hSer vi ce directly, because there is no implementation of Aut hServi ce to use.
Thus the following would be considered an error: qJ

Creating an instance of the abstract

var authService = new Aut hService(); AuthService is impossible.

124 CHAPTER 6 Constructing classes and interfaces

But you’ll see in a later section how to use factory constructors to allow this syntax,
even on an abstract class, by providing a default implementation.

NOTE In Dart, when we talk about an interface, we’re actually referring to a
class’s implied interface. Whether that interface is on an abstract class or an
actual class containing method implementations doesn’t matter. Throughout
the rest of the book, the term interface will be used in this way.

6.1.3 Using multiple interfaces

One of the benefits of using coding against an interface is that Dart allows multiple
interfaces. This means a single class can implement more than one interface. For
example, you might define an abstract Rol esSer vi ce class, which provides a get User -
Rol es() method for retrieving role information about a user. Ent er pri seAut hSer -
vice can then implement Rol esServi ce, in addition to Aut hServi ce, by providing
the public get Rol es() method, as shown in the next listing.

Listing 6.5 Implementing multiple interfaces

abstract class Rol esService {

Li st get Rol es(User user); New RolesService class
}
abstract class AuthService {

User auth(String usernane, String password); Implements AuthService
} and RolesService

cl ass EnterpriseAuthService inplenments AuthService, Rol esService {
User auth(String usernane, String password) {
/1 sone enterprise inplenentation

}

Li st get Rol es(User user) {

/1 sonme enterprise inplenmentation Provides implementation

} of getRoles()

}

You can now use Ent er pri seAut hSer vi ce anywhere a Rol esSer vi ce instance needs to
be used. The simple way to remember this relationship is that a class shares an “is-an”
relationship with any interface classes it implements. You can say that Ent er pri seAut h-
Servi ce “is-a” Rol esServi ce, and Ent er pri seAut hServi ce “is-an” Aut hServi ce. Thus
the code in the following listing, which passes an instance of Ent er pri seAut hServi ce
into different functions that are expecting to receive an instance of Aut hServi ce or
Rol esServi ce, is valid.

Listing 6.6 Using Ent er pri seAut hSer vi ce with multiple interfaces

User dolLogon(Aut hService aut hService, String usernanme, String password) {
return aut hService. aut h(usernane, password); vice

Expects instance of AuthSer

}

showRol es(Rol esService rol esService, User user) { <—— Expects instance of RolesService

6.1.4

Defining a simple class 125

Li st roles = rol esService. get Rol es(user);

print(roles); Creates instance of

} EnterpriseAuthService

mai n() { E iseAuth 0
var entService = new EnterpriseAuthService(); <+ h;:‘a‘f}zrlasr\%’ ::Iaiie;r‘:lscheip
var user = dolLogon(entService,"Alice","password"); QJ with AuthService

showRol es(ent Service, user); EnterpriseAuthService

} has “is-a” relationship
with RolesService

In this example, all the interfaces have a single method each. It’s important to note
that there’s no restriction on the number of methods or properties that may appear
on an interface definition, just as you can have any number of methods and proper-
ties on a class definition.

TIP As a best practice, design your interfaces in such a way that they group
similar functionality. When you design your interfaces this way, users of your
code can create either a single class, which implements multiple interfaces, or
multiple classes, as required. If you create a single big interface, then users of
your code don’t get that choice.

Declaring property getters and setters

So far, interfaces and classes have had only methods declared on them. Many classes
also have fields defined on them. Your AuthService interface might define an
i sConnect ed field that defines whether the authentication service is connected to its
back-end data store.

Back in chapter 3, you saw that a property defined with a getter and a setter is
accessed by calling code in the same way as a simple field:

Are you calling a setter or writing to
a field? Dart syntax is the same, so

aut hSer vi ce. i sConnected = true; for the caller, this doesn’t matter.

Fortunately, because a calling class uses property getters and setters the same way as
fields, you can also declare this in an interface either way. Add an i sConnect ed prop-
erty getter and setter (which use the get and set keywords) to the Aut hServi ce inter-
face and a simple i sConnect ed field to your Rol eServi ce interface, as shown in the
following listing.

Listing 6.7 logon_library.dart: getters, setters, and properties in interfaces

library logonlib;

abstract class AuthService {

User auth(String usernane, String password); Defines property
bool get isConnect ed; 4| getter using get
voi d set isConnected(bool value); QT Defines property

} setter using set

126

6.2

CHAPTER 6 Constructing classes and interfaces

abstract class Rol eService {
Li st get Rol es(User user);
bool isConnect ed; <+ Defines field

}

cl ass EnterpriseAuthService inplements AuthService, RoleService {
bool _i sConnect ed;
bool get isConnected => _isConnected;
voi d set isConnected(bool value) => _isConnected = val ue;

/1 snip auth() and getRol es() Implementation of getter and
} setter fulfills both AuthService
and RolesService interfaces
Because the syntax for reading and writing to a property is identical whether you're
using a getter and setter or a property, you can implement an interface definition of a
property using either method. They both meet the requirement of the interface defi-
nition, which, as you might remember, is that you can call code that looks like this:

aut hServi ce. i sConnected = true;

As long as you can use the implementing class in this way, it meets the requirements of
the interface, whether it’s using a getter and setter pair or a field.

Remember

= A class definition is also implicitly an interface definition.
The abstract keyword is used to declare a class without implemented methods
and can be used for explicit interface definitions.

= The i npl ement s keyword indicates that a class is providing the implementa-
tions of specific methods

= Classes have an “is-an” relationship with interfaces.

When you define an interface, you’re providing a mechanism that allows your own
code to be extended and reused, and this is how the Dart libraries are built. The core
“classes” in Dart, such as String, i nt, and Li st, are actually interfaces. Earlier in this
chapter, we noted that although you need to create a new instance of a class, some-
times the Dart code looks as though you’re creating a new interface. A great example
of this is

var mnyList = new List();

This code seems as though it shouldn’t work, because you can’t create an instance of
an interface—only a class. This is true, but the next section will show how code like
this can work and how you can use a number of different ways to create new instances
of your classes.

Constructing classes and interfaces

When you design a library, whether for your own app or for publishing to third par-
ties, you need to make it flexible enough to meet the use cases for that library. It’s

6.2.1

Constructing classes and interfaces 127

good practice to deploy interfaces wherever possible to allow users of your class to
swap your implementation with other implementations.

You should also allow users of your library to create instances of your classes in
ways that make sense for specific use cases, as you did in chapter 3 when working with
the El ement class. In that instance, you created an element by using either an HTML
snippet or a tag name, but you still got an element back. The use case differed, but the
El ement class is designed to allow this.

There’s also a case in which you might want to reuse instances of your class: when
there’s an expensive operation (such as connecting to the enterprise authentication
server).Youmightwant toreuse that connection rather than create anew one every time.

Finally, you might want users to be able to create a single constant version of your
class in a specific state. For example, an instance of a specific error message class will
never change once you’ve created it, and all instances of a specific error message will
be identical. Dart allows this functionality through constant constructors.

In this section, we’ll look at a number of ways to create instances of classes. The
new keyword—which in JavaScript, Java, and C# is used to create a new instance of an
object—mnearly always has the same effect in Dart. You’ll see why it’s nearly, and not
always, when you get to factory constructors to provide object caching. You’ll also
learn about the const keyword, which is another way to create a new, unchanging
instance of a class.

Let’s explore a class constructor method, which we first looked at in chapter 3.
You’ll see how to extend the constructor’s functionality to allow field initialization and
how to add multiple named constructors.

Constructing class instances

When you use the new keyword to create an instance of a class, such as in new
Ent er pri seAut hServi ce(); ,you’reactually calling the class’s constructor method. Ifno
explicit constructor is defined, then a default constructor is used, which has no imple-
mentation. A class’s constructor shares its name with the specific instance of the class.
For example, the following constructor provides an implementation identical to that of
a default (undefined) constructor, with the addition of a print () command:

class EnterpriseAuthService {
String connection; <— |Initializes to null

Ent er pri seAut hService() {
print("in the constructor");

}

Constructor method

}

main() { Causes “in the
”»
var entSvc = new EnterpriseAut hService(); constructor” to be output
}

Just like other methods and functions, you can pass in parameters to the constructor.
For example, you could modify the Enterpri seAut hServi ce constructor to take a
connect i on parameter, and use that parameter to initialize the connecti on field:

128

6.2.2

CHAPTER 6 Constructing classes and interfaces

class EnterpriseAuthService {
String connection; Adds parameter
Ent er pri seAut hServi ce(String connection) { to constructor

this.connection = connection; Sets connection

) } field using this
NOTE The t hi s keyword in Dart behaves the same as in Java and C#, in that it
refers specifically to the instance of the class using it. This is different than in
JavaScript, where the value of t hi s changes during execution.

All the syntax options available to functions, including optional and default parame-
ters, are available for constructors, but constructors also have one more feature. One
of the lessons learned from Java is that constructors are mostly used to initialize inter-
nal properties, as in the previous snippet. Dart introduces a shorthand by using the
thi s keyword in the constructor’s parameter list to implicitly initialize a parameter.
For example, the following snippet has exactly the same effect as the previous one:

class EnterpriseAuthService { Construg:tor takes a
String connection; connection parameter that

Ent er pri seAut hServi ce(t hi s. connection) { } initializes connection field

}

Designing and using classes with multiple constructors

Dart, unlike Java or C#, doesn’t support function, method, or constructor overloading
(in which you can have the same function name but different parameter definitions).
How do you have multiple constructors that allow you to create instances of the class
in different ways?

In Java and C#, you’d reuse the same constructor name and provide different
parameters, but Dart provides a different mechanism that’s similar to the library pre-
fixes seen in chapter 5. Dart takes the class name as the constructor prefix and allows
you to use named constructors, each of which has a different name (and parameters if
required). Figure 6.2 shows the equivalent constructor syntax in Java and Dart.

Back in chapter 3, you built user interface elements using El ement. tag() and
El enent . ht m (). You used named constructors to create instances of El ement but in
two different ways. Now that Ent er pri seAut hServi ce has named constructors, you
can use these, too:

var authSvcl = new EnterpriseAuthService(); <+—— Default constructor
var authSvcl = new EnterpriseAuthService
. W t hConn("connection string"); <+— Named withConn constructor
var authSvc2 = new EnterpriseAuthService
. usi ngServer ("l ocal host", 8080) ; <—— Named usingServer constructor

Named constructors are useful because of their ability to specify their intention in the
constructor name. By choosing appropriate constructor names, you can provide docu-
mentation for future users of your code, letting them know what you intended a spe-
cific named constructor to be used for.

6.2.3

Constructing classes and interfaces 129

—I Java constructors |

class EnterpriseAuthService {
EnterpriseAuthService() {

// default constructor In Java, all the

} constructors have
EnterpriseAuthService(String connection) { the same name,

// user supplies a connection string differing only by
¥ parameters. This

- _ R _ isn’'t allowed in Dart.
EnterpriseAuthService(String server, int port) {

// user supplies a server and port

}

If you have named

| constructors, the
Dart constructors |

empty constructor
class EnterpriseAuthService {) !5 no longer
EnterpriseAuthService() { implied. If you want
// default constructor one, you must specify
} it explicitly.
EnterpriseAuthService.withConn(String connection) {
// user supplies a connection string)
T The class name is
used as a prefix,
EnterpriseAuthService.usingServer(String server, int port) { and a constructor
// user supplies a server and port name such as
3 b wi t hConn is
supplied.

A class can have multiple constructors this
way, as long as each has a different name.

Figure 6.2 A comparison of constructor syntax between Java and Dart. Dart must provide named con-
structors prefixed with the class name.

Using factory constructors to create instances of abstract classes

Earlier in this chapter, you saw that it was an error to try to create an instance of an

Creates warning about

abstract class that you were using as an interface:
instantiating abstract class

Aut hSer vi ce aut hService = new Aut hService();

When you’re building an application, it’s good practice to use interface type names
rather than specific implementation class type names. Doing so allows you to switch
implementations during development, which is great for unit-testing with mock
implementations. The corollary of this practice is that when you’re designing a library,
it’s good practice to provide interfaces in type definitions to allow the most flexibility
to users of your library.

Often, though, you intend the users of your library to use a specific class in most
circumstances. The Aut hServi ce abstract class, which defines the interface, is a good
example. Most of the time, users use the Aut hServi ce interface type in conjunction

130

6.24

CHAPTER 6 Constructing classes and interfaces

with the Ent er pri seAut hServi ce class that’s part of the same external library defini-
tion. Thus many users write code such as the following:

Aut hServi ce authSvc = new EnterpriseAuthService();

This approach adds complexity for the users of your library, because they now need to
know about two types and know that one is an interface and the other is its implemen-
tation class. This sort of code is prevalent in the Java world, where huge libraries exist
as chains of interfaces, and tracking down the correct class implementation to use can
be a chore.

Fortunately, Dart allows you, the library designer, to use factory constructors on an
abstract class, which return a specific default implementation class. When you use the
fact ory keyword with a constructor, you’re specifying that the constructor method is
responsible for creating and returning a valid object, as shown in the next listing.

Listing 6.8 Using factory constructors for default implementations

abstract class AuthService {

User auth(String username, String password); Defines factory
factory AuthService() { 4 constructor
return new EnterpriseAut hService(); 47 It must return an
} instance of an object.

}

This approach validly lets users of your interface write code such as this:

Same as before, but factory

Aut hServi ce authSvc = new Aut hService(); constructors allow this to happen.

This code lets the user treat the abstract class as though it were an implementation
class but still follow good practice by coding against an interface. When you use the
Dart String, List,and int types, you're actually using interfaces that have an under-
lying default implementation defined.

Factory constructors benefit from the ability to use multiple names in the same way
as normal constructors. As you’ll see in the next section, the ability of factory construc-
tors to return an instance of a class can also be used on standard implementation
classes to provide a caching mechanism.

Reusing objects with factory constructors

Some operations in computing should be kept to a minimum. They’re either expensive
in terms of processing, such as building up a large number of nested objects, or expen-
sive in terms of time, such as connecting to another server. For example, when Alice logs
on to the enterprise system, closely followed by Bob, you shouldn’t have the code wait
a second or two to connect to the enterprise system every time; that connection should
be cached in your app. In these cases, it’s desirable to be able to cache objects such as
connections in a reusable pool of objects and return one of them to a user of your class
rather than create a new instance of the object every time. This is another use for factory
constructors, which can exist on any class, not just abstract classes.

Tries to get
existing
object
from cache

Constructing classes and interfaces 131

You can use this behavior with Ent er pri seAut hServi ce by converting the usi ng-
Server () named constructor that you saw earlier into a factory constructor (by add-
ing the fact ory prefix). The simplest implementation of this is

factory keyword indicates

it’s a factory constructor.
cl ass EnterpriseAuthService {

factory EnterpriseAuthService. usingServer(String server, int port) {
return new EnterpriseAut hService();
} It’s responsible for returning an
} instance of EnterpriseAuthService (a

new instance or an existing instance).
/'l el sewhere in your code

var authSvc = new EnterpriseAuthService. usingServer ("l ocal host", 8080);

Syntax for calling factory
constructor is unchanged.
In your simple implementation of the factory constructor, you gain nothing by using
the factory. It becomes more powerful, though, when you cache the objects you're
creating in the factory constructor. One way to do this is to use class static properties,
which you’ll see in a couple of pages. But for the moment, assume that a list of Ent er -
pri seAut hServi ce objects exists elsewhere in your application. The following listing
shows how you can either get an existing object or return a new object. The interface
definition remains unchanged.

Listing 6.9 Using a factory constructor to return an existing object from cache

factory keyword identifies
cl ass EnterpriseAuthService { constructor as factory constructor

factory EnterpriseAuthService. usingServer(String server, int port) {
var aut hServi ce = get FronCache(server, port);

if (authService == null) { If no matching object

aut hServi ce = new EnterpriseAut hService (); is returned from the

/'l snip: set values on authService and connect cache, creates a new
one and adds it to

addToCache(aut hServi ce, server, port); cache for later reuse

}

return authService; Returns object. Caller has
} no knowledge of whether

/1 snip other nethods and properties it’s been returned from
} cache or newly created.

TIP When users of your library use the new keyword, they’re expecting a new
object. As a best practice, use caching factory constructors only if you need to
provide preprocessing on new objects or when you can guarantee that reus-
ing an existing object won’t surprise a user of your class.

Factory constructors can be powerful when used with a mechanism to store instances
of a specific class, but where do you store those instances? It turns out that a good
place is in a static property of a class, which we’ll look at next.

132

6.2.5

CHAPTER 6 Constructing classes and interfaces

Using static methods and properties with factory constructors

The factory constructor example used two functions—get FronCache() and
addToCache() —but didn’t explain how this design might work in practice. You need
a way to access a central store containing instances of Ent er pri seAut hServi ce. For-
tunately, Dart, in common with Java and C#, provides static methods and properties
as part of a class definition. A static member is one that is shared across all instances
of a class; it’s denoted by the st ati ¢ keyword, which can be applied to methods and
properties. Therefore, you can create a static map (which stores a list of key/value
pairs) that’s shared across all instances of the Ent erpri seAut hServi ce class in the
application. You need only look into that map and see whether there’s an existing
matching key based on the server and port values. If there is, you can retrieve the
existing instance of Ent er pri seAut hServi ce in your factory constructor. Figure 6.3
demonstrates how this works.

When accessing static methods or properties, you can refer to them only by class
name, not by a variable name (such as aut hSvc2): static members are shared across all
instances of the class, so accessing them via a specific instance isn’t allowed. Listing 6.10

1. Static data is stored in the class itself,

class EnterpriseAuthService { / not instances of the class.

static Map cache empty — 2. Using the factory constructor
adds instances to the static
} cache property.

VAF aHERSVED = ReY ERterBriSeATERSErVICE: USIRGSerVIcRE-AR5ALesEan 0803 :
= r \" u

var authSvc3 = new EnterpriseAuthService.usingService("'localhost™,8080);

var authSvc4 = new EnterpriseAuthService (;
EnterpriseAuthService.addToCache(authSvc4, "myServer.com™,7002);

\ 3. You can also refer to static methods

outside of the factory constructor by
using the class name.

4. aut hSvc3 isn'tin the cache
/ because it's the same instance

as aut hSvcl: it has the same

class EnterpriseAuthService {

static Map _cache

key=localhost:8080, value= authScvil key values, so the factory
key=example.com: 80, value= authSvc2 constructor returned the
} key=myServer.com:7002, value= authSvc4 same instance.

authSvcl.cache // Not allowed
print(EnterpriseAuthService.cache.length); /7 allowed

5. Trying to access the static property
from an instance of the class isn’t
allowed. You can only access the

static property when referencing
with the class name.

Figure 6.3 Static methods and properties are shared by all instances of a class.

Constructing classes and interfaces 133

shows the static cache property and a getter that initializes it on first access. The
get FronCache() and addToCache() methods are also static (which means they can’t be
accessed with a specific instance of the class) and use the cache to add an instance to
and retrieve an instance from the cache.

Listing 6.10 Implementing a cache with static members

cl ass EnterpriseAuthService {

/... snip other methods and properties Uses private static

static Map _cache; map as cache

stat| ¢ NBE ggt_ ca::lhe { Public static getter initializes
i (_cache == null) { cache if required and returns it
_cache = new Map();
}
return _cache; getFromCache() returns instance if it
} exists in cache (or null if it doesn’t)
static EnterpriseAuthService getFronCache(String server, int port) {
var key = "$server: $port";
return cache[key];

}

static addToCache(Ent erpri seAut hServi ce aut hServi ce,
String server, int port) {
var key = "$server: $port"”;
cache[key] = authServi ce; addToCache() adds
} instance to cache

factory EnterpriseAut hService. usingServer(String server, int port) {
var aut hService = get FronCache(server, port);
if (authService == null) {
aut hServi ce = new EnterpriseAut hService();
/1 snip: set values on authService and connect

addToCache(aut hServi ce, server, port);

}

return aut hService;

}
}
Static properties and methods are useful when you want to store a value across all
instances of a class. One of the concerns with static values in Java and C# is when mul-
tiple threads might be accessing a static value, but because Dart is single-threaded, this
isn’t possible. It makes all operations thread-safe. We’ll look at how to achieve concur-
rency without threading in chapter 15, when we discuss isolates.

Now that we’ve covered normal and factory constructors, we need to look at the
final way to create an instance of a class. This task uses a different keyword, const,
which is deployed to define constant constructors much like the f act ory keyword is
used when defining factory constructors. The const keyword also has a second mean-
ing: it’s used in place of newto create constant, unchanging classes.

134

6.3

6.3.1

6.3.2

CHAPTER 6 Constructing classes and interfaces

Remember

= Abstract classes can use factory constructors to instantiate a default imple-
mentation class, which allows users to maintain good application design by
working exclusively with higher-level interfaces.

= Classes can have multiple named constructors, which are prefixed with the
class name.

= The factory keyword lets you create classes that can appear to return a new
object but instead get the object instance from elsewhere.

Creating constant classes with final, unchanging variables

Ent er pri seAut hServi ce could return an error object, indicating a problem authenti-
cating a user. If there were lots of requests and the server wasn’t responding, many
hundreds of identical error objects could be created and returned, which would all
use memory on the client system. But if you create const objects, you get a single
error object, which is reused each time. There are two parts to defining a constant
object: the values must be final , and you must use the const keyword to define the
constructor and create the instance.

Final values and properties

A constant class can be useful when you know that the user should never change any
properties. The values are known at compile time, such as defining status codes or
error messages.

To achieve this functionality, Dart places another restriction on the class: all
properties on the class must be final . final is another new keyword that indicates
that a variable can’t change instance; it’s used in place of var or in conjunction with

astrong type: Uses final keyword

in place of var Uses final keyword
final myGbject = new Object(); in conjunction with
final Object anotherObject = new Qbject(); strong type name

myCbj ect = new Object();
anot her Obj ect = new bj ect ();

Modifying contents of final variable once
it’s defined is an error. This won’t work.

It’s impossible to define a final variable without providing it with a value, because the
compiler needs to be able to evaluate that value at compile time. But properties in a
class can be declared as final without your needing to initialize the value beforehand.
Instead, you can initialize them in the constructor initialization block.

The constructor initialization block

A class constructor allows initialization of final properties before the constructor
code begins executing. The constructor initialization block appears between the
constructor parameter list and the constructor body; it’s a comma-separated list of
commands that the constructor must perform in order to initialize a class properly.
An initialization block is used in conjunction with the constructor body, which may

6.3.3

Creating constant classes with final, unchanging variables 135

Afinal property can be ... or left uninitialized
initialized with a value and initialized in
known at compile time... the constructor

initialization block.

class AuthError {
final prefix = “Error: “;
final String _message;
final int _code;

A colon (:) after
the parameter list
indicates the start of
the initializer block.

AuthError(String message, int code) : _message = message,
_code = code;

//constructor body is allowed

}

The constructor initializer
block is a comma-separated
list of commands and appears
after the parameter list and
before the method body starts.

Figure 6.4 The constructor initializer section appears after the list of constructor parameters and can
be used to initialize final properties.

also provide some initialization of nonfinal properties. A key difference between the
initialization block and the main constructor body is that you can only use the thi s
keyword in the main constructor body. Figure 6.4 shows the constructor initializa-
tion block.

Once you’ve initialized the fi nal properties in their initialization block, you can’t
change their values. You must also ensure that you initialize all final properties
before the start of the constructor body, because Dart will report an error otherwise.
You can create instances of the Aut hError class with the following code:

Aut hError error001 = new Aut hError("Server not avail able",1);

Using the const keyword to create a const constructor

You can’t change any properties on the Aut hError class because they’re all marked
as final. If you were to instantiate a second variable with the same values passed in
the constructor, the second instance would effectively be identical, except that it
would be a second, physical object created in memory. You can prevent this by
changing the constructor into a constant constructor using the const keyword, as
shown in the next listing.

Listing 6.11 Creating a const constructor

class AuthError {
final prefix = "Error: ";
final String _nessage;

136

6.4

CHAPTER 6 Constructing classes and interfaces

final int _code; const keyword prefixes AuthError
const AuthError(String nessage, int code) : _message = nessage,
_code = code;

String get errorMessage => "$prefix [$code] $nessage"”;

Constructor body isn’t allowed
with const constructor

Now that you have the const constructor, you can use it by creating instances of the
class. Dart knows that each instance is unchanging and allows you to compare two
instances for equality in a quick and efficient manner. When you’re creating an

instance with a const constructor, also use the const keyword to create the instance,

instead of the new keyword: Identical parameters

passed to constructor

Aut hError errorA = const AuthError("Server not responding",1);
Aut hError errorB = const AuthError("Server not responding",1");

print(errorA === errorB);
Objects are the same instance in

memory, so this prints “true.”

NOTE String interpolation isn’t allowed in constant constructors. The string
values must be compile-time constants and not created dynamically at runtime.

Using the new keyword instead of the const keyword is still allowed. But Dart will treat
two different instances as unequal, so this should be avoided.

Well done! Those are the four ways to create classes and interfaces with the new
and const keywords. Good library design takes skill and practice, but Dart provides
flexibility where needed in its constructor syntax.

Remember

= The final keyword declares that variables and properties can’t change once
initialized.

= A constructor initialization block is required to initialize final properties.

= The const keyword allows you to define a constant constructor and create an
instance of a class that can’t change.

Summary

In this chapter, we started by demonstrating how to use interfaces to enforce a con-
tract that classes can fulfill using the i npl enents keyword. When you code against
interfaces rather than classes, you make it easy to swap implementations at runtime,
which is especially useful for unit-testing with mock versions of real classes. Dart
embraces this concept by allowing you to create instances of an interface while using
an underlying default class and by building into the language the ability for all classes
to also be interfaces, so you can still code against interfaces even when one hasn’t
been explicitly defined.

Summary 137

To use your classes and interfaces, Dart lets you create instances using the newand
const keywords with the following types of constructors:

= Named constructors for providing constructors for different uses

= Factory constructors, which you can use to find existing instances of a class from
a cache, a static map, or another mechanism

= Constant constructors for creating single-instance, unchanging constant classes

In the next chapter, we’ll look at class and interface inheritance. Dart is an object-ori-
ented language and provides inheritance mechanisms similar to those in Java and C#.
It doesn’t have the prototypical inheritance of JavaScript. By using inheritance, you
can reuse code that others have written and tested, adding the extra functionality that
your use cases require.

Extending
classes and interfaces

This chapter covers

= Building class and interface inheritance hierarchies
= |ntroducing the Obj ect base class

® Understanding the dynani ¢ type annotation

Object-oriented programming allows for more than just encapsulating data and
behavior in a class. It allows you to extend existing behavior defined elsewhere,
which promotes great code reuse. Reusing existing code lets you write less new
code in your apps and has the added benefit that existing code should also be
tested code.

In this chapter, we’ll examine class and interface inheritance in Dart, including
how to provide new functionality by overriding existing methods and properties
and how to write abstract classes that you can use only as parents in an inheritance
hierarchy. If you have written in Java or C#, this will be familiar. But those from a
JavaScript background should note the absence of JavaScript’s prototypical inheri-
tance mechanism.

138

7.1

Extending classes with inheritance 139

logon_lib

abstract AuthService {

User auth(String username, String password msg);

factory AuthService() {
return new EnterpriseAuthService();

3
3
class EnterpriseAuthService implements AuthService {
User auth(String username, String password msg) {
//. ..

¥
bs

Figure 7.1 The Aut hSer vi ce definition from the | ogon_I i b example

We’ll explore the base Qbj ect class from which all other classes and types inherit,
including strings, numbers, Boolean values, null, and your own custom classes.
(oj ect provides some standard methods and properties that you can override in your
own classes, such as the toString() method. We’ll also look at the dynam ¢ type,
which Dart uses to enable optional typing.

In chapter 6, you declared a number of classes based around an imaginary Aut h-
Servi ce example, which was used to provide authentication and authorization func-
tionality to your enterprise app. When Alice provides her username and password to
your app, the aut h() function authorizes her details and returns a User type that the
application uses. You’ll continue to use that example in this chapter by building on
the User type to create a hierarchy of classes and interfaces for use with a simple
Aut hServi ce. To recap, the abstract Aut hServi ce and the Enterpri seAut hService
classes are defined in a library called | ogon_| i b, as shown in figure 7.1.

You’ll use inheritance to extend the User type so the enterprise service can return
an enterprise user with the functionality defined elsewhere.

NOTE If you’re already familiar with Java or C#, you might want to skim this
chapter, because Dart’s class inheritance mechanism is the same. Dart allows
single-class inheritance with multiple interfaces. Check the “Remember” sec-
tions in each summary for the important concepts, and keep an eye out for
noSuchMet hod.

Extending classes with inheritance

Let’s start by defining a base class for the User type, which follows the same model as
the one in the Aut hServi ce that we discussed in chapter 6. The following listing shows
the User type.

140

711

CHAPTER 7 Extending classes and interfaces

Listing 7.1 A new User class

class User {

User (String this. _username) { } "] Constructor matching that

defined on the interface,

String _usernane; Private AT
initializing _username property

String _existingPasswordHash; properties
String get usernane => _usernamne,

String email Address; Getter method to return
private username
bool isPasswordValid(String newPassword) {

/l... sone validation code ... Property to read and

} Method to check new password write email address
} against existing password

Aut hServi ce uses this class by returning an instance of the User class. For example,
you can write User aUser = new User ("Alice");, which creates an instance of the
User class, initialized with the username "Al i ce". Your app can now use this variable
to check new password validity and update the email address.

But your enterprise service needs more functionality in a User : for example, mark-
ing an account as expired and providing more robust password checking, such as con-
firming that the same password hasn’t been reused for the last five password changes.
You can do this by using inheritance. Inheritance allows you to take an existing type,
such as a User, and add more functionality to it by subclassing using the ext ends key-
word. When inheriting a class, you can also specify new behavior for existing methods
and properties by overriding them.

Class inheritance

When classes inherit each other, the subclass gains the functionality of the methods
and properties of the parent class, known as the superclass. The subclass also shares an
“is-an” relationship with all the parent classes going up the hierarchy.

Dart allows single inheritance, which means a class can extend from a single par-
ent. But a single parent can have multiple children, and each child can have its own
children, building up a hierarchy many classes deep.

In the example app, the user Alice will log on to the system and be represented by
an instance of the Ent er pri seUser class, returned from the enterprise authentication
service’s aut h() function. This class, which inherits from User, gains all the members
of User by using the ext ends keyword. The representation of Alice as either a User or
an EnterpriseUser will have the same functionality at the moment, provided by
inheritance. This functionality works in an Enter pri seUser “is-a” User relationship.
You can test the “is-an” relationship in Dart by using the i s keyword. The i s keyword
allows you to examine the type of an object and get a Boolean value back in return, as
shown in figure 7.2.

This feature provides a lot of flexibility for properties, types, and method parame-
ters. If you know that your method will use only the features of the User base type,
then you can specify the parameter type User but still pass in an Ent er pri seUser. This

Extending classes with inheritance 141

class User {
User (String this._username) { }

String _username;
String _existingPasswordHash;
String get username => _username;

String emailAddress;

bool isPasswordvValid(String newPassword) {
//.. some validation code ..

The ext ends keyword allows
m EnterpriseUser to
is-an
e —|

gain all the functionality
of its superclass, User .

3
3

class EnterpriseUser extends User {

3
All printt r ue due
EnterpriseUser user = new EnterpriseUser (); to the multiple
“is-an”
relationships.

print(user is EnterpriseUser);
print(user is User);

Figure 7.2 Ent er pri seUser shares an “is-an” relationship with all the classes going up the hierarchy.

approach allows others to reuse your code by passing in their own inherited version of
User, safe in the knowledge that the method will still function correctly.

The following snippet shows that you can use an Ent er pri seUser in the same way
as a User object:

var user = new User("Alice");
print (user.usernane);

var enterpriseUser = new EnterpriseUser("Alice"); Uses instance of EnterpriseUser
print(enterpriseUser. usernane); the same way as User

‘ Uses instance of User

NOTE EnterpriseUser’s implicit interface is also inherited from the super-
class. The public interface of any object is the aggregate of all the public inter-
faces of inherited classes.

You can now add functionality that’s specific to Ent er pri seUser, as shown in the next
listing. This lets Ent er pri seUser use all the existing functionality from User but also
provide new functionality.

Listing 7.2 Ent er pri seUser with additional functionality

class EnterpriseUser extends User {
EnterpriseUser() { } <—— Default, empty constructor

142

7.1.2

CHAPTER 7 Extending classes and interfaces

voi d markExpired() {
/1 some new inpl enentation Additional method specific
} to EnterpriseUser

}

Inheriting constructors

Although inheritance allows a child class to gain the existing functionality from
the superclass’s methods and properties, the child class doesn’t inherit any construc-
tors from the superclass. Figure 7.3 demonstrates some of the logical members of
Ent er pri seUser, which inherits the methods and properties from the User class.

This means if you wanted to use the constructor in the superclass, you’d need to
write your own constructor in Ent er pri seUser and use the super keyword to refer to
the superclass’s constructor. You can do this in a special section of the constructor
called the constructor initializer block, which appears between the constructor parameter
list and the constructor body: You can call a constructor in
the parent class by using the

class EnterpriseUser extends User { super keyword in the
Ent erpri seUser (String unane) : super(uname) { constructor initializer block.
/1 enpty constructor body
}
}

The constructor initializer is a block of code that Dart executes before the instance of
the class has been created. This is the only place you can call super constructors; call-
ing them in the constructor body isn’t allowed. You can also call any super construc-
tor, including named constructors—the parameter list in your class doesn’t need to
match the parameter list of the superclass. If the base class provides named super

class User {
User (String this.username) { }

String username;

bool isPasswordvValid(String newPassword) {
// validate hash with old password

\

class EnterpriseUser extends User {

}

EnterpriseUser() { }

String username;

bool isPasswordValid(String newPassword) {
// validate hash with old password

3

Figure 7.3 A child class inherits all the existing functionality from the superclass except constructors.

7.1.3

Extending classes with inheritance 143

constructors, you can call any of them by using the superclass as the constructor name
prefix. Likewise, a named constructor in the child class can call a superclass’s con-

structors at will: Calls named constructor

class EnterpriseUser extends User { on parent class

EnterpriseUser (String unane, String enmil) : super.byEnail (enmail) {
/1 enpty constructor body

}

Ent erpri seUser. byUsername(String usernane) : super(unane) {

} Calls parent class constructor
} from base class

The constructor initialization block is a comma-separated list of commands that can
also be used to initialize final properties (as discussed in chapter 6), but any call to the
super constructor must always come first.

Overriding methods and properties

When you inherit a parent class, you gain all the functionality of the members of the par-
ent class. But sometimes you need to provide your own version of that functionality, such
as when you want to be able to provide password validation in the Ent er pri seUser class.
The superclass User already has an i sPasswor dVal i d() method, and you get the func-
tionality of that method when you inherit the class. But when Alice wants to change her
password in your enterprise system, the requirements for changing a password are
stricter than just comparing the new password with the old password. Alice can’t reuse
the same password for five password changes, which means that in the Ent er pri seUser
class, you need to override the functionality provided by the parent User class: for exam-
ple, to remember the last five password hashes. Fortunately, this is easy to do by provid-
ing a new method implementation with the same name and parameters, as shown in the
following listing. It’s still possible to reuse the inherited functionality of the underlying
i sPasswor dVal i d() method provided in the parent User class by using the super key-
word again to refer to the same function in the base class, also in this listing.

Listing 7.3 Ent er pri seUser overriding functionality from parent User class

class EnterpriseUser extends User {

bool isPasswordValid(String newPassword) { Overrides functionality

/'l snip... conpare against |last 5 passwords from parent class by
return super.isPasswordVal i d(newPassword); providing new version
of method
} Calls underlying version in parent class by
} referring to parent class with super keyword

You can override properties in a similar manner. A property is just shorthand for a
getter or setter method, and the same principle applies. The User class provides a
user name property, but when Alice logs on to your enterprise system you want to vali-
date the username to ensure that it’s longer than four characters. You can override

144

7.1.4

CHAPTER 7 Extending classes and interfaces

the setter and getter by providing a new implementation of the getter and setter to
perform this validation, as shown in the following listing.

Listing 7.4 logon.dart: overriding properties inherited from the parent class

Passes functionality straight

class EnterpriseUser extends User { through to parent implementation
String get usernanme => super.usernang;
Performs additional
voi d set username(String value) { validation
if (value.length < 4) {

throw new ArgumentError("Error: username is < 5 chars");

}

super. usernane = val ue; 3 Passes value to

} parent property

}

So far, you’ve seen how Dart allows classes to inherit from a parent class, optionally
reusing existing functionality from that parent class. But sometimes you’ll want to
design a class and interface inheritance hierarchy in such a way that a user of your
code must provide their own functionality, by using abstract classes.

Including abstract classes in a class hierarchy

You saw the abstract keyword in chapter 6, where you used it to define a class con-
taining only method bodies, which you used as interface definitions. You can also use
abstract classes to force users of your class to provide their own implementation meth-
ods, while still providing implementation methods of your own.

In the example system, you currently have two classes that form a hierarchy. When
Alice logs on to the system on the developer’s system, she’s represented by the User
class. When she logs on to the production system with the enterprise servers, she’s rep-
resented by the Ent er pri seUser class, which shares an “is-an” relationship with its par-
ent. This hierarchy is captured in figure 7.4.

The system can create instances of the User class and the EnterpriseUser class
because they’re both complete classes that fully define the functionality required by
the interfaces they implement. Developers can use the User class independently of
any of its child classes. But often when designing a library, you’ll want to force a devel-
oper using one of your classes to provide some of their own functionality, because you
don’t know at design time what the functionality needs to be.

In the example User interface, you could add a checkPasswor dHi story() func-
tion. This function allows implementing classes to check the password history as part
of the i sPasswordValid() function. Unfortunately, when designing the User class,
you wouldn’t know how to check the password history. You can force users of the
User class to provide that functionality by ensuring that they inherit the User class
and override the checkPasswor dHi st ory() function to provide their own functional-
ity. To achieve this, use the abstract keyword when defining the User class, as
shown in the next listing. The abstract keyword indicates that you can’t create a

Extending classes with inheritance 145

class User {
User (String this.username) { }

String username;

bool isPasswordvValid(String newPassword) {
// validate hash with old password
3
3

extends

class EnterpriseUser extends User {
EnterpriseUser(username) : super(username);

void markExpired() {
// some implementation
3
}

Figure 7.4 The current inheritance hierarchy between your interfaces and classes

new instance of this class; instead, it allows child classes that inherit it to fully meet
those requirements.

Listing 7.5 Making User an abstract class

abstract class User {

€ : Declares class as abstract because you
User (String this._usernane) { }

aren’t providing an implementation of
String _usernane; checkPasswordHistory()

String _existingPasswor dHash;

String get username => _usernarme;
)) Method definition
String email Address; without

voi d checkPasswor dHi st ory(String newPasswor d) ; implementation

bool isPasswordValid(String newPassword) { Although implementation for
/1 validate that the newPassword isn't the same checkPasswordHistory() doesn’t exist
/'l as the existing password by conparing hashes in the class, you can call it, because it

checkPasswor dHi st or y(newPasswor d) ; will be implemented by a child class.

}
}

One of the benefits of using an abstract class is that you can call methods that have yet
to have their functionality defined, which passes the responsibility down to the user of
your class. Now that you’ve made the User class abstract, EnterpriseUser needs to
provide the functionality for checkPasswor dHi story(). EnterpriseUser, which has
an “is-a” relationship with the User class, also needs to either declare itself as abstract
or fulfill the requirements defined by the User class. Figure 7.5 shows how the imple-
mentation is used when you call the i sPasswor dVal i d() method on an instance of
the Ent er pri seUser class.

146

CHAPTER 7 Extending classes and interfaces

1
User user = new EnterpriseUserimpl(); Creates an instance of
user . isPasswordval id(“'password™); Ent er pri seUser | npl
I
Calls

i sPasswordVal i d() ...

...which finds an
implementation in the abstract class User {

abstract User class. UserImpl(String this.username) { }
String username;

bool checkPasswordHistory(String newPassword);

bool isPasswordValid(String newPassword) {
// validate hash with old password

checkPasswordHistory(newPassword) ;

}
3

But the implementation of class EnterpriseUser extends User {
checkPasswor dHi st or y() EnterpriseUser(username) : super(username);

is found in the child class

void markExpired() {
// some implementation

¥

checkPasswordHistory(String newPassword) {
// compare password against previous
// passwords

}

¥

Figure 7.5 Methods declared in interfaces can be implemented by child classes if the parent class
is declared as abstract.

Abstract classes are great when you want to leave the implementation decisions to a
user of your library but you also want to dictate the order in which something hap-
pens. In the i sPasswordVal i d() example, you first validate the password hash and
then call checkPasswor dHi story(), because the call to the enterprise system might
involve an external call and you can save resources by performing that step only if
you’ve first validated the password.

There was a lot in this section, and you’ve learned how Dart provides inheritance
with classes and interfaces. Object-oriented programming—and inheritance in partic-
ular—is a complex topic, and the best way to understand it is to experiment with the
code and try to use some of the features in your own libraries. The built-in libraries from
the Dart SDK are full of interfaces and inheritance; they’re open source and readily
available in the Dart Editor. You can find a tour of some of the libraries in the appendix.

Now that we’ve covered inheritance, it’s time to examine the Qbj ect class, which is
the parent for all classes in Dart regardless of whether your class explicitly extends it.

7.2

7.2.1

Everything is an object 147

Remember

= The ext ends keyword denotes that a class is inheriting (subclassing) another
class.

= The abstract keyword indicates that a class isn’t providing its own implemen-
tation of a method. Classes that inherit an abstract class should provide that
functionality.

= Subclasses don’t inherit a superclass’s constructor. You can call constructors in
the parent class by using the super prefix to refer to them in the constructor ini-
tializer block.

= You can also call specific methods and properties of the parent class by using
the super prefix anywhere in normal code.

Everything is an object

Everything in Dart is an object, which differs from Java and C#, where you have primi-
tive types such as int and boolean (and have object equivalents, such as
java.lang. I nteger). The Qbj ect class is built into the Dart language and is the ulti-
mate parent class of every class other than itself.

When you create an instance of a variable in your app, whether it’s a String, an
i nt, or your own class such as Ent er pri seAut hSer vi ce, you’'re creating an instance of
an Qbj ect. You can look at this in two ways. First, in object-oriented programming,
you create instances of objects, and from a computer science point of view, objects are
the areas of computer memory that are allocated to store actual data in a running
app. This isn’t the same as in a class, which is the representation in a source code file
that Dart uses to construct objects.

Second, Dart has an Obj ect class from which every other class inherits automati-
cally. This happens regardless of whether you use the ext ends keyword in your class
definition. All the built-in classes and types such as String, i nt, nul |, and functions
share an “is-an” relationship with Obj ect .

Testing the “is-an” relationship with Object

Object inheritance creates an “is-an” relationship going up the hierarchy, and this “is-
an” relationship can be tested in code, using the i s keyword, which returns a Boolean
true or f al se value. The following statements all return t r ue:

print(Object is Chject);
print(1l is Object);
print(false is oject);
print(null is Qoject);
print("Hello" is Object);

var someFunction = () =>"";
print(someFunction is Object);

All print the
word “true”

You can use the “is-an” relationship with your own classes. When you create a new class,
such as Ent er pri seAut hSer vi ce, you’re automatically inheriting from the base Obj ect
class. To create an “is-an” relationship with inheritance, use the ext ends keyword to

148

CHAPTER 7 Extending classes and interfaces

class EnterpriseAuthService { class EnterpriseAuthService extends Object {
// snip f— // snip

} — 3}
Writing a class like this... ... Is the same as writing a class and explicitly

inheriting from the Obj ect base class.

This means the following will print true:

print(EnterpriseAuthService is Object);

Figure 7.6 Classes automatically extend the Obj ect base class.

define the parent of the class you’re inheriting. But this isn’t required with Obj ect ; you
get the inheritance automatically without needing to use the extends keyword, as
shown in figure 7.6.

This inheritance works all the way down the inheritance hierarchy. When your
Ent er pri seUser inherits from User, it too inherits from the base Cbj ect class but via
the User class. This inheritance happens because inheritance provides an “is-an” rela-
tionship up the class hierarchy, meaning that each child has an “is-an” relationship
with every parent going up the hierarchy, as shown in figure 7.7.

The “is-an” relationship can be also be tested with your own classes by using the i s
keyword to return atrue or f al se value. The following statements always return t r ue:
print(User is bject); All print the

print(EnterpriseUser is Object);

[{3 b2
print (EnterpriseUser is User); word “true

NOTE The “is-an” relationship works only one way (up the hierarchy, from

the child to the parent), so calling print (Cbject is User); returnsfalse
because an bj ect isn’ta User.

Is the superclass

of every other class “Is-an”
Obj ect
N “Is-an” Obj ect and
object “Is-a” User
—>[User 1r extends ect ji]

—»[EnterpriseUser extends User

Automatically extends

Obj ect evenifitisn't
explicitly declared Figure 7.7 All classes have an “is-an” relationship with the Cbj ect class.

7.2.2

Everything is an object 149

You can observe two points when you have a single base class:
= Every class has an “is-an” relationship with bj ect, meaning you can refer to
everything as an object in variable and parameter declarations.
= Every class inherits some basic functionality provided by the base (bj ect class.

We’ll look at each of these in turn.

Using the “is-an” Object relationship

By having every type inherit from Qbj ect automatically, you can pass any type where
an object is expected, including nul | , functions, and Boolean values; for example, the
function doLogon(Aut hSer vi ce aut hServi ce, String usernane, String password);
from chapter 6 could be rewritten to explicitly check the type of the input parameters
as follows:

doLogon(Obj ect authService, String username, String password) {

if (authService is AuthService) {

return aut hServi ce. aut h(user nare, passwor d) ; Q—‘ Explicitly checks type
} of input parameter
el se { Uses authService if ob:::‘

/1 throw exception passed in “is-an” AuthService
}

}

Writing code like this removes the ability for the type checker to validate that the vari-
ables you’re passing in to your function are correct. The as keyword lets you tell the
type checker that you're expecting to treat a variable as a specific type. For example,
you could rewrite the return line in the doLogon() function from the previous snip-
pet as follows:
if (authService is AuthService) { Uses as
return (authService as AuthService). aut h(username, password); keyword
}
Butit can be useful when you have a function that wants to take different types that don’t
share another common interface or other common parent class. In this instance, it’s
valid to declare the parameter as an (bj ect and check the type in the function:

processVal ue(Obj ect sonmeObj ect) {
if (someoject is String) {

/'l snip Checks type of input
} parameter using is keyword
else if (somepject is int) {
/'l snip
}
Il etc...

WARNING You should try to avoid using this pattern in your external-facing
code, because it provides no useful documentation to users or tools. If you
find yourself using this pattern, be sure to provide appropriate comments in
the code to explain why.

150

7.2.3

CHAPTER 7 Extending classes and interfaces

Later in this chapter, we’ll look at the dynami ¢ type annotation, which is the type that
all variables and parameters have when you supply no type information—and which is
subtly different from using Cbj ect. When you use Qbj ect, you explicitly state that
you're expecting that callers of your function can use any type. Specifying no type
information (using dynamic typing), on the other hand, means you haven’t explicitly
indicated which type can be used. By using Obj ect in a parameter list, you document
that you’re expecting users to be able to provide any type to the function or method.

Using toString() functionality inherited from the base Object class

The bj ect type provides a small number of methods and properties that all classes
can use. The most commonly used one is the t oSt ri ng() method, which provides a
string representation of the instance.

When you try to use an instance of any class as a string—for example, by passing it
into Dart’s top-level pri nt () function—the toString() method of Cbj ect gets called.
The example in the following listing explicitly calls the toString() function, but if
you don’t explicitly call t oSt ri ng() , Dart will call it implicitly.

Listing 7.6 Calling t oSt ri ng() outputs a textual representation of the object

print(l.toString()); a— |

print("dart".toString()); <— dart

print(true.toString()); <— true

print(null.toString()); <+— null Instance of toString() is implied. You
print(new Object().toString()); “Object” don’t need to specifically
print(1); call toString().

Calling toString() on an (bject is interesting. It outputs the text I nstance of
" (oj ect', which is as descriptive as it can be at that point. If you were to call
toString() on an instance of User, you’d get the message | nstance of 'User'
because your class is using the functionality built into the Obj ect class. If you called
toString() on a different class, such as a list of numbers, the list of numbers would be
printed rather than the text | nstance of 'List' because the List class provides its
own toString() method, which overrides the functionality provided by Qbj ect .

You can override this functionality in your own classes, too, by adding a
toString() function to your class definition. For example, you can make your User
class output the name of the user rather than use the default functionality provided by
Qbj ect.toString(). Doing so provides a benefit if you add logging functionality,
because you can pass the user instance into your logging function or the top-level
print() function and get back a descriptive message. The next listing shows an exam-
ple implementation that also uses the original functionality found in Gbj ect by explic-
itly calling super. toString().

Listing 7.7 Overriding the t oSt ri ng() functionality from Cbj ect

class User { Declares
String username; implementation

String toString() { of toString()

724

Everything is an object 151

var nyType = super.toString();
return "$nyType: $usernane"; Q—‘ Invokes parent
} QT Returns "Instance class’s toString()
of 'User": Alice"

}

Subclasses of User, such as Ent er pri seUser, also inherit this functionality if they don’t
override it themselves. Calling toString() on an instance of the EnterpriseUser
class will result in the output I nstance of 'EnterpriseUser': Alice, which is far
more informative than the default. Of course, you could always override t oSt ri ng()
again in the Ent er pri seUser class definition.

Intercepting noSuchMethod() calls

The Qbj ect class also exposes another useful method: noSuchMet hod() . Unlike in Java
and C# (but as in many other dynamic languages such as Ruby and Python), you
aren’t restricted to using properties and methods that have been explicitly declared
on a class you’re using.

When you call a method or access a property that doesn’t exist on a class defini-
tion, Dart first checks to see whether the method or property exists on any parent
classes going up the hierarchy. If it doesn’t, Dart then tries to find a method called
noSuchMet hod() declared in the hierarchy. If that method hasn’t been explicitly
defined, Dart calls the base Object.noSuchMethod() function, which throws a
NoSuchMet hodError.

You can use this feature with the User class hierarchy. When Alice logs on, you
can’t always trust the data that comes back from Ent er pri seServi ce because of data
inconsistencies in the source system. The agreement with the EnterpriseService
team is that they will return as much data as they can, and you’ll validate that it meets
your requirements. For this reason, no val i dat e() method is exposed on any of the
User or EnterpriseUser implementation classes, but you might sometimes want to
call it nonetheless. Figure 7.8 shows how Dart handles this call.

When you call val i dat e(), Dart—being optimistic and expecting that you, as a
developer, know what you’re doing—will try to run it. In the end, Dart will find
the default noSuchMet hod() implementation in the base Qbj ect class and will throw
an error, which can be caught with a try/cat ch handler, as shown in the follow-
ing snippet:

try {
user.validate("Alice");

on NoSuchMet hodError catch (err) {
/1 handle or ignore the error

}
You can prevent the NoSuchMet hodError being thrown by implementing your own
version of noSuchMet hod() . This approach allows you to intercept the missing method
call and execute some arbitrary code, such as validating the data.

noSuchMet hod() takes two parameters: a String representing the name of the
method you tried to access and a Li st containing a list of the parameters you passed

152 CHAPTER 7 Extending classes and interfaces

Ly

class Object {
noSuchMethod(name,args) {
//throw NoSuchMethodError

}

| © ®
;.ass User € @ @
®

class EnterpriseUser
extends User {

O

}
Tries to find Then tries to find
var user = new EnterpriseUser(); val i date() anoSuchMet hod()
user._validate("Alice"); method going method going
up the class up the class
hierarchy hierarchy
The val i dat e() method isn’'t defined Figure 7.8 Dart checks up the hierarchy for the method,
in the class hierarchy, but Dart is which doesn’t exist. Then it checks up the hierarchy for
optimistic, so it will attempt anoSuchMet hod() implementation until it finds the one
to run this code anyway. declared in the base Obj ect class.

into the method. We’ll discuss lists in more depth in the next chapter, but for now you
need to know that lists are zero-based and that you can access a list’s elements by using
the square bracket syntax familiar from many other languages. The following listing
shows an example implementation of noSuchMet hod(String name, List args). This
example code prints out the method name and the number of arguments passed to
the method.

Listing 7.8 Implementing noSuchMet hod()

class User {

noSuchMet hod(String nanme, List args) { <—— Declares noSuchMethod()
print("$nane, ${args.length}");
} QT Prints name of method called and
} the number of arguments passed in

When you call user . val i date("Alice");, it results in the string "val i date, 1" being
output to the console. Figure 7.9 demonstrates the new flow.

It’s possible to check explicitly for method names and continue to throw the
noSuchMet hodError from the base class, if that’s required, by checking the value of
the name parameter and calling super. noSuchMet hod(nane, ar gs) to pass the call up
the class hierarchy. This approach allows you to capture specific missing methods
while ignoring others.

Everything is an object 153

class Object {
noSuchMethod(name,args) {
//throw NoSuchMethodError

Finds a noSuchMet hod()
overriding the base
implementation, and executes

! it, passing in the parameters
3 "validate", ["Alice"].
3 |

}

class User {

noSuchMethod(name, args) {

print("$name, ${args.length}); '

} !

3 :

class EnterpriseUser '
extends User { | @ @

. —
|

i Triestofind
i validate()
. method going
up the class
hierarchy

Lo L

Then tries to find |
i anoSuchMet hod()
method going
up the class
hierarchy

var user = new EnterpriseUserimpl();

user.validate("Alice™);

i
|

' The val i dat e() method isn’t defined '
‘ in the class hierarchy, but Dart is
optimistic, so it will attempt
to run this code anyway.

Figure 7.9 NowthatnoSuchMet hod() has
been defined, it’s found and executed.

noSuchMet hod() can also intercept a property access. Suppose you tried to access on
the User a passwor d field that didn’t exist. You might want to ignore the set and return
a string of asterisks for the get. When noSuchMet hod() receives a call for a property
access, it prefixes the name field with either get: or set:, which lets you determine
whether the getter or setter is being accessed. Thus calling pri nt (user. password);
can be handled by the following noSuchMet hod() implementation:

noSuchMet hod(nane, args) {

if (nane == "get:password") {
ret urn "*********";

If it’s the getter for password,

return a string of asterisks. If it isn’t the getter
or the setter for the

password field ...

else if (name != "set:password") {
super . noSuchMet hod(nane, ar gs) ;
} QT ... pass noSuchMethod()
} call up to the parent class.

7.2.5 Other default functionality of the Object class

The Qbj ect class also provides some behavior that other classes get by default, most
notably the equals operator ==. In the next chapter we’ll discuss how to use this and
other operators by overloading them in your own classes, but the default functionality
is unsurprising.

154

7.3

CHAPTER 7 Extending classes and interfaces

User user = new User();

User otherUser = user; |

user otherUser

Figure 7.10 The equals operator from the Obj ect class allows comparison of two
instances of an object.

The equals operator defined in the Qbj ect class returns a t rue/f al se value when you
compare an instance of an object to another instance of an object. That is, when you
compare two variables for equality, they return true if they're the same instance, as
shown in figure 7.10.

In the next chapter, we’ll look at how you override the default functionality of the
equals and other operators, but first we need to examine the dynani ¢ type. dynani ¢ is
the type Dart uses when you don’t specify any type information. Every instance of a vari-
able has one, and it’s accessible explicitly from the Cbj ect class’s dynani ¢ property.

Remember

= Everything “is-an” object.

= (bj ect defines the toString() and noSuchMet hod(nane, args) methods,
which you can override in your own classes.

= noSuchMet hod() can capture unknown method calls and property access.

Introducing the dynamic type

The final type we’ll look at in this section is dynani ¢. When you build your libraries,
such as the | ogon_| i b library that provides authentication services, it’s good practice
to provide type information to other developers and to the tools. Doing so allows the
developers and the tools to infer meaning from the type information you choose. In
your library, or when prototyping, it’s perfectly valid to not specify any type informa-
tion. When you don’t explicitly give any type information, such as when you use the
var keyword to declare a variable, Dart uses a special type annotation called dynani c.

The dynami ¢ type is similar in concept to the Obj ect type, in that every type “is-a”
dynami ¢ type. As such, you can use the dynami ¢ type annotation in variable and
parameter declarations and as function return types. In terms of the language, specify-
ing the dynani ¢ type is the same as providing no type information; but when you do
specify the dynami ¢ type, you let other developers know that you made a decision for
the dynani ¢ type to be used rather than just not specifying it. We’ll look at this in

Introducing the dynamic type

Dart uses dynamic type

| | Developer specifies explicit type

var user = new User();

Variable declarations

User user = new User();

var username = "Alice"; String username = "Alice";

Final declarations
final user = new User(); final User user = new User();
final username = "Alice"; final String username = "Alice";

Function and m

doLogon(authService) {
//snip

}

ethod parameters

doLogon(AuthService authService) {

}

doLogon() {
//snip

¥

Function and method return types

155

User doLogon() {
//snip

}

void doLogon() {
// snip
}

class User {
final _username;
var _password;

get username => _username;

set password(value) {
_password = value;
}
3

Class and interface properties

The voi d keyword
is used to explicitly
specify that there
is no return type.

class User {
final String _username;
String _password;

_password = value;
¥
}

String get username => _username;

set password(String value) {

Figure 7.11 lllustration of where Dart implies the dynani c type, compared with the equivalent

strong typing

more detail later in the chapter. First, figure 7.11 shows how dynani ¢ is used automat-
ically when you don’t provide other type information: the dynani ¢ type is used on the

left, and an explicit type, such as Stri ng, is used on the right.

How does the “is-an” relationship with dynamic work?

Every type in Dart is an object, but every class also has an “is-an” relationship with
dynanmi c, including Qbj ect . This is because dynani c is the base interface that every
other class, including the Obj ect class, implements. The dynami ¢ interface provides
no methods and properties, is hardcoded into the virtual machine, and, unlike

(bj ect, can’t be extended or

inherited from.

156

CHAPTER 7 Extending classes and interfaces

7.3.1 Using the dynamic type annotation

74

You can use the dynani ¢ keyword, which identifies the dynani ¢ type, explicitly in
place of other type information; it’s typically used where you want to indicate that you
have explicitly decided to not provide any type information. This usage is subtly differ-
ent from that of bj ect, which is used when you’ve explicitly decided to allow any
object. When reading other people’s code, you can make the interpretations shown in
table 7.1 based on their choice of Obj ect or dynani c.

Table 7.1 How to interpret different uses of the Cbj ect and dynami c types

Example function declaration What you can infer

doLogon(Qoj ect user); Developer made an active decision to allow any instance of an
object to be passed into this function

doLogon(dynani ¢ user); | Developer made an active decision that they don't yet know what
type of object should be passed into this function

doLogon(user nane) ; Developer hasn't yet declared what type of object should be passed
into this function (implicitly dynamic)

doLogon(User user); Developer actively declared that a User should be passed into this
function

In practice, though, avoid using the dynami ¢ keyword explicitly, unless you provide
adequate code comments explaining your decision to use dynami c. As with all rules,
there’s an exception, which we’ll look at in more depth when we start to use generics
in chapter 8.

Summary

In this chapter, we looked at Dart’s inheritance, which allows you to build inheritance
hierarchies of classes. Qbj ect is the parent class of every other class and type, includ-
ing the built-in ones such as String, i nt, and nul | . The dynami ¢ type, on the other
hand, is the type Dart uses at runtime to allow code to run without type annotations
affecting the executing code.

Remember

= Use the ext ends keyword to declare that a class inherits a parent class.

= The super keyword lets you call members (methods and properties) on a parent
class.

= You can override specific members by providing your own implementations.

= Object provides the toString() method, which you can use to provide extra
information when outputting log messages.

= noSuchMet hod() from the base Obj ect class can be used to intercept missing
methods and properties.

= The dynamni c type annotation represents the untyped version of variables and
parameters in Dart.

Summary 157

We aren’t quite finished with classes! The next chapter introduces generics with a dis-
cussion of Dart’s collection classes such as Col | ecti on, Li st, and Map. You’ll also learn
how to create flexible, general-purpose classes by implementing generics yourself. You’ll
also discover operator overloading, which helps you create truly self~documenting code
by customizing the meaning built into the standard operators.

Collections of richer classes

This chapter covers

= Working with collections

= Building type-safe, general-purpose classes
with generics

= QOverloading class operators

In the previous two chapters, we discussed how you can use classes and interfaces in
your Dart applications and libraries. In this final chapter on classes, we’ll look at
how to make classes richer and even more flexible and descriptive by using some of
their advanced features.

We’ll start by using the built-in collection classes, such as Li st and Map, which
allow you to manipulate lists of data. By using generic types, you can help make
accessing your collections type-safe and benefit from additional validations from
the type checker. You’ll use the indexer syntax to access elements directly in lists
and maps and discover how to build literal maps and lists from known, preexisting
values. We’ll also look at the JavaScript Object Notation (JSON) methods to convert
maps into strings and back to maps.

Next, we’ll examine how you can make your own classes available for developers
to use in a generic fashion, so that rather than creating two nearly identical classes,
you’ll be able to create a single class that can be used, strongly typed, in two ways.

158

8.1

Working with collections of data 159

Finally, we’ll cover operator overloading. Overloading happens when you provide
a new implementation, customized to your particular class, which allows you to over-
load the common operators such as > (greater than) and < (less than). This function
provides your classes with greater readability when they’re in use. We also revisit Map
and look at overloading the [] and [] = indexer operators, which let your own classes
implement the Map interface and be converted to JSON by the built-in JSON library.

Working with collections of data

Much of software development is concerned with moving and processing collections
of data in a type-safe manner. In the example authentication service from chapter 7,
the user Alice provided her logon details to an instance of an Aut hServi ce, which
returned a User object. In this section, you’ll expand on this example by retrieving
user permissions for two roles: Reader and Administrator. When Alice logs on to the
company blogging application to write a news item, the system needs to be able to
identify that, as an Administrator, she can create and edit posts. Other users are Read-
ers and can only read, comment on, and share blog posts. You’ll use the class hierar-
chy shown in figure 8.1 to achieve this.

When Alice logs on, the system will retrieve a list of Per mi ssi ons, which will con-
tain a mixture of Reader Per mi ssi on instances and Admi nPer i ssi on instances that
the running application assigns to Alice’s User object. The company blog app can use
these permissions to allow access to part of the system, as shown in figure 8.2.

The permissions will be constant instances of the Reader Per ni ssi on and Admi n-
Permi ssi on classes. We discussed const classes in chapter 5; to recap, they have a
const constructor that must fully initialize all fields at compile time. When you create
an instance of a const class by using the const keyword (instead of the new keyword),
you can be sure that when you compare two instances that have the same field values,
they’re considered identical. You can use this feature to determine whether a user has
a specific permission.

class Permission {
final String name;

}
class ReaderPermission class AdminPermission
extends Permission { extends Permission {
3 3
¢ ALLOW_READ ¢ ALLOW_CREATE
e ALLOW_COMMENT e ALLOW_EDIT
¢ ALLOW_SHARE e ALLOW_DELETE

Figure 8.1 Class hierarchy for example roles and permissions

160

8.1.1

CHAPTER 8 Collections of richer classes

When Alice logs on, the ALLOW_EDIT
system gives permissions to 7

her User object that translate
— J

Eﬁ into actions she can perform
=~ % E in the app. ALLOW_SHARE

Figure 8.2 Alice’s User object is assigned permissions by the system.

You need to create each of the permissions and assign it to a static variable in each
class so you can refer to these variables throughout the application (static variables
were also discussed in chapter 5). The following listing shows the boilerplate code to
get your permissions working.

Listing 8.1 Permissions boilerplate code

Field to store

cl ass Perm ssion { <—— Base Permission class ..
final String nane, permission name
const Permission(this.nane); <—— Constant constructor

}

Child ReaderPermission class

cl ass Reader Perm ssion extends Perm ssion {
Creates Reader permissions and

const Reader Perm ssion(String name) : super(nane); assigns them to static variables

static final ReaderPerm ssion ALLOW READ =

const Reader Perm ssion("ALLOW READ") ;
static final ReaderPermn ssion ALLON COMVENT =

const Reader Permi ssi on("ALLOWN COMVENT") ;
static final ReaderPerm ssion ALLOW SHARE =

const Reader Per mi ssi on(" ALLOW SHARE") ;

Child AdminPermission class

cl ass Admi nPerm ssion extends Perm ssion {
Creates Admin permissions and

const Adm nPerm ssion(String nane) : super(nhane); assigns them to static variables

static final Adm nPerm ssion ALLONED T =
const Adm nPerm ssion("ALLOWEDI T");
static final Adm nPernission ALLOWN DELETE =
const Admi nPermi ssi on("ALLOW DELETE") ;
static final Adm nPerm ssion ALLOWN CREATE =
const Admi nPer mi ssi on(" ALLOW CREATE") ;
}

Now that you have the boilerplate code containing two types of permissions (Admin
and Reader), it’s time to look at how you can use it.

Collections of objects

Alice is an instance of a User object, and generally a User has many permissions. In
other words, you want Alice to have a list of permissions associated with her. Other
programming languages include the concept of an Array, which is used to store lists
of items. Dart, on the other hand, doesn’t have a specific Array type; instead, it has

Working with collections of data 161

Col | ection and Li st interfaces. The Li st interface extends the Col | ecti on inter-
face. It has a default implementation, so you can use the new keyword with it, such
as to create a specific instance of a list:

Col | ection perm ssionsCollection = new List();
Li st perm ssionsList = new List();

Using the as keyword

In some instances you want to treat a specific variable as an instance of another
type. A classic case of this is where you have a Col | ect i on variable, but you're in-
stantiating it as a list. This is valid, but no add() method is defined on the base Col -
| ecti on interface.

In order to use the Col | ecti on typed variable as a list, you need to use the as key-
word. This lets the type checker know that you intend for the Col | ect i on variable to
contain a Li st instance, which lets you use the variable as a list:

(perm ssionsCol | ection as List).add(... sone permission ...);

We’ll discuss the specific differences between the Col | ecti on and Li st interfaces a lit-
tle later in the chapter. For now, add an extra field to your User from chapter 7 that
will contain a collection of permissions, as shown in figure 8.3. When Alice logs on,
her permissions are added to the collection.

