

Hands-On GUI Programming
with C++ and Qt5

Lee Zhi Eng

BIRMINGHAM - MUMBAI

Hands-On GUI Programming with C++ and
Qt5
Copyright 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Alok Dhuri
Content Development Editor: Lawrence Veigas
Technical Editor: Mehul Singh
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Jisha Chirayil
Production Coordinator: Nilesh Mohite

First published: April 2018

Production reference: 1260418

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78839-782-7

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributors

About the author
Lee Zhi Eng is a self-taught programmer who has worked as an artist and programmer at
several game studios before becoming a part-time lecturer for 2 years at a university,
teaching game development subjects related to Unity and Unreal Engine.

He has not only taken part in various projects related to games, interactive apps, and virtual
reality, but has also participated in multiple projects that are more oriented toward software
and system development. When he is not writing code, he enjoys traveling, photography,
and exploring new technologies.

About the reviewer
Nibedit Dey is a technopreneur with multidisciplinary technology background. He holds a
bachelor's degree in biomedical engineering and a master's degree in digital design and
embedded systems. Before starting his entrepreneurial journey, he worked for L&T and
Tektronix for several years in different R&D roles. He has been using Qt to build complex
software products for the past 8 years. Currently, he is a healthcare innovation fellow at IIT,
Hyderabad, and is involved in the development of a new medical device.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Table of Contents
Preface 1

Chapter 1: Introduction to Qt 7
What is Qt? 8

Why use Qt? 9
Discovering tools in Qt 9

Qt Designer 10
Qt Quick Designer 11

Downloading and installing Qt 12
Setting up the working environment 15

Running our first Hello World Qt program 19
Summary 25

Chapter 2: Qt Widgets and Style Sheets 26
Introduction to Qt Designer 27
Basic Qt widgets 34
Qt Style Sheets 44
Summary 51

Chapter 3: Database Connection 52
Introducing the MySQL database system 53
Setting up the MySQL database 55
SQL commands 65

SELECT 66
INSERT 67
UPDATE 67
DELETE 68
JOIN 68

Database connection in Qt 74
Creating our functional login page 82
Summary 88

Chapter 4: Graphs and Charts 89
Types of charts and graphs in Qt 90

Line and spline charts 90
Bar charts 91
Pie charts 92
Polar charts 93
Area and scatter charts 94
Box-and-whiskers charts 96

Table of Contents

[ii]

Candlestick charts 96
Implementing charts and graphs 97
Creating the dashboard page 104
Summary 114

Chapter 5: Item Views and Dialogs 115
Working with item view widgets 115

Creating our Qt Widgets application 118
Making our List Widget functional 122
Adding functionality to the Tree Widget 125
Finally, our Table Widget 125

Working with dialog boxes 126
Creating File Selection Dialogs 132
Image scaling and cropping 134
Summary 141

Chapter 6: Integrating Web Content 142
Creating your own web browser 142

Adding the web view widget 144
Creating a UI for a web browser 147
Managing browser history 158

Sessions, cookies, and cache 159
Managing sessions and cookies 159
Managing cache 160

Integrating JavaScript and C++ 161
Calling JavaScript functions from C++ 161
Calling C++ functions from JavaScript 165

Summary 169

Chapter 7: Map Viewer 170
Map display 170

Setting up the Qt location module 171
Creating a map display 171

Marker and shape display 175
Displaying position markers on a map 176
Displaying shapes on a map 185

Obtaining a user's location 188
Geo Routing Request 190
Summary 193

Chapter 8: Graphics View 194
Graphics View framework 194

Setting up a new project 195
Movable graphics items 198
Creating an organization chart 201

Summary 217

Table of Contents

[iii]

Chapter 9: The Camera Module 218
The Qt multimedia module 218

Setting up a new project 218
Connecting to the camera 223
Capturing a camera image to file 228
Recording a camera video to file 229
Summary 231

Chapter 10: Instant Messaging 232
The Qt networking module 232

Connection protocols 232
Setting up a new project 234

Creating an instant messaging server 235
Creating TCP Server 235
Listening to clients 237

Creating an instant messaging client 240
Designing the user interface 241
Implementing chat features 244

Summary 249

Chapter 11: Implementing a Graphics Editor 250
Drawing vector shapes 250

Vector versus bitmap 250
Drawing vector shapes using QPainter 252
Drawing text 254

Saving vector images to an SVG File 255
Creating a paint program 260

Setting up a user interface 260
Summary 269

Chapter 12: Cloud Storage 270
Setting up the FTP server 270

Introducing FTP 270
Downloading FileZilla 271
Setting up FileZilla 273

Displaying the file list on the list view 278
Setting up a project 279
Setting up user interface 279
Displaying the file list 280
Writing the code 281

Uploading files to the FTP server 285
Downloading files from the FTP server 291
Summary 294

Chapter 13: Multimedia Viewers 295

Table of Contents

[iv]

Revisiting the multimedia module 295
Dissecting the module 295

The image viewer 297
Designing a user interface for the image viewer 297
Writing C++ code for image viewers 299

The music player 302
Designing a user interface for music players 302
Writing C++ code for music players 304

The video player 309
Designing a user interface for video players 309
Writing C++ code for video players 310

Summary 312

Chapter 14: Qt Quick and QML 313
Introduction to Qt Quick and QML 313

Introducing Qt Quick 313
Introducing QML 315

Qt Quick widgets and controls 321
Qt Quick Designer 324
Qt Quick layouts 325
Basic QML scripting 326

Setting up the project 326
Summary 337

Chapter 15: Cross-Platform Development 338
Understanding compilers 338

What is a compiler? 338
Build automation with Make 339

Build settings 340
Qt Project (.pro) File 341
Comment 342
Modules, configurations, and definitions 342
Platform-specific settings 343

Deploying to PC platforms 344
Windows 344
Linux 346
macOS 354

Deploying to mobile platforms 356
iOS 356
Android 358

Summary 360

Chapter 16: Testing and Debugging 361
Debugging techniques 361

Identifying the problem 362

Table of Contents

[v]

Print variables using QDebug 362
Setting breakpoints 363

Debuggers supported by Qt 368
Debugging for PC 368
Debugging for Android devices 369
Debugging for macOS and iOS 369

Unit testing 371
Unit testing in Qt 371

Summary 373

Other Books You May Enjoy 374

Index 377

Preface
Qt 5, the latest version of Qt, enables you to develop applications with complex user
interfaces for multiple targets. It provides you with faster and smarter ways to create
modern UIs and applications for multiple platforms. This book will teach you how to
design and build graphical user interfaces that are functional, appealing, and user-friendly.

By the end of this book, you will have successfully learned about high-end GUI applications
and will be capable of building many more powerful, cross-platform applications.

Who this book is for
This book will appeal to developers and programmers who would like to build GUI-based
applications. Basic knowledge of C++ is necessary, and the basics of Qt would be helpful.

What this book covers
, Introduction to Qt, will give you a tour of Qt. In this book, you'll download the

SDK, install Qt, and, most importantly, install Qt Creator, which is used as both the user
interface designer and the IDE for writing and compiling C++ scripts.

, Qt Widgets and Style Sheets, will introduce you to the different types of widgets
generally used in Qt to develop desktop applications. You will learn the first step to create
your own application, which uses all kinds of widgets and customizations, using the
powerful style sheet mechanism provided by Qt, which is very similar to CSS for web.

, Database Connection, will introduce you to the MariaDB database and teach you
how to connect to it using Qt. You will first learn what is MariaDB database and how to call
simple SQL commands to fetch and insert data into a MariaDB database. We will then
create a simple but fully functional login page.

, Graphs and Charts, explores the Chart feature to allow users to easily render
different types of graphs and charts, such as pie chart, bar chart, and line graph. We will
make use of the knowledge learned from this chapter to create a dashboard page for an
application, which displays all kinds of statistical summary of their company and business.

Preface

[2]

, Item Views and Dialogs, will teach you how to display a list of information by
using three different item view widgets a list widget, tree widget, and table widget. You
will also learn how to prompt a message box to display error messages, warnings, and
confirmation. You will then create an application that can load, scale, and crop images.

, Integrating Web Content, will empower you to use the Qt WebEngine module
and make a simple web browser, which displays a web page. We will then go through what
is sessions, cookies, and cache and subsequently how to manage them with Qt WebEngine.
Finally, you will learn how to make your C++ code communicate with JavaScript content
through the WebChannel mechanism.

, Map Viewer, will focus on creating a map display. This map will be used to
display the location of places and people. You will learn how to implement the QtLocation
module, understand the coordinate system, display location markers on the map, and so on.

, Graphics View, will provide a platform to manage and interact with a large
number of custom-made graphical items and a view widget to visualize the items with
support for zooming and rotation. You will learn how to make an organization's chart page
that displays the structure of an organization and the relationships and relative ranks of its
parts and positions/jobs.

, The Camera Module, will explore how to display camera images using Qt. Qt
provides us with a multimedia module that enables us to easily take advantage of a
platform's multimedia capabilities, such as connecting to the camera of the computer.

, Instant Messaging, will discuss the networking module and help us to make our
own simple instant messaging program.

, Implementing a Graphics Editor, is divided into two sections, based on the two
types of graphics in the rendering world bitmap graphics and vector graphics. Both are
quite different but essential to learning in order to understand 2D graphics rendering. You
will learn how to draw graphics using Qt in this chapter.

, Cloud Storage, will teach you how to upload different types of files to the FTP
server and display them in a list. The user will be able to download the file and open them
with different types of viewers depending on its file format.

, Multimedia Viewers, will deal with creating a media player instead of using the
default software on your computer. In this chapter, you will learn how to create an image
viewer, a music player, and a video player.

Preface

[3]

, Qt Quick and QML, will introduce you to the basics of QML scripting, which is
one of the most recent trends in the Qt world.

, Cross-Platform Development, will show you how to export applications to
different platforms without re-writing the code from scratch. You will learn some of the
essential settings and tips to look out for when porting applications to different platforms.
Besides PC platforms, you will also learn how to export applications to mobile platforms.

, Testing and Debugging, will teach you the essentials of how to use various
techniques to test and debug your Qt application.

To get the most out of this book
In order to successfully execute all the codes and instructions in this book, you would need
 the following:

A basic PC/Laptop
A working internet connection
Qt 5.10
MariaDB 10.2 (or MySQL Connector)
Filezilla Server 0.9

We will deal with the installation processes and details as we go through each chapter.

Download the example code files
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
 and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at .1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Preface

[4]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
 In case there's an update

to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:

.

Conventions used
There are a number of text conventions used throughout this book.

: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "We call the function at the constructor."

A block of code is set as follows:

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 QMainWindow(parent),

Any command-line input or output is written as follows:

********* Start testing of MainWindow *********
Config: Using QtTest library 5.9.1, Qt 5.9.1 (i386-little_endian-ilp32
shared (dynamic) debug build; by GCC 5.3.0)
PASS : MainWindow::initTestCase()
PASS : MainWindow::_q_showIfNotHidden()
PASS : MainWindow::testString()
PASS : MainWindow::testGui()
PASS : MainWindow::cleanupTestCase()
Totals: 5 passed, 0 failed, 0 skipped, 0 blacklisted, 880ms
********* Finished testing of MainWindow *********

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"The third option is Toggle Bookmark, which lets you set a bookmark for your own
reference."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

Preface

[6]

General feedback: Email and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at .

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit , selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit .

11
Introduction to Qt

Qt (pronounced cute) has been used by software engineers and developers for more than
two decades to create cross-platform applications since its first release. After several
changes of ownership and numerous major code overhauls, Qt has become even more
feature rich and supports even more platforms than it used to. Qt not only excels in desktop
application development, but is also excellent for both mobile and embedded systems
development.

In this chapter, we will cover the following topics :

What is Qt?
Why use Qt?
Using tools in Qt
Downloading and installing Qt
Setting up a working environment
Running our first Qt program

Throughout this chapter, we will learn more about the history of Qt. Then, we'll proceed to
build our first example program using the latest version of Qt, which is Qt version 5. For the
convenience of our readers, we will simply refer to it as Qt throughout the book.

Introduction to Qt Chapter 1

[8]

What is Qt?
Currently, the latest version of Qt (as this book is being written) is version 5.10. This version
incorporated a lot of new features as well as thousands of bug fixes, which makes Qt a
really powerful and stable development kit for software developers and system engineers
alike. Qt has a huge package of SDK (software development kit) that contains a wide range
of tools and libraries for helping developers get their job done without worrying too much
about technical issues related to a specific platform. Qt handles all the messy integration
and compatibility issues for you behind the curtain so you don't have to deal with them.
This will not only improve efficiency but also reduces development costs, especially when
you're trying to develop cross-platform applications that cater to a wider range of users.

There are two types of license for Qt:

The first type is the Open Source License, which is free of charge, but only if your
project/product fits their terms and conditions. For example, if you made any
changes to the Qt's source code, it is an obligation for you to submit back those
changes to Qt developers. Failure to do so could result in serious legal issues, and
therefore, you might want to pick the second option instead.
The second type of license is the Commercial License, which gives you full rights
to proprietary Qt source code modifications and keeps your application private.
But of course, these privileges come with a set of fees.