1. Defining the User class

class User {
//snip.. other properties

Collection permissions;

User(Q {

permissions = new List();
}
}

2. Using the User class in the Aut hSer vi ce

class AuthService {
//snip.. other methods

User login(username, password) {
User user = new User();

//snip logon code

(user.permissions as List).add(ReaderPermission.ALLOW_READ);
(user.permissions as List).add(AdminPermission.ALLOW_EDIT);
return user;

} Figure 8.3 You'lladda
collection of permis-
sionstothe User class.
When Alice logs on,
she’ll have permissions
added to that collection.

162

CHAPTER 8 Collections of richer classes

METHODS ON THE COLLECTION INTERFACE
The Col | ecti on interface provides a number of generalized methods and properties
that you might want to use with any collection of objects, such as retrieving the length
of the collection, determining whether it’s empty, and returning a subset of elements
in the collection that match some condition. This ability can be useful, for example,
to return a list of Admin permissions.

Listing 8.2 provides a function that returns a subset of Admin permissions from a
collection by using the i s keyword against each item in the collection to determine
whether that item is an instance of Adm nPermi ssion. The filter() function of the
Col | ection interface takes another anonymous function as a parameter, which is
called for each permission in the collection. If the anonymous function returns t r ue,
then that permission is added to the result.

TIP An anonymous function that’s called for each element in the collection
and returns true or f al se is known as a predicate.

Listing 8.2 Returning a list of Adm nPer ni ssi ons

Col | ection extract Adm nPermi ssions(User user) { j Returns collection

that’s a list of
AdminPermissions

return user.permssions.filter((currentPermssion) {
return currentPerm ssion is Adm nPerm ssion;
1)
}

Predicate returns true if currentPermission is an
instance of AdminPermission. This causes
currentPermission to be added to result collection.

When you pass a User object containing Alice’s user into this extract Adm nPermi s-
sions() function, you get back a new Col | ecti on object containing all the Admi nPer -
m ssi on instances.

Another useful function of the Col | ection interface is the some() function,
which you can use to determine whether a specific permission is contained in the
collection. The sone() function takes a predicate and returns true if the predicate
returns true for an item in the collection. For example, to determine whether Alice
has the ALLOW_CREATE permission, you can call sone() and store the result in a

cont ai nsAl | owCr eat e variable: .
Shorthand predicate called for each

element in collection. some() returns true
when first call to predicate returns true.

bool contai nsAl | owCreate = user. perm ssions. some(

(currentPernm) => currentPerm == Admi nPer nmi ssi on. ALLOW CREATE;
):
ITERATING A COLLECTION
The Col | ecti on interface implements the | t er abl e interface, which allows you to use
the Dartfor(in) keywords. Similar to foreach(in) in C#and for(:) in Java, Dart
shares this syntax with JavaScript. This language construct allows you to iterate through
the collection, assigning each item to a variable in turn, as shown in figure 8.4.

Working with collections of data 163

for (Permission permission in user._permissions) {

print(permission);

Figure8.4 Thefor (...
in ...) keywords allow
you to iterate through each
item in a list.

Thefor (in) pair of keywords constitute a powerful way to visit every item in the list.
If you need to break out of the loop, perhaps because you’re looking for the first
matching permission, you can use the keyword break, which exits the loop at that
point, as shown in the following snippet:

for (Pernission pernission in user.pernissions) { Finds first
if (permssion is Adm nPerm ssion) { AdminPermission in list
br eak; Exits for loop
} immediately

}

MANUALLY ITERATING THROUGH A COLLECTION

The | terabl e interface also returns an | terat or interface. The I terator interface
is used internally by the for (...in...) keywords, but you can use its hasNext and
next () methods explicitly in your code to control when you move through a collec-
tion of items outside of an explicit loop. hasNext returns true if there’s another
item to move to; next () returns the next item and moves the iterator pointer past
the next item. If it has already returned the last item, it throws a StateError.
The example in the following listing extracts the first two items from the collection
by explicitly moving through it. Whenever you call the iterator() function on a
collection, you get a new iterator that has the iterator’s pointer positioned before the
first item.

Listing 8.3 Extracting the first two items from a collection using an iterator

Iterator iterator = user.permissions.iterator(); Gets new iterator positioned

var pernl = null; Creates variables to before first item
var pern2 = null; store permissions
If (iterator. hasNext) { Checks whether there’s a
next item to return

164

8.1.2

CHAPTER 8 Collections of richer classes

perml = iterator.next(); Returns next item and moves
} iterator pointer forward
if (iterator.hasNext) { Checks for and

pern2 = iterator.next(); gets second item

}

Using the concrete implementations of the Collection interface

The Col | ecti on interface, combined with the | terabl e and | t er at or interfaces, is a
powerful construct, but you can’t create an instance of a Col | ecti on. An interface,
remember, is a way of describing the methods and properties that should appear on a
class that implements that interface. The core Dart libraries provide a number of
implementation classes for the Col | ection interface: Li st, Queue, and Set. These
classes provide different specializations of the Col | ecti on interface. Figure 8.5 shows
the Col | ecti on interface and how it’s related to its children (Li st, Queue, and Set)
and its parent (I terabl e).

Classes that are iterable can be
usedinaDartfor ... inblock.

abstract class Iterable{ abts)t”:c:]: c'!lasi I1':erat0r {
L Iterator iterator(); ool hasNext();
A collection is the 3} next(Q);

base container }
for a collection
of elements. It

has no default

implementing extends An iterable object

class, so you returns an iterator,
must use a class which defines the
that extends a hasNext () and

collection (or | Collection | next () functions.
build your own).

| extends | A set is a specialized type

of collection that can’t
contain duplicate objects.

— - o

i o CTT T I
; | List ” Queue ” Set | |

Elements in a list - A - — - =
can be accessed
directly by using an Only the first or last item
index value. Items can be retrieved from a queue.
can be inserted Items can be at the front or
anywhere in a list. back of the queue.

The Li st, Queue, and Set interfaces all have
default implementation classes and can be
constructed with the new keyword.

Figure 8.5 Col | ecti on is the core interface in Dart for dealing with collections of objects, but you
need to use a concrete instance of Li st, Queue, or Set .

Creates
extendable
list from
another
list

L

—>

Working with collections of data 165

Dart doesn’t have an Array type, but as mentioned earlier, it does have Li st . Lists are
dual purpose, being either fixed-size or extendable. If a list is fixed-size, you can insert
elements only into predefined slots by using the square bracket index [] operator. An
extendable list, on the other hand, can also have items added to and removed from it,
effectively adding and removing slots in the list.

CREATING LISTS
There are four ways to create a list, shown in listing 8.4. The simplest way is to create a
literal list with the square bracket operator, which produces a prepopulated, extend-
able list. The second approach uses the List() constructor. If you don’t pass in a
value, you get an empty, extendable list. If you do pass in a value, you get a fixed-size
list containing the number of elements you specify, each of which is null. You must
access each element using a numeric indexer that’s zero-based.

Finally, Li st defines another Li st.fron(...) constructor that allows you to create
a new extendable list from any class that implements | t er abl e. This feature is useful
for converting an existing fixed-size list into an extendable list.

Listing 8.4 Different ways to create a list

List literal =[ReaderPerni ssion. ALLOWN READ, Reader Perm ssi on. ALLOW SHARE] ;
l'iteral.add(Reader Perm ssi on. ALLONW COWENT); <—— Adds new items to list

rint(literal.length); <—— Prints: i
print(literal.length); Prints: 3 Creates literal

Li st growable = new List(); <—— Creates new, empty, growable list extendable list
from known values

print(growabl e.length); <+ Prints: 0
gr owabl e. add(Reader Per mi ssi on. ALLOW READ) ; Adds new
growabl e. add(Reader Per nmi ssi on. ALLOW SHARE) ; items to list Creates new,
List fixedSize = new List(2); fixed-size list
print(fixedSize.length); <—— Prints: 2
fixedSi ze[0] = Reader Perni ssi on. ALLOW READ; Uses indexer to populate
fixedSi ze[1] = Reader Perm ssi on. ALLOW SHARE; empty slots in list
Would throw
Li st fromdther = new List.fron(fixedSize); UnsupportedError if it were
uncommented, because list
fromX her. add(Reader Per m ssi on. ALLOW COMVENT) ; isn’t extendable

Now you can
add new items.

All elements in a list can be read from and written to by using the index operators []
and [] =. The [] operator lets you read a value out of a list at a specific (zero-based)
index, such as var perni ssi on = growabl e[2] ; the [] = operator allows you to modify
the value at a specific index, as in gr owabl e[2] = per ni ssi on. These index operators
are important; they crop up again when we look at maps, and you’ll use them in your
own classes later in the chapter when we examine operator overloading. They also
allow you one final way to iterate through a list, in addition to the two methods

166

8.1.3

CHAPTER 8 Collections of richer classes

defined on the Col | ecti on interface (aLi st “is-a” Col | ecti on, after all). You can use
the indexer to access each item in turn in a f or loop. The f or loop syntax is identical
to the f or loop in all C-based languages, such as Java, JavaScript, and C#:
for (int i =0; i < fixedSize.length; i++) {

Per m ssion perm ssion = fixedSize[i];
}
The other two built in types of collection, Queue and Set , don’t provide direct access to
elements, but they can be converted into lists by using the Li st. fron() constructor.

CREATING SETS

A set is a specific type of collection that doesn’t allow duplicates. It has some specific
methods, such as isSubset Of(collection) and contains(value), and it has a
Set.fron() constructor, which means you can create an instance of a Set from any
other | t er abl e class. The following snippet creates a set containing only one item:

Set set = new Set();

set . add(Reader Per m ssi on. ALLOW READ) ; Adding two of the same item to a set
set . add(Reader Per mi ssi on. ALLOW READ) ; has the same effect as adding one item.
set . add(Reader Per ni ssi on. ALLOW SHARE) ;

print(set.length); <—— Set contains only two distinct items.

CREATING QUEUES

Queues, on the other hand, are useful when you want to build a first-in, first-out col-
lection, such as when one part of a process adds items onto a list and another part of
the process wants to take an item off the list, preserving the order in which they were
added. The methods addLast () and renoveFirst() let you add an item to the back
of the queue and remove an item from the front of the queue. The following snippet
creates a queue, adds one item to the back of the queue, and removes it from the
front of the queue:

Queue queue = new Queue();

queue. addLast (Reader Per mi ssi on. ALLOWN READ) ; Adds two items to back
gueue. addLast (Reader Per m ssi on. ALLOW SHARE) ; of queue in order
var perm ssion = queue.renoveFirst();
pri nt (gueue. | engt h) ; QT First item AI.I.OW_READ is
j Only one item is removed from queue.
left in the queue.

You can’t access elements in sets and queues directly by an index, as you can with lists.
Instead, you can access elements only by iterating through the queue using the meth-
ods provided on the Col | ecti on interface or, in the case of a queue, with the addi-
tional addLast () and removeFi r st () methods.

Making collections specific with generics

One of the problems with using the Col | ecti on interface the way you're currently
using it is that you can add any instance of an object to it. Thus it’s possible for you to
end up with a list that contains a mixture of Reader Permi ssi on and String, orint,
for instance, by writing code such as this:

Working with collections of data 167

List permssions = new List(); Corre.ctl.y adds.
per ni ssi ons. add(Reader Per ni ssi on. ALLON READ) ; permission to list
per m ssi ons. add(" ALLOW WRI TE") ; <—— Incorrectly adds string
per ni ssi ons. add(123456789) ; <+ Incorrectly adds integer

You can see that code like this is wrong or that the list should be a list of Per mi ssi ons
rather than just a list of anything. One way to fix this might be for you to inherit Li st
create a Permi ssi onLi st, and provide methods such as add(Permi ssion itenj that
take only a Perni ssion object. But a typical application has lots of lists containing
many different types that don’t share a common base class other than (bject. It
would be impractical (and a waste of code) to write a different list implementation for
each list you might use.

Fortunately, Dart has generics built into the type system. A generic type is a way of
defining a class in a general, or generic, way but allowing the user of the class to use it
in a specific way, even though there’s no shared type hierarchy such as a list of Per -
m ssi ons, a list of Stri ngs, and a list of i nt s.

All the types in the Col | ecti on hierarchy have been written using generics, which
allows you to use them specifically for your Per ni ssi on class. In other words, you can
create a list of Per nmi ssi ons, and Dart’s type checker can then flag errors such as acci-
dentally adding a St ri ng into your list.

Classes built using generics take the form Name<T>, where Nane is the name of the
class or interface and T is a comma-separated list of type placeholders. The collection
classes that you’ve seen so far have generic signatures, as shown in figure 8.6, where E
represents a placeholder for the El enent type.

abstract class lterator<t> {

abstract class lIterable <E> {
_ f bool hasNext();
N Iterator<kE> iterator(); E next():
ks
extends

Collection<E> {
add(E element);
}

| extends |

Figure 8.6 The Col | ecti on class-
- e = es are generic types that contain a

: | List<E> | | Queue<E> | | Set<E> | i placeholder type E that you can re-
' place with your own type.

168

CHAPTER 8 Collections of richer classes

REPLACING THE PLACEHOLDER TYPES

To use this generic type placeholder, specify the type you want to use in the type decla-
ration and the constructor. For example, when Alice logs on, you know you’re getting
Specifying Permission

type replaces

a list of permissions, which is now declared as follows:
, placeholder in class

Li st <Per m ssi on> perni ssions = new Li st <Permi ssion>();
per m ssi ons. add(Reader Per mi ssi on. ALLOW READ) ;

In use, all the methods on the list now work as though you had written a custom Per -
m ssi onlLi st that could hold only instances of Perni ssi on objects. The collection
methods’ signatures all expect to receive a Per ni ssi on, receive a list of Per mi ssi ons,
or return a Per ni ssi on. Table 8.1 lists some of the method signatures defined on the
Li st and shows what the Dart type checker expects when you use the Permi ssi on
class in the constructor definition.

Table 8.1 A comparison of actual method signatures and how the Dart type checker interprets them

Actual method signature What Dart expects in use

void add(E val ue); voi d add(Perm ssion val ue);
E next(); Per mi ssion next();
Col l ection<E> filter(Col |l ection<Perm ssion> filter (
bool f(E el ement) bool f(Perm ssion el enent)
)i)i

This behavior is equally valid for any other class. For example, you can create a list of
Strings or a queue of i nt s by using the type to replace the generic placeholder in the
constructor:

Li st<String> stringList = new List<String>();

stringList.add("l ama string");

Queue<int> int Queue = new Queue<int>();

i nt Queue. addLast (12345);

In use, if you tried to add an i nt into a Stri ng list, the type system would warn you in
the same way as if you tried to pass an i nt into a function that expected a Stri ng,
because the Li st add() method is now expecting a St ri ng to be passed in.

There’s another positive side effect of using generic types: they allow you to per-
form type checking on method signatures that you define yourself. You may have a
function called extract Adm nPerm ssions() that takes a list of Perni ssions and
returns a list of Adni nPer ni ssi ons. This method functions identically regardless of
whether it’s using generic type placeholders:

Col I ection extract Adm nPermi ssions(Col | ection pernissions) { Version of
/1 snip nethod body method using

} untyped
collections

Working with collections of data 169

Col | ecti on<Admi nPer i ssi on> extract Adm nPer m ssi ons(
Col | ecti on<Per m ssi on> perni ssions) {
/1 snip nmethod body

} Using collections provides additional

validation by the type checker.
With the first version of ext ract Admi nPer ni ssi ons(), you can pass in any collection,
including a collection of St ri ng or a collection of i nt , and the type checker won’t know
to warn you of a possible error. The second version of extract Adni nPer ni ssi ons()
knows thatyou expect to receive a collection of Per i ssi on, and your calling code knows
that it’s expecting a list of Adni nPer ni ssi ons to be returned. The calling code can be
safe in the knowledge that the resulting collection from ext r act Adni nPer ni ssi ons()
won’t contain any Reader Per mi ssi on instances.

SO WHAT “IS-A” LIST?

In the previous two chapters, you’ve been using the is keyword to determine
whether a variable “is-an” instance of a specific type. For example, Adni nPer ni ssi on,
which extends Permi ssi on, “is-a” Permi ssi on, but Adm nPerm ssi on isn’t a Reader -
Per mi ssi on. The following snippet returns the results you expect:

var p = Admi nPermission. ALLOVEDI T;

print(p is Permission); False: AdminPermission
i i ; i ssi . True doesn’t inherit from
print(p is Adm nPerm ssion);

print(p is ReaderPernission); ReaderPermission.

When you’re using generics, it turns out the same principle applies. A list of Adni n-
Per mi ssi ons “is-a” list of Per mi ssi ons, because every item in the list “is-a” Per m ssi on.
Itisn’t a list of Reader Per mi ssi ons, which correctly follows the same logic:

var adm nLi st = new Li st <Adm nPer mi ssi on>();
print(admnList is List);

print(adm nList is List<Perm ssion>);
print(adm nList is List<Adm nPerm ssion>);
print(adm nLi st is List<ReaderPerm ssion>);

True False: AdminPermission
QJ doesn’t inherit from
ReaderPermission.
This code works as expected, but a good question would be why the type checker
returns true for adni nLi st is List. Logically, any list of anything “is-a” Li st, but how
does Dart achieve this when no type is specified? Behind the scenes, using an untyped
generic is the same as using the dynami ¢ type. The dynani ¢ type, which we discussed
in chapter 7, represents the untyped version of every class, and every instance of a
class “is-a” dynami c.
Thus, all lists of any type or no type are also always lists of dynami c:

var dynam cLi st = new Li st<dynam c>();
print(dynamcList is List);

List<dynamic>
is just a List.

var not SpecifiedList = new List();
print (not Speci fiedList is List<dynam c>);
print(listOfAdmin is List<dynam c>);

List of anything is also
a List<dynamic>.

One final question arises, specifically with literal lists, because they have a specific syn-
tax that Dart can use to create a list of known values (as you've seen). How do you

170

8.14

CHAPTER 8 Collections of richer classes

define a list of known values to be a strongly typed list? Fortunately, you can do this
using the generic syntax, providing <t ype nane>[el enent, el ement, ...],asin

var perm ssions =
<Per m ssi on>[Admi nPer mi ssi on. ALLOW CREATE, Admi nPer m ssi on. ALLON EDI T] ;

Storing lists of key/value pairs with generic maps

The final built-in generic type that we’ll look at in this chapter is Map<K, V>. You can use
it to store lists of key/value pairs; you access the values using a key as an indexer. This
is similar to the way you access values in a list by using a numeric indexer, such as
nyLi st [1] , except that you can specify a nonnumeric indexer (typicallya St ri ng). The
generic type placeholders K and V represent the Key type and the Val ue type, respec-
tively—they don’t need to be the same, and as with the other generic types we’ve looked
at previously, they can be ignored (in which case you get a Map<dynamni ¢, dynani ¢>).

When Alice logs on to the system, you can retrieve her User object. You can do the
same for Bob and Charlie, but perhaps retrieving the User object from an enterprise
system is a time-consuming exercise. You can implement a simple cache by storing a
list of username strings and their associated user objects in a map. Because the Map
interface has a default implementation class, you can create and manipulate the map
as shown in the following listing.

Listing 8.5 Creating and using a map of St ri ng and User

Map<String, User> userMap = new Map<String, User>(); Creates new

user Map["al i ceKey"] = new User("Alice"); Inserts items into map map of String
user Map["bobKey"] = new User ("Bob"); by using key indexer keIYs and User
values
User aliceUser = userMap["aliceKey"]; Reads items back out of
User bobUser = user Map["bobKey"]; map by using key indexer
User charlieUser = userMap["charlieKey"];
Charlie doesn’t exist in map,
so charlieUser contains null.

Accessing a nonexistent key such as char | i eKey doesn’t throw an exception, as it does
in other languages. Instead, it returns nul | .

CREATING PREDEFINED MAP LITERALS

You can create maps just like lists, with a predefined list of known keys and values. The
map literal uses {} to define the map, and it contains a comma-separated list of keys
and values, as shown in figure 8.7.

Map myMap = {“keyl":"valuel™, *key2":"value2"};

Figure 8.7 A map can be
defined in Dart as a list of
key/value pairs.

Working with collections of data 171

A typical use when dealing with JavaScript Object Notation (JSON) data is a list of key/
value pairs defined in this format. The dart:j son library provides two methods for
converting a string into a map and a map into a string. The code in the following
listing converts a string of usernames and their last logon date into a map and back to
a string.

Listing 8.6 Using the dart : j son library to convert between maps and strings

import "dart:json";

mai n() { Creates JSON string
var jsonString ="{'charlieKey':'2012-07-23","'aliceKey':'2012-08-16"}";

Map | ast LogonMap = JSON. parse(jsonString);
print (1l astLogonMap["charlieKey"]); Parses JSON into a Map object

jsonString = JSON. stringify(lastLogonMap);
} Accesses value in map by key
Converts map back into string

TIP Converting JSON strings into maps and maps into JSON strings is com-
mon in web apps when you’re sending and receiving data between a client
app and a server-side web service. We’ll deal with this in chapter 11 in more
depth.

ACCESSING THE KEY AND VALUE COLLECTIONS
This raises another question. Suppose that you’'ve stored char | i eKey but the value is
indeed nul | . You can’t use this information to determine whether charlieKey is a
valid key or perhaps a typo.

Fortunately, the Map interface provides cont ai nsKey(Kkey) and cont ai nsVal ue(V
val ue) methods that you can use to confirm whether a key or value exists in the map.
You can also access a collection of keys and iterate through them to access the values,

as in the following snippet: .
Iterates through key collection
for (String key in userMp. keys) {

User val ue = user Map[key] ; <+—— Extracts each value for current key
print(val ue);

} ﬁ Prints current value.toString

INSERTING NEW ITEMS INTO THE MAP

Using the indexer [] = operator, you can insert items into the map (as you’ve done in
the previous example), but this has the effect of overwriting an existing value with the
same key. Sometimes it’s useful to only insert new items into the map rather than
replace existing items; for example, you could store a list of logon dates for each user,
such as Map<String, List<Date>>, specifying that for each Usernane string, you’ll
access a list of Dat e objects.

When Bob logs on (and he has already logged on in the past), you want to add the
logon date to the existing list of dates. When Charlie logs on, you want to create a new
list of dates. Figure 8.8 demonstrates this.

The problem with using the indexer in the form userLogons["bobKey"] = new
Dat eLi st () ; is that doing so will always create a new, empty list for Bob, wiping out his

172

CHAPTER 8 Collections of richer classes

Key Value
String List<Date>

2012-05-13
“"AliceKey" 2012-06-08

2012-09-24

2012-04-27
“'BobKey™ 2012-05-19

2012-05-19
null "CharlieKey" | new List<Date>()

Figure 8.8 You want to create a new value only if the key doesn’t already exist.

existing logons. Likewise, using user Logons["charl i eKey"] . add(new Date. now());
for Charlie will cause a null-pointer exception, because there’s no Li st <Dat e> to add()
a new date to.

Although you could use the cont ai nsKey("bob") check, the Map interface pro-
vides an alternative in the form of the put|fAbsent () method. This method adds a
new item into the list only if the key doesn’t already exist. It takes a key and a function
as its parameters, and the return value from the function is inserted into the map as a
value if the key doesn’t yet exist in the list of keys. The following listing shows how this
method works.

Listing 8.7 Using the Map put | f Absent () method

Creates map whose key is a string.

For each key, you have a list of dates. When Charlie logs on,

creates new list of
dates, but only if one

var userlLogons = new Map<String, List<Date> >();

user Logons. put | f Absent ("charlie", () => new List<Date>()); doesn’t exist already
user Logons["charlie"].add(new Date. now());
j Accesses list of dates by key
“Charlie” and adds today’s date

This approach lets you access the properties on the object that represents the value in
the map without replacing the object.

That was a long section, but generics and collections are powerful features of Dart
and (like superheroes) become even more powerful when combined. Generics aren’t

8.2

821

Building your own generic classes 173

Remember

= Collections can be created using the concrete instances of Li st , Queue, and Set .

= Dart has no Array type, but you can use Li st in its place. A list can be fixed or
dynamically expandable.

= All the collection types are generic, and you can specify the type of a collection by
using the <T> syntax with the type constructor, such as new Li st <String>() to
create a list of Stri ngs.

= Lists can be accessed using zero-based indexers such as nyLi st[2];, which
accesses the third item in the list.

= Maps contain a list of key/value pairs and also use the indexer syntax, but they
take the key as the indexer. For example, putting a Dat e into a Map<St ri ng, Dat e>
could look like this:

myMap["al i ceKey"] = new Date.now();

restricted to being used with collections, though. In the next section, we’ll look at how
to create your own “generic” classes that let you use type placeholders in your class but
let users of your class create their own strongly typed versions.

Building your own generic classes

You’ve seen that generics can be useful to provide strong typing for classes where
there’s no shared base class. This is good news, because your bosses have seen your
User classes and code and decided that they want it ported over to a different system
for managing timesheets that uses a preexisting Rol e class rather than the Per mi ssi on
class for each user. Ideally, when Alice logs on to the blog post system, her User object
will contain a list of Per ni ssi ons, but when she logs onto the timesheet system, her
User object will contain a list of Rol es.

It turns out that roles and permissions are synonymous, but the classes are differ-
ent. You rename the User . per m ssi ons list to be User. credenti al s and then start to
think about how you could use strong typing to tell the difference between a list of
Rol es and a list of Per mi ssi ons.

The first thought is to subclass User and have Rol esUser and Per ni ssi onsUser,
each with its own add() method and so on, as shown in figure 8.9. Fortunately, before
going down this route, you remember generics and decide that this situation would be
a perfect fit for the creation of a generic user class.

Defining a generic class

Defining a class as a generic class involves using a generic type placeholder in the
class declaration, such as cl ass User<C>{ ... }.It’s good practice to use a single let-
ter as the type placeholder, because this convention is easily identifiable as a generic
type placeholder, but you can use any value. You could use cl ass User <Credenti al >
{ ... }, but this looks less like a placeholder and more like a real type. Common
generic type placeholder letters that are used by convention are shown in table 8.2.

174 CHAPTER 8 Collections of richer classes

class User {
Set credentials;

3
extends extends
class RolesUser extends Useri class PermissionsUser extends User {
addRole(Role role) { adaPermission(Permission perm) {
credentials.add(rol¢); credentials.add(perm);
} }
bool containsRole(Role role) { bool containsPerm(Permission perm) {
return return credentails.contains(perm);
credentails.contains(role); }
}
List<Permission> getPermissions() {
List<Role> getRoles() { return new
return List<Perpission>.from(credentials);
newList<Role>.from(credentials); }
¥
} The Rol esUser class and the

Per mi ssi onsUser class are
almost identical. The only
difference is that one specifically
gets and returns Rol e objects,
and the other gets and returns
Per mi ssi on objects.

This is a good use case for
creating a single generic class.

Figure 8.9 If you find yourself creating several similar classes that use slightly different objects but
in the same way, then you could have a case for using generics.

You don’t have to use these letters, and you could use them to mean something else,
but please make sure you have a very good reason to do so, such as when the prob-
lem domain contains specific jargon. For example, the letter E, which typically refers
to an El ement , might instead logically refer to an edge in a graph structure.

Once you've defined your class name and the generic type placeholder <C>, you
can reference that generic type placeholder throughout your class in method prop-
erty definitions, method parameter lists, and return types.

Table 8.2 Some type placeholder letters are used by convention.

Generic type placeholder Common meaning
<T> Type
<BE> Element
<K> Key

<\/> Value

Building your own generic classes 175

The following listing shows how the User class might look now that you have a generic
type placeholder rather than specific Rol esUser and Per ni ssi onsUser classes.

Listing 8.8 User class that uses generic credentials

class tser=c Defines class name as generic class
Li st<C> credenti al s; QT with type placeholder <C>
User () { Declares List containing C

credentials = new List<Cx(); Constructor creates new

} instance of List of C.

addCredential (C credential) {

this.credentials.add(credential);
} Ensures that

only types of
C are passed

bool containsCredential (C credential) { into methods

return this.credentials.sone((iten) => item == credential);

}

Li st<C get Credential sList() {
return new List<Cs.fron{credentials);

}

Returns classes
that contain type C

}

8.2.2 Using your custom generic class

Now that you have a generic class, you can use it in the same way as any other generic
type. You can be sure the type checker will catch type errors (such as if you missed
some code when porting to the timesheet system and are still trying to retrieve a
Per mi ssi on when you really mean a Rol e).

You've also opened the possibility of reusing the User class in different scenarios
that you might not have first envisaged. You can now reuse User when the credentials
are supplied as string or integer values. The following listing shows some ways you can
use your new class in a type-safe manner.

Listing 8.9 Using your generic User class in a type-safe manner

User <Per i ssi on> permi ssionUser = new User <Permi ssion>(); Creates
User <Rol e> rol eUser = new User <Rol e>(); Creates User with Role, User ‘,"'t,h
Permission

and accesses methods
in type-safe manner

rol eUser. addCr edent i al (const Rol e("ADM N'));
print(roleUser.contains(const Role("ADM N')));

User<String> stringUser = new User<String>(); You can also use
stringUser.addCredential ("ACCESS ALL_AREAS"); it with String ...

User<int> intUser = new User<int>(); ... and int, or
i nt User . addCr edenti al (999); any other class.

8.2.3 Restricting the types that can be used as placeholders

Unfortunately, other developers think your new generic User class is great, and they’re
using it all the time in scenarios where you weren’t expecting it to be used, such as

176

8.3

CHAPTER 8 Collections of richer classes

storing the types of soft drinks users get from a vending machine: User <Sof t Dri nk>.
Your boss has started to notice and thinks people are using itas a shortcut to writing their
own code that would better fit their solution. Your boss would like you to tighten it up
and has given you permission to add aval i dat e() method to the Rol e and Per ni ssi on
classes and have them both implement a Credent i al sVal i dat or interface.

The new rule is that developers can use your generic User class with any type, as
long as that type implements the Credential sValidator interface. Fortunately,
generic typing allows you to implement this rule using the extends keyword in the
generic definition. Change your class definition so that it reads

cl ass User<C extends Credential svValidator> { ... }

Now, wherever you try to use the User class, it must be used in conjunction with a
class that implements or extends Credential sVal i dat or (which rules out String,
int, and SoftDrink). It also means you can call the validate() method in the
addCredential () function, as shown in the following example, without needing to
check whether the class has a validate() method (as you’d do if you were still
accepting St rings and Sof t Dri nks):

cl ass User<C extends Credential sValidator> { Adds CredentialsValidator
/1 snip other methods to generic type placeholder

addCredential s(C credential) {

credential . validate(); _ You can now call validate() on
this.credential s.add(credential); instance because you know it

“is-a” CredentialsValidator.

}
}
Well done! You’ve made it through the section on generics, which is an advanced
topic in any language. Generics are a powerful feature of many modern class-based
languages, and the principles here are very similar to those of Java and C#.

Remember

= If you find yourself making a number of nearly identical classes, then you might
want to think about using generics.

= The generic type placeholder is used throughout the class to represent the generic
type that will be specified by the class’s user.

= You can restrict generic type placeholders by using the ext ends keyword.

In the next section, we’ll look at operator loading, such as providing your own equal s
== implementation and adding custom indexers to your classes so that users of those
classes can access values by using Dart’s indexer syntax, [] and [] =.

Operator overloading

When Alice logs on to the timesheet example app discussed in the previous section,
the system retrieves the Rol es that represent the way Alice might use the timesheet

83.1

Operator overloading 177

class Role {
final String name;
final int accesslLevel;
const Role(this.name, this.accessLevel);
H
TIMESHEET_ADMIN, accessLevel=3

TIMESHEET_REPORTER, accessLevel=2

TIMESHEET_USER, accesslLevel=1

l

Figure 8.10 Example of the levels of access that Alice could have in the timesheet app

system. For example, Alice might be a timesheet user, meaning she enters her own
time into the system. She might also be a timesheet reporter, meaning she can pro-
duce reports based on other people’s timesheets. Finally, she could be a timesheet
administrator, meaning she can also edit any timesheet in the system.

Each of these three roles encompasses all the abilities of the previous role, such
that the timesheet app needs to know only the role with the greatest access level in
order to function correctly. If Alice has the TI MESHEET_ADM N role, then she also has
the abilities of the TI MESHEET REPORTER and Tl MESHEET_USER roles. You can order
these roles by access-level value, as shown in figure 8.10.

Overloading comparison operators

There’s a natural ordering to these roles: one is greater or lesser than the other. To
test two roles’ relation to each other, you can write code that compares each role’s
accesslevel value, which works adequately. But it would aid readability if you could
compare the role instances with each other directly, using the greater-than (>) and
less-than (<) operators, as shown in the following listing.

Listing 8.10 Ways to compare roles

var adm nRol e = new Rol e(" Tl MESHEET_ADM N', 3);
var reporterRole = new Rol e(" TI MESHEET_REPORTER', 2);
var userRole = new Rol e("TI MESHEET_USER', 1);

Creates three
role instances

if (adm nRol e. accessLevel > reporterRol e.accessLevel) {

print("Admin role is greater than Reporter role"); You can use the
} .accesslLevel
property to
if (userRol e.accessLevel < adm nRol e. accessLevel) { compare each
. " . . . role using
print("User role is less than Admn role"); < and >

}

178

CHAPTER 8 Collections of richer classes

if (adm nRole > reporterRole) {

print("Admin role is greater than Reporter role"); getb;:t);z:
} readability
if (userRole < adminRole) { when you can
print("User role is |less than Adnin role"); compare roles
} directly.

Fortunately, Dart allows this functionality with operator overloading, which means you
can take the standard operators and let your own classes provide meaning for them.
In this instance, you want to provide meaning for the greater-than and less-than oper-
ators in the context of the Rol e class. Dart lets you do this in the same way you created
a new version of the t oSt ring() method in chapter 7, by providing your own version
of the operators’ implementation. The oper at or keyword lets Dart know that your
class is defining an operator implementation, as shown in the next listing.

Listing 8.11 Providing implementations of < and > with the oper at or keyword

class Role {

final String name; You can now hic.le _accessLevel
final int _accesslLevel; by making it private.

const Rol e(this.name, this._accesslLevel);

bool operator >(Role other) { Pairs operator
return this._accessLevel > other._accessLevel; keyword with
} operator you
bool operat or <(Rol e other) { ::;:::d’ to
return this._accesslLevel < other._accesslLevel; provide a new
} function

}

When you overload an operator, provide a method containing your implementation
of the operator. The operator’s method usually takes a single parameter containing
another instance of the same class. Table 8.3 shows some common comparison opera-
tors that you can overload.

Table 8.3 Some common comparison operators

Operator method Description

bool operator >(var other) {...} This instance is greater than the other.

bool operator <(var other) {...} This instance is less than the other.

bool operator >=(var other) {...} | Thisinstance is greater than or equal to the other.
bool operator <=(var other) {...} | Thisinstance is less than or equal to the other.

bool operator equal s(var ot her) This instance is equal to the other. Note that there
{...} are two different versions of this method. At the

bool operator ==(var other) {...} time of writing, the language spec defines the word

equal s as the operator, but the implementations

are currently using a double equal sign == to repre-
sent the equals operator.

Operator overloading 179

8.3.2 Surprising use for operator overloading

8.3.3

When you’re overloading operators, the ot her value should be the same class, but
there’s no requirement that it must be the same class. This situation provides for some
interesting, if slightly unorthodox, syntax. For example, to add a role to a user, you
could overload the Users + operator, allowing you to write the code shown in the fol-
lowing listing.

Listing 8.12 Overloading the addition operator to add Rol es to a User

class User {
Li st roles;

User () {
roles = new List();

}

operator +(Role newRole) {

this.rol es. add(newRol e) ; Overrides + operator

}
}
mai n() {
User alice = new User();
Rol e adm nUser = new Rol e(" TI MESHEET_ADM N', 3);
alice + adminUser; <— Uses + operator Bole ha’s’ been
print(alice.roles.|ength); added” to User
}

WARNING It’s good practice to overload operators only when it would be
unsurprising to the reader to do so. The previous example would be more
readable if it provided an add(Rol €) method instead. Developers don’t like
surprises.

Overloading indexer operators

When you were dealing with lists and maps earlier in the chapter, you used the
indexer operators to write [] = and read [] a value in an instance of a class, such as

Uses []= operator to

myList[1] = "Some val ue"; write value by index
var nyVal ue = nyList[1];

Reads value with

[1 operator

The [] operator allows you to read a value by index. [] = allows you to write a value by
index. And you can overload these in your classes to provide indexer access to under-
lying values. The [] operator method takes a single index parameter and returns a
value, and [] = takes both an index parameter and a value parameter that should be
applied to that index item. Imagine a User class that could only have exactly two roles.
You could use an indexer to allow reading and writing to those two roles. The follow-
ing listing uses indexers to access the underlying _rol el and _r ol e2 properties.

180

}

CHAPTER 8 Collections of richer classes

Listing 8.13 Overloading the indexer operators

class User {

Rol e _rolel;
Rol e _role2
User () {

roles = new List();

}

operator []=(int index, Role role) {

if (index == 1) {
_rolel =role;

else if (index == 2) {
_role2 =role;

}

el se throw new RangeError();

}
Rol e operator [](int index) {
if (index == 1) {
return _rolel,;

else if (index == 2) {
return _rol e2;

}

el se throw new RangeError();

}

mai n() {

User alice = new User();

alice[1] = new Rol e("TI MESHEET_ADM N,
alice[2] = new Rol e("TlI MESHEET_USER",

var rol elndexl = alice[1l];

Overrides []=
write indexer

Overrides []
read indexer

3); Uses write indexer

1); to set roles by index

Uses read indexer to
read a role by index

A common reason to use indexers is to have a class implement a Map interface so that

properties on the class can be read as though they were part of a map, when they actu-
ally form real properties. This method allows tools such as the JSON parser, which
understands maps and lists, to convert your class into a JSON representation. When
data is in a JSON format, it can be sent back and forth over the web. You can make
your Rol e class implement a Map and convert it to JSON using the code shown in list-
ing 8.14. Although the code has snipped some of the boilerplate methods required by
the Map interface, you must provide all of them. Listing 8.14 also uses some of the
other patterns you’ve seen in this chapter, such as returning list literals and returning

typed and untyped generic collections.

Listing 8.14 Letting a class implement Map so it can be converted to JSON

class Role inplenents Map {

String nane;
int _accesslLevel;

Implements
Map interface

Operator overloading o

Rol e(thi s. nane, this._accessLevel) {}

// Map net hods

bool contai nskKey(String key) { Returns true if key is

return key == "nane" || key == "accesslevel";

} name or accessLevel

operator[](String key) {
if (key == "nane") return this.nang; Overloads [] operator to
if (key == "accessLevel") return this._accesslLevel; allow reading properties
return null;

}

void operator[]=(String key, var value) {
if (key == "nane") this.name = key; Overloads []= operator to
if (key == "accesslLevel") this._accesslLevel = val ue; allow writing properties

}

Col | ection<String> get keys { Returns typed collection of String
return ["name", "accessLevel "]; key names created as literal list

}

Col | ection get val ues { Returns untyped collection of
return [this.name, this._accesslLevel]; values created as literal list

}

/1...snip other map nethods. ..

}

Now thatyou’ve implemented Map in your Rol e class, you can use the JSON. st ri ngi fy()
method (defined in the dart : j son library) to convert an instance of a role into a string,
as in the following snippet:

Rol e admi nRol e = new Rol e(" Tl MESHEET_ADM N', 3);
var roleString = JSON. stringify(adn nRol e);

You can use this serialized string to send the Rol e data over the web (which we’ll
explore in part 3, later in the book).

Remember

= Use the operat or keyword in conjunction with the operator symbol to provide a
new method in your class to overload the operator.

= Ensure that you overload operators only where doing so will aid readability of the
code.

= You can overload indexer operators to allow map-like access to properties of
your class.

= The dart:j son library can convert classes that implement the Map interface into
JSON strings.

182

8.4

CHAPTER 8 Collections of richer classes

Summary

In this chapter, we’ve taken a long look at manipulating collections of data and shown
you the relationship between the Col | ecti on interface; some concrete implementa-
tions of collections in the form of Li st, Queue, and Set; and some of the methods
exposed on the collection, such as for Each() and filter().

We also looked at the Map interface, which you can use to store key/value pairs of
data, and you saw that the built-in JSON library can be used to convert strings into
maps and back again.

By using your classes in place of a type placeholder, the generic collection classes
can work in a type-safe manner, effectively giving you a “list of” your own class—for
example, a list of Strings or a list of Users. You've seen how to create your own
generic classes; you should try to create a generic class if you find yourself making a
number of nearly identical classes that differ only by the method parameters and
return types.

Finally, we looked at operator overloading, which allows you to aid readability when
using your classes by providing your own versions of common operator symbols such as
> (greater than) and < (less than). The culmination of operator overloading was to use
the indexer operators [] and [] = to provide your own implementation of the Map inter-
face, which allows your class to be converted to JSON by the built-in JSON library.

In the next chapter, we’ll examine functions in depth. You’ll see how to use func-
tion callbacks and future values to achieve readable and performing asynchronous
code.

Asynchronous programming
with callbacks and futures

This chapter covers
® The nonblocking async programming model
= Callbacks for asynchronous APIs

= |Improving asynchronous readability with futures
and completers

= Unittesting asynchronous code

In web programming, you can’t rely on events outside your application’s control
happening in a specific order. In the browser, retrieving data from a server might
take longer than you expect, and instead of waiting for the data, a user might click
another button. A Dart server application will likely need to handle a new request
for data before a previous request has finished reading data from the file system.
This type of programming is known as an asynchronous model (async), and its coun-
terpart is the synchronous model. In a synchronous model, everything happens in
order, waiting for the previous step to fully complete. This is fine for some environ-
ments, but in a web application environment, you can’t block all execution while
you wait for the previous task to complete.

183

184

CHAPTER 9 Asynchronous programming with callbacks and futures

This is a powerful but nontrivial programming model that’s also used in JavaScript.
We’ll spend some time in this chapter getting to grips with async programming and
exploring the nonblocking aspect of Dart’s event loop. In JavaScript, you use callback
functions with the async programming model, and you can do the same in Dart. We
looked at callback functions back in chapter 4, because they’re a common pattern in
async programming, and we’ll revisit them in this chapter. Callbacks don’t come with-
out problems for readability, maintainability, and sequencing, as you’ll discover, but
Dart introduces a new pair of types to address these problems: Fut ur e and Conpl et er.
A Fut ur e represents a future value—a value you know you’ll have at some point in the
future—and is perfect for async programming, so we’ll also spend some time looking
at this pair of types.

Finally, you’ll use your new knowledge of async programming to write some unit
tests that are specifically able to cope with async code. Unit tests normally run sequen-
tially, with the unit-test app exiting once the last test has run, but this pattern doesn’t
work when your code is still expecting a response from some external influence. For-
tunately, Dart’s unit-test library allows you to wait for async calls to complete before
exiting, as you'll see in action at the end of the chapter.

First, though, we should look at what happens in a synchronous, blocking web app.
Many countries have a regular lottery in which numbered balls pulled from a machine
represent the winning numbers for that week. Players check their tickets against the
winning numbers. In order to build suspense and excitement, the numbered balls
appear from the machine at random intervals. You’ll build this first as a synchronous
app, which will cause the browser to freeze until all the winning numbers are gener-
ated, and then you’ll fix it to use correct async APIs, allowing the browser to remain
responsive. Figure 9.1 shows the problem you’ll experience with the synchronous ver-
sion of the app.

= n|elE}

@ Lottery & Lottery

| & C | 127.00.1:3030/ v% -\| - ¢ @ 127001

Dart Lottery The user interface remains Dart Lottery
unresponsive and only updates
when all the remaining
numbers are retrieved. Start

u L_

Figure 9.1 The synchronous version of your Dart Lottery app will block until your code finishes executing.

9.1

Why web apps should be asynchronous 185

Why web apps should be asynchronous

You’re going to build a lottery web app to simulate a lottery game. In the app, when
you click the Start button, three winning numbers are generated, each after a random
delay of up to two seconds. This delay will cause the browser to lock up until it
responds. The code to implement this delay gets the current time and waits in a whi | e
loop until it has waited the correct amount of time. Each winning number is displayed
on the UL Listing 9.1 shows the complete app’s code.

WARNING The code in listing 9.1 is bad in a web programming environment.
It’s included here only to demonstrate the impact of a blocking web app. In
the next section, you’ll see the correct technique to wait a given period of
time using async APIs.

Listing 9.1 lottery_app.dart written in a synchronous, blocking style

inport “"dart:htn"; Determines current
inport "dart:math"; time, and time you
int get W nni nghumber () { should stop processing

int mllisecsToWwait = new Randon{). nextl|nt(2000);

var currentMs = new Date.now().m | lisecondsSi nceEpoch;

var endMs = currentMs + nmillisecsToWait;

while (currentMs < endMs) { Loops (blocking) until
currentMs = new Date.now().nillisecondsSi nceEpoch; you’ve waited long enough

}

return new Random().nextInt(59) + 1;

Returns winning
} number from 1-60

startLottery() {
int nunl = get W nni ngNunber ();
query("#ball1").innerHTM. = "$numl";
int nunR = get W nni ngNurber () ;
query("#ball2").innerHTM. = "$nunk";
int nunB = get W nni ngNurber () ;
query("#ball3").innerHTM. = "$nunB";

Each getWinningNumber() call
is blocked until the previous
one has completed.

}

resetlLottery() {
query("#bal | 1").i nner HTM.
query("#ball2").inner HTML
query("#ball3").inner HTM.

}

main() {
var startButton = new El ement. htm ("<button>Start</button>");
docunent . body. chi | dren. add(startButton);
startButton.on.click.add((e) {
startButton. di sabled = true; Starts lottery
startLottery(); running

1)

var resetButton = new El ement. htm (" <button>Repl ay</button>");
docunent . body. chi | dren. add(resetButton);

186 CHAPTER 9 Asynchronous programming with callbacks and futures

reset Button.on.click.add((e) {
startButton. di sabl ed = fal se; Resets
resetlLottery(); lottery Ul
1)
}
This code is straightforward: you read down the startLottery() function to see that
it retrieves each winning number in turn and updates a specific <di v> in the UI with
that winning number. Unfortunately, this isn’t what happens in practice: the browser
has an event loop that processes tasks that are waiting on a queue, and because your
code blocks the execution flow, your UI updates aren’t acted on by the browser event
loop until the code has finished executing. The longer you spend in each of your
get W nni ngNurber () functions, the longer the browser has to wait until it regains con-
trol and can start processing the event loop again. Figure 9.2 demonstrates the flow
that the browser takes when processing your code and its event loop.

| Event loop’s queue | ,,,,,,,

‘ Call button click handler ‘ Add to queue ‘ User clicks button

Event loop checks for any waiting
tasks on the queue

Process queue by calling button click handler ‘ Call startLottery() function ‘

numl = getWinningNumber() ‘

‘ balll.innerHTML = numl ‘ Add to queue balll.innerHTML = numl
num2 = getWinningNumber() ‘
‘ ball2.innerHTML = num2 ‘

Time

num3 = getWinningNumber() ‘

|
|
|
Add to queue ‘ ball2.innerHTML = num2
|
|

‘ ball3.innerHTML = numl Add to queue ball3.innerHTML = num3

Control returns to the event loop ‘ Button click handler ends ‘

Event loop checks for any waiting
tasks on the queue

Process queue, actioning the Ul updates ‘ Update bal11.innerHTML ‘
|

| ‘ Update bal12. innerHTML ‘

Event loop checks for any waiting ‘ Update bal13. innerHTML ‘

tasks on the queue
A The browser remains

unresponsive while it's
executing your code.

Figure 9.2 The browser event loop processes events only when your Dart code isn’t executing.

911

Why web apps should be asynchronous 187

LotteryApp.dart |

import "lottery.dart"; imports lottery.dart

main(Q) { library lottery;

int getWinningNumber() {
startLottery(Q) {

3
var numl = getWinningNumber(Q); t
’ \
Main application script Library containing the API

Figure 9.3 The relationship between the lottery app and the | ot t er y library

In practice, many of the tasks a browser needs to perform, such as interacting with a
server, are carried out on different threads internally in the browser, so the event loop
only needs to start the task and be notified (again, via the event loop) that a task has
finished. But it can’t do this while your code is blocking, so you need to change the
code to ensure that it executes and exits as quickly as possible—a task made possible
by the asynchronous APIs.

As you convert this app to be asynchronous, you’ll build up a set of APIs for run-
ning the lottery app in an async manner. To properly separate the UI from the API,
make sure to properly organize the code into separate files. The lottery_app.dart file
will contain your app, which interacts with the UI, and the lottery library will contain
your API. Figure 9.3 shows this relationship.

This split will help you later when you provide async unit tests for the | ot t ery. dart
API functions.

Modifying your app to be asynchronous

Now that you have an app structure, you can start to modify it to become asynchro-
nous. An ideal way for the Dart lottery app to work is to provide some suspense and
drama by creating winning numbers in any order and displaying each number on the
Ul as it appears. Thus the second number could appear first, followed by the third and
first, with each dependent on the random time taken for each number to appear.

Figure 9.4 shows the UI you’ll build and the browser console with some of the log-
ging. As you can see, although the winning numbered balls are requested in order,
they’re generated out of order.

You might have noticed that the Dart Lottery pulls only three numbered balls, so
it’s significantly easier to win than most lotteries.

REAL-WORLD DELAYS

The time delay from when the app starts until the numbered balls appear represents a
nice async flow that you need to cope with in a client-side app. In the real world, this
async flow might come from requesting data from three different server requests or

188

CHAPTER 9 Asynchronous programming with callbacks and futures

& Dart Lottery

€« c © WA

»

The winning balls appear
Dart Lottery as they're pulled from

the machine.

. Winning numbers are
Drawn numbers are: 37, 50, 21 sorted into order once

m

Confirmed numbers: 21, 37, 50 pulled from the machine.
<5 Elements » Q
Ball number 1 waiting: 462 ms undefined:1 |«
Ball number 2 waiting: 1841 ms undefined:1 Balls can appear in
Ball number 3 waiting: 268 ms undefined:1 any order due to a
Ball 3 has number: 21 undef:!.ned:l = random timer.
Ball 1 has number: 37 undefined:1
Ball 2 has number: 5@ undefined:1
> i
B > Q @ <topframe> 5 €L | Errors Warnings $ig

Figure 9.4 The Dart Lottery app pulls numbers after a random amount of time.

waiting for three different inputs from a user. In the Dart Lottery example, the data
you’re waiting for is the number pulled from the machine for each ball, and a random
timer provides the I/0 delay.

In the synchronous version of Dart Lottery, you wait a random amount of time
before each ball is pulled from the machine, and no other ball can be drawn until the
previous one has completed. But the async lottery allows multiple balls to be pulled
from the machine in any order. It’s possible for the third ball to appear from the
machine first. The async pseudocode flow is as follows:

Request first ball, waiting up to 2 seconds
Request second ball, waiting up to 2 seconds Starts balls “rolling”
Request third ball, waiting up to 2 seconds

Set up event handler for first ball
Set up event handler for second ball
Set up event handler for third ball

Sets up handlers for balls
being drawn from machine

Return control to the event |oop Event loop
First ball event handler is called Balls are drawn up waits for balls
to be drawn.

to 2 seconds later
and in any order.

Second ball event handler is called
Third ball event handler is called

BEGINNING ASYNC PROGRAMMING WITH WINDOW.SETTIMEOUT()

The core of the lotteryappis thel ot t ery library. This library provides the code to return
arandom number after a certain amount of time. The | ot t ery library uses an async API
builtinto the web browser called wi ndow. set Ti meout (cal | back, durati on),which exe-
cutes a callback function after a certain number of milliseconds. A trivial usage of it is
shown in the following snippet, with the callback event handler in bold italic:

Why web apps should be asynchronous 189

get W nni ngNunber () {

Random r = new Random(); Creates random number of milliseconds,
int mllisecsToWwait = r.nextlnt(2000); up to 2 seconds in duration
wi ndow. set Ti meout (() { Calls setTimeout(), which
/1 generate our wi nning nunber executes anonymous
// and update the U callback function when
}, mllisecsToWait); timer finishes

)
The Dart app calls wi ndow. set Ti meout () and then continues executing, finally
returning control to the event loop. The event loop calls the set Ti neout () function’s
callback event-handler function only when the specified milliseconds have elapsed.
This is the principle of the event loop and asynchronous programming: the code
starts a task and returns control to the event loop, which notifies the code when that
task has completed.

Figure 9.5 shows how w ndow. set Ti meout () interacts with the event loop in an
asynchronous manner.

Event loop’s queue

Call button click handler Add to queue User clicks button

1 Event loop checks for any waiting
| tasks on the queue

Process queue by calling button click handler Call startLottery() function
i ‘ Start ball 3 timer ‘ | Add to queue ‘ window.setTimeout for ball 1 ‘
|
| ‘ Start ball 2 timer ‘ Add to queue ‘ window.setTimeout for ball 2 ‘
i |
: ‘ Start ball 3 timer ‘ i Add to queue ‘ window.setTimeout for ball 3 ‘
|
i Control returns to the event loop ‘ Button click handler ends ‘
|| Event loop checks for any waiting 5]
| tasks on the queue £
=
| ‘ Ball 2 timeout occurs ‘ ' Run timer callback ‘ num2 = getWinningNumber() ‘
1 ‘ Update bal12. innerHTML ‘ i Add to queue ‘ ball2.innerHTML = num2 ‘
i |
| | Eventloop checks for any waiting R
‘ tasks on the queue Update ball 2 Ul ‘ Update bal12. innerHTML ‘
|
| ‘ Ball 3 timeout occurs ‘ Run timer callback ‘ num3 = getWinningNumber() ‘
i |
| Update batis.innerti. | || Add to queue | ball3_innerHThL = nunz |
|
|| Eventloop checks for any waiting -
‘ tasks on the queue update ball 3 Ul ‘ Update bal 13. innerHTML ‘
|
| andsoon .. The Dart code runs and rgtums.control to the
e event loop as fast as possible without blocking.
Once the timeouts occur, they trigger callbacks to Dart code, Figure 9.5 Async calls mean
which executes and returns control to the event loop. that control returns to the event

This lets the browser remain responsive loop as quickly as possible.

190

CHAPTER 9 Asynchronous programming with callbacks and futures

This asynchronous handling of events in the order in which they occur also happens
in other APIs, such as requesting data from a server using Htt pRequest. Your app
requests data from the server and returns control to the event loop. The event loop
calls the anonymous event-handler function once the server has responded with data.
An example is shown in the following code snippet; the anonymous callback function
is shown in bold italic:
Ht t pRequest . get ("http://exanpl e. cont’, (data) {

/1 handl e data being returned
1
In the next section, you’ll use the async set Ti neout () function as you start to use call-
back functions to interact with the async APIs provided with the browser. We first
looked at callback functions in chapter 4, and now that you know the look and feel of
the lottery app, it’s time to revisit them in the context of async programming.

Remember

= Synchronous code executes in sequence, waiting for each blocking operation to
complete in turn.

= Asynchronous (async) code doesn’t block. Instead, the event loop is responsible
for notifying the app when an 1/0 task completes.

Using callbacks with async programming

Your app is split into two files: the | ot t ery library, which represents the async API and
provides the useful functions to generate numbers and eventually sort them into
order, and the lottery_app.dart file, which contains your app’s mai n() function and
i nports the | ottery library. The mai n() function is the first function that executes
when a Dart app starts, and splitting the key functions into a separate lottery.dart file
will help later when you refactor and test your async code.

The first async version of Dart Lottery uses callback functions to retrieve num-
bered balls. This programming model is common in JavaScript development, both on
the client and the server side, and is possible because functions can be passed as
parameters to other functions.

NOTE Callbacks are a common pattern, and you should get used to reading
code that uses callbacks, but they do have their drawbacks, as you’ll discover.
In the next section, you’ll see how you can improve existing APIs that use call-
backs by using the Fut ur e and Conpl et er pair of values.

The basic callback code, which is still running in a synchronous fashion but without
the delay, is shown in figure 9.6. This is a simplified version that outputs a single win-
ning number to the browser console.

Using callbacks with async programming 191

LotteryApp.dart
mainQ { Anonymous callback function passed
getWinningNumber((winningNumber) { as a parameter to get W nni ngNunber ()
print(winningNumber) ;
s
}

Prints the winning number to the console
when get W nni ngNunber () calls the

anonymous callback function
Imports

Defines the get W nni ngNunber () function
that takes another as a parameter

lottery.dart

int getWinningNumber(Function callback(int winningNumber)) {

Random r = new Random();
var randomNumber = r.nextInt(59)+1;

cal lback(randomNumber) ;

¥

Creates a random number

) between 1 and 60, inclusive
Calls the cal | back() function that was

passed into get W nni ngNunber (),
passing in the r andonNunber

Figure 9.6 The lottery.dart file defines a get W nni ngNunber () function that takes a callback
parameter. The app passes a callback to get W nni ngNurrber () , which is called when a number
is retrieved.

Nothing in the code shown in figure 9.6 represents async programming; instead, the
code is entirely synchronous. The mai n() function is called, followed by the call to
get W nni ngNunber (), which accepts a callback function as a parameter. get W nni ng-
Nunber () creates a random number and passes it back into the callback function,
which outputs the winning number to the console. Only after these steps have
occurred does control return to the event loop. This is fine, because there is also no
blocking code yet. The lottery app can call get W nni ngNunber () three times, and
three winning numbers will be printed to the console.

To improve the app’s UI slightly, you’ll add a utility function updat eResul t (i nt
ball, int wi nningNunber) that will populate a <di v> element in the browser repre-
senting a ball with the winning number. lottery_app.dart now contains the code
shown in the next listing, which uses both shorthand and longhand function syntax to
call updat eResul t () with each winning number.

Listing 9.2 lottery_app.dart: using callbacks

inmport "lottery.dart";
import "dart:htm";

mai n() {

192

9.2.1

CHAPTER 9 Asynchronous programming with callbacks and futures

get Wnni ngNunber ((int resultl) => updateResult(1l, resultl));

get Wnni ngNunber ((int result2) => updateResult(2, result2)); Passes anonymous
get W nni ngNunber ((int result3) { callba.ck functions to
updat eResul t (3, result3); Longhand syntax getWinningNumber()

b is also valid for

} anonymous functions.

updat eResul t (i nt ball, int w nningNunber) {
var ballDiv = query("#ball $ball"); Utility function to update
bal I Di v.inner HTML = " $wi nni ngNunber "; correct <div> on Ul

}

The associated API library | ot t ery contains the single get W nni ngNunber () function,
which accepts a callback function and generates a random number, as you saw in
figure 9.6. In a moment, you’ll modify this function to use the async API call
wi ndow. set Ti neout () and add some suspense and drama to the lottery app.

Adding async callbacks to Dart Lottery

Now the async Dart Lottery can begin. You can generate random numbers and display
them on the UL Because the code is synchronous, executing one statement after
another, it will create resul t 1 first, resul t 2 second, and resul t 3 third.

But there’s no suspense (and no async code), because you're pulling the numbers
out of the machine as fast as the code will execute. Fortunately, it’s easy to introduce
suspense without changing lottery_app.dart: modify the get W nni ngNunber () func-
tion in the | ottery library to use the wi ndow. set Ti meout () function to ensure that
the callback is called only after some random amount of time, which will cause the
results to be generated in any order. Perhaps resul t 3 will appear first, closely fol-
lowed by resul t 1 and, after a final delay, r esul t 2. The next listing modifies get W n-
ni ngNunber () to call the callback function after a random amount of time of up to
two seconds.

Listing 9.3 lottery.dart: adding a timer to get W nni ngNunber ()

library lottery; Included for
window.setTimeout()

inmport "dart:htm";

i mport “dart: math"; 47 Included for

get W nni ngNunber (Functi on cal | back(int w nni ngNunber)) { Random class

Random r = new Random();

var randomNunmber = r.nextlnt(59) + 1; Random number,
int mllisecs = r.nextlnt(2000); <1J up to 2 seconds
wi ndow. set Ti neout (() {

cal | back(randomNunber);
}, mllisecs);

} p ber of Calls callback when
asses number o timeout occurs

milliseconds to wait
as second parameter

Calls window.setTimeout() and
passes anonymous function

9.2.2

Using callbacks with async programming 193

1. The code executes in order, as fast as 2. Timers start, with flow
the machine will allow. returning to the event loop
until the timers complete.
main() { Timer 1
getWinningNumber ((int resultl) => updateResult(l,resultl)); waits
700ms
Timer 2
getWinningNumber((int result2) => updateResult(2,result2)); waits
910ms
Timer 3
getWinningNumber((int result3) => updateResult(3,resultl)); waits
} 200ms

3. When each timer completes, the event loop calls
the timer’s callback function, which executes the
callback passed to get W nni ngNumber () .

|Executes: (int result3) => updateResult(3,result3) |

|Executes: (int resultl) => updateResult(l,resultl) |

|Executes: (int result2) => updateResult(2,result2) |

Figure 9.7 The code runs as fast as possible until the mai n() function finishes executing. At that point,
the event loop waits for the timers to time out, calling back into the Dart code.

TIP For animation, the HTML5 browser function r equest Ani mat i onFr arme()
is a better choice for updating the screen periodically. This is because its
refresh frequency is determined by the capabilities of the browser and hard-
ware, and it runs only when the browser tab is visible.

The three calls from mai n() to get W nni ngNunber () happen in turn as fast as the
code will execute. But because they took place before you added the set Ti neout ()
call, the actual results will be generated at some unknown point in the future. Once
all three calls to get W nni ngNunber () have been made, flow returns to the event loop,
which responds again only when the set Ti neout handlers need to be called after
each of their timeouts expires, as shown in figure 9.7.

This is exactly how you can expect code in the real world to work. When you
request data from a server, you don’t know how long the server will take to respond.
The user may have clicked another button in the meantime, triggering a different
request to a server. The app could receive the server callback events in any order.

Ensuring that all async callbacks are complete before continuing

Dart Lottery needs to do more than just show the numbers on the screen as they’re
pulled from the machine. Once all three balls have been pulled, you need to display
them neatly. To do this, you’ll introduce a new utility function called get Resul t sStri ng

194

CHAPTER 9 Asynchronous programming with callbacks and futures

(Li st<i nt>winni ngNunbers, String nessage). It will return a string containing the
message and the list of comma-separated winning numbers.

There’s now a requirement for some sequencing in your app. You can get the
three numbers and display them onscreen in any order, but only after all three num-
bers have appeared do you want to execute the next part of the app that displays the
results string.

This approach creates some complexity in async code, because each of the call-
backs has no knowledge of the other callbacks. Thus you need to introduce some
check or another mechanism. There are at least a couple of ways of doing this. The
first is to store a flag in the mai n() method outside each callback and have each call-
back check whether all the values have been retrieved. The second is to nest the call-
backs, in which case you’ll look at each in turn.

Listing 9.4 shows a modified lottery_app.dart in which the callback functions call
an addAndDi spl ay() function that’s declared in mai n() to add each result to a result
list defined in mai n() . Only when that list contains three items does addAndDi spl ay()
call getResultsString() and display the list’s contents in a browser <di v>. The
addAndDi spl ay() function also becomes a closure because it’s passed into each call-
back, retaining access to the resul t s list variable, even when it’s called in the scope of
get W nni ngNurrber () . Please refer to chapter 4 for a recap on closures.

Listing 9.4 lottery_app.dart: introducing sequencing into an async callback

mai n() {
List<int> results = new List<int>(); <—— Results list

voi d addAndDi spl ay(int result) {
results.add(result);

if (results.length == 3) {
var resultString = getResultsString(results, "Wnning nunbers: ");
var W nni ngNunbersDi v = query("#w nni ngNunbers");
wi nni ngNunber sDi v. i nnerHTM. = resul t Stri ng; addAndDisplay() becomes
} a closure when it’s passed
} into each callback.

get Wnni ngNunber ((int resultl) {
updat eResul t (1, resultl);
addAndDi spl ay(resultl);

s

get Wnni ngNunber ((int result2) {
updat eResul t (2, result2);
addAndDi spl ay(resul t2);

1

get Wnni ngNunber ((int result3) {
updat eResul t (3, result3);
addAndDi spl ay(resul t3);

1)

Callback functions also call
addAndDisplay(), passing in
their own result.

Using callbacks with async programming 195

Although this code works fine, it dramatically increases the app’s complexity. As you
read the code from top to bottom, it’s no longer possible to see the exact order in which
things occur. You can only tell by the logic in the addAndDi spl ay() function that the
wi nni ngNunber s <di v> will be populated after all three callbacks have occurred.

Fortunately, a second approach—nesting callbacks—can provide a limited amount
of readability benefit and ordering, at the expense of allowing all three functions to
execute simultaneously. This approach is often beneficial, though; many times you’ll
want to simulate a synchronous flow even when you’re dealing with an async API. For
example, you might need to be sure that you’ve retrieved data from server 1 before
you retrieve data from server 2 or that you’ve connected to the database before you
query it.

9.2.3 Nesting callbacks to enforce async execution order

Nesting callbacks is a technique that allows you to simulate synchronous code when
you have only an asynchronous API, such as with get W nni ngNurber s() . This tech-
nique is used often in JavaScript, especially with server-side Node.js or a Dart VM to
execute async code in the correct, logical order, such as open a file, read the file, close
the file. All of these are async tasks, but they must be performed in the correct order.
There’s a big downside to this technique, though. Once you get more than three or
four nested callbacks, readability again becomes a problem, as you'll see.

When nesting callbacks, you need to ensure that the first callback calls the second
get W nni ngNunber () function and the second callback calls the third get W nni ng-
Nunber () function, and so on. The last callback can then execute the final step in the
chain, such as displaying the list of results on the UL

Listing 9.5 modifies lottery_app.dart using nested callbacks to ensure that the win-
ning numbers are drawn in order and that the list of winning numbers is updated only
after the third number is drawn.

Listing 9.5 lottery_app.dart: using nested callbacks

Passes first First callback calls
mai n() { callback into getWinningNumber (),
get W nni ngNunber ((int resultl) { getWinningNumber() passing in second callback.
updat eResul t (1, resultl);

T . Second callback calls
get Wnni ngNunmber ((int result2) { .
updat eResul t (2, result2); getV\.lmn.mgN.umber(),
passing in third
get Wnni ngNunber ((int result3) { callback.

updat eResul t (3, result3);

Third callback
displays winning
number results.