If you're just starting to learn Qt, don't get pushed back by these terms, as you're certainly
not going to modify the source code of Qt libraries or recompile it from source anyway, at
least not now.

For more information regarding Qt's licensing, please
visit

Introduction to Qt Chapter 1

[9]

Why use Qt?
It's not hard to see why Qt stands a chance of winning against all other existing SDKs out
there in the market; first of all, cross-platform compatibility. You can hardly find any other
development kits that support so many platforms without writing different sets of code for
each platform. By eliminating these extra steps, programmers can just focus on developing
their applications without the need to worry about the implementation of each and every
platform-specific feature. Furthermore, your code will look clean without all the
macros and having to load different dependencies for different platforms.

Qt generally uses C++, which is a compiled language that generates small and efficient code.
It is also well documented and follows a very consistent set of naming conventions, which
reduces the learning curve for the developer.

Do be aware that Qt does include a small amount of features that only work on specific
platforms. However, these are minimal and often for special use cases, such as Qt Sensors,
which only work on mobile platforms; Qt Web Engine, which only works on desktops; Qt
NFC, only for Android and Linux; and so on. Those are some very specific functionalities
that only exist on certain platforms that support them. Other than that, common features
are usually supported on all platforms.

Discovering tools in Qt
Qt comes with a set of tools that make programmers' lives easier. One of the tools is Qt
Creator (seen in the following screenshot), which is an IDE (integrated development
environment) that consists of a code editor and a GUI (graphical user interface) designer
that works hand-in-hand with other Qt tools, such as the compiler, debugger, and so on.
The most attractive tool among all is, of course, the GUI designer, which comes with two
different types of editors: one for widget-based applications, called Qt Designer, and
another for Qt Quick Application, called Qt Quick Designer. Both tools can be accessed
directly in Qt Creator when you open up a relevant file format. Qt Creator also includes a
built-in documentation viewer called Qt Assistant. It is really handy since you can look for
the explanation about a certain Qt class or function by simply hovering the mouse cursor
over the class name in your source code, and pressing the F1 key. Qt Assistant will then be
opened and show you the documentation related to the Qt class or function:

Introduction to Qt Chapter 1

[10]

Qt Designer
Qt Designer is normally used by developers to design GUIs for desktop applications, while
Qt Quick Designer is usually used for mobile and embedded platforms. With that being
said, both formats run just fine on both desktop and mobile formats, the only difference is
the look and feel, and the types of languages used.

The GUI file saved by Qt Designer carries the extension, which is saved in XML format.
The file stores the attributes of each and every widget placed by the GUI designer, such as
position, size, margin, tooltip, layout direction, and so on. It also saves the signal-and-slot
event names within itself for easily connecting with the code in the later stages. This format
does not support coding and only works for Qt C++ projects, namely widget-based
application projects.

Introduction to Qt Chapter 1

[11]

Qt Quick Designer
On the other hand, Qt Quick Designer saves GUI files in both and formats.
Qt Quick is a very different type of GUI system in terms of technological concept and
development approach, which we will cover in , Qt Quick and QML. Instead of
XML format, Qt Quick Designer saves its data in a declarative language similar to
JavaScript called QML. QML not only allows the designer to customize their GUI in a CSS-
like (Cascading Style Sheets) fashion, it also allows the programmer to write functional
JavaScript within the QML file. As we mentioned earlier, is the file format used for
visual decoration only while contains application logic.

If you're doing a simple program using Qt Quick, you don't have to touch any C++ coding
at all. That's especially welcoming for web developers because they can immediately pick
up Qt Quick and develop their own application without a steep learning curve; everything
is just so familiar to them. For much more complex software, you can even link C++
functions from QML, and vice versa. Again, if you're interested in learning more about Qt
Quick and QML, please head over to , QtQuick and QML.

Since Qt Creator is also written in Qt libraries itself, it is also totally cross-platform. Hence,
you can use the same set of tools across different development environments and develop a
unified workflow for your team, resulting in better efficiency and cost-effectiveness.

Other than that, Qt comes with many different modules and plugins, which cover a wide
range of functionality you need for your projects. There is often no need for you to look for
other external libraries or dependencies and try and implement them yourself. The
abstraction layer of Qt makes the backend implementation invisible to the users and results
in a unified coding style and syntax. If you try to put together a bunch of external
dependencies yourself, what you'll find is each library has its own distinctive coding style.
It's quite a mess when mixing up all the different coding styles in the same project, unless
you make your own abstraction layer, which is a very time-consuming task. Since Qt
already includes most, if not all the modules that you need to create feature-rich
applications, there is no need for you to implement your own.

For more information regarding the modules that come with Qt, please
visit: .

That being said, there are also many third libraries out there that extend Qt for features that
Qt itself does not support, such as libraries that focus on game development or any other
features that are designed for the specific user group.

Introduction to Qt Chapter 1

[12]

Downloading and installing Qt
Without wasting any time, let's begin with our installation! To get the free installer for Open
Source Qt, first go to their website at . There, look for the button that
says Download Qt (the website might look different if they have updated it). Do note that
you might be downloading the free trial version for the Commercial Qt, which you cannot
use after 30 days. Make sure that you are downloading the open source version of Qt
instead. Also, you may want to pick the right installer for your platform, since there are
many different installers of Qt for different operating systemsWindows, macOS, and Linux.

You might wonder why the installer is so small in size it is only around 19 MB. This is
because the unified online installer doesn't actually contain any of the Qt packages, but is
rather a downloader client which helps you to download all the relevant files and install
them to your computer once the download has completed. Once you have downloaded the
online installer, double-click on it and you will be presented with an interface like this (the
following example is running on a Windows system):

Introduction to Qt Chapter 1

[13]

Click the Next button, and a DRM (Digital Rights Management) page will appear and ask
you to log in with your Qt account. If you don't have one, you can also create your account
on the same page:

Once you have logged in, you will see a message that says No valid commercial license
available in your Qt Account for this host platform. Don't worry about that, just click the
Next button to proceed.

Introduction to Qt Chapter 1

[14]

Next, you will be asked to specify the installation path. The default path is usually just fine,
but you can change it to any other path as you please. Also, you can either leave the
Associate this common file types with Qt Creator option checked, or uncheck it manually
if otherwise.

After that, you will be presented with a series of checkboxes with which you can select the
version(s) of Qt you need to install to your computer. Typically, for new users, the default
options are sufficient. If you don't need some of the options, such as support for Qt on
Android, you can unselect them here to reduce the size of the download. You can always go
back and add or remove Qt components later if needed, using the Maintenance Tool:

Next, you will be presented with the license agreement. Check the first option, which says I
have read and agree to the terms contained in the license agreements, and click the Next
button. Make sure you do read the terms and conditions stated in the license agreement!

Introduction to Qt Chapter 1

[15]

Finally, the installer will ask you to enter a name to create a start menu shortcut for Qt.
Once you're done, just click Next and then click Install. The download process will take a
couple of minutes to a couple of hours, depending on your internet speed. Once all the files
have been downloaded, the installer will automatically proceed to install the files to the
installation path that you have just set in one of the previous steps.

Setting up the working environment
Since you have installed the latest version of Qt, let's fire up Qt Creator and start messing
around by creating our first project! You should be able to find Qt Creator's shortcut icon
either on your desktop or somewhere within your start menu.

Let's look at the steps to set up our environment:

When you first start Qt Creator, you should see the following interface:1.

Introduction to Qt Chapter 1

[16]

Before you start creating your first project, there are several settings that you2.
might want to tweak. Go to the top menu and select Tools | Options. A window
that looks something like this will pop up on the screen:

There are quite a number of different categories available on the left of the3.
window. Each category represents a set of options you can set to customize how
Qt Creator will look and operate. You may not want to touch the settings at all,
but it's good to learn about them first. One of the first settings you might want to
change is the Language option, which is available in the Environment category.
Qt Creator provides us with an option to switch between different languages.
Although it doesn't support all languages, most of the popular ones are available,
such as English, French, German, Japanese, Chinese, Russian, and so on. Once
you have selected your desired language, click Apply and restart Qt Creator. You
must restart Qt Creator in order to see the changes.

Introduction to Qt Chapter 1

[17]

The next setting you probably need is the setting for indentation. By default, Qt4.
uses space indentation, in which four spaces will be added to your script
whenever you press the Tab key on your keyboard. Some people, like me, prefer
tab indentation instead. You can change the indentation setting at C++ category.

Do note that if you are contributing to Qt project's source code, it's
required that you use space indentation instead of tabs, which is the
coding standard and style of the Qt project.

Under the C++ category, you can find a Copy button located beside the Edit5.
button, somewhere in the top right position. Click it and a new window will pop
up.
Insert a code style name of your own, as you can't edit the default built-in coding6.
style. After you have created your own settings, click the Edit button. You can
now see the actual Tabs And Indentation settings under the General tab:

Do note that even though there is a Tabs And Indentation setting located at7.
the Text Editor category, I believe it's an old setting that no longer has any effect
in Qt Creator. There is also a note written on the UI that says Code indentation is
configured in C++ and Qt Quick settings. A possible reason for this is that since
Qt Creator now supports both C++ project and QML projects, Qt developers
probably felt there was a need to separate the settings into two, so therefore the
old setting is no longer valid. I'm pretty sure this section on Text Editor will be
deprecated in the near future.

Introduction to Qt Chapter 1

[18]

Next, under the Build and Run category, you'll see a tab labeled Kits.8.

This is where you can set the compile settings for each platform. As you can see9.
from the next screenshot, my Qt does not support desktop build under MSVC
(Microsoft Visual Studio Compiler) because I never installed Visual Studio on my
computer. Instead, my Qt only supports desktop build under the MinGW
(Minimal GNU for Windows) compiler. From this window, you can check and
see if your Qt supports the platform and compiler you wanted for your project
and make changes to it if necessary. But for now, we'll just leave it as it is. To
learn more about what is a kit is and how to configure the build settings, please
head over to , Cross-Platform Development:

Finally, we can link our project to our version control server at the Version10.
Control category.
Version control allows you or your team to submit code changes to a centralized11.
system so that each and every team member can obtain the same code without
passing files around manually. When you're working in a big team, it's very
difficult to manually keep track of the code changes, and even more so to merge
the code done by different programmers. Version control systems are designed to
solve these issues. Qt supports different types of version control systems, such as
Git, SVN, Mercurial, Perforce, and so on. Although this is a very useful feature,
especially if you're working in a team, we don't need to configure it for now:

Introduction to Qt Chapter 1

[19]

Running our first Hello World Qt program
A Hello World program is a very simple program that does nothing more than display an
output that says (or any other thing, not necessarily this) to show that the
SDK is working properly. We don't need to write very long code to produce a

 program, we can do it using only the very minimum and the most basic code. In fact,
we don't have to write any code in Qt, as it will generate the code when you first create
your project!

Let's begin our project by following these steps:

To create a new project in Qt, click the New Project button located at the1.
welcome screen on your Qt Creator. Alternatively, you can also go to the top
menu and select File | New File or Project.

Introduction to Qt Chapter 1

[20]

After that, you will be presented with a window which lets you select a template2.
for your project or file. For this demonstration, we will pick Qt Widgets
Application:

After that, set your project name and project directory. You can also check the3.
checkbox that says Use as default project location so that you can automatically
get the same path when you create a new project in Qt next time.

Introduction to Qt Chapter 1

[21]

Next, Qt Creator will ask you to select one or more kits for your project. For this4.
demonstration, we'll pick Desktop Qt with the MinGW compiler. Don't worry, as
you are allowed to add or remove kits from your project later on during
development:

Introduction to Qt Chapter 1

[22]

After that, you will be presented with a page that says Class Information. This is5.
basically where you set the class name for your base window, but we're not going
to change anything, so just click the Next button to proceed:

Finally, it will ask you to link your project to your version control server. If you6.
have not added any to Qt before, you can click the Configure button, which will
bring you to the settings dialog that I showed you in the previous section of this
chapter.
For this demonstration, however, we'll keep the settings as <None> and press the7.
Finish button. Qt Creator will then proceed to generate the necessary files for
your project. After a second or two, Qt Creator will automatically switch to Edit
mode and you should be able to see the files it created for you under the Project
panel. You can open up any of the files by double-clicking on them in Qt Creator
and they will be shown in the editor located on the right-hand side:

Introduction to Qt Chapter 1

[23]

Before we start compiling the project, let's open up the file8.
under the directory in your project panel. Don't worry too much about the
user interface as we will cover it in the following chapter. What we need to do is
to click and drag the Label icon under the Display Widgets category to the center
of the window on the right, as shown in the following screenshot:

Introduction to Qt Chapter 1

[24]

After that, double-click on the widget and change the text to 9.
. Once you're done, hit the Enter button on your keyboard:

The final step is to press the Run button located at the bottom left corner that10.
looks like this:

Introduction to Qt Chapter 1

[25]

We would normally build the program first and then run the program, but Qt11.
Creator is smart enough to figure out that it needs to build it. However, it is still a
good habit to build and run your application separately. After a few seconds of
compiling, ... voila! You have created your first program using Qt!:

Summary
The existence of tools such as Qt Creator has made designing applications' user interfaces
an easy and fun job for the developers. We no longer need to write a bunch of code just to
create a single button, or change a bunch just to adjust the position of a text label, since Qt
Designer will generate that code for us when we design our GUI. Qt has applied the
WYSIWYG (what you see is what you get) philosophy into the working pipeline and it
provides us with all the convenience and efficiency we need to get our jobs done.