List results = new List();
results. add(resultl);
results. add(result2);
results. add(result3);

var resultString = getResultsString(results, "Wnning nunbers: ");

var w nni ngNunbersDi v = query("#w nni ngNunbers");

wi nni ngNurnber sDi v. i nnerHTML = resul t Stri ng; e

196 CHAPTER 9 Asynchronous programming with callbacks and futures

1)
1)

s
}

As you can see, with three levels of nesting, things are starting to get complicated. The
next requirement for the app is to sort the balls into order, also using an async API,
which means another nested callback in the third callback.

Unfortunately, this requirement is all too common in the real world, where you
only have async APIs to work with but you need to either enforce a specific order or
wait for a number of async calls to complete. A real-world example on the client side is
a button-click handler to retrieve data from a server call, manipulate that data, and
send the data back to the server, alerting the user when complete; a dive into many
JavaScript applications will show code that contains nested async calls many levels
deep, which is popularly known as callback hell. The following snippet shows how it
might look if you had six balls instead of three:

get Wnni ngNunmber ((int resultl) {
updat eResul t (1, resultl);
get Wnni ngNunber ((int result2) {
updat eResul t (2, result2);
get Wnni ngNunber ((int result3) {
updat eResul t (3, result3);
get Wnni ngNunber ((int result4) {
updat eResul t (4, resultd);
get W nni ngNunber ((int result5) {
updat eResul t (5, result5);
get Wnni ngNunber ((int result6) {
updat eResul t (6, result6);
//snip getResultsString()
1
1
)
1)
1)
1

Many frameworks in the JavaScript world have been created to try to deal with this
callback-nesting problem, but Dart brings its own solution to the table in the form of
the Future and Conpl et er types. These provide neat mechanisms to let async code
execute in a specific order without nesting and to allow code to continue executing
only after all the async operations are complete.

Remember

= Callbacks provide the standard async pattern of operation.

= A callback function that’s passed to an async API will be called when the async
operation is completed.

9.3

Introducing the Future and Completer pair 197

(continued)

= To ensure that all async operations are completed before the next block of code
executes, you can maintain a count or other flags to indicate that all the async
operations have completed.

= To enforce a specific sequence of code execution with async APIs, you can nest
API callbacks.

Introducing the Future and Completer pair

You saw in the previous section how to run async code using callback functions. When
you request a winning number from the Dart Lottery machine’s get W nni ngNunber ()
function, you’re making an async request that returns a winning number after a ran-
dom amount of time. Once all three of the winning numbers have been returned, you
perform the next step in the app’s flow: formatting the numbers for use on the Ul

The code to check whether all three numbers have been returned became more
complex, and you lost the ability to easily navigate the code. Fortunately, Dart pro-
vides a neat pair of types, Fut ure and Conpl et er, that will help you write more main-
tainable and readable async code.

These two types work closely together to return a future value, which is a value that
will exist at some point in the future. A Conpl et er object is used to return an object of
type Fut ur e, which represents a future value. This future value is populated when the
conpl et er. conpl et e(val ue) function is called, passing in the real value for the
future. You can wrap your existing async API call to get W nni ngNunber (cal | back) to
instead return a future value. Figure 9.8 shows how to achieve this; we’ll then look at
how to use a future value.

1. The new get Fut ur eW nni ngNunber ()
function returns a Fut ur e<i nt > value.

2. Create a completer that

= can return an i nt value at
Future<int> getFutureWinningNumber() { / some point in the future.
Completer<int> numberCompleter = new Completer<int>();
L 3. Ste;r\t/\;he gsyn; c:;l to
getWinningNumber((winningNumber) { ge . mj" ngNurrber () ,
|~ numberCompleter.complete(winningNumber); passing in a callback.
D:
e 4. Return a future value
) return numberCompleter.future; from the completer.
5. The calling function
6. When the async callback to get W nni ngNunber () continues to execute,
finishes and the event loop causes the callback to be ultimately returning
called, the completer’s conpl et e() function is called, control to the event loop.

passing in the wi nni ngNunber value. The future returned in
step 4 now contains a value.

Figure 9.8 It’s possible to wrap an async callback API to use the Fut ur e and Conpl et er types.

198 CHAPTER 9 Asynchronous programming with callbacks and futures

When you call get Fut ur eW nni ngNunber (), you get back a result immediately in the
form of a Future<int> returned from a completer. The code continues to execute,
using that future value in place of a real value. In get Fut ur eW nni ngNunber (), you’ve
made a call to the async get W nni ngNunber () function, which itself is requesting data
from an async API. At some point, when the completer’s conpl et e() function is passed
the real value, the future value will finally contain a value. How do you access that future
value? Once again, via a callback, which is passed into the future’s t hen() function.
Let’s see this in action by replicating the first simple callback example to display
three numbers. The next listing shows the new lottery_app.dart file, which uses
get Fut ur eW nni ngNumber () , and the original version with callbacks for comparison.

Listing 9.6 lottery_app.dart using Fut ur e values and t hen() callbacks

mai n() {

Future<int> f1
Future<int> f2
Future<int> f3

get Fut ur eW nni ngNunber () ;
get Fut ur eW nni ngNunber () ;
get Fut ur eW nni ngNurber () ;

Request for winning number
returns future value

fl.then((int resultl) => updateResult (1, resultl));
f2.then((int result2) => updateResult(2, result2));
f3.then((int result3) => updateResult (3, result3));

Callback in future’s then()
function executes when
future value has a value.

/1 get Wnni ngNunber((int resultl) => updateResult(1, resultl));
/1 get Wnni ngNunber ((int result2) => updateResult(2, result2));
/1 get Wnni ngNunber((int result3) => updateResult(3, result3));
}
Original callback
code for comparison
A more concise way of writing this code is to chain the t hen() function onto the orig-
inal function call:

get Fut ur eW nni ngNunber ().then((int resultl) => updateResult (1, resultl));

In terms of functionality, it appears you’ve gained little. You still provide a callback
into the t hen() function, and each callback is executed when the future value has a
value (with the future value being passed on the callback parameter). What “extra
value” does a future value give you?

9.3.1 Passing around future values

The first thing you can do with a future value is pass it around the application. With
the callback version, you need to decide what you want to do with the winning num-
ber when you call get W nni ngNunber () —in this example, by passing the winning
number into the updat eResul t () function.

With the future version, you can put off that decision and allow another part of the
code, such as an updat eUser I nterface() function, to decide what happens to the
future value by passing in the futures as parameters. This approach has the twin bene-
fits of reducing callback nesting and allowing you to pass all three future values into
another function, even though the async result that they represent hasn’t yet been

Introducing the Future and Completer pair 199

returned. You can refactor the lottery_app.dart file again to pass the future values into
updat eUser I nt er f ace(), as shown next.

Listing 9.7 lottery_app.dart: passing future values into a function

mai n() {
Future<int> f1 = get FutureW nni ngNunber () ;
Future<int> f2 = get Fut ur eW nni ngNunber () ;
Future<int> f3 = get Fut ur eW nni ngNunber () ; Passes future values
updat eUserInterface(fl1,f2,f3); <1J to another function

}

voi d updateUserlnterface(Future first, Future second, Future third)
first.then((int resultl) => updateResult(1, resultl));
second. then((int result2) => updateResult(2, result2));

third.then((int result3) => updateResult(3, result3)); Other function can

decide to use future
} value via future value’s
then() method.

This is a powerful feature of futures. Real-world scenarios include passing a number of
future data values retrieved from the server into a UI component and handling a
user’s “future” button click by passing it to a function in the app. Because the future
values are variables that know they’ll have a value in the future (via the then() func-
tion), it’s easy to store them in other classes such as lists. This brings us to a second
powerful feature of futures: performing async calls in sequence.

9.3.2 Ordering async calls by chaining futures

Back in the callback discussion, async callbacks were nested in each other to ensure
that they were executed in order. When you get a few callbacks deep, you can end up
in nested callback hell, in which you’re nesting so deep that readability and indenting
start to be a problem. This nesting effect can be achieved with futures by embedding
each future in the previous one’s t hen() function, as shown in the following snippet:

get Fut ur eW nni ngNunber ().then((resultl) {
updat eResul t (1, resultl);
get Fut ur eW nni ngNunber (). then((result2) {
updat eResul t (2, result?2);
get Fut ur eW nni ngNunber (). then((result3) {
updat eResul t (3, result3);
1
B
B

This way is no better than using nested callbacks, so although it’s possible to nest
futures, doing so is clearly a suboptimal solution. Fortunately, Dart’s futures provide a
mechanism to chain futures together so the next one is executed only when the previ-
ous one finishes, without nesting. This mechanism 1is achieved via the
future. chain(cal | back) function, which is used in place of future.then(). The

200

9.3.3

CHAPTER 9 Asynchronous programming with callbacks and futures

chain() function allows you to return another future, providing a mechanism to
chain futures together, as shown in the following listing.

Listing 9.8 lottery_app.dart: chaining futures together to enforce ordering

mein() { Uses chain() function of returned
get Fut ur eW nni ngNunber (). chain((resultl) { future instead of then()
updat eResul t (1, resultl);
return get Fut ureW nni ngNunber () ; <—— In chain(), return next future ...
}).chain((result2) { . ,
updat eResul t (1, result2); ?nd so on, until you’ve
return get Fut ur eW nni ngNunber () ; chained all futures together.

}).then((result3) { Last call uses then() because
updateResul t (1, result3); it doesn’t return a future.

1)
}
As you can see, you can continue to chain many futures together without nesting or
affecting readability. Each call to get Fut ur eW nni ngNunber () is made only when the
previous call has completed.

Waiting for all futures to complete

In the discussion on callbacks, results were to be displayed as a formatted string using
the get Resul t sString() function, but only after all three winning numbers had been
retrieved. You achieved this by retrieving each value asynchronously and having each
callback call an addAndDi spl ay() function that added the value to a list and performed
the display action only when there were exactly three items in the list (one for each async
value). This solution, although it works, introduces complexity in what should be a
straightforward piece of code. You want to make three calls to get W nni ngNurrber () , and
only when all three calls have completed will you execute the next step.

This is one area in which future values shine. Dart provides a
Futures.wai t (futures) function that takes a list of future values and returns a single
future. The single future contains a list of all the values returned from the futures
passed in. Although this sounds complex, it’s simple to use in practice, as shown in fig-
ure 9.9. The function waits for three real values to be returned from three future val-
ues and then passes the three real values—the three winning numbers—to be
formatted on the display.

By passing all the future values into the wai t () function, you can be sure all the
futures have completed and returned real values before you continue to the next step.
Because wai t () also returns a future value, you can use its chai n() function to chain
it to other futures. This is helpful if, for example, you want to wait for the three numbers
to complete and then request a fourth “bonus ball” number, as shown in the next listing.
In this listing, you also add the future value results from get Fut ur eW nni ngNunber ()
directly into a list.

Introducing the Future and Completer pair 201

main() {
Future<int> fl1
Future<int> 2

Future<int> f3

getFutureWinningNumber();
getFutureWinningNumber();

getFutureWinningNumber(); 1. The three future values

fl.then((int resultl) => updateResult(l, resultl)); are passed as a “_St to
2. then((int result2) => updateResult(2, result2)); the F_Ut ures. wal t()
f3_.then((int result3) => updateResult(3, result3)); function, which returns
a single future value.

, Future<List<int>> allFutures = Futures.wait([fl, f2, f3]);
"allFutures.then((List<int> allVvalues) { |

| updateDisplay(allvalues); ‘\
b 2. The wai t () function

returns all the values

. .) in a list once all the
3. When the wai t () function has all three real values, its t hen() futures have completed.

function executes, and you can use the real values.

Futures.wait([f1, f2, 3]).then((allvalues) => updateDisplay(allValues));

void updateDisplay(List<int> winningNumbers) {
var resultString = getResultsString(results, "Winning numbers: ");
var winningNumbersDiv = document.body.query("'#winningNumbers');
winningNumbersDiv.innerHTML = resultString;

¥

Figure 9.9 Futures.wait() allows you to wait for many futures to complete before continuing execution.

Listing 9.9 lottery_app.dart: waiting for futures and chaining

main {
Li st futureVvalues = new List();
f ut ur eVal ues. add(get Fut ur eW nni ngNunber ());

Waits for
fut ureVal ues. add(get Fut ur eW nni ngNunber ()) ; Adlds tllreFf:ture futurevalues
futureVal ues. add(get Fut ur eW nni ngNunber ()); values to fis to complete
Fut ures. wait (futureval ues).chain((List firstThreeNunbers) { with chain()

get Resul t sSt _ri ng_(fi rst ThreeNurmbers, "W nni ng nunbers"); Displays
/1 ... snip display code ... three winning
return get Fut ureW nni ngNurber () ; numbers
}).then((int bonusBall) { Returns future
get Resul tsString([bonusBall], "Bonus ball"); from chain() to
[/l ... snip display code ... get bonus ball
3 In bonus ball’s then()
} ' method, displays number

By using the then() and chai n() methods of the Future class and the wai t () static
method of the Fut ur es class, it’s possible to write readable async code that avoids mul-
tiple levels of nesting and preserves order. There’s still one more method of the
Fut ur e class to look at: transforn().

202

9.34

Returns a
string, not
a future ...

CHAPTER 9 Asynchronous programming with callbacks and futures

Transforming nonfuture values into futures

You saw earlier how to take future values and pass them around your application. This
approach is fine when it’s the future values you need, but sometimes the future values
are just 2 means to an end. In the Dart Lottery app, you're interested in the results
string, which is generated by the get Resul tsString() function. It’s the string value
returned from get Resul t sString() thatyou want to pass around your app. Because a
number of async calls need to complete before you can get the results string, you can’t
just call get Resul t sString() and pass its value to another function. Instead, you can
call get Resul tsString() in the final t hen() handler of the final future, but some-
times you also need to use another future value. The result can be nested futures,
which is what you’re trying to avoid with futures in the first place. The following snip-
pet shows the problem:

Future.wait ([f1, f2, f3).then((List results) { Gel‘:sresult
String resultString = getResultsString(results); <,J string

format ResultString(resultString).then((formattedResultString) {
/1 do something with the formatted result string

1)

3 ures

Passes resultString to
another function that

Result: nested fut
returns a future

At this point, the transform(cal | back) function comes in. It’s similar to the chai n()
function in that it returns a future. The difference is that chai n() expects its callback
function to return a future, and t r ansf or n() wraps any value in a future, allowing you
to return a future value as part of a sequence of async method calls—even when some
of those method calls aren’t async.

Listing 9.10 shows transf or n() in action: it waits for all three winning numbers to
be drawn, passes them to get Resul tsString(), and automatically wraps the return
value from get Resul t sString() into another future that you can use to chain to the
next call to f or mat Resul t St ri ng() , which is used by the updat eW nni ngNunber sDi v()
function. This avoids nesting the call to f or mat Resul t String() in the wai t ().t hen()
callback function.

Listing 9.10 lottery_app.dart: transforming a nonfuture value into a future value

mai n() {
List futureValues = new List();
fut ureVal ues. add(get Fut ur eW nni ngNunber ()) ;
fut ureVal ues. add(get Fut ur eW nni ngNunber ());
futureVal ues. add(get Fut ur eW nni ngNunber ()) ;

Async calls to get

winning numbers
Returns

Futures.wait (futureVal ues).transforn{ (List w nningNums) { a future

String result = getResultsString(w nningNuns, "W nni ng nunbers");
return result;

. but the string
}).chain((resultString) { is wrapped into Passes
return format Resul tString(resultString); a future by future result

}).then((formattedResul tString) { transform(). to an_other
var wi nni ngNunber sDi v = query("#wi nni ngNunbers"); function

9.4

Unit-testing async APIs 203

3 resultString completes,

wi nni ngNurber sDi v. i nnerHTML = resul t Stri ng; Q—‘ When the future
it’s displayed.

}

Future<String> format Resul t String(String resultString) {
/1 snip some async inplenmentation

}

Future values, supported by their completers, provide a powerful mechanism for writ-
ing code that uses async APIs in a readable and maintainable manner. By chaining
async calls with chai n() and nonasync calls with t r ansf orn() , you can mix asynchro-
nous and synchronous code while maintaining a coherent flow.

Many Dart async APIs return future values rather than using callbacks, but some
still do use callbacks. In this section, you've seen how to wrap callback APIs such as
get W nni ngNunber (cal | back) to return future values by hiding the callback function-
ality in a wrapper function, instead returning a future value that’s completed when
the callback itself is called.

Remember

= You can wrap async callback API functions to return future values.

= The future value’s t hen(cal | back) callback function is called when the future
has finally received a value.

= transforncal | back) wraps its callback’s returned value in a new future.

= chain(cal | back) expects its callback’s returned value to be a future.

= The chain() and transforn() callback functions are called when the future
receives its value but also let you return another future. You can use these to
build a sequence of multiple async and synchronous calls.

In the final section, we’ll look again at unit testing, which we last discussed in chap-
ter 3, and you’ll see how to unit-test the async library functions.

Unit-testing async APIs

Dart’s unit-testing framework allows you to test your functions in a separate script with
its own mai n() function. This script imports the library APIs and tests the various
pieces of functionality you’ve built. When you write unit tests, you expect each test to
run some code, complete, and report whether that test passed or failed, depending
on your expectations. The following listing shows an example unit test to test the
get Resul tsString() function from the | ottery library. This code is similar to the
testing code we looked at earlier in the book.

Listing 9.11 lottery_test.dart: unit-testing get Resul t sSt ri ng()

inport "lottery.dart"; Importslibrary

import "dart:htm™; . : under test
import "lib/unittest/unittest.dart"; Boilerplate to import 0

inmport "lib/unittest/htnl _config.dart"; test and HTML libraries

204

CHAPTER 9 Asynchronous programming with callbacks and futures

mai n() {
useHt m Confi guration(); <—— Boilerplate code to register HTML test library

test('Results String', () {
var result = getResultsString([23,44,57], "Wnning nunmbers: ");

Performs
expect (result, equal s("Wnning nunbers: 23, 44, 57")); callunder
IO test()
} Checks expectations

This is a standard, synchronous unit test. The flow follows the expected execution
sequence:

Start the mai n() function.

Start the t est () function.

Call get Resul t sString() with sample parameters.
Check the expectations on the return value.

The t est () function exits.

The nai n() function exits.

o a ~» WO N P

You can test async APIs such as get W nni ngNunber (cal | back), which uses callbacks,
or get Fut ur eW nni ngNunber (), which uses futures and requires a slightly different
approach.

Because of their asynchronous nature, the test () and mai n() functions will have
exited before the callback or future value is returned, as in the following sequence:

Start the mai n() function.
Start the t est () function.
Call get Fut ur eW nni ngNunber () with sample parameters.
The t est () function exits.
The nmai n() function exits.

o a ~A WO N P

The future value is returned.

This sequence presents a problem because it’s the future value that you need to
check against your expectations, and test () and mai n() have already exited. Fortu-
nately, the Dart unit-test framework contains a number of expect Async functions in
the form of expect Async0(), expect Asyncl(), and expect Async2(), which wrap the
callback that you’d pass into the async API functions or the future value’s t hen()
function. The numerical suffix on the expect Async functions represents the num-
ber of arguments the callback function expects. Because future callbacks only ever
have a single argument (representing the real value used to populate the future)
passed to them, this is perfect for our example. Likewise, the callback version of
your API also returns a single value, so you can use expect Asyncl() in both cases.
Let’s test the callback version of your API function with get W nni ngNunber () first
and then test the get Fut ur eW nni ngNunber () function.

9.4.1

9.4.2

Unit-testing async APIs 205

Testing async callback functions

The expect Async function wraps the callback function passed to get W nni ngNunber () .
The following snippet is a reminder of the call to get W nni ngNunber () and its callback
function:

get Wnni ngNunber ((int result) { The callback takes a
/1l ...snip ... do sonething with result val ue single argument: an int.

o)
Calling this code is fine in the context of a web browser, because once you call
get W nni ngNunber (), control returns back to the event loop. But in the context of a
unit test, you need to ensure that the unit test waits for the result value to be returned
before it exits. This is where the expect Async() function comes in: it wraps the call-
back, which forces the unit-test framework to wait until the async call has completed
before exiting. This gives you the ability to check your expectations of the result value
and is shown in the following snippet, with the expect Async1() function highlighted
in bold italic:
get Wnni ngNunber (expect Asyncl((int result) {

/1l ...snip ... test the result value
)
In the simple test shown in the following listing, a real unit test verifies that the num-
ber returned is in the range 1-60 inclusive.

Listing 9.12 lottery_test.dart: testing async callback functions with expect Async()

inmport "lottery.dart";
import "dart:htm";

inmport "lib/unittest/unittest.dart";
import "lib/unittest/htnl _config.dart";
mai n() {
useHt m Configuration(); Wrapping the callback
test (" Wnning Nunber Call back', () { in expectAsync() lets you
get W nni ngNunber (expect Asyncl((int result) { properly test the result.

expect (result, greaterThanO Equal To(1));
expect (result, |essThanOr Equal To(60));
1))
)

}

Now that you’ve seen how to test async callback functions, let’s apply the same knowl-
edge to async functions that return future values.
Testing future values

The final step in async testing is to test the result of get Fut ur eW nni ngNunber (). A
future value’st hen() function takes a callback function to receive the final value. It’s this

206

CHAPTER 9 Asynchronous programming with callbacks and futures

callback function that you wrap in the expect Async1() function, which lets you check
your expectations on the future value returned. The following snippet shows the test
code for testing the future value, with expect Async1() highlighted in bold italic:

test("Future wi nning nunber", () {
get Fut ur eW nni ngNunber (). then(expect Asyncl((int result) {
expect (result, greaterThanOr Equal To(1));
expect (result, |essThanOr Equal To(60));
IODN
)

You can even test multiple futures by using the Futures. wai t() function and wrap-
ping its t hen() function in an expect Asyncl() function, as shown in the next listing,
which expects three values to be returned in the list.

Listing 9.13 lottery_test.dart: testing multiple futures withwai t () andexpect Async()

inport "lottery.dart";
import "dart:htm";

inmport "lib/unittest/unittest.dart";
import "lib/unittest/htm _config.dart";
mai n() {

useHt m Confi guration();
test (' Wnning Nunber Callback', () {

Future f1 = get Fut ureW nni ngNunber () ;
Future f2 = get FutureW nni ngNunber (); Waits, then expects async
Future f3 = get Futur eW nni ngNunber () ; values to be returned

Futures.wait([f1,f2,f3]).then(expectAsyncl((List<int> results) {

expect (results.length, equal s(3));
1) Checks that three values

are in returned list

)
}

When checking futures, the future value’s then() function callback needs to be
wrapped by expect Async1() . This also means you can use . chai n() and . transforn()
to link futures together in a specific order. Finally, you wrap the last future’st hen() func-
tion callback in expect Asyncl() in a manner similar to that of the previous listing.

Remember

= Testing async APIs requires special treatment; otherwise, the unit test will exit
before the returned value has been checked.

= The callback function passed either to the async API function or into a future’s
then() function needs to be wrapped by an expect Async() function, which
forces the test framework to wait for the async call to complete.

9.5

Summary 207

Summary

There’s no doubt about it: asynchronous programming is harder than synchronous
programming. But nonblocking async APIs provide your app with the means to stay
responsive, even when multiple requests are running that would otherwise block exe-
cution. On the server side, this could be file system access and network socket access;
on the client side, it could be requesting data from a server or waiting for a user to
enter some input. Dart’s async APIs allow your code to execute and return control to
the event loop, which will call back into the code again only when something hap-
pens, such as a file read completing or a server returning data.

Callback functions will be familiar to JavaScript developers, but many nested call-
backs, which are often needed to enforce execution sequence, can create a callback
hell. Dart allows callback functions but also provides the Fut ure and Conpl et er pair
of types that work together to provide a future value that can be passed around your
app. Only when the async call completes does the future value get a real value.

Multiple async requests can be chained together using the chain() function,
which lets you avoid many nested callbacks. The future’s t ransf orn() function also
lets you use synchronous APIs interspersed with async APIs. The wai t () function lets
you wait until all futures have received real values before you continue processing.

Finally, unit-testing async code uses the expect Async functions, which let the unit-
testing framework know that it should wait for the callback or future value to be
returned before the test is complete. These functions let you test your own async APIs
in the same way you test standard, synchronous code.

Now you know about nearly all the concepts in the Dart language, and you’re
ready to start building apps. In the next section, you’ll see more interaction with the
browser, and we’ll look at how to build a single-page web application with multiple
views, offline data storage, and interaction with servers.

Part 3

Client-side Dart apps

In the third part of the book, you’ll see how to build the client side: building
browser-based, single-page Dart apps using the latest HTML5 technology.

Chapter 10 introduces the Dart event loop and explains how to build a user
interface using Dart’s browser DOM manipulation libraries and register your app
to listen for browser-based events.

In chapter 11, you’ll learn how to interact with the browser, letting your single-
page app react to browser navigation events. You’ll use in-browser cookies and
offline storage to persist state and data across sessions and learn how to serialize
your objects into a JSON form.

By chapter 12, you’ll be ready to look beyond the Dart ecosystem and let your
app interact with external systems such as external JavaScript functions and com-
municate with external servers. You’ll use HTML5 AppCache technology to let
your app run without a server, and go further by turning your app into a
Chrome packaged app.

This part is focused on the client side. By the end of part 3, you’ll be ready to
investigate Dart on the server, building a back-end for your client-side app.

Bwilding a Dart web app

This chapter covers

= The structure of a single-page web app
= Building dynamic views with dart: html elements
= Handling browser events with Dart

Dart’s primary use is building complex web apps. A web app typically comprises a
single web page that loads in the browser and provides a host for the application’s
code. This application source code is responsible for building the user interface,
providing methods for navigating around the application, and storing the user’s
data by either sending it to the server or storing it locally.

When building a web app in Dart, it’s good practice to build it working offline
first. Working offline has a number of benefits, both for you as the developer and
for the end user. When you build a web app offline first, you provide some mock
injected data that will ultimately be replaced by a combination of local, client-side
storage (supported by HTML5 APIs) and server-side data persistence. This setup lets
you write the client-side app in Dart without needing a server component or data-
base up and running, thereby reducing debug times and aiding the ability to unit-
test your app.

The end user of your app will be able to use your app in disconnected situations,
such as on a flight or in areas of limited network coverage. This setup allows you to

211

212

10.1

10.1.1

CHAPTER 10 Building a Dart web app

write mobile, browser-based apps in Dart that function even when the device isn’t con-
nected. Another benefit to the end user is that apps designed to work offline also work
much faster when online: the data that they use tends to be stored locally, so the app can
start up much faster without needing to first load a large amount from the server.

This chapter shows that by using HTML elements, you can build a multiscreen UI
from a single set of source code files. At the time of writing, there’s no UI widget
library in the Dart SDK, but you can build compelling Uls using the dart: htm library
El ement and Event classes with relatively little code. Once you’re familiar with the
El ement classes, we’ll examine the browser event model and show you how the
browser can trigger Dart event handlers to react to the user. While exploring the
dart:htnl library, you’ll discover how to build a reusable grid from scratch that you
can use in your own applications.

A single-page web app design

Single-page application design is different from traditional web application design. In
a traditional website built with Java or C# (or even PHP, Ruby, or Python), you typically
use a serverside controller to compose the UI by merging an HTML view with some
data classes (the models), and this information is then sent to the client. Navigating to
another page (perhaps to perform an edit) triggers a new request to the server for
another view and data.

But in recent years, frameworks have appeared that first let you send the view to
the client and then use AJAX requests to get the data from the server and bind it to the
view. In effect, the view, data model, and controller classes have moved onto the client,
where they can take advantage of the power of the user’s computer and leave the
server free to serve more requests, as shown in figure 10.1.

This is the model that Google’s GWT product uses; it’s a model you can also
achieve with a number of JavaScript frameworks. Dart apps also follow this model,
with the Dart environment and tools working best when you design your Dart app
to function this way. By combining the view with the data on the client, you also get
the ability to provide mock data in the client, which can be used for development
and testing.

Introducing DartExpense

In this chapter, you’ll create an example expense application called DartExpense that
lets you store a list of your work expenses. Your finance department has decided to rid
themselves of spreadsheets that employees send by email; instead, they want a web
app. The current spreadsheet system works regardless of whether the users are online;
typically, they submit the spreadsheet only once a month. The sales team has a habit of
using flying time to complete their expenses, and the finance department wants to
ensure that they don’t do so.

The existing spreadsheet app contains only five fields of data for each expense claim:

A single-page web app design 213

Traditional website Web application

i g Ul sent from server - Ul built on client g !

| \V’% i | Controller | @

1
| Controller -
i Static Data
i application code
" | (views & controllers)
View Data i

1. Traditional websites use server-side 1. Single-page web apps send the application

code to bind the view to the data on code as a set of static files to the browser.

the server. 2. The browser runs that code to request data
2. The server sends the result to the and render the user interface.

browser for rendering. 3. The server is free to serve more requests.

3. The server uses more resources
building client user interfaces.

Figure 10.1 Modern web apps use the capabilities of the client to build a Ul from views and data,
rather than performing that processing on the server.

= The date of the expense

= The type of expense

= The amount

= Some detail text

= Whether it has been claimed already

Your task is to implement this model in Dart.

The app, although simplified for the purposes of example, represents a real-life
application design containing model and view classes. At the time of writing, Dart
doesn’t have a separate UI abstraction library such as ExtJS or jQuery UI; but the Dart
development team has stated that they want Dart to be a fully featured solution and
that a UI library will appear. This means Uls need to be constructed using HTML snip-
pets and elements and bound with the data as required. We’ll explore ways to achieve
this using the dart:htn library, which we first looked at back in chapter 3. The
dart:htnl library is analogous to the jQuery core library for JavaScript, which stan-
dardizes HTML and browser DOM manipulation.

The DartExpense app will have two screens that users can navigate: the list of expenses
and the Add/Edit screen to modify expenses. The screens are shown in figure 10.2.

214

CHAPTER 10 Building a Dart web app

. . [E=E—~=)
The list view shows all the & Dertbxpense st
expenses in the app. € =2 C ©®1270013 -/DartExpense/DartExpensehtmi#list 9% | N\
DartExpense
@ Dartbxpense: edit/1
e Type Date Item Claimed?
| & © 127.0.0.1:30
Books 22-7-2012 Dartin Action Claimed
| DartExpense Travel 23-7-2012 Taxi from airport
Type Hotel 24-7-2012 Cily Hotel
‘ Books [= Travel 24-7-2012 Taxi to airport I
Date
W | 2210772012 v Claim All| [Sync
| Amount Ot
40.0 3
| Detail
Dart in Action
P
The edit view lets you add a new
Offline . P
record or edit an existing record.

Figure 10.2 The DartExpense example application has list and edit views.

For this chapter, the app works entirely offline using mock data, which allows you to
run it directly using the Dart Editor and Dartium. You can find the source code on the
book’s website at www.manning.com/DartinAction. In the next chapter, you’ll add
HTMLS5 clientside storage, and in chapter 14, you’ll add a server component. But for
now, the data access classes are hardcoded mocks.

Dart to JavaScript tree-shaking

In JavaScript, if you want to use mock data, you need a mechanism to prevent the
mock data code from being deployed to the client browser (wasting bandwidth). In
Dart, only code that will actually be executed ends up in the resulting JavaScript, via
a mechanism called tree-shaking. You can safely create mock data in your app while
developing; once you remove references to the mock data-access functions, you can
be sure that no mock data is sent to the end user, even though the original mock
functions remain in the project.

Two model classes, Expense and ExpenseType, store the data from the user and the
standard reference data. There are also two views: Li st Vi ew, which shows the list of
expenses, and Edi t Vi ew, which allows you to add and edit expenses. Each view con-
tains two top-level elements: the view itself, stored in the vi ewEl ement property, and
the actions container, which holds the menu buttons such as Save and Cancel. A sin-
gle controller class, AppCont r ol | er, is responsible for bringing together the views and
the data. The public methods and properties on these classes are shown in figure 10.3.

www.manning.com/DartinAction

A single-page web app design 215

Models Controller
class ExpenseType { class AppController {

String name; List<Expense> expenses;

String code; Map<String,ExpenseType> expenseTypes;
}

AppController(uiRoot, appData);

void buildui(Q);

class Expense { void loadFirstView();

int id; void updateView(View view);

EXP‘_EHSETYPE type; View getEditView(id);

String amount; View getListView();

bool isClaimed;

Date date; void addOrUpdate(Expense expense);
} Expense getExpenseByld(int id);

}

Views

abstract class View {
DivElement viewElement;
DivElement actionsElement;

}
class ListView implements View{ class EditView implements View{
DivElement viewElement; DivElement viewElement;
DivElement actionsElement; DivElement actionsElement;
ListView(); EditView(int id);
refreshUi(); updateViewWithld(int id);
3 3

Figure 10.3 The main classes in the application are the models, the views, and the controller,
with the constructors marked in bold.

In addition to these model, view, and controller classes, additional classes represent
your data-access functions. The Dat aAccess interface specifies properties and meth-
ods to retrieve a list of expenses and add a new expense. For the purposes of this chap-
ter, and for building your app in an offline fashion, a MockDat a class implements the
Dat aAccess interface:
abstract class DataAccess {

Map<String, ExpenseType> expenseTypes;

Map<i nt, Expense> _expenses;

Li st <Expense> get expenses;

bool addOr Updat e(Expense expense);
}
The MckDat a implementation prepopulates the expenses and expense types and is
passed into the constructor of the AppControl | er class. Calling addOr Updat e() adds
or updates the expenses list by adding a new item to the list or updating an existing
item. In the following chapters, you’ll replace the MockDat a class with locally persisted
data, and later with server-persisted data.

216

CHAPTER 10 Building a Dart web app

10.1.2 Dart application structure

When you navigate to the Dart app, either on a real web server or by running it from
the Dart Editor, the browser requests the HTML file that contains a link to the applica-
tion code. The DartExpense app’s HTML file, shown in listing 10.1, is minimal. There
are two script tags in the standard editor-created HTML file. The first specifies a script
type of appl i cation/dart that references your app’s entry-point source file. The sec-
ond script tag links to a JavaScript file, which uses a snippet of JavaScript to detect
whether Dart is supported natively by the browser. If not, it modifies all appl i cat i on/
dart script tags in the HTML page to use the JavaScript version.

Listing 10.1 DartExpense.html

<htn > doctype
<head>
<title>Dart Expense</title>
<link rel ="styl esheet" type="text/css" Attaches CSS
hr ef =" dar t expense. css" /> stylesheet
</ head>
<body> DartExpense app
<di v id="dartexpense" ></ di v> goes in this <div>
<scri pt pre:“ application/dart" src="DartExpense.dart"> App’s <script>
</'script Z, _) i o tag loads entire
<script src= http://dart.google...snip.../client/dart.js"> application code
</script>
</ body> Dart detection script
</htm >

TIP In JavaScript, you can use detection to determine whether the browser
supports native Dart by checking to see if the function navi gat or. webki t -
StartDart() exists.

The appl i cation/dart tag loads the initial .dart script, which in turn loads all other
files required by part and noncore i nport statements. Once the entire app is loaded
and parsed by the Dart VM, the mai n() function is called. This ability to parse the
entire application when it’s loaded provides a large performance gain over JavaScript
applications. This gain doesn’t come without cost, however. Unlike JavaScript, you
can’t modify Dart code dynamically at runtime—a practice known as monkey-patching.

You can write a Dart application in a single, monolithic file—or better, as you saw
in chapter 5, as a library split into multiple part files. Dart treats part files as though
they were part of the same physical library file, which means the application behaves
identically regardless of whether you split it into multiple files. This is a feature to help
developers organize their code.

TIP Start building your app in a single file and then move classes and func-
tions into #part files as you begin to find logically grouped functionality.

10.1.3

A single-page web app design 217

The application HTML file
uses an appl i cati on/ dart
script type to link the
Dart entry-point file.

The entry-point Dart app
library file uses part annotations
to reference other code
in the same library and

DartExpense.dart contaln; the mai n() functlon,
which executes first.

part files

import libraries Contains the
AppControl | er class

and the Vi ew and

DartExpense.html

— app.dart

Dat aAccess interfaces
R
l_»| models.dart Contains the
—
dart: json Expense and
ExpenseType classes

| ui_list.dart

Contains the Li st Vi ew

and Edi t Vi ewclasses
and their utility functions

| ui_edit.dart

—

' Other classes and utility

—| other .dart files I— functions, such as data
e access and navigation

L—»| mocks/mock_data.dart

The mock data exists
in its own subfolder.

Figure 10.4 The structure of the DartExpense app is split across multiple files referenced with the #par t
tag.

DartExpense consists of a single library. It imports two core libraries—dart: htnl and
dart:json—and has its own major classes and functions in separate part files, as
shown in figure 10.4.

As you build a Dart app, you may find other logical units of code. This might be a
reason to structure the app in a different fashion, such as putting the model classes in
one library and the data-access functions in a different library, especially if you plan to
reuse them in other applications.

Dart app execution flow

All Dart applications start with a mai n() function, which executes automatically once
all the code has been loaded—and DartExpense is no exception. When a Dart app
starts running, it uses the code started by mai n() to build a UI and wire up event han-
dlers, such as button on-click events. Once that code finishes executing, the app is still
running, but in a passive state, waiting for the browser to trigger events in the app.

218

CHAPTER 10 Building a Dart web app

Execute handler code to « Build user interface

change the view and attach « Attach event handler
more event handlers to / « Other initialization
the new view

1. Execute mai n() function.

5. Event handlers
run code.

2. Wait for event.

T~ User clicks the

4. Pass event Add button

to handiers. 3. Event received.

button.on.click
handler

Figure 10.5 The app remains running and waiting for events.

These events could be internal, such as an H t pRequest completing, or external, such
as a user interacting with the UI or clicking the back button in the browser. The app
continues waiting for events until the app is unloaded from the browser by either clos-
ing the browser tab or navigating to a different URL. Figure 10.5 shows this flow.

Dart is single-threaded, just like JavaScript. This design feature was built into the
language: one of the core requirements of Dart is that tools can convert it to
JavaScript. This means events are each processed in turn as the app receives them
from the browser.

As you can see, mai n() is particularly important. If it built up a UI without attach-
ing any event handlers, the browser UI would render but never respond to any events.
Likewise, if the app started a number of calls to retrieve data but didn’t build a UI,
although the data would be loaded into the app, the user would never see it.

The DartExpense app, therefore, has the following flow in the mai n() function:

1 Get the dart expense <di v> from the HTML in which the app will be placed.

2 Create a dat asour ce that the app will use to access data. This is your mock data
source at present.

3 Create an instance of AppCont r ol | er, passing in the <di v> and the data source.

4 Call the AppController’s buildU () function, which builds the basic UI ele-
ments, such as the header and footer, and the container <di v>s for each view
and actions panel. This doesn’t wire up any event handlers yet.

5 Call the AppController’s | oadFirstView) function, which takes the window
location as a parameter. This is responsible for setting up the initial application
view, which to start with is the ListVi ew, showing the list of expenses and
attaching event handlers to the buttons shown in the view.

A single-page web app design 219

The instance of AppControl | er is stored in a library-level private variable accessed by
a getter called app() . This lets you reference the AppControl | er instance elsewhere in
the application.

Of course, it’s better to see this in code, so the following listing shows the DartEx-
pense.dart entry point file with the mai n() function.

Listing 10.2 DartExpense.dart mai n() function

l'ibrary "dartexpense"; <—— Declares app as library
inport "dart:htm" ; Imports built-in
inport "dart:json"; libraries

part "nodel s.dart";
/1 .snip other part files...
part "app.dart";

Adds source
files to library

part "nocks/ nock_data.dart"; <—— Adds mock data

AppControl I er _app; ‘ Library-scoped private property and

AppControl ler get app => _app; getter return instance of AppController.

void main() { <—— main() is executed first.
var ui Cont ai ner = query("#dartexpense"); Gets container <div>
var dataSource = new MockDat a(); and data; uses them to
_app = new AppControl | er(ui Container, dataSource); create AppController
app. bui I dUl () ; Builds core Ul; attaches
app. | oadFirstView); first view to it

}

Once the Ul is built and the first view is attached, mai n() finishes. The application
goes into its wait-event loop phase, during which the user can begin to interact with
the application by clicking the Add button to create a new expense or the Edit button
to edit existing expenses.

Remember

= Dart’s primary use case is complex web applications.

= Single-page web apps bind the view code to the data on the client side rather
than on the server.

= Offline-first design provides benefits such as availability and speed to develop-
ers and users of the application.

= A Dart app can be made up of many part files linked to the main entry-point
Dart script.

= The mai n() function is the first function to execute and should call code to build
the Ul and hook up event handlers.

Now that you know how a Dart app fits together, the next step is to build a UI with the
dart:htn library, which lets you create UI elements with code and HTML.

220

CHAPTER 10 Building a Dart web app

10.2 Building a Ul with dart:html

This section concentrates on building a UI with a combination of HTML and dart
classes defined in the dart:htm library. We’ll look at what happens in the Dart-
Expense bui | dUl () and | oadFi r st Vi ew() methods.

The dart:htm library provides a set of APIs and classes for working with the
browser DOM elements. In this way, it’s similar to the core jQuery library for
JavaScript, and it provides ways to query the browser DOM for specific elements and
Dart lists, sets, and maps for accessing attributes, child elements, and event handlers.

No widget libraries?

At the time of writing, there’s no built-in Ul library, although a number of open source
third-party libraries are appearing on the web. Instead of working with library abstrac-
tions such as Layout Panel and MenuBar (found in the GWT widget library), you deal
with lower-level Dart classes such as Di VEl ement and But t onEl enent . This way of
working gives you fine-grained control over the HTML that’s built, especially because
in many cases you're dealing with the HTML directly. This should provide you with a
good understanding of how to use Dart to manipulate the browser DOM, which will
still be of use when higher-level widget libraries appear.

Looking forward, Dart will use web component technology, allowing components to
be built using Shadow DOM templates. You will be able to insert and manipulate
these components like native HTML elements. For more information, search online
for "Dart web components."

10.2.1 Understanding the Element interface

The primary class in the dart: htnl library is the El ement interface. It provides two
named constructors—El ement . htnl () and El enent . t ag() —which you saw back in
chapter 3 and which both construct an HTML element, but in slightly different ways.

El ement.tag(String tag) creates an empty HTML tag from the name given; for
example, if you provide "di v" as the tag parameter, you get back an element object
that creates this HTML: <di v></di v>. You can then use properties and methods on
that object to add attributes, child elements, and event handlers.

El ement. htm (String ht M), on the other hand, can be used to create a nested
hierarchy of HTML tags, with the restriction that any child tags must be wrapped in a
single HTML element. For example, using Dart’s multiple-line string syntax, which
starts and terminates strings with three quotes (for example, text"""), you can
define a block of HTML that lives in a single <di v> element:

var actionDiv = new El enent. htm ("""
<div id="actions">Sel ect:
<button id="saveButton" class="primary, selected">Save</button>
<button id="cancel Button" nanme="cancel ">Cancel </ button>
</div>""");

You can use the El ement . t ag constructor only to create a single element, but you can
use the El enent . ht il constructor to create either a single element or multiple nested

Building a UI with dart:html 221

elements. Once you've created an element, you can use two key methods to access
child elements:

= query(String selector)
= queryAll (String sel ector)

These methods let you find a single child element or multiple matching child ele-
ments. For example, the following snippet lets you access the saveBut t on and then all
the buttons from the previously declared act i onDi v element:

First element with

primary” class
var saveButton = actionDiv.query(".primry") First element with
id=cancelButton

var cancel Button = actionD v. query("#cancel Button");

var buttonList = actionDiv.queryAll ("button"); <—— All button elements

and “selected”

All elements for w
name = cancel

var primaryButtons = actionDiv.queryAll(".primry .selected"); All elements
var cancel Buttons = actionDiv. queryAl | ("[nane=' cancel’ with “primary’

hich classes
These methods take CSS selectors as their parameters, just like the jQuery $() func-
tion. CSS selectors provide a mechanism to identify a tag or groups of tags based on
their properties, such as their ID (which should be unique to the page) or class (which
can be shared by multiple tags).

The El ement interface provides a host of properties and methods you can use to
manipulate elements programmatically. These start from the browser’s docunent and
wi ndow objects, which are both top-level properties in the dart: ht m library, and both
of which implement the El enent interface.

Emulating jQuery’s $() function

$ is a valid function name in Dart, so if you like the jQuery $() function, you can sim-
ulate it in Dart by providing a function in your library that redirects to the docu-
ment . query() function:

$(String selectors) => query(sel ectors);

This code has the effect of providing a $ function in your library that you can use in
the same manner as jQuery:

$("#actionDiv").innerHTML = "No Actions";

All other HTML elements implement the El enent interface; some commonly used
properties and methods are shown in table 10.1.

Specific HTML elements also have their own El enent interfaces with additional
properties and methods; for example, | nput El enent also has a val ue property to

222

CHAPTER 10 Building a Dart web app

Table 10.1 Key properties and methods of the El enent interface

Property of method signature Purpose

El enent.tag(StringtagNane) Constructor to create an element by tag name.

Constructor to create an element from a block
of HTML.

El enent. html (String htm)

Stringid Get/set the element ID.

Stringinner HTM. Read and write the element’s inner HTML.

Li st <El ement > chil dren Access the child element’s collection.

Li st <El ement > queryAl | (Stringsel ectors) | Select a group of matching child elements. For
example, nyDi v. quer yAl | ("button")

returns all the buttons in the <nyDi V> element.
El enent query(Stringsel ectors) Select a single child element.

Access the element’s events to attach event
handlers.

El enent Event s on

AttributeMapattributes Access the attributes of the element.

Col | ectioncl asses Access the collection element classes.

access the value that has been entered. When using the element constructors, if you
know you’re creating a <di v>, <i nput >, <but t on>, or some other specific element, you
can strongly type the variable with a specific element type that inherits from the
El ement interface. This approach allows the tools to validate your code by providing
specific attribute properties on the element:

I nput El enent textbox = new El ement.tag("input"); value property exists on
t ext box. val ue = "Some text": InputElement interface

Currently, approximately 70 subinterfaces inherit the El ement interface; some of the
more common ones are listed in table 10.2. You can find more on the Dart API refer-
ence website: http://api.dartlang.org.

Table 10.2 Common subinterfaces that inherit the El enent interface

BodyEl enent

Di VEl enent

Headi ngEl enent
Label El enent

Par agr aphEl enent

SpanE!l enent

But t onEl enent
EnbedEl enent

| mgeEl ement
Li nkEl enent
Scri pt El ement

Styl eEl enent

CanvaskEl enent
For nEl enent

| nput El ement
Opt i onEl enent
Sel ect El enent

Tabl eEl enent

http://api.dartlang.org

10.2.2

Building a UI with dart:html 223

Most of the common HTML tags have specific element interfaces defined, but you can
still use the base element class attributes property to access any attribute that
doesn’t explicitly appear on an element implementation. Here’s an example:

textbox. attributes["value"] = "Sone text";

Element constructors in action

To see the element constructors in action, look at the AppControl |l er. buil dU ()
method, which is called by the mai n() function and produces a skeleton UI such as
that shown in figure 10.6. The skeleton contains only the header and footer and
empty vi ewand act i on <di v> elements.

NOTE The dartexpense.css stylesheet attached by the entry-point DartEx-
pense. HTML file provides the styling that produces the UI look and feel.
Detaching the content from the specifics of the design is good practice
because it allows you to provide different skins for your app, which makes it
easier to specify alternative stylesheets for the desktop and mobile browsers,
for example. And although specific CSS usage is out of scope for this book,
there are many good books and internet resources on CSS design.

When the user starts the DartExpense app, the bui | dUl () method builds the UI skele-
ton, which contains header and footer sections and the content and action <di v>
elements that will contain your views. These are all added to the root <di v> that was
passed into the AppControl | er constructor. The bui | dUl () method and the HTML it
creates are shown in figure 10.7.

Once the skeleton Ul is built and you have a handle on the two important <di v>
elements, to which the AppController has stored a reference in the private
_actionsContai ner and _vi ewContai ner properties, DartExpense’s mai n() func-
tion calls the method app. | oadFi rst Vi ew(). This has the effect of loading a spe-
cific view into the relevant content and action <di v> elements by removing any
other view and adding the new view. Views implement the Vi ewinterface, which con-
tains two Di VEl ement properties: vi ewEl enent and acti onsEl enent. When a new
view such as ListView is created, it’s responsible for building the relevant HTML

DartExpense

Figure 10.6 The skeleton DartExpense Ul, waiting for views and actions to be added

224 CHAPTER 10 Building a Dart web app

The bui 1dU1 () method of AppControl ler builds

the skeleton user interface by creating elements. 2 @i YL povies @ el

buildul) { <div id="dartexpense”>
var header = new Element._html('™" .
<header class="section"> <header class="section">
DartExpense DartExpense
</header>"""); </header>

_uiRoot.children.add(header);

var content = new Element.tag('div');
content.id= "content';
content.classes.add(*'section');
_uiRoot.children.add(content);
this._contentContainer = content;

<div id="content"></div>

var actions = new Element.tag('div');
actions.id = "actions";
actions.classes.add(''section');
_uiRoot.children.add(actions);
this._actionsContainer = actions;

<div id="actions"></div>

<footer class="section>

var footer = new Element.html("*" Offline
<footer class="section"> </footer>
Offline
</footer>");
_uiRoot.children.add(footer); </div>
¥
The actions and cont ent elements are stored The new elements are attached as children
in private properties on the AppCont rol | er . of the #dar t expense <di v> that was
This lets you reference them later without passed into the AppCont r ol | er constructor
needing to quer y() for them first. and stored in the private _ui Root property.

Figure 10.7 The bui | dUl () function uses Dart El enent constructors to build the skeleton Ul.

structures into these elements (which you’ll soon see). The AppControl | er. updat e-
View() function first clears any existing view from the _viewContainer and
_actionsCont ai ner properties; then the elements from the new view are attached.
The next listing shows relevant code from AppControl | er to populate the cont ent
and act i ons <di v>s in the UI from a view.

Listing 10.3 Populating the cont ent and act i ons <di v>s with a view

class AppController { Containers for view
...Snip other methods and properties... and its actions

Di VEl enent _vi ewCont ai ner;

. . . Property to retrieve list of
Di vEl enent _acti onsCont ai ner;

expenses from underlying

Li st <Expenses> get expense => ...snip... source

| oadFi rstView() {
var view = new ListViewthis.expenses); Creates new ListView,
updat eVi ew(vi ew) ; passing in list of expenses

}

10.2.3

Building a UI with dart:html 225

updat eVi ew(Vi ew view) {
_viewCont ai ner.children.clear();
_vi ewCont ai ner. chi |l dren. add(vi ew. vi ewEl enent) ;
_actionsContainer.children.clear();
_actionsContainer.children. add(vi ew. acti onsEl enent);

}

Inserts ListView’s
viewElement and
actions <div>sinto
skeleton layout

}

The el ement s. cl ear () function that’s used to remove the child elements from the
_viewCont ai ner and _acti onsCont ai ner properties is part of the standard Dart Li st
interface and has the effect of removing those items from the browser DOM. When
you use the el enents. add() method, you’re adding new elements into the browser
DOM, and at this point, your application begins waiting for events.

NOTE The types used in the DartExpense app, such as the Vi ewinterface and
the Li st Vi ewand Edi t Vi ew classes, are specific to DartExpense, not part of a
built-in Dart model-view framework. At the time of writing, such a framework
doesn’t come with Dart, but it’s the intention of the Dart team for these fea-
tures to ultimately be available.

Building interaction with views and elements

The DartExpense application’s Li st Vi ew uses an HTML table to display the list of
expenses. When users access DartExpense, the first view they see is the list of
expenses, as shown in figure 10.8.

There are two views in the application. A class called Vi ewType, which looks like
the following snippet, uses a private constant constructor to create two types of view,
Vi ewType. LI ST and Vi ewType. EDI T:

cl ass Vi ewType { Initializes
final String nang; Private LISTEle;lI#
const Vi ewType. _wi t hNane(this. nane); <1J constructor constants

const ViewType._wi thName("list");
const ViewType._w thName("edit");

static final
static final

Vi ewType LI ST
ViewType EDIT =

}
DartExpense
Type Date ltem Claimed?
Books 22-7-2012 Dartin Action Claimed | Edit.. |
Travel 23-7-2012 Taxi from airport [Edit... |
Hotel 24-7-2012 City Hotel | Edit... |
Travel 24-7-2012 Taxi to airport [Edit... |

[Add... | [Claim All | | Sync

Offline

Figure 10.8 The Li st Vi ew content and actions rendered with the mock data

226 CHAPTER 10 Building a Dart web app

No enums in Dart

Unlike C# and Java, Dart doesn’t have enums built into the language. Enums let
you define a fixed number of constant values for a special type of class. Defining a
class with a private constant constructor and a fixed list of static final values is a
neat alternative.

SWITCHING BETWEEN VIEWS

These Vi ewType instances are used by a top-level library function called navi gat e(),
which provides a central point of navigation for the app. The navi gate() function,
which is called when the user clicks the Edit button, allows transitioning between UI
elements and has a simple implementation. It creates a new view based upon the
Vi ewType and passes it into the AppControl | er’s updat eVi ew() function, which, as
you saw earlier, removes the existing view and populates cont ent Cont ai ner and

acti onsCont ai ner with the new view: '
Passes list of

voi d navi gate(Vi ewType view, int id) { expenses .toa
if (view == ViewType. LI ST) { new ListView
app. updat eVi ewm new Li st Vi ew(app. expenses));
} Pa{ssgs new or
else if (view == ViewType. EDIT) { QJ existing expense
app. updat eVi ewm(new Edi t Vi ew(app. get ExpenseByld(id))); to a new EditView

}
}
This is a trivial implementation for the purpose of example. It would be more efficient
to cache these views in the AppControl | er so that you don’t need to re-create them
every time.

BUILDING THE LISTVIEW

The AppControl | er. | oadFi rstVi ew() method, which is called as part of mai n(), calls
the Li st Vi ew(Li st <Expense> expenses) constructor, passing in the list of expenses
to render. The Li st Vi ew then passes the list of expenses to the refreshUl () function,
which builds up the HTML table from El ement instances, storing the result in the
view’s vi ewEl enent property, as shown in listing 10.4. This is a long code listing
because there’s a lot going on, but essentially it creates a table element and adds a
table header and rows to that table. Each row in the table is built by calling the private
_get RowEl ement (Expense ex) function in a loop over the list of elements, passing in
the current element. A Tabl eRowEl ement is built for each row and added into
the tabl e. chi | dren list. The _get RowEl enent (ex) function is also the first place an
event handler is added: an on. cl i ck event handler for the Edit button appears next
to each row.

We’ll look at event handlers in more detail in the next major section, but for now
you need to know that the event handler calls a top-level library navi gat e(Vi ewType,
int id) function. The interesting part is that the anonymous event-handler function
(shown in italic in listing 10.4) that calls navi gate() forms a closure around the

Building a UI with dart:html 227

specific expense object passed to _get RowEl enent (ex) . This is because although the
method exits, the event handler retains a reference to the ex. i d value (see chapter 4
for more discussion on closures). The ex. i d value is an autogenerated number on the
Expense class that’s required by the navi gat e() function along with the name of the
view to which you currently want to navigate.

Listing 10.4 Li st Vi ewclass, which builds the HTML table of expenses

class ListView inplenments View {
Di VEl ement vi ewEl enent ;

. . Properties to implement
Di VEl enent acti onsEl enent ;

View interface
Li st Vi em Li st <Expense> expenses) {
refreshU (expenses);
_bui Il dActions();
}

refreshUl (Li st <Expense> expenses) { Crelatesl new, empty
Vi ewEl enent = new El enent.tag("table"); table element

Constructor updates
content and actions

var head = new El enment. htmd (""" Creates new <thead>
<thead> table header
<td class="type">Type</td>
<td cl ass="dat e">Dat e</td>
<td class="detail">ltenx/td>
<td class="anount">Anount </t d>
<td class="cl ai mred>C ai ned?</td>
<td class="edit"> </td>

</thead>"""); Adds head
vi ewEl ement . chi | dr en. add(head) : <1J to table

for (Expense ex in expenses) {
var rowEl ement = _get RowEl enent (ex);
vi ewEl enent . chi |l dren. add(r owEl enment) ;

Loops for each expense, adding
new TableRowElement

}
}

Tabl eRowEl ement _get RowEl ement (Expense ex) {
Creates

Tabl eRowEl ement row = new El enment.tag("tr"); <1J TableRowElement

row. chil dren. add(new El enent. htnl (' <t d>${ex. type. nane}</td>"));
snip other colums ...
row. chil dren. add(new El ement. htm (' <t d>${ex. detail}</td>"));

var editCol = new Element.htmd (""" Adds cohf".ms
R Adds Edit containing
<button>Edit...</button> btton ot o8

NS column

row. chil dren. add(edit Col);
edit Col . query("button").on.click.add((event) {

navi gat e(Vi ewType. EDI T, ex.id); Click event handler forms a
1 closure over the ex.id value

return row,

228

10.2.4

CHAPTER 10 Building a Dart web app

}

_buil dActions() {
...snip...

}
}

The code in the ListView refreshU () function iterates through each row and
builds up the expense properties into an HTML table. In a real-world application for
which you might use this functionality in multiple places, it would be better to write a
generic function to return a table that dynamically builds rows and columns based on
the data passed into it, rather than being tightly bound to the Expense class.

Building a simple generic grid

A generic list should be able to create a table dynamically based on the list of objects
passed in and some configuration that determines which columns are shown. For exam-
ple, for your Expense objects, you want to display the following values on each row:

expense. type. nane, expense.date, expense.detail, expense.anount

Unlike with JavaScript, you can’t dynamically access these properties as attributes of
the object. In JavaScript, because objects are also maps of key/value pairs, you could
pass in a list of column names and a list of objects and, for each object, access the
property. A trivial implementation is shown in the following JavaScript snippet:

/1 JavaScri pt

function getDynami cTabl e(obj ects, columlList) { JavaScript function
var table = "<tabl e>"; to dynamically

for(itemin objects) { 47 Outer loop; each build a <table>

table += "<tr>"; object is a row.
for (propertyNane in columlList) { Inner loop;

var cell Text = itenfpropertyNane]; each column
table += "<td>" + cell Text + "</td>"; is a property.
}

Extracts value of each

table += "</tr>"; property dynamically

}

table += "</tabl e>";
return table;

}

But Dart doesn’t allow this type of property access. You could create a similar function
in Dart that accepted a Li st <Map> instead of a Li st <Cbj ect > (or Li st <Expense>), but
doing so would require the calling function to iterate through each Expense object in
the list, converting each expense to a map and passing in that list of maps. A better
implementation would be to provide a way for the get Dynani cTabl () function to
extract the value of each property only when it’s required. Using this approach would
be especially important for performance if you implemented paging in the list—for
example, if the table loop processed only 10 items at a time.

Building a UI with dart:html 229

Fortunately, by using first-class functions stored in a list as part of the column con-
fig, you can let the calling code define how each value is retrieved in an anonymous
function and pass that list of anonymous functions to the get Dynani cTabl e() func-
tion. Instead of passing in a column list, pass in a map, keyed on the column (or prop-
erty) name and setting the value to a function that extracts the relevant property as
the value. This function type, called Get Val ueFunc() , has the following definition; it’s
expected to take an item as its parameter and return a string from that item:

typedef String GetVal ueFunc(dynamic iten);

Now that you have a function type, you can rewrite refreshU (Li st <Expense>) as
follows to define a column configuration that’s passed into the get Dynam cTabl e()
function:

Declares columnConfig as
refreshU (Li st <Expense> expenses) { map of String and Function For “detail”
var columConfig = new Map<String, GetVal ueFunc>(); column, retul:ns
col umConfig["detail"] = (expense) => expense.detail; expense.detail
columConfig["type"] = (expense) => expense.type.nane;
col umConfig["date"] = (expense) => expense.date.toString();
col umConfig["anmount"] = (expense) => expense.anmount.toString();
vi ewEl ement = get Dynam cTabl e(expenses, col umConfig); Passes list of
} expenses and
columnConfig

By storing a function in a map, keyed on the column name, the get Dynani cTabl e()
function can later extract the property for each item by using the function associated

Extracts detail
function from map

with that property stored in the map: <}J

var get Val ueFunc = columConfig["detail"];

var detail Text = getVal ueFunc(expense); QT Uses detail function to extract

text of detail property

You now have a way to dynamically extract values from an object based on arbitrary
text such as "det ai | ". The full get Dynani cTabl e() function is shown in the following
listing.

Listing 10.5 get Dynami cTabl e() to dynamically build an HTML table

typedef String GetVal ueFunc(dynamc iten;

getValueFunc()
Tabl eEl ement get Dynani cTabl e(Li st items, type definition
Map<String, GCetVal ueFunc> col umcConfig) ({
var table = new Elenent.tag("table"); 47 Creates empty
var header = new El enment.tag("thead"); table element Iterates
for (String col Name in col umConfig. keys) { through each
header . chi | dren. add(new El enment . ht nl (" <t d>$col Name</td>")); columnConfig
} key to create

t abl e. chi | dren. add(header); header row

230

... accesses
getValueFunc()
for this column

and ...

CHAPTER 10 Building a Dart web app

for (var itemin itens) {
var row = new El enment.tag("tr");
tabl e. chil dren. add(row);

Outer loop: for each
item, create a row Inner loop: for

each column ...
for (String col Name in col umConfig. keys) {

var getVal ueFunc = col unmConfi g[col Nane] ; -« uses getValueFunc() to get
value from current item
var textValue = getVal ueFunc(item;
row. chi | dren. add(new El ement. ht m (" <t d>$t ext Val ue</td>"));
} Adds new column
} element to row
return table;
}

This is an effective solution to providing a generic way to access properties. Instead of
accessing the item property directly, you can pass the item into the get Val ueFunc()
implementation specific to the current column, which the caller defined. In this way,
you can dynamically access property values without knowing the property names in
advance. The table created by using the get Dynami cTabl e() function rather than
your original Li st Vi ew code is shown in figure 10.9.

get Dynani cTabl e() is fairly simplistic in its current design, for the sake of exam-
ple, but with a couple more development iterations, you could add extra features.
Examples that shall be left as an exercise for you include better header row descrip-
tions (instead of using the col umConfi g key), passing in a list of actions that should
be performed for each row (such as edit and delete), and CSS class information so
rows and columns can be attached to CSS styles.

Let’s continue with the original Li st Vi ew code, because it also provides an Edit
button that you’ll use in the next section when you start to navigate around the appli-
cation UL

Earlier in this section, you saw the Edit button get an event handler attached to it.
In the next section, we’ll look in more detail at event handlers as you add a second
view, Edit, to the DartExpense app.

DartExpense

detail amount date type
Dartin Action 40.0 2012-07-22 10:15:55.100 Books
Taxi from airport 50.0 2012-07-23 10:15:55.100 Travel
City Hotel 150.0 2012-07-24 10:15:55.100 Hotel
Taxito airport 55.0 2012-07-24 10:15:55.100 Travel

Claim All | | Sync

Figure 10.9 The table created by the new generic table-generation function

10.3

Handling browser events with dart:html 231

Remember

= The El enent interface is a key class in the dart: htm library, implemented by
the top-level document and window dart: ht Ml properties and all other HTML
elements.

= Many HTML elements also have their own subinterface that inherits from the
El ement interface, such as Butt onEl ement and | nput El enent .

= El ement defines two constructors: El enent . t ag() for creating a single, empty
element that you can attach children to in code, and El enent . ht m () for creat-
ing a single HTML element that can contain many predefined child elements.

= Dart SDK doesn’t currently provide a widget library, so you need to build your
own elements such as grids and lists, either specifically for your use case or in a
more general fashion so they can be reused.

Handling browser events with dart:html

In the previous section, you saw how to build a view and attach it to the browser. That’s
only half of the story before you get to a working web app, though. The code executed
from the mai n() function needs to build a UI and attach event handlers to that inter-
face. This section deals with the event handlers.

Event handlers are functions that you attach to HTML elements, which react when a
specific event occurs. The most common example is clicking a button on a web page,
such as when the user clicks the Add button from the DartExpense app’s list view.
Browser events all live in a property of the El enent interface called on, which is an
implementation of the El enent Event s interface. It provides a list of events by name
(useful for autocomplete in the Dart Editor) and overrides the [] operator so you can
attach event handlers to unlisted events (maybe to support some experimental
browser technology) or events that you want to declare dynamically. Each event is an
implementation of Event Li st ener Li st, which lets you attach multiple events han-
dlers to an event. Listing 10.6 shows the two ways you can attach an event handler to
the Add button, which is created in the DartExpense ListView class’s
_bui I dActions() method. The private _bui | dActions() method is used to populate
the actionsEl ement <di v> containing the action buttons associated with the view.
The event-handler functions are highlighted in bold.

Listing 10.6 Attaching an event handler to the Add button

cl ass ListView {
Di VEl enent vi ewEl enent ;

Di VEl ement acti onsEl enent; ListView constructor

Li st Vi em Li st <Expense> expenses) { from previous section

refreshUl (expenses);
_bui l dActions();

}

_buil dActions() {
actionsEl ement = new El ement.tag("div"); Creates new, empty
Butt onEl ement button = new El ement.tag("button"); button element

232

10.3.1

CHAPTER 10 Building a Dart web app

button.text = "Add..."; Adds it to]
acti onsEl ement . chi | dren. add(butt on); actionsElement <div>

button. on.click.add((event) {
navi gat e(Vi ewType. EDI T, null);
)

button. on["nouseOver"] . add((event) {
print("button nmouseOver")

1)

Adds event handler
by property name

Adds event handler
with string “click”

}

...snip other nethods. ..

}
The function that’s added to the Event Li st ener Li st for the specified event, such as
click or mouseOver, is executed when the browser triggers the event on that element.
You can add many events to a specific event on a single element; likewise, a single ele-
ment can have listeners for many different types of event. It’s also possible to intercept
events that are intended for child elements, as you’ll see in the next section.

Approximately 50 named event properties are available on the El ement ’s El enent -
Event s on property. Table 10.3 shows some of the common events.