In the next chapter, we will learn the ins and outs of Qt Creator and start designing our first
GUI with Qt!

22
Qt Widgets and Style Sheets

One of the advantages of using Qt for software development is that it's very easy to design
a program's graphical user interface (GUI) using the tools provided by Qt. Throughout
this book, we will try and create a single project that involves many different components
and modules of Qt. We will go through each section of the project in each chapter, so that
you will eventually be able to grasp the entire Qt Framework and at the same time complete
demo projects, which is a really valuable item to add to your portfolio. You can find all the
source code at

.

In this chapter, we will cover the following topics:

Introduction to Qt Designer
Basic Qt widgets
Qt Style Sheets

In this chapter, we will take a deep look into what Qt can offer us when it comes to
designing sleek-looking GUIs with ease. At the beginning of this chapter, you will be
introduced to the types of widgets provided by Qt and their functionalities. After that, we
will walk through a series of steps and design our first form application using Qt.

Qt Widgets and Style Sheets Chapter 2

[27]

Introduction to Qt Designer
There are two types of GUI applications in Qt, namely Qt Quick Application and Qt
Widgets Application. In this book, we will cover mostly the latter, as it is the standard way
of designing a GUI for desktop applications, and Qt Quick is more widely used for mobile
and embedded systems:

The first thing we need to do is to open up Qt Creator and create a new project.1.
You can do so by either going to File | New File or Project, or by clicking the
New Project button located at the welcome screen:

Qt Widgets and Style Sheets Chapter 2

[28]

After that, a new window will pop up and ask you to pick the type of project you2.
want to create. Choose Qt Widgets Application under the Application category
and click Choose..., Then, create a name for your project (I have chosen

 for mine) and select the project directory by clicking the Browse...
button:

Qt Widgets and Style Sheets Chapter 2

[29]

Next, you will be asked to select a kit for your project. If you are running this on a3.
Windows system and you have Microsoft Visual Studio installed, you can pick
the relevant kit with the MSVC compiler; otherwise, choose the one running
MinGW compiler. Qt normally comes with MinGW compiler pre-installed so you
don't need to download it separately. If you're running this on a Linux system,
then you will see the GCC kit, or the Clang kit if you're running this on macOS.
To learn more about Kits and Builds Settings, please check out , Cross-
Platform Development:

Qt Widgets and Style Sheets Chapter 2

[30]

After that, the new project wizard will ask you to name your main window class.4.
We'll just go with the default settings and click the Next button to proceed:

Qt Widgets and Style Sheets Chapter 2

[31]

Finally, you will be asked to link your version control tool to your project. By5.
linking a version control tool to your project, you will be able to keep every
revision of your code on a remote server and keep track of all the changes being
made to the project. This is especially useful if you're working in a team. In this
tutorial, however, we will not be using any version control, so let's just proceed
by clicking the Finish button:

Once you're done with that, Qt Creator will open up your new project and you6.
will be able to see your project directory displayed at the top left corner, like so:

Qt Widgets and Style Sheets Chapter 2

[32]

Now, open up by double-clicking on it on the project directory7.
panel. Qt Creator will then switch to another mode, called Qt Designer, which is
essentially a tool used to design widget-based GUIs for your program. Once Qt
Designer is activated, you will see a list of widgets available on the left panel and
a place for you to design your GUI on the right. Let's take a bit of time to get
ourselves familiar with Qt Designer's interface before we start learning how to
design our own UI:

The following numbers represent the UI shown in the preceding screenshot:

Menu bar: The menu bar is where you find all the basic functions of Qt Creator,1.
such as to create new projects, save files, change compiler settings, and so on.
Widget box: The widget box is sort of like a toolbox, where all the different2.
widgets provided by Qt Designer are being displayed and are ready to be used.
You can drag-and-drop any of the widgets from the widget box directly onto the
canvas in the form editor and they will appear in your program.

Qt Widgets and Style Sheets Chapter 2

[33]

Mode selector: The mode selector is where you can quickly and easily switch3.
between source code editing or UI design by clicking the Edit or Design buttons.
You can also easily navigate to the debugger and profiler tools by clicking on
their respective buttons located on the mode selector panel.
Build shortcuts: There are three different shortcut buttons being displayed4.
here Build, Run, and Debug. You can easily build and test run your application
by pressing the buttons here instead of doing so on the menu bar.
Form editor: This is where you apply your creative idea and design your5.
application's UI. You can drag and drop any of the widgets from the Widget Box
onto the canvas in the Form Editor for it to appear in your program.
Form toolbar: The form toolbar is where you can quickly select a different form6.
to edit. You can change to a different form by clicking on the drop-down box
located above the widget box and selecting the UI file you want to open with Qt
Designer. There are also buttons that allow you to switch between different
modes for the form editor and layout of your UI.
Object inspector: This is where all the widgets in your current file are being7.
listed in a hierarchical fashion. The widgets are being arranged in the tree list in
accordance to its parent-child relationship with other widgets. The widgets'
hierarchy can be easily re-arranged by moving it in the form editor.
Property editor: When you select a widget from the object inspector window (or8.
from the form editor window), the properties of that particular widget will be
displayed on the property editor. You can change any of the properties here and
the result will instantly show up on the form editor.
Action editor and signals and slots editor: Both the action editor and signals and9.
slots editor are located in this window. You can create actions that are linked to
your menu bar and toolbar buttons by using the action editor. The signal and
slots editor is where you
Output panes: The output panes are where you look for issues or debugging10.
information when testing your application. It consists of several windows that
display different information, such as Issues, Search Results, Application
Output, and so on.

Qt Widgets and Style Sheets Chapter 2

[34]

In a nutshell, Qt provides an all-in-one editor called Qt Creator. Qt Creator works hand-in-
hand with several different tools that come with Qt, such as the script editor, compiler,
debugger, profiler, and UI editor. The UI editor, which you can see in the preceding
screenshot, is called Qt Designer. Qt Designer is the perfect tool for designers to design their
program's UI without writing any code. This is because Qt Designer adopted the
WYSIWYG (what you see is what you get) approach by providing an accurate visual
representation of the final result, which means whatever you design with Qt Designer will
turn out exactly the same when the program is compiled and run. Do note that each tool
that comes with Qt can, in fact, be run individually, but if you're a beginner or just doing a
simple project, it's recommended to just use the Qt Creator, which connects all those tools
together in one interface.

Basic Qt widgets
Now, we will take a look at the default set of widgets available in Qt Designer. You can
actually create custom widgets by yourself, but that's an advanced topic which is out of the
scope of this book. Let's take a look at the first two categories listed on the widget
box Layouts and Spacers:

Layouts and Spacers are not really something that you can directly observe, but they can
affect the positions and orientations of your widgets:

Vertical Layout: A vertical layout widget lays out widgets in a vertical column,1.
from top to bottom.
Horizontal Layout: A horizontal layout widget lays out widgets in a horizontal2.
row, from left to right (or right to left for right-to-left languages).

Qt Widgets and Style Sheets Chapter 2

[35]

Grid Layout: A grid layout widget lays out widgets in a two-dimensional grid.3.
Each widget can occupy more than one cell.
Form Layout: A form layout widget lays out widgets in a two-column field style.4.
Just as the name implies, this type of layout is best suited for forms of input
widgets.

Layouts provided by Qt are very important for creating quality applications and are really
powerful. Qt programs don't typically lay elements out using the fixed position because
layouts allow dialogs and windows to be dynamically resized in a sensible manner while
handling a varying length of text when it's localized in different languages. If you don't
make use of layouts in your Qt programs, its UI may very look very different on different
computers or devices, which in most cases will create an unpleasant user experience.

Next, let's take a look at the spacer widget. A spacer is a non-visible widget that pushes
widgets along a specific direction until it reaches the limit of the layout container. Spacers
must be used within a layout, otherwise they will not carry any effect.

There are two types of spacer, namely the Horizontal Spacer and Vertical Spacer:

Horizontal Spacer: A horizontal spacer widget is a widget that occupies the1.
space within a layout and pushes other widgets within the layout along a
horizontal space.
Vertical Spacer: A vertical spacer is similar to a horizontal spacer, except it2.
pushes the widgets along the vertical space.

It's kind of hard to imagine how the Layouts and Spacers work without actually working
with them. Don't worry about that, as we will be trying it out in a moment. One of the most
powerful features of Qt Designer is that you can experiment with and test your layouts
without have to change and compile your code after each change.

Besides Layouts and Spacers, there are a few more categories, namely Buttons, Item Views,
Containers, Input Widgets, and Display Widgets. I won't go and explain every single one
of them as their names are pretty much self-explanatory. You can also drag and drop the
widget on the Form Editor to see what it does. Let's do it:

Click and drag the Push Button widget from the Widget Box to the Form Editor,1.
as shown in the following screenshot:

Qt Widgets and Style Sheets Chapter 2

[36]

Then, select the newly added Push Button widget, and you will see that all the2.
information related to this particular widget is now appearing on the Properties
Editor panel:

Qt Widgets and Style Sheets Chapter 2

[37]

You can change the properties of the widget, such as appearance, focus policy,3.
tooltip, and so on programmatically in C++ code. Some properties can also be
edited directly in the Form Editor. Let's double-click on the Push Button and
change the text of the button, and then resize the button by dragging its edge:

Once you're done with that, let's drag and drop a Horizontal Layout to the Form4.
Editor. Then, drag the Push Button to the newly added layout. You will now see
that the button automatically fits into the layout:

Qt Widgets and Style Sheets Chapter 2

[38]

By default, the main window does not carry any layout effect, and therefore the5.
widgets will stay where they were originally placed, even when the window is
being resized, which does not look very good. To add a layout effect to the main
window, right-click on the window in the Form Editor, select Lay out, and finally
select Lay Out Vertically. You will now see the Horizontal Layout widget we
added previously is now automatically expanding to fit the entire window. This
is the correct behavior of a layout in Qt:

Qt Widgets and Style Sheets Chapter 2

[39]

Next, we can play around with the spacer and see what effect it has. We will drag6.
and drop a Vertical Spacer to the top of the layout containing the Push Button,
and then we'll place two Horizontal Spacers on both sides of the button, within
its layout:

The spacers will push all of the widgets located on both of their ends and occupy
the space itself. In this example, the Submit button will always stay at the bottom
of the window and keep its middle position, regardless of the size of the window.
This makes the GUI look good, even on different screen sizes.

Ever since we added the spacers to the window, our Push Button has been
squeezed to its minimum size. Let's enlarge the button by setting its

 property to 120 x 40, and you'll see that the button appears a lot
bigger now:

Qt Widgets and Style Sheets Chapter 2

[40]

After that, let's add a Form Layout above the layout of the Push Button and a7.
Vertical Spacer below it. You will now see that the Form Layout is really thin
because it has been squeezed by the Vertical Spacers we placed earlier onto the
main window, which can be troublesome when you want to drag and drop a
widget into the Form Layout. To solve this problem, temporarily set the

 property to or higher:

Qt Widgets and Style Sheets Chapter 2

[41]

Then, drag and drop two Labels to the left side of the Form Layout and two Line8.
Edits to its right side. Double click on both of the labels and change their display
texts to and , respectively. Once you're done with that, set
the property of the Form Layout back to :

Currently, the GUI looks pretty great, but the Form Layout is now occupying the
entire spacing in the middle, which is not very pleasant when the main window is
maximized. To keep the form compact, we'll do the following steps, which are a
little tricky:

First, drag and drop a Horizontal Layout above the form, and set its9.
 and to so that the widgets that we

place in it, later on, are not too close to the Submit button. Next, drag and drop
the entire Form Layout, which we placed earlier into the Horizontal Layout.
Then, place Horizontal Spacers on both sides of the form to keep it centered. The
following screenshot illustrates these steps:

Qt Widgets and Style Sheets Chapter 2

[42]

After that, we can make further adjustments to the GUI to make it look tidy10.
before we proceed to the next section, where we will be customizing the widgets'
style. Let's start off by setting the property of the two Line Edit
widgets to 150 x 25. Then, set the , ,

, and properties of the Form Layout to
. The reason why we want to do this is that we will be adding an outline to the

Form Layout in the following section.

Qt Widgets and Style Sheets Chapter 2

[43]

Since the Push Button is now way too distanced from the Form Layout, let's set11.
the property of the Horizontal Layout, which sets the
Form Layout to . This will make the Push Button move slightly above and
closer to the Form Layout. After that, we'll adjust the size of the Push Button to
make it align with the Form Layout. Let's set the property of the
Push Button to 260 x 35, and we're done!:

You can also preview your GUI without building your program by going to Tools
| Form Editor | Preview. Qt Designer is a very handy tool when it comes to
designing sleek GUIs for Qt programs without a steep learning curve. In the
following section, we will learn how to customize the appearance of the widgets
using Qt Style Sheets.

Qt Widgets and Style Sheets Chapter 2

[44]

Qt Style Sheets
Qt's Widgets Application uses a styling system called Qt Style Sheets, which is similar to the
web technology's styling system CSS (Cascading Style Sheet). All you need to do is write
the style description of the widget and Qt will render it accordingly. The syntax of Qt Style
Sheets is pretty much the same as CSS.

Qt Style Sheets has been inspired by CSS and thus they are both very similar to each other:

Qt Style Sheets:

CSS:

In the preceding example, both Qt Style Sheet and CSS contain a declaration block and a
selector. Each declaration consists of a property and value, which are separated by a colon.

You can change a widget's style sheet by using two methods using C++ code directly or by
using the properties editor. If you're using C++ code, you can call the

 function, like so:

The preceding code changes the background color of our push button widget to green. You
can also achieve the same result by writing the same declaration into the
property of the widget in Qt Designer:

To learn more about the syntax and properties of Qt Style Sheets, please refer to the
following link:

Qt Widgets and Style Sheets Chapter 2

[45]

Let's continue with our project and apply a custom Qt Style Sheet to our GUI!

First, right-click on the Submit button and select Change styleSheet... A window1.
will pop up for you to edit the widget's Style Sheet:

Then, add the following to the Style Sheet Editor window:2.

Qt Widgets and Style Sheets Chapter 2

[46]

Once you're done, click the OK button and you should be able to see that the3.
Submit button changes its appearance to this:

The Style Sheet we used earlier is pretty much self-explanatory. It enables the
borderline of the Push Button and sets the border color to dark blue using RGB
values. Then, it also applies a rounded corner effect to the button and changes its
background color to light blue. Finally, the Submit text has also been changed to
white.

Qt Widgets and Style Sheets Chapter 2

[47]

Next, we want to apply a custom Style Sheet to the Form Layout. However, you4.
will notice that there is no Change styleSheet... option when right clicking on it.
This is because layouts do not carry that property with it. In order to apply
styling to the Form Layout, we must first convert it into a QWidget or QFrame
object. To do so, right-click on the Form Layout and select Morph into | QFrame:

Once you're done with that, you will notice it is now carrying the 5.
property and thus we are now able to customize its appearance. Let's right-click
on it and select Change styleSheet... to open up the Style Sheet Editor window.
Then, insert the following script:

Qt Widgets and Style Sheets Chapter 2

[48]

The word is referring to the widget's property and it must match
the exact name of the widget, otherwise the style will not be applied to it. The reason why
we define the widget name for this example (which we didn't do in the previous one) is
because the style will also be applied to all its children if we don't specify the widget name.
You can try and remove from the preceding script and see what
happens now, even the Labels and Line Edits have borderlines, and that is not what we
intended to do. The GUI now looks like this:

Lastly, we want to have a nice-looking background, and we can do this by6.
attaching a background image. To do so, we first need to import the image into
Qt's resource system. Go to File | New File or Project...Then, select Qt under
the Files and Classes category. After that, pick the Qt Resource File and click the
Choose... button. The Qt resource system is a platform-independent mechanism
for storing binary files in the application's executable. You can basically store all
of those important files here, such as icon images or language files, directly into
your executable by using the Qt resource file. These important files will be
directly embedded into your program during the compilation process.

Qt Widgets and Style Sheets Chapter 2

[49]

Then, key in the file name and set its location before pressing the Next button,7.
and follow this by clicking the Finish button. Now, you will see a new resource
file being created, which I named :

Qt Widgets and Style Sheets Chapter 2

[50]

Open up with Qt Creator and select Add | Add Prefix. After that,8.
key in your preferred prefix, for example, . Once you're done with that,
select Add again and this time, pick Add Files. Add the image file provided by
the sample project called . Then, save and right-
click on the image and select Copy Resource Path to Clipboard. After that, close

 and open up again:

The next thing we need to do is to right-click on the object from9.
the Object Inspector and select Change styleSheet..., and then insert the
following script:

Qt Widgets and Style Sheets Chapter 2

[51]

The text within can be inserted by pressing Ctrl + V (or paste) because it10.
was copied to the clipboard when we selected Copy Resource Path to Clipboard
in the previous step. The final outcome looks like this:

Please make sure that you also build and run the application, and then check whether the
final outcome looks the same, as intended. There are a lot more things to tweak in order to
make it look truly professional, but so far it's looking pretty great!

Summary
Qt Designer really revolutionized the way we design program GUIs. Not only does it
include all the common widgets but it also has handy stuff like the layout and spacer, which
makes our program run perfectly fine on different types of monitors and screen sizes. Also,
notice that we have successfully created a working application with a beautiful user
interface without writing a single line of C++ code!

What we've learned in this chapter merely scratches the surface of Qt, as there are many
more features that we are yet to cover! Join us in the next chapter to learn how we can make
our program truly functional!

33
Database Connection

In the previous chapter, we learned how to create a login page from scratch. However, it is
not functional yet, as the login page is not connected to a database. In this chapter, you will
learn how to connect your Qt application to a MySQL (or MariaDB) database that validates
login credentials.

In this chapter, we will cover the following topics:

Introducing the MySQL database system
Setting up the MySQL database
SQL commands
Database connection in Qt
Functional login page

We will walk through this chapter in a step-by-step approach to discover the powerful
features that come with Qt and allow your application to connect directly to a database
without any additional third-party dependencies. Database querying is a huge topic by
itself, but we will be able to learn the most basic commands from scratch through examples
and practical methods.

Qt supports multiple different types of database systems:

MySQL (or MariaDB)
SQLite (version 2 and 3)
IBM DB2
Oracle
ODBC
PostgreSQL
Sybase Adaptive Server

Database Connection Chapter 3

[53]

Two of the most popular ones are MySQL and SQLite. The SQLite database is usually used
offline and it doesn't require any setup as it uses an on-disk file format for storing data.
Therefore, in this chapter, we will learn how to set up a MySQL database system instead,
and at the same time learn how to connect our Qt application to a MySQL database. The
C++ code used to connect to the MySQL database can be reused for connecting to other
database systems without many alterations.

Introducing the MySQL database system
MySQL is an open source database management system based on the relational model,
which is the most common method used by modern database systems to store information
for various purposes.

Unlike some other legacy models such as an object database system or a hierarchical
database system the relational model has been proven to be more user friendly and
performs well beyond the other models. That's the reason why most of the modern database
systems we see today are mostly using this method.

MySQL was originally developed by a Swedish company called MySQL AB, and its name
is the combination of My, the name of the daughter of the company's co-founder, and SQL,
the abbreviation for Structured Query Language.

Similar to Qt, MySQL has also been owned by multiple different people throughout its
history. The most notable acquisition happened in 2008, where Sun Microsystems bought
MySQL AB for $1 billion. One year later in 2009, Oracle Corporation acquired Sun
Microsystems, and so MySQL is owned by Oracle up to this day. Even though MySQL
changed hands several times, it still remains as an open source software that allows users to
change the code to suit their own purposes.

Due to its open source nature, there are also other database systems out there that were
derived/forked from the MySQL project, such as MariaDB, Percona Server, and so on.
However, these alternatives are not fully compatible with MySQL as they have modified it
to suit their own needs, and therefore some of the commands may be varied among these
systems.

Database Connection Chapter 3

[54]

According to a 2017 survey carried out by Stack Overflow, MySQL is the most widely used
database system among web developers, as we can see in the following screenshot:

The survey result indicates that what you learn in this chapter can be applied to not just Qt
projects but also web, mobile app, and other types of applications.

Furthermore, MySQL and its variants are being used by big corporations and project
groups such as Facebook, YouTube, Twitter, NASA, Wordpress, Drupal, Airbnb, Spotify,
and so on and so forth. This means that you can easily get answers when encountering any
technical issues during development.

For more information regarding MySQL, please visit:

Database Connection Chapter 3

[55]

Setting up the MySQL database
There are many different ways to set up your MySQL database. It really depends on the
type of platforms you are running, whether it is Windows, Linux, Mac, or any other type of
operating system; it will also depend on the purpose of your database whether it's for
development and testing, or for a large-scale production server.

For large scale services (such as social media), the best way is to compile MySQL from the
source, because such as project requires a ton of optimization, configuration, and sometimes
customization in order to handle the large amount of users and traffic.

However, you can just download the pre-compiled binaries if you're going for normal use,
as the default configuration is pretty sufficient for that. You can install a standalone MySQL
installer from their official website or the download installation packages that come with
several other pieces of software besides MySQL.

In this chapter, we will be using a software package called XAMPP, which is a web server
stack package developed by a group called Apache Friends. This package comes with
Apache, MariaDB, PHP, and other optional services that you can add on during the
installation process. Previously, MySQL was part of the package, but it has since been
replaced with MariaDB starting from version 5.5.30 and 5.6.14. MariaDB works almost the
same as MySQL, except those commands involving advanced features, which we will not
be using in this book.

The reason why we use XAMPP is that it has a control panel that can easily start and stop
the services without using Command Prompt, and provides easy access to the configuration
files without you having to dig into the installation directory by yourself. It is very quick
and efficient for application development that involves frequent testings. However, it is not
recommended that you use XAMPP on a production server as some of the security features
have been disabled by default.

Alternatively, you may also install MySQL through other similar software packages such as
AppServ, AMPPS, LAMP (Linux only), WAMP (Windows only), ZendServer, and so on.

Database Connection Chapter 3

[56]

Now, let's learn how to install XAMPP:

First, go to their website at and click on one of1.
the download buttons located at the bottom of your screen, which displays the
icon of your current operating system:

Once you click on the Download button, the download process should start2.
automatically within a few seconds, and it should proceed to install the program
once it's done. Make sure that Apache and MySQL/MariaDB are included before
the installation process starts.

Database Connection Chapter 3

[57]

After you have installed XAMPP, launch the control panel from the start menu or3.
from the desktop shortcut. After that, you may notice that nothing has happened.
This is because the XAMPP control panel is hidden within the taskbar by default.
You may display the control panel window by right-clicking on it and selecting
the Show / Hide option in the pop-up menu. The following screenshot shows
you what this looks like on a Windows machine. For Linux, the menu may look
slightly different, but overall it is very similar. For macOS, you must launch
XAMPP from the launchpad or from the dock:

Once you have clicked the Show / Hide option, you will finally see the control4.
panel window displayed on your screen. If you click the Show / Hide option
again, the window will be hidden away:

Database Connection Chapter 3

[58]

Their control panel is pretty much self-explanatory at first glance. On the left, you5.
can see the names of the services that are available in XAMPP, and on the right,
you will see the buttons that indicate Start, Config, Logs, and so on. For some
reason, XAMPP is showing MySQL as the module name but it is in fact running
MariaDB. Don't worry; both work pretty much the same since MariaDB is a fork
of MySQL.
In this chapter, we'll only need Apache and MySQL (MariaDB), so let's click the6.
Start buttons of these services. After a second or two, you'll see that the Start
buttons are now labeled as Stop, which means the services have been launched!:

Database Connection Chapter 3

[59]

To verify this, let's open up the browser and type as the website7.
address. If you see something like the following image, it means that the Apache
web server has been successfully launched!:

Apache is very important here as we'll be using it to configure the database using8.
a web-based administrative tool called phpMyAdmin. phpMyAdmin is an
administrative tool for MySQL written in PHP scripting language, hence its
name. Even though it was originally designed for MySQL, it works pretty well
for MariaDB as well.
To access the phpMyAdmin control panel, type on9.
your browser. After that, you should see something like this:

Database Connection Chapter 3

[60]

On the left-hand side of the page, you will see the navigation panel, which allows10.
you access to the different databases available in your MariaDB database. On the
right-hand side of the page are various tools that let you view table, edit table,
run SQL command, export data to spreadsheet, set privileges, and so on.
By default, you can only modify the General settings of the database on the11.
setting panel located on the right. You must select a database from the navigation
panel on the left before you are able to modify the settings of a particular
database.
A database is like a cabinet that you can store log books within. Each log book is12.
called a table and each table contains data, which is sorted like a spreadsheet.
When you want to obtain a data from MariaDB, you must specify which cabinet
(database) and log book (table) you would like to access before getting the data
from it. Hopefully, this will make you better understand the concept behind
MariaDB and other similar database systems.