Table 10.3 Some of the named event properties available on the El enent Event s on property

Events Purpose

click,doubl edick Fired when user clicks the mouse on an element
focus, bl ur Fired when an element receives or loses focus

keypr ess, keyDown, keyUp Fired when a key is pressed on a focused element
mouseOver, nouseMove, nouseUp Fired when the mouse pointer is moved over an element
nmouseDown, nouseUp Fired when the mouse button is pressed or released
touchStart,touchMve, t ouchEnd | Fired when a touch-sensitive device detects a touch

These are just a few of the events the browser can fire. Many more are listed on the
dartlang API website under the El ement Event s interface documentation at http://
api.dartlang.org.

Managing browser event flow

When a user clicks the Add button in the DartExpense app, the web browser creates an
event that propagates from the top-level document element down through each child
element until it reaches the innermost child. At that point, the event begins to rise back
up the element hierarchy (also known as bubbling), calling any event handlers on each
element that’s listening for that event. Thus, under normal circumstances, parent ele-
ments can listen and respond to events targeted at their child elements, but only after
the child has responded to the event. In DartExpense, the Add button is the innermost

http://api.dartlang.org
http://api.dartlang.org

Handling browser events with dart:html 233

1. A user clicks the
Add button, and the
browser firesa cl i ck

event that travels
down the hierarchy.

Downward

Click

o " Upward
capture “bubbling”
phase phase

[<di v id="dartexpense ">]
I

[I

[1
[<header >] [<di v id="content" >] <di_v id="actions"> <f oot er>
on.click.add((e) {

print("div clicked™);

s
2. Once the event reaches the <bUt_t on>Add</ but t on>
bottom of the hierarchy, event- on.click.add((&) {
handler functions listening to print(“add clicked™);
cl i ck event are called on D:

each element in turn.

3. The resulting output printed to the browser
debug console is as follows:
"add clicked"
"div clicked"

Figure 10.10 The default browser event flow finds the innermost child element of the hierarchy
and begins calling event-handler functions, going back up the hierarchy.

child in the hierarchy shown in figure 10.10. The acti ons <di v> and the Add button
both have cl i ck event handlers registered, but the Add button event handlers execute
first, followed by the acti ons <di v> event handlers.

This is the default flow; the downward event flow is called the capture phase, and the
upward flow is the bubbling phase. There are exceptions to every rule: some specific
event types, such as focus, don’t bubble. You can find a comprehensive list on the
DOM event s Wikipedia page, but there are also a number of things you can do in your
own code to modify this default flow.

MODIFYING THE BUBBLING PHASE
The first thing you can do to stop the upward flow is call the st opPropagati on()
method on the event parameter, which is passed into the event-handler function:

button.on.click.add((event) {

print("add clicked"); P.rt‘zvents event from
event . st opPropagation(); rising up hierarchy

1)

234

CHAPTER 10 Building a Dart web app

This code will stop the click event from calling the on. ¢l i ck handler functions of
any other elements, but it doesn’t stop the event from being raised on other handler
functions of the same element. You can add a second handler to the button:

button. on.click.add((event) => print("second event handler"));

Although the event-handler function on the actions <di v> won’t be called, both
event handlers on the button will be called. Fortunately, there’s a way to stop this, too:
calling the event’s st opl nmedi at ePr opagat i on() method, which stops the event from
calling any further event handlers on any element.

MODIFYING THE CAPTURE PHASE

You might at some point want the parent elements to handle an event before the
child event. Fortunately, there’s an optional parameter on the event-handler method
signature:

add(event Handl er, [bool useCapture=false])

The useCapt ur e parameter, when passed true, causes the event handler to be fired
on the downward capture phase, before any child elements have had a chance to
respond. Figure 10.11 shows how you can modify the act i ons <di v>cl i ck event han-
dler to handle the cl i ck event on the downward flow.

Event handlers that are called in the downward capture flow can also use the event
parameter’s st opPropagati on() and st opl nmedi at ePr opagati on() methods to pre-
vent the event from going any further.

Click

[..sni p other elenents...]

\ﬁ

<div id="actions">
on.click.add (e) {
print(“before button™);
}., useCapture:true);

on.click.add((e) {
print(after button™);

D:
The resulting output printed to <but t on>Add</ but t on>
the browser debug console is on.click.add((&) {
"before butt on'.' print(*add button clicked™);
"add button clicked" H:

"after button"

Figure 10.11 Event handlers can intercept the event on the downward capture flow instead of
waiting for the default upward flow to be called.

10.3.2

Handling browser events with dart:html 235

In the last section of this chapter, we’ll examine the Event interface. You've already
seen the st opPropagation() and stopl nmedi at ePropagati on() methods that are
available on the base Event interface, and as with the base El ement interface, there
are a number of specialized subtypes.

Common event types

When the browser calls an event-handler function, it passes data about that event into
that function via the event parameter. This is a generic event interface that contains a
number of properties and methods that are common to all events, such as st opPr op-
agation(), ti mestanp, and type. Some events contain more information about the
specific event, and approximately 25 event types inherit from the base Event interface.
Many of these support newer technologies, such as SpeechRecogni ti onEvent and
Devi ceOri ent ati onEvent ; but other event types support more mundane uses, such as
MouseEvent, which provides mouse coordinates of the event, and Keyboar dEvent,
which provides the key code of the key that was pressed on the keyboard. Table 10.4 lists
some of these common event properties.

Table 10.4 Common MbuseEvent properties

Property Purpose

int button The button number that was pressed. Zero is the left button.
int clientX int clientY The X and Y coordinates of the event in the browser client.
int screenX int screenY The X and Y coordinates of the event in the whole screen.
bool altKey, bool ctrl Key, Tr ue if one of these keys was also pressed at the time of
bool netakKey, bool shiftKey the event.

You can use these specific event types by accessing the property on the event parame-
ter passed into the event handler. If you also specify the event type, you get the benefit
of type-checking support from the tools. The next listing shows how you can add the
screen coordinates to your button cl i ck event.

Listing 10.7 Using the specific MouseEvent type to extract more event details

button.on.click.add((MuseEvent event) {

- ; ; Uses event
var x = event.cl | ent X; type on
var y = event.clienty; handler
print("add button clicked, co-ordinates: $x, $y"); parameter

1) . list
Extracts coordinates
from event

The browser event flow isn’t something specific to Dart; instead, it’s built into the
browser, and unfortunately, there are differences in browser-specific implementations.
Dart is designed to work primarily with modern web browsers, which means when it’s
converted to JavaScript, IE6 is unlikely to work well with much of the code shown here.

236

10.4

CHAPTER 10 Building a Dart web app

HINT If this lack of backward compatibility troubles you, please visit the
Microsoft-run website www.ie6countdown.com, which states that “it’s time to
say goodbye” to IE6.

Remember

= Event-handler functions can be added to the El enent . on property either by name,
such as on. cli ck. add(...), or by value, such as on["click"].add(...).

= Elements can call multiple event-handler functions that have been added to a
specific event.

= Elements can have handlers listening to multiple events.

= When an event is raised, the browser sends the event from the docunment ele-
ment downward through the hierarchy of elements. This is the capture phase;
event handlers aren’t fired by default.

= After the capture phase, the bubble phase begins, as event-handler functions
are called in turn going back up the hierarchy.

= This default capture and bubble event flow can be modified in Dart code.

This was a long section, but a good understanding of browser events can help
you build interesting and reactive Uls. We’ll look at some of the more interesting
events relating to browser storage and touch in later chapters, but you should
now have a good handle on how events flow around the web browser. For more
information about the general principles of browser events, the Mozilla Developer
Network (https://developer.mozilla.org/en-US/docs/DOM/DOM_event_reference)
and w3.org (www.w3.org/TR/DOM-Level-3-Events/#event-flow) websites are both
useful references.

Summary

This was a pretty lengthy chapter, in which we looked at the design of a single-page
web app that works offline in order to aid development and provide an enhanced user
experience. Then you saw how the mai n() function is key to starting a Dart app; it
should be responsible for building the UI and attaching event handlers.

We discussed building a UI with the dart: HTM. library, which is like Dart’s version
of the core jQuery library for browser manipulation. At the time of writing, there’s no
widget library in the Dart SDK, so you need to deal with HTML elements via Dart’s var-
ious El ement classes. As part of building your Ul you saw how it’s possible to build
from scratch a generic grid that accepts a list of arbitrary objects and lays them out in
an HTML table.

Finally, we looked at the browser event model, and you saw how Dart uses event
handlers to react to browser events and how to modify the default browser event flow
of downward capture and upward bubble.

In the next chapter, you’ll learn how to store real data in the browser using JSON and
clientside storage, and you’ll explore the navigation between views, including reacting
to the browser forward and back button events by manipulating the browser history.

www.ie6countdown.com
www.w3.org/TR/DOM-Level-3-Events/#event-flow
https://developer.mozilla.org/en-US/docs/DOM/DOM_event_reference

Nauvigating of fline data

This chapter covers

® Handling browser navigation in a single-page app
m Storing cookies to remember user settings

= Serializing objects to JSON

m Storing offline data in the browser

Users are accustomed to using built-in browser navigation tools, such as the
browser’s forward and back buttons and bookmarks, to navigate web apps in the
same way they have been doing for years with normal websites. Users also expect
apps to have fast response times, which apps achieve by persisting data offline.

Modern browser technology makes it possible to meet your users’ expectations.
In this chapter you’ll add these features to the DartExpense example application
you started in the previous chapter.

In a single-page web app, when the user switches between two views, such as
from list view to edit view, they expect to be able to use the browser’s back button to
navigate back to the prior view. Your app, therefore, needs be able to notify the web
browser that a view change has occurred. We’ll look at how you can manipulate the
browser’s history to make it possible to use back-button navigation and to book-
mark specific views.

237

238

CHAPTER 11 Navigating offline data

After exploring a mechanism for navigating using the standard browser navigation

tools, we’ll examine how you can store user settings in cookies. This will allow the app

to return to the same view the user was visiting when they closed the browser.

In the last chapter, the DartExpense app was restricted to using mock offline data
that was hardcoded in the app. In this chapter, you’ll replace the mock data with an
in-browser persistence mechanism by using HTML5 Web Storage APIs.

As areminder, the DartExpense app currently has a list view and an edit view. A func-
tion called navi gat e() is called when the user clicks a button, as shown in figure 11.1.

L= ool e
\ % DanBxpense lint
& Danspense el !
o .
A CETTTTT, & 2 C D1 fr A
DartExpense DartExpense

Tipe Type Date Item Claimed?

Books =l Books 22.7-2012 Dartin Action
! Date Travel 23.7-2012 Taxi from airpon
'I priee 1 Holel 24.7-2012 City Hotel

Amount Travel 24-7-2012 Taxito girpon

400

; [Ada]

Detail

Dart n Action T Oriflama
|
==
| [, |

ViewType.LIST, ViewType.LIST, ViewType.EDIT, ViewType.EDIT,
I1D=null I1D=null I1D=null 1D=4

e

¥
¥

When a button is clicked,

void navigate(ViewType viewType,
if (viewType == ViewType.LIST) {

app -updateView(new

Ise if (viewType ==
app -updateView(new

navigate()

int id) {
ListView(app-expenses));

ViewType¢EDIT) {

EditView app.getExpenseByld(id)));

navi gat e() calls
updat eVi ew() ,

passing in an

class AppController {

updateView(View view) {
_viewContainer.children.clear();
_viewContainer.children.add(view.viewElement);

instance of the
view to show.

L

y 4

_actionsContainer.children.clear();
_actionsContainer.children.add(view.actionsElement);

updat eVi ew() clears the vi enCont ai ner

and act i onsCont ai ner and repopulates
them with the new view.

Figure 11.1 Figure 11.1 When the user clicks a button, the existing view is replaced with a new view

passed from the nav

i gat e() function.

11.1

11.1.1

Integrating navigation with the browser 239

If a null ID is passed to the get ExpenseByl d() function, it returns a new expense
object rather than an existing expense object. This way, the app reuses the edit view
between the add and edit functionality.

The updateView) function that you saw in the previous chapter clears the
AppController’s _viewContainer and _actionContainer <div> elements and
repopulates them with the element object from the view.

The problem with this approach is that it’s transparent to the web browser. When
the user navigates to the page DartExpense.html, the app starts running; but no mat-
ter how many times the user changes views by clicking buttons on the page, the
browser remains at DartExpense.html without any record of the navigation between
views. This means the browser’s forward and back buttons don’t remember the user’s
navigation history as the user moves around the app. It’s time to change that.

Integrating navigation with the browser

When the user clicks the Edit button on DartExpense’s list view, all the browser knows
is thatit’s executing some arbitrary code. You need to tell the browser that the page loca-
tion has been updated, so the browser can add the new page location to its history. For-
tunately, this is easy to achieve by using a new HTML5 API, the browser’s pushSt at e()
function, which you can use to add information to the browser’s navigation history.
The DartEixpense applica- http://127.0.0.1:3030/DartExpense/DartExpense.html
tion, when run from the Dart
Editor in Dartium, loads with
the URL shown in figure 11.2.
Youneed tolet the browser
know that this URL has

changed, butwithoutnavigat- Figure11.2 A typical URL, made up of the protocol, domain and
ing anywhere. port, and location

Using pushState() to add items to the browser history

When the user navigates to a different web page and the URL changes, the web
browser pushes the new URL onto its history list. With the pushSt at e() function, you
can simulate this without navigating anywhere, such as when the user clicks the Edit
button. The pushSt at e() function takes three parameters: some state data, which rep-
resents the state of your application; a title (currently unused by most browsers); and a
new location to appear on the URL. You can’t change the protocol or domain and
port, but the location part of the URL will change to whatever value you pass in.
For example, the call to pushStat e() in figure 11.3 changes the browser’s URL loca-
tion to"/edit/1".

window.history.pushState(edit/1", ", "/edit/1"™);

Figure 11.3 Calling the
browser’s pushSt at e()
State data Title (unused) New location function

240

CHAPTER 11 Navigating offline data

This call stores the data passed in the first parameter "edi t/ 1" as state information in
the browser’s history. For the DartExpense app, this represents vi ewNane/ i dval ue,
but it can be any text data to represent the current state of the app. DartExpense
understands that "edi t/ 1" means you’re in the edit view, editing an Expense with ID 1.
When the user clicks the Save or Cancel button, you call pushSt at e() again, storing
the state data "l i st " without any ID.

The second parameter, the title, is currently unused by most browsers. If you want
to modify the browser title, you need to set the docunent . ti t| e property, for example:

docunent.title = "DartExpense: Editing expense with ID:1";

The final parameter, which represents the new location, is particularly interesting.
The new location you specify in pushState() updates the location part of the URL
shown in the browser to produce a fake URL, such as changing the location from

http://127.0.0. 1: 3030/ Dart Expense/ Dart Expense. ht i
to
http://127.0.0.1:3030/edit/1

without navigating anywhere. Only the location part of the URL changes; you can’t
modify the domain name. You can’t navigate with this fake URL as it currently is,
though. If you tried to navigate to http://127.0.0.1:3030/edit/1, you’d likely get a
“404 page not found” error. But fortunately, the location parameter respects the stan-
dard browser URL location conventions. Table 11.1 shows location strings and the
URL locations they generate.

Table 11.1 Common ways to modify the browser’s URL location with pushSt at e()

Location Resulting URL

/edit/1 | http://127.0.0.1:3030/edit/1 Absolute path
edit/1 http://127.0.0.1:3030/DartExpense/DartExpense.html/edit/1 Relative path
?edit/1 | http://127.0.0.1:3030/DartExpense/DartExpense.htmli?edit/1 Query string

#edit/ 1 | http://127.0.0.1:3030/DartExpense/DartExpense.htmli#edit/1 Location hash

The purpose of the browser URL information at this stage is primarily to provide feed-
back to the user; the application doesn’t need this information to perform any naviga-
tion. In the next section, you’ll use the data stored in the actual URL to allow the user
to bookmark the application at specific views, so DartExpense will use the location
hash method to represent the current location in the application.

In the DartExpense app, rather than tightly coupling the pushStat e() call to each
button click, the best place to add the call is in the existing navi gat e() function,
which is the central point of navigation around the app. The following listing shows
the updated navi gat e() function, which converts the view type and any ID value into
state data and a URL location hash.

Integrating navigation with the browser 241

Listing 11.1 Updated navi gat e() function that integrates with browser history

voi d navi gat e(Vi ewType vi ewType, int id) {

String state =id == null ?
"${vi ewType. nane}"
"${vi ewType. nane}/ ${id.toString()}";

Gets view name
and value not null

pushState() to store

wi ndow. hi story. pushState(state, "", "#$state"); 4—‘
state and location hash

browser

title if (viewType == ViewType. LI ST) {

app. updat eVi ew(new Li st Vi ew(app. expenses));
} else if (viewType == Viewlype.EDIT) {
app. updat eVi e new Edi t Vi ew app. get ExpenseByl d(id)));
}
}

If you call this function with the parameters navi gat e(Vi ewType. EDIT, 1); it per-
forms as follows:

Updates r docunent.title = "DartExpense: $state";

Existing code

1 Populates the state variable with "edi t/1".

2 Calls pushState("edit/1","","#edit/1"); resulting in a URL of http://
127.0.0.1:3030/DartExpense/DartExpense.html#edit/1.

3 Sets the document title to " Dart Expense: edit/1".

4 Calls the existing navigation code to show the edit with Expense | D=1.

This results in a new item appearing as the URL. The user interface shows the Edit
screen, and the previous URL is pushed onto the browser history, as shown in figure 11.4.

Being able to push state information onto the browser history is only half the story.
The next step is for the browser to alert DartExpense when the user clicks the
browser’s back or forward button.

11.1.2 Listening for popState events

Although DartExpense uses pushSt at e() to tell the browser that your app is changing
its navigation, you need a mechanism for the browser to tell DartExpense that the user
has clicked the browser’s built-in navigation buttons. When the user clicks the back
or forward button or navigates to a specific page in the navigation history, the browser

@ DartExpense: edit/l

| “— C | ® 127.0.0.1:3030/DartExpense/DartExpense.htmli#edit/1 aQ i
|| @ DartExpense: st
|| @ Show Full History DartExpense
Type
; Books [=

Figure 11.4 Calling pushSt at e() when navigating now pushes the previous location
to the browser’s history.

242

CHAPTER 11 Navigating offline data

triggers the popSt at e event. DartExpense needs an event-handler function to be called
when the popSt at e event is triggered, so it can perform the correct navigation.

When the user clicks the back button, the browser passes you the state data that
you previously passed by the pushSt at e() call. You can use that information to update
your app to get back to the correct state. For example, if the state data passed to the
popSt at e handler contains "edi t/ 1", you need to convert that to Vi ewType. EDI T and
i d=1, which you can pass to your navi gat e() function. The navi gate() function is
then responsible for updating the user interface so you visit the edit screen for the
Expense with ID 1. When you call the navi gat e() function from a popSt at e call, you
must ensure that you don’t add the state data back onto the browser history (using
pushStat e()), because the browser has just removed it! To achieve this, you’ll add an
optional i sFronPopSt at e parameter to the navi gat () function so you can perform
a check before the call to pushSt ate():

navi gat e(Vi ewType vi ewlType, int id, [bool isFronPopState=false])

Figure 11.5 shows the sequence of pushState() and popState calls you expect to
encounter.

To ensure that DartExpense responds to the browser-triggering popSt at e events,
you need to add the onPopSt at () function to the browser’s popSt at e event as part of

1. The user clicks the Edit button to edit Expense 1.

navigate(ViewType.EDIT,1) {
pushState(“edit/1","",#edit/1") Previous view state data: "list"

app.updateView(...); Current view state data: "edit/1"

}

2. The user clicks the Save button
that navigates to the list view.

navigate(ViewType.LIST,null) {
pushState("list","" ,#list") Previous view state data: "l1ist"
app-updateView(...); Previous view state data: "edit/1"
} Current view state data: "list"

3. The user clicks the browser’s back button
to return to the previous view, edi t / 1.

onPopState(PopStateEvent event) {
var currentState = event.state;
// ...snip convert state to Previous view state data: " 1ist"
// viewType and id Current view state data: "edit/1"
navigate(viewType, id);

3
navigate(ViewType.EDIT, 1) {

// do not pushState this time
app.updateView(...);

¥

Figure 11.5 Calling pushSt at e() adds the state to the browser history. The browser trig-
gers popSt at e events when the user clicks the back and forward buttons.

11.2

Using browser cookies to enhance user experience 243

the application startup. In the previous chapter, we discussed how the mai n() function
should call any relevant code to build a user interface and hook up event handlers;
the following listing shows the onPopSt at e() function, which properly extracts the
Vi ewType and ID from the state information, and an updated mai n() function that
adds the onPopSt at e() event handler.

Listing 11.2 Updated rmai n() function to listen for popSt at e events

void main() {
var ui Contai ner = query("#dartexpense");
var dataSource = new MckData();

_app = new AppControl | er(ui Container, dataSource);
app. bui 1 dUi () ; Adds onPopState()
app. | oadFi rstView(); to browser event

wi ndow. on. popSt at e. add(onPopSt at e) ; listener list

}

voi d onPopSt at e(PopSt at eEvent event) { <—— Defines onPopState() event:state .
if (event.state !'= null) { contains "edit/I"
List<String> stateData = event.state.split("/"); or "list

stateData[0] ;
new Vi ewType(vi ewNane) ;

var vi ewNane
var vi ewType

Creates viewType
from name part

var id = stateData.length == 2 ? int.parse (stateData[1l]) : null;

} Calls navigate(), passing true or null.

navi gat e(vi ewType, id, isFronPopState:true); ID is an int
} to isFromPopState parameter

Now your user can navigate around the app using the Add, Edit, and Save buttons sup-
plied by your user interface or the browser’s back, forward, and history navigation
functions.

Remember

= The w ndow. hi story. pushState(data,title,url) function adds items to
the browser history.

= The event handler wi ndow. on. popState.add(...); is called when the user
clicks the browser’s back and forward buttons.

There’s another thing you can do to make the user experience even better. As well as
storing the user’s current view in the browser history with pushSt at e() , you can store
their current view state information in a browser cookie so that when they return to
your app, it will load the view they were last using.

Using browser cookies to enhance user experience

Browser cookies are small text files of data associated with a website that a web
browser stores on the user’s computer. Applications such as DartExpense can store

244

11.2.1

CHAPTER 11 Navigating offline data

around 4,096 KB of data per cookie and can store between 80 and 140 cookies per
site; but the size and number restrictions vary among browsers, so it’s generally bet-
ter to store smaller amounts of data. The data in the cookie is stored in plain text
and consists of a key/value pair and an expiry date or age after which the cookie is
no longer valid. Cookies exist for a specific domain, so the cookies your app creates
aren’t readily accessible by other websites.

WARNING Cookies are stored in plain text, and you must not use them to
store any sensitive data such as passwords. Users can also disable cookies, so
you should only use cookies to enhance the user experience, rather than rely-
ing on them being available.

When a user navigates to the DartExpense app, they use the entry-point HTML file Dart-
Expense.html. Instead of always loading the list view first, you can enhance the user’s
experience to return them to the last view they used when they last visited the app.

NOTE Cookies are browser-specific. For example, the cookies stored by Dart-
Expense in Chrome aren’t available to DartExpense when run on the same
machine in Firefox.

As with pushSt at e() and popSt at e, there are two parts to using cookies. The first is to
store the state information in the cookie when you navigate, and the second is to
retrieve the information from the cookie (if it exists) when you start the app.

Storing data in a cookie

Just like the pushSt at () call, the ideal place to store the current view in a cookie is in
the navi gate() function. You set a cookie by storing a key/value pair in the docu-
ment . cooki e property, as in

docunent. cookie = "stateData=edit/1";

The cooki e property is somewhat unlike other properties. Instead of setting the
value on a property, it adds or edits an underlying set of data. If the stateData
cookie already exists, the cooki e property overwrites it. If it doesn’t already exist, the
cooki e property creates a new one. If you set a different cookie key, such as the last
ExpenseType used, the browser adds another cookie. For example, writing to
docunent . cooki e twice like this

docunent . cookie = "stateData=edit/1",;

docunent. cooki e = "expenseType=books";

will result in two cookies being stored. Calling pri nt (docunent . cooki e) will return
the string " st at eDat a=edi t/ 1; expenseType=books".

Setting cookies this way won’t achieve the desired effect, because as they’re cur-
rently defined, they’ll only last for the current session. This is fine if the user opens
the app in a second browser tab, but the cookies will be lost when the user closes their
browser: without an expiry date or max- age, they’re considered to be session cookies.

Using browser cookies to enhance user experience 245

To ensure that they’re persistent cookies that last across browser sessions, you need to

specity either the expi r es property or max- age property when setting the cookie.
Expiry dates need to be in a specific format. In JavaScript, this is the JavaScript

toGMTStri ng() format, "Wy, DD Mon YYYY HH: MM SS GMI™, which looks like this:

docunent . cooki e="st at eDat a=edi t/1; expi res=Fri, 3 Aug 2012 20:47:11 GVI";

Unfortunately, there isn’t an equivalent function in Dart that outputs the date and
time in this exact format. For the moment, you’ll need to roll your own or use the
much simpler max- age property.

The max- age cookie property specifies the number of seconds until the cookie
expires. For example, you can specify a cookie to last a week by using the following
statement: One week
docunent . cooki e="st at eDat a=edi t/ 1; max- age=${ 60* 60* 24* 7} " ; <1J in seconds
You can view the cookies that are set in Chrome or Dartium by viewing the Cookies
section of the Elements tab in the Developer Tools console built into the browser, as

shown in figure 11.6.
You need to update your navi gat e() function to add the line

docurent . cooki e="st at eDat a=$st at e; max- age=${ 60* 60* 24* 7*4}";
at around the same point you update docurent . ti t| e. Every time you navigate, it will
overwrite the previous setting, storing the value of the st at e variable for four weeks.

11.2.2 Reading data from a cookie

Now that you have some data stored in a cookie, you need to modify the app to
retrieve the data and, just like the onPopSt at e() function, extract the view name and
ID from the cookie and pass them to the navi gate() function. Unfortunately, the

F
& Developer Tools - hitp://127.0.0.1:3030/C |

Elements ' Resources ' Network Sources Timeline Profies Audits Console

¥ D Frames Name | Value Domain Expires
o i ' 2012 15:23:58 G
P[_'_-I(DartExpense.html} stateData list 127.0.0.1 Sat, 09 Jun 2012 15:23:58 GMT
expenseType books 127.0.0.1 /| Session

¥ | |Databases

¥ | | IndexedDB

v |__T§| Local Storage

v i_:EISessiun Storage
¥ |3 Cookies

¥

v @ Application Cache

Figure 11.6 You can use the Cookies view of the Chrome and Dartium developer
tools to see the cookies your application has set.

246 CHAPTER 11 Navigating offline data

docunent . cooki e property returns a string of a semicolon-separated list of values,
such as

"stateDat a=edi t/1; expenseType=books"

You need a utility function to extract the relevant value for a given key, if it exists. List-
ing 11.3 uses the string.split() function to break the cookie string into a list of
key=value strings by splitting on the semicolon. Then, for each key=value string, the
list splits again until the correct key is identified. If the key doesn’t exist, because
either the cookie has not yet been set or the cookie has expired, the function returns
an empty string.

Listing 11.3 Utility function to extract a cookie value for a given cookie key

String getVal ueFronCooki e(String key) ({
for (String cookieKV in docunent.cookie.split(";")) {
Li st cookie = cookieKV.split("=");
if (cookie.length > 1) {
var cooki eKey = cookie[0].trim);

For each cookie in
... split into document.cookie
key=value pairs. property ...

if (cooki eKey == key && cookie.length > 1) { If there’s a value ...
return cookie[1]; ! ... return value if it’s
) } the requested key.
}
return " Return empty string instead
} of default null return value.

Now that you have a utility function to retrieve the specific value from a specific
cookie, you need to modify your app’s startup. The mai n() function calls the | oad-
Fi rstView() method of the AppControl | er class, so | oadFi rst Vi ew() seems like an
ideal place to check for the existence of the cookie and change the app’s first view as
required. You'll copy some of the code from onPopState() to decode the Vi ewType
and ID value. It’s left to you to refactor this as required. The next listing shows the
updated | oadFi rst Vi ew() method.

Listing 11.4 Changing the application’s first view if there’s a st at eDat a cookie

class AppController {

/1 ...snip other methods and properties...

| oadFi rstView() {
var vi ewlType = Vi ewType. LI ST; Sets default Tries to load
var id = null; list view stateData
var stateCooki eVal ue = get Val ueFr onCooki e(" st at eData"); cookie value

if (stateCookieValue != null && stateCookieValue.length > 0) {
Li st<String> stateData = stateCookieValue.split("/");
var viewNanme = stateData[O0];
var vi ewType = new Vi ewType(vi ewNane) ;
var id = stateData.length == 2 ? int.parse(stateData[1]) : null;

} If there is a value, uses same code
from onPopState() to extract data

11.3

Persisting data offline with Web Storage 247

navi gat e(vi ewType, id); Passes either default

} or value from cookie
} to navigate()

The app now uses data stored offline in cookies to persist information between ses-
sions. It uses the browser’s native history functionality to navigate backward and for-
ward through the application’s views.

Remember

= You can use cookies to store small amounts of data that are persisted across
browser sessions.

= Cookies are insecure and might be disabled by the user, so you should only use
them to enhance the user’s experience, rather than relying on their existence.

In the next section, you’ll see how you can store larger amounts of data by using the
HTML5 Web Storage APIs found in modern browsers. You’ll finally replace your mock
data with real data.

Persisting data offline with Web Storage

Modern browsers provide a number of offline storage mechanisms with varying
degrees of support. The simplest and most widely supported is the Web Storage API,
which is a list of key/value pairs, similar to cookies, but without expiration and with
much larger size limits of 5 MB per domain. Next is IndexedDB, an indexed object
store conceptually similar to serverside NoSQL databases such as MongoDB and
CouchDB. This system allows you to query an index to retrieve matching records,
which provides better performance than the Web Storage API when you want to access
a specific subset of records. Finally, there’s Web SQL Database, which is an embedded
SQL database. This isn’t widely supported, due in part to Mozilla’s decision not to sup-
port it, preferring instead to drive development in the IndexedDB set of APIs. The
Web SQL database specification is no longer being maintained, so browsers that do
currently support it may drop support in future versions. Table 11.2 shows the browser
support for these three technologies as of summer 2012.

Table 11.2 Browser support for offline storage technologies

Browser and version Web Storage IndexedDB Web SQL DB
Chrome 17+ Supported Supported Supported
Android Browser 2.1+ | Supported Not supported Supported
Firefox 3.6 Supported Not supported Not supported
Firefox 8+ Supported Supported Not supported
Internet Explorer 8 Supported Not supported Not supported

248

11.3.1

CHAPTER 11 Navigating offline data

Table 11.2 Browser support for offline storage technologies (continued)

Browser and version Web Storage IndexedDB Web SQL DB
Internet Explorer 9 Supported Not supported Not supported
Internet Explorer 10 Supported Supported Not supported
Safari 5+ Supported Not supported? Supported

iOS Safari 3.2+ Supported Not supported Supported

Opera 11.6+ Supported Not supported? Supported

Opera Mobile 11+ Supported Not supported Supported

a. Future Safari and Opera support for IndexedDB is unknown at the present time.
Source: caniuse.com, June 2012

As you can see, all modern browsers support Web Storage, but IndexedDB isn’t sup-
ported in Safari and iOS and older versions of IE and Firefox. Web SQL support was
added to Chrome and Safari browsers while the specification was still active, but it’s
not supported at all by IE and Firefox.

NOTE Data stored in local storage, just like cookies, is browser specific. This
means the DartExpense data stored in Chrome’s local storage isn’t available
to DartExpense when it’s run in Firefox on the same machine.

In this section, you’ll modify DartExpense to use the most widely supported Web Stor-
age API. Web Storage key/value pairs must both be strings, which means you can’t
store the expense instances in them directly. Instead, you must first convert them to a
string representation such as JavaScript Object Notation (JSON). Dart’s JSON library
contains two functions, JSON. stringi fy() and JSON. parse(), for converting maps
and lists into strings and back to maps and lists. You need some way to expose your
Expense and ExpenseType objects as a map of key/value pairs.

Converting Dart objects to JSON strings

In JavaScript, objects are maps of key/value pairs rather than instances of real classes
as in Dart. The JSON data format, which is prevalent around the web, represents a
JavaScript data structure that doesn’t map directly to Dart’s class model. Instead, it
converts to Dart’s Map class, which contains key/value pairs. In order to convert your
Expense and ExpenseType classes to JSON, you need to convert the list of properties in
each class to a map. This map can then be passed into JSON. stringify() to convert
the map to a JSON string.

Figure 11.7 shows how a map of key/value pairs, which also contains a nested
expenseType map, is converted to a JSON string by the JSON. stringify() function.
There’s also an associated JSON. par se(string) function that converts the JSON string
back into a map.

http://caniuse.com

Persisting data offline with Web Storage 249

A map in Dart converts to a JSON string
var exMap = new Map(Q); {
exMap[""amount'] = 40; "amount': 40,
exMap['expenseType'] = new Map(Q); "expenseType': {
exMap["'expenseType']['name'] = "Travel"; "name': "Travel",
exMap[‘‘expenseType']['code'] = "TRV"; “'code’: "TRV"
3

exMap[“'date™] = new Date.now().toString(Q); “'date™: ""2012-06-25 00:00:00.000",
exMap[''detail™™] = "Taxi from Airport"; "detail”: "Taxi from Airport"”,
exMap["id"] = 1; "idv: 1,
exMap["isClaimed"] = false; "isClaimed": false

¥

Convert map to JSON string:
var jsonString = JSON.stringify(exMap);

Convert JSON string to map:
var exMap = JSON.parse(jsonString);

Figure 11.7 Converting a map into a JSON string using JSON. stri ngi fy()

Because Dart’s JSON functions can’t convert native Dart objects to JSON and back, you
manually need to add this functionality to your Expense and ExpenseType classes.

Milestone 1

Support for reflection, which should allow dynamic analysis of a class’s properties
at runtime, is due to be added to the language in Milestone 1. This should allow
Dart’s library developers to provide additional functionality in the JSON libraries to
convert native Dart objects to JSON and back. Sometimes you’ll only want to con-
vert certain fields to JSON (rather than every field), so the techniques that follow
will still apply.

You can use two techniques to convert a Dart object to a map of key/value pairs
that’s accepted by the JSON.stringify() function. The simplest is to provide a
toMap() function on the class, which returns a map. A slightly more complex tech-
nique is to make your class implement the Map interface. The result is more flexible
and readable.

PROVIDING A CUSTOM TOMAP () FUNCTION
Using this method, you can write code such as

var jsonString = JSON. stringify(expense.toMap());

which will work for most purposes. The following listing shows the t oMap() methods
of the Expense and ExpenseType classes.

250 CHAPTER 11 Navigating offline data

Listing 11.5 Providingat oMap() method onthe Expense and ExpenseType classes

cl ass Expense {
int _id;
int get id => _id,
ExpenseType type;
Dat e date;
num anount = 0;
String detail;

bool isC ainmed = fal se; Expense.toMap()

Map toMap() { function
final map = new Map<String, Object>();
map["id"] _id;
if (date !'= null) {
map["date"] = date.toString();

Properties such as String,
num, and bool in map

map["anobunt"] = anount;
map["detail"] = detail;
map["isC ai ned"] = isC ai ned;

if (type !'=null) {

el expenseTyper = type: toMkp); cxpeaseiyee op
}

return map;

cl ass ExpenseType {
final String nane;

final String code;

ExpenseType.toMap()
function

const ExpenseType(this.nanme, this.code);

Map toMap() {
final map = new Map<String, Obj ect>(); <+
map["nanme"] = naneg;
map["code"] = code;
return nmap;

}

bool operator ==(other) {
if (other == null) return fal se;
return this.nanme == other.nane && this.code == other. code;

}

This technique ensures that every object used in the top level returns a map or string
representation of itself. The JSON functions can convert the types String, num bool ,
Li st, Map, and nul | into JSON strings, but no others. This means other types, such as
the Dat e type, need to be converted to strings (via their t oSt ri ng() method) or con-
verted to maps, such as with the ExpenseType’s custom t oMap() function.

IMPLEMENTING THE MAP INTERFACE
The second technique is for your classes to implement the Map interface, which will
allow them to be passed directly into the JSON. stringify() function. You need to

Persisting data offline with Web Storage 251

write more boilerplate code (to implement the interface), and the code that does the
work in your class is similar to t oMap(). The result, though, is nicer, more readable
code when converting to JSON, such as this:

var jsonString = JSON. stringify(expense);

The additional benefit of implementing the Map interface is that as well as passing a
single instance of an expense into the stringi fy() function, you can also pass in a list
of Expense objects. The stringi fy() function treats each item in the list as a map and
converts it accordingly. This wouldn’t work with the toMap() method, because the
stringi fy() function wouldn’t know it needed to call t oMap() for each expense in
the list.

When implementing the Map interface, the key properties and methods are as
follows:

= keys—Returns a list of the Expense class’s properties as a list of strings.

= Overloaded operator[] function—Returns the correct property value (con-
verted to a String, num bool , Li st, Map, or nul |) for the given key.

= forEach()—Takes another function as a parameter. The function parameter is
called for each key in the list, passing it the key and its associated value.

Requests for a key that isn'’t listed in the keys collection return nul | . All other map
functions throw an Uni npl enent edEr r or because they aren’t required for this particu-
lar use case. The next listing shows the Expense function with its Map implementation.

Listing 11.6 Implementing the Map interface to support JSON. st ri ngi fy()

cl ass Expense inplenments Map { Implements Map
/l...snip properties and ot her nethods... interface

Col l ection get keys {

return ["id","anmount", "expenseType", "date", "detail","isC ai ned"];
}
operator [](key) { Returns fixed list Returns
if (key =="id") { of key names value for a
return this.id; given key ...
} else if (key == "anpunt") {
return this.anount;
} else if (key == "expenseType") {
return this.type.toMap();
} else if (key == "date") {
return date == null ? null : date.toString();
} else if (key == "detail") {
return this.detail;
} else if (key == "isCOainmed") {
return this.isd ained;
} else { QJ . OF
return null ; returns null
}

252

11.3.2

CHAPTER 11 Navigating offline data

f or Each(f uncPar an{ key, val ue)) {
for (var k in keys) {
funcParam (k, this[k]);
}

For each key in keys
collection, passes key and
value into funcParam()

}

bool get isEnpty(){ throw new Uni npl enentedError(); }

bool contai nsVal ue(val ue) { throw new Uni npl enentedError(); }
bool contai nsKey(val ue) { throw new Uni npl enentedError(); }
Col | ection get keys { throw new Uninpl enentedError(); }

Col l ection get values { throw new Uninpl ementedError(); } Not
int get length { throw new Uninpl enentedError(); } implemented
void clear() { throw new Uninpl enentedError(); } map functions

voi d renove(key) { throw new Uni npl ementedError(); }

put | f Absent (key, ifAbsent) { throw new Uni npl enentedError(); }

voi d operator[]=(key, value) { throw new Uni npl ementedError(); }
}
There’s a lot of boilerplate code here to support the Map interface, but overall the
usage is cleaner because you can now transparently convert single instances or lists of
the Expense class to a JSON string using JSON. stringi fy().

Converting JSON strings to Dart objects

Now that you have a mechanism to convert your class to a string, the next step is to
convert it back from a string to an object again using JSON. par se() . Unfortunately,
there’s no nice way to achieve this with the current JSON libraries. Even though the
Expense class implements the Map interface, the JSON. parse() function returns an
instance of a map rather than an instance of an expense, because it has no knowledge
of your Expense class.

The typical way to achieve this in Dart is to provide a named f r omVap() constructor,
which populates the initial properties on the object in a manner similar to t oMap() .
This lets you create a new instance of an object by using the following snippet:

Converts JSON
var jsonString = ...snip expense as a JSON string... J representation
var map = JSON. parse(jsonString); to a map
var expense = new Expense. fronvap(nap) ; QT Constructs expense

from converted map

The fromMvap() constructor shown in listing 11.7 reads each of the values from the
map and uses it to populate each of the Expense object’s properties, including
ExpenseType, which is constructed by reading its nane and code properties from an
inner expenseType map. In addition to the fronap() named constructor, the default
constructor remains, so you can still create new, empty instances of an expense.

Listing 11.7 fronmVap() constructor: initializes an object from a map of properties

cl ass Expense inplenments Map {
//... snip other nethods and nap inpl enentation

int _id;

11.3.3

Persisting data offline with Web Storage 253

int get id => _id,
ExpenseType type;

Dat e dat e;
num anount = O;
String detail;
bool isC ained = fal se;
Ex
piegsi() gfet Next 1 d() : Existing default
b - ’ constructor Named fromMap
Expense. fronmvap(Map map) { <1J constructor

_id = mp["id"];

date = new Date.fronString(map[“date"]);
amount = nmap["anmount"];

detail = map["detail"];

isCained = map["isC ai med"];

Populates properties
with values from map

i f (map. contai nsKey("expenseType")) {
var expenseTypeNane = map["expenseType"]["nanme"];

- Accesses expenseType
var expenseTypeCode = map["expenseType"]["code"];

values from inner map

type = new ExpenseType(expenseTypeNane, expenseTypeCode) ;
}

} Sets type with a

} new expense type
NOTE A recent addition to aid conversion of an object to JSON is that the
dart:j son libraries now attempt to call a t oJson() method if they can’t oth-
erwise convert your class to JSON via one of the standard JSON types. You can
use this default handling to return a string representation of your object.

You now have a mechanism to convert your expense objects to and from a string in
JSON format. With your data in the required format, the next step is to store it with
the browser Web Storage API.

Storing data in browser web storage

The browser Web Storage API has two implementations with the same syntax: session
storage and local storage. The following examples use local storage, which persists
data across browser sessions. This was chosen in preference to session storage, which
persists data for the length of the session only (until the browser is closed) and is
accessible via the wi ndow. sessi onSt or age property.

NOTE Although the syntax to access both session and local storage is identi-
cal, there’s an important difference. Local storage is limited to 5 MB per
domain, whereas session storage is limited only by system resources.

The browser’s local storage API is accessed using the wi ndow. | ocal St or age property.
This property implements Dart’s Map interface, allowing you to use indexers to read
data from and write data into the store:

wi ndow. | ocal St orage["expense"] = JSON.stringify(expense);

var jsonString = w ndow. | ocal St orage["expense"];
expense = new Expense.fromlson(jsonString);

254

CHAPTER 11 Navigating offline data

i = Developer Tools - htlp:f!127,0.l].i.:\303;nﬂ-ﬂ - _--r" —:- H;-_ - -

€)@ %X AME

\,J Elements ' Resources Metwork Sources Timelne Profiles Awudits Console

¥ [Frames =y s
> D (DartExpense.himi) axpense:] .{"Id 11,"amount™45.0, "expenseType™:"name""Travel", "code™"TRV"
expense:2 id™:2, "amount™;40.0,"expense Type™:{"nam=""Book=", "code™."BK},"
¥ | | Databases e ¥ ; HoRTE }

¥ | |IndexedDB
b E:J Local Storage
[
v I;I;l Session Storage
¥ [Cookies

[Z¥127.0.0.1
W E Application Cache

Key name Value string

Figure 11.8 You can inspect local storage keys and values with the web browser’s developer tools.

As with cookies, local storage key/value pairs exist for a specific domain, so the data the
DartExpense app creates is stored separately from any other website’s data. Also as with
cookies, the data stored in local storage is viewable in plain text, so you shouldn’t store
any sensitive data such as passwords in the browser’s local storage. Figure 11.8 shows the
Chrome/Dartium developer tools to inspect the values stored in local storage.

WARNING Just like cookies, all local storage is insecure and can be inspected
by anyone with access to the web browser. Your app should either encrypt the
data or, better, only store in the browser data that isn’t sensitive.

INSERTING DATA INTO LOCAL STORAGE

Because DartExpense needs to store multiple instances of Expense objects, it will
build a key by using the string expense: ${ expense. i d} , which gives key names such as
expense: 1, expense: 2, and so on. This allows you to access and modify a single
expense record. But an alternative strategy could be to store a JSON-converted list of
expenses in a single property:

Li st <Expense> expensesList = ...snip building the list...

wi ndow. | ocal St or age["expenses”] = JSON. stringify(expensesList);

The disadvantage of this method is that if you want to modify a single expense record,
you need to update the entire list in local storage again.

When you insert a single expense into local storage by assigning a JSON string to a
specific key such as expense: 1, you either create a new value or overwrite the existing
stored value. Sometimes you want to check whether you’re creating or overwriting,
perhaps in order to display a message such as “Expense was created” or “Expense was
updated.” The Map interface provides a cont ai nsKey() method you can use to check
before you insert the value, for example:

var i sNewval ue = wi ndow. | ocal St or age. cont ai nsKey("expense${expense.id}");
wi ndow. | ocal St or age["expense${expense.id}"] = JSON. stringify(expense);

Persisting data offline with Web Storage 255

Cookies and site data x
Site Locally stored data Remove all
127.001 1 cockie, Local storage

|ExpEr'sET3-'pE| Locsl storage

Origin: http://127.0.0.1:3030 =
Size on disk: 50KB .
Last modified: Sunday, June 10, 2012 1:44:45 PM

Rermove

Figure 11.9 Inspecting the
amount of data stored for a
particular site

The amount of data stored is limited to 5 MB per domain for local storage (or unlim-
ited for session storage). You can inspect the amount of data stored in Chrome by
looking at the Cookies and Site Data settings in the browser’s advanced settings, as
shown in figure 11.9.

Users or installed plug-ins and extensions can also disable Web Storage, so your
app needs to be able to handle this. If you try to write data into local storage when
storage is disabled, the browser will throw a DOVExcepti on. Best practice is to wrap
your writes to local storage in a try/ cat ch handler:

try {
wi ndow. | ocal St or age["expense: ${ expense.id}"] = JSON.stringify(expense);

}
on DOVException catch (ex) {
wi ndow. al ert ("Local storage is not available");

}

You can now update the existing addOr Updat e() function to store the data in local
storage, as shown in the following listing.

Listing 11.8 Adding/updating an expense in local storage

bool addOr Updat e(Expense expense) {
var | ocal StorageKey = "expense: ${expense.id}";
bool isNew = !'w ndow. | ocal St orage. cont ai nsKey(| ocal St or ageKey) ;

try {
wi ndow. | ocal St or age[| ocal St orageKey] = JSON. stringify(expense);

}
on DOVException catch (ex) {
wi ndow. al ert ("Local storage not enabled");

}

return i sNew,

256

CHAPTER 11 Navigating offline data

READING DATA FROM LOCAL STORAGE

Reading data from local storage is even simpler. Because the | ocal St or age property
implements Dart’s Map interface, you read the value by passing the key name to the
accessor:

var jsonString = wi ndow. | ocal Storage["expense: 1"];

The DartExpense app needs to load a list of all expenses. To achieve this, you need to
load all the | ocal St or age values that have a key beginning with expense: . This again
is straightforward using the keys property, as shown in the next listing, where you
retrieve each JSON representation of an expense and convert it back into an Expense
object using the f romvap() named constructor.

Listing 11.9 Reading the list of expenses out of local storage

Li st <Expense> | oadExpenses() { Createsrnew,
var expensesList = new Li st <Expense>(); empty list Iterates through
for (var key in wi ndow. | ocal Storage. keys) { <1J local storage keys
if (key.startsWth("expense:")) { <—— If key starts with expense: ...

String val ue = w ndow. | ocal St or age[key] ;
var map = JSON. parse(val ue);
var expense = new Expense. fromnvap(nap);

expenseslLi st. add(expense); 47

... converts string into a map
and then to an expense.

Adds expense
to result list

}

return expenses; <—— Returns list
}
PUTTING IT ALL TOGETHER: REPLACING MOCK DATA WITH WEB STORAGE
Now that you can store data in local storage and read data out of local storage, you can
replace your MockDat a class in DartExpense’s mai n() function. MockDat a implements
a Dat aAccess interface:

interface DataAccess {

Li st <Expense> get expenses;

bool addOr Updat e(Expense expense);
}

You need a new Local St orageDat a class containing the two functions shown here in
order to return a list of expenses from local storage and update a single expense in
local storage. When you’ve completed that step, you can modify the mai n() function
as shown next.

Listing 11.10 Replacing mock data with real data

void main() {
var ui Cont ai ner = query("#dartexpense");
var—dataSource = new MockDatal):

Changes dataSource to
var dataSource = new Local StorageData();

work with LocalStorage

Summary 257

Passes dataSource

_app = new AppControl | er(ui Contai ner, dataSource); 4—‘
to AppController

app. bui 1 dUl ();
app. |l oadFirstView);

wi ndow. on. popSt at e. add(onPopSt at e) ;
}
The DartExpense app now functions as a real client-side offline app that persists data
between sessions using web storage.

Remember

= Web Storage is the most widely supported offline storage technology and the
simplest to use.

= w ndow. | ocal St orage provides up to 5 MB storage per domain, persisted
across browser restarts.

= W ndow. sessi onSt or age provides unlimited storage (restricted by the system
resources) but doesn’t persist across browser restarts.

11.4 Summary

This chapter extended the DartExpense app to improve the user experience. You
added functionality to use browser history via pushSt at () and popSt at e so users can
navigate views in a single-page web app using standard browser functionality. You also
used browser cookies to enhance the user experience by allowing DartExpense to
return to the same view after the browser was restarted.

You learned how to convert Dart objects to JSON strings and back by using the
JSON. stringi fy() and JSON. parse() functions. These functions can only convert
Map, Li st, String, bool , num and nul | types to JSON; you need to manually provide a
mechanism to convert your own classes, such as Expense, to a map, which you
achieved by implementing the Map class. To convert back from a JSON map, you cre-
ated a fronvap() named constructor to repopulate the object’s properties.

Finally, you learned how to store JSON data in the browser’s web storage, by using
the | ocal St or age key/value storage API available in all modern browsers. This func-
tionality replaces the mock data that DartExpense was using with real data that’s per-
sisted offline across browser sessions.

In part 4 of the book, when we look at Dart on the server, you’ll extend the DartEx-
pense app to sync its data to the server. But first, in the next chapter, we’ll look at ways
of communicating with other JavaScript functions and discuss how to use Dart and
JavaScript interaction to request JSON data from public servers.

Communicating with
other systems and languages

This chapter covers

= |nteracting with JavaScript

m Getting data from external servers with JSONP
® Running an app without a server

® Packaging an installable Chrome app

Although you can write an app entirely in Dart, that isn’t the end of the story. Dart
apps live in a wider ecosystem encompassing browser apps, existing JavaScript
frameworks and libraries, and APIs on third-party servers. Each of these environ-
ments has its own challenges in the areas of server availability, browser security, and
communication between different virtual machines.

In this chapter, you’ll modify the DartExpense app to interact with external
JavaScript by passing messages between the Dart and JavaScript VMs. This modifica-
tion lets you call out from Dart code to JavaScript code and lets JavaScript code call
back into Dart code.

You’ll use this JavaScript mechanism to communicate with third-party servers,
such as public Google APIs, by using JSON with padding (JSONP) callbacks. This is a

258

12.1

Communicating with JavaScript 259

mechanism to return data from a third-party server without the security restrictions
around AJAX calls.

Next, you’ll improve DartExpense’s ability to use the offline capabilities provided by
HTML5’s AppCache technology, which lets the browser startan app even when the server
isn’t available—perfect for mobile apps when you can’t always guarantee connectivity.

Finally, we’ll look at how to package your app as a Chrome app that you can run
purely offline and install into Google Chrome via the Chrome Web Store. Installable
Chrome apps offer a method to get your
app in front of a large audience via the |
Web Store.

You’ll start by taking the existing Dart-
Expense app and adding a pie chart of
expense types by taking advantage of a | 3. Browser apps |
third-party JavaScript charting library.

Thisis the first external system you’llincor- ~ Figure 12.1 Integrating Dart with JavaScript
porate with Dart; see figure 12.1.

1. External JavaScript |

Dart integration | 2. External server APIs |

Communicating with JavaScript

Thousands of libraries have been built with JavaScript, and many developers want to
incorporate some of them into their apps. As Dart’s popularity increases, Dart versions
of popular libraries will appear; but until that happens, you’ll need to communicate
across virtual machines, from the Dart VM to the JavaScript VM and back again. This
applies even if Dart is converted to JavaScript, because although there’s only the
JavaScript VM, the Dart code isn’t easily exposed to other JavaScript because of optimi-
zation processes.

NOTE Be aware that calling JavaScript from Dart is different than Google Web
Toolkit’s (GWT) JavaScript Native Interface (JSNI) functions, which let you
embed JavaScript code in Java code. In Dart, there’s a distinct boundary
between when the Dart code stops and the JavaScript code starts. But it’s likely
that this boundary will become increasingly transparent as the Dart team devel-
ops object proxies to provide greater Dart and JavaScript interoperability.

You’ll modify the DartExpense app by adding a third view, a chart view, to go along
with the current list and edit views. The chart view will provide an empty <di v> that
will be populated by the Google chart library, which is written in JavaScript. You’ll
communicate from the Dart app to the JavaScript, passing expense data into the chart
library in order to produce a pie chart of expenses, as shown in figure 12.2.

In order to communicate between native JavaScript and Dart code, you need to
pass messages, typically in the form of JSON, back and forth between the JavaScript
and Dart VMs. The DartExpense code, running in the Dart VM, written in Dart, will
send a message to the JavaScript charting function telling it to render a chart in a spe-
cific <di v>. Your JavaScript code will receive the message and call the JavaScript chart
API to render the pie chart.

260

CHAPTER 12 Communicating with other systems and languages

DartExpense
Type Date Item Amount
Travel 20-7-2012 Taxi from Airport 150.00
Books 22-7-2012 Dart in Action 40.00
Travel 18-7-2012 Taxi to Airport 55.00
Hotel 17-7-2012 City Hotel 150.00

DartExpense

Expense Types

Dart code sends expense
data to the JavaScript library

W Travel
W Books
Hotel

4

Figure 12.2 Adding a JavaScript-generated pie chart to the DartExpense app

Chart is drawn
by an external
JavaScript library

NOTE The text refers to the Dart VM when talking about Dart code or Dart
converted to JavaScript, and it refers to the JavaScript VM when talking about
native JavaScript code written in JavaScript. Dart converted to JavaScript
should be treated as though it’s still Dart code and separate from native

JavaScript code.

The mechanism for passing data between Dart and JavaScript is via a function pro-
vided by a browser window called post Message(), which is part of the wi ndow object

in the dart:htnl library. This allows communication back and forth between Dart

and JavaScript by letting the receiving side add an event listener to listen for messages
posted to it. The browser takes the message sent from one VM and passes it across the
boundary where another VM can receive it. Figure 12.3 shows the flow between the
two VMs.

A

Virtual machine
boundary

Virtual Machine 1 _

Send data as JSON

(— Virtual Machine 2

Listener function to receive data

Listener function to receive data

J

Send data as JSON

N

/

Figure 12.3 Sending data from one VM to another requires a listener function on the receiving side.

Communicating with JavaScript 261

The post Message() function sends messages out to all listeners, which may be listen-
ers from the Dart app, listeners in your JavaScript, or listeners from third-party
imported scripts. Each listener function needs to decide, based on the content of the
data, whether the message is targeted at that particular listener function.

To achieve this, you’ll pass your data to the post Message() function with the data
wrapped in JSON, with a t ype field of dart 2j s or j s2dart so each receiving function
knows the data is meant for it. You’ll also add an act i on field so you can have multiple
receiving functions. At the moment you’ll only have a chart action, but later you’ll
add more. You pass your expense summary data using the payl oad field. The JSON
data and the flow from Dart to JavaScript are shown in figure 12.4.

The post Message(dat a, target Ori gi n) function provided by the browser takes two
parameters: the data, which you’re sending as JSON, and t ar get Ori gi n,whichis the URL
from which the receiving page was served. This means if you're sending data to http:
//localhost:8080/DartExpense.html, the target origin is also http://localhost:8080/
DartExpense.html. In most cases, you can use the value of wi ndow. | ocati on. href,
because you’re sending messages in the same page, but being able to change this value
lets you send messages between different i franes (different, complete web pages
embedded in another web page but served from a different location). To simplify this,
you’ll create a utility function called sendToJavaScri pt () , which will take an action type
string and payload data.

Dart VM
1. You'll package the
data = "{ expense summary data
“type": "dart2js-, p - sun y
"action”: "chart-, for charting into the
"payload®: { / pay! oad field.
// expense summary data
3 b (JavaScript VM

data passed into all
postMessage(data) Browser sends data to listeners post Message() listener

functions
N\ AN)
ifT (data["type"] == "dart2js"™) {
2. post Message() sends if (data["action";l' == "ch.a}rt") {
the data to all listeners. / e e R R

by
) else {
3. All listeners on the page // some other javascript
(whether JavaScript or Dart) i
receive the data and process 3
it as they wish. |
1
4. The JavaScript listener function Other listener functions to check data in
looks for atype=="dart 2j s" their own way

and an appropriate act i on. AN J

Figure 12.4 post Message() data is sent to all listener functions, so you need to identify that
the data is meant for you.

262 CHAPTER 12 Communicating with other systems and languages

12.1.1 Sending data from Dart to JavaScript

In order to send data from Dart to JavaScript, your utility function sendToJavaScri pt (),
shown in listing 12.1, will package the dart 2j s post Message type string, the action
string, and the payl oad (which will contain your expense summary data) and convert
them to JSON before calling the wi ndow. post Message() function. Add this utility func-
tion to DartExpense’s app.dart source file.

Listing 12.1 app.dart: sendToJavaScri pt () function that calls post Message()

/1 snip other functions and cl asses

sendToJavaScript (String action, var payload) { Creates new map
var data = new Map<String, Obj ect>(); to hold data
data["type"] = "dart2js";

Assigns postMessage()

data["action"] = action; .
type, action, and payload

dat a["payl oad"] = payl oad;
var jsonData = JSON. stringify(data);

w ndow. post Mesage(j sonData, wi ndow. | ocation. href); Converts
} Sends JSON data t map to JSON

o all
postMessage() listeners
Now that you’ve seen how you send data to JavaScript, you need to provide data from
the DartExpense app. You need an aggregate of all your expense data, showing the
total amount for each expense type. Figure 12.5 illustrates the transformation the data
makes from original data to aggregated totals to pie chart.

To provide the aggregated data you’ll send to the JavaScript pie chart library,
create a boilerplate get Aggr egat edDat a() function. This function will return a
Map<ExpenseType, doubl e> containing the total amount claimed for each expense type.
The summary data needs to be converted into a specific format for the JavaScript chart
library: a list of key/value pairs, with each key/value being an item in a child list. The
first key/value pairs represent the chart headings, shown in the following JSON snippet:
[<—— Containing list of key/value pairs

[' Type',' Anount'],
[" Travel ', 205.0],

[' Books', 40. 0],
['Hotel', 150. 0]

Header information
Expense

summary data

Raw data Aggregated data Pie chart
Type Amount Type Total Total Claimed
Claimed

Travel 150

Travel 205 Trawvel
Books 40

Books 40 Books
Travel 55 mHotel

Hotel 150 niE
Hotel 150

Figure 12.5 How the DartExpense data is transformed from raw data to a pie chart

Communicating with JavaScript 263

When the user clicks the View Chart button, the app calls the get Aggr egat edDat a()
function to generate the expense summary data and passes the results into the new
Chart Vi ew class.

Chart Vi ew shown in listing 12.2, implements the Vi ewinterface, just like the exist-
ing list and edit views. It provides a r oot El ement to render the content of the view and
an acti ons element that renders the view’s buttons. Chart Vi ew creates a <di v> with
i d=chart Vi ew, which is used by the JavaScript chart library to display the pie chart.
Each expense type and total amount in the payload is added to a list, forming the pay-
load you pass to the JavaScript chart library in order to draw the pie chart. Finally, you
call the sendToJavaScri pt () utility function you created earlier, with the chart action,
to convert the payload to JSON and send the data to all post Message() listeners.

Listing 12.2 ui_chart.dart: Char t Vi ew class that calls the JavaScript chart library

class ChartView inplenments View {
Di VEl ement root El enent ;
Di vEl enent acti ons;

Chart Vi em(Map<ExpenseType, doubl e> aggregat edData) { The constructor takes the
_bui I dVi ew(expenseSummary) ; expenseSummary data
_bui I dActions();

}

_buil dView (var expenseSummary) {

root El enent = new El enent. htm (n wn

<div id= chartView Creates <div> called

styl e=" wi dt h: 500px; :(I:aur:ZlewforjavaScrlpt

hei ght : 150px’ ></ di v>""");
Li st payl oad = new List(); Creates new list for payload
payl oad. add([" Type", "Amount"]); data and adds header row

for (var expenseType in expenseSummary. get Keys()) {
var total Ambunt = expenseSunmary[expenseType];
payl oad. add([expenseType. nane, total Amount]);

Adds each
expense type and
total amount

}

var action = "chart";

sendToJavaScri pt (acti on, payl oad) ; Sends data to
} JavaScript

_bui I dActions() {
/1 snip adding "Return to List" button

}
}

This is only half the picture. Your Dart code has sent some data, but you need to write
the JavaScript post Message() event listener that will receive the data.
12.1.2 Receiving data in JavaScript sent from Dart

In order to do anything with the data sent by post Message() from your Dart code,
you also need some JavaScript that’s waiting to receive the data. You do this by writing

264 CHAPTER 12 Communicating with other systems and languages

an event-listener function in JavaScript and attaching it to the JavaScript wi ndow object
with the wi ndow. addEvent Li st ener () function. The JavaScript addEvent Li st ener ()
function takes two parameters: the type of event it’s listening for (in this case,
message) and a JavaScript callback function.

NOTE All the code in this section is JavaScript, embedded directly into
<scri pt > tags in the DartExpense.html file. Dart and JavaScript look similar.

The following listing shows the JavaScript required to receive the expense summary
data and print the payload to the browser development console.

Listing 12.3 DartExpense.html: JavaScript to receive post Message() data

<! DOCCTYPE htmi >

<htm >
<head> JavaScript
<!-- snip other head tags --> <script> tag
<script type="text/javascript"> QJ Declares JavaScript
function recei veFronDart (event) { receive() function
var data = JSON. parse(event.data); Converts data
var type = data["type"]; Extracts values j from JSON to
var action = data["action"]; from JavaScript JavaScript map
var payl oad = data["payl oad"]; map
Outputs console.log(type + ", " + action + ", " + payload);
them to } QJ Adds listener function
developer w ndow. addEvent Li st ener ("nessage", receiveFronDart); to window object
console)
</scri pt>
</ head>
<body>

<di v id="dartexpense"></div>
<script type="application/dart" src="DartExpense.dart"></script>
<script src="dart.js"></script>

</ body> Standard HTML to host
</htm > DartExpense application
If you call the sendToJavaScript() function from your Dart code, this piece of
JavaScript outputs your expense summary data to the browser developer console. Now
that you can get data into JavaScript, it’s time to bring in the Google Chart API. The
Google API has two components: the API and a function to use the API. You add the
API to the page by linking in the j sapi script hosted at Google:

<script type="text/javascript" src="http://ww. googl e.contjsapi"></script>

This brings in all the code required to load the specific Chart API from all the avail-
able Google APIs. To use the Chart API, you need to add another JavaScript func-
tion, | oadPi eChart (chart Dat a), that will take the expense summary data and use it
to build a pie chart. This function loads the Google charting library and takes
another JavaScript function, drawChart (), which draws the chart with your data
when the charting library is properly loaded. Listing 12.4 shows both functions and

Communicating with JavaScript 265

also modifies the JavaScript receiveFronDart () function, which checks that the
post Message() data is meant for it, and passes the payload expense summary data to
the | oadPi eChart () JavaScript function.

Listing 12.4 Calling Chart library code from r ecei veFr onDart ()

<l-- snip other htm -->

<head>
<script type="text/javascript" src="http://ww. googl e.conljsapi">
</script> j
Includes Google API

<script type="text/javascript">

function recei veFronmDart (event) {
var data = JSON. parse(event.data);

if (data["type"] == "dart2js") { Extract load
if (data["action"] == "chart") { xtrac sdpay oa
var chartData = data["payl oad"]; <,J expense data
| oadPi eChart (payl oad) ; 47 Passes data to
} I loadPieChart
} When corechart
package loads,
wi ndow. addEvent Li st ener (" nessage”, receiveFronDart); calls drawChart()

function | oadPi eChart(chartData) { callback function

var packageData = { packages:["corechart"], callback: drawChart};
googl e. | oad("vi sual i zation", "1", packageData);

function drawChart () {
var data = googl e. visualization. arrayToDat aTabl e(chart Dat a) ;

Converts var options = {title: 'Expense Types'};
chartData
to correct var di vEl ement = docunent. get El ement Byl d("chart Vi ew');
format and var chart = new googl e.visualization. PieChart(diVvEl ement);
creates : .
options chart.draw(data, options); Draws pie
} chart Creates
} PieChart with
</script> chartView
</ head> <div> element

<l-- snip other htm -->

You can try a number of different options, such asi s3d: t r ue to make the chart 3D, or
specify colors and sizes. A quick search for “Google Chart API” will bring up the full
list of options and many other charts, such as bar or line graphs, on the http://
developers.google.com website.

Now that you’ve called JavaScript code from Dart, you should reverse the route
and call Dart code from JavaScript. The pattern is the same but reversed: the
JavaScript code sends data via post Message() , and the Dart code listens for a message
event sent by the browser.

12.1.3 Sending data from JavaScript to Dart

At this point, your DartExpense app sends data to the JavaScript Chart API. You’ll
complete the cycle and have the JavaScript drawChart () function send a message

http:// developers.google.com
http:// developers.google.com
http://dartexpense.com

266 CHAPTER 12 Communicating with other systems and languages

Dart VM 4\ JavaScript VM
Send expense summary data to Receive expense summary data
JavaScript as type="dart2js" and call JavaScript chart library
Receive finished signal and Send “finished” signal to Dart with
enable Return to List button type="js2dart"
L
.

Figure 12.6 The flow from Dart to JavaScript and JavaScript to Dart

back to Dart code when the chart is drawn. You’ll use this functionality to enable the
Return to List button on the Chart Vi ew class’s actions panel. The flow from Dart to
JavaScript and back is shown in figure 12.6.

In exactly the same way you created a sendToJavaScri pt () function in your Dart
code, you’ll create a utility function in your JavaScript code called sendToDart
(action, payl oad) . Itwill package up the action and payload data into aJSON string and
send it to the browser via wi ndow. post Message() , as shown in the following listing.
You’ll also modify the existing dr awChart () function to call the newsendToDart () func-
tion when the chart is drawn.