Database Connection Chapter 3

[61]

Now, let's get started by creating our very first database! To do so, you can either13.
click the New button located above the database names on the navigation
panel or click the Databases button located at the top of the menu. Both buttons
will bring you to the Databases page, and you should be able to see this located
below the menu buttons:

After that, let's create our very first database! Type in your desired database14.
name and click the Create button. Once the database has been created, you will
be redirected to the Structure page, which will list down all the tables contained
in this database. By default, your newly created database doesn't contain any
tables, so you will see a line of text that says No tables found in database:

Database Connection Chapter 3

[62]

Guess what we'll be doing next? Correct, we will create our first table! First, let's15.
insert the name of the table you want to create. Since we'll be doing a login page
later in this chapter, let's name our table . We'll leave the default number of
columns as it is and click Go.
After that, you will be redirected to another page, which contains many columns16.
of input fields for you to fill in. Each column represents a data structure which
will be added to your table after it's been created.
The first thing you need to add to the table structure is an ID that will17.
automatically increase upon each new data insertion. Then, add a timestamp
column to indicate the date and time of the data insertion, which is good for
debugging. Last but not least, we will add a username column and password
column for login validation. If you're unsure on how to do this, please refer to the
following image. Make sure you follow the settings that are being circled in the
image:

The type of the structure is very important and must be set according to its18.
intended purpose. For example, the id column must be set as INT (integer
number) as it must be a full number, while username and password must be set
as either VARCHAR or other similar data types (CHAR, TEXT, and so on) in
order for it to save the data correctly.

Database Connection Chapter 3

[63]

The timestamp, on the other hand, must be set to TIMESTAMP type, and must19.
set the default value to CURRENT_TIMESTAMP, which notifies MariaDB to
automatically generate the current timestamp upon data insertion.
Please note that the index setting for the ID column must be set to PRIMARY,20.
and make sure that the A_I (auto increment) checkbox is ticked. When you check
the A_I checkbox, an Add Index window will appear. You can keep the default
settings as they are and then you can click the Go button to complete the steps
and start creating the table:

After you have created the new table, you should be able to see something similar21.
like the following image. You can still edit the structure settings anytime by
clicking the Change button; you can also remove any of the columns by clicking
on the Drop button located at the right-hand side of the column. Please note that
deleting a column will also remove all the existing data belonging to that column,
and this action cannot be undone:

Database Connection Chapter 3

[64]

Even though we'll usually add data to the database through our programs or web22.
pages, we can also add data directly on phpMyAdmin for testing purposes. To
add data using phpMyAdmin, first, you must create a database and table, which
we have done in the previous steps. Then, click the Insert button located at the
top of the menu:

After that, you'll see that a form has appeared, which resembles the data23.
structure that we created previously:

Database Connection Chapter 3

[65]

You can simply ignore the ID and timestamp values as they will be automatically24.
generated when you save the data. In this case, only username and password
need to be filled in. For the sake of testing, let's put as the username and

 as the password. Then, click the Go button to save the data.

Please note that you should not save your password in a human-readable
format on your actual production server. You must encrypt the password
with a cryptographic hash function such as SHA-512, RIPEEMD-512,
BLAKE2b, and so on before passing it to the database. This will ensure
that the password is not readable by hackers in case your database is being
compromised. We will cover this topic at the end of this chapter.

Now that we have finished setting up our database and inserted our first test data, let's
proceed to learn some of the SQL commands!

SQL commands
Most of the popular relational database management systems, such as MySQL, MariaDB,
Oracle SQL, Microsoft SQL, and so on, use a type of declarative language called SQL
(Structured Query Language) to interact with the database. SQL was initially developed by
IBM engineers in the 1970s, but later on, it was further enhanced by Oracle Corporation
and other emerging tech companies of that era.

Today, SQL has become a standard of the American National Standards Institute (ANSI)
and of the International Organization for Standardization (ISO). SQL language has since
been adopted by many different database systems and has become one of the most popular
database languages in the modern era.

In this section, we will learn what some of the basic SQL commands you can use to interact
with your MariaDB database are, specifically for obtaining, saving, modifying, and deleting
your data from/to the database. These basic commands can be used in other types of SQL-
based database systems as well as under the ANSI and ISO standards. Only, some of the
more advanced/customized features could be different across different systems, so make
sure that you read the system manual before using these advanced features.

Alright, let's get started!

Database Connection Chapter 3

[66]

SELECT
Most of the SQL statements are one-word short and self-explanatory. This statement, for
example, is used to select one or more columns from a specific table and to obtain the data
from the said columns. Let's check out some of the sample commands that use the
statement.

The following command retrieves all the data of all the columns from the table:

SELECT * FROM user;

The following command retrieves only the column from the user table:

SELECT username FROM user;

The following command retrieves the and columns from the
table with the condition that the equals :

SELECT username, password FROM user WHERE id = 1;

You can try out these commands by yourself using phpMyAdmin. To do that, click the SQL
button located at the top of the menu in phpMyAdmin. After that, you can type the
command in the text field below and click Go to execute the query:

Database Connection Chapter 3

[67]

To learn more about the statement, please refer to the following
link:

INSERT
Next, the statement is used to save new data into a database table. For example:

INSERT INTO user (username, password) VALUES ("test2", "123456");

The preceding SQL command inserts and data into the table.
There are some other statements that can be used together with , such as

, , , and so on.

Please refer to the following link to learn more about these options:

UPDATE
The statement modifies existing data in the database. You must specify a condition
for the command as otherwise, it will modify every single piece of data in a table,
which is not our intended behavior. Try the following command, which will change the

 and of the first user:

UPDATE user SET username = "test1", password = "1234321" WHERE id = 1;

The command will fail, however, if the user with ID does not exist. The command will
also return the status if the and data you provided
matches exactly with the one stored in the database (nothing to change). For more
information regarding the statement, please refer to the following link:

Database Connection Chapter 3

[68]

DELETE
The statement deletes data from a specific table of a database. For example, the
following command deletes a data from the table that carries the ID :

DELETE FROM user WHERE id = 1;

Even though you can use this statement to delete unwanted data, it is not recommended to
delete any data from your database because the action cannot be undone. It is better to add
another column to your table called status and use that to indicate whether data should be
shown or not. For example, if your user deletes data on the front end application, set the
status of that data to (let's say) instead of . Then, when you want to display data on the
front end, display only the data that carries a status of :

This way, any data that has been accidentally deleted can be recovered with ease. You can
also use a BOOLEAN type for this if you only plan to use true or false. I usually use
TINYINT just in case I need a third or fourth status in the future. For more information
regarding the statement, you can refer to the following link:

JOIN
The advantage of using a relational database management system is that the data can be
easily joined together from different tables and can be returned to the user in a single bulk.
This greatly improves the productivity of the developers as it allows fluidity and flexibility
when it comes to designing a complex database structure.

Database Connection Chapter 3

[69]

There are many types of JOIN statements in MariaDB/MySQL INNER JOIN, FULL
OUTER JOIN, LEFT JOIN, and RIGHT JOIN. All of these different JOIN statements
behave differently when executed, which you can see in the following image:

Most of the time, we'll be using the INNER JOIN statement, as it only returns the data that
has matching values in both tables, and thus only returns a small amount of the data that is
needed. The JOIN command is much more complicated than the others as you need to
design the tables to be join-able in the first place. Before we start testing the JOIN
command, let's create another table to make this possible. We will call this new
table department:

After that, add two departments, like so:

Database Connection Chapter 3

[70]

Then, go to the user table, and at the structure page, scroll all the way to the bottom and
look for the form shown, then click the Go button:

Add a new column called deptID (which stands for department ID) and set its data type to
 (integer number):

After that, set up a few test users and put each of their deptID as either or :

Database Connection Chapter 3

[71]

Please notice that I have also added the status column here for checking whether the user
has been deleted or not. Once you have done with that, let's try to run a sample command!:

SELECT my_user.username, department.name FROM (SELECT * FROM user WHERE
deptID = 1) AS my_user INNER JOIN department ON department.id =
my_user.deptID AND my_user.status = 0

That looks quite complicated at first glance, but it really isn't if you separate it into a few
parts. We'll start from the command within the bracket first, in which we asked
MariaDB/MySQL to select all columns within the table that carry :

SELECT * FROM user WHERE deptID = 1

After that, contain it within a bracket and name this entire command as After
that, you can start joining your user table (now called) with the department table
by using the statement. Here, we also added some conditions for it to look up
the data, such as the ID of the department table must match the of , and
the status value of must be , indicating that the data is still valid and not tagged
as removed:

(SELECT * FROM user WHERE deptID = 1) AS my_user INNER JOIN department
ON department.id = my_user.deptID AND my_user.status = 0

Lastly, add the following code in front to complete the SQL command:

SELECT my_user.username, department.name FROM

Let's try the preceding command and see if the result is what you expected.

You can join infinite numbers of tables using this method as long as the tables are linked to
each another through matching columns.

To find out more about the JOIN statement, please visit the following link:

There are many other SQL statements that we have not covered in this chapter, but the ones
that we have covered are pretty much all you need to get started.

One last thing before we move on to the next section we must create a user account for the
application to access to our MariaDB/MySQL database. First of all, go to your
phpMyAdmin home page and click User accounts on the top menu:

Database Connection Chapter 3

[72]

Then, go to the bottom and look for this link called Add user account:

Once you're in the Add user account page, type in the User name and Password
information in the Login Information form. Make sure that the Host name is set to Local:

Database Connection Chapter 3

[73]

Then, scroll down and set the Global privileges of the user. Enabling the options within the
Data section is well enough, but do not enable the other options as it might give hackers the
privilege to alter your database structure once your server has been compromised:

Once you have created the user account, follow the following steps to allow the newly-
created user access to the database called test (or any other table name of your choice):

Database Connection Chapter 3

[74]

After you have clicked the Go button, you have now given the user account the privilege to
access the database! In the next section, we'll be learning how to connect our Qt application
to the database.

Database connection in Qt
Now that we have learned how to set up a functional MySQL/MariaDB database system,
let's move a step further and discover the database connection module in Qt!

Before we continue working on our login page from the previous chapter, let's start off with
a new Qt project first so that it's easier to demonstrate the functionality solely related to
database connection and so that we don't get distracted by the other stuff. This time, we'll
go for the Terminal-style application called Qt Console Application, as we don't really
need any GUI for this demonstration:

After you have created the new project, you should only see two files in the project, that
is, [project_name].pro and main.cpp:

The first thing you need to do is to open up your project file (), which in my case
is DatabaseConnection.pro, and add the keyword at the back of the first line, like so:

QT += core sql

Database Connection Chapter 3

[75]

As simple as that, we have successfully imported the module into our Qt project! Then,
open up and you should see a very simple script that contains only eight lines of
code. This is basically all you need to create an empty console application:

In order for us to connect to our database, we must first import the relevant headers to
, like so:

#include <QtSql>
#include <QSqlDatabase>
#include <QSqlQuery>
#include <QDebug>

Without these header files, we won't be able to use the functions provided by Qt's
module, which we have imported previously. Additionally, we also added the
header so that we can easily print out any text on the console display (similar to
the function provided by C++'s standard library).

Next, we'll add some code to the file. Add the following highlighted code before
:

QSqlDatabase db = QSqlDatabase::addDatabase("QMYSQL");
 db.setHostName("127.0.0.1");
 db.setPort(3306);
 db.setDatabaseName("test");
 db.setUserName("testuser");
 db.setPassword("testpass");
 if (db.open())
 {
 qDebug() << "Connected!";
 }

Database Connection Chapter 3

[76]

 else
 {
 qDebug() << "Failed to connect.";
 return 0;
 }

Do note that the database name, username, and password could be different from what you
have set in your database, so please make sure they are correct before compiling the project.

Once you are done with that, let's click the Run button and see what happens!:

Database Connection Chapter 3

[77]

If you see the following error, don't worry:

That is simply because you must install the MariaDB Connector (or MySQL Connector if
you're running MySQL) to your computer and copy the DLL file over to your Qt
installation path. Please make sure that the DLL file matches your server's database library.
You can open up your phpMyAdmin home page and see which library it is currently using.

For some reason, even though I'm running XAMPP with MariaDB, the library name here
shows libmysql instead of libmariadb, so I had to install MySQL Connector instead:

Database Connection Chapter 3

[78]

If you're using MariaDB, please download the MariaDB Connector at the
following link:

If you're using MySQL instead (or are having the same issue as I did),
please visit the other link and download MySQL Connector:

Database Connection Chapter 3

[79]

After you have downloaded the MariaDB Connector, install it on your computer:

The preceding screenshot shows the installation process for a Windows machine. If you're
running Linux, you must download the right package for your Linux distribution. If you're
running Debian, Ubuntu, or one of its variants, download the Debian and Ubuntu
packages. If you're running Red Hat, Fedora, CentOS, or one of its variants, download the
Red Hat, Fedora, and CentOS packages. The installation for these packages are automated,
so you're good to go. However, if you're running neither of those, you'll have to download
one of the gzipped tar files listed on the download page that fits your system requirement.

For more information about installing MariaDB binary tarballs on Linux,
please refer to the following link:

As for macOS, you need to use a package manager called Homebrew to install MariaDB
server.

Database Connection Chapter 3

[80]

For more information, check out the following link:

Once you have installed it, go to its installation directory and look for the DLL file
(for MariaDB or for MySQL). For Linux and macOS, it's

 or instead of DLL.