Listing 12.5 JavaScript sendToDart () utility function

<script type="text/javascript">
function | oadPi eChart(chartData) {
var packageData = { packages:["corechart"], callback: drawChart};
googl e. | oad("vi sual i zation", "1", packageData);

function drawChart () {
var data = googl e.visualization.arrayToDataTabl e(chartData);
var options = {title: 'Expense Types'};

var di vEl enent = docunent. get El enent Byl d("chartView');
var chart = new googl e. visualization. Pi eChart (di vEl enent);

chart.draw(data, options);

sendToDart (" chart Conpl ete", "fini shed"); 47 Lets Dart know chart

drawing has finished

}
}

function sendToDart (action, payload) {
var data = {};

data["type"] = "js2dart"; Builds up data
data["action"] = action; to send to Dart
dat a[" payl oad"] = payl oad; Converts
var jsonData = JSON.stringify(data); data to JSON
} wi ndow. post Message(j sonDat a, wi ndow. | ocati on. href); Sends data back
</script> via postMessage()

The JavaScript code now sends the data to all post Message() listeners, so the final
step in the chain is to add a post Message() listener to the Dart code. There’s only one

Communicating with JavaScript 267

post Message() queue, and all messages, whether sent from Dart code or JavaScript
code, are sent to all listeners. This is why each listener needs to check that the data
sent to it is meant for that specific listener. The JavaScript listener receives messages
meant for the Dart listener, and the Dart listener receives messages meant for
the JavaScript listener. Each listener checks the data["type"] value to see if the
data is meant for it. JavaScript listeners continue processing only if the data["t ype"]
value is dart2js, and Dart listeners continue processing only if the data["type"]
value is j s2dart .

NOTE All the code listings from here on are Dart code.

The following listing shows the modified Chart Vi ewclass. It calls out to draw the chart
and then listens for a response from the JavaScript, enabling the Return to List button
when the JavaScript indicates that the chart is drawn.

Listing 12.6 ui_chart.dart: receiving data from JavaScript into Dart

class ChartView i nplements View {
Di VEl ement root El enent ;
Di vEl enent acti ons;
But t onEl ement returnTolLi st Button;

/1 snip constructor

_buil dView (var expenseSummary) {
/1 snip building payload data

var action = "chart";
sendToJavaScri pt (acti on, payl oad) ;
onFi ni shedLi st ener (event) { Extracts postMessage()
var data = JSON. parse(event.data); data
if (data["type"] == "js2dart") { Check whether data is meant
if (data["action"] == "chartConplete") { for this listener function
. wi ndow. on. message. r enove(onFi ni shedLi st ener);
Removes this ; . _)
event listener returnTolLi st Button. di sabl ed = fal se; 47 Enables
so it doesn’t } returnToListButton
fire again . }

wi ndow. on. nessage. add(onFi ni shedLi st ener); Adds event-listener

} function to listen to

_bui I dActions() { postMessage() events
/1 snip adding "Return to List" button

}

}

You’ve seen the round trip from Dart to JavaScript and JavaScript to Dart. As a result
of the multiple VMs with their separate memory and browser interactions, it’s more
complicated than embedding JavaScript code in Dart code. The only way to communi-
cate between the VMs is to pass messages from one to the other.

268

12.2

CHAPTER 12 Communicating with other systems and languages

Remember

= You can pass data out of Dart code by using wi ndow. post Message() .

= JavaScript code can listen for the message event to receive data from Dart code
by attaching a listener function with wi ndow. addMessageLi st ener ().

= Multiple listeners can receive data sent with post Message(), so each listener
needs to decide if the data is intended for it.

In the next section, you’ll use the sendToDart () function to receive data from exter-
nal servers via a mechanism called J[SONP, which is a common JavaScript workaround
for the security restrictions imposed by the browser when making Ht t pRequest calls.

Communicating with external servers

One of the great aspects of web develop-
ment is that you can access public APIs

| 1. External JavaScript ‘

on external servers to retrieve data Dart integration 2. External server APIs ‘

required by your app. This is the next
external system you’ll integrate with | 3. Browser apps ‘
Dart (see figure 12.7).

You’ll modify the DartExpense app Figure 12.7 Integrating Dart with external server
APIs

again to add a conversion function that

will convert a US dollar expense amount into British pounds. In order to do
this, you need to get the current exchange rate, which is helpfully provided by
http://openExchangeRates.org, through the URL http://openexchangerates.org/
api/latest.json.

Your edit screen will have an additional Convert to GBP button that will take the
amount edited, grab the latest exchange rate information, and update the value with
the converted amount, as shown in figure 12.8.

The exchange rate information is returned as JSON, as in the following snippet of
JSON data showing only four exchange rates:

{
"rates": {
"EUR': 0.816139,
"FJD': 1.820003, . .
“FKP": 0.639819, You’re interested in the
"GBP": 0.639819 GBP exchange rate.
}
}

When your code receives this information, you need to extract the exchange rate and
multiply it by the dollar value using the following snippet of code:
var data = JSON. parse(exchangeRat eDat a) ;

var conversionRate = data["rates"]["GBP"];
var gbpAmount = dol | ar Amount * conversi onRate;

http://openExchangeRates.org
http://openexchangerates.org/api/latest.json
http://openexchangerates.org/api/latest.json

12.2.1

Communicating with external servers 269

DartExpense DartExpense
Type Type
Travel = Travel =l
Date Date
20/07/2012 v 20/07/2012 v
Amount Amount

150.00 H ————— | 9592

Detail
Taxi from Airport

Offline

Request Response

Figure 12.8 Using exchange rate information from a public API to convert the amount from
USD to GBP

You’ll then update the Amount text box with the new GBP amount. Unfortunately,
getting your hands on this exchange rate data isn’t entirely straightforward, thanks to
browser security restrictions designed to prevent a page served by one site from com-
municating via an AJAX Ht t pRequest to another site.

Understanding the same-origin security restrictions

The normal way to request data from a server in an asynchronous manner is with an
Ht t pRequest . The Ht t pRequest is an asynchronous API provided by the web browser,
anditprovides the Ain AJAX. Ht t pRequest , also known as XHR (from the browser’s DOM
XMLHt t pRequest () function), started appearing in popular browsers around 2005. It’s
used by a web page to request more data from a server, but it was soon hijacked to send
user data from one server to another in cross-site scripting attacks. Browser manufac-
turers countered by adding a same-origin policy: if your web page is served from a server
at http://dartexpense.com, then you can only use Ht t pRequest to communicate with
http://dartexpense.com and not with other servers.

This is a problem because at the moment the DartExpense app isn’t served by a
server; it runs entirely in a browser (we’ll look more at using Ht t pRequest when you
add serverside Dart in the next chapter). Fortunately, there are a number of ways to
circumvent this restriction, including the new cross-origin resource sharing (CORS)
standard that’s starting to be supported on servers. If a server supports CORS by add-
ing special headers to the response, then the browser won’t prevent you from using

http://dartexpense.com
http://dartexpense.com

270

12.2.2

CHAPTER 12 Communicating with other systems and languages

Ht t pRequest to access data from the third-party server. The following snippet shows
how you can access data using Ht t pRequest from either your own server or a third-
party server that supports CORS:

var url = "http://openexchangerates.org/api/latest.json"; XHﬁl;-fquest
new Htt pRequest. get (url, (response) { to

print (response. responseText); QT Does something
1 with returned data

Unfortunately, this is still an emerging standard. A more reliable but also more com-
plex method of requesting data from an external server is to use JSON with padding
(JSONP).

Using JSONP to request data from external servers

JSONP relies on the fact that you can link external scripts with a <scri pt > tag served
from any server to your page, just as you did with the Google j sapi script in the previ-
ous section. Rather than request regular JSON data, you request JSON data that’s
wrapped in a JavaScript function call known as a callback. When the page loads the
script from the external server, it executes the JavaScript, passing the data into the
JavaScript callback function. The name of the callback function is indicated by adding
acal | back=nyCal | backFunct i onNane query string parameter to the URL, as in

http://openexchangerates. org/api /| atest.json?cal | back=onDat aLoaded

This URL is added to the sr ¢ property of the first script, whereas a second script defines
the onDat aLoaded(dat a) JavaScript function that receives the data. Figure 12.9 shows
this in use.

DYNAMICALLY ADDING THE SCRIPT ELEMENT

You can add the first script that requests the data from the external server dynamically

in Dart by creating a Scri pt El enent and setting the src property to the correct URL.

As soon as you add it to the DOM, the browser will request the data. You add and then
remove the <scri pt > tag to keep things tidy, as in the following Dart snippet:

Scri pt El enent scriptEl enent = new El enent.tag("script"); <—— Creates <script> element

scriptEl ement.src =
"http://openexchangerates. org/api/latest.json?cal | back=onDat aLoaded";

scriptEl enent.type = "text/javascript";
docunent . head. chi |l dren. add(scri ptEl enent); Adds it to browser DOM
scri pt El enent. renove(); <— Removes it from DOM triggering request ’

When the browser receives the returned JavaScript containing your exchange rate
data, it tries to execute a JavaScript function called onDat aLoaded(). You use the
sendToDar t () function to send the data from the JavaScript function back to the Dart-
Expense app, using this JavaScript:
<script type="text/javascript">

functi on onDat aLoaded(data) {
sendToDart ("exchangeRat es", data);

Sends retrieved data
back to Dart app

}

</script>

Communicating with external servers 271

1. Two scripts are added to the page: one to request the data
from the external server, and one defining the callback function
that will receive the data.

<script type="text/javascript"
src="http://openexchangerates.ofg/api/latest. json?cal lback=onDatalLoaded">
</script>

<script type="text/javascript'>
function onDatalLoaded(data) {
console.log(data);
<,§Cript> 4. When the browser loads the returned
JavasScript, it executes it, calling the
onDat aLoaded() function and passing

Function call on the JSON data. onDat aLoaded()
can now use the returned data.

onDataloaded(
{

“rates": {

“EUR": 0.816139,

Request “FJD": 1.820003,
“FKP": 0.639819,
“GBP": 0.639819

}
1))
Response
2. Get exchange 3. The server wraps the data in a
rate data from a JavaScript function call. It now returns
public API server. valid JavaScript rather than JSON.

Figure 12.9 Accessing data via JSONP

The final step in the chain is to set up a message listener back in your Dart code that
receives the exchangeRat es action from the JavaScript onDat aLoaded() function. You
saw this functionality earlier in the chapter when you added a listener so you could be
notified when the chart had been drawn; the exchangeRat es data listener is no differ-
ent. Put all the Dart code together in the Convert to GBP button cl i ck handler, shown
in the following listing.

Listing 12.7 ui_edit.dart: converting from USD to GBP

class EditView inplements View {
Di VEl ement root El enent ;
Di vEl enent acti ons;

/1 snip other nethods and functions

272 CHAPTER 12 Communicating with other systems and languages

_bui I dActions() {
actions = new El enent.tag("div");
actions. chil dren. add(_get SaveButton());
actions. chil dren. add(_get Cancel Button()); qJ Adds convert button
actions. chil dren. add(_get Convert ToGBPButton()); to actions panel

}
_get Convert ToGBPBut t on() {
But t onEl ement convertButton = new El enent.tag("button"); Creates convert
convertButton.text = "Convert to GBP"; button
convertButton.on.click.add((event) { <+ In button click listener ...
Scri pt El ement scriptEl enent = new El enent.tag("script");
scriptEl ement.src =
"http://openexchangerates.org/api/latest.json?cal | back=onDat aLoaded";
scriptEl enent.type = "text/javascript";
docunent . head. chi | dren. add(scri pt El enent) ; ... add remove script to
script El ement. renmove(); get exchange rates
) When
onRat eLi st ener (event) { you retrieve
var dat a = JSO“\I. par s‘t‘e_(event. ﬁjat a); exchange ... remove
if (data[typg] == "js2dart" && rate data ... postMessage()
data["action"] == "exchangeRates") ({ listener
wi ndow. on. nessage. r enove(onRat eLi st ener) ;
I nput El ement anount El = query("#expenseAnount");
Gets var dol | arVal ue = doubl e. parse(anount El . val ue) ;
current
dollar var payl oad = data["payload"]; Extracts exchange rate
value var gbpRate = payload["rates"]["GBP"]; from returned data and
entry var gbpVal ue = dol | arVal ue * gbpRat e; calculates GBP value
anount El . val ue = gbpVal ue. toStri ngAsFi xed(2);
} Updates text box
b with GBP value
YM ndow. on. message. add(onRat eLi st ener) ; Adds postMessage()
b listener to browser
return convertButton;
}

}

Using JSONP to get data from external servers does take more boilerplate code to
go from Dart > Script Tag > JavaScript Callback > Dart; but until more servers start
to implement the CORS header standard, browser security restrictions will continue
to block XHR AJAX requests from third-party servers. Using the technique shown,
you can make multiple calls to external servers to request more data as your
app requires.

You’ve seen how to integrate Dart with JavaScript and how to use that integration
to request data from external servers via the JSONP callback mechanism. In the next
section, we’ll look at how to integrate Dart with another external component: the web
browser. You’ll use HTML5 AppCache technology to run the app even when the server

12.3

12.3.1

Building installable, server-less browser apps 273

Remember
= Htt pRequest only works with servers that support CORS or the server that's
hosting your app.

= JSONP requests add a <scri pt > tag to get the requested data wrapped in a
JavaScript function call.

= The data retrieved by the JavaScript function call can pass the data back to Dart
by using the post Message() mechanism you saw earlier in the chapter, which
you wrapped in a sendToDar t () JavaScript function.

isn’t running, and install the app into the Chrome web browser as a standalone app
that can be published in the Chrome Web Store.

Building installable, server-less browser apps

One of the technologies that HTML5 enables is offline apps that run without a server
connection. The app does need to be served from a server such as http://
dartexpense.com initially, but once its files are stored in the browser, your users can
navigate to http://dartexpense.com and the app will load even if they have no inter-
net connection. By combining offline

technology with the capability to install | 1. External JavaScript |
apps into Google Chrome, you can
build apps that work just as well on an
intermittently connected mobile or tab-

let device as they do on a desktop

Dart integration 2. External server APIs |

| 3. Browser apps |

device. This is the third step to inte- Figyre 12.10 Integrating Dart with the browser
grate Dart with external systems (see

figure 12.10).

In order to create a purely offline app, the first step is to let it run even when there’s
no internet connection. You can achieve this in your apps with an HTML5 technology
known as AppCache.

Using AppCache to run applications offline

AppCache uses a cache manifest file, a special file that contains a list of files such as the
HTML, Dart, and JavaScript files and any images and CSS that make up your app. You
specify that your app will use AppCache by adding a mani f est attribute to the HTML
tag and specifying the filename of a cache manifest file, as shown in the following
snippet that forms the basis of DartExpense.html:

HTML5 doctype
<! DOCTYPE htm > <1—‘ P

<htm nmani f est ="dart expense. appcache" > T dartexpense.appcache

file referenced in
manifest attribute

/'l snip page content
</htm >

http://dartexpense.com
http://dartexpense.com
http://dartexpense.com

274

CHAPTER 12 Communicating with other systems and languages

Now, when you load the app, if the browser can connect to the server, it will read the
dartexpense.appcache manifest file and attempt to store files listed in it locally. If the
browser can’t connect to the server, it will use the files held locally as an alias for the
real files on the server.

NOTE Although you aren’t yet serving your app from a real server, if you use
the Dart Editor, your app is served from a built-in debug server. You’ll need to
shut down the Editor to check that your app is working offline. Alternatively,
you can serve your app, which is made up of static files, from any web server,
such as Apache or IIS.

The AppCache manifest file is what lets the offline magic happen. It has three sec-
tions, shown in figure 12.11, which let you cache files oftline, indicate which files will
only be available when online, and provide a fallback option to a local file when the
network version isn’t available. Figure 12.11 shows the files you’d use with Google
Chrome, rather than Dartium, and lists the file’s version of your app converted from
Dart to JavaScript.

Each section has a specific meaning, so we’ll look at them in turn.

FILES TO CACHE LOCALLY

The CACHE section lists files the browser caches locally. Once the browser has loaded
them the first time the app is accessed, the browser always loads these files from its
cache without requesting data from the server. This differs from the normal browser
cache, which still requires the server to be available. These files are accessed com-
pletely offline, so if you try to browse to http://127.0.0.1:8080/DartExpense.html,

dartexpense.appcache

CACHE MANIFEST

#Version 1.0

CACHE:

/DartExpense .html
/DartExpense.dart.js
/dart._js
/DartExpense.css

NETWORK :
http://ww.google.com/jsapi

FALLBACK:
http://openexchangerates.org/api/latest. json /Zoffline.json

Figure 12.11 The dartexpense.appcache file lists which parts of the application are cacheable and which
aren’t.

Building installable, server-less browser apps 275

even without the server running, your file will still be loaded. This is great for sporadi-
cally connected devices such as phones and tablets, or even laptops, because users can
still use parts of your app when offline.

WARNING AppCache works only if it can cache all the files listed in your App-
Cache. If even one of them isn’t successfully returned from the server the first
time you access your app, none of the files will be stored.

But what happens when you modify DartExpense.html or some of the application
code changes if the browser never hits the server? The browser attempts to load the
manifest file to see if it has changed. If it can’t load the manifest file, or the manifest
file hasn’t changed, the browser uses the local copy. When you update your app, the
simplest way to force the manifest file to change is to modify a comment line, such as
the #Versi on 1.0 comment. Changing this to read #Ver si on 1. 1 forces the browser
to re-cache the files the next time the server is available.

By loading the locally cached files rather than hitting the server, your app has fast
startup times even for apps that contain a lot of code and images. Once these
resources are on your local machine, repeated visits to your app don’t require them to
be reloaded from the server.

TIP You can view the details for all the websites that are currently storing files
in the browser AppCache by entering the URL chrome://appcache-internals
into Google Chrome. You might be surprised by how many are using it.

What if parts of your app rely on dynamic data or an external API to perform some
processing for you? This is where the NETWORK section comes in.

FILE AVAILABLE ONLY WHEN THERE’S A NETWORK CONNECTION

Sometimes, although your app works perfectly well offline, parts of it rely on server-
side dynamic data or external content. When you list files and URLs in the NETWORK
section, which can be wildcards such as http://www.google.com/*, any requests made
by the browser bypass the cache even if the browser is offline. In order to make this
work with your app, you need to be able to tell whether the browser is offline; other-
wise you’ll receive an error when you try to request the URL. You can modify the Dart
app to enable the View Chart button only if the app is online by checking the boolean
wi ndow. navi gat or . onLi ne property as shown in the following listing.

Listing 12.8 ui_list.dart: enabling the View Chart button only if the app is online

class ListView inplenments View {
/1 snip other properties and nethods

_getChartButton() {
Butt onEl ement chartButton = new El ement.tag("button");
chartButton.text = "Chart";
chartButton.on.click.add((e) {
navi gat e(Vi ewType. CHART, null);

1)

276 CHAPTER 12 Communicating with other systems and languages

i f (w ndow. navi gat or. onLi ne == fal se) { 47 Disables Ul features
} chart Button. di sabl ed = true; if browser is offline
return chartButton;

}
}
By enabling and disabling features depending on whether the browser is online and
combining this method with the NETWORK section in the AppCache file, you can pro-
gressively fall back from an online state to an offline state. This is further improved
with the third section in the AppCache file, FALLBACK.

FALL BACK TO AN OFFLINE FILE WHEN THE ONLINE VERSION ISN'T AVAILABLE

Whereas with files and URLSs listed in the NETWORK section you need to explicitly check
whether the app is online, files and URLSs listed in the FALLBACK section provide an ele-
gant solution for returning an offline version of a file only if the online version isn’t
available. That offline version might contain dummy data, or it might contain a state
your app can use to determine that the data isn’t available. In DartExpense, when you
convert from USD to GBP, you call out to an external API to retrieve exchange rates as
JSON. You can provide an offline fallback set of exchange rates by using the FALLBACK
section to list first the real URL and then the fallback file that will be cached offline, as
shown here:

FALLBACK:

http://openexcahngerates.org/api/latest.json /offline.json

This offline file could indicate exchange rates rather than the most current version.
You can modify the DartExpense app accordingly to inform the user, as shown in list-
ing 12.9. Here you modify the convertButton handler you saw earlier to request
exchange rate data, but the updated version alerts the user that the data may be out of
date and they should go online to get up-to-date data. This is possible because, instead
of getting an error when requesting data from an external server, AppCache transpar-
ently returns the offline.json version of the exchange rates.

Listing 12.9 ui_edit.dart

//snip other parts of class EditView

convertButton. on.click.add((e) {
| nput El enent anount EI = docunent . quer y(" #expenseAnount");
var dol I arVal ue = doubl e. parse(anount El . val ue);

Scri pt El ement scriptEl ement = new El enent.tag("script");
scriptEl enent.src =
"http://openexchangerates.org/api/latest.json?cal | back=onDat aLoaded";

scriptEl enent.type = "text/javascript";
docunent . head. chi | dren. add(scri pt El enent) ; Bypasses cache when
scri pt El enent. renove(); online but falls back to

cached file offline.json
onRat eLi st ener (event) {

var data = JSON. parse(event.data);

12.3.2

Building installable, server-less browser apps 277

if (data["type"] == "js2dart" && data["action"] == "exchangeRates")
{

wi ndow. on. message. r enove(onRat eLi st ener) ;

var payl oad = data["payl oad"];

var gbpRate = payload["rates"]["CBP"];

var gbpVal ue = dol | arVal ue * gbpRate;

amount El . val ue = gbpVal ue. t oSt ri ngAsFi xed(2);

i f (wi ndow. navi gator.onLine == fal se) {
wi ndow. al ert ("Please go online to get up to date rates");
}
} You can perform this check
b because the call for online data

wi ndow. on. mnessage. add(onRat eLi st ener) ; works even when offline.

1
These three parts give your app a combination of resources that are always cached
offline, never cached offline, or available when online but fall back to cache when
offline. By using these three sections in the AppCache, your app can maintain its use-
fulness to your users as they transition between online and offline states.
The last step in the process is to turn your app from a URL result in a search engine
into an application your users can install in Google Chrome.

Packaging your app as a Chrome web app

Packaging your app as a Chrome app provides a number of benefits to you as an app
developer by loosening browser restrictions, such as the 5 MB offline local storage
restriction, and addressing the age-old problem: how to get users to use your app.

When you write an app and publish it on the web, you have to put a lot of effort
into making sure users find it and return to it. Often, users will use an app a couple of
times and then forget about it or forget the URL. When you provide users with an
installable Chrome app, which is available via the Chrome Web Store, your app’s
name and icon are displayed in front of those users every time they create a new tab in
Chrome, as shown in figure 12.12.

To install an app in Chrome, you need to use the JavaScript-converted version of
the Dart app (until such time as mainstream Chrome supports Dart natively). In order
to provide your app as an installable Chrome app, you must provide an additional file
in the form of a Chrome manifest (rather than the AppCache manifest you saw ear-
lier, but the two can work together if required) and a 128 x 128 pixel icon file.

The Chrome manifest is a JSON file called manifest.json that provides application
configuration settings for Chrome. The manifest.json file contains three main sections:
the application metadata, such as the name, description, and icon file; the URLs the app
will access and be launched from; and a list of permissions the app requires. In the last
chapter, we looked at storing data offline, and you saw that local storage is limited to 5
MB. When you create a Chrome app, one of the permissions you can request from the
user is to have unlimited storage. This provides an extra benefit to the user in the form
of being able to store significantly more data offline. Other permissions include

278

CHAPTER 12 Communicating with other systems and languages

MNew Tab _
c
Dart N e
Expense @ 4
Dart Expense Chrome Web Store Gmail

Pl

Google+

Figure 12.12 Whena
userinstalls yourappin

You can list your app in the Chrome, the app ap-
Chrome Web Store and pears in front of the
install it in Chrome. user regularly.

accessing browser history, the clipboard, and bookmarks. You can find the complete list
by searching for “Chrome Manifest Permissions.” An example manifest.json file for
DartExpense (running locally) is shown in the following listing.

Listing 12.10 manifest.json: settings for creating an installable Chrome app

{
"name": "Dart Expense",
"description": "Track Expenses", L
"version": "1", Application
"icons": { metadata
"128": "icon_128. png"
H
"app”: {
"urls": [
"*://127.0.0.1/",
"%/ [vww. googl e. cont', U!:ILS the app
"*:// openexchanger ates. org" will access
] aunch”: { URL to launch
"web_url": "http://127.0.0.1: 3030/ Dart Expense. ht m " <J the app
}
b
"permssions": [Requested
"unlimtedStorage" permissions
]
}

Once you have your manifest.json file and your icon image, you need to place them in
the same folder as your other application files and install or package the app with
Google Chrome. An example file list could look like this:

Building installable, server-less browser apps 279

c:\ Proj ect s\ Dart Expense\ Dart Expense. ht m
c:\ Proj ects\Dart Expense\ Dart Expense. dart.js Files that form .
c:\ Proj ect s\ Dart Expense\ Dar t Expense. css your app Optional
c:\Proj ect s\ Dart Expense\dart.js AppCache
c:\ Proj ect s\ Dart Expense\ dart expense. appcache manifest
c:\ Projects\Dart Expense\ mani f est.j son Chrome app
c:\ Projects\Dart Expense\i con_128. png Chrome manifest

app icon

You now have two options. As a developer, you probably want to test that it works. For-
tunately, Chrome provides a developer mode to install Chrome apps; but first you
need to open the Chrome Extensions window, either from the menu or by navigating
to chrome://chrome/extensions, where you’ll see a Developer Mode check box (see
figure 12.13). Selecting this box gives you two new options: Load Unpacked Extension
and Pack Extension.

To test your app locally, click Load Unpacked Extension. This lets you add an app
directly from a local folder, such as c\Projects\DartExpense. When you’re certain the
app is working, you can use the Pack Extension option to convert your app folder into
a Chrome crx (Chrome extension) file. This is the file you upload to the Chrome Web
Store or host locally on your own servers. Each time you deploy a new version to the
Web Store, you’ll need to increase the version number in the manifest file—this lets
apps know they need to update, perhaps because you’ve added a new icon or addi-
tional permissions.

Once your app is in the Web Store, Google provides tools to track and promote it,
such as Google Analytics, Google Plus, and the opportunity to add screenshots and
videos of your app in action. These are all designed to help users spread the word
about how great your app is.

You can turn on developer mode...

...which gives you more options.

3 Extensions
C' | @ chrome:;//chrome/extensions w Q,
~
Chrome Extensions & Developer mode

Load unpacked extension... Pack extension... Update extensions now

Q Dart Expense 1 7 Enabled [

ID: hhmdidhngfmhjnicledmmjbkfnilonmo

| Extensions

Figure 12.13 Developer mode provides more options for working with installable apps.

280

CHAPTER 12 Communicating with other systems and languages

Remember

= AppCache lets your app run offline even when no server is available.

= AppCache also provides a fallback option to use locally cached files when no
online version is available.

= |nstallable Chrome web apps ease browser restrictions and help users find and
use your app.

12.4 Summary

In this chapter, you saw how Dart integrates outside of its own ecosystem by talking to
JavaScript, running in a separate VM in the browser. You can communicate from Dart
to JavaScript and JavaScript back to Dart by passing data from one VM to the other
using the browser’s post Message() function.

Next, you saw how you can use JavaScript-to-Dart message passing to communicate
outside of the Dart ecosystem to request data from external servers. To do so, you
dynamically add a JavaScript <scri pt > tag that retrieves data from a third-party API by
wrapping it in a JavaScript function call. When the JavaScript receives the data, it
sends that data back into the Dart app. This bypasses security restrictions imposed by
the browser’s Ht t pRequest for servers that don’t yet support the new CORS headers.

Finally, you learned how the Dart ecosystem can be expanded from clients and
servers to produce an offline, installable app that works even when the server isn’t
available—ideal for mobile and tablet devices. By providing an app that your users can
install in their browser, you remove some of the browser permission restrictions, such
as the 5 MB local storage restriction, and you also put your app in front of users every
time they use the browser.

This is the last chapter in this section of the book. We’ve covered lots of topics, but
HTML5 provides many more APIs to produce compelling business and leisure apps.
Many books and examples on HTML5 are available on the web. Although many of the
examples are in JavaScript rather than Dart, we hope you’ve gotten a sense in the last
few chapters of how to access these APIs in Dart. Most examples map easily from
JavaScript to Dart.

In the next section, you begin to work with Dart on the server side, looking at files
and folders, serving HTTP and web sockets, and eventually hooking the DartExpense
app to a database via a Dart server that both serves the DartExpense app’s static files
and provides a RESTful API for data transfer.

Part 4

Server-side Dart

n the last part of the book, you’ll learn about building Dart on the server.
Being able to use code in both the browser and the server can provide productiv-
ity boosts by reducing the amount of code you need to write and test.

Chapter 13 starts by showing how you can write simple server-side scripts that
you can run from the command line. By running command-line Dart scripts,
you’ll learn how to use server-side APIs to access files and folders, and you’ll see
how to serve HTTP data to clients.

Chapter 14 picks up on serving HTTP data to serve and communicate with
the clientside app from part 3 of the book. You’ll learn how to use web sockets
to provide two-way communication between the client and the server, sharing
Dart code on both sides of the app. Chapter 14 also shows how you can use a
server-side database to persist data sent from the browser client.

In the last chapter, chapter 15, you’ll see how to use Dart’s Isolate technology
to achieve concurrency. Isolates let you use multiple processes running in the
Dart virtual machine, similar to multithreading in server-side languages, but
using a simpler message-passing mechanism. You’ll also see how you can use
Dart’s Isolate architecture to load and run Dart code dynamically from a run-
ning Dart app, which is useful for developing plug-in architectures.

Server interaction
with files and HT'T'P

This chapter covers

= Running Dart scripts from the command line
= |nteracting with the filesystem

= Serving content via HTTP

The Dart virtual machine is hosted in two different environments. In the previous
part of the book, we looked at using Dart in the web browser, where the VM is
embedded in the Dartium web browser and has access to the browser DOM via the
dart:htnl library. In this chapter, we’ll start to explore the serverside Dart VM,
which doesn’t have access to the browser DOM but instead has access to operating
system I/0, such as files and network sockets via the dart : i o library.

The Dart File Browser example project scenario for this chapter has a client-and-
server solution that provides a browser-based text editor for editing Dart files, which
we’ll tackle in three steps starting with the server side. The server-side Dart VM is
hosted in a command-line executable, available for Windows, Mac, and Linux. We’ll
begin by looking at how you can write a simple Dart script that interacts with the file-
system, passing command-line arguments to output a directory listing.

283

284

13.1

CHAPTER 13 Server interaction with files and HTTP

Dart File Browser

« C | ® 127.0.0.1:8080/static/index. htmi# W A

Dart File Browser F
4Fmders m ‘Fi\es m 4F\Ie Content m
Current Folder: C\dart DirectoryList.dart Currentfile: Options.dart
Cidarticss Opti dart 5 ", cigns
Codarfiother project Serlv?ant)slreimr[ust.dart impert Mdarziiets
Cldartistatic SemveHttpEcho.dart R R
void main() {
Options options = new
Cptions():
print (options.arguments);
1. Retrieve a list of folders 2. Retrieve a list of files 3. Show the selected
from the server. from the server. file content.

Figure 13.1 The client side of the Dart File Browser app

Next, we’ll look at serving HTTP to react to HTTP requests from a web browser. We’ll
show you how to match URL request paths and serve static files from a serverside Dart
application. This gives you the ability to develop a complete client-and-server solution
in Dart.

Finally, we’ll combine the HTTP server and directory-listing script to build a client-
and-server application to serve the directory listing to the browser as JSON and let
users browse the filesystem and read .dart files via a client-side web application.

At the end of this chapter, you’ll have a client-and-server application that you can
use to browse the local filesystem and load .dart files (or other text files) into the
browser for viewing. Figure 13.1 shows the client-side part, which runs in the browser
and communicates with a server-side Dart script.

But before you start getting fancy with the user interface, we need to look at the
server part of the application and how you can interact with the computer’s operating
system to read files and folders from it.

Running server-side Dart scripts

The Dart File Browser server-side application runs as a Dart script, either from the
command line or from the Dart Editor, and can output text to the console using the
print(""
and-directory listing for a given path provided as a parameter to the script. For exam-
ple, the command

) command. In this section, you’ll create a server-side script to output a file-

dart.exe DirectorylList.dart C\Dart\
outputs the following:

<DIR> c:\dart\css
<Dl R> c:\dart\other_project
<DIR> c:\dart\static

Running server-side Dart scripts 285

<FILE> c:\dart\DirectorylList.dart
<FILE> c:\dart\ Options. dart
etc...

When you use the Dart Editor to create a new project, you get the option to create
either a web application or a command-line application. Up to this point, you've been
using the web-application option, which creates a .html file and a linked .dart file. But
a command-line application doesn’t have an HTML component, so it only requires the
.dart file.

A Dart script that runs on the command line is known as a server-side script. It’s the
same as a Dart script on the client side in that it’s a .dart file containing a mai n() func-
tion, which is the function that executes first. As with client-side scripts, the server-side
Dart script can also be a library, can import other libraries, and has an event loop, just
like browser-based scripts, as shown in figure 13.2.

Figure 13.3 shows a simple serverside script running in the Dart Editor and from
the command line. The Dart Editor uses the Dart VM executable you’ll find in the
Dart SDK when you run a script, and the output is shown in the Dart Editor’s console.
When you run a script from the command line, you see the output in the command-
line output.

TIP The Dart Editor, available free from dartlang.org, provides you with all the
tools required to run and debug server-side scripts. This chapter assumes you’re
using the Dart Editor, but you can equally run server-side scripts from the Dart
executable file, available in the bin/ folder of the Dart SDK download.

my_server_app.dart
library my_server_app;

import “other_lib.dart"; other_lib.dart
imports |
main() { \i library other_lib;
} iclass Foo {
3

Figure 13.2 Dart scripts running from the command line have the same capabilities and structure
as client-side scripts.

http://dartlang.org

286

CHAPTER 13 Server interaction with files and HTTP

(B Files (@ Apps 3 2[E]T O @ simpledart 52

void main()
print(“Hello, World!™);

}

Fl

4 & Simple
Simple.dart - Simple

E Simple.dart 2

<terminated> Simple.dart [command-line launch] /Simple/Simple.dart [exit value: 0]
Hello, World!

B C\Windows\system32\cmd.exe

imple.dart

1. Running a server-side
Dart script from the Dart
Editor shows the output
in the Editor’s console.

2. The same script can be
run from the command
line using the Dart binary.

Figure 13.3 Running a simple server-side script

The big difference between client-side scripts and serverside scripts is the hosting
environment. Clientside scripts run in a web-browser-hosted VM and have access to
the browser DOM. This allows them to import the dart:htnl library. Server-side
scripts don’t exist in a web browser, and you’ll get an error if you try to use the
dart:htnl library on the server side. But serverside scripts do get access to the
dart: i o library, which provides classes and functions for accessing the filesystem, serv-
ing HTTP and web sockets, and communicating across the network with network sock-
ets. Table 13.1 summarizes the differences.

Table 13.1 Summary of the differences between the dart: ht nl and dart : i o libraries

dart: ht nl : Browser only dart: i o: Server only
Manipulates browser DOM elements Accesses OS files and folders
Attaches events to the browser Starts other executables in the OS
Accesses browser storage APIs Makes Ht t pCl i ent connections to other web servers

Performs AJAX requests with Ht t pRequest | Serves HTTP requests and web sockets

Renders on the browser user interface Communicates via sockets

One other difference between client-side and server-side scripts is that serverside
scripts can access the command-line arguments passed into the script. In order to let
your server-side Dart directory-listing application list a specific directory, let’s look at
how to access those arguments.

Running server-side Dart scripts 287

Event loop differences between client and server

In previous chapters, we've looked at the Dart event loop. When a Dart script runs in
the browser, you can start with the nmai n() function, build a user interface, attach
event handlers, and, finally, pass control to the event loop. When the event loop re-
ceives an event from an external source, such as a button click, the event loop calls
back to your application’s code, which lets the application respond. This continues
until the application is shut down by either closing the tab or navigating away.

On the server side, this is slightly different. You still have an event loop, and as you’ll
see a little later in the chapter, it’s still possible to hook up event handlers and pass
control to an event loop. The difference, though, is that Dart scripts exit when there
are no event handlers listening for events to complete. This means that a simple
script such as the “Hello World” example in figure 13.3 will exit immediately once it's
finished running. The equivalent code in the browser would instead return control to
the event loop hosted in the browser’s Dart VM.

13.1.1 Accessing command-line arguments

Dart provides the Options type to access command-line arguments. Creating an
instance of Opti ons with the new keyword gives you a fully populated object contain-
ing the path to the current Dart executable binary, the script file containing the
mai n() function, and a list containing the arguments passed on the command line.
Listing 13.1, which prints the following output to the console when run with the com-
mand, shows a simple Dart script to output the command-line arguments and infor-
mation about the executing script:

>dart.exe TryOptions.dart hello world

C:\dart-sdk\bi n\dart. exe

C \dart\TryOptions. dart

2
[hel l o, world]

Listing 13.1 Accessing command-line options

void main() {

Options options = new Options(); <—— Creates new instance of Options
print(options. executable); Accesses Dart executable
print(options.script); path and script file path

Li st<String> args = options. argunents;
print(args.length);
print(args);
}
In the Dart Editor, you pass command-line arguments to the command-line script
using the Run > Manage Launches dialog, shown in figure 13.4, which passes the two
arguments hel | 0 and wor | d into the script.

Accesses command-
line arguments

When you run command-line scripts from the Dart Editor, the output from

print("") commands appears in the Dart Editor’s console.

288 CHAPTER 13 Server interaction with files and HTTP

r B
M Manage Launches @
Create and manage launches =
Create a configuration to launch a Dart application on the command line @
G-x
{2 TryOptions TryOptions
Application
Dart script: TryOptions.dart
Script arguments: hello world "

Figure 13.4 Passing arguments to the command line in the Dart Editor

Now that you can access command-line arguments in your script, it’s time to use
them in the Dart File Browser application, which will output a list of files and fold-
ers. To do this, you also need to start using some of the types provided in the server-
side dart:i o library.

13.1.2 Accessing files and folders with dart:io

The Dart File Browser server-side application will have two features available from the
command line. If you pass in the command-line argument - - | i St option, followed by
a path, you’ll output to the console a list of files and folders in that path.

If, instead, you pass in the - - out command followed by a filename, you’ll read that
file and output it to the console. Listing 13.2 shows the starting-point code for the
Dart File Browser application, which outputs the two command-line options if no
arguments are passed into the application. You also import the dart: i o library, which
contains the Fi | e and Di rect ory types you’ll be using as you add functionality to the
listDir() and out put Fil e() functions in following listings.

Listing 13.2 Display the command-line options if none are provided

import "dart:io"; <—— Imports server-side dart:io library Creates options to

void main() { access command-

Options options = new Options(); line args

if (options.argunments.length != 2) { ‘ If two args weren’t passed,
print Hel p(); prints help message

}

else if (options.argnents[0] == "--list"') { If first arg is --list, passes
listDir(options.argunents[1]); second arg to listDir()

}

else if (options.argunents[0] == '--out') { If first arg is --out, passes

out put Fi | e(options. argunents[1]); second arg to outputFile()

Running server-side Dart scripts 289

}

}

printHel p() {
print(""" 0

Dart Directory Lister. Usage: utpults usage tel)gl.to
List files and directories: --list DIR :z:rs‘ozu:tlgfmu fiine
Qutput file to console . --out FILE"™"); g sy

}

listDir(String fol derPath) {

} You’ll implement these

functions over the
outputFile(String filePath) { next few sections.
}

In DirectoryList.dart, you need to implement two functions: | i stDir(f ol der Pat h)
outputs a list of child files and folders in the directory specified by f ol der Pat h, and
output Fi l e(filePath) reads the file specified by the fil ePat h parameter. In these
functions, you’ll use the Fi | e and Di rect ory types.

LISTING FILES AND FOLDERS WITH A DIRECTORYLISTER

The first use case is to provide arguments such as --1ist c:\dart to your Directo-
ryList.dart script. The first argument determines that you’re in list mode, and the sec-
ond argument provides the f ol der Pat h for your script to output the contents.

The Directory type provides a number of methods that are also common to the
Fil e type, such as exi sts(), create(), and delete(). The Directory type also pro-
vides a li st () function that returns a Di rect oryLi st er, which you’ll use to provide a
file and folder listing. Di rect oryLi st er provides asynchronous access to return a list
of files and folders in a specific directory.

The filesystem 1/0 types provide both synchronous and asynchronous access to the
filesystem, with a preference for async operations. Whereas the library provides both
async and sync methods, the async option is the default, with the sync version of the
method having async suffix,asinDi rect ory. exi st s() and Di rectory. exi stsSync().

Sync vs. async methods

In a script such as DirectoryList.dart, using the async or sync version of file and di-
rectory access methods has subtle differences. With the sync version of a method,
such as exi stsSync(), the application will wait, blocked until the filesystem re-
sponds. When the filesystem responds, exi st sSync() returns a t rue/f al se value,
and the application continues running.

With the async version, a Fut ur e<bool > value is returned, and the application con-
tinues to run without waiting for the filesystem. The future value is populated once
the filesystem responds.

290

CHAPTER 13 Server interaction with files and HTTP

(continued)

The subtle difference has little impact in a script such as DirectoryList.dart, because
nothing else happens in the application either way the “exists” value is determined.
Despite that, the following examples use the async versions, because this difference
will begin to have an impact when you start serving HTTP requests to send directory
listings to the browser. If you were using blocking, synchronous method calls, a sec-
ond browser request would be blocked by a first request waiting for the filesystem to
respond. In order to scale to hundreds or even thousands of requests, you need to
ensure that your code uses nonblocking, asynchronous I/0 calls. The sync methods
are great for quick, simple scripts, but for scalability, we recommend that you use the
async versions.

For a recap of the difference between blocking and nonblocking, check out the dis-
cussion in chapter 9.

Async calls that expect to return a single value, such as exi sts(), return a Future
whose value is populated in its t hen() callback function. Method calls that return
multiple values, such as a list of files and folders in a directory, provide methods that
are assigned a callback function that’s called as each entry in the list is returned. This
lets you begin outputting data to the console while the filesystem is still in the process
of returning data to your application.

The exi sts() function and the Directorylister type are shown in figure 13.5,
which demonstrates how to open a folder and list the files and directories in it. This
provides the implementation for the |'i st Di r (fol der Pat h) function in the Directo-
ryList.dart script.

If you start the application by passing in the arguments - -1i st c:\dart, it will out-
put a list of files and folders in the c\dart folder, as you were expecting earlier in the
chapter:
<DIR> c:\dart\css
<DIR> c:\dart\other_project
<DIR> c:\dart\static

c
c

<FILE> c:\dart\DirectorylList.dart
<FILE> c:\dart\ Options.dart

NOTE The example paths are shown on the Windows operating system, but
they’re equally applicable for Mac or Linux systems. Try replacing c:\dart
with ~/ dart to list the contents of a dart folder in your home directory.

Now that your application can return a list of files in a directory by using the Di r ec-
tory and DirectoryLister types, let’s see how to use the Fil e type to read the con-
tents of a file in an asynchronous manner.

READING FILES WITH THE FILE TYPE

The second use case for the Di rectoryLi ster script outputs the contents of the file
when its name is passed as an argument along with the --out parameter, such as

Running server-side Dart scripts 291

DirectoryList.dart — listDir(Q)
listDir(String folderPath) {

var directory = new Directory(folderPath);

directory.exists().then((bool exists) {
if (exists) {
DirectoryLister lister = directory.list();

lister.onFile = (String filepath) {
print(""<FILE> $filePath™);

lister.onDir = (String dirpath) {
print("<DIR> $dirPath™);

¥

lister.onDone = (bool isCompleted) {
print(""Finished™);

s

Figure 13.5 The | i st Di r () function uses the async exi st s() functionand a Di rect oryLi ster
to return the list of files and folders in a directory.

--out c:\dart\TryOptions. dart. This command should read the contents of the file
and print it back out on the console, and for this you use the Fi | e type.

Like the Directory type, the Fil e type also offers sync and async API methods,
such as readAsString() and readAsStringSync(). The async version returns a
Fut ure<String> containing the file content and uses nonblocking I/0, whereas the
sync version will block but returns a Stri ng value containing the file content. You can
use the async readAsString() method, as shown in the following snippet:

outputFile(String filePath) { Creates new file
File file = new File(fil ePath): object from path
file.readAsString().then((content) { <+ Reads contents of that file
pr int(content); Prints complete contents
) 1 when Future completes

This asynchronously reads ci\dart\IryOptions.dart. Once all the data has been read
and returned from the filesystem, the Fut ur e value is populated, passing the complete
content of the file into the Fut ure’st hen() callback function.

Behind the readAsString() method, File uses an | nputStream type, which
returns sequential data in a buffered, nonblocking fashion. The data returned by the

292 CHAPTER 13 Server interaction with files and HTTP

1. Getani nput Stream

2.onDat a() is called
repeatedly while
| data is available.

| var inputStream = Ffile.openlnputStream();

| var sb = new StringBuffer();

inputStream.onData =) {
List<int> buffer = inputStream.read();
if (buffer != null) {
sb.add(new String.fromCharCodes(buffer));

¥
¥
inputStream.onClose =) {
print(sb.toStringQ)): 3.0nCl ose() is called when
} there is no more data and the

input stream has been closed.

Figure 13.6 Reading data from a file’s | nput St r eam

I nput Streanis read() method is a List<int>, but it represents an array of bytes,
each byte representing a single byte in the TryOptions.dart file.

NOTE Dart doesn’t have different numeric types, such as byte, word, and
| ong. Instead, it has a parent type of numand two child types: i nt and doubl e.

The String type provides a utility constructor called String. f ronChar Codes() that
allows you to create a new St ri ng object from a Li st <i nt>.

Listing 13.3 uses an | nput St reamto implement the out put Fi | e() function. The
| nput St r eanis onDat a() method is called repeatedly when data is available; you access
that data by calling the | nput St r eanis read() function, which may return data or may
return nul I if no more data is available, as shown in figure 13.6.

When no more data is available, the onC osed() method is called, allowing you to
output the complete data to the console. You use a StringBuffer type to store the
multiple strings created by each call to onDat a() . The contents of the Stri ngBuf f er’s
internal list of strings is efficiently converted into a single string when you call the
StringBuffer’stoString() function. The following listing uses a file’s | nput St r eam
in the out put Fi | e() function and also contains the existing | i st Di r () function you
saw earlier in the chapter, for completeness.

Listing 13.3 Implementing out put Fi | e() with an | nput St r eam

/l...snip other methods... Creates new
outputFile(String filePath) { QJ instance of
File file = new File(filePath):; file object
file.exists().then((exists) { Gets
if (exists) { QJ InputStream
I nput St ream i nput Stream = fil e. openl nput Strean{(); for file

Running server-side Dart scripts 293

StringBuffer sb = new StringBuffer(); Creates stringBuffer

i nput Stream onData = () { to hold file data
List<int> data = input Streamread(); QT In onData handler, reads
if (data !'= null) { available data from InputStream
sb. add(new String. fronChar Codes(data)); Creates new string
} from List<int>

}s

i nput St ream onCl osed = () {

) print(sb.toString()); When InputStream is closed,

b prints string from buffer
}

1)
}

listDir(String folderPath) {
var directory = new Directory(folderPath);
directory. exists().then((bool exists) {
DirectoryLister lister = directory.list();

lister.onDir = (dirPath) {
print("<DR> $dirPath");

}i!

lister.onFile = (filePath) {
print("<FILE> $filePath");

H
lister.onDone = (conpleted) {
print("Finished");
b
1

}
USING AN OUTPUTSTREAM TO WRITE FILE DATA
You can also use the Qut put St reamtype to easily write data to a file. Data is retrieved
from an instance of Fil e and provides wite(List<int>buffer) and witeString
(Stringstring) functions to provide nonblocking writes to the underlying filesystem.
Once all the data has been written (using one or more calls to one of thew i t () meth-
ods), you use the cl ose() function to indicate that all the data has been sent.

Although not required for your Dart File Browser application, the following snip-
pet shows how you can create a new file and write data to it:

Creates
new File("exanple.txt").create().then((File newFile) { example.txt
Qut put St ream stream = newFi | e. openQut put Strean() ; <—— Gets OutputStream

streamwiteString("test"); <1—‘ .
Writes some text

List<int> buffer = "some nore data".charCodes(); <—— Gets more text as a list<int>
streamwrite(buffer); <,_‘ Whrites buffered text

str.close(); .
0 Closes input stream

1)

294

13.2

CHAPTER 13 Server interaction with files and HTTP

Although the underlying system behind the output stream takes the data as fast as it
can, the data being written is buffered internally, if required. The wri te() functions
return a bool value indicating whether this buffering is taking place.

The Fil e and Directory types provide all the standard mechanisms for interact-
ing with the filesystem in an efficient, nonblocking manner by using underlying input
and output streams. We’ve covered a lot in this section, from reading arguments from
the command line to accessing files and folders and looking at async methods for non-
blocking I/0.

In the next section, you’ll start to send and receive HTTP data to allow communica-
tion with a web browser, which also uses input and output streams. We’ll also show you
how to send data directly from one | nput St r eaminto another Qut put St r eam known

as pi ping.

Remember

= Dart scripts can access command-line arguments using an instance of Opt i ons.

= The dart:i o library can only be used on server-side command-line applications;
the dart: ht m library is only available in a browser-hosted VM.

= Methods ending with the sync suffix block the application flow, whereas async
method calls are nonblocking and return Fut ur e values.

= Input and output streams are also nonblocking and provide a buffered mechanism
to read and write data.

Serving browser HTTP requests

Although the Dart File Browser application is great as a command-line application
and can output file and folder information to the command line, it would be even bet-
ter as a web application, able to send file and folder information to multiple web
browsers and other HTTP clients. In the next section, you’ll use Dart to build a REST-
ful API to send file and folder information to the web browser.

RESTful APls

REST stands for Representational State Transfer, which is one model to use when
designing web services. It uses HTTP verbs such as GET and POST to describe the
request method and URL paths to represent functions for resource transfer.

For example, performing a GET request to http://localhost:8080/folderList/c:/dart
could be a valid API call to retrieve a folder list. The folder list is the resource being
transferred. On the server this could call a function such as

get Fol der Li st AsJson("c:/dart")
returning the folder list as a JSON-formatted object.

Many good resources are available that describe the architecture of REST, and you
should refer to them if you're not familiar with at least the basics.

13.2.1

Serving browser HTTP requests 295

r— Client
1. Request app files from 3. The app starts running 5. The app receives JSON
the server via HTTP. and requests a folder list. data, interprets it, and
displays it.
- Server

GET: /index.html
GET: /app-.css GET: /folder/c:/dart
GET: /app.dart

2. The server loads requested 4. The server reads the file and folder
.html, .dart, and.js files and list, packages it as JSON, and sends
sends them back to the browser. it to the browser.

Figure 13.7 The flow of requests between the client and server parts of the application

Your Dart script is going to change, too, from a script that runs and exits to one that
continues running until you forcibly kill it. This is because the H t pServer type that
comes in the dart:io library reintroduces the event loop when it starts listening for
HTTP requests.

You’ll make your new client-and-server Dart File Browser application from two
Dart applications. First, you'll create the serverside application, which is jointly
responsible for serving the files that make up the client application and responding to
requests from the client application. Second, you’ll create the client application that,
once served, makes requests back to the server to load file and folder lists. The flow is
shown in figure 13.7.

This is where nonblocking I/O comes into its own. By using async APIs to ensure
that the server part of the application doesn’t block, control returns to the event loop
as fast as possible, allowing the server to handle other requests before the first has
completed.

Using the Dart HttpServer

The dart:io library provides three key classes that you’ll use when serving HTTP
requests: H t pServer, which provides handlers that are triggered when a request is
received; HttpRequest, which represents the incoming data; and H t pResponse,
which represents the outgoing data. Table 13.2 lists some of the common properties
and methods for these types.

The Ht t pServer class receives requests, tries to match a request handler by calling
all the assigned matcher functions until one is found, and finally calls the default
request handler if no others match. You can try this with a small amount of code,

296

CHAPTER 13 Server interaction with files and HTTP

Table 13.2 Common methods and properties of the key classes that serve HTTP requests

Class Method or property Description
Ht t pSer ver Used to serve HTTP requests.
addRequest Handl er Takes two functions: a matcher with the signature
(mat cher, handl er) bool matcher (Htt pRequest req)

and a handler with the signature
voi d handl er (Ht t pRequest req,
Ht t pResponse res)
If the matcher returns t r ue, then the handler is
called to handle the request.

def aul t Request Handl er Takes a single handler function, which is called if
(handl er) no other request handler has handled the
request. If no default request handler is speci-
fied, the server returns a 404 (not found) error

status.
listen(String host, Starts the server listening on a specific host and
int port) port.
Ht t pRequest Contains data sent from the browser.
String nethod The request method, such as GET, POST, or PUT.
String path The path part of the URI, such as / file/C:/dart

from a request for http://localhost/file/C:/dart.

String queryString The query string part of the URI, such as
key=val ue from a request for htt p: / /
| ocal host/fil e?key=val ue.

Map queryPar aneters A map containing a list of key/value pairs from
the query string.

| nput St r eami nput St ream | Any incoming data on the request.
Ht t pResponse Contains data sent to the browser.

Ht t pHeader s headers Used to set any headers sent to the browser,
such as content type.

Qut put St r eamout put St r eam| Used to send data to the browser.

shown in listing 13.4, which looks for a GET: / echo/ request and returns the method
and path properties of the request to the browser. If none are found, it returns the
string “Hello World.” Figure 13.8 shows the browser response for two sample URLs.

127.0.01:8080/echo/foo \ 127.0.01:8080/ other

| L C | ® 127.0.01:8080/echo/foo || €= C' | @ 127.0.0.1:3080/other

Echo: GET /echo/foo Hello World

Figure13.8 The outputyou
expect from your server

13.2.2

Serving browser HTTP requests 297

Listing 13.4 shows the complete code to return this data. Once you call Ht t pServer’s
listen() function, the event loop gains control and calls back into the matcher and
handler functions when a browser request occurs to the correct host:port combination.
The examples that follow use port 8080, but you can replace it with another port that’s
valid for your machine if 8080 is already in use.

Listing 13.4 Serving simple Ht t pRequest s from Dart

import "dart:io";

mai n() { Creates server
Htt pServer server = new HttpServer(); instance Matcher that returns
ser ver . addRequest Handl er (t"_“ﬁ '/f 'E‘F/'e“ starts
(Htt pRequest req) => req.path.startsWth("/echo/"), with /echo

Handler: returns

(Ht t pRequest req, Htt pResponse res) { 6—‘
a simple string

var net hod = req. net hod;
var path = req. path;

res.outputStreamwiteString("Echo: $nethod $path"); Closes output stream when
res. out put Stream cl ose(); you finish adding data
}
)
server. def aul t Request Handl er = (H t pRequest req, HttpResponse res) {
res.outputStreamwiteString("Hello Wrld"); Default handler:
res. out put St ream cl ose(); called if no
}s others match
server. I ' st en("127.0.0.1%, 8080); Starts server listening on
print("Listening..."); specific IP host and port

}

Now that you’ve seen how to respond to browser HTTP requests, let’s look at how you
use this technique to send static files to the browser.

Serving static files over HTTP

To form the basis of your Dart File Browser server-side application, you need to use
Htt pServer to send the files that make up the client-side application to the browser.
These include the .html, .css, and .dart or .js JavaScript files containing your browser
application’s application code. In the previous section, we covered how to read files
from the filesystem with an input stream—the Ht t pResponse object requires an out-
put stream to send data back to the browser. Fortunately, Dart provides a function
called pi pe() that allows you to send the data read from one | nput St r eam directly
into another Qut put St r eam closing the output stream when all the data is transferred.
You’ll use this mechanism to serve files to the browser.

The server application includes the following files, which contain the client appli-
cation in a client subfolder:

c:\DirectoryServer
\ Server App. dart
\client
\'i ndex. htmi

298

CHAPTER 13 Server interaction with files and HTTP

\ d i ent App. css

\ dientApp. dart

\dientApp.dart.js
To send the correct files requested from the browser, you need to use the
Ht t pRequest . pat h property. In order to achieve this, you’ll create a matcher and a
handler class that are responsible for handling your static file requests by checking to
see if the requested file ends with one of the four file extensions you’re expecting:
.html, .dart, .css, or ,js. Listing 13.5 shows the Stati cFi | eHandl er class and its use in
Ht t pSer ver. The matcher function returns t r ue if the request is for one of your four
file types. The handler gets the requested filename, appends it to the ./client sub-
folder, and pipes the file’s | nput St r eamdirectly to the response’s Qut put St r eam Note
that you don’t have a cl ose command to close the output stream—the pi pe()
method does this for you.

Listing 13.5 Serving static files

inport “"dart:io";

class StaticFileHandl er {

bool matcher (Htt pRequest req) { Matcher function:
return req. path.endsWth(".htm") || returns true if
req. path. endsWth(".dart") || requested path
reg. path. endsWth(".css") || ends with correct
reg. path. endsWth(".js"); file extension
} Handler function called
voi d handl er (Htt pRequest req, HttpResponse res) { if matcher matches
var requestedFile = "./client${req.path}"; Gets relative filename
File file = new Fil e(requestedFile); for requested file in a

} file.openlnputStream pi pe(res. out put Strean; ./client subfolder
) Pipes file’s input stream into Opens file

response’s output stream
mai n() {

var server = new HttpServer(); Creates static file-

var staticFiles = new StaticFil eHandl er(); handler instance

server. addRequest Handl er (staticFil es. matcher, staticFiles.handler);

server.|listen("127.0.0.1",8080); Passes matcher and handler
} print("Listening..."); methods as arguments
This is a trivial example, and any real Ht t pServer should provide extra functionality
such as error-handling and security. At the moment, if you request a file that doesn’t
exist, the server will crash (you need to use file.exists()). And if you provide a
request such as http://local host:8080/../../someQ her Fol der/soneFile.txt,
you can navigate to other files and folders on the same machine.

Now that the Dart File Browser server-side application can send the clientside

application to the browser, you’ll build a RESTful API to send your folder and file list
formatted as JSON.

Serving clients with a RESTful API 299

Remember

= Dart’s Ht t pServer listens for HTTP requests on a specific host and port.

= A pair of matcher and handler functions is required to handle a specific HTTP
request, added with a call to addRequest Handl er () .

= def aul t Request Handl er () is called if no other handlers have matched.

13.3 Serving clients with a RESTful API

You now have enough information to combine the HTTP server code with the direc-
tory listing code from earlier in the chapter. You want to take a GET request for a spe-
cific folder on your local disk and send a list of files and folders in the requested
folder. You'll use DirectoryLister’s onDir() and onFile() functions to build two
lists, and you’ll combine these using the dart: j son library. The dart: j son libraryis a
good example of code that’s shared between the client and the server; it contains
identical code that runs in both places.

You also want to be able to send the contents of a specific file to the browser; but
instead of serving the file to the browser as a native file, this time you’ll wrap the file’s
content as JSON data. This gives you two API calls that your application needs to sup-
port, shown in figure 13.9.

In order to achieve this, you’ll have three request handlers: one to serve the static
client-side application files, one to serve the folder list, and one to serve the file con-
tent. You’ll use the St ati cFi | eHandl er class you've already seen, along with two new
classes: Fol derListHandler and FileContentHandl er. Figure 13.10 shows the
Server App outline code and how to use these classes.

‘GET | |/folderList ||/dart/

"files": ["c:\dart\DirectoryList.dart",
""c:\dart\Options.dart",
""c:\dartServeHttpEcho.dart"],

"dirs": ["c:\dart\subfolder']

}

‘GET | |/fi|eContent | |/dart/0ptions.dart

{""content":"import \"dart:io\";\n\nvoid
main() \n Options options = new Options();
\n print(options.arguments);\n

has

Figure 13.9 The two API calls to retrieve a folder listing and file content as JSON data

300 CHAPTER 13 Server interaction with files and HTTP

In the mai n() function, you
set up the request handlers
to serve static files, folder
listings, and file content.

ServerApp.dart

main() {
// add request handlers

¥

class FolderContentHandler {

bool matcher(request) { The Fol der Cont ent Handl er class

returns a JSON list of files and
} folders in the requested folder.

bool handler(request, response) {

}
}

class FileContentHandler {

bool matcher(request) { The Fi | eCont ent Handl er class

returns the contents of a file
} wrapped in a JSON document.

bool handler(request, response) {

}
}

Figure 13.10 The outline of Ser ver App

The mai n() method using these classes is shown in listing 13.6. The listing also con-
tains a utility function called addHeader s() . It adds two important headers to your
application, allowing you to use the Dart Editor’s client-side debugger when you build
the UIL. Web browsers come with a security feature to prevent H t pRequests (AJAX
requests) from accessing data on a different URL than the rendered HTML file. These
two headers tell the browser that, in this instance, it’s valid to accept the script from a
different URL. For more information, search the web for information about cross-ori-
gin resource sharing (CORS).

Listing 13.6 Updated rmai n() function using all three handler classes

inmport "dart:io";
inmport "dart:json”; ﬁ Imports dart:json

mai n() { library, server side
Htt pServer server = new HttpServer();
var staticFile = new StaticFileHandl er(); C . er:s
var fol derList = new Fol derLi st Handl er () ; reates instances P
i = i) of handler classes server
var fileContent = new Fil eContentHandl er(); handlers

server. addRequest Handl er (stati cFil e. matcher, staticFile.handler);
server. addRequest Handl er (f ol derLi st. matcher, folderlList.handler);
server. addRequest Handl er (fil eContent. matcher, fileContent. handler);

server.|listen("127.0.0.1", 8080); <+ Starts server listening for requests

Serving clients with a RESTful API 301

print(“Listening... on 127.0.0.1:8080"); Utility function: prevents browser
} from blocking AJAX requests

addHeader s(res) {

res. headers. add(" Access-Control -All ow Origin", "http://1local host/*");

res. headers. add(" Access-Control - Al |l ow Credential s", true);
}
The mai n() function is fairly straightforward. Adding extra handlers would mean cre-
ating more handler classes. For the moment, all of these classes are in the same file,
but in a large project you’d split the handlers among multiple libraries.

Next, you'll send your file and folder list as JSON data with the Fol der Li st Handl er

class.

13.3.1 Sending a directory list as JSON data

The Fol der Li st Handl er class provides two methods: mat cher () and handl er (). The
mat cher () method returns true if the request is a GET request, and it has a pat h that
starts with a /folderList prefix. When mat cher () returns true, the associated han-
dler () function is called, and you can extract the request data from the request path.
The request data follows the /folderList prefix on the path, so you’ll use the core
library subString() function to remove the /folderList part from the path and
extract the folder name to list.

Once you have the folder name, you’ll use the Directory and DirectoryLi ster
classes that you used earlier in the chapter. As you receive file and folder names, you’ll
add them to two separate lists; and in the DirectoryLister’s onDone() function,
you’ll put these two lists into a map and convert the map to a JSON string. You're only
interested in showing .dart files in the file list, so you’ll ignore any others.

Finally, you’ll send that JSON string to the Ht t pResponse’s output stream and close
the output stream. Let’s look at the code, shown in the following listing.

Listing 13.7 Implementing the Fol der Li st Handl er class

...snip main() and other functions...
cl ass Fol derLi stHandl er {

bool matcher (Htt pRequest req) {

return req.path.startsWth("/fol derList") Returns true if path and
&& req. met hod == "CET"; method are correct

}

voi d handl er (Htt pRequest req, HttpResponse res) { Handler function: adds
addHeader s(res); CORS headers to response
var folder = req.path.substring('/folderList'.length): Gets DirectoryLister
DirectoryLister lister = new Directory(folder).list(); for requested folder
List<String> dirList = new List<String>(); Creates empty lists for
List<String> filelList = new List<String>(); file and folder names
lister.onDir = (dirName) { Handles folder

di rLi st.add(dirName); names

302

13.3.2

CHAPTER 13 Server interaction with files and HTTP

}s

lister.onFile = (fil eNane) {
if (file.endsWth(".dart")) {
fileList.add(fil eName);

b When all file and

b folder names have

lister.onDone = (done) { been retrieved ...
var resultMap = new Map<String, Li st>();

resul t Map["files"] = filelList; ... converts map of

Handles filenames, only
adding .dart files

resul tMap["dirs"] = dirlList; file and folder names

var jsonString = JSON stringify(resultMp); to JSON string
res.outputStreamwiteString(jsonString); Sends string to browser
res. out put St ream cl ose(); and closes stream

}

If you start running the server, you can browse to a URL such as http://local-
host:8080/folderList/dart, and it will return all the files and folders formatted as JSON
in the c\dart folder, as you can see in figure 13.11.

127.0.0.1:8080/folder/dart/
l <« C | @ 127.0.0.1:8080/folderList/dart/ A

{"files":

["C:\\dart\\\\DirectoryList.dart"”, "C:\\dart\\\\Options.dart”,"C:\\da
red\\A\\Optionsl.dart”, "C:\\dart\\\\ServeDirectorylist.dart”, "C:\\dart
“\\\ServeHttpEcho.dart”, "C:\\dart\\\\Simple.dart"], "dirs":
["C:\\dart\\\\css", "C:\\dart\\\\other

project™, "C:\\dart\\\\static"]} |

Figure 13.11 Returning JSON data from the server API

Sending the file content as JSON data

The file content is equally similar to the Di rect oryLi st er command-line application
that you built earlier in the chapter. You use the Fi | eCont ent Handl er class to match
on a path prefix of /fileContent, extract the filename that follows, read the file’s con-
tent as text, and return the text wrapped as a JSON string.

A URL such as http://localhost:8080/fileContent/dart/Options.dart will return
the contents of the Options.dart file wrapped as JSON data. The Fi | eCont ent Handl er
class is shown next.

Listing 13.8 Sending data to the browser with Fi | eCont ent Handl er

...snip main() and other functions...

cl ass Fil eCont ent Handl er {

13.3.3

Serving clients with a RESTful API 303

bool matcher (Htt pRequest req) ({

}

return req.path.startsWth("/fileContent") Matches on correct
&& req. method == "CGET"; path and method

voi d handl er (Ht t pRequest req, HttpResponse res) {

addHeaders(res); Extracts requested
. . . filename from path
var filename = req. path.substring("/file".length);

File file = new File(filenane); <+—— Creates file object

file.readAsString().then((String fileContent) {
var result = new Map<String, String>();
result["content"] = fileContent;

Reads text of file and
content to a map

res.outputStreamwiteString(JSON. stringify(result));
res. out put Stream cl ose(); Converts map to
1) JSON and sends
it to the browser

}

You’ve finished the server-side part of the application. It can respond to requests

for

files and folders and request specific file content. Next, you’ll add a simple client-side

user interface that will be served by, and interact with, your server.

Adding the client-side user interface

The client-side part of the Dart File Browser application loads into the browser and

uses the Ht t pRequest that we covered in the previous section to make asynchronous
requests to the server’s REST API for data. When the browser receives data from the

server, the user interface is updated. The key actions are shown in figure 13.12.

1. GET .html, .dart, and .css files from the server. 2.Use CGET /fol derLi st toreturn a list

of files and folders.

B}
Dart File Browser \ o
€« @ @ 127.0.0.1:8080/static/index html# S diC €
Dart File Browser F
'Fulders T 'F\\es. b 'Flle Content T
Current Folder: C\dart DirectoryList dart Current file: Options dart
Cdarty Opti dar 5 ", sigms
C\dgmgtsrfergm'ect Ser‘\-‘ue%sireimryustdan LPOTE tdartiiet;
Cldartistatic ServeHiipEcho.dart
void main() {
Options opticns = new
Cptions ()
print (options.arguments);
3. Clicking a folder causes a new 4. Clicking a .dart file causes a GET /fi | eCont ent
GET /fol derLi st requestto request and displays the received file’s content.

be sent to the server.

Figure 13.12 The main actions of the client-side application request data from the server and render
it in the user interface.

304 CHAPTER 13 Server interaction with files and HTTP

ClientApp.dart

main(Q) {

// setup Ul and event handlers

}

loadFolderList(String folderName) {

}

Request a folder list from the server.

updateFolderList(List folders o
P ¢) 1 Update the folder list in the Ul when a

} list of folders is returned from the server.

dateFileList(List fil G
updateFileList(List Tiles) { Update the file list in the Ul when a

¥ list of files is returned from the server.

loadFileContent(String filepath) {)
Load the contents of a file from the

} server, and display the content in the Ul.

Figure 13.13 The outline of the Cl i ent App code

Because the browser is a single-page web application and doesn’t transition between
different physical web pages, you need to manage the browser navigation history your-
self by using the pushSt at e() and popSt at e() functions (covered in chapter 11). List-
ing 13.8 shows the complete clientside application’s Dart code: the navi gate()
function is responsible for adding browser navigation history with pushState(), and
the popState() handler is declared in mai n() and is responsible for the browser’s
back button click. This is the same thing you saw in the DartExpense example earlier
in the book, but the code is now served from server-side Dart and talks to your server’s
REST API by using GET requests. Like the outline of the serverside code shown previ-
ously, the O i ent App’s outline is shown in figure 13.13.

The other key functions in the clientside code (shown in listing 13.9) are | oad-
Fol der Li st () and | oadFi | eCont ent (), which perform the GET Ht t pRequest s to your
server API to update the user interface when the data is loaded. The | oadFol der Li st ()
function is called when you navigate to a different folder. The | oadFi | eCont ent () func-
tion is called when you click a specific filename to load it.

Listing 13.9 The client-side part of the Dart File Browser application

inmport "dart:htm";

Hook handl
i mport "dart: | son" ooks up popState() handler

for back button navigation
mai n() {

wi ndow. on. popSt at e. add((data) => | oadFol derLi st (data.state));

navi gate("/"); <+—— Navigates to root folder

Serving clients with a RESTful API 305

} Loads Adds requested folder
navi gat e(String fol der Name) { QJ requested onto browser history
| oadFol der Li st (f ol der Nane) ; folder
wi ndow. hi story. pushState(fol der Narme, f ol der Nare, " #$f ol der Nane") ;
}
.) Updates Ul and builds request URL
| oadFol der Li st (String fol der Nane) {
docunent . query("#current Fol der").innerHTM. = "Current: $fol der Nane";
var url = "http://127.0.0.1: 8080/ f ol der $f ol der Nane";
new Htt pRequest. get (url, (response) {
var jsonData = response.responseText; Loads file and folder
Map result = JSON. parse(jsonData); list data from server
updat eFol derLi st (result["dirs"]); Uses returned file and
updat eFi l eList(result["files"]); folder lists to update Ul
B
}

updat eFol derLi st (List folders) {
var content = document.query("#folderList");
content.children.clear();

Gets folderList
<div> and adds
each folder to it

for(String dirName in folders) {
var link = new El ement. ht m (" <di v>$di r Name</ a></di v>");

link.on.click.add((e) => navigate(dirNane));
content. chi | dren. add(!i nk); :!'::I:g’l'ct';l

} } calls navigate()
updat eFil eList(List files) {
var content = document.query("#fileList"); Gets fileList <div> and
content.children.clear(); adds each file to it

for(String filepath in files) {
var filename = filepath.substring(filepath.lastlndexOf("\\")+1);
var link = new El ement. html ("<di v>$fil ename</ a></di v>");

link.on.click.add((e) => | oadFileContent(filepath)); Q—‘

When a filename

content.children.add(link); is clicked. calls

Extracts } loadFileContent()
filename | }
and) . .
updates | oadFil eContent (String filepath) {
ul var filenane = filepath.substring(filepath.lastlndexCf('\\")+1); Gets
docunent. query("#filename").innerHTM. = "Current: $filenanme"; requested
var url = "http://127.0.0.1:8080/file$fil epath"; file data ...

new Htt pRequest. get (url, (response) {
var content Text = JSON. parse(response.responseText)["content"];
var content = document.query("#fileContent");
... and displays it in
h fileContent text area

content.innerHTM. = content Text;
19N

}
For completeness, the associated clientside HTML is shown in listing 13.10. You can add
your own CSS styles to the application to lay it out as you wish or grab the CSS file from
the source code website that accompanies this book. The HTML provides boilerplate

306

CHAPTER 13 Server interaction with files and HTTP

<di v> elements to hold f ol der Li st, fil eList, and fil eContent and is served, along
with the ClientApp.dart file, by the server-side part of the application.

Listing 13.10 Client HTML file hosting the client-side application

<! DOCTYPE htm >

<htm >
<head>
<meta charset="utf-8">
<title>Static</title>
<link rel ="styl esheet" href="directorylList.css">
</ head>
<body>
<h2>Dart File Browser</h2>

<div id="application">
<di v class="content">Fol ders:

Current Fol der: ;I?il;ll?lifs(:r
<div id="folderList" ></div>
</ di v>
<div class="content">Files:
 .
<div id="fileList"></div> <div> for
</ di v> file list
<div class="content">File Content:

</ span>
 <div> for
<textarea id="fileContent" rows="20"></textarea> file content
</ div>
</ di v>
<script type="application/dart" src="dientApp.dart"></script>
</ body> QT
</htm > Client-side Dart code script

You now have a fully working, fully Dart client-and-server application. The server side
serves static files and dynamic data read from the filesystem, and the client side
requests data via a RESTful interface and displays it in the browser. Multiple browsers
can request data from your server without being blocked by previous requests.

An exercise left for you is to add a Save button to the client-side application and
transmit file content back to the server via an Ht t pRequest POST method. The server
can then use the file’s Qut put St r eam (covered earlier in the chapter) to write updated
data back to a file. In this way, you’ll have transformed the Dart File Browser applica-
tion into a file editor.

Remember

= Single-page web applications load into the browser and request data using
Ht t pRequest .

= ADartHt t pServer uses async APIs to efficiently serve multiple browser requests.

= You can use some libraries, such as dart : j son, in both the client and the server.

134

Summary 307

Summary

You’ve produced a complete Dart solution in this chapter, with Dart running on both
the client and the server. This Dart server application uses the H t pServer type pro-
vided in the dart:i o library and uses the Fi | e and Di rect ory types to read from the
filesystem using nonblocking, server-side async APIs.

We covered how you can access command-line arguments from server-side scripts
and how to read and write file data using | nput St reamand Qut put St ream We also
reviewed some of the utility wrapper functions, such as readAsSt ri ng() , which make
working with streams easier.

You used Ht t pSer ver to send both static files and dynamic data into a client, and you
learned how to pipe the | nput St r eambeing read from a file into an Ht t pResponse’s
Qut put St r eamto send the file data to a browser. You also used the dart : j son library on
both the client and the server.

In the next chapter, we’ll return to the DartExpense application you built in chap-
ters 10 and 11, and you’ll hook it up with a server-side database. You'll serve the Dart-
Expense application from a server-side application, as you did for the one you’ve built
in this chapter; but instead of interacting with the filesystem to return a directory list-
ing, you’ll interact with a database. You’ll use Ht t pServer to send JSON data between
the client-side application and a NoSQL database via HTTP.

Sending, syncng,

and storing data

This chapter covers

Using two-way client and server communication with
web sockets

Sharing code between the client and server
Using H t pdl i ent to communicate between servers
Storing server-side data

Although your web application should be designed to work offline, most web appli-
cations also need to store some data on a server, whether in the filesystem, in an
SQIL-based solution such as MySQL, or in a NoSQL database such as CouchDB. The
nature of the web is that users of your application will connect from different
machines, which means even if data isn’t stored on the server, you'll use a server
component to provide server synchronization.

In this chapter, we’ll revisit the DartExpense application from part 3 of the book
and add server-side synchronization with web sockets, an HTML5 technology that
provides two-way, client-server communication by maintaining a permanent connec-
tion between the client and the server. Once you have DartExpense clients in sepa-
rate browsers communicating with each other via the server, we’ll look at persisting

308

14.1

Serving DartExpense from the server 309

data on the server using Apache CouchDB, a scalable NoSQL database server. We chose
this particular database because it doesn’t require any other third-party drivers or
libraries—it provides a REST API that your server can access using Dart’s Ht t pCl i ent
classes. You can use the serverside H t pl i ent classes to access any servers that provide
an HTTP-based API—the Hit pC i ent is not only for data storage.

But to get started, you need to take the static fileserver you built in the last chapter
and use it to serve DartExpense to the client. This will be your base for adding web
socket support and data storage.

Serving DartExpense from the server

In the previous chapter, we showed you how to write a server-side static fileserver that
serves the client-side application files to the browser. You’ll use this static fileserver
again to serve part 3’s DartExpense application to the browser. Figure 14.1 shows the
DartExpense application and flow from the server, as a reminder.

Client (browser)

ey —— | Browser requests
syl application files
4 - €| [127.00,0:E080/DanExy t . woA
DartExpense)
Currently, data is
| - el LS tored locally in
| | Books 14.7-2012 Dart in Action 3895 [Es_] S y
| | Travel 15.7.2012 Tax 3500 (B the browser
1
Add.
| Oalina - 1 elisnts soenactid
{
GET .html,
.css, .dart Server returns files
RequeStS files from server to browser from HTTP
Responses
Server
mainQ) { .
HttpServer server = new HttpServer(); Server listens for

var fileHandler = new StaticFileHandler();

server .addRequestHandler (fileHandler.matcher, fileHandler._handler);
server.listen(*'127.0.0.1", 8080);

print(“listening...");

¥

class StaticFileHandler { Wh it)
bool matcher(HttpRequest req) { enthe server
return req.path.endsWith('.html*) || matches a request
req.path.endsWith('.dart™) || for a static file,
req.path.endsWith(**.css™) || .
req.path.endsWith("'.js"); load that file

from a ./client

void handler(HttpRequest req, HttpResponse res) { S_Ube)lde' and send
var requestedFile = "./client${req.path}"; it to the response
rint(“GET: $requestedFile™);
Eile 1(‘ile = nequile(requesiedFile); out put Stream
file.openlnputStream() -.pipe(res.outputStream);
3
3

HTTP requests

Figure 14.1 Dart Ht t pSer ver sends the application’s files to the browser.

310

14.2

CHAPTER 14 Sending, syncing, and storing data

The clientside DartExpense files live in a ./client subfolder of the server part of the
application, in which the server serves the clientside application files from HTTP. The
application doesn’t run any differently than if you load it directly from the server’s
filesystem; it’s still only a client-side application that happens to have its files sent from
a Dart server. Now that you have this, you can start to add server interactivity in the
form of HTML web sockets.

Using web sockets for two-way communication

In the previous chapter, we discussed how to use a RESTful API to send data in the
form of GET requests for directory listings from the client to the server. The server
requested a list of files and folders in c:/dart, and the server responded with JSON data
representing the files and folders. This represents the standard way that data is trans-
mitted around the web: clients make requests, and servers respond to those requests.
The connection between the client and server is maintained only for the length of
each request/response.

Web sockets provide a new model of transmitting data by allowing the server to
maintain a persistent connection to the client. This lets the server send data to the cli-
ent without the client making a request for it. Later, you’ll use this feature in DartEx-
pense to provide synchronization between multiple DartExpense clients, allowing you
to edit an expense in one browser and see the update appear in another browser.
First, though, we’ll look at a simpler example: you’ll display the number of connected
DartExpense clients that the server knows about. When a new client connects, the
server will send the number of connected clients back to each connected browser, as
shown in figure 14.2.

1. Browser 1 starts 4. Browser 2 starts
running DartExpense. running DartExpense.

Lo o e N [N N |

Web socket Web socket

2. The server 3. The server sends 5. The server 6. The server sends
opens a client Count to opens another cl i ent Count to
permanent all connected permanent web all connected
web socket browsers. socket connection browsers.
connection to browser 2.

to browser 1.

‘ clientCount = 1 ‘ ‘ clientCount = 2

Figure 14.2 Web sockets allow two-way communication between the client and server, which
lets the server send data to the client without the client requesting it first.

14.2.1

Using web sockets for two-way communication 311

To use web sockets, you need to add code to both the client and server parts of the
application. The client must connect to the server and respond to messages sent from
the server with an event-handler callback function. The server must listen for new cli-
ents connecting, store a list of connected clients, and handle a client sending data.

NOTE Web sockets and traditional Ht t pRequest GET and PCST requests can
coexist perfectly well. It’s common to use GET and PCST request methods to
communicate with a server’s RESTful API and also provide specific additional
functionality with web sockets.

Connecting web sockets on the client side

The client application running in the browser needs to initially open the web socket
connection with the server. To do this, you’ll add a new method called connect ToWeb-
socket () in the DartExpense AppControl | er class. The AppControl |l er class, which
you built in chapter 10, is responsible for building the user interface and hooking up
event handlers, so this is a perfect place to connect to a server and provide a mecha-
nism for listening to web socket messages. Listing 14.1 shows DartExpense’s mai n()
function, which calls connect ToWebsocket (). It also introduces a constant called
WEBSOCKET_URL, which contains the URL to connect to the web socket. This uses
the ws:// protocol rather than http:// to indicate to the browser that it’s a web
socket connection.

Listing 14.1 DartExpense.dart nai n() function creating a web socket connection

...Snip inmports...
final WEBSOCKET_URL = "ws://127.0.0.1: 8080/ websocket";

URL that browser
void main() { uses to connect to
var ui Contai ner = docunent. query("#dartexpense"); server web socket

var dataSource = new Local Storage();
_app = new AppController(ui Container, dataSource);

app. bui I dUI () ;
app. |l oadFirstView();

app. connect ToWebsocket () ; QT
wi ndow. on. popSt at e. add(onPopSt at e) ;

New call to connect
to web socket

}

AppControl | er _app;

AppControl | er get app => _app;

The new client-side connect ToWebsocket () function needs to perform two tasks: it
creates a web socket connection object using the WEBSOCKET_URL and then sets up an
on. nessage event listener to listen to events retrieved from the server. This event lis-
tener is like other asynchronous browser event listeners, such as button clicks; in the
same way that a user can click a button on the browser at any time, the server can send
data to the client at any time. The message-listener function extracts the number of

312

14.2.2

CHAPTER 14 Sending, syncing, and storing data

client connections sent from the server and displays them in the DartExpense footer
area by calling r ef r eshFoot er St at us() .

Listing 14.2 shows the new connect ToWebsocket () and ref reshFoot er St at us()
methods of the AppControl | er class. The server sends the number of connected cli-
ents as JSON data containing an action type and some data, such as
{"action":"CLI ENT_COUNT_REFRESH', "connectedC i ents": 3}.If the action type is
CLI ENT_COUNT_REFRESH, you need to extract the connect edC i ents value from the
JSON map and display it in the footer.

Listing 14.2 Adding connect ToWebsocket () to the AppControl | er class

class AppController {
... New property to

snip other nethods and properties ... store web socket

VebSocket _websocket ; connection
int _conectedCients = 0; New property to store
connect ToWwebsocket () { number of connected clients
_websocket = new WebSocket (\WEBSOCKET_URL) ;
Creates web
_websocket . on. message. add((MessageEvent message) { sqcket connection
Map data = JSON. par se(nmessage. dat a) ; with server URL
if (data["action"] == "CLI ENT_COUNT REFRESH' {
_conectedd ients = data["connectedd ients"]; Adds event-handler function to
refreshFoot er Status(); respond to data sent from server
}
1)
} Updates footer status text to

show number of connected clients
refreshFooterStatus() {

var statusText = "$_conectedClients clients connected";
docunent . query("#footer").innerHTM. = statusText;

}
}

The act of creating the new web socket connection opens the two-way connection to
the server. Next, you need to get the server side to respond when this connection is
opened and send an updated count back to all the connected browsers.

Handling web socket connections on the server

The server-side application already handles HTTP requests by using the Htt pServer
class, which is provided in the dart : i o library. You’ve added a specific request handler
to serve static files to the browser, but now you can also add a vebSocket Handl er to man-
age web socket connection requests. \ebSocket Handl er is also provided in the dart:i o
server-side library and is responsible for creating anew WebSocket Connect i on object for
each browser that connects. This \\ebSocket Connect i on object provides a send() func-
tion for the server to send data to the client and an onMessage() callback that’s called
when the browser sends data to the server. Figure 14.3 shows the clientand server classes
that make up the web socket story.

Using web sockets for two-way communication 313

Creating a WebSocket triggers the
WebSocket Handl er. onOpen()
callback on the server.

— -— — -— — Passing data to send()
triggers the server

WebSocket ' connection’s
— i onMessage() callback.

.send(data); —
' .on.message .add(cal lback(message));
\\o%

r PGl — - - e e

v Server - """ """ "="-"=-""=-"-"=-"-"=-"-"=-"-="=-"-"=-"-"=-"-™"=-"-"=-""="- =" ="' =7/ "=/ "/ ™7

\ﬁ»l WebSocketHandler |

one

| .onOpen(cal Iback(WebSocketConnection conn));

| WebSocketConnection

creates
Leredies ||
many

.onMessage(cal lback (messageData));
.onClosed(callback(int status, String reason));
.onError(callback(error));

.send(data);

Passing data to send() on the server triggers the client
web socket’s on. nessage() event listener function.

Figure 14.3 The built-in classes you use to manage web socket connections on the client and server

HANDLING THE WEB SOCKET REQUEST

In order for the server side to handle web sockets, it needs to use Ht t pSer ver ’s addRe-
quest Handl er () method, which you saw in the last chapter. You pass in the built-in
VebSocket Handl er’s onRequest () function, as shown in the following snippet:

Htt pServer server = new HttpServer(); Adds WebSocketHandler to
var websocket Handl er = new WebSocket Handl er () ; handle web socket requests
var matcher = (req) => req.path == "/websocket";

server . addRequest Handl er (mat cher, websocket Handl er. onRequest) ;
server.listen("127.0.0.1",8080);

To perform actions when a browser connects, you need to also provide an implemen-
tation for the WebSocket Handl er’s onQpen() method. This method’s callback handler
gets a new connection object to allow communication between the specific browser
connected and the server.

314

CHAPTER 14 Sending, syncing, and storing data

TRACKING BROWSER CONNECTIONS
The server gets a new WebSocket Connect i on object for each browser that connects,
and you need to store each of these connections. Each web socket connection pro-
vides a unique identifier (in the form of the hashCode property), allowing you to store
the connections in a Map so you can identify them and remove each connection from
the map when it’s closed. This will also be useful later, when you want to send synchro-
nization data to all browser connections except the one that sent some original data.
When the server gets the new WhbSocket Connection object from the
VWebSocket Handl er.onQpen() method, you can send the updated count of connec-
tions back to the browser. This is performed by passing String or Li st <i nt > data to
each connection’s send() method. You send the data as a JSON string, iterating
through the list of connections and calling the send() method on each, as shown in
the following listing.

Listing 14.3 Sending a client count when each browser connects

i mport "dart:io";
i mport "dart:json";

mai n() { Creates new
Hit pServer server = new HttpServer(); WebSocketHandler instance
var fileHandl er = new StaticFileHandler();

server. addRequest Handl er (fil eHandl er. mat cher, fil eHandl er. handl er);

var wsHandl er = new WebSocket Handl er () ;

var matcher = (req) => req.path == "/websocket";
server . addRequest Handl er (mat cher , websocket Handl er. onRequest) ; Adds matcher
_ and handler to
var connections = new Map(); Creates empty HttpServer
var sendUpdat edConnectionCount = () { maptosforeclient
var data = new Map(); connections

data["action"] = "CLI ENT_COUNT REFRESH'
dat a["connectedd i ents"] = connections. | ength;
var nmessage = JSON.stringify(data);

Provides a closure
to send size of
client connections

. . . . map to each client
for(var clientConnection in connections.values) {

cl i ent Connecti on. send(message) ;

}

b

wsHandl er. onOpen = (WebSocket Connecti on conn) {
var key = conn. hashCode();
connecti ons[key] = conn;

Stores new
connection in map

sendUpdat edConnecti onCount () ; 47 Sends updated
3 count to all clients
server.listen("127.0.0.1", 8080);
print("listening...");

14.2.3

Using web sockets for two-way communication 315

TRACKING BROWSER DISCONNECTIONS AND ERRORS

In addition to adding the new connection to a map and sending an updated count to
all connections, you need to provide implementations for the callback functions on
the WebSocket Connecti on object: onMessage() and onC osed(). The onMessage()
implementation is empty for now because the browser clients aren’t sending data to
the server yet. But the onC osed() handler needs to remove the connection from the
map and send the updated client count to the remaining connected browsers. The
onC osed() callback is called when the browser explicitly closes the connection
or when there’s an error. The status parameter, which has values defined in the
WebSocket St at us class, indicates whether an error condition occurred. You need to
add these handlers in the wsHandl er. onQpen callback, shown in the following listing,
while you still have access to the \ebSocket Connect i on.

Listing 14.4 Adding onCl osed() handler to the connection

mai n() {
/1 ...snip other code fromearlier listing...

wsHandl er. onOpen = (WebSocket Connecti on conn) {
var key = conn. hashCode();

connections[key] = conn;

conn.onClosed = (int status, String reason) { Remove§ this .
connect i ons. r emove(conn. hashCode()); connection from list
sendUpdat edConnect i onCount () ; 47 Sends updated

b count to all clients

conn. onMessage = (nmessage) {

/1 do not hing No implementation

}: needed yet
sendUpdat edConnect i onCount () ;

b

server.listen("127.0.0.1", 8080);

print("listening...");

}

The server can now send arbitrary data to all connected client browsers. When you
run the server and start adding clients, you’ll see the number of connected clients
shown in the DartExpense footer panel change in each browser as the server notifies
the browser that there has been a change, as shown in figure 14.4.

Now that you’ve implemented a simple client-connection scenario, let’s look at a
slightly more complicated scenario: synchronizing the expenses between browsers.

Using web sockets for cross-browser synchronization

You have a method for the server to push data to multiple clients, so you can begin to
send synchronization data to multiple clients. In the simple count example, you didn’t
send any data to the server with the client web socket’s send() command. Merely con-
necting to the server was all you needed. You can use this send() command, though,

316

CHAPTER 14 Sending, syncing, and storing data

[7] DartExpense: list

::"i _,E Diagibimeses s x

| rT—r— X —
=/ e - ! o) [ouomei: < R
€ - C |[127.00.1:8080/DartExpense.ntmi#list WA € - C [127.00.1:8080/DartExpense.htmi?
| DartExpense] ‘ DartExpense
‘ Type Date Item Amount I Type Date Item

-
I

= =

| _ Online - 3 clisnts connscted] | v Online - 4 clients connected

“3 clients connected” When the fourth client connects, all

browsers are updated to display
“4 clients connected.”

Figure 14.4 As clients connect, they’re notified of the updated number of connected clients.

to send a JSON representation of an Expense to the server via your web socket connec-
tion. When the server receives the JSON expense, it can send that to all the other con-
nected client browsers without the other browsers needing to explicitly request that
data from the server. This will trigger the user interface to be refreshed with the
updated data, as shown in figure 14.5.

Browser 3 receives
updated JSON and
refreshes the UI.

Browser 2 receives
updated JSON and
refreshes the UI.

An expense is added
or edited in browser 1.

(|

JSON expense sent to
browsers via web socket

JSON expense sent to
server via web socket

The server sends the
JSON from browser 1
to all other connected
browsers.

— N |

Figure14.5 Sending synchronization datafrom one browser to other browsers via web socket connections

Using web sockets for two-way communication 317

The synchronization mechanism will be simple for the purpose of example (see the
sidebar “Real-world synchronization”). Currently, when you click Save when editing a
record, you save a J[SON expense in browser web storage via an addCOr Updat e(Expense
expense) function. You’ll modify the client-side DartExpense application to also send
the edited Expense object to a sync(Expense expense) function that’s responsible for
sending the JSON data to the server.

Real-world synchronization

In the real world, data synchronization is a more complex problem. Issues arise such
as what happens if two users are editing the same data simultaneously. Typical so-
lutions include the following:

= Latest edit wins—Take each edit as it comes, so the second user’s edit clears
the first user’s edit. This is the easiest approach to implement but provides a
poor user experience (for the second user).

= First edit wins—When the second user tries to save the record, notify the second
user that it’s been edited elsewhere. This keeps the first user’s edit and allows
the second user to make informed choices.

With web sockets, you also get the possibility of more advanced solutions. These are
available because you can send data back to a client in response to changes else-
where. Example solutions include the following;:

= Collaborative editing—As the first user keys in an edit, the edit appears on the
second user’s screen at the same time, and vice versa.

= Disabling editing—When the first user starts to enter data, the record being
edited becomes disabled in the second user’s interface. When the user clicks
Save, the data updates on the second user’'s screen and becomes enabled
again. This is a more advanced version of “first edit wins,” with better feedback
for the second user.

These more advanced solutions are also more complex to implement and thus re-
quire careful thought regarding their design, but a user experience such as this helps
make a good web application great.

SENDING WEB SOCKET DATA FROM THE BROWSER
Sending the data to the server is as sim-
ple as calling the web socket’s send() EDIT
method and passing the String or
Li st <i nt >datainto it. In fact, it’s a mir-
ror of the server-side send() function
that you saw earlier. You’ll implement

that part first, as shown in figure 14.6.
Listing 14.5 shows the modifica-

tions to the DartExpense AppCon-

troll er class to send the JSON data to Figure 14.6 Sending the edited JSON

318

CHAPTER 14 Sending, syncing, and storing data

the server via web sockets. In order to keep the Expense’s ID values in sync between
browsers, you also send the current value of the Expense class’s static next | d value.
You send the data as a new action type of SYNC so the data can be distinguished from
the CLI ENT_COUNT_REFRESH action.

Listing 14.5 Sending JSON data to the server with web sockets

class AppController {

/1 ... snip other nmethods and properties ... Existing web

WebSocket _websocket ; socket connection

addOr Updat e(Expense expense) {
_appDat a. addOr Updat e(expense) ; ?ypcs expense and stores
sync(expense); it in local storage

}

sync(Expense expense) {
Map data = new Map();
data["action"] = "SYNC';
dat a["expense"] = expense.toJson();
data["next1d"] = Expense. current Next | dVal ue;

Adds JSON expense and
next ID value to map

var jsonbData = JSON. stringify(data); 47 Convertsmap
_websocket . send(j sonDat a) ; QT Sends data to JSON
! to server

}

RECEIVING WEB SOCKET DATA FROM THE BROWSER
The data has started its journey to the
other browsers. Now you’ll implement EDIT

the server side, shown in figure 14.7.
Earlier you left the WebSocket Con-

necti on onMessage() callback without JSON

an implementation. Now is the time to i
provide that implementation. If the RECEIVE/
action type is SYNC, then the server SEND

should resend the edited expense data
to all the other connected browsers.

. Figure 14.7 Receiving JSON expense data from a
You can use the connection’s hash ¢opnected client

code to identify the current connec-

tion (that received the data) and ensure that you don’t send the edited expense data
back to the same browser that initiated the edit. The serverside changes to DartEx-
penseServer.dart are shown in the next listing.

Listing 14.6 Receiving and resending data from a web socket message

mai n() {
/1 ...snip other code fromearlier listing...

wsHandl er. onOpen = (WebSocket Connection conn) {

Using web sockets for two-way communication 319

var key = conn. hashCode();
connections[key] = conn;

conn.onCl osed = (int status, String reason) {
/1... snip inplementation fromearlier

}

conn. onMessage = (nmessage) {
var data = JSON. parse(nessage);

if (data["action"] == "SYNC') { For each client
for (var clientConnection in connections.val ues) { connection ...
if (clientConnection.hashCode() != conn. hashCode()) { ifie
| i ent Connecti on. send(message) ; - IfIt's not
¢ ’ ’ ... resend the the current
} } received data. connection ...
}
H
sendUpdat edConnect i onCount () ;
b
server.listen("127.0.0.1", 8080);
print("listening...");
}
RECEIVING SYNCHRONIZATION DATA IN OTHER BROWSERS
The final part of the sequence is to
return to the browser code in order to EDIT REFRESH | | REFRESH
let other browsers update when they " |
receive the updated data, shown in fig-
ure 14.8. JSON JSON
You already have an on. nessage i
handler that IOOkS for the CLI ENT_ RECEIVE/
COUNT_REFRESHaction. You need to add SIEND
another i f clause to look for the SYNC

action. When the browser receives a Figure14.8 Other clients receive the JSON data and
SYNC action, it will convert the JSON refresh.

expense data back to an Expense object and pass it into its addOr Updat e(Expense
expense) method, as though it had been edited from the browser. Finally, you’ll update
the browser to display the list of expenses by navigating to the list view. The following
listing shows this step in action.

Listing 14.7 Receiving synchronization data in the browser

class AppController {
/1 ... snip other nmethods and properties ...

WebSocket _websocket ;
int _conectedCients = 0;

connect ToWwebsocket () {
_websocket = new WebSocket (VVEBSOCKET_URL) ;

320 CHAPTER 14 Sending, syncing, and storing data

_websocket . on. nessage. add((MessageEvent nessage) {
Map data = JSON. par se(nessage. dat a) ;
if (data["action"] == "CLI ENT_COUNT REFRESH' {
_conectedC ients = data["connectedClients"];
ref reshFoot er St at us() ;

}

else if (data["action"] == "SYNC') {
var expenseJSON = dat a["expense"]; Converts JSON expense
var expense = new Expense. fromJson(expenseJSON); to Expense object
Expense. current Next | dVal ue = data["next1d"]; Updates next
_appDat a. addOr Updat e(expense) ; ID value
navi gat e(Vi ewType. LI ST, null); Navigates back Adds or L.lpdates

} to list view to €Xpense in san:e .

" see the edit manner as a Ul edit

}

}
Thatwas along section, but now you have an application that can communicate between
browsers, using a server to push data to multiple browsers. This is useful for providing
push notifications such as “new mail” notifications, keeping browser-based multiplayer
games in sync, and improving the user experience in line-of-business applications.

In the next section, you’ll take the sync data received from a browser and use it to
save data into a CouchDB NoSQL database.

Remember

= A server can handle web socket connections by using a WebSocket Handl er to
provide a request handler for the Ht t pSer ver class.

= The client needs to open the web socket connection to the server by creating an
instance of the WebSocket class pointing at a specific server URL.

= When a client connects to the server, the WebSocket Handl er creates a new
WebSer ver Connect i on instance that lets the server communicate back to that
browser.

= The send() method on the client or server connection sends data to the recipi-
ent’s on. message (client side) or onMessage() (server side) callback function.

14.3 Storing data with HttpClient and CouchDB

In this section, you’ll use Dart’s server-side H t pCl i ent to store data in an Apache
CouchDB database. CouchDB is a NoSQL database that stores data in a JSON format; in
this respect, it functions similarly to the browser-based local storage you saw in part 3
of the book.

CouchDB has a RESTful API that serves data to client systems such as DartExpense’s
server using HTTP. Even if you don’t plan to use CouchDB in your solution, the following
examples will build on your use of the | nput St r eamand Qut put St r eamtypes you saw in
the previous chapter and introduce the use of H t pd i ent to talk to HTTP-based RESTful

14.3.1

Storing data with HittpClient and CouchDB 321

APIs. H t pd i ent is server-side Dart’s version of the Ht t pRequest you’ve already used to
request data in the web browser.

Interacting with other database systems

Dart’s HTTP client and HTTP server are built on a lower-level Socket type, which is
used for binary transfer of data between TCP systems. The Socket type lets database
driver developers communicate directly with database servers that expect to commu-
nicate via a proprietary protocol. At the time of writing, open source drivers in various
states of development are available for MySQL, MongoDB, Redis, and Riak.

It's also possible to interface server-side code with third-party native code via the
ext ernal keyword, which allows native drivers written in C/C++ to be bound to Dart
libraries. An open source SQLite binding is an early example, but this advanced topic
is outside the scope of this book.

At the moment, the DartExpense application receives data from the application run-
ning in a browser and uses web sockets to sync that data to other browsers. Each client
also stores the data offline in local storage. The problem with this at present is that if
the application starts in one browser and a user enters a new expense, the expense
record isn’t added to the application running in a second browser that starts up later;
it’s only synchronized to browsers that are running at the time the edit is made. You
need to pull the existing data from the server each time the application begins run-
ning in the browser. You’ll add the following features to the application to enable
server-side data persistence:

= Loading all existing records from the server
= Saving edited (new and existing) records to the server

At present, the client sends JSON data over web sockets with a SYNC action and a
CLI ENT_CQOUNT_REFRESHaction. You’ll add a LOAD action to request the initial data load
from the server and reuse the SYNCaction to send the data to the database as well as to
other browsers. The flow of data with these new features is shown in figure 14.9.

Adding a new layer to the application’s architecture will also add some complexity.
At the core, you’re LOADing expenses from the database and SYNCing expenses to
other browsers and the database. But before you begin, let’s take a quick look at how
you can talk to CouchDB.

A quick CouchDB primer

Apache CouchDB is a NoSQL database. It stores data such as your expenses in JSON
form, accessible via a RESTful API. Installers are available from the CouchDB web-
site, and no configuration is required other than running the installer and starting
the server (on Windows systems, a handy batch file to start the server is added to the
Start menu).

322

1. App starts and
requests existing
data from the server

5. App loads
all expenses
from server

CHAPTER 14 Sending, syncing, and storing data

6. Expense is
added or edited

LQAD request
sent via web socket

Response sent
via web socket

SYNC edited
expense to
other browsers

(7]
@
2
@
=
i
i
i
i
i
i
i

2. Server loads
data from
CouchDB

4. Server sends
all expenses
back to client

7. Server sends
edited record to
CouchDB

i
All browsers '
i

9. Updated expense
record sent to
all browsers

Request sent
viaHtt pd i ent

Expenses returned
from CouchDB
as JSON

Edited expense
sent as JSON via
Ht t pd i ent

Updated expense
returned from
CouchDB as JSON

8. PUT: /expensedb/123

3.GET: /expensedb/_all_docs {id":123,"detai 1" " Taxi“. . .

Figure 14.9 Integrating server-side persistence with CouchDB

When the server is running, you can access data using HTTP methods such as GET, PUT,
and POST to interact with the server and get and store data. You can also use the Futon
locally hosted web application that’s built into the server to manipulate the data in a
more visually friendly way. Figure 14.10 shows an expense record with ID=1 in the
Futon application that was returned via a GET API call in the browser, which is possible
because the CouchDB server communicates via browser-friendly HTTP.

You’ll use the HTTP API, which uses HTTP methods and paths to access specific
records in a database in the server-side code. Table 14.1 shows the API calls you’ll use
in the code. Where a specific Expense ID is used, you'll replace it with the ID the
expense was given in the browser.

Storing data with HittpClient and CouchDB 323

[- — R F==EE)
W& Apache CouchDB - Futon: » | .
€ =2 C [} 127.00.1:5984/ utils/documenthimi?expensedb/1 it N
@ soveDocument) AddField () Upload Attachment...) Delete Document... . B
Fields Source
Fiela Vaue
_id 1 .
e Expense record with
rev 1-e26452c 8d .
= ID=1 shown in
it ,
ameun . CouchDB’s Futon app
date
detail Taxi
expenseType name Travel
code T
id 1
isClaimed false |
i — (=]
' 8 The same expense
W3 127.0.0.1:5984/expensedb
40 T oy record as JSON when
0.0.1:5
accessed via the
e T RESTful API call
e26452cf8d0798d830986edaacbel3e6l™, "id . Tamount™:35.0, "expenseType":
{"name" :"Travel™, "cod TPRV™ b "date™ :"2012-07-20 / expensedb/ 1
00:00:00.000", "detail™:"Taxi","isClaimed":false}

Figure 14.10 The CouchDB GUI web interface and the HTTP API interface

Table 14.1 API calls that you’ll use in your code

HTTP method Path Request data Result

PUT /expensedb/ None Creates a new database
called expensedb

GET /expensedb/_all_docs None Retrieves all records in the
database

PUT /expensedb/1 New or existing expense Creates or updates an

as JSON expense with ID =1
GET /expensedb/nextld None Retrieves the nextld record

Each JSON document is represented by an ID value, which can be any string. A single
document called nextld will store the current next expense ID value that running
instances of the browser application should know about. This prevents the application
from assigning two different expenses the same ID value. You currently SYNC this value
along with the Expense record, and you’ll also store it whenever a record is updated.

One more important feature of CouchDB is that it requires you to store a unique
revision number as part of the Expense JSON data. This allows CouchDB to identify
whether it’s a new or existing record; and if it’s an existing record, this ensures that
the most recent version of the record is updated.

324 CHAPTER 14 Sending, syncing, and storing data

WARNING Adding a layer to your application in the form of a database
increases the app’s complexity. The listings in this chapter build on listings
from this and earlier chapters, and only the relevant extracts to demonstrate
the use of Ht t pdient, | nput Stream and CQut put St r eamare shown. The full
code that makes up the working application is available on the book’s website:
www.manning.com/DartInAction.

14.3.2 Sharing the Expense model class between client and server

The Expense class, stored in the models.dart file, will now be used on the server as well
as on the browser. Rather than writing nearly identical code twice, you can use the
same source file by converting models.dart into a library in its own right. To do so, you
add a | i brary indicator at the start of the file. Now the client and server parts of the
application can i nport the same library code.

JSON data stored in CouchDB also needs a _r ev property to store the unique revi-
sion number inserted automatically by CouchDB. To achieve this, you’ll modify the
Expense class to also have a _rev property. Listing 14.8 shows models.dart converted
to a library and the additional _rev property added to the Expense class. When you
use JSON. stringify() on the Expense object, it will use Expense’s Map implementa-
tion methods to return the value of the _r ev property.

Listing 14.8 models.dart: Expense class updated to include a _r ev JSON property

library expense_nodel s; models.dart is
inport "dart:json"; now a library.

cl ass Expense inplenents Hashable, Mp {
/1 ...snip other properties
String _rev = null;
String get rev => _rev;
set rev(value) => _rev = val ue;

Adds _rev property
and getter/setter pair

[l ...snip other nethods

operator [](key) {

if (key == "id") {
return this.id,
} else if (key == "_rev") { Adds JSON property to
return this.rev; the Map indexer method
} elseif //...snip other JSON properties

}
}

14.3.3 Adding server support for data persistence

All interaction with the CouchDB database will be via Dart’s H t pCl i ent class, which is
also in the dart:io library. H t plient, like other serverside APIs, is asynchronous
and nonblocking. You need to make a request and return a future value that will com-
plete when the CouchDB server returns data to you. In order to achieve this, you’ll
wrap all your calls to CouchDB in a class called CouchDbHandl er .

www.manning.com/DartInAction

Storing data with HittpClient and CouchDB 325

When using Ht t pdl i ent , you typically make a request for data to a specific URL path,
such as http://localhost:5984/expensedb/1, using either GET or PUT. If you use PUT,
then you mightalso supply some request data, such as the edited expense you’re PUTting
into the database. The Ht t pQ i ent response from CouchDB is alwaysa St ri ng delivered
as an | nput St ream Because these are common patterns for all your interactions with
CouchDB, you’ll also create two private utility methods in the CouchDbHandl er class.
_get StringFronl nput St rean() will convertan | nput St r eamto a Fut ur e<Stri ng>, and
_get Dat a() will return a Fut ur e<Stri ng> from a call to CouchDB.

UTILITY FUNCTIONS FOR HTTPCLIENT INTERACTION

These two utility functions are where all the interesting work happens when you talk
to CouchDB. _get Stri ngFrom nput Strean() is similar to the code we looked at in
chapter 13 when you read data from a file’s | nput St ream This time, instead of read-
ing the data from a file, you’re reading the data from an | nput St r eamprovided by an
Htt pd i ent Response object, which is created when the server responds to a request.
Although data is available, you read that data into a StringBuf fer; and when the
[nput Streamis closed, you complete the Fut ur e<Stri ng> value with the contents of
the StringBuffer. The following listing shows the _get StringFrom nput St rean()
method.

Listing 14.9 CouchDbHandl er class’s_get St ri ngFr oml nput St r ean() utility method

cl ass CouchDbHandl er {
Fut ure<String> _get StringFrom nput Strean{var inputStream {

var conpl eter = new Conpl eter<String>(); Creates string buffer
StringBuffer sb = new StringBuffer(); to hold response text

i nput StreamonbData = () {
var buffer = inputStreamread();
if (buffer !'= null) {
sb. add(new String. fronChar Codes(buffer));

onData is called repeatedly
when data is available.

}
h
i nput Stream onCl osed = () => conpl eter.conplete(sb.toString());
return conpleter. future; Returns Passes string buffer’s
} Future value value to Future String
/'l snip other nethods

}

This method is used by the second utility method, _get Dat a() , which you’ll use as a
general-purpose method to send and retrieve data from CouchDB. It uses the Ht t p-
dient.open() method, which returns a new connection object to create a connec-
tion to the CouchDB API. This returned connection object is important because you
need to assign handl er () functions to its onRequest (), onResponse(), and onError ()
methods. Figure 14.11 shows how these methods are used in conjunction with an
Hit pl i ent object.

326 CHAPTER 14 Sending, syncing, and storing data

Using open() returns a new
connection object to which you attach
handlers for that specific connection.

var conn = httpclient.open(*'GET","127.0.0.1",5984, "/expensedb/1™);

conn.onRequest = (HttpClientRequest req) {
var outputStream = req.outputStream();
outputStream.writeText("foo™);
outputStream.close();

¥

conn.onResponse = (HttpClientResponse res) {
var inputStream = res.inputStream;
Future<String> str = _getStringFromlnputStream(inputStream);
str.then((stringValue) {
// do something with returned string

s
}

conn.onError = (error) {

}

If an error occurs, the
onError () handleris called.

Figure 14.11 Using Ht t pd i ent to read data from Ht t pSer ver

This call to open() requests the
JSON data for expense ID 1.

If extra data needs to
be sent, usually with the
PGST or PUT method, it

must be written to the
Ht t pCl i ent Request’s

out put St ream

When the connection
receives a response,
the returned data can
be accessed on the
Ht t pdl i ent Response’s
i nput St ream

You can add to the CouchDbHandl er class your specific implementation of _get Dat a()
that follows this pattern. As shown in listing 14.10, _get Dat a() has two optional param-
eters, met hod and dat a, which let you change from the default GET request to a PUT or
a POST, and add data such as an edited expense, as required. The Future<String>
returned by _get Dat a() represents the JSON retrieved from CouchDB.

Listing 14.10 CouchDbHandl er class’s _get Dat a() utility method

cl ass CouchDbHandl er {

Future<String> _getData(String path, {nethod:' GET',data:null}) {

var conn = client.open(nethod, host, port, path);
if (data !'=null) {
conn. onRequest = (H tpd ient Request req) {

var out put Stream = req. out put St ream
output StreamwiteString(data);
out put Stream cl ose();
b
}

var conpl eter = new Conpl eter<String>();
conn. onResponse = (HttpCient Response response) {
_get StringFrom nput Strean(response. i nput St ream
.then((responseText) {

Calls server, getting a
new connection in return

If there is data to send,
adds onRequest handler

Sends responseText
from CouchDB to
Future String

Storing data with HittpClient and CouchDB 327

conpl et er. conpl et e(responseText); Sends responseText
1) from CouchDB to
}; Future Strin
g
conn.onError = (e) { .
print(e): If there is an error,
¥ ' prints it to console

return conpleter.future;

}

ADDING DARTEXPENSE FUNCTIONALITY
Now that you have the utility functions in the CouchDbHandl er class, you can add the
rest of the functionality in the form of a constructor and three public methods. The
constructor will create a new expensedb database if it doesn’t already exist; and you’ll
add al oadDat a() method, an addOr Updat e() method, and a get Next | d() method, all
of which return Fut ur e values. The outline for these methods is shown in figure 14.12.
The _getData() function will be called from these methods, and you’ll use

the Fut ure<String> returned from it to convert the returned JSON string back
into Expense objects. Table 14.2 shows the method calls to _get Dat a() that the code
will use.

The following listing adds the constructor and three methods to the CouchDoHand| er
class. The method calls listed in table 14.2 are highlighted in bold; the rest of the code
is straightforward and converts CouchDB JSON to and from Expense records.

Ht t pCl i ent connection that you'll

class CouchDbHandler { use to connect to CouchDB

The constructor creates the

CouchDbHandler(host, port) { ~—————— | _ Htpdient connection and
creates the DB if it doesn’'t

HttpClient client;

¥ already exist.
Future<List<Expense>> loadData() {

\\ | oadDat a() returns a future
} list of all expenses.
Future<Expense> addOrUpdate(expense, nextld) { addOr Updat e() saves the
} ~_ — 1 edited expense and stores

the current next | d value.

Future<int> getNextld() {
\ get Next | d() returns

3 | the current next | d value.

Figure 14.12 The skeleton of the server-side CouchDbHandl er class

328 CHAPTER 14 Sending, syncing, and storing data

Table 14.2 The calls to the _get Dat a() utility function that your code will make

Method call Action

_get Data("/expensedb/", nethod:"PUT"); Creates the database

_get Dat a("/ expensedb/ Retrieves all expense JSON strings
$i d?i ncl ude_docs=true");

_get Dat a("/ expensedb/ $i d", Creates or updates an expense in the
met hod: " PUT", database
dat a: expense.toJson());

_getData("/expense/ next1d"); Retrieves the nextld value

Listing 14.11 CouchDbHandl er : adding specific DartExpense functionality

cl ass CouchDbHandl er {

[1...snip _getStringFrom nput Streamn()
//...snip _getData()

HtpClient client;

var host;

var port;

CouchDbHandl er (t hi s. host, this.port) { .
this.client = new HtpQient(); Creates database if it
_get ("/expensedb/", method:"PUT"); doesn’t already exist

}

Fut ur e<Li st <Expense>> | oadData() {
var conpl eter = new Conpl et er <Li st <Expense>>();

var expenseli st = new Li st <Expense>(); Gets all records

_get Dat a("/ expensedb/ _al | _docs?i ncl ude_docs=t rue") stored in database
.then((responseText) {
Map data = JSON. par se(responseText);

for (var rowbData in data["rows"]) {

if (rowbata["id"] !'= "nextld") { If this isn’t the
var expenseJSON = rowDat a["doc"]; nextld record, it’s
var expense = new Expense. fromvap(expenseJSON) ; an Expens.e: add
expenseli st. add(expense); to result list
}
}
conpl et er. conpl et e(expenseli st); Completes Future
ok expense list
return conpleter. future;
}
Fut ur e<Expense> addOr Updat e(Expense expense, int nextld) {
var conpl eter = new Conpl et er <Expense>(); PUTs expense JSON

_get Dat a("/ expensedb/ ${ expense. i d}", data into CouchDB

met hod: ' PUT', dat a: expense. toJson())

Summary 329

.then((responseText) {
Map data = JSON. parse(responseText);

expense.rev = data["rev"]; Stores returned “rev” revision value
conpl et er. conpl et e(expense) ; and returns completed expense
1)
var nextldMap = new Map();
next | dMap["next 1 d"] = nextld; Saves current nextld

_get Dat a("/ expensedb/ next 1 d", value to database

net hod: " PUT", data: JSON. stringi fy(next!dwvap));

return conpleter.future;

}

Fut ure<int> get Next 1d() {

var conpleter = new Conpl eter<int>(); Gets current nextld

_getData("/$dbName/ next1d").then((responseText) { value from database
var data = JSON. parse(responseText);
var nextld = 1;
if (data.containsKey("nextld")) {
nextld = data["next!ld"];

} Completes Future
conpl et er. conpl et e(next 1d); nextld value
I
return conpleter.future;
}

}

That’s a long listing, but it provides all the functionality you need in order to save and
load expense data on the server. You can integrate this class with the existing applica-
tion by making calls to | oadDat a() and addOr Updat () from the existing web socket
connection code you saw earlier in the chapter. When the browser requests a LOAD
action, you send the JSON expenses to the client side; and when a browser requests a
SYNC, you pass the expense to the addOr Updat €() method. The complete source code
is available on the Manning website.

Remember

= Htpdient’s open() method returns a connection object that provides onRe-
quest () and onResponse() handler functions.

= The onRequest () handler has an Ht t pCl i ent Request parameter, and you can
send data by writing to its Qut put St r eam

= The onResponse() handlerhas an Ht t pl i ent Response parameter, and you can
receive data by reading from its | nput St r eam

14.4 Summary
We’ve tackled two more server-side APIs in this chapter that will help you build excit-
ing and functional applications in Dart. HTML5 web sockets let you maintain a perma-
nent, two-way connection between the client and server, allowing the server to push

330

CHAPTER 14 Sending, syncing, and storing data

data to connected web browser applications without the browser needing to request
the data first. You can use this to provide collaborative editing and cross-browser syn-
chronization of data.

We also looked at the Ht t pd i ent class, which lets your Dart server-side application
talk to other Hi tpServers via a RESTful API. It’s the server-side equivalent of the
browser’s Ht t pRequest . You also used CouchDB’s HTTP server to store DartExpense
objects in the form of J[SON data sent to the server from the client-side application.

In the next chapter, we’ll look at an advanced area of Dart: isolates. Isolates let
you use modern multicore processors by providing multiple event loops with mes-
sage passing between them to achieve concurrency. This can be useful when you
have long-running batch processes but you still need your event loop to respond to
client requests.

Concurrency with isolates

This chapter covers

= Spawning new function isolates

® Passing messages between isolates
® | oading Dart code dynamically

m Using isolates for batch processing

Modern computer hardware provides more processing power than ever before,
whether it’s in a server room serving thousands of requests per minute or in your
pocket as a mobile phone or tablet. Rather than providing ever-increasing proces-
sor speeds, chip designers have achieved this improvement by adding more CPU
cores. To take advantage of this greater processing power, web application design
also needs to be able to scale out to use the additional CPU cores.

Earlier in this book, we discussed how Dart code runs in a single thread but can
call out to asynchronous APIs, such as accessing the filesystem or external servers.
In the browser, applications use async APIs to perform AJAX-type requests for data
from the server. But your Dart code still runs in a single thread and will take advan-
tage of only a single CPU core. This is a design constraint imposed by the goal to
allow Dart to be converted to JavaScript, which is also single-threaded.

331

332

15.1

15.1.1

CHAPTER 15 Concurrency with isolates

In this chapter we’ll look at isolates, which are Dart’s solution to taking single-
threaded Dart code and allowing your application to make greater use of the hard-
ware available. Isolates, as the name suggests, are isolated units of running code. The
only way to send data between them is by passing messages, similar to the way you pass
messages between the client and the server or from Dart to JavaScript. You’ll use iso-
lates on the server to modify the Dart File Browser application from chapter 13 to use
isolates to analyze the file list in the results.

Once we’ve explored the basic concept of isolates, you’ll see how you can use the
isolate mechanism to load and run code dynamically. Loading code dynamically
allows you to provide a plug-in type of mechanism, where your application can run
third-party code without knowing what that code is in advance.

Finally, you’ll see how isolates can be used to create a number of workers to pro-
cess a list of items concurrently. This is a powerful technique for creating applications
that perform well and make full use of the underlying hardware.

Let’s get started with exploring isolates and starting a new isolate. Concurrent pro-
gramming is an advanced topic, and although Dart’s isolate concept simplifies it some-
what, you need to come to grips with two new classes: Recei vePort and SendPort .

Using isolates as units of work

Back in chapter 13, you created a serversside script to list files and folders in the cur-
rent directory. When you use the Directorylister() async function to retrieve the
contents of the current directory, you hand control to the underlying operating sys-
tem. In the same way, you can hand control from your Dart code to another piece of
Dart code running asynchronously and use this to analyze the results, counting the
types of files and file sizes for each type. You’ll write this code first as a straightforward
single-isolate server-side script and then build on it to analyze the file list in multiple
isolates. Figure 15.1 shows the structure of the Directory Analysis app, which retrieves
a list of files, counts them, and totals the size.

The two key functions are get Fi | eTypes() and getFileSizes(). In the imple-
mentation shown previously, they run sequentially; you’ll use isolates to make them
run at the same time.

Creating an isolate

You've seen isolates already. Every running Dart script or application is running in an
isolate known as the default isolate. When a Dart application starts, the Dart VM spawns
an isolate, passing in the script’s mai n() function as the entry-point function. mai n()
begins the flow of single-threaded code in the isolate. The mai n() function is a top-
level function and must return nothing and take no parameters.

In the same way that the Dart VM spawns an isolate, your Dart code can also spawn
an isolate, passing in an entry-point function to it. As with mai n(), the isolate entry-
point function must also be a top-level function, return nothing, and take no parame-
ters. The function name can be any valid function name—nai n() is restricted to the
default isolate.

Using isolates as units of work 333

Gets a list of files, such as:

starter.xml
view.bat
import “dart:io"; twain.dll
} twain32.dll
mainQ) { win.ini
getFileList('c:\windows™).then((FfileList) { t -
analyzeFileList(fileList) system.ini
}
¥ Gets a count of each
analyzeFileList(fileList) { file type. For example:
var typeCount = getFileTypes(filelList); XML:1
print(typeCount); .BAT:1
.DLL:2
var totalSizes = getFileSizes(fileList); INI:2
print(totalSizes); o
} Gets the total file

List<String> getFileList(folder) { size of each file

// snip implementation type. For example:

} .XML:101756 il it
BAT'6658 You con\{evttwese

Map<String, int> getFileTypes(fileList) { DLL:145984 two function calls

// snip implementation INI'2185 to run in separate

¥ o isolates, allowing

them to run at

Map<String, int> getFileSizes(filelList) { the same time

// snip implementation

b3

Figure 15.1 Skeleton of the Directory Analysis code

To spawn a new isolate with an entry-point function, you need to import the
dart:isol ate library and use the spawnFunction() function, passing in the entry-
point function name. Listing 15.1 shows a modified version of the anal yzeFi | eLi st ()
function, which modifies your Directory Analysis script to get the file types and file
sizes in two new isolates (FileTypes and FileSizes) by using spawnFunction(). The
script doesn’t do anything useful yet: it creates two new isolates that print a message
and exit immediately, the isolate equivalent of printing “hello world.”

NOTE If you run this code, you might be surprised that the FileSizes isolate
print statement never completes. The default isolate (running the mai n()
function) exits first, and program execution halts without waiting for the
spawned isolate to complete. For the example only, a time-wasting f or loop is
included at the end of mai n() ; you’ll remove it later.

Listing 15.1 directoryAnalysis.dart

inport "dart:isolate"; 47 Imports

voi d main() { dart:isolate library
/'l snip ...
anal yzeFi |l eLi st (fileList);

}

anal yzeFil eList(fileList) {

334

CHAPTER 15 Concurrency with isolates

spawnFuncti on(get Fi | eTypesEntryPoint);
spawnFuncti on(get Fi | eSi zesEntryPoi nt);
print("Default isolate");

for (int i =0; i <100000; i++) { } Time-wasting for loop: allows

Spawns new isolate
entry-point functions

}

void getFil eTypesEntryPoint() {
print("FileTypes isolate");

spawned isolate to finish
before application exits

} Entry-point function:
takes no parameters
voi d getFil eSizesEntryPoint() { and returns void
print("FileSizes isolate");
}

spawnFunction() starts a new isolate. The underlying VM is responsible for creating a
new thread for the code to run in, and as you’ll see, this new thread doesn’t share any
state with the thread that spawned it.

It’s important to understand this. Although the code exists in the same single phys-
ical source file, there are now three execution contexts, each with its own memory,
objects, and state. You can prove this by adding a top-level property to the library and
modifying its value in each of the three isolates, as shown in figure 15.2.

import “dart:io";
String isolateName;

main(Q) {
getFileList(“c:\windows").then((FfileList) {
analyzeFileList(fileList)

}

¥

analyzeFileList(fileList) {
isolateName = "Default Isolate™;

spawnFunction(getFileTypesEntryPoint);
spawnFunction(getFileSizesEntryPoint);
print(isolateName);
for (int i=0; i<100000i, i++) {}

¥

void getFileTypesEntryPoint() {
isolateName = "FileTypes isolate";
print(isolateName);

}

void getFileSizesEntryPoint() {
isolateName = "FileSizes isolate";
print(isolateName);

}

FileTypes isolate
Default isolate
FileSizes isolate

Figure 15.2 Adding a top-level property | sol at eNane, which is different in each isolate

15.1.2

Using isolates as units of work 335

Each of the three isolates get a new memory context, separate from the other. In this
respect, it’s conceptually similar to the way Dart and JavaScript code executes sepa-
rately or the code on the client and server executes separately.

Now that you can start new isolates, you need to make them do some work. That
means passing data into them, such as your list of files. You’ll also see how to keep the
default isolate running (rather than adding a temporary for loop) so the other iso-
lates can fully complete.

One-way isolate communication

Each Dart isolate runs in a separate execution context. This means isolates have no
shared memory. The default isolate stores the list of files in the fi | eLi st variable. In
order to make that file list available to the other isolates, the default isolate must send
it as a message to the other isolates, like sending a message from a client to a server or
from Dart to JavaScript.

But isolates are more flexible than sending a message from client to server or Dart
to JavaScript. Instead of needing to convert a message to a JSON string, you can pass
any types you’d otherwise be able to convert to JSON. Table 15.1 lists the valid types
you can send to another isolate.

Table 15.1 Valid types to send between isolates

Classes

Primitive types nul | ,numbool , | Although these are object instances, they’re treated as primi-
doubl e, String | tives for the purpose of copying between isolates.

Collection types | Li st, Map Can contain any valid primitive or collection type, including
other lists and maps.

SENDING MESSAGES TO ANOTHER ISOLATE

When you spawn an isolate, the spawn function returns a SendPort instance, which
provides a send() function to send data to that isolate:

SendPort fil eTypesSendPort = spawnFunction(getFileTypesEntryPoint);

var nessage = "Hello FileTypes Isolate fromthe Default isolate"

fil eTypesSendPort. send(message);

This is simple enough so far, but the code doesn’t work yet. The receiving FileTypes
isolate must be able to receive data, and it could receive data from multiple other
isolates.

RECEIVING DATA FROM ANOTHER ISOLATE

Each isolate receives messages via a listener callback function attached to a Recei ve-
Port instance. Every isolate, including the default isolate, has a Recei vePort, which
you access through the top-level port property. The port property, which comes from
the dart:isol at e library, is like the | sol at eNane property you created earlier in that
each isolate has its own independent instance of port, separate from the other.

336

CHAPTER 15 Concurrency with isolates

Default isolate)
data sent from another isolate port.receive((data, replyTo) {
// do something with data
\ s)
FileTypes isolate)
data sent from another isolate port.receive((data, replyTo) {
// do something with data
9 s)
FileSizes isolate)
data sent from another isolate port._receive((data, replyTo) {
// do something with data
N b)

Figure 15.3 The port.receive() handler attaches a callback function to the current isolate.

When you access the port property, you’re accessing that isolate’s Recei vePor t instance,
of which there’s only one in that isolate. This means you’ll use the port.receive
(cal I back) handler to handle messages being sentinto the isolate from some other iso-
late. This works for both the default isolate and spawned isolates, such as the FileTypes
isolate and the FileSizes isolate, as shown in figure 15.3. The receive callback takes two
parameters: dat a, which is one of the valid inter-isolate data types, and r epl yTo, which
is a SendPor t . We’ll look more at the repl yTo parameter in a couple of pages.

When the default isolate sends data to the FileTypes isolate, the FileTypes isolate
receives the message and can act on it. The following listing shows a cut-down version
of the server-side script so far, with the FileTypes isolate receiving data in the form of a
"hel | o worl d" type message from the default isolate.

Listing 15.2 FileTypes isolate receiving data from the default isolate

inmport "dart:isolate";

void main() {
Il snip
anal yzeFi | eLi st (fileList); Default isolate
} spawns a new
FileTypes isolate
anal yzeFil eList(filelList) {

var fil eTypesSendPort = spawnFunction(getFil eTypesEntryPoint);

fileTypesSendPort ("Hello fromdefault isolate"); Default isolate
print("This is the default isolate"); sends message to

} FileTypes isolate

voi d getFil eTypesEntryPoint() {
print("This is the FileTypes isolate");

port.receive((data, replyTo) { FileTypes isolate receives
|_or| nt (dat a) ; callback function

s Prints “Hello from
} default isolate”

Using isolates as units of work 337

FileTypes isolate results Print results
fileList
Default isolate

sends FileList Execute concurrently

data to both
fileList
FileSizes isolate Print results

spawned isolates
Figure 15.4 Default isolate sending data to other isolates

The sendPort. send() function lets you send data from the default isolate to the File-
Types isolate. You’re now in a position to modify your application to perform the anal-
ysis of a file list. You can rewrite the app to send the file list from the default isolate to
the FileTypes and FileSizes isolates. The flow of execution is shown in figure 15.4.

Listing 15.3 performs the file analysis in your two separate isolates by sending the
file list data to both isolates where the file analysis code runs. Each isolate is responsi-
ble for printing the output to the console.

Listing 15.3 Performing the file type and file size analyses in separate isolates

import "dart:io";
imoprt “"dart:isolate";
void main() {
getFileList("c:\wi ndows").then(List<String> fileList) {
anal yzeFil eLi sT(fileList);
1) Spawns FileTypes
} isolate top-level

) .)) function
anal yzeFileList(fileList) {

var fileTypesSendPort = spawnFunction(getFil eTypesEntryPoint);
fileTypesSendPort.send(fileList); Q—‘ Sends fileList

var fileSizesSendPort = spawnFunction(getFileSi zesEntryPoint); data to FileTypes
fileSi zesSendPort.send(fil eList); isolate

}

voi d getFil eTypesEntryPoint() {
var receivePort = port;
recei vePort.receive((data, replyTo) {
Map<String,int> typeCount = getFil eTypes(data);
print(typeCount); When fileList data is
1); received, analyzes it
} and outputs to console

Attaches receive handler
to FileTypes isolate

voi d getFileSizesEntryPoint() {
var receivePort = port;
recei vePort.receive((data, replyTo) {
Map<SYtring,int> total Sizes = getFil eSi zes(data);
print(total Sizes);
IOF
}

/1 snip getFilelList(), getFileSizes(), getFileTypes()

FileSizes isolate
uses same pattern
as FileTypes isolate.

338

15.1.3

CHAPTER 15 Concurrency with isolates

Default isolate
receives data from

FileTypes isolate
filelist
Default isolate

sends fileList Execute concurrently
data to both bot.h spawned
spawned isolates . _ isolates
fileList

FileSizes isolate

Figure 15.5 Default isolate waiting for the result data to be returned from the spawned isolates

This code still has a problem, though: the default isolate doesn’t wait for the other iso-
lates to finish. Ideally, you’d start the file analysis in the FileTypes and FileSizes iso-
lates, and then the default isolate would wait for them to finish. You’ll deal with this
next and look at the r epl yTo parameter, which provides a mechanism for two-way iso-
late communication.

Two-way isolate communication

You’ve seen how to send data into an isolate, but one-way data transfer isn’t as useful
as sending data back and forth between isolates. The next step is to have the default
isolate wait for the FileTypes and FileSizes isolates to return the processed file infor-
mation back to the default isolate, as shown in figure 15.5.

In the modified script, when the default isolate receives the results, it prints them
to the console. This also means that because the default isolate is waiting for results, it
doesn’t exit immediately.

USING A SENDPORT TO SEND DATA TO AN ISOLATE, REVISITED

In order for the FileTypes isolate to return data to the default isolate, the FileTypes
isolate needs the default isolate’s SendPort . A SendPor t , remember, is used to send()
data into an isolate, and this includes sending data into the default isolate. This rela-
tionship between SendPor t , Recei vePor t , and the isolates is shown in figure 15.6.

FileTypes isolate Default‘ isplate
(sending) (receiving)
——| sendPort.send(data) |—
4| sendPort.send(data) |_> receivePort.receive()

——| sendPort.send(data) |

SendPor t s belong to the Areceiving isolate has a An isolate has a single
isolate they are sending data single receive port but can receive port that receives
to but are used by the have multiple send ports messages from all of its
sender isolate. sending data into it. send ports.

Figure 15.6 A receiving isolate has a single Recei vePor t but multiple SendPort s.

Using isolates as units of work 339

One isolate can send data to another isolate with a SendPort. You saw that earlier
when you used spawnFunction() to get the SendPort of a new FileTypes isolate. But
how does the FileTypes isolate get the default isolate’s SendPort so it can return data?

USING SENDPORT AS A REPLYTO ARGUMENT

This is where the repl yTo argument of the receive callback function comes in. The
send() function has an optional r epl yTo parameter, allowing the sending isolate to
pass its own SendPor t to the receiving isolate.