Then, copy the file over to your application's build directory (the same folder as your
application's executable file). After that, try and run your application again:

If you still getting but without the
 message, please check your XAMPP control panel and make sure that your

database service is running; also make sure that the database name, username, and
password that you put in the code is all the correct information.

Next, we can start playing around with SQL commands! Add the following code before
:

Database Connection Chapter 3

[81]

The preceding code sends the command text to the database and synchronously waits for
the result to return from the server. After that, use a loop to go through every single
result and convert it to a string format. Then, display the result on the console window. If
everything went right, you should see something like this:

Let's try out something more complex:

Database Connection Chapter 3

[82]

This time, we used INNER JOIN to combine two tables to select the and
 name. To avoid confusion regarding the variable called , rename it to

 using the statement. After that, display both the and
name on the console window:

We're done... for now. Let's move on to the next section, where we will learn how to make
our login page functional!

Creating our functional login page
Since we have learned how to connect our Qt application to the MariaDB/MySQL database
system, it's time to continue working on the login page! In the previous chapter, we learned
how to set up the GUI of our login page. However, it didn't have any functionality at all as a
login page since it doesn't connect to the database and verify login credentials. Therefore,
we will learn how to achieve that by empowering Qt's module.

Database Connection Chapter 3

[83]

Just to recap this is what the login screen looks like:

The very first thing we need to do now is to name the widgets that are important in this
login page, which are the Username input, Password input, and the Submit button. You
can set these properties by selecting the widget and looking for the property in the property
editor:

Database Connection Chapter 3

[84]

Then, set the echoMode of the password input as Password. This setting will hide the
password visually by replacing it with dots:

Database Connection Chapter 3

[85]

After that, right-click on the Submit button and select Go to slot... A window will pop up
and ask you which signal to use. Select clicked() and click OK:

A new function called will be automatically added to the
 class. This function will be triggered by Qt when the Submit button is pressed

by the user, and thus you just need to write the code here to submit the and
 to the database for login verification. The signal and slots mechanism is a special

feature provided by Qt which is used for communication between objects. When one
widget is emitting a signal, another widget will be notified and will proceed to run a
specific function that is designed to react to the particular signal.

Let's check out the code.

First, add in the keyword at your project (.pro) file:

sql

Then, proceed and add the relevant headers to :

#include <QtSql>
#include <QSqlDatabase>
#include <QSqlQuery>
#include <QDebug>
#include <QMessageBox>

Database Connection Chapter 3

[86]

Then, go back to and add the following code to the
 function:

Now, click the Run button and wait for the application to start. Then, key in any random
 and , followed by clicking on the submit button. You should now see

your and being displayed on the application output window in Qt
Creator.

Next, we'll copy the SQL integration code we have written previously into
:

db = QSqlDatabase::addDatabase("QMYSQL");
 db.setHostName("127.0.0.1");
 db.setPort(3306);
 db.setDatabaseName("test");
 db.setUserName("testuser");
 db.setPassword("testpass");

 if (db.open())
 {
 qDebug() << "Connected!";
 }
 else
 {
 qDebug() << "Failed to connect.";
 }

Database Connection Chapter 3

[87]

Do note that I've used some random text for the database name, username, and password.
Please make sure you enter the correct details here and that they match with what you've
set in the database system.

One minor thing we have changed for the preceding code is that we only need to call
 in without the class name

as the declaration has now been relocated to :

 QSqlDatabase db;

Lastly, we add in the code that combines the and information with the
SQL command, and send the whole thing to the database for execution. If there is a result
that matches the login information, then it means that the login has been successful,
otherwise, it means the login has failed:

Database Connection Chapter 3

[88]

Click the Run button again and see what happens when you click the Submit button:

Hip hip hooray! The login page is now fully functional!

Summary
In this chapter, we learned how to set up a database system and make our Qt application
connect to it. In the next chapter, we will learn how to draw graphs and charts using the
powerful Qt Framework.

44
Graphs and Charts

In the previous chapter, we learned how to retrieve data from a database using Qt's
module. There are many ways to present this data to the users, such as displaying it in the
form of tables or diagrams. In this chapter, we will learn how to do the latter presenting
data with different types of graphs and charts using Qt's charts module.

In this chapter, we will cover the following topics:

Types of charts and graphs in Qt
Charts and graphs implementation
Creating the dashboard page

Since Qt 5.7, several modules that were only available for commercial users before have
become free for all the open source package users, which includes the Qt Charts module.
Therefore, it is considered a very new module for most Qt users who don't own the
commercial license.

Do note that, unlike most of the Qt modules that are available under an LGPLv3 license, the
Qt Chart module is offered under an GPLv3 license. Unlike LGPLv3, a GPLv3 license
requires you to release the source code of your application, while your application must
also be licensed under GPLv3. This means that you are not allowed to static-link Qt Chart
with your application. It also prevents the module from being used in proprietary software.

To learn more about the GNU licenses, please head over to the following
link:

Let's get started!

Graphs and Charts Chapter 4

[90]

Types of charts and graphs in Qt
Qt supports most commonly used diagrams, and even allows the developer to customize
the look and feel of them so that they can be used for many different purposes. The Qt
Charts module provides the following chart types:

Line and spline charts
Bar charts
Pie charts
Polar charts
Area and scatter charts
Box-and-whiskers charts
Candlestick charts

Line and spline charts
The first type of chart is the line and spline chart. These charts are typically presented as a
series of points/markers that are connected by lines. In a line chart, the points are connected
by straight lines to show the changes of the variables over a period of time. On the other
hand, spline charts are very similar to line charts except the points are connected by a
spline/curve line instead of straight lines:

Graphs and Charts Chapter 4

[91]

Bar charts
Bar charts are one of the most commonly used diagrams beside line charts and pie charts. A
bar chart is quite similar to a line chart, except it doesn't connect the data along an axis.
Instead, a bar chart displays its data using individual rectangular shapes, where its height is
determined by the value of the data. This means that the higher the value, the taller the
rectangular shape will become:

Graphs and Charts Chapter 4

[92]

Pie charts
A pie chart, as its name implies, is a type of chart that looks like a pie. A pie chart presents
its data in the form of pie slices. The size of each slice of pie will be determined by the
overall percentage of its value compared to the rest of the data. Therefore, pie charts are
normally used to display fraction, ratio, percentage, or a share of a set of data:

Sometimes, a pie chart can also be displayed in a donut shape (also known as donut chart):

Graphs and Charts Chapter 4

[93]

Polar charts
Polar charts present data in a circular graph, where the placement of the data is based on
both the angle and the distance from the center of the graph, which means the higher the
value of the data, the further away the point is from the center of the chart. You can display
multiple types of graphs within the polar chart, such as line, spline, area, and scatter to
visualize the data:

Graphs and Charts Chapter 4

[94]

If you are a gamer, you should have noticed this type of graph being used in some video
games to display the in-game character's attributes:

Area and scatter charts
An area chart displays its data as an area or shape to indicate volume. It's usually used to
compare the differences between two or more datasets.

Graphs and Charts Chapter 4

[95]

Scatter charts, on the other hand, are used to display a collection of data points, and for
showing the non-linear relationship between two or more datasets.

Graphs and Charts Chapter 4

[96]

Box-and-whiskers charts
Box-and-whiskers charts present data as quartiles extended with whiskers that show the
variability of the values. The boxes may have lines extending vertically called whiskers.
These lines indicate variability outside the upper and lower quartiles, and any point outside
those lines or whiskers is considered an outlier. Box-and-whisker charts are most commonly
used in statistical analysis, such as stock market analysis:

Candlestick charts
Candlestick charts are visually quite similar to the box-and-whiskers charts, except they are
used to represent the difference between the opening and closing value, while showing the
direction of the value (whether increasing or decreasing) through different colors. If the
value of a particular piece of data stays the same, the rectangular shape will not be shown at
all:

Graphs and Charts Chapter 4

[97]

For more information regarding the different types of charts supported by
Qt, please head over to the following
link:

Qt supports most of the diagram types you need for your project. It is also extremely easy to
implement these diagrams in Qt. Let's see how we can do it!

Implementing charts and graphs
Qt makes drawing different types of diagrams easy by putting the complex drawing
algorithms behind different abstraction layers, and providing us with a set of classes and
functions that can be used to easily create these diagrams without knowing how the
drawing algorithm works behind the scenes. These classes and functions are all included in
the chart module that comes together with Qt.

Let's create a new Qt Widgets Application project and try to create our first chart in Qt.

After you have created the new project, open up the project file () and add the
module to your project, like so:

Graphs and Charts Chapter 4

[98]

Then, open up and add the following to include the header files that are
required for using the module:

The and headers are both essential for Qt's module. You
must include both of them for any type of chart to work at all. The other two headers,
namely and , are used here because we're going to create a bar chart.
The headers that get included in your project will be different depending on the type of
chart you want to create.

Next, open and drag either Vertical Layout or Horizontal Layout to the
central widget. Then, select the central widget and click either Layout Horizontally or
Layout Vertically. The layout direction is not particularly important, as we will only create
a single chart here:

Graphs and Charts Chapter 4

[99]

After that, right-click on the layout widget you just dragged to the central widget, and select
Morph into | QFrame. This will change the layout widget into a QFrame widget while still
maintaining its layout properties. If you create a QFrame from Widget Box, it won't have
the layout properties that we need. This step is important so that we can set it as the parent
of our chart later:

Now open up and add the following code:

QBarSet *set0 = new QBarSet("Jane");
 QBarSet *set1 = new QBarSet("John");
 QBarSet *set2 = new QBarSet("Axel");
 QBarSet *set3 = new QBarSet("Mary");
 QBarSet *set4 = new QBarSet("Samantha");

 *set0 << 10 << 20 << 30 << 40 << 50 << 60;
 *set1 << 50 << 70 << 40 << 45 << 80 << 70;
 *set2 << 30 << 50 << 80 << 13 << 80 << 50;
 *set3 << 50 << 60 << 70 << 30 << 40 << 25;
 *set4 << 90 << 70 << 50 << 30 << 16 << 42;

 QBarSeries *series = new QBarSeries();
 series->append(set0);
 series->append(set1);

Graphs and Charts Chapter 4

[100]

 series->append(set2);
 series->append(set3);
 series->append(set4);

The code above initializes all the categories that will be displayed in the bar chart. Then, we
also added six different items of data to each category, which will later be represented in the
form of bars/rectangular shapes.

The class represents a set of bars in the bar chart. It groups several bars into a bar
set, which can then be labeled. QBarSeries, on the other hand, represents a series of bars
grouped by category. In other words, bars that have the same color belong to the same
series.

Next, initiate the object and add the series to it. We also set the chart's title and
enable animation:

After that, we create a bar chart category axis and apply it to the bar chart's x axis. We used
a variable, which is similar to an array, but explicitly for storing strings. The

 will then take the string list and populate it over the x axis:

Then, we create a chart view for Qt to render the bar chart and set it as a child of the frame
widget in the main window; otherwise, it won't be rendered on the main window:

Graphs and Charts Chapter 4

[101]

Click the Run button in Qt Creator, and you should see something like this:

Graphs and Charts Chapter 4

[102]

Next, let's do a pie chart; it's really easy. First, instead of and , we
include and :

Then, create a object and set up the name and value of each data. After that,
set one of the slices to a different visual style and make it pop out from the rest. Then, create
a object and link it with the object that we have created:

Last, but not least, create the object and link it with the object we just
created. Then, set it as a child of the frame widget, and we're good to go!

Graphs and Charts Chapter 4

[103]

Press the Run button now, and you should be able to see something like this:

For more examples of how to create different charts in Qt, please check out
their sample code at the following
link: .

Now that we've seen that it is easy to create graphs and charts with Qt, let's expand the
project we started in the previous chapters and create a dashboard for it!

Graphs and Charts Chapter 4

[104]

Creating the dashboard page
In the previous chapter, we created a functional login page that allows the user to sign in
using their username and password. What we need to do next is to create the dashboard
page, which the user will automatically get directed to upon successful login.

The dashboard page usually serves as a quick overview for the user about the status of their
company, business, project, assets, and/or other statistics. The following image shows an
example of what a dashboard page could look like:

Graphs and Charts Chapter 4

[105]

As you can see, there are quite a number of charts and graphs that are being used on the
dashboard page because it is the best way for displaying a huge number of data without
making the users feel overwhelmed. Moreover, graphs and charts can let the users
understand the overall situation easily without digging too much into the details.

Let's open up our previous project and open the file. The user interface
should look something like this:

As you can see, we already have the login page now, but we need to add in another page
for the dashboard as well. For multiple pages to co-exist in the same program and to be able
to switch between different pages at any time, Qt provides us with something called
QStackedWidget.

A stacked widget is just like a book that you can add more and more pages to, but it shows
only one page at a time. Each page is a completely different GUI, so it won't interfere with
other pages in the stacked widget.