The sending isolate gets its own SendPort instance by using a function on its own
ReceivePort. The sending isolate uses the top-level port property to call
port.toSendPort() to geta SendPort it can pass to another isolate, as in the follow-
ing snippet:

mai n() { Gets default
var defaul t1sol ateSendPort = port.toSendPort(); isolate’s SendPort
}
get Fi | eTypesEntryPoi nt () { Gets FileTypes
var fileTypeslsol ateSendPort = port.toSendPort(); isolate’s SendPort
}

Once an isolate has an instance of its own SendPor t , it can pass it into the send(dat a,
repl yTo) function of the receiving SendPor t . Figure 15.7 shows a simplified version of
the Directory Analysis script in which the default isolate sends a “hello world” message
to the FileTypes isolate, and the FileTypes isolate sends a “hello back” message back to
the default isolate.

Default isolate

void main() {
port.receive((data, SendPort replyTo) {
print(data);

var defaultlsolateSendPort = port.toSendPort();
var fileTypesSendPort = spawnFunction(getFileTypesEntryPoint);

fileTypesSendPort.send("hello from default”, defaultlsolateSendPort);

FileTypes isolate

void getFileTypesEntiyPoint() {

port.receive((data, SendPort replyTo) {
print(data);
replyTo.send(""hello back™);

»:

b3

Figure 15.7 The SendPort from one isolate is passed into another isolate as the r epl yTo argument.

340

CHAPTER 15 Concurrency with isolates

SENDING AND RECEIVING DATA BETWEEN ISOLATES

Now that you have a way to send data back to the calling isolate, you can modify your
Directory Analysis application to let the default isolate wait for results from the File-
Types and FileSizes isolates. The next listing shows this in action.

Listing 15.4 FileTypes and FileSizes isolates send results to the default isolate.

/1 snip other functons and inports

anal yzeFil eList(fileList) {

port.receive((data, replyTo) { Adds receive .
print(data); handler to Retrieves SendPort
s default isolate for default isolate
var defaul tlsol ateSendPort = port.toSendPort(); Sends default
var fileTypesSendPort = spawnFunction(getFil eTypesEntryPoint); isolate’s SendPort
fileTypesSendPort.send(filelList, defaultlsol ateSendPort); to FileTypes isolate

var fileSizesSendPort = spawnFunction(getFileSi zesEntryPoint);
fileSizesSendPort.send(fileList, defaultlsolateSendPort);

Sends
) defaultisolate’s
voi d get Fi |l eTypesEntryPoint () { SendPort to
var receivePort = port; FileSizes isolate

recei vePort.receive((data, replyTo) {
Map<String,int> typeCount = getFileTypes(data);

replyTo. send(typeCount); ﬁ Passes results back

} 1) to default isolate

voi d getFileSizesEntryPoint() {
var receivePort = port;
recei vePort.receive((data, replyTo) {
Map<String,int> total Sizes = getFileSi zes(data);

repl yTo. send(total Si zes); 47

Passes results back

}); to default isolate

}

The default isolate is now responsible for printing the results from the FileTypes and
FileSizes isolates. The default isolate no longer exits immediately; instead, it waits to
receive messages from other isolates via its receive callback handler. This means you
have a new problem. Instead of the application exiting too early, it waits indefinitely
for messages to be passed to it from other isolates. You need a way to let the default
isolate know that it has received all the data it’s waiting for.

CLOSING A RECEIVEPORT
Fortunately, you can use a Recei vePort’s cl ose() function to close an isolate’s com-
munication port. When you call cl ose() on a Recei vePort, any messages that are in
the process of being sent are lost, and the Recei vePort doesn’t receive any more mes-
sages. If this is the default isolate Recei vePor t, the default isolate continues execution
without waiting for any more messages.

Because your Directory Analysis script is waiting for two sets of results to be
returned, you can add a simple counter to the default receive handler. When two sets

15.2

Loading code dynamically 341

of results have been received, you can close the Recei vePort, as shown in the follow-
ing listing.

Listing 15.5 Closing a Recei vePort when all data is received

anal yzeFi l eList(fileList) {
var replyCount = 0; Increments reply
port.receive((data, replyTo) { QJ counter for each
repl yCount ++; reply received
print(data);
if (replyCount == 2) {

port.close();

}
s

var defaultlsol ateSendPort = port.toSendPort();

If you have two replies,
closes ReceivePort

var fileTypesSendPort = spawnFunction(getFil eTypesEntryPoint);
fileTypesSendPort.send(fileList, defaultlsolateSendPort);
var fileSizesSendPort = spawnFunction(getFil eSizesEntryPoint);
fileSi zesSendPort.send(fileList, defaultlsol ateSendPort);

}

The Directory Analysis application now runs processes concurrently, using isolated
execution units of code and passing messages back and forth between them. Each top-
level isolate entry-point function shares the same function signature as the default iso-
late’s mai n() function (returns voi d and takes no parameters). You’ll use this feature
in the next section when you split the Directory Analysis application into separate
code files that are dynamically loaded from the default isolate.

Remember
= Every isolate has access to a top-level port property, which is its Recei vePor t
instance.

= SendPort spawnFunction(entryPoint Function) creates a new isolate and
returns a SendPor t for sending data into the new isolate.

= You can send data to an isolate by using the receiving isolate’s send-
Port.send() function.

= An isolate can access its own SendPort by calling port.toSendPort ().

Loading code dynamically

The Directory Analysis application currently provides two analysis functions that
count the file types and count the file sizes. By opening your application to let users
extend it with plug-ins, the application will become useful without users having to edit
any of the app’s code.

You’ll modify the application to dynamically load source files that are passed on the
command line. Each source file will be responsible for analyzing a file list and returning
the results to the main application. This is similar to the Directory Analysis application

342 CHAPTER 15 Concurrency with isolates

1. Alist of Dart files that will be used to analyze the c:\windows
folder are passed as command-line arguments.

dart.exe dirAnalysis.dart c:\windows fileSize.dart fileTypes.dart

Directory analysis Directory to List of analysis source files
application analyze that you'll load automatically

2. Each file is dynamically loaded into its
own isolate and receives data from
the default isolate.

fileSize.dart
processes the file list
and returns data to
the default isolate.

Dynamically load .
each analysis source Print the data returned

—— file into its own isolate Execute from each plug-in, and
and pass Fi | eLi st concurrently exit when all analysis files
have returned data.

dirAnalysis.dart
gets the file list
from the directory
to analyze.

data to it.

fileTypes.dart
processes the file list
and returns data
to the default isolate.

Figure 15.8 The Directory Analysis application will load a list of source files dynamically to analyze
the list.

you already have, except the user will be able to provide a list of source files to analyze,
rather than you specifying them up frontin the source code. Figure 15.8 shows how the
dynamically loading Directory Analysis application will work.

To achieve this flow, you need to modify the entry-point application file DirAnalysis
.dart to read command-line parameters. You’ll use the Opti ons class you saw back in
chapter 13, which provides the list of arguments passed to the Dart application on the
command line. The first parameter will be the folder to analyze, followed by a list of
source files, each of which is loaded and used to analyze the file list. The following list-
ing shows the boilerplate mai n() function in the entry-point DirAnalysis.dart that
you’ll use to populate the fil eLi st and dynani cSour ceFi | es list variables.

15.2.1

Loading code dynamically 343

Listing 15.6 DirAnalysis.dart: reading the command-line arguments

inmport "dart:io";

Import “dart:isolate”; Creates instance of
void main() { Options to retrieve

var options = new Options(); command-line arguments

var anal ysisFolder = null; Variables to store folder you'll analyze,
var dynami cSourceFiles = new List<String>(); and list of source files to load dynamically

for (String argurment in options.argunments) {

i f lvsi sFol der == nul | For each
1 Sy srolder = null) <
) y - arg be analysis folder. argument ...
el se { .
dynami cSour ceFi | es. add(argunent); :::atl);:iesr:owuﬂ:?iles
} .
} Get file list from
get Fi |l eLi st (anal ysi sFol der).then(List<String> fileList) { analysis folder
anal yzeFil eLi st (fileList, dynam cSourceFiles);
1) Pass file list and list of dynamic
} source files that will do the analyzing

anal yzeFil eLi st (List<String> fileList, List<String> dynam cSourceFiles) {
/1 todo: Load each dynamic source file and pass it the file |ist

}
/1l snip getFileList() function

Spawning an isolate from a filename

Nowyou have afil eLi st variable, which, for example, could contain a list of filenames
in the c\windows folder, and a dynani cSour ceFi | es list, which could contain the file-
names fileSize.dart and fileTypes.dart. Each of the dynamic source files, which the run-
ning application doesn’t know aboutin advance, must be loaded into an isolate and have
some data passed into it. This is similar to the spawnFuncti on() function, except that
to dynamicallyload code from an external file, you use the spawnUr i () function, passing
in a URI or filename to load, such as spawnUri ("fil eTypes. dart");.

You can update the anal yzeFil elist() function to iterate through the list of
dynamic source files, spawning an isolate from each one in turn and passing the fi | e-
Li st data into it. The defaultisolate (the DirAnalysis.dart application) will wait until it
has received the same number of replies as there are source files before closing its port.
The next listing shows the new anal yzeFi | eLi st () function to perform this task.

Listing 15.7 DirAnalysis.dart: using spawnUr i () to load a source file dynamically

/1 snip main() and getFileList functions()

anal yzeFil eLi st (List<String> fileList, List<String> dynam cSourceFiles) {
var replyCount = 0; e e
port.receive((data, replyTo) { Maintains count

Sets up default isolate’s of replies from
receive handler spawned isolate

344

15.2.2

CHAPTER 15 Concurrency with isolates

print(data); <—— Outputs received data

repl yCount ++;)

if (replyCount == dynani cSourceFiles.|ength) { C|°5?5 port when you’ve
port.close(); received a reply from

} each spawned isolate

s Gets SendPort for default isolate
var defaul t1sol ateSendPort = port.toSendPort(); <1J so spawned isolate can reply

for (String sourceFil eNanme in dynani cSourceFiles) { For each dynamic
var dynani cSendPort = spawnUri (sourceFil eNane); source file ...
dynam cSendPort.send(filelList, defaultlsol ateSendPort);

} } Sends new isolate the file list and .- SpPawns new
default SendPort so it can reply isolate from
filename

You’ve seen how to load source files such as fileTypes.dart and fileSizes.dart dynami-
cally and send them data. Next, let’s see what these dynamic source files look like.

Defining a dynamic source file

When you load a Dart application, it has mai n(), which returns voi d and takes no
parameters. This is the entry-point function for the main isolate. When you load an
isolate dynamically from a source file, mai n() is also the entry-point function that
begins executing in a new isolate. This means any source files that are loaded dynami-
cally need to define a mai n() function, the same as a Dart script. This makes sense,
because each Dart script runs in its own isolate, including the default isolate; inter-
nally, the default isolate and dynamically loaded isolate use the same mechanism. Fig-
ure 15.9 shows the outline of the default isolate and the dynamic source files.

dirAnalysis.dart

void main() {
spawnUri (""fileTypes.dart™);
spawnUri (""fileSizes.dart™);

}
fileTypes.dart fileSizes.dart
void main(Q) { void mainQ) {
¥ ¥

Figure 15.9 Dynamically loaded source files need a mai n() function that begins executing when loaded.

15.3

Spawning multiple workers 345

In the mai n() function of the dynamically loaded source file, you can attach a receive
listener to the isolate’s Recei vePor t , accessible via the top-level port property, as you
did when you started the isolate from a function with spawnFuncti on(). The follow-
ing listing shows the mai n() function in fileTypes.dart; it receives file list data from the
default isolate, analyzes it, and returns the data to the default isolate.

Listing 15.8 Adding the receive handler to the isolate

inport "dart:isolate";
P Accesses top-
void main() { level ReceivePort
Recei vePort receivePort = port; for this isolate .
Attaches receive

recei vePort.receive((data, replyTo) { callback handler
Map<String, int> typeCount = getFileTypes(data); QT Analyzes
.repl yTo. send(typeCount); Returns results to passed-in file list
X default isolate

3/ snip getFileTypes(List<String> fileList)

You’ve provided a model for third-party users to provide their own file-analysis code,
and the Directory Analysis application can use that third-party code without needing
to modify the core application. The fileSizes.dart file is a second analysis source file,
and users can provide their own analysis files, perhaps to return the average file size
for each file type.

By using dynamic code-loading in isolates, you have a safe way to use code from a
third party without needing to be concerned with shared internal state or external code
directly accessing values without your application. By providing a message-passing
mechanism, Dart isolates allow safe communication between different code bases with
a concurrency model that’s simpler than the multithreaded shared-state concurrency
found in C# and Java.

Remember

= spawnFuncti on() dynamically loads a Dart source file into a new isolate.
= Dynamically loaded Dart code needs to provide a mai n() function, which begins
executing in the new isolate.

In the next section, we’ll take a deeper look at isolates and explore how you can create
multiple, identical isolates to distribute a single task among multiple worker isolates.

Spawning multiple workers

Often, a server-side process has a batch of work to perform. The Directory Analysis
application currently counts the types of each file type in a single folder, one level
deep. Isolates, which run concurrently, are also ideal for batch-processing tasks such
as processing a list of folders. Each folder in the list is independent of the other; the
default isolate is interested in getting it analyzed as fast as possible. This is where

346

CHAPTER 15 Concurrency with isolates

c:\windows
c:\dart
c:\Program Files

c:\windows\system32

ci\work Figure 15.10 You have a list of work
that can be processed concurrently.

worker isolates come in. By starting up a number of background worker tasks, you can
process a list of items, passing a new item into each isolate when it finishes processing
the last. Figure 15.10 shows the list of folders you’ll process.

This is a small list of work, but you can imagine that you might have many hun-
dreds of folders to analyze. You couldn’t create a new worker for each item in the
list—your computer would quickly run out of resources. Instead, you’ll create a small,
fixed number of worker isolates and pass them a single work item each. The Directory
Analysis script will create three isolates.

TIP Some tuning is normally required to find the sweet spot for best perfor-
mance and resource utilization. Too many isolates, and you’ll quickly run out
of memory, and the CPUs will spend as much time switching between isolates
as they do running them. Too few isolates, and you could be missing out on a
performance boost. Starting with the number of available cores on your
machine is usually a good rule of thumb.

Listing 15.9 shows the starting point for your batch Directory Analysis application,
which has a new get Fi | eLi st EntryPoi nt () function that’s used as a worker isolate.
The get Fi | eLi st EntryPoi nt () function will receive the folder name to process as its
message data. It retrieves the file list and passes it to an analysis function to count the
types of files and return the results. When it returns the results, it also returns its own
SendPor t , which the default isolate will eventually use to send the next folder to pro-
cess back to the worker.

Listing 15.9 batchDirAnalysis.dart: starting point for the batch application

inport "dart:io";
inmport "dart:isolate";

void main() {
Queue<String> fol dersToProcess = new Queue<String>();
f ol der sToProcess. add(r"c:\w ndows");
f ol der sToProcess. add(r"c:\dart"); Creates list of
f ol der sToProcess. add(r"c:\w ndows\ systenB82"); folders to process
f ol dersToProcess. add(r"c:\Program Fil es");
f ol dersToProcess. add(r"c:\work\");

/'l todo: process folders with workers _—
You’ll implement
the rest of main()

}
in listing 15.10.

voi d getFileListEntryPoint() {

Spawning multiple workers 347

var worker Recei vePort = port; Gets SendPort and ReceivePort
var wor ker SendPort = recei vePort.toSendPort(); for worker isolate

wor ker Recei vePort.receive((fol derToProcess, defaultReplyTo) {

: " : . s Attaches
print ("Processing fol der: $fol der ToProcess"); receive
get Fi | eLi st (fol der ToProcess).then((fileList) { callback

var results = countFileTypes(fileList); handler
}).def aul t Repl yTo. send(results, workerSendPort); Gets list of files in folder

’ Sends results to default isolate, and passes them to

B passing in worker’s SendPort analysis function

Li st<String> getFileList(fol derNane) {
/1 snip inplenentation
/1 returns list of files in the folder

}
Map<String,int> countFil eTypes(fileList) {

/1 snip inplenentation

/'l returns a count of each file type, such as:

[/ .TXT: 3, .DOC. 10, .PDF: 5
}
In the default isolate, you need to start a fixed number of worker isolates and send
each an item of work to process—in this case, a folder from the queue of folders wait-
ing to be processed is the item of work. Once all the worker isolates have work to com-
plete, the default isolate waits for them to return their work, as shown in figure 15.11.

Listing 15.10 shows spawnFunction() in action, passing three worker isolates an

initial data item. Note that you never store a list of all the worker isolates—spawning
them and passing data is enough, because each worker isolate returns its own

Default isolate creates a fixed number of
worker isolates to process the folder list

Send results to default
isolate when complete

‘ Spawn worker and send it an

Worker isolate
item from the queue | c:\windows | |

Send results to default
isolate when complete

‘ Spawn worker and send it an

Worker isolate
item from the queue | c:\dart | |

Send results to default
isolate when complete

‘ Spawn worker and send it an

Worker isolate
item from the queue | c:\Program Files | |

c:\windows\system32

c:\work

Two items remain in the queue,
waiting to be processed.

Figure 15.11 The application spawns a fixed number of workers and sends each a folder to process.

348 CHAPTER 15 Concurrency with isolates

SendPort when it returns its results. Each time you send a folder name to a worker iso-
late, you expect a reply from it, so you also track the number of expected replies.
Once the count of replies matches the number of expected replies, you’ll close the
default isolate Recei vePort and allow the application to exit.

Listing 15.10 Spawning worker isolates and passing initial data items

mai n() {
/1 snip creating fol dersToProcess queue Tracks expected
var expectedRepl yCount = 0; number of replies
var defaul t Recei vePort = port; Gets default isolate’s
var defaul t SendPort = defaul t Recei vePort.toSendPort(); SendPort and ReceivePort
for (int i=0; i<3; i++) { <—— Creates three worker isolates
SendPort worker = spawnFunction(getFilelLi stEntryPoint);
expect edRepl yCount ++; Spawns worker
) function
var fol derName = fol dersToProcess. removeFirst();
wor ker . send(f ol der Nane, defaul t SendPoi nt); Increments
} Sends folder to expected reply:

}

process to the worker one reply per send

Now you have three isolates processing a folder each. The final step is to let your
default isolate receive data from each of the three worker isolates and pass each
worker isolate its next work item if there’s still work waiting to be performed. This is
why the worker returns its own SendPort in the repl yTo argument: so the default iso-
late can pass more data into it. Figure 15.12 shows this final sequence of events.

/ Default isolate \

Send results and workerSendPort
to the default isolate when complete

print(results) to
the console.

Are there still more work
items on the queue?

Send the next item back -
to the worker's send port c:\windows\system32
for processing. c:\work

—

<WorkerSendPort.send(l c:\windows\system32 | defaultSendPort)

Figure 15.12 The default isolate receives results and sends more work back to the worker isolates.

Spawning multiple workers 349

This loop of the worker returning results and the default isolate sending the next
work item continues for all the worker isolates while there’s still work on the queue.
Because the code in a single isolate only runs in a single thread, you don’t need to be
concerned with locking access to the queue of work items as you’d do in Java or G#.
When the default isolate checks the folder queue and removes an item, no other
thread or process has access to the list. This is one of the key benefits of message-pass-
ing between isolates: it provides a protected environment for your code to run in, with
no other code able to access and modify memory locations that might cause concur-
rency bugs.

Listing 15.11 puts this last step into action by adding the default isolate’s r ecei ve()
callback handler to send more data into the worker while there’s still data available.
When expect edRepl yCount matches act ual Repl yCount , you’ve received all the replies;
the application stops waiting for more replies by calling def aul t Recei vePort . cl ose() .

Listing 15.11 Implementing the default isolate r ecei ve() function

mai n() {
/'l snip creating fol dersToProcess queue

var expectedRepl yCount = O;

var defaul t Recei vePort = port;
var defaul t SendPort = defaul t Recei vePort.toSendPort();

for (int i=0; i<3; i++) {
SendPort worker = spawnFunction(getFileListEntryPoint);

expect edRepl yCount ++;

var fol derNanme = fol dersToProcess. renmoveFirst();
wor ker . send(f ol der Nane, defaul t SendPoi nt);

}

) Attaches default
var actual Repl yCount = 0; isolate’s receive()
def aul t Recei vePort.receive((results, replyToWwrker) { handler

print(results); Outputs returned

act ual Repl yCount ++; <—— Increments reply counter results

if (fol dersToProcess.isEnpty == false) { If queue still contains
expect edRepl yCount ++; folders to process,
var fol derName = fol der sToProcess. renoveFirst(); sends next folder
repl yTowor ker . send(f ol der Name, def aul t SendPoi nt) ; back to worker

}

i f (actual Repl yCount == expectedRepl yCount) { When all replies have
def aul t Recei vePort. cl ose(); been returned, closes
print("Exiting"); default isolate’s

} ReceivePort

IOF

}

The application will now keep passing work to the workers while there are still folders
to process. In the previous batch direct analysis example, you use a predefined queue,

350

15.4

CHAPTER 15 Concurrency with isolates

but the previous pattern also works when items are still being added to the queue. Imag-
ine a scenario where each top-level folder that’s analyzed returns a list of child folders
along with the file-count data, so more folders are added to the back of the queue at the
same time other workers are removing items from the front of the queue.

TIP Although an isolate may be expected to return, it may in fact never
return due to some internal condition in the isolate. For this reason, your
applications should ensure that they can cope with this scenario.

Remember

= The worker isolate can return its own SendPort to the default isolate when it
wants more work.

= The list of work items in the default isolate isn’t directly accessible by worker
isolates.

= Each isolate has access to only its own memory locations, so you don’t need to
synchronize or lock data when accessing the isolate.

Summary

Isolates, with their separate memory model and message passing, provide a way to
achieve concurrency in Dart that’s simpler to implement than in Java and C#, because
you have only a single thread accessing a memory location at any one time. By spawn-
ing isolates to perform multiple different tasks at once, you can use modern hardware
to complete work more quickly. And by creating worker isolates, you can distribute the
processing of batch tasks across multiple workers in a memory-safe way.

Isolates are spawned as top-level functions from within your code, or by using
spawnFunction(), or by dynamically loading a Dart source file with spawnUri ().
Spawning an isolate dynamically from a source file allows you to create a plug-in
model to let users of your application provide their own code, which runs as part of
your application but about which your app has no prior knowledge. This is a powerful
technique for creating extendible, customizable applications for your users to install
and use.

You’ve reached the end of the book. Dart is a fast-moving language, which means
you’ll have more to learn as the language evolves, but you now know enough to under-
stand the core concepts in the Dart language. Congratulate yourself, and build great
applications—and make sure you tell everyone that they’re built with Dart.

Al

appendix A
Core language reference

The core Dart language consists of variables and operators, a number of built-in
types, flow-control statements, and function blocks. Dart is a dynamically typed lan-
guage, similar to JavaScript, and type information in variable and parameter decla-
rations is optional. The Dart virtual machine executes Dart code identically
whether type information is provided or not. Any type information provided is used
by tools to confirm the developer’s intention and provides documentation to
future developers who may need to read and maintain the code.

Variable declaration

A variable is declared by prefixing the variable name with one of the following:

= The var keyword (indicating a dynamic type, or no type information is
supplied)

= A type name (indicating that type information is provided)

= The final keyword (indicating a dynamic read-only variable)

= The final keyword followed by a type name (indicating a typed read-only
variable)

Dynamic variables can contain values of any type, but typed variables are checked by
the Dart tools, which ensure that the variable contains a value of the type indicated.
You assign a variable a value using the assignment operator =:

Assigns variable
myNumber the . .
_ . lue 123 Assigns variable
var nyNunber = 123; v aninteger the
int anlnteger = 456; value 456

final otherNunber = 789 . .
Assigns variable
final int anotherNunber = 246; Assi . otherNumber the
ssigns variable anotherNumber value 789
the value 246

351

352

Al1l

Al2

APPENDIX A Core language reference

Declaring variables with the var keyword or type name

When you use the var keyword to declare a variable, you aren’t specifying any specific
type information. If you use a type, such asi nt, instead of var, you’re declaring that as
a developer you expect the variable to contain an integer value. The Dart tools can val-
idate that the variable only ever contains an integer, but the language itself doesn’t
enforce this.

NOTE The var keyword and type names can be used interchangeably without
affecting the running of the application.

A variable declared with var or a type name (such as i nt) doesn’t need to contain a
value. If you don’t provide a value, the variable contains nul | :

var nyUni ni tial i zedNurber ; Equivalent and both
var nyUninitalizedNuber = null; assigned the value null
int nyUninitializedlnt; Both int types

int nmyUninitializedlnt = null; assigned the value null

A variable declared with var or a type name is mutable. This means its value can be
modified or assigned a different value:

Initializes
myNumber with .
Modifies myNumber

var nyNunber = 123; J the value 123 by adding | to its
nyNurmber = nmyNunber + 1; value
nmyNurber = 456; Changes myNumber
i = : by assigning a new
int nyQherNumber = nyNunber; Initializes a i

. N value
variable with
another variable

You can replace the var keyword with the fi nal keyword, or use the fi nal keyword in
conjunction with a type name to declare a read-only variable. The following rules

apply:

= Final variables must be initialized to a value when they’re declared.

Declaring final (read-only) variables

= Final variables can’t be modified after declaration.
Here’s an example:

final myReadOnl yNunmber = 123; <+—— Declares read-only variable

final myQ her ReadOnl yNunber = nyReadOnl yNunber ; Final variables can be
final int nyReadOnlylnteger = 456; assigned the value of
another variable.
final myUninitializedVariable; . . .
Type information, such as int, can

nyReadOnl yNunber = 789; be used with the final keyword.
Wrong: not allowed to Wrong: must be explicitly

change the variable’s value initialized with a value

A.13

Variable declaration 353

Populating variables with literal syntax

In Dart, all types are objects, and there are no primitive types. Dart has language sup-
port for declaring five specific variable types using literal definitions rather than con-
structing an instance of an object:

= Numbers—123, 45. 6, 0XAB

= Strings—"Hel | 0", Dart'

= Boolean—true, f al se

= Lists—[123, "Hello", true]

= Maps—{"keyl":"val uel", "key2":"value2"}

All other objects use the newkeyword to construct an instance of the object. For example:

var nyVariable = new Qbject(); Creates objects and stores
var nyDateVariable = new Date(); their reference in a variable
NUMBERS

The numtype is the base type for numbers. i nt and doubl e are subtypes of num Any
variable with a decimal point is considered a doubl e; otherwise it’s anint:

= Integer values can be of any arbitrary length.
= Double values are 64-bit floating-point numbers.

Here’s an example:

var myNum = 1283,

var nylnteger = 234; A
var nyDoubl e = 123. 45; using literal values
var nyHex = OxABCDI1234; with var keyword

Declares numbers

num myNum = 123;

num nmyDoubl eNum = 123. 45; Declares numbers
int nylnteger = 234; using literal values
doubl e nyDoubl e 123. 45 with type information

int nyHex = 0XABCD1234;

STRINGS

Dart strings are Unicode characters specified in single or double quotes. If you use
single quotes to declare a string, you can embed double quotes, and vice versa:

= Single quotes can be embedded in a string declared with double quotes.

= Double quotes can be embedded in a string declared with single quotes.

= Use the escape character\ to add character escape sequences (such as the new-
line \ n escape sequence).

= Prefix a string literal value with the r character to ignore escape characters.

Here’s an example:

var nySingl eQuotedString = 'Hello Dart'; Declares
var nyDoubl eQuotedString = "Hello Dart"; new string
var enbededDoubl eQuotes = 'Hello "Dart" World'; Declares new string containing

var enbededSi ngl eQuotes = "Hello 'Dart' World"; embedded quotes

354

APPENDIX A Core language reference

Escapes embedded

single quote

var escapedQuote = 'Hello Dart\'s Wrld';
var newLine = "Hello \nDart";

var rawstring = r"Hello \nDart"; .
Adds newline-escape sequence:

Ignores newline escape outputs Hello Dart
sequence; outputs Hello \n Dart

You can also declare multiline strings enclosed in a pair of triple single-quotes:

var myMultiLineString ="'''This is a
Mil'ti line
string literal'"'";

To improve formatting and readability, the first new line is ignored if there is no text
on it:

var nmyFormattedMul tiLineString =
This is a
formatted
multi-line
string literal'"'";

DECLARING STRINGS WITH STRING INTERPOLATION
A string can’t be concatenated with other strings or other variables using the + opera-

tor. This means the following won’t work:

var foo = "Dart";

var bar = "Wrld";

var foobar = foo + bar; Wrong: you can’t

var helloFooBar = "Hello " + foo " " + bar; “add” strings together.

Instead, Dart provides string interpolation to declare strings. A variable can be
resolved to its value by prefixing it with a $ (dollar sign):

var foo = "Dart";

var bar = "Wwrld"; .

var foobar = "foobar"; < “DartWorld” Hello Dart
var hel | oFooBar = "Hello $foo $har"; World

Where the expression needs to be evaluated, such as converting the f 00 variable to
uppercase using the String type’s t oUpper Case() method, the expression must be
wrapped inside a ${ } block:

var foo = "Dart";
var hel | oFooBar = "Hell o ${foo.toUpperCase()}"; <—— “Hello DART”

All variables of all types have a toString() method (inherited from the base object
type), and this is called implicitly if the variable used in string interpolation isn’t a

string type:
var myNunber = 123;

var hel |l oNunber = "Hell o ${nmyNunber.toString()}"; <—— “Hello 123”
var hel | oNunber = "Hell o $myNunber";
j “Hello 123”; toString() is
called implicitly

Variable declaration 355

BOOLEANS
Unlike JavaScript, Dart has exactly one true value. Every value other than the literal
keyword tr ue is considered to be f al se:

var nyTrueVal ue = true; There is only
bool nyTypedTrueVal ue = true; one true value.

var nyFal seVal ue = fal se;
bool nyTypedFal seVal ue = fal se;

var myNunber = 1; Every other value isn’t
var nyZero = O; true; therefore it’s false.
var myCbject = new hject();

var myNull = null;

Using the equality operators == (equals) and ! = (not equals), you can produce a bool-

ean value as a result of a conditional comparison: Stores

var isTrue = 2 == (1+1); value true
var isFalse = 123 != 123; <—— Stores value false

NOTE Also unlike JavaScript, conditional statements (like the i f statement)
only allow boolean expressions, so you can’t use nyNunmber or nyCbj ect as a
conditional expression. You need to explicitly compare two values, such as i f
(myNumber ==1) orif (nyQbject !=null). The section “Flow control and
iterating” has more information about conditional statements.

CREATING LITERAL LISTS (ARRAYS)

Dart has no explicit array type. Instead it has the Li st type, which is an ordered set of
objects. A Li st implements the Col | ecti on interface, as does a Set and a Queue. The
Col | ecti oninterface allowsiteration over elements. Onlylists, though, have aliteral dec-
laration mechanism. Aliteral listis defined by a comma-separated list of objects, declared

in square brackets, which create a fixed-length list:] .
9 8 List containing three elements: a

var nyList = [123, 'Hello', true]; number, a string, and a boolean
List otherList =1[1,2,3,4,5,6];

. . . List containing six elements,
Lists can also contain other lists: all of which are numbers

var listOfLists = [
1,2, 3], . ..
[. : .]. G g Outer list containing
["a","'b",'c,"d], L -
multiple inner lists
[true, false]

1

You access elements in a list by using the variables list indexer [] property with a zero-
based counter:

var nyList = [123, 'Hello', true]; <—— Declares list
var nmyNumber = nyList[O0];

var nmyString = nyList[1];

var myBool = nyList[2];

nyList[1] = 'Hello World'; <—— Updates value in list

Reads values from list
using [] indexer syntax

Wrong: no value
var notAvailable = nyList[3]; at this list index

356

APPENDIX A Core language reference

You can see how many items are in a list by checking the | engt h property:
int listLength = nyList.|ength; <—— Examines list length

The literal syntax creates a fixed-length list object containing a number of prepopu-
lated objects. You can also create a fixed-length list by using the new keyword to create
an instance of a Li st object with a fixed number of empty (null) elements:

var nyList = new List(3); <+—— Creates list with three null elements
myList[0] = 123;
myList[1] "Hell o' ;
nmyList[2] = true;

Populates three
elements with values

You can’t add new elements to a fixed-length list:

var nyList = new List(3); <—— Creates fixed-length list Wrong: can’t add a
nyLi st. add(123); fourth element to list

If you don’t specify the number of elements when creating a list instance, you get a
growable list that can be added to:

var nyList = new List(); <+—— Creates growable list
nmyLi st. add(123);

nyLi st.add(’ Hel 1 0'); Adds three

nyLi st add(true); items into it

print (nyList.length); <— Lengthis 3
nyLi st. add(456); <+—— Adds fourth item
print(nyList.length); <+—— Length is 4

NOTE The section “Flow control and iterating” has more about accessing
multiple list elements sequentially.

You can use a literal list to declare a Set or a Queue by passing the literal list into their
respective . fron(...) constructors:

var set = new Set.fron([123,'Hello',true]);
var queue = new Queue.from([123, Hello',true]);

The differences between Li st s, Set s, and Queues is shown in Table A.1.

NOTE Li sts also support generic typing. See the section “Generic maps and
lists” for more information.

Table A.1 Comparison of Li st's, Set s, and Queues

List Set Queue

Literal definition No literal definition No literal definition

Access elements by index Can’t access elements by index | Can’t access elements by index

Growable or fixed length Growable only Growable only

Can’t contain duplicates Has methods to enable using it

as a Queue (addLast (),
renmoveFirst())oraStack
(addLast (), renovelast())

Variable declaration 357

CREATING LITERAL MAPS

A map is a set of key/value pairs, and you can define a literal map by using curly
braces containing a comma-separated list of these "key":"val ue" pairs. You access
the map elements by using the key name in an indexer on the map:

Map nyMap = {"keyl":"val uel", "key2":"val ue2"}; <—— Creates map literal

Reads values from

var val uel = nyMap["keyl"];
‘ map literal by key

var val ue2 = nyMap["key2"];

Updates existing
value in map

nmyMap["key2"] = "a new val ue 2";
nyMap["key3"] = "a new key val ue pair";

Inserts new key/
value into map

When specifying a literal map, values can be any object:

var aVal ue = new bj ect (); <—— Creates object Uses object as
var nyMap = {"key",val ue}; value of map
Keys, on the other hand, must be literal strings (not string variables) when you use the

literal map syntax to define a map. The following won’t work: Stores string literal

String nyKey = "key"; inside variable
var myMap = {nyKey: "val ue"};

Wrong: can’t use a variable

to define a map literal’s key

This restriction only applies when creating the map using the literal syntax. The
default implementation of a map is a HashMap. Once you’ve created a map using lit-

eral syntax, you can add new keys that implement Hashabl e, which includes string
objects:

var nmyMap = {"keyl":"val uel"},; <+—— Creates literal map
String nyKey = "key2"; <+—— Creates string variable
nyMap[nyKey] = "val ue2"; <—— Uses string variable as map’s key

You can add to key/value pairs in literal maps after you’ve created the initial map. If
you assign a value to a nonexistent key, the key/value pair is inserted into the map. If
you assign a value to an existing key, its value is overwritten. Trying to read a nonexis-
tent key returns nul | :

var nyMap = {"keyl":"val uel"}; <+—— Creates map with one key
nyNap["key2"] = "val ue2"; <—— Adds second key/value pair

nyMap["keyl"] = "a new val uel"; <—— Updates existing value

var val ue3 = nyMap["key3"]; <—— Reading nonexistent key returns null

When you read a value from a map, it might return nul | because that is the value
stored, or it might return nul | because the key doesn’t exist. Fortunately, the map
interface includes a cont ai nsKey() function to check for the existence of a key:

358 APPENDIX A Core language reference

var nyMap = {"keyl":"valuel"}; Reading nonexistent

var soneVal ue = nyMap["soneKey"]; value returns null
bool contai nsSoneKey = nyMap. cont ai nsKey("soneKey"); <—— Returns false
nyMep[" sonekey™] = null; Setting key to contain
cont ai nsSomeKey = nyMap. cont ai nsKey(" someKey") ; value null adds key/
value to map
Returns true

You can also use the constructor syntax rather than the literal syntax to create maps.
This means you can use any Hashabl e object as a key, because the constructor creates
an empty map. The following creates two identical maps that you can add key/value

pairs to: Creates empty map

var nyLiteral Map = {}; using literal syntax

var myConstructedMap = new Map(); 47 Creates empty map using
constructor syntax

You can access the map’s collection of keys or values using the keys and val ues prop-
erties to return a Col | ecti on interface:

var nmyMap = {"keyl":"val uel", "key2":"val ue2"}; Accesses collection
var keys = nyMap. keys; of keys
var values = myMap. val ves; Accesses collection

of values

NOTE The section “Flow control and iterating” has more about accessing
multiple map keys and values sequentially.

A.1.4 Generic lists and maps

Lists and maps can store any combination of objects: for example, a list could store a
string, an integer, and a boolean value. You can use Dart’s generic typing syntax to
declare that a list or a map contains specific types. You specify the specific type infor-
mation in triangle brackets: < >.

The following code defines a list that must contain only strings (or integers, bool-
eans, and so on) and stores that list in a dynamic variable:

Declares list that will
var nyStringList = new List<String>(); contain only strings
var nylntegerList = new List<int>();
var nyBool Li st = new Li st<bool >(); Adds string
nyStringlList.add("a string"); <1J to this list

You can also use strongly typed variables to allow the type checker to validate that

you’re only adding a string into the list: Uses strong typing to

declare that myStringList

.) . .)) contains only strings
List<String> nyStringList = new List<String>();

. Wrong: tools will validate
nyStringlist.add("a string"); <+—— Adds string to list this as an error because

nyStringLi st. add(123); it isn’t a string.

A2

Functions 359

You can also declare a literal list that only contains a specific type:
Li st<String> nyStringList = <String>["itenl","iten2","itenB"];

Declares literal list that tools will
validate to contain only strings

Maps can also be strongly typed to contain keys and values of a specific type:

Map<String, bool > nyMap = new Map<Stri ng, bool >(); Declares that map will
my Mapl keyl:] = true only contain string keys
myMap[“key2"] = fal se; and bool values
Tools will validate that you’re only using
strings as keys and bools as values.
Finally, just like lists, you can also strongly type literal maps:

Map<String,int> myMap = <String, I nt>{"keyl": 123, "key2": 456};

. Declares literal map that tools will validate
Functions to contain only string keys and int values

Functions are the reusable building blocks of all applications. The Dart application
begins running with a single top-level function called mai n(), which returns nothing
and takes no parameters: o .

Application entry-point
mai n() { function is called main()

Calls other
} application code here

The only mandatory parts of a function are

= Function name (only if you don’t want the function to be anonymous)
= Parameter list (may be empty)
= Function body

Dart functions also support the following features:

= Named, optional parameters

= Default optional parameter values

= Assigning a function into a variable

= Referencing a function by name (as opposed to calling the function)

= Lexical closures, allowing functions to wrap over values outside their
immediate scope

Dart’s optional typing allows many permutations of function declaration. If you pro-
vide a return type and parameter type information, the Dart tools will use that to vali-
date your code, and you simultaneously provide valuable documentation to fellow
developers. When you provide no type information for parameters and return types,
this is equivalent to specifying the type dynani c.

NOTE It’s good style to provide explicit parameter and return type informa-
tion on your public interfaces—in other words, code that other developers
might have to interact with.

360

A21

A22

APPENDIX A Core language reference

Dart has two versions of a function syntax: the longhand version, which allows multi-
ple lines of code in a { } code block; and a shorthand, one-line version, which auto-
matically returns the value produced by the single-line expression, or nul | if no value
is produced.

The smallest function you can produce in either syntax is shown here:

0 = Shorthand syntax with no
parameters, no name, and no
expression; implicitly returns null

Longhand syntax with no parameters,
no name, and no return type
You call a function by specifying its name and passing a list of arguments into it,

wrapped in braces: Calls sayHello() function,

sayHel | o("Dart"); passing in value "Dart"
A function can optionally return a single value, which can be assigned into a variable:

var greeting = getGeeting("Hello","Dart"); Stores result of

If a function doesn’t return a value, it generates a nul | value: getGreeting() function

in greeting variable
var message = print("Hello Dart"); T Message contains null

because print() function

Longhand function syntax doesn’t return a value

Longhand function syntax encloses the function code in curly braces { }, which
appear after the function name and parameter list. The following function shows mul-
tiple ways of returning the value of a + b using optional typing. You use the return
keyword to indicate the return value:

sunm(a, b) {

return a + b;
}

dynam ¢ sun{dynamic a, dynamc b) {
return a + b;

No return type or parameter
information is specified.

Same as previous, but
explicitly declares dynamic

}

num sum(num a, num b) {

return a + b: Specifies num as return

type and parameter types

}

If a function doesn’t return a value, you can specify the return type of voi d:

void showSum(a, b) { No value returned, so
print("ais $a, and b is $b"); void is return type

}

Shorthand function syntax

The shorthand function syntax uses the =>symbol to indicate the expression to return.
The following are all valid functions, called sum that return the result of a + b:

Functions 361

sum(a,b) => a + b;
dynami ¢ sun(a,b) =>a + b;
dynanmi ¢ sun{Dyanmic a, dynanmic b) => a + b;

Three functions are equivalent,
taking any type and returning
the added value

sum(numa, numb) =>a + b

num sun{numa, numb) => a + b; Takes num types as
parameters, returns dynamic
Takes num types as
parameters, returns num

You can’t specify that a shorthand function returns voi d. This is because all shorthand
functions return a value, which is nul | if no other value is specified:

void sum(a,b) => print("ais $a, and b is $b"); Wrong: shorthand function

; still returns null
A.2.3 Function parameters

Functions have mandatory parameters and optional parameters. All mandatory
parameters must be declared first as a comma-separated list, followed by all optional
parameters, which are enclosed in a single block of square brackets. Optional parame-

ters, if not specified, default to nul | : . , .
p sum() function with optional

sum(a, b, [c, b]) { parameters c and d
'I (3 f nu::) 3 f 8 Checks to see if
't(d == null) - parameter was provided
return a + b + ¢ + d;

}

num sun{numa, numb, [numc, numb]) { QT Same sum() function
if (c =null) ¢ =0; . A N
if (d==null) d=o: with type information

return a + b + c + d;

}

PROVIDING DEFAULT VALUES FOR OPTIONAL PARAMETERS
You can also provide a default value to which an optional parameter is initialized,

rather than having it automatically initialize to nul | :
sum(a, b, [c=0, d=0]) {

return a + b +c + d; Setscandd to
} default to zero

num sun(num a, num b, [num c=0, num d=0]) {
return a + b + c + d;

}

CALLING FUNCTIONS WITH OPTIONAL PARAMETERS

When you call a function with optional parameters, you must specify all the manda-
tory parameters first, followed by the optional parameters, either by position or speci-
fied explicitly by name and value:

sum(a, b, [¢=0,d=0]) =>a + b +c +d Defines single-line function with optional
sun(1, 2); <— c and d not specified, so default to zero c and d parameters that default to zero

362

A24

APPENDIX A Core language reference

1, 2, 3);
sun(1, 2, 3); c set to 3 by position; d not

sum(1l, 2, 3, 4); <— cand d specified by position specified, defaults to zero
sun(1, 2, d:4); d specified by name;

. . ¢ defaults to zero
First class functions

You can declare a function in top-level scope or in another code block, where it can
become a closure, closing over other variables that are also in scope.

FUNCTIONS AS VARIABLES
You can reference a function in your code by referring to it by name, without the
brackets that specify the argument list:

sum(a, b) { .
return a + b: Peﬁnes sum() function
} in top-level scope
Calls sum()
mai n() { Stores sum() function using
var sunfFunction = sum function in variable variable
var result = sunfunction(1,2); reference
}
You can create a function in the scope of another function:
mai n() {
sun(a, b) {

Defines sum() function

return a + b; in main() function

}

var resultl = sun(1,2); <— Calls sum() function Stores sum() function

var sunFunction = sum in another variable

var result2 = sunfunction(1,2); <—— Calls sum() function using variable reference

}

You can also store a function directly in a variable without giving it a name. This is
known as an anonymous function:

mai n() {
var sunfunction = (a, b
return a + b: () 1 Stores anonymous Store.s anonymous
) ' function in variable function in variable
b using shorthand
var shorthandSunfunction = (a, b) => a + b; function syntax

}

FUNCTIONS AS FUNCTION ARGUMENTS
In the same way you can store a function in a variable, you can also pass a function as

an argument to another function that accepts a function in its parameter list:

doCal cul ation(cal cFunction, a, b) { Defines doCalculation()

return cal cFunction(a, b); Uses passed-in function function, which accepts
}

mai n() {
sum(a, b) => a + b; <+—— Defines sum() function

another function as its
to return a value first parameter

A3

Flow control and iterating 363

var multiply = (a, b) =>a * b;

Defines multiply()
var resultl = doCal cul ati on(sum 1, 2); function stored in
. . a variable
var result2 = doCal cul ation(nmultiply,1,2);
var result3 = doCalculation((a, b) => b — a, 1, 2); Passes sum() function
} to doCalculation()
Passes anonymous subtract() function

function to doCalculation() function Passes multiply() function

FUNCTIONS AS RETURN TYPES to doCalculation() function

A function can also be returned as a return type from another function:

get SunFunction() { Declare sum()
var sum= (a, b) => a + b; function
return sum <+ Returns it
}
mai n() { Stores return value
var sum = get SunFunction(); in sum variable
var result = sun(1l,2); <—— Calls sum() function using variable reference
}

FUNCTIONS As CLOSURES
Functions close over variables in their surrounding scope. In the following example,

get Sunfunction() declares a multiplier value (unknown to callers of get Sunfunc-
tion()), which is referenced in the returned sun() function. The sun{) function
maintains a reference to the multiplier even though get SunfFunction() has exited
and is no longer in scope:

get SunfFunction() {
var multiplier = 100;

sum (a, b) {
return (a + b) * nultiplier;

}

return sum

sum() function closes over
multiplier variable, which is
outside sum()’s own scope

}

mai n() |
var sum = get Sunfunction(); Returns (I + 2)
var result = sun(l,2); *100 = 300

}

Flow control and iterating

Flow control in Dart is very similar to flow control in JavaScript and Java. For decision
making, Dart has

= jf/el se statements
= The conditional ? operator
= SW tch statements

And for looping around collections of objects, Dart has

364

A3.1

APPENDIX A Core language reference

= for loops

= for/inloops

= do whil e loops

= while do loops

= Breaking and continuing inside a loop
= forEach() map method

Decision making for controlling flow

Applications make decisions all the time. i f/ el se statements form the backbone of
this decision making, with the conditional operator being used for shorter decision
making and swi t ch being used to select from multiple possible options.

IF/ELSE STATEMENTS
The basic structure of an i f statement is to check that a variable is a boolean tr ue or

fal se value, executing code in the following block if the condition is t r ue:
var someCondition = true; Checks condition
if (someCondition) { and executes code

print("was true"); Executes code in block if
print("multiple lines of code"); condition evaluates to true

}

If the code to execute consists of only a single line, then it’s acceptable to provide the
code to execute on the same line, without the curly braces to specify the block:

Prints "was true" if
if (someCondition) print("was true"); someCondition is true

The condition that is checked must evaluate to a boolean; otherwise an error is raised.
For instance, the following check for a nul | value, which works in JavaScript, doesn’t
work in Dart, which raises an error:

var nyVal ue = new Qbject(); A myValue isn’t boolean,

if (myvalue) { so error is raised
print("value is not null");

}

The correct way to check this explicitly is to use comparison operators, shown in table
A.2, to compare two values:

var nyVal ue = new Object(); Explicit check that myValue isn’t

if (myValue !'= null) { null returns boolean true
print("value is not null");

}

Table A.2 Relational operators

Operator Explanation

a == Are the values considered equal (not necessarily the same instance)?

al=b Not equal.

Flow control and iterating 365

Table A.2 Relational operators (continued)

Operator Explanation

a>b Greater than.

a>o>hb Greater than or equal to.

a<hb Less than.

a<=b Less than or equal to.

ais String Is an instance of a specific type.
ais! String Isn’t an instance of a specific type.
i dentical (a, b); Is the same instance.

You can add an optional el se statement to execute when the i f statement’s condition
evaluates to f al se. This follows either the block or line containing the i f statement’s
code that executes when the value is t r ue:

var soneCondition = fal se;

if (soneCondition) { Checks for true
print("was true"); condition

}

el se { Else
print("was false"); clause

}

if (soneCondition) print("was true"); Single-line if

else print("was false"); else check

NOTE Although the language allows it, it’s considered bad style to mix the
curly brace with the single line in i f/ el se statements.

You can combine el se with i f to produce an el se if statement to chain multiple
conditions together:

var soneVal ue = 3;

if (soneValue == 1) {
print("value is 1");
}
else if (somevalue ==2) { Chains multiple if / else if
print("value is 2"); / else statements to check
}) multiple conditions with
else if (someValue == 3) { block syntax
print("value is 3");
}
el se {
print("value is $soneVal ue");

}

366

APPENDIX A Core language reference

if (someValue == 1) print("value is 1");)]
else if (someValue == 2) print("value is 2"); Use§ smgle.-lme. syntax.to
else if (someValue == 3) print("value is 3"); chain multiple if / else if /

el se print("value is $someVval ue"); else statements

As long as the end result is a boolean value, you can compare multiple conditions
using the logical operators (shown in table A.3) and parentheses () to combine mul-
tiple conditions.

Table A.3 Logical operators

Logical operator [GIELE

| OR

&& AND

! NOT (t r ue becomes f al se, f al se becomes true)

Here are some examples of using logical operators and brackets:

var valuel = 1;
var val ue2 = 200; valuel equals | OR
if (valuel == 1 || value2 == 200) print("true"); <1J value2 equals 200

if (valuel < 10 && value2 > 100) print("true"); valuel is less than

if (!(valuel > 0= && valuel =< 100) || val ue2 == 200) { 10 AND value2 is
print("true"); greater than 100
} valuel ISN'T between 0 and
100 OR value2 equals 200

USING THE CONDITIONAL OPERATOR FOR CONDITIONAL SHORTHAND
Often you want to specify the value of a single variable as a result of a decision. For

example:
var nyColor = null; Set value of myColor depending
var nyVal ue = 23; on value of myValue

if (nmyValue == 23) {
myCol or = "bl ue";
}

el se {
myCol or = "red";
}

This is verbose. You can simplify it by using the conditional ? operator to return a
value if a condition evaluates to true or f al se. Here’s the syntax:

condition ? return value if true : return value if false;
For example, the previous code can be rewritten as follows:

nul | ;
23;

var myCol or
var mnyVal ue

If myValue equals 23, return
myCol or = (nyValue == 23) ? "blue" : "red"; "blue”; else, return "red"

Flow control and iterating 367

USING THE SWITCH STATEMENT FOR MULTIPLE COMPARISONS

The swi t ch and case keywords let you check multiple values. Consider the following
conditional check, which contains multiple i f / el seif / el se statements:

var soneVal ue = 3;

if (someValue == 1) {
print("value is 1");

}

else if (someValue == 2) {
print("value is 2");

}

else if (someValue == 3) {
print("value is 3");

}

el se {
print("value is $soneVal ue");

}

This can be rewritten using a swi t ch statement, which checks each case value to see if
it’s equal to the swi t ched value. Every condition that contains a body must also have a
br eak statement that causes the switch check to end:

var soneVal ue = 3; Compares value
switch (sonmeval ue) { of someValue
case 1: <+—— Does it equal I?
print("value is 1"); <— If yes, executes code Exits switch block
br eak; following successful match
case 2:

Does it equal 2

E:Lg;("val ue is 2%); (and so on...)?
case 3:

print("value is 3");

br eak; Uses default if it doesn’t
defaul t: match any case statement

print("value is $soneVal ue");

}

It’s an error not to include a break statement if there is any other code matching a
case statement. For example:

var soneVal ue = 3;
switch (soneVal ue) {
case 1: There is a value

print("value is 1"); to match I.

Wrong: break statement missing.

case 2: This is reported as an error.

print("value is 2");
br eak;

}

But you can have multiple empty case statements without a br eak. This allows match-
ing on multiple cases:

368

A3.2

APPENDIX A Core language reference

var someVal ue = 3;
switch (soneVal ue) {

case 1: Multiple case statements
case 2: with no other code are
case 3: allowed to fall through.
print("value is 1, 2 or 3");
br eak;

}

Loops and iterating

Dart has four language-level ways of iterating, and maps provide their own function
for iterating key and values. The first three loop while a condition is true:

= do whil e loops
= whil e loops
= for loops

Support for the “for in” loop is provided by the the | t erabl e and | t er at or interfaces,
which are implemented by the Col | ecti on types such as Li st, Set, and Queue.

Maps provide a method of iterating each key/value pair in the list in addition to
providing access to the collection of keys and values.

DO WHILE LOOPS
A do whil e loop performs the code block first and then checks to see if a condition is
true. This means a do whi | e loop executes at least one iteration.

The following loop will iterate only once:

var soneCondition = true;

do { Specifies code block
sonmeCondi tion = fal se; to execute first
} while (someCondition); After each execution, repeats
if condition is still true

You can include a counter, which increments each iteration:

var counter = 0;
do {

counter ++; <—— Increments counter by |
} while (counter < 100);

If you need to exit a loop immediately, use the br eak statement:

var counter = 0;

do {
counter ++;
if (counter == 42) { If counter equals 42,
br eak: breaks out of loop
}

} while (counter < 100);

WHILE LOOPS
Wi | e loops are similar to do whi | e loops, except that the condition is checked before
the loop is entered. This means a whi | € loop may not iterate at all:

Flow control and iterating 369

var counter = 0;
while (counter < 100) { <— If condition is true, performs iteration
counter ++;

}

Using the br eak statement works the same as previously discussed.

FOR LOOPS
Afor loop also uses a counter, but the f or loop has a three-part construction that lets

you initialize the counter variable, specify the condition, and increment the counter:

for (int counter = 0; counter < 100; counter ++) { <—— Sets up looping
print("Hello Dart"); Prints “Hello
} Dart” 100 times

For loops are often used with lists, because the counter can also be used as a list index.
You can check the list length by reading the | engt h property:

var nyList = ["Dart","JavaScript","Java"]; <—— Defines literal list
for(int i =0; i < nyList.length; i++) { Defines zero-based
var language = nyList[i]; counter and iterates
rint(language); . :
} P (1 anguage) Extracts each list for length of list
item by element

Like whi | e loops, you can break out of a f or loop using the br eak statement. There is
a better way to iterate through a list, though, and thatis the f or/i n loop.

For/IN LoOPS
The for/inloop uses the Iterator and | terabl e interfaces. That is, any object that

can provide an iterator can be iterated with the for in keywords. This type of loop
effectively says “for each element in the list, loop,” and looks like the following snip-

pet
var nyList = ["Dart","JavaScript","Java"]; <—— Defines literal list

for (var language in nyList) { Assigns each item

} print(language); in list to language
For each iteration, uses variable
le

language variab

ITERATING MAPS WITH FOREACH()
Maps have two ways of iterating the key and value pairs. You can get the keys collection

using the keys property and iterate it like any list to access the values:

var nyMap = {"keyl","val uel", "key2", "val ue2"}; <—— Defines literal map
for (var key in myMap. keys) { Iterates for each
var val ue = myMap[key]; key in map’s keys

Uses key to access
key’s value

print(val ue);
} Uses value

370

APPENDIX A Core language reference

Maps also provide a function called f or Each() that takes a callback function that can
receive the key and value objects for each pair in the map. In the following example,
the anonymous function

(key, value) {
print (key);
print(val ue);

}

is passed into the map’s f or Each() function. The anonymous function is highlighted
in bold and executes for each key/value pair in the map:

var myMap = {"keyl", "val uel", "key2", "val ue2"}; <+—— Defines literal map

nyMap. forEach((key, value) { Passes anonymous function
print (key); Uses key that is passed each key and
print(val ue); and value value as parameters, in turn

1)

B.1

B.1.1

appendix B
Defining classes and libraries

This appendix discusses building classes and using libraries and privacy.

Classes and interfaces

Dart is a class-based, object-orientated language with single inheritance and multi-
ple interfaces. Dart has explicit classes and implicit interfaces: that is, a class defini-
tion implicitly defines an interface on its public properties and methods that other
classes can implement.

NOTE In the initial release of Dart, there were explicit interfaces defined
using the i nt er f ace keyword. After feedback from Dart’s early adopters, it
was discovered that because an abstract class definition also defines an
interface, the i nt er f ace keyword was redundant.

Defining classes

The cl ass keyword is used to define a class. Classes must be defined in top-level
scope (thatis, you can’t define a class in a function, method, or other class):

class M ass { <—— Defines class
Properties and methods
} defined in class body
You create an instance of a class by using the new keyword:
mai n() { Creates instance
var anlnstanceO MyCl ass = new MyC ass(); of MyClass
}

You use the class name as type information throughout your application when
assigning an instance into a variable or defining a function parameter. Just as with
the builtin types (String, int), using that type information is optional, but the
Dart tools will validate your code if you annotate your variables and parameters
with type information:

371

372

APPENDIX B Defining classes and libraries

class MWyd ass { <+—— Defines class called MyClass

Specifies
} MyClass as
voi d soneFuncti on(unt ypedParaneter, M/d ass typedParaneter) { parameter type

print (untypedParaneter is M/d ass); Both print true when MyClass
print(typedParaneter is MyCl ass); passed as an argument

}

mai n() {
var anl nstanceOf MyCl ass = new Myd ass();
MyCl ass aTypedl nstance = new Myd ass(); ﬁ:i;;i;t?:j ::\d non-
final aFinallnstance = new MyCl ass(); final inséances of MyClass
final Myd ass aTypedFi nal | nstance = new MyCl ass();
someFuncti on(anl nstanced MyCl ass, aTypedl nstance); Typed or untyped
soneFuncti on(aTypedl nst ance, anl nstanceX MyC ass); has same effect

}

PROPERTIES

Classes can have properties, which are attributes that describe the class. The follow-
ing class describes an animal that has a number of legs and a color. The number of
legs is strongly typed to be an integer, and the color is dynamically typed and can con-
tain any type:

class Animal { Integer legCount

int |egCount; property

var color; Dynamically typed color
} property (see Note)

NOTE Early in your application’s development, it’s acceptable to use
dynamic typing for properties in classes, especially when you haven’t decided
what type a property will become. As development progresses, though, you
should aim to change dynamic types, such as the col or property, into strong
types that can be validated by the tools. The following example shows how
dynamic typing is useful in early stages of development.

You access the properties on an instance of a class using dot notation syntax, similar
to that used in Java and JavaScript. The syntax for reading and writing properties is
identical:

mai n() { Creates instance Sets leg count to a value;
var dog = new Ani mal (); of an animal tools will validate that
dog. | egCount = 4; only an int value is used
dog. col or = OxFFF; Any type can be used for color;

var bird = new Animal (); here you use hex value

bird. |l egCount = 2;

bird.color = "blue"; Here color

var snake = new Ani mal (); Is a string Reads

snake. | egcount = 0; Here color is property

snake. col or = "di a;mnd atterned"; also a string values f.'°"‘
’ P ' eachanimal

var total Legs = dog. | egCount + bird.|egCount + snake.|egCount; object

Classes and interfaces 373

You can initialize properties with an initial value and make properties constant by
using the fi nal keyword. Again, you can mix strong typing and optional typing. Every
instance of the class will have the same starting values. If you don’t initialize a prop-
erty, its starting value is nul | , just like a variable:

class Animal {

final isVegetable = false; Final properties can’t be modified and
final bool isAnimal = true; must be initialized before the class is
final bool isMneral = false constructed.

var int |egCount = 4; Other properties can be initialized

var color = "black"; but can be modified by code later.

NOTE See the section on constructors for more on providing initial and final
values at runtime rather than in the class definition.

GETTERS AND SETTERS
A class’s properties can be represented by getters and setters, which proxy for the

underlying property. This allows you to write code that’s invoked when a user tries to
access a property: for example, code to validate the value that’s being written or gen-
erate a value in the getter. The following example stores | egCount in the property
called _| egCount ; the getter and setter code is invoked when | egCount is accessed.
The setter validates that the number of legs is zero or greater:

class Animal { Getter uses shorthand
int _legCount; <—— Underlying property syntax to return

get legCount => _|egCount; _legCount value

set | egCount (val ue) { Setter takes a value
if (value < 0) _legCount = O; and assigns it to
el se _l egCount = val ue; _legCount property
}
}
You can also use strong typing on getters and setters:
cl ass Ani mal { Strongly typed getter lets
int _legCount; tools validate that int is
returned

int get |egCount => _|egCount;
set | egCount (int value) => _legCount = value < 0 ? 0 : val ue;

Strongly typed setter lets
tools validate that int is set
Accessing a getter and setter in calling code is identical to accessing a property
directly. This means when you create your class, you can start with properties and then
change to getters and setters without affecting other code that uses your class:

mai n() { Sets legCount;
var dog = new Ani mal (); doesn’t matter if it’s Reads legCount;
dog. | egCount = 4; a setter or a property doesn’t matter if it’s a

int total Legs = dog. | egCount; getter or a property

}

374

APPENDIX B Defining classes and libraries

By providing only a getter or a setter, it’s possible to create read-only or write-only
properties:
class Aninmal {

int _|egCount;

int get |egCount => _|egCount; No setter, so legCount
property is read-only

}
class Aninmal {
int _|egCount;
set | egCount(int value) => _|egCount = val ue; No getter, so legCount
property is write-only
}
NOTE The underscore in _| egCount represents a private property. Privacy
exists in Dart at a library, rather than a class, level. See the section on libraries
for more information.
METHODS

Classes can have functions called methods associated with them. Methods work like nor-
mal functions, except that they can access properties and methods on the specific
instance of the class. Method definition is the same as function definition, except that
methods are defined in the top-level scope of the class declaration. The t hi s keyword
is implied when it isn’t explicitly used and refers to the specific instance of the object:

int |egCount; printLegCount() with no return
value and no parameters

class Animal { Declares method called

void printLegCount () {
print (Il egCount);
print(this.|legCount);
} } Use of this keyword is optional
but can sometimes improve
readability.

Prints value stored in each
instance’s legCount property

Methods, like functions, can also use the shorthand function syntax:

class Animal {
int |egCount; Shorthand

voi d printLegCount () => print(legCount); function syntax

}

You can use the thi s keyword to help when there would be name clashes, such as
when a method parameter name is the same as a property name:

class Animal {

. addLegs() method
'nt |egCount; < legCount property deﬁneg [grameter
voi d addLegs(int |egCount) { QJ also called legCount

this.legCount += IegCount; Uses this to distinguish between

} class’s property and parameter

}

Classes and interfaces 375

You use dot notation to call a method of a class instance, just as with properties, but
you must also provide the parentheses () —again, just as with function calls:

mai n() {
var dog = new Aninmal ();
dog. | egCount = 1; <—— Sets legCount Calls legCount()
dog. addLegs(3); method
dog. printLegCount () Calls printLegCount()
} method

Just as with functions, if you leave off the parentheses on the function call, you access
the function object itself, which you can store in a variable:

mai n() {
var dog = new Animal (); Stores addLegs()
var addLegsMet hod = dog. addLegs; method in a variable

addLegsMet hod(4) ; Calls addLegs() method,

} which adds 4 legs to dog

Methods have full access to other methods and properties in the instance of the class:

class Animal {
int | egCount;

voi d addLegs(int |egCount) ({
this.legCount += | egCount;

print LegCount (); One method can call another method;
this.printLegCount(); use of this keyword is optional.
}

voi d printLegCount() => print(legCount);
}
Methods have the same parameter rules as functions and can take mandatory and
optional parameters with default values. Parameters and return types are optional but
provide documentation to tools and fellow developers:

class Aninmal { Defines single optional parameter
String sayHel l o([String greeting="woof") { with default value "woof"
return "$greeting $greeting $greeting”; <’T Returns string containing
) } greeting parameter 3 times
mai n() {
var dog = new Ani mal (); Prints "woof woof woof"
print (dog. sayHel 1 o()); (uses default value)
var bird = new Animal (); Prints "tweet tweet tweet"
print(bird.sayHel l o("tweet")); (uses passed-in value)
}
CONSTRUCTORS

When you use the new keyword to create an instance of a class, this calls the class’s
constructor method. The constructor method uses the same name as the class. If no
constructor is defined, this is equivalent to an empty constructor.

376

APPENDIX B Defining classes and libraries

The following

class Animal {
<+ No constructor defined

}

is equivalent to

class Aninmal {

Ani |
imal () { Empty constructor

defined

}
}

You can use the constructor to perform an initialization step in the class:

class Aninmal {

int | egCount;
Ani mal () {

| egCount = 4; Constructor
} sets value

}

CONSTRUCTOR PARAMETERS
Like other methods, the constructor can take parameters with optional and default

values. You can use this to define property values as the class is initialized:

int |egCount; parameter with
default value of zero

class Animal { Optional constructor

Animal ([int |egCount=0]) {

this.legCount = | egCount; Sets legCount property

} to parameter value
}
mai n() { Passes in legCount

var dog = new Ani mal (4); value to constructor

var snake = new Snake(); <— Uses default value
}

Dart also provides a useful shorthand for populating properties in the constructor.
When you use the t hi s keyword in the constructor’s parameter definition, Dart knows
you want to set the property with the same name:

cl ass ;Am mal {_ Automatically
int |egCount; populates class’s

Ani mal ([this.legCount = 0]) { legCount property
Empty
} } constructor body
main() {
var dog = new Animal (4);
print (dog. | egCount); <+— Prints 4

}

Classes and interfaces 377

CONSTRUCTOR INITIALIZATION
Dart also has another initialization block in the constructor, which you can use to pop-

ulate fi nal values that need some calculation. Final values must be populated before
the constructor starts executing.

The initialization block appears after the argument list and before the constructor-
opening curly bracket defining the code block. It’s a comma-separated list of state-
ments beginning with a colon. Code in the initialization block is bold:

cl ass Aninmal {
final int |egCount;
final bool hasBacklLegs;
final bool hasFrontLegs;

Final properties can’t
be modified once class
has been created.