Graphs and Charts Chapter 4

[106]

Since the previous login page was not made with a stacked widget in mind, we have to
make some adjustments to it. First, drag and drop a stacked widget from the Widget Box to
the central widget of your application, and then, we need to move everything previously
under the central widget into the first page of the stacked widget, which we
renamed loginPage:

Next, set all the layout settings of the central widget to , so that it contains no margin at all,
like so:

After that, we must cut away the code in the style sheet property of the central widget, and
paste it to the login page's style sheet property. In other words, the background image,
button style, and other visual settings are now only applied to the login page.

Graphs and Charts Chapter 4

[107]

Once you're done, you should be getting two completely different GUIs (the dashboard
page is empty for now) when switching between pages on the stacked widget:

Next, drag and drop a grid layout to the dashboard page, and apply Layout Vertically to
the dashboard page:

Graphs and Charts Chapter 4

[108]

After that, drag and drop six Vertical Layout into the Grid Layout, like so:

Then, select each of the vertical layouts we just added to the grid layout, and turn it into
QFrame:

Graphs and Charts Chapter 4

[109]

Just as we did in the charts implementation examples, we must turn the layout into a
 (or) so that we can attach the chart on it as a child object. If you directly

drag a from the widget box and don't use morphing, the objects do not
have the layout properties, and hence the charts may not be resizing themselves to fit the

's geometry. Also, name those objects as to as we're going
to need them in the following steps. Once you're done with that, let's proceed to the code.

First, open your project () file and add the module, just as we did in the earlier
example in this chapter. Then, open up and include all the headers
required. This time around, we also include the header for creating the line
chart:

After that, declare the pointers for the charts, like so:

Then, we'll add the code for creating a bar chart. This is the same bar chart we created
earlier in the chart implementation example, except it's now attached to the object
called , and is set to enable anti-aliasing when rendering. The anti-aliasing feature
removes the jagged edges of all charts and thus makes the rendering appear smoother:

Graphs and Charts Chapter 4

[110]

Next, we also add the code for the pie chart. Again, this is the same pie chart from the
previous example:

Graphs and Charts Chapter 4

[111]

Finally, we also add a line graph to the dashboard, which is something new. The code is
very simple and very similar to the pie chart:

Once you're done with that, we must add a resize-event slot to the main window class, and
make the charts follow the size of their respective parent when the main window is being
resized. This can be done by first going to the and adding in the event-
handler declaration:

Graphs and Charts Chapter 4

[112]

Then, open up and add the following code:

Do note that the must be called first so that the
default behavior will be triggered before you call your custom methods below it.

 is one of the many event handlers provided by Qt for reacting to its
events, such as mouse events, window events, paint events, and so on. Unlike the signal-
and-slots mechanism, you need to replace the virtual function of the event handler to make
it do what you want it to do when the event is being called.

If we build and run the project now, we should be getting something like this:

Graphs and Charts Chapter 4

[113]

Looks pretty neat, doesn't it! However, for the sake of simplicity and so as not to confuse
the readers, the charts are all hard-coded and are not using any data from the database. If
you intend to use data from the database, don't make any SQL query during program
startup, as this will make your program freeze if the data you're loading is very large, or
your server is very slow.

The best way to do it is to load the data only when you're switching from the login page to
the dashboard page (or upon switching to any other pages) so that the loading time is less
obvious to the user. To do this, right-click on the stacked widget and select Go to slot. Then,
select currentChanged(int) and click OK.

After that, a new slot function will be created automatically by Qt. This function will be
called automatically when the stacked widget is switching between pages. You can check
which page it is currently switching over to by checking the variable. The value
will be if the target page is the first page within stacked widget, or if the target is the
second page, and so on.

You can submit the SQL query only when the stacked widget is showing the dashboard
page, which is the second page (equals to):

Graphs and Charts Chapter 4

[114]

Phew! That's a lot to digest for this chapter! Hopefully, this chapter will help you
understand how to create a beautiful and informative page for your project.

Summary
The chart module in Qt is the combination of feature and visual aesthetic. Not only is it easy
to implement without the need to write a very long code just to display the chart, but it is
also customizable to suit your visual requirements. We really need to be thankful to Qt
developers for opening up this module and allowing non-commercial users to use it for
free!

In this chapter, we have learned how to create a really nice-looking dashboard, and display
different types of charts on it using the Qt Chart module. In the coming chapter, we will
learn how to use view widget, dialog boxes, and file-selection dialogs.

55
Item Views and Dialogs

In the previous chapter, we learned how to display data using different types of chart.
Charts are one of many ways to present information to the users on screen. It is very
important for your application to present vital information to the users so that they know
exactly what's happening to the application whether data has been saved successfully, or
the application is waiting for the user's input, or warning/error messages that the users
should be aware of, and so on it's all very important to ensure your application's user-
friendliness and usability.

In this chapter, we will cover the following topics :

Working with item view widgets
Working with dialog boxes
Working with file selection dialogs
Image scaling and cropping

Qt provides us with many types of widget and dialog that we can easily use to display
important information to the users. Let's check out what these widgets are!

Working with item view widgets
Other than displaying data using different types of chart, we can also display this data
using different types of item view. An item view widget presents data by rendering it
visually, usually along the vertical axis.

A two-dimensional item view, often known as a table view, displays data in both vertical
and horizontal directions. That allows it to display huge volumes of data within a compact
space, and enables the users to search for an item very quickly and easily.

Item Views and Dialogs Chapter 5

[116]

There are two ways to display data in an item view. The most common method is to use the
model-view architecture, which uses three different components, model, view, and
delegate, to retrieve data from a data source and display it in the item view. These
components all make use of the signal-slot architecture provided by Qt to communicate
with each other:

Signals from the model inform the view about changes to the data held by the
data source
Signals from the view provide information about the user's interaction with the
items being displayed
Signals from the delegate are used during editing to tell the model and view
about the state of the editor

The other method is the manual way, in which the programmer must tell Qt which data
goes into which column and row. This method is much simpler than the model-view, but
much slower when compared to its performance. However, for small amounts of data, the
performance issue can be negligible, making this a good approach.

If you open up Qt Designer, you will see the two different categories for Item View
Widgets, namely Item Views (Model-Based) and Item Widgets (Item-Based):

Even though they might look the same, in actual fact the widgets within the two categories
work very differently. In this chapter, we will learn how to use the latter category, as it is
more straightforward and easy to understand, and able to serve as prerequisite knowledge
for the former category.

Item Views and Dialogs Chapter 5

[117]

Under the Item Widgets (Item-Based) category are three different widgets called List
Widget, Tree Widget, and Table Widget. Each of these item widgets displays data in a
different way. Pick the one that suits your needs:

As you can see from the preceding diagram, the List Widget displays its items in a one-
dimensional list, while the Table Widget displays its item in a two-dimensional table. Even
though the Tree Widget works almost similar to the List Widget, its items are displayed in
a hierarchical structure, in which each item can have multiple children items under it,
recursively. One good example of this is the filesystem in our operating system, which
displays the directory structure using the tree widget.

To illustrate the differences, let's create a new Qt Widgets application project and try it out
ourselves.

Item Views and Dialogs Chapter 5

[118]

Creating our Qt Widgets application
Once you have created the project, open up and drag the three different
item widgets to your main window. After that, select the main window and click the
Layout Vertically button located at the top:

Item Views and Dialogs Chapter 5

[119]

Then, double-click on the List Widget and a new window will pop out. Here, you can add a
few dummy items to the List Widget by clicking the + icon, or remove them by selecting an
item from the list and clicking the - icon. Click the OK button to apply the final result to the
widget:

Item Views and Dialogs Chapter 5

[120]

You can do the same to the Tree Widget. It's almost the same as the List Widget, except that
you can add sub-items to an item, recursively. You can also add columns to the Tree Widget
and name the columns:

Finally, double-click on the Table Widget to open the Edit Table Widget window. Unlike
the other two item views, the Table Widget is a two-dimensional item view, which means
you can add columns and rows to it just like a spreadsheet. Each column and row can be
labeled with the desired name by setting it in the Columns or Rows tab:

Item Views and Dialogs Chapter 5

[121]

It's really easy to understand how a widget works by using the Qt Designer. Just drag and
drop the widget into the window and play around with its settings, then build and run the
project to see the result for yourself.

Item Views and Dialogs Chapter 5

[122]

In this case, we have demonstrated the differences between the three item views widgets
without writing a single line of code:

Making our List Widget functional
Writing code, however, is still required in order for the widgets to be fully functional in
your application. Let's learn how to add items to our item view widgets using C++ code!

Item Views and Dialogs Chapter 5

[123]

First, open up and write the following code to the class constructor, right
after :

As simple as that, you have successfully added an item to the List Widget!

There is another way to add an item to the List Widget. But before that, we must add the
following headers to :

#include <QDebug>
#include <QListWidgetItem>

The header is for us to print out debug message, and the header
is for us to declare List Widget objects. Next, open up and add the
following code:

The preceding code does the same as the previous one-line code. Except, this time, I've
added an extra data to the item. The function takes in two input variables the
first variable is the data-role of item, which indicates how it should be treated by Qt. If you
put a value that matches the enumerator, the data will affect the
display, decoration, tooltip, and so on, and that may change its appearance.

Item Views and Dialogs Chapter 5

[124]

In my case, I just simply set a number that doesn't match any of the enumerators in
 so that I can store it as a hidden data for later use. To retrieve the data,

you can simply call and insert the number that matches the one you've just set:

Build and run the project; you should be able to see that the new item is now being added
to the List Widget:

For more information about enumerators, please
check out the following
link:

As mentioned earlier, hidden data can be attached to a list item for later use. For example,
you could use the list widget to display a list of products ready to be purchased by the user.
Each of these items can be attached with its product ID so that when the user selects the
item and places it on the cart, your system can automatically identify which product has
been added to the cart by identifying the product ID stored as the data role.

In the preceding example, I stored custom data, , in my list item and set its data role as
, which does not match any of the enumerators. This way, the data

won't be shown to the users, and thus it can only be retrieved through C++ code.

Item Views and Dialogs Chapter 5

[125]

Adding functionality to the Tree Widget
Next, let's move on to the Tree Widget. It is actually not that different from the List Widget.
Let's take a look at the following code:

It's pretty much the same as the List Widget, except we have to set the column ID in the
 function. This is because the Tree Widget is somewhere between a List Widget

and a Table Widget it can have more than one column but can't have any rows.

The most obvious distinction between a Tree Widget and other view widgets is that all its
items can contain children items, recursively. Let's look at the following code to see how we
can add a child item to an existing item in the Tree Widget:

It's really that simple! The final result looks like this:

Finally, our Table Widget
Next, let's do the same for the Table Widget. Technically, the items already exist and are
reserved in the Table Widget when the columns and rows are being created. What we need
to do is to create a new item and replace it with the (currently empty) item located at a
specific column and row, which is why the function name is called , instead of

 used by the List Widget.

Item Views and Dialogs Chapter 5

[126]

Let's take a look at the code:

As you can see from the code, I have added two sections of data to two different locations,
which translates into the following result:

That's it! It's all that simple and easy to display data using item views in Qt. If you are
looking for more examples related to item views, please visit the following link:

Working with dialog boxes
One very important aspect of creating a user-friendly application is the ability to display
vital information regarding the status of the application when a certain event (intended or
unintended) occurs. To display such information, we need an external window that can be
dismissed by the user once he/she has acknowledged the information.

Qt comes with this functionality, and it's all residing in the class. There are
several types of message box you can use in Qt; the most basic one uses just a single line of
code, like so:

Item Views and Dialogs Chapter 5

[127]

There are three parameters you need to provide for this function. The first one is the parent
of the message box, which we have set as the main window. The second parameter is for the
window title, and the third parameter is for the message we want to deliver to the user. The
preceding code will produce the following result:

The appearance shown here is running on a Windows system. The appearance may look
different on different operating systems (Linux, macOS, and so forth). As you can see, the
dialog box even comes with an icon located before the text. There are a few types of icon
you can use, such as information, warning, and critical. The following code shows you the
code for calling all the different message boxes with icons:

The preceding code produces the following results:

Item Views and Dialogs Chapter 5

[128]

If you don't need any icons, just call the function instead. You can
also set the buttons you want by picking from a list of standard buttons provided by Qt, for
example:

The preceding code will produce the following result:

Since these are the built-in functions provided by Qt to create message boxes with ease, it
doesn't give developers the freedom to fully customize a message box. However, Qt does
allow you to create your message boxes manually using another method, which is much
more customizable than the built-in method. It takes a couple more lines of code, but is still
pretty simple to write:

The preceding code will produce the following result:

It looks just the same, you're telling me. What about adding our own icon and customized
buttons? No problem with that:

Item Views and Dialogs Chapter 5

[129]

The preceding code produces the following result:

In the preceding code example, I have loaded the question icon that comes with Qt, but you
can also load your own icon from the resource file if you intended to do so:

Build and run the project now, and you should be able to see this fantastic message box:

Item Views and Dialogs Chapter 5

[130]

Once you have understood how to create your own message boxes, let's proceed to learn
about the event system that comes with the message box.

When a user is presented with a message box with multiple different choices, he/she would
expect a different reaction from the application when pressing a different button.

For example, when a message box pops up and asks the user whether they wish to quit the
program or not, the button Yes should make the program terminate, while the No button
will do nothing.