Begins initialization
Ani nmal (front LegCount, backLegCount) : block with a colon
| egCount = frontLegCount + backLegCount, Initializes final
hasBackLegs = backLegCount > O, property values before
hasFrontLegs = front LegCount > 0 { constructor body

print(legCount);
print (hasFront Legs);
print (hasBackLegs);

Inside constructor
body, final values
are populated.

}
}
mai n() { Calling code is

var dog = new Ani mal (2, 2); unchanged.

dog. hasBackLegs = fal se; Wrong: can’t modify
} final properties

NAMED CONSTRUCTORS
A class can have multiple named constructors in addition to the default constructor.

For example, you might want to create an animal instance by reading values out of a
map:

class Aninmal {
int | egCount;

var | or;
ar color, Default constructor

Animal () { } with empty body Declares named constructor

] called fromMap()
Ani mal . f romVap(Map val ues) {

this.legCount = values["|egCount"]; Sets properties from
this.color = values["color"]; passed-in map values
}
}
mai n() { Declares
var dogMap = {"legCount": 4, "col or": OxFFF}; literal map
var dog = new Aninal . fromvap(doghap);
var snake = new Animal (); Creates new dog using
snake. | egCount = 0; named constructor
snake. col or = "di anbnd pattern”;
} Creates new snake

using default
constructor

378 APPENDIX B Defining classes and libraries

If you don’t provide a default constructor, then you can only use named constructors
to create instances of the class. Named constructors share all the same rules relating to
optional parameters and initialization blocks as the default constructor.

FACTORY CONSTRUCTORS
A factory constructor allows your class to decide how the class is instantiated, such as

returning an instance of a class from a cache rather than creating a new instance. It
uses the factory keyword as a prefix and must return an instance of a class, but you
can have named factory constructors in the same way as other constructors. Calling
code uses them just like normal constructors, and the code has no knowledge that it’s
calling a factory:

class Animal {

String nane; Named factory

factory Animal.withNane() { constructor
var animal = new Aninmal ("fido"); Responsible for creating and
return ani mal ; returning instance of animal
}
Ani mal (this.nanme) { } <+ Default constructor
}
main() { Calling syntax is identical
var dog = new Ani mal . wi t hName() ; for other constructors.
print (dog. nane) ;
}
This is useful for maintaining a cache of objects and loading them from a cache:
class Animal { Factory constructor with optional
String naneg; animalCache parameter

factory Animal.fronmCache(String nanme, [List animal Cache = []) {
for (var existingAnimal in animal Cache) {

if (existingAnimal.name == nane) { . .
return existingAni mal ; !fenlmal with same name
} is in cache, return it.
}
return new Ani mal (nane); : Not found in cache, so
} return new instance.
Ani mal (this.name) { }
}
. Creates new
mai n() { instance of fido
var fido = new Ani mal.fronCache("fido");

Li st ani mal Cache = new List();

Creates new instance
ani mal Cache. add(fi do); <—— Adds fido to cache of fido: returns

var fido2 = new Ani mal . fronCache("fido", aninal Cache); cached version

print(fido === fido2); 3 Prints true; they’re
the same instance.

Classes and interfaces 379

B.1.2 Class inheritance

Classes can form an inheritance hierarchy. For example, all animals have legs, but a
dog has different methods and properties than a bird (birds fly; dogs run). You can
use class inheritance to define a base class, such as Ani mal , which has properties and
methods common to all animals, and then define subclasses that inherit the base class
and add their own methods and properties. This creates an is-an relationship between
the subclass and the parent class: for example, a Dog is-an Ani mal . This doesn’t work
the other way around—an Ani mal isn’t a Dog.
You use the ext ends keyword to extend an existing class:

class Animal { <—— Defines base class
int | egCount;
void eat() { .
print("nom nom nont); Method in
} base class
}
cl ass Dog extends Ani mal { <+— Dog is-an Animal
VOIp(rji :1:]?(? En running — fun"); New'method
} ' specific to Dog
}
class Bird extends Animal { <—— Bird is-an Animal New'propert'y
int w ngCount : specific to Bird
void fly() {
; " . . vy New method
} print("Fly away, there's a dog chasing ne"); specific to Bird
}
mai n() { Creates instance
var dog = new Dog(); of Dog
dog. | egCount = 4; Uses inherited properties
dog. eat (); and methods from Animal Uses method that
dog. run(); only exists on Dog
var bird = new Bird(); <—— Creates instance of Bird
bird. wingCount = 2; Uses property that
bird. | egCount = 4; Uses inherited properties only exists on Bird
bird. eat(); and methods from Animal
bird. fly(); Uses method that
} only exists on Bird

With the is-an relationship, you can get strong typing at multiple levels:

mai n() {
Dog fido = new Dog(); Strong typing on
Bird tweety = new Bird(); instantiated class

Ani mal someDog = new Dog();

Ani mal sonmeBird = new Bird(); ‘ Strong typing on base class

380

APPENDIX B Defining classes and libraries

print(fido is Dog);
print (someDog is Dog);
print(fido is Animal);
print(tweety is Animal);
print(someDog is Aninmal);

Prints "true"

print(tweety is Dog);
print(someBird is Dog);

Prints "false"; tweety and
someBird aren’t Dogs.

Dog soneDogAni mal = new Aninmal ();
}

Type inheritance is also useful when you’re strongly typing lists, maps, and functions

<+—— Wrong: Animal isn’t a Dog.

or methods: .
Function takes an

voi d eat Food(Ani mal ani mal) { Animal as a parameter.

ani mal . eat () ;

ani-malfly O+ Can use any property or method
} on Animal base class ...
mai n() { ... but can’t use methods

Dog fido = new Dog();
Bird tweety = new Bird();

from subclasses.

eat Food(fi do);
eat Food(t weety);

Both fido and
tweety are Animals.

Li st <Ani nal > ani nal s = new Li st <Ani nal >();
ani nal s. add(fido);
ani mal s. add(tweety);

}

There’s no limit to the depth of inheritance. For example, you might define specific
classes of Dog, such as Poodl e and Husky, which extend from Dog.

List of Animals happily
contains fido and tweety.

OVERRIDING METHODS
Subclasses can also provide their own implementation of methods and properties

defined in the parent class. For example, a bird might “peck” when eating:

class Animal {
int | egCount;

void eat() {
print("nom nom nont');
}
}

class Bird extends Aninal {
int _legCount = 2;

int get |legCount => _|egCount;

void eat() {
print ("peck peck peck");
}
}

voi d eat Food(Ani mal animal) {
ani mal . eat () ;

}

Animal defines base nom
nom implementation

Overrides read-only
implementation of legCount
property by implementing getter

Overridden
implementation of eat

When bird is passed in, uses
bird-specific eat() method

B.1.3

Classes and interfaces 381

mai n() { o
var tweety = new Bird(); Prints pelclzk
eat Food(tweety); peck peck

}

Abstract classes

Sometimes you want the strong typing provided by a base class but with completely dif-
ferent implementations in each of the subclasses. For example, dogs and birds don’t
eat food the same way, so it might make more sense to force Dog and Bi rd to provide
their own implementations. You can do this with an abstract class, which doesn’t
define a specific implementation but instead forces subclasses to provide an imple-
mentation. The optional abstract keyword is used to define an abstract class or

method: abstract keyword documents that this

abstract class Animal { is intended to be an abstract class

int IegCount; No body provided for eat() function, so
abstract void eat(); subclasses must provide implementation
}
main() { Wrong: can’t create
var—dog—=new-Aniral-()- instance of abstract class
}
The abstract keyword is optional, so the following class has the same effect:
class Animal { <—— No abstract keyword
int | egCount;
voi d eat(); No abstract keyword on method, so absence
} of method body implies that it’s abstract

This means subclasses must provide an implementation. If they don’t, then that class
is also implicitly abstract and can’t be instantiated:

class Dog extends Aninal { Provides
void eat() => print("chonp”); implementation of eat()
}
class Bird extends Animal { Doesn’t provide implementation,
so is also abstract
}
mai n() { Can create
var dog = new Dog(); instance of Dog
var bird = new Bird(); Can’t create
} instance of Bird

Abstract classes are useful for providing some functionality but mostly for forcing sub-
classes to provide their own specific implementations for other functionality. For
example, the Ani mal class might provide a default sl eep() implementation but force
subclasses to provide their own eat () implementation:

382

B.1.4

APPENDIX B Defining classes and libraries

class Aninmal {
int | egCount;

voi d sleep() {
print("zzzz");

}

void eat(); ! eat() has no implementation,
so class becomes abstract

Implementation of
sleep() is provided

}

Implicit interfaces

Every class has an implicit interface. An interface is the list of the properties and meth-
ods that a class promises it will have. Other code can rely on this promise when exe-
cuting.

This is especially useful when you don’t want to subclass a specific implementation;
instead you want to provide a different alternative implementation, such as a mock.
Imagine a third-party library that contains an enterprise dog that connects to a server
somewhere for food. It looks like this:

class EnterpriseDog {
String eat(String connectionString, String food) {
/1 connect to database
/! do sonething with food
return foodResul t;

}

Does something complex
that relies on external
dependencies

}

If you write a method in your code to print the result of the eat () method, and you
want to test it, you can pass in an Ent er pri seDog instance, but that involves setting up
a database and all the external dependencies:

Server needs to
voi d showFoodResul t (Ent er pri seDog dog) { J be. running for
var result = dog. eat ("192. 168. 2. 99: 8080", " dogf ood") : this to work.
print(result);
} j You just want to check that
your result is printed.
main() {
showrFoodResul t (new Ent er pri seDog());
}

Using interfaces, you can provide your own mock implementation of the Ent er pri se-
Dog from the other library by using the i npl ement s keyword:
cl ass MockDog i npl enents EnterpriseDog { 47 Implements

String eat(String connectionString, String food) { EnterpriseDog
return "yuni;

) } Provides its own
implementation
mai n() {
showFoodResul t (new MbckDog()) ; MockDog can be used anywhere

} EnterpriseDog is used.

B.1.5

Classes and interfaces 383

IMPLEMENTING ABSTRACT CLASSES
All classes have an implicit interface, and this includes abstract classes. This is analo-

gous to defining and implementing an interface in Java or C#:

class | Eater { Abstract class has
void eat(); implicit interface

}

class Dog inplenents | Eater { Implements interface
void eat() { from abstract class

print("chonp");

}

}

MULTIPLE INTERFACES
A class can implement multiple interfaces. For example, your Dog might implement

two different interfaces:

class | Eater { Defines
void eat(); abstract class
}
class | Runner { Defines
void run(); abstract class
} Implements two
class Dog inplements | Eater, |Runner { abstract classes
void eat() => print("chonp"); <+—— Implementation of IEater
void run() => print("I'mrunning.); Implementation
} of IRunner

Static methods and properties

Classes can have static methods and properties. A static method or property belongs to
a class but acts independently from any instances of that class. Use the static key-
word to indicate that the property or method is static. You use the class name to access
static properties and methods rather than the name of a specific instance:

class Aninmal { Static property belongs to class as
static int aninal Count = O; a whole, not a specific instance.
st at? ¢ voi d incAni mal Count () { Static method can act
ani mal Count ++; on static properties.
}
Ani mal () { ‘ Default constructor
i ncAni mal Count () ; calls static method.
}
}
mai n() { .
var dog = new Animal (); Accesses staf:lc
print (Ani mal . ani mal Count) ; property, prints |
var bird = new Ani mal (); Accesses static
print (Ani nal . ani mal Count) ; property, prints 2

}

384

B.2

B.2.1

APPENDIX B Defining classes and libraries

Libraries and privacy

A library is one or more Dart files linked together. Libraries are the smallest unit of pri-
vacy in Dart. A library can contain multiple source files, multiple functions, and multi-
ple classes. A library that contains a mai n() function can also be used as an entry-point
Dart script.

Defining libraries

A library is defined with the | i brary statement, which must appear at the top of the
file and defines the library name. Your library can be composed of multiple source
files, which contain classes and functions that form your library, but the library file
itself can also contain classes and functions. Your library is the aggregate of the library
file and any source files it contains.

You can also import other libraries into your library by using the i mport statement
and providing a path to that library. Imported libraries provide external code that
your library can use. Listings B.1, B.2, and B.3 show two library files and a source file.
ny_l i brary is defined in my_library.dart (listing B.1), is made from one other source
file called source.dart (listing B.2), and imports another library called
other_library.dart (listing B.3).

Listing B.1 my_library.dart

library ny_library; <—— Library definition
? nport ::pat h{ to/ o't' her/ other_library.dart"; Imports another
inport “dart:htm"; library from file path
part "src/source.dart";
Imports built-in

class Somed ass { Class defined Dart library
} in my_library

id F . Links to another source file, which
voi d someFunction { Function defined also forms part of my_library
} in my_library
mai n() { Calls function defined

sonmeFunction(); 4 in my_library

soneO her Functi onl nMyLi brary();

someQ her Functi onl nQ her Li brary(); Calls function defined in
! Calls function defined in my_library, but in source file
imported other_library

Listing B.2 source.dart

part of ny_library; <—— Indicates library the source file is part of

cl ass SomeQ her d assl nMyLi brary {

} Functions and classes defined in source
))) file form my_library just like functions

void soneQ her Functionl nMLibrary { and classes defined in main library file.

}

B.2.2

Libraries and privacy 385

Listing B.3 other_library.dart

l'ibrary other_Library; <—— Defines other_library

cl ass SoneC assl nQt herlLibrary {

} Functions and classes belong to
_ _ _ other_library but are publically

voi d someFunctionl nQt herLibrary { accessible to other libraries.

}

Library privacy

Anything prefixed with an underscore is defined as private to that library. Listing B.4
shows other_library.dart, which contains a private class, a private function, and a pub-
lic class with private methods and properties. None of the private elements are accessi-
ble to the importing ny_| i brary.

Listing B.4 other_library.dart with private elements

library other_library;

cl ass SoneC assl nQt herlLibrary {

}
voi d soneFunctionl nQ herLibrary {
Private function isn’t
} accessible by code
Y
void _aPrivateFunction() { outside library

print("ln a private function");

} Private class isn’t
cl ass _SonmePrivated ass { accessible outside library
_SomePrivated ass () { <1—\ .
print("ln a private class constructor"); Private constructor
}
}

class SonmePublicd ass { .
Calls private meth

od .
aPubl i chet hod() { from public method Calls private
print("In a public method"); function in library

_aPrivateMet hod();

_aPrivat eFunction(); Creates instance

var aPrivateC ass = new _SomePrivated ass(); of private class
}
_aPrivateMethod() => print("In a private nmethod"); <+—— Defines private method
int _aProperty; <—— Defines private property

int get aProperty => _aProperty;

=> = N
set (val ue) _aProperty = val ue; Provides public getter

and setter to access
private property

mdex

Symbols

_ character 11, 104
#firstLine value 37
#secondLine value 37
+ concatenator 8

+ operator 179
=>shorthand 17

$ character 7

$0) function 221

${} expression 7
$variableName 45

A

abstract classes
inheriting 144-146
overview 123, 381, 383
abstract keyword 123
action field 261
actionContainer 239
actionDiv element 221
actionsContainer property
223-226
actionsElement property
223, 225, 227, 231-232
add() method 53, 161, 168, 173
addAndDisplay() method
194-195, 200
addButton 50
addCredential () method 176
addEventListener()
method 264
addHeaders() method 300

addItem () method 53-55,
57-60
addLast() method 166
addLegs() method 374-375
addOrUpdate () method
215, 255, 327, 329
addOrUpdate (Expense
expense) method 319
addRequestHandler ()
method 296, 299, 313
addToCache() method 132-133
AdminPermission class
159-160, 162-163, 169-170
Aggregate () method 86
analyzeFileList() method
333, 343
Animal class 381
animal.eat() method 380
animal.fly() method 380
Animal.withName ()
method 378
Animal () method 372-373,
375-377, 380-381, 383
anonymous function declaration
for local functions 85-87
overview 162
APl interface 323
app.buildUI() method 219,243,
257, 311
app.connectToWebsocket()
method 311
app.loadFirstView()
method 219, 223, 243,
257, 311
app() method 219
AppCache 273-277

386

falling back to offline
file 276-277
file available only when there
is network connection
275-276
files to cache locally 274-275
manifest file 274
AppController class 214-215,
246, 311-312, 317
AppController.buildUI()
method 223
AppController.loadFirstView()
method 226
AppController.updateView()
method 224
applications, building
browser events 49-56
button clicks 49-50
function syntax for 50-52
querying HTML elements
in dart 54-56
refactoring listener for
reuse 53-54
Ul for 41-49
adding elements to
document 46-49
creating elements by tag
name 45-46
creating elements from
HTML snippets 44-45
entry-point 42
wrapping with classes 56-62
property getters and
setters 59-62
structure of 57-59

aPublicMethod () method 385
Array type 160, 165, 173
as keyword 161
async methods vs. sync
methods 289
async readAsText() method 291
asynchronous code 190
asynchronous model 183
asynchronous
programming 183-207
data delays with 187-188
importance of for web
apps 185-190
setTimeout() function
188-190
unit-testing 203-207
testing callback
functions 205
testing future values
205-207
using callbacks 190-196
adding async callbacks to
app 192-195
nesting to enforce execu-
tion order 195-196
using futures 197-203
ordering async calls by
chaining futures
199-200
passing future values
198-199
transforming nonfuture
values into 202-203
waiting for futures to
complete 200-201
auth () method 121-123, 126,
139-140
AuthError class 135
AuthService class 121, 123, 129
AuthService interface
122,125, 129
AuthService() method 121,123,
129-130
authSvc parameter 121
authSvc2 variable 132
autocomplete, in Editor 29
automating test runs 65

Bamboo 27
BaseMatcher class 66—67
bird.eat() method 379
bird.fly() method 379

INDEX

Bird() method 379-381
booleans, declaring
variables 355
breakpoints, in Editor 34-35
browser apps, server-less
273-280
packaging as Chrome web
app 277-280
using AppCache to run
offline 273-277
falling back to offline
file 276-277
file available only when
there is network
connection 275-276
files to cache locally
274-275
browser events 49-56
button clicks 49-50
function syntax for 50-52
querying HTML elements in
dart 54-56
refactoring listener for
reuse 53-54
browsers
event handling for 231-236
event types 235
modifying bubbling
phase 233-234
modifying capture
phase 234-235
navigation for 239-243
adding items to
history 239-241
detecting browser
navigation 241-243
web socket connections
tracking connections 314
tracking disconnections and
errors 315
bubbling phase, browser event
handling 233-234
building apps
browser events 49-56
button clicks 49-50
function syntax for 50-52
querying HTML elements
in dart 54-56
refactoring listener for
reuse 53-54
Ul for 41-49
adding elements to
document 46-49

387

creating dart html
elements 42-43
creating elements by tag
name 45-46
creating elements from
HTML snippets 44-45
entry-point 42
wrapping with classes 56-62
property getters and
setters 59-62
structure of 57-59
buildUI() method 218, 220,
223-224
button clicks 49-50
button.on.click.add ()
method 86
ButtonElement class 28, 38,
42,220
ButtonElement() method 38

c

callback hell 196, 199, 207
callbacks 190, 270
asynchronous programming
using 190-196
adding async callbacks to
app 192-195
nesting to enforce execu-
tion order 195-196
testing 205
Callers view 29
<canvas> tag 19
CanvasElement 46
capture phase, browser event
handling 234-235
Cement() method 73, 78, 85,
91-92
chain() method 200-203,
206-207
chaining futures 199-200
chart action 261
chart library
Google 259-262
JavaScript 262-263
ChartView class 263, 266-267
checking parameters 78
checkPasswordHistory ()
method 144-146
Chrome
JavaScript VM 25
web apps, packaging 277-280
Web Store 259, 277, 279
class-centric privacy model 95

388

classes 119-137
abstract classes 381
coding against interface
121-123
constant classes 134-136
const keyword 135-136
constructor for 134-135
properties for 134
constructors for
factory 129-131, 378
initialization of 377
multiple constructors 128
named 377-378
overview 127-128, 375-376
parameters for 376
using static methods and
properties 132-133
extending with
inheritance 139-146
including abstract
classes 144-146
inheriting
constructors 142-143
overriding methods and
properties 143-144
overview 140-141
generic 173-176
defining 173-175
restricting types in 175-176
using 175
getters and setters 373-374
inheritance 379-380
methods 374-375
private 105-109
properties for
declaring getters and setters
for 125-126
overview 372-373
sharing between client and
server 324
static methods and
properties 383
using explicit interface
definitions 123-124
using imported 101-102
using multiple
interfaces 124-125
wrapping with 56-62
property getters and
setters 59-62
structure of 57-59
classes.dart keyword 111, 113
clear() method 252
client restrictions 63

INDEX

CLIENT_COUNT_REFRESH
action 312, 318-319, 321
ClientApp.dart file 306
clients
connecting web sockets on
client side 311-312
sharing classes between server
and 324
close() method 293, 340
closing, ReceivePort 340-341
closures 91-93
functions as 363
overview 72
code obfuscation 104
code suggest, in Editor 29
CoffeeScript 22
collaborative editing 317
Collection interface 161-162,
164, 166, 182
Collection variable 161
collections
limiting types in with
generics 166-170
replacing placeholder
types 168-169
testing type in list 169-170
lists, creating 165-166
maps 170-173
accessing 171
creating 170-171
inserting new items
into 171-173
of objects 160-163
iterating 162-163
manually iterating 163
methods on 162
queues, creating 166
sets, creating 166
columnConfig key 229-230
combinelngredients()
method 84-85, 87-89, 91
command-line arguments
accessing 287-288
overview 25-26
comparison operators,
overloading 177-178
complete() method 198
Completer object 197
completer.complete (value)
method 197
ConcreteMix type 76
concurrency with isolates 17-18
conditional operator 366
conn.hashCode () method
314-315, 319

connectedClients value 312
connections, web socket
tracking browser
connections 314
tracking browser disconnec-
tions and errors 315
connectToWebsocket()
method 311-312, 319
console.log() method 31
const keyword 133, 135-136
constant classes 134-136
const keyword 135-136
constructor for 134-135
properties for 134
Constructor method 127
constructors
factory 378
for classes 126-133
factory constructors
129-131
inheriting 142-143
multiple constructors 128
overview 127-128
using static methods and
properties 132-133
for constant classes 134-135
for Element interface
223-225
initialization of 377
named 377-378
overview 375-376
parameters for 376
contains() method 18
containsKey() method 254, 357
content.elements.clear()
method 305
Convert to GBP button 268, 271
convertButton handler 276
converting
Dart objects to JSON 248-252
custom toMap ()
function 249-250
implementing interface
for 250-252
JSON to Dart objects 252-253
cookies 243-247
property 244-245
reading data from 245-247
storing data in in 244-245
value extracting 246
viewing 245
CORS (cross-origin resource
sharing) 269-270,272-273,
280, 300
CouchDB database 320, 324

CouchDbHandler class 324-328
create() method 289, 293
creating dart html elements
42-43
credential.validate ()
method 176
CredentialsValidator
interface 176
cross-browser synchronization,
with web sockets 315-320
receiving data from
browser 318
receiving data in other
browsers 319-320
sending data from
browser 317-318
cross-origin resource sharing. See
CORS
CruiseControl 27
CSS class 55, 60-61, 230
CSS file 305
CSS selectors 37
ctx.beginPath () method 20
ctx.closePath () method 20
ctx.fill() method 20
custom matchers, creating

66-67

D

Dart
Editor 20-21
event-loop model 25
html browser events 52-53
and HTML5 19-20
io library 288-294
listing files and folders
289-290
overview 3-5
querying HTML elements
in 54-56
reading files 290-292
similarity with other
languages 5
single-page application
architecture 6-7
VM 21
writing files 293-294
Dart file 23, 31-32, 57, 97
dart html
browser events 52-53
creating elements with 42-43
Dart Lottery app 184, 188, 202
Dart object 249, 257
Dart SDK 28, 35-36

INDEX

Dart type 168
Dart VM (Dart Virtual
Machine) 4, 24
dart_analyzer tool 27, 35
dart:html library 35-36,
212-213, 217, 260, 283, 286
dart:io library 283, 286
dartjson library 171, 181, 217
dart2js tool 22, 32-33
dartdoc 34
DartExpense app 238, 240, 244,
254, 256-257
DartExpense example 211-236
application structure 216-217
<div> element 218
execution flow 217-219
handling browser events
231-236
event types 235
modifying bubbling
phase 233-234
modifying capture
phase 234-235
overview 212-215
serving 309-310
Ul for 220-230
element constructors
223-225
and Element
interface 220-223
generic grid for 228-230
views for 225-228
dartexpense.appcache file
273-274, 279
DartExpense.html file 223, 264
Dartium 4-5, 21-22
data 237-257
and browser navigation
239-243
adding items to
history 239-241
detecting browser
navigation 241-243
using cookies 243-247
reading data from 245-247
storing data in in 244-245
using Web Storage 247-257
converting Dart objects to
JSON 248-252
converting JSON to Dart
objects 252-253
implementing 256-257
inserting data 254-255
reading data from 256

389

data delays, with asynchronous
programming 187-188
DataAccess interface 215, 256
database systems, interacting
with 321
Date type 250
Date.now() method
172-173, 185
date.toString () method
250-251
Date() method 353
DateList() method 171
debug() method 96, 100, 109
debugging, in Editor 34-35
default implementations 13
default values, for functions 361
defaultReceivePort.close ()
method 349
defaultReceivePort.toSend-
Port() method 348-349
defaultRequestHandler()
method 296, 299
defining libraries 96-98
delete () method 289
dependency injection 121
Developer Mode check box 279
DirAnalysis.dart file 342-343
Directory Analysis app 332
Directory type 288-289, 291,
294, 307
directory.exists() method
289, 293
Directory.existsSync()
method 289
directory.list() method 293
Directory(folder).list()
method 301
DirectoryLister command
290, 302
DirectoryLister() method 332
disabling editing 317
disconnections, tracking for
browsers 315
<div> elements 43, 48, 186,
191, 223
DivElement class 42, 220
do while loops 368
doCalculation () method
362-363
document object model. See
DOM
document.body property 46
document.cookie property
244, 246
document.head property 46

390

document.query() method 221
documentary typed 10
documentation, in Editor 34
dog.eat() method 379
dog.printLegCount()
method 375
dog.run() method 379
Dog() method 379-381
doLogon () method
121-123, 149
DOM (document object
model) 24
DOM elements, accessing in
Editor 37
DOM_events page 233
DOMException 255
drawChart() method 264-266
dynamic types 154-156
dynamically loading code, with
isolates 341-345
defining dynamic source
file 344-345
spawning isolate using
filename 343-344
dynamicSourceFiles
variable 342-344

E

eat() method 379-383
Editor 20-21
accessing DOM elements 37
autocomplete in 29
code suggest in 29
Dart files in 30
debugging with
breakpoints 34-35
dynamically adding elements
to page 38
generating documentation
with dartdoc 34
HTML files in 30
importing libraries 36-37
running app from 30-31
tools in 27-29
using dart2js 32-33
EditView 214, 225-226
Element class 40, 42, 127
Element interface 46, 220-222,
231, 235
constructors for 223-225
overview 220-223
Element.html constructor
44, 220

INDEX

Element.html() method 46-47,
54,128, 220, 231
element.on property 52, 236
element.queryAll 54
element.style property 48
Element.tag constructor 220
Element.tag() method 45-47,
128, 220, 231
ElementEvents interface
231-232
elements
adding to HTML
document 46-49
creating by tag name 45-46
creating from HTML
snippets 44-45
creating with dart html 42-43
querying in dart html 54-56
elements.add () method 225
elements.clear() method 225
EnterpriseAuthService
class 123-128
EnterpriseAuthService ()
method 125, 127-128,
130-131, 133
EnterpriseDog() method 382
EnterpriseLLogonService
class 123
EnterpriseUser class
140, 143-145, 151
EnterpriseUser() method 141
entry-point for app 42
enums 226
errorMessage () method 136
eval() method 6
event handling, browser
231-236
event types 235
modifying bubbling
phase 233-234
modifying capture
phase 234-235
Event interface 235
event loop 285, 287, 295, 297
event.stopPropagation ()
method 233
EventListenerList 53, 231-232
ex.id value 227
execution flow, for DartExpense
example 217-219
exists() method 289-291
existsSync() method 289
expect() method 64, 67
expectAsync() method 205-206

expectations, defining for
unit-testing 64-65
Expense class 214, 227,
251-252, 318, 324
expense.amount.toString ()
method 229
expense.date.toString ()
method 229
expense.toJson () method
318, 328
Expense.toMap() method 250
Expense() method 253
expenseSummary.getKeys ()
method 263
ExpenseType class 214, 244,
248-250, 252-253
ExpenseType type 250, 253
ExpenseType.toMap()
method 250
expires property 245
explicit interface definitions, for
classes 123-124
extending, classes with
inheritance 139-146
including abstract
classes 144-146
inheriting constructors
142-143
overriding methods and
properties 143-144
overview 140-141
external keyword 321
external servers, communicating
with 268-273
security restrictions for
269-270
using JSONP 270-273
extractAdminPermissions ()
method 162, 168-169

F

F3 command 28

factory constructors 12-13,
129-131, 378

factory keyword 133

FALLBACK section 276

file.exists() method 292, 298

file.openInputStream ()
method 292

file.readAsText() method
291, 303

FileContentHandler class
299-300, 302

FileContentHandler ()
method 300
fileList variable 335, 342-343
filename, spawning isolate
using 343-344
filePath parameter 289
files
listing 289-290
reading 290-292
writing 293-294
fileSize.dart file 343
fileTypes.dart file 343
filter() method 162, 182
final keyword 9
final properties 135
first edit wins 317
first-class functions
as closures 363
as function arguments 362
as return types 363
as variables 362
first-class objects, functions
as 16-17
firstname field 120
flow control
conditional operator 366
if/else statements 364-366
switch statement 367
fly() method 379
FolderListHandler class
299-301
FolderListHandler()
method 300
folders, listing 289-290
foldersToProcess.removeFirst()
method 348-349
footer panel 315
for each loops 369-370
for in loops 369
for loops 369
forEach () method 182, 251,
364, 370
forename field 120
formatResultString ()
method 202
fromMap () method
252, 256-257, 377
funcParam () method 252
Function class 89, 93
Function type 89
function_name () method 74
function () method 32-33
functions 72-89
as first-class objects 16-17
first class functions 362-363

INDEX

as closures 363
as function arguments 362
as return types 363
as variables 362
for browser events 50-52
keyword 51, 73
local functions 83-88
anonymous function
declaration 85-87
named function
declaration 87-88
simple declaration 84-85
longhand syntax 360
parameters for 77-81, 361
default values for 361
named 80-81
optional parameters 361
passing by reference 77-78
positional 78-80
private 109-110
return type for 75-76
scope of 82
shorthand syntax 360-361
strong function types 88-89
using imported 100-101
void type for 76-77
functions.dart 111
Future class 201
future.chain (callback)
method 199
future.then() method 199
Future<bool> value 289
futures
asynchronous programming
using 197-203
ordering async calls by
chaining futures
199-200
passing future values
198-199
transforming nonfuture
values into 202-203
waiting for futures to
complete 200-201
testing values of 205-207
Futures class 201
Futures.wait() method
200-201, 206
Future<String> value 325

G

generic classes
defining 173-175

391

restricting types in 175-176
using 175
generic grid, for Ul 228-230
generic lists and maps 358-359
Generic type 174
generics, limiting types in
collections with 166-170
replacing placeholder
types 168-169
testing type in list 169-170
get keyword 125
GET method 323
GET request 294
getAggregatedData()
method 262-263
getCredentialsList()
method 175
getData() method 325-328
getDynamicTable ()
method 228-230
getElementsByld () method 18
getElementsByName ()
method 18
getExpenseByld () method 239
getFileList() method 337, 343
getFileListEntryPoint()
method 346
getFileSizes() method 332, 337
getFileSizesEntryPoint()
method 334, 337, 340
getFileTypes() method 332, 337
getFileTypesEntryPoint()
method 334, 336-337,
339-340
getFromCache() method
132-133
getFullName () method 120
getFutureWinningNumber ()
method 198-202, 204-206
getGreeting () method 360
getNextld() method 327, 329
getResultsString () method
194, 196, 200, 202-204
getRoles() method 124, 126
getServerLogger ()
method 108-109
getShovel () method 91-92
getStringFromInputStream ()
method 325, 328
getSumFunction () method 363
Getter method 140
getters and setters, for
classes 125-126, 373-374
getUserRoles() method 124
getValueFunc() method 229-230

392

getWinningNumber ()
method 185-186, 204-205
getWinningNumbers ()
method 195
GitHub 36, 114
Google Chrome
259, 273-275, 278
Google Web Toolkit. See GWT
Google, chart library 259
Gravel () method 73, 76, 83-89
Greeter class 12-13
Greeter() method 11-14
greeterPrivate () method 15
greetFunc() method 13
GWT (Google Web Toolkit)
22, 34, 259

H

<hl> tag 42
<h2> tag 42, 47
handler() method 301, 325
hashCode property 314
hasNext() method 163-164
HelloWorld.dart 25, 30
history, adding items to 239-241
host:port combination 297
HTML files, in Editor 30
HTML table 225-229, 236
HTMLDb, and Dart 19-20
HTTP method 322-323
HTTP requests
HttpServer class 295-297
serving static files 297-298
HttpClient class, storing data
with 320-329
adding support for data
persistence 324-329
CouchDB overview 321-323
sharing class between client
and server 324
HttpClient.open() method 325
HttpClient() method 328
HttpClientRequest
parameter 329
HttpClientResponse
parameter 325, 329
HttpRequest 190
HttpRequest.path property 298
HttpResponse object 297
HttpServer class 295-297,
312, 320
HttpServer() method 297-298,
300, 313-314

INDEX

IDL (Interface Definition
Language) 20
if/else statements 364-366
IGreetable class 12
IGreetable interface 12
IGreetable() method 13
implements keyword
12, 122-123, 126, 136
implied interface
definitions 11-12
import keyword 115
import prefix 102
import statement 98, 103
importing libraries 98-103
in Editor 36-37
libraries importing other
99-100
preventing name clashes
102-103
using imported classes
101-102
using imported
functions 100-101
incAnimalCount() method 383
IndexedDB 247-248
indexer operators,
overloading 179-181
info() method 96, 102, 109
Ingredient() method 78
inheritance
extending classes with
139-146
including abstract
classes 144-146
inheriting
constructors 142-143
overriding methods and
properties 143-144
overview 140-141
for classes 379-380
init() method 32-33
InputElement interface 222
InputStream inputStream 292
InputStream type 291
inputStream.read ()
method 293, 325
inserting, new items into
maps 171-173
installable, server-less browser
apps 273-280
packaging as Chrome web
app 277-280

using AppCache to run
offline 273-277
falling back to offline
file 276-277
file available only when
there is network
connection 275-276
files to cache locally
274-275
Interface Definition Language.
See IDL.
interfaces 119-137, 382-383
abstract classes 383
coding against 121-123
constant classes 134-136
const keyword 135-136
constructor for 134-135
properties for 134
constructors for 126-133
factory constructors
129-131
multiple constructors 128
overview 127-128
using static methods and
properties 132-133
extending with
inheritance 139-146
including abstract
classes 144-146
inheriting
constructors 142-143
overriding methods and
properties 143-144
overview 140-141
multiple interfaces 383
properties for, declaring get-
ters and setters for 125-126
using explicit
definitions 123-124
using multiple
interfaces 124-125
interpolation, of strings
7-8, 354
inversion of control 121
is3d:true option 265
isConnected property 125
isEmpty() method 18, 252
isEnabled property 105-106
isFromPopState parameter
242-243
Isolate() method 32-33
IsolateName property 335
isolates 3, 17, 331-350
concurrency with 17-18
creating 332-335

isolates (continued)
loading code
dynamically 341-345
defining dynamic source
file 344-345
spawning isolate using
filename 343-344
one-way communication
with 335-338
receiving data from
335-338
sending data to 335
spawning multiple
workers 345-350
two-way communication
with 338-341
closing ReceivePort
340-341
sending and receiving data
between 340
sending data to 338-339
using replyTo
argument 339
isPacked property 60-61
isPasswordValid () method
143-146
item.level () method 86
item.openBag() method 87
item.pour() method 86
item.store () method 86
itemContainer DivElement 49
itemContainer.queryAll 55
itemText property 57-58,
65, 101
Iterable class 166
Iterable interface 162
iterating collections
manually 163
overview 162-163
iterating. Seeloops
Iterator interface 163-164
iterator.next() method 164
iterator() method 163

J

JavaScript
chart library 262-263
files 22, 30, 34, 37, 100,
216, 273
reading data from 265-268
reading data in 263-265
sending data to 262-263
JavaScript Native Interface. See
JSNI

INDEX

JavaScript Object Notation with
Padding. See JSONP
JavaScript Object Notation. See
JSON
JSNI (JavaScript Native
Interface) 259
JSON (JavaScript Object
Notation) 158, 171, 248
converting Dart objects
to 248-252
custom toMap ()
function 249-250
implementing interface
for 250-252
converting to Dart
objects 252-253
sending to REST client
301-303
JSON file 277
JSON property 324
JSON-formatted object 294
JSON.parse () method
248, 252, 257
JSON.stringify() method
181, 248-252, 257, 324
JSONP (JSON with
Padding) 258, 268,
270273
dynamically adding script
element 270-273
overview 270

K

Key type 170
key/value pairs 262

L

language features, building 105
lastname field 120
latest edit wins 317
lay() function 72, 76, 89
libraries 94-118
defining 96-98, 384
importing 98-103
libraries importing other
libraries 99-100
preventing name
clashes 102-103
using imported
classes 101-102
using imported
functions 100-101

393

importing in Editor 36-37
organizing 110-114
packaging 114-115
privacy for 385
private classes in 105-109
accessing private fields 106
private methods for 107
public methods for
107-109
private functions in 109-110
scope for 13-15
and scripts 116-117
library file 113
library keyword 13
library scope 82
List class 29
List data 314, 317
List interface 161, 225
List.add () method 86
List.from () method 166
List() method 161, 165, 167,
195, 201-202, 356, 378
list() method 289
listDir () method 288, 291-292
listen() method 297
listing files, and folders 289-290
lists
creating 165-166
declaring variables 355-356
generic 358-359
ListView class 214, 218,
223-228, 230-231
ListView.refreshUI()
method 228
LOAD action 321, 329
Load Unpacked Extension
option 279
loadData() method 327-329
loadExpenses() method 256
loadFileContent() method
304-305
loadFirstView() method 218,
220, 224, 246
loadFolderList() method 304
loading code dynamically, with
isolates 341-345
defining dynamic source
file 344-345
spawning isolate using
filename 343-344
loadPieChart(chartData)
method 264-266
local functions 83-88
anonymous function
declaration 85-87

394

local functions (continued)
named function
declaration 87-88
simple declaration 84-85
LocalStorage () method 311
LocalStorageData class 256
LocalStorageData()
method 256
log() method 107
Logger class 98, 101-102,
105-106, 109
logger.getServerLogger()
method 109
Logger() method 101, 109
logging messages, PackList
app 102
loglib library 100, 102, 105,
109-110, 113, 116-117
loglib.dart library 99
logMsg() function 117
LogonLibrary library 121
longhand functions 74
longhand syntax, for
functions 360
loops
do while loops 368
for each loops 369-370
for in loops 369
for loops 369
while loops 368-369
lottery library 187
lottery_app.dart file
187, 190-191, 195, 198-199
lottery.dart file 190-191

main() function 6, 15, 85

Manage Launches dialog
box 287

mandatory positional
parameters 80

manifest attribute 273

manifest file, AppCache 274

manifest.json file 277-279

Map class 248, 257

Map interface 159, 170-172,
180-182, 256

Map object 171

Map() method 133, 314, 318,
329, 358

Map<ExpenseType,
double> 262

maps

accessing 171

INDEX

creating 170-171
declaring variables 357-358
generic 358-359
inserting new items into
171-173
markExpired() method 142
matcher() method 301
matches() method 66
max-age property 245
measure () method 72
measureQty() method
77-81, 89
methods
for classes 374-375
on collections 162
overriding 143-144, 380
private 107
static 132-133, 383
Milestone 1 249
minification 104
mix () method 72,74, 76, 82, 85,
89, 91-92
Mixer.start() method 76
mixer() method 87-88
mixFunc parameter 89
mixFunction variable 82
Mock class 122
mock data 212, 214, 218-219
MockAuthService class 122-123
MockData class 215, 256
MockData() method
219, 243, 256
MockDog() method 382
MongoDB 247
monkey-patching 216
MouseEvent type 235
multiple constructors, for
classes 128
multiple interfaces, for
classes 124-125
multiply() method 363
myCallbackFunctionName
parameter 270
MyClass() method 371-372
myEventListenerFunction 53
mySumFunc variable 17

N

name clashes, preventing when
importing libraries
102-103

named constructors 377-378

named function declaration, for
local functions 87-88

named parameters, for
functions 80-81
naming conventions 105
navigate () method 226, 238,
247, 304-305
navigator.webkitStartDart()
method 30, 216
nested callbacks 195, 199, 207
NETWORK: section 276
new keyword 127
newFile.openOutputStream ()
method 293
next() method 163, 168
nextld document 323
nonblocking I/O 291, 295
nonfinal properties 135
NoSQL database 307-309,
320-321
noSuchMethod () method
27, 151-154, 156
numberOfCementBags
73, 77-80
numbers, declaring
variables 353

(0]

Object class 7, 10, 139
Object.noSuchMethod ()
method 151
Object.toString () method 150
Object() method 8, 134, 150,
353, 355, 357, 364
objects 147-154
collections of 160-163
iterating 162-163
manually iterating 163
methods on 162
default functionality of Object
class 153-154
intercepting noSuchMethod ()
calls 151-153
testing 147-150
toString () method for
150-151
offline data 237-257
and browser navigation
239-243
adding items to
history 239-241
detecting browser
navigation 241-243
using cookies 243-247
reading data from 245-247
storing data in in 244-245

offline data (continued)
using Web Storage 247-257
converting Dart objects to
JSON 248-252
converting JSON to Dart
objects 252-253
implementing 256-257
inserting data 254-255
reading data from 256
offline storage technologies 247
on.message event 311
on.message handler 319
onClosed () method 292, 315
onData() method 292
onDatalLoaded () method
270271
onDir() method 299
onDone() method 301
one-way communication, with
isolates
receiving data from 335-338
sending data to 335
onFile() method 299
onMessage () method 312, 315,
318, 320
onOpen() method 313
onPopState() method 242-243,
245-246
onRequest() method
313, 325, 329
onResponse () method 325, 329
Open Declaration command 28
open() method 329
operator keyword 181
Operator method 178
operators, overloading 176-181
cautions for 179
comparison operators
177-178
indexer operators 179-181
option typing 9
optional parameters, for
functions 361
Options class 287, 342
Options.dart file 302
Options() method 287-288, 343
organizing libraries 110-114
out parameter 290
Outline view 29
Output file 289
outputFile () method 288, 292
OutputStream type 293, 320
outputStream.close ()
method 326

INDEX

overloading operators 176-181
cautions for 179
comparison operators

177-178
indexer operators 179-181

P

<p>elements 18
Pack Extension option 279
packaging libraries 114-115
PackItem class 56-57, 60, 101
PackList application 41, 43
PackList file 101
PackList.html file 62
PackListTest.html file 62
paragraphContent variable 45
parameter definitions 77
parameters
for constructors 376
for functions 77-81, 361
default values for 361
named 80-81
optional parameters 361
passing by reference 77-78
positional 78-80
part files 112, 216-217, 219
part keyword 111, 113-114
payload field 261
Permission class 160, 167-168,
173,176
Permission type 168
PermissionList 167-168
pipe() method 297-298
popState() method 304
port.close() method 341, 344
port.receive () method 336
port.toSendPort() method
339-341, 344
positional parameters, for
functions 78-80
POST method 306
postMessage () method 260-268
print() method 30, 32, 95, 98,
110, 127, 150, 360
printGreeting () method 12
printHelp() method 288-289
printLegCount() method
374-375
privacy model 95
privacy, for libraries 385
private classes, in libraries
105-109
accessing private fields 106

395

private methods for 107

public methods for 107-109
private functions, in

libraries 109-110

privateInstance.serverName 109
prnt() method 27
properties

for classes 125-126, 372-373

for constant classes 134

overriding 143-144

static 132-133

static properties 383
pub install command 63
pub package manager 22
pubspec.lock file 115
pubspec.yaml file 64, 114
pushState () method 239-244,

257, 304

PUT method 323
putIfAbsent() method 172

Q

query() method 18, 37, 56
queryAll() method 18, 54, 56
querying HTML elements in
dart
html 54-56
queue.removeFirst()
method 166
Queue () method 166
queues, creating 166

Random () method
185, 189, 192
RangeError() method 180
RCP (Rich Client Platform) 20
read() method 292
readAsText() method 291, 307
readAsTextSync() method 291
ReaderPermission class
159-160, 165-169
reading data
from cookies 245-247
from JavaScript 263-268
from Web Storage 256
reading files 290-292
real-world synchronization 317
receive() method 264, 349
receiveFromDart() method 265
ReceivePort, closing 340-341

396

receivePort.toSendPort()
method 347
receiving data, with
isolates 335-338, 340
recursive function 85
refreshFooterStatus()
method 312, 320
refreshUI() method 226
removeFirst() method 166
removelast() method 356
replay() method 117
replyTo argument 339, 348
replyTo parameter 336, 338-339
Representational State Transfer.
See REST
requestAnimationFrame ()
method 193
res.outputStream.close ()
method 297, 302-303
resetLottery() method 185-186
REST (Representational State
Transfer)
RESTful interface 306
sending directory list as JSON
data 301-302
sending file content as JSON
data 302-303
server-side Dart for 299-306
user interface example
303-306
restricting types, in generic
classes 175-176
return keyword 74-77, 81, 93
return types
for functions 75-76
functions as 363
rev property 324
Rich Client Platform. See RCP
Role class 173, 178, 180-181
RoleService interface 125-126
RolesService class 124
run() method 379, 383
running app, from Editor 30-31

S

same-origin policy 269

Sand() method 73, 76-77,
79-80, 85, 88-89

sayHello() method 11, 360, 375

scope, for libraries 13-15

script element, dynamically
adding 270-273

<script> tags 15, 42, 264

INDEX

scriptElement.remove ()
method 270, 272, 276
scripts, and libraries 116-117
security restrictions, for commu-
nicating with external
servers 269-270
send() method 312, 314-315,
317, 320, 335, 338-339
send (data, replyTo)
method 339
sending data
to JavaScript 262-263
with isolates 335, 338-340
sendPort.send() method
337, 341
sendToDart() method 266, 268,
270, 273
sendToJavaScript()
method 261-264, 266
sendToServer() method 107
sendUpdatedConnection-
Count() method
314-315, 319
server restrictions 63
server-less browser apps
273-280
packaging as Chrome web
app 277-280
using AppCache to run
offline 273-277
falling back to offline
file 276-277
file available only when
there is network
connection 275-276
files to cache locally
274-275
server-side Dart 283-330
accessing command-line
arguments 287-288
files and folders 288-294
listing 289-290
reading files 290-292
writing files 293-294
for REST clients 299-306
sending directory list as
JSON data 301-302
sending file content as
JSON data 302-303
user interface
example 303-306
HTTP requests 294-298
HttpServer class 295-297
serving static files 297-298

serving DartExpense
example 309-310
storing data with
HttpClient 320-329
adding support for data
persistence 324-329
CouchDB overview
321-323
sharing class between client
and server 324
web sockets 310-320
connecting on client
side 311-312
cross-browser synchroniza-
tion with 315-320
handling requests 313
tracking browser
connections 314
tracking browser disconnec-
tions and errors 315
server-side scripts 284-286
ServerLogger class 107-109
set keyword 125
Set.from () method 166
Set() method 166
sets, creating 166
setters, for classes 373-374
setTimeout() function 188-190
shorthand functions 74
shorthand syntax, for
functions 360-361
shovel () method 92
single-page application
architecture, of Dart 6-7
sleep() method 381-382
Snake () method 376
Socket type 321
some () function 162
someFunction () method 384
someOtherFunctionInMy-
Library() method 384
someOtherFunctionInOther-
Library() method 384
Sort method 29
source files
overview 13
restrictions 113
spawnFunction () method
333-334, 339, 343, 345,
347, 350
spawning
isolate using filename
343-344
multiple workers 345-350
spawnUri() method 343, 350

SQL database 247
src property 270
startLottery() method 185-186
startMixer() method 76
stateData cookie 244, 246
StateError 163
static files, serving HTTP
requests 297-298
static methods, for classes
132-133, 383
static properties, for
classes 132-133, 383
StaticFileHandler class 298-299
StaticFileHandler()
method 298, 300, 314
stir() method 85
stopImmediatePropagation ()
method 234-235
stopPropagation ()
method 233-235
storing data
in cookies 244-245
in Web Storage 254-255
with HttpClient 320-329
adding support for data
persistence 324-329
CouchDB overview
321-323
sharing class between client
and server 324
str.close () method 293
String type 292, 354
String.fromCharCodes()
method 292
string.split() method 246
StringBuffer type 292
StringBuffer() method 293, 325
stringify() method 251
strings
declaring 44
interpolation of 7-8, 354
overview 353
strong function types 88-89
subinterfaces 222
subString () method 301
subtract() method 363
sum () method 361-363
super.toString () method
150-151
surname field 120
switch statement 367
switching, between views 226
SYNC action 319, 321
sync methods vs. async
methods 289

INDEX

synchronization mechanism 317
synchronous code 190
synchronous model 183
syntactic sugar 50
syntax
class-based 10-11
concurrency with isolates
17-18
factory constructors in 12-13
functions in, as first-class
objects 16-17
implied interface
definitions 11-12
libraries, scope for 13-15
optional types in 9-10
strings in, interpolating 7-8

T

table.elements list 226
TableRowElement 226-227
targetOrigin 261
test runs, automating 65
test() method 203-204
then() method 198-199, 201,
204-206
this keyword 135
this.printLegCount()
method 375
TIMESHEET_ADMIN role 177
TIMESHEET REPORTER
role 177
TIMESHEET_USER role 177
toGMTString () method 245
toJson() method 253
toMap() method 249-252
tools
Dart Editor 20-21
Dart VM 21
dart2js 22
Dartium browser 21-22
in Editor 27-29
pub package manager 22
toString () method 7-8, 139,
150-151, 250, 292-293, 325
toUpperCase () method 354
transform () method 201-203,
206-207
tree-shaking 214
truelfNull() method 9
TryOptions.dart file 292
two-way communication, with
isolates 338-341
closing ReceivePort 340-341

397

sending and receiving data
between 340
sending data to 338-339
using replyTo argument 339
type field 261
type.toMap () method 250-251
typedef keyword 89-90, 93
types
optional 9-10
restricting in generic
classes 175-176
typing feature 5

u

UI (user interface) 41-49
adding elements to
document 46-49
and Element interface
220-223
creating dart html
elements 42-43
creating elements by tag
name 45-46
creating elements from
HTML snippets 44-45
element constructors
223-225
entry-point 42
generic grid for 228-230
views for 225-228
building ListView 226-228
switching between 226
uiElement getter 60, 62
uiElement property 58-60
uiElement() method 59, 101
underscore character 11, 104
underscore prefix 59
UnimplementedError 251-252
UnimplementedError()
method 252
unit-testing 62-67
asynchronous
programming 203-207
testing callback
functions 205
testing future values
205-207
creating custom matcher
66-67
creating tests 64
defining expectations 64-65
unittest library 64
updateResult() method
191, 198

398

updateUserInterface ()
method 198
updateView() method 226, 239
updateWinningNumbersDiv()
method 202
useHtmlConfiguration ()
method 63-64, 67, 204-206
User class 120, 161, 173,
175-176, 179
user interface example, for
REST client 303-306
user interface. See Ul
User.credentials 173
user.getFullName () method 120
User.permissions 173
user.permissions.iterator ()
method 163
User() method 120, 122, 175,
179-180
username () method 145
useVmConfiguration ()
method 63
usingServer () method 131

'

validate () method 151, 176
Value type 170
var keyword 58, 352
variables 351-359
booleans 355
declaring final 352
declaring with var
keyword 352
functions as 362
generic lists and maps
358-359
lists 355-356
maps 357-358
numbers 353
strings
interpolation of 354
overview 353
viewContainer property
223-225, 239
viewElement property 214, 223,
225-227, 229, 231
views
building ListView 226-228
switching between 226
ViewType . EDIT 225-227, 232
ViewType.LIST 225-226
VM (virtual machine) for
Dart 21
void type, for functions 76-77

INDEX

w

wait() method 200-202, 207
waiting, for futures to
complete 200-201
warn () method 96, 109
Water() method 73
web app, DartExpense 211-236
application structure 216-217
execution flow 217-219
handling browser events
231-236
event types 235
modifying bubbling
phase 233-234
modifying capture
phase 234-235
overview 212-215
Ul for 220-230
and Element
interface 220-223
element constructors
223-225
generic grid for 228-230
views for 225-228
web sockets 310-320
connecting on client
side 311-312
cross-browser synchronization
with 315-320
receiving data from
browser 318
receiving data in other
browsers 319-320
sending data from
browser 317-318
handling request 313
tracking browser
connections 314
tracking browser disconnec-
tions and errors 315
Web Storage 247-257
converting Dart objects to
JSON 248-252
custom toMap ()
function 249-250
implementing interface
for 250-252
converting JSON to Dart
objects 252-253
implementing 256-257
reading data from 256
storing data in 254-255

WebGL 19
WebKit IDL. 20
WebLogger 102
WebSocket class 320
WEBSOCKET_URL
constant 311-312, 319
WebSocketConnection
object 312, 314-315
WebSocketConnection on-
Message () method 318
WebSocketHandler.onOpen ()
method 314
WebSocketHandler ()
method 313-314
WebSocketStatus class 315
welcomer.printGreeting ()
method 12
Welcomer() method 12
while loops 185, 368-369
widget libraries 220
window object 260, 264
window.addEventListener()
method 264
window.addMessageListener()
method 268
window.history.push-
State (data,title,url)
method 243
window.localStorage
property 253
window.location.href
261-262, 266
window.navigator.onLine
property 275
window.postMessage ()
method 262, 266, 268
window.sessionStorage
property 253
window.setTimeout()
method 189, 192
winningNumbers element 195
write() method 293-294
writing files 293-294

X

XMLHttpRequest()
method 190, 218, 269

Y

YAML file 114

WEB DEVELOPMENT

INACTION

Chris Buckett

It has modern OO features, just like Java or C#, while keep-

ing JavaScript’s dynamic and functional characteristics.
Dart applications are “transpiled” to JavaScript, and they run
natively in Dart-enabled browsers. With production-quality
libraries and tools, Dart operates on both the client and the
server for a consistent development process.

D art is a web programming language developed by Google.

Dart in Action introduces the Dart language and teaches you to
use it in browser-based, desktop, and mobile applications. Not
just a language tutorial, this book gets quickly into the nitty-
gritty of using Dart. Most questions that pop up while you're
reading are answered on the spot! OO newbies will appreciate
the gentle pace in the early chapters. Later chapters take a
test-first approach and encourage you to try Dart hands-on.

What's Inside

Dart from the ground up

Numerous code samples and diagrams
Creating single-page web apps
Transitioning from Java, C#, or JavaScript

Running Dart in the browser and on the server

To benefit from this book you'll need experience with HTML
and JavaScript—a Java or C# background is helpful but not
required.

Chris Buckett builds enterprise-scale web applications. He runs
Dartwatch.com and is an active contributor to the dartlang list.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/DartinAction

$44.99 / Can $47.99 [INCLUDING eBOOK]

€CIncludes numerous exam-
ples of core language features
as well as more advanced
HTMLS features. 3

—From the Foreword by
Seth Ladd, Developer
Advocate, Google

€C A compelling and capti-
vating book about learning
and working with Dart as an
alternative to JavaScript. 39
— Glen Stokol

Oracle Corporation

€CPuts the future of web apps
in the palm your hand. 33
—Rokesh Jankie, QAFE, Inc.

€CThe perfect guide for
a beautiful language. 39

—Willhelm Lehman
Websense, Inc.

ISBN 13: 978-1-L17290-8k-2
ISBN 10: 1-k17290-8L-k

“ ‘H 5‘4 I
IM7816171290862

	Dart in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Audience
	Roadmap
	Code conventions and downloads
	Software requirements
	Author Online
	About the author

	about the cover illustration
	Part 1: Introducing Dart
	Chapter 1: Hello Dart
	1.1 What is Dart?
	1.1.1 A familiar syntax to help language adoption
	1.1.2 Single-page application architecture

	1.2 A look at the Dart language
	1.2.1 String interpolation
	1.2.2 Optional types in action
	1.2.3 Traditional class-based structure
	1.2.4 Implied interface definitions
	1.2.5 Factory constructors to provide default implementations
	1.2.6 Libraries and scope
	1.2.7 Functions as first-class objects
	1.2.8 Concurrency with isolates

	1.3 Web programming with Dart
	1.3.1 dart:html: a cleaner DOM library for the browser
	1.3.2 Dart and HTML5

	1.4 The Dart tool ecosystem
	1.4.1 The Dart Editor
	1.4.2 Dart virtual machine
	1.4.3 Dartium
	1.4.4 dart2js: the Dart-to-JavaScript converter
	1.4.5 Pub for package management

	1.5 Summary

	Chapter 2: “Hello World” with Dart tools
	2.1 The command-line Dart VM
	2.2 “Hello World” with the Dart Editor
	2.2.1 Exploring the Dart Editor tools
	2.2.2 The relationship between Dart and HTML files
	2.2.3 Running “Hello World” with Dartium
	2.2.4 Using dart2js to convert to JavaScript
	2.2.5 Generating documentation with dartdoc
	2.2.6 Debugging Dart with breakpoints

	2.3 Importing libraries to update the browser UI
	2.3.1 Importing Dart libraries
	2.3.2 Accessing DOM elements with dart:html
	2.3.3 Dynamically adding new elements to the page

	2.4 Summary

	Chapter 3: Building and testing your own Dart app
	3.1 Building a UI with dart:html
	3.1.1 Entry-point HTML
	3.1.2 Creating dart:html elements
	3.1.3 Creating a new Element from HTML snippets
	3.1.4 Creating elements by tag name
	3.1.5 Adding elements to an HTML document

	3.2 Building interactivity with browser events
	3.2.1 Adding the PackList item from a button click
	3.2.2 Event handling with Dart’s flexible function syntax
	3.2.3 Responding to dart:html browser events
	3.2.4 Refactoring the event listener for reuse
	3.2.5 Querying HTML elements in dart:html

	3.3 Wrapping structure and functionality with classes
	3.3.1 Dart classes are familiar
	3.3.2 Constructing the PackItem class
	3.3.3 Wrapping functionality with property getters and setters

	3.4 Unit-testing the code
	3.4.1 Creating unit tests
	3.4.2 Defining test expectations
	3.4.3 Creating a custom matcher

	3.5 Summary

	Part 2: Core Dart
	Chapter 4: Functional first-class functions and closures
	4.1 Examining Dart functions
	4.1.1 Function return types and the return keyword
	4.1.2 Providing input with function parameters

	4.2 Using first-class functions
	4.2.1 Local function declarations
	4.2.2 Defining strong function types

	4.3 Closures
	4.4 Summary

	Chapter 5: Understanding libraries and privacy
	5.1 Defining and importing libraries in your code
	5.1.1 Defining a library with the library keyword
	5.1.2 Importing libraries with import

	5.2 Hiding functionality with library privacy
	5.2.1 Using privacy in classes
	5.2.2 Using private functions in libraries

	5.3 Organizing library source code
	5.3.1 Using the part and part of keywords

	5.4 Packaging your libraries
	5.5 Scripts are runnable libraries
	5.6 Summary

	Chapter 6: Constructing classes and interfaces
	6.1 Defining a simple class
	6.1.1 Coding against a class’s interface
	6.1.2 Formalizing interfaces with explicit interface definitions
	6.1.3 Using multiple interfaces
	6.1.4 Declaring property getters and setters

	6.2 Constructing classes and interfaces
	6.2.1 Constructing class instances
	6.2.2 Designing and using classes with multiple constructors
	6.2.3 Using factory constructors to create instances of abstract classes
	6.2.4 Reusing objects with factory constructors
	6.2.5 Using static methods and properties with factory constructors

	6.3 Creating constant classes with final, unchanging variables
	6.3.1 Final values and properties
	6.3.2 The constructor initialization block
	6.3.3 Using the const keyword to create a const constructor

	6.4 Summary

	Chapter 7: Extending classes and interfaces
	7.1 Extending classes with inheritance
	7.1.1 Class inheritance
	7.1.2 Inheriting constructors
	7.1.3 Overriding methods and properties
	7.1.4 Including abstract classes in a class hierarchy

	7.2 Everything is an object
	7.2.1 Testing the “is-an” relationship with Object
	7.2.2 Using the “is-an” Object relationship
	7.2.3 Using toString() functionality inherited from the base Object class
	7.2.4 Intercepting noSuchMethod() calls
	7.2.5 Other default functionality of the Object class

	7.3 Introducing the dynamic type
	7.3.1 Using the dynamic type annotation

	7.4 Summary

	Chapter 8: Collections of richer classes
	8.1 Working with collections of data
	8.1.1 Collections of objects
	8.1.2 Using the concrete implementations of the Collection interface
	8.1.3 Making collections specific with generics
	8.1.4 Storing lists of key/value pairs with generic maps

	8.2 Building your own generic classes
	8.2.1 Defining a generic class
	8.2.2 Using your custom generic class
	8.2.3 Restricting the types that can be used as placeholders

	8.3 Operator overloading
	8.3.1 Overloading comparison operators
	8.3.2 Surprising use for operator overloading
	8.3.3 Overloading indexer operators

	8.4 Summary

	Chapter 9: Asynchronous programming with callbacks and futures
	9.1 Why web apps should be asynchronous
	9.1.1 Modifying your app to be asynchronous
	9.2 Using callbacks with async programming
	9.2.1 Adding async callbacks to Dart Lottery
	9.2.2 Ensuring that all async callbacks are complete before continuing
	9.2.3 Nesting callbacks to enforce async execution order

	9.3 Introducing the Future and Completer pair
	9.3.1 Passing around future values
	9.3.2 Ordering async calls by chaining futures
	9.3.3 Waiting for all futures to complete
	9.3.4 Transforming nonfuture values into futures

	9.4 Unit-testing async APIs
	9.4.1 Testing async callback functions
	9.4.2 Testing future values

	9.5 Summary

	Part 3: Client-side Dart apps
	Chapter 10: Building a Dart web app
	10.1 A single-page web app design
	10.1.1 Introducing DartExpense
	10.1.2 Dart application structure
	10.1.3 Dart app execution flow

	10.2 Building a UI with dart:html
	10.2.1 Understanding the Element interface
	10.2.2 Element constructors in action
	10.2.3 Building interaction with views and elements
	10.2.4 Building a simple generic grid

	10.3 Handling browser events with dart:html
	10.3.1 Managing browser event flow
	10.3.2 Common event types

	10.4 Summary

	Chapter 11: Navigating offline data
	11.1 Integrating navigation with the browser
	11.1.1 Using pushState() to add items to the browser history
	11.1.2 Listening for popState events

	11.2 Using browser cookies to enhance user experience
	11.2.1 Storing data in a cookie
	11.2.2 Reading data from a cookie

	11.3 Persisting data offline with Web Storage
	11.3.1 Converting Dart objects to JSON strings
	11.3.2 Converting JSON strings to Dart objects
	11.3.3 Storing data in browser web storage

	11.4 Summary

	Chapter 12: Communicating with other systems and languages
	12.1 Communicating with JavaScript
	12.1.1 Sending data from Dart to JavaScript
	12.1.2 Receiving data in JavaScript sent from Dart
	12.1.3 Sending data from JavaScript to Dart

	12.2 Communicating with external servers
	12.2.1 Understanding the same-origin security restrictions
	12.2.2 Using JSONP to request data from external servers

	12.3 Building installable, server-less browser apps
	12.3.1 Using AppCache to run applications offline
	12.3.2 Packaging your app as a Chrome web app

	12.4 Summary

	Part 4: Server-side Dart
	Chapter 13: Server interaction with files and HTTP
	13.1 Running server-side Dart scripts
	13.1.1 Accessing command-line arguments
	13.1.2 Accessing files and folders with dart:io

	13.2 Serving browser HTTP requests
	13.2.1 Using the Dart HttpServer
	13.2.2 Serving static files over HTTP

	13.3 Serving clients with a RESTful API
	13.3.1 Sending a directory list as JSON data
	13.3.2 Sending the file content as JSON data
	13.3.3 Adding the client-side user interface

	13.4 Summary

	Chapter 14: Sending, syncing, and storing data
	14.1 Serving DartExpense from the server
	14.2 Using web sockets for two-way communication
	14.2.1 Connecting web sockets on the client side
	14.2.2 Handling web socket connections on the server

	14.2.3 Using web sockets for cross-browser synchronization
	14.3 Storing data with HttpClient and CouchDB
	14.3.1 A quick CouchDB primer
	14.3.2 Sharing the Expense model class between client and server
	14.3.3 Adding server support for data persistence

	14.4 Summary

	Chapter 15: Concurrency with isolates
	15.1 Using isolates as units of work
	15.1.1 Creating an isolate
	15.1.2 One-way isolate communication
	15.1.3 Two-way isolate communication

	15.2 Loading code dynamically
	15.2.1 Spawning an isolate from a filename
	15.2.2 Defining a dynamic source file

	15.3 Spawning multiple workers
	15.4 Summary

	appendix A: Core language reference
	A.1 Variable declaration
	A.1.1 Declaring variables with the var keyword or type name
	A.1.2 Declaring final (read-only) variables
	A.1.3 Populating variables with literal syntax
	A.1.4 Generic lists and maps

	A.2 Functions
	A.2.1 Longhand function syntax
	A.2.2 Shorthand function syntax
	A.2.3 Function parameters
	A.2.4 First class functions

	A.3 Flow control and iterating
	A.3.1 Decision making for controlling flow
	A.3.2 Loops and iterating

	appendix B: Defining classes and libraries
	B.1 Classes and interfaces
	B.1.1 Defining classes
	B.1.2 Class inheritance
	B.1.3 Abstract classes
	B.1.4 Implicit interfaces
	B.1.5 Static methods and properties

	B.2 Libraries and privacy
	B.2.1 Defining libraries
	B.2.2 Library privacy

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