Qt's class provides us with a simple solution for checking the button event.
When the message box is being created, Qt will wait for the user to pick their choice; then, it
will return the button that gets triggered. By checking which button is being clicked, the
developer can then proceed to trigger the relevant event. Let's take a look at the example
code:

The preceding code will produce the following result:

Item Views and Dialogs Chapter 5

[131]

If you prefer the manual way to create your message box, the code for checking the button
event is slightly longer:

Even though the code is slightly longer, the basic concept is pretty much the same the
clicked button will always be able to be retrieved by the developer for triggering the
appropriate action. This time, however, instead of checking the enumerator, Qt directly
checks the button pointer instead, since the preceding code does not use the built-in
standard buttons from the class.

Build the project, and you should be able to get the following result:

Item Views and Dialogs Chapter 5

[132]

For more information regarding the dialog boxes, please visit the API
documents located at the following link:

Creating File Selection Dialogs
Since we have covered the topic about message boxes, let's also learn about the other type of
dialog the File Selection Dialog. The File Selection Dialog is also very useful, especially if
your application frequently deals with files. It is extremely unpleasant to ask users to key in
the absolute path of the file they wanted to open, so the File Selection Dialog is very handy
in this kind of situation.

Qt provides us with a built-in File Selection Dialog that looks exactly the same as the one we
see in our operating system, and therefore, it won't feel unfamiliar to the users. The File
Selection Dialog essentially only does one thing it lets the user pick the file(s) or folder
they want and return the path(s) of the selected file(s) or folder; that's all. In fact, it is not in
charge of opening the file and reading its content.

Let's look at how we can trigger the File Selection Dialog. First, open up and
add in the following header files:

#include <QFileDialog>
#include <QDebug>

Next, open up and insert the following code:

Item Views and Dialogs Chapter 5

[133]

It's that simple! Build and run the project now, and you should get this:

If the user has selected a file and pressed Open, the variable will be filled with
the absolute path of the selected file. If the user clicked the Cancel button, the
variable will be an empty string.

The File Selection Dialog also contains several options that can be set during the
initialization step. For example:

There are three things that we have set in the preceding code they are as follows:

The window title of the File Selection Dialog
The default path that the users see when the dialog is being created
File type filters

Item Views and Dialogs Chapter 5

[134]

The file type filter is very handy when you only allow the users to select a specific type of
file (for example, only JPEG image files) and hide the rest. Besides ,
you can also use , which will allow the user to specify a filename that
does not already exist.

For more information regarding the File Selection Dialog, please visit the
API documents located at the following link:

Image scaling and cropping
Since we learned about the File Selection Dialog in the previous section, I'd thought we
should learn something fun this time!

First off, let's create a new Qt Widgets Application. Then, open up and
create the following user interface:

Item Views and Dialogs Chapter 5

[135]

Let's dissect this user interface into three parts:

Top Image preview:
First, add a Horizontal Layout to the window.
Then, add a Label widget into the Horizontal Layout we just
added, then set the text property to . Set both the label's
minimumSize and maximumSize properties to 150x150. Finally,
set the frameShape property under the QFrame category to Box.
Add two Horizontal Spacers to the sides of the label to make it
centered.

Middle Sliders for adjustments:
Add a Form Layout to the window, below the Horizontal Layout
we just added previously in step 1.
Add three Labels to the Form Layout, and set their text property to

, , and respectively.
Add three Horizontal Sliders to the Form Layout. Set the
minimum property to and maximum to . Then, set the
pageStep property to .
Set the value property of the scale slider to .

Bottom Browse button and Save button:
Add a Horizontal Layout to the window, below the Form Layout
we previously added during step 2.
Add two Push Buttons to the Horizontal Layout and set their text
property to and respectively.
Lastly, delete the Menu Bar, Tool Bar, and Status Bar from the
central widget.

Now that we have created the user interface, let's dive into the coding! First, open up
 and add in the following headers:

#include <QMessageBox>
#include <QFileDialog>
#include <QPainter>

Item Views and Dialogs Chapter 5

[136]

After that, add the following variables to :

bool canDraw;
 QPixmap* pix;
 QSize imageSize;
 QSize drawSize;
 QPoint drawPos;

Then, go back to and right-click on the Browse button, followed by
selecting Go to slot. Then, a window will pop up and ask you to select a signal. Pick the

 signal located at the top of the list, and then press the OK button:

A new function will be automatically added to your source file. Now, add the
following code to open up the File Selection Dialog when the Browse button is clicked. The
dialog only lists JPEG images and hides the other files:

Item Views and Dialogs Chapter 5

[137]

As you can see, the code checks whether any image has been selected by the user. If it has
its checks again and see whether the image resolution is at least 150 x 150. If no problem is
found, we will save the image's pixel map to a pointer called , then save the image size
to the variable, and the initial drawing size to the variable. Finally,
we set the variable to .

After that, open up again and declare these two functions:

virtual void paintEvent(QPaintEvent *event);
 void paintImage(QString fileName, int x, int y);

The first function, , is a virtual function that automatically gets called
whenever Qt needs to refresh the user interface, such as when the main window is being
resized. We'll override this function and draw the newly loaded image onto the image
preview widget. In this case, we'll call the function within the

 virtual function:

Item Views and Dialogs Chapter 5

[138]

After that, we'll write the function in :

This function does two things if we don't set the variable, it will proceed to
draw the image on top of the image preview widget, otherwise, it will crop the image based
on the dimension of the image preview widget and save it to the disk following the

 variable.

Item Views and Dialogs Chapter 5

[139]

We'll call this function again when the save button is being clicked. This time, we'll set the
 variable as the desired directory path and filename, so that the class

can save the image correctly:

Lastly, right-click on each of the three sliders and select Go to slot. Then, select
 and click OK.

After that, we'll write the code for the functions resulting from the previous step:

Item Views and Dialogs Chapter 5

[140]

The scale slider is basically for users to resize the image to their desired scale within the
image preview widget. The left slider is for the users to move the image horizontally, while
the top slider is used by the users to move the image vertically. By combining these three
different sliders, users can adjust and crop the image to their liking before proceeding to
upload the image to the server, or use it for other purposes.

If you build and run the project now, you should be able to get this result:

You can click on the Browse button to select a JPG image file to load. After that, the image
should appear on the preview area. You can then move the sliders around for adjusting the
cropping size. Once you're satisfied with the result, click the Save button to save your
image in the current directory.

Item Views and Dialogs Chapter 5

[141]

Do check out the sample code that comes together with this book if you want to learn more
about it in detail. You can find the source code at the following GitHub page:

Summary
Input and Output (I/O) are the essence of modern computer software. Qt allows us to
display our data in many different ways that are both intuitive and engaging to the end
users. Other than that, the event system that comes with Qt makes our life as a programmer
a lot easier, as it tends to automatically capture the user inputs through the powerful signal-
and-slot mechanism and in-response triggering custom-defined behaviors. Without Qt, we
would have a hard time trying to figure out how to reinvent the proverbial wheel, and
might eventually end up creating a less user-friendly product.

In this chapter, we have learned how to make use of the fantastic features that are provided
by Qt view widgets, dialog boxes, and file selection dialogs used to display important
information to the users. Furthermore, we also went through a fun little project that taught
us how to scale and crop an image using Qt widgets for user inputs. In the next chapter, we
will go for something more advanced (and fun too), which is creating our very own web
browser using Qt!

66
Integrating Web Content

In the previous chapter, we learned how to use item views and dialogs in Qt. In this
chapter, we will learn how to integrate web content into our Qt application.

Starting from the dotcom era in the late 90s and early 2000s, our world has become more
and more connected by the internet. Naturally, the applications running on our computers
are also evolving in that direction. Nowadays, most if not all of our software is in some
way connected to the internet, usually to retrieve useful information and display it to their
users. The easiest way to do this is to embed a web browser display (also known as a web
view) into the application's user interface. That way, the users can not only view the
information, but do so in an aesthetic way.

By using the web view, developers can take advantage of its rendering capability and
decorate their contents using the powerful combination of HTML (Hypertext Markup
Language) and CSS (Cascading Style Sheets). In this chapter, we will explore Qt's web
engine module and create our very own web browser.

In this chapter, we will cover the following topics:

Creating your own web browser
Sessions, cookies, and cache
Integrating JavaScript and C++

Without further ado, let's check out how to create our own web browser in Qt!

Creating your own web browser
Once upon a time, Qt used a different module called WebKit to render web contents on its
user interface. However, the WebKit module has been completely deprecated since version
5.5 and replaced by a new module called WebEngine.

Integrating Web Content Chapter 6

[143]

The new WebEngine module is based on the Chromium framework built by Google, and it
will only work on the Visual C++ compiler on the Windows platform. Therefore, if you're
running Windows, please make sure that you have installed Microsoft Visual Studio on
your computer as well as all the MSVC components for Qt that match the version of Visual
Studio installed on your computer. Other than that, the Qt WebEngine component is also
required for this particular chapter. If you have skipped the components during Qt's
installation, all you need to do is to run the same installer again and install it there:

Integrating Web Content Chapter 6

[144]

Adding the web view widget
Once you are ready, let's get started! First, open up Qt Creator and create a new Qt Widgets
Application project. After that, open up the project () file and add in the following text
to enable the modules:

webengine webenginewidgets

If you didn't install the MSVC component (on Windows) or the Qt WebEngine component,
error messages will appear at this point if you are trying to build the project. Please run the
Qt installer again if that's the case.

Next, open up and add the following header files:

#include <QWebEngineView>

After that, open up and add the following code:

 QWebEngineView* webview;

Then, add the following code:

webview = new QWebEngineView(ui->centralWidget);
 webview->load(QUrl("http://www.kloena.com"));

Integrating Web Content Chapter 6

[145]

Build and run the program now and you should see the following result:

It's actually that simple. You have now successfully placed a web view on your application!

Integrating Web Content Chapter 6

[146]

The reason why we're writing C++ code to create the web view is that the default Qt
Designer used by the Qt Creator doesn't have web view in the widget box. The preceding
code simply creates the object, sets its parent object (in this case, the
central widget), and sets the URL of the web page before showing the web view widget. If
you want to use Qt Designer to place a web engine view on your UI, you must run the
standalone Qt Designer located in your Qt installation directory. For example, if you're
running Windows, it's located in . Please note that
it's located in the directory with the compiler name that supports the web engine:

Integrating Web Content Chapter 6

[147]

Creating a UI for a web browser
Next, we are going to turn this into a proper web browser. First, we need to add a few
layout widgets so that we can put other widgets in place afterwards. Drag a Vertical Layout
(1) onto the centralWidget and select the centralWidget from the object list. Then, click the
Lay Out Vertically button (2) located at the top:

After that, select the newly added vertical layout, right-click and select Morph into |
QFrame. The reason why we're doing this is that we want to place the web view widget
under this QFrame object instead of the central widget. We must convert the layout widget
to a QFrame (or any QWidget-inherited) object so that it can adopt the web view as its child.
Finally, rename the QFrame object to :

Integrating Web Content Chapter 6

[148]

Once you're done with that, let's drag and drop a Horizontal Layout widget above the
QFrame object. Now we can see that the size of both the Horizontal Layout widget and the
QFrame object are the same, and we don't want that. Next, select the QFrame object and set
its Vertical Policy to Expanding:

Integrating Web Content Chapter 6

[149]

Then, you will see the top layout widget is now very thin. Let's temporarily set its height to
, like so:

After that, drag and drop three push buttons to the horizontal layout and we can now set its
top margin back to :

Integrating Web Content Chapter 6

[150]

Set the buttons' labels to , , and respectively. You may also use icons
instead of text to display on these buttons. If you wish to do that, simply set the text
property to empty and select an icon from the icon property. For the sake of simplicity, we'll
just display texts on the buttons for this tutorial.

Next, place a line edit widget on the right-hand side of the three buttons, followed by
adding another push button with a label:

Integrating Web Content Chapter 6

[151]

After that, right-click on each of the buttons and select Go to slot. A window will pop up,
select clicked() and press OK.

The signal functions for these buttons will look something like this:

Integrating Web Content Chapter 6

[152]

Basically, the class already provided us with functions such as ,
 and , so we just have to call these functions when the respective

button is pressed. The function, however, is a custom function that we will
write:

Remember to add the declaration for in as well.

Instead of just calling the function, I think we should do something more.
Normally, users will not include the (or scheme when typing the URL
of the web page, but it is required when we are passing the URL to the web view. To solve
this problem, we automatically check for the existence of the scheme. If none has been
found, we will manually add the scheme to the URL. Also, don't forget to call it at
the beginning to replace the function:

 webview = new QWebEngineView(ui->webviewFrame);
 loadPage();

Integrating Web Content Chapter 6

[153]

Next, right-click on the text input and select Go to slot. Then, select returnPressed() and
click the OK button:

This slot function will be called when the user presses the Return key on the keyboard once
they have finished typing the web page URL. Logically, the user would expect the page to
start loading not have to press the Go button every time they are done typing the URL. The
code is really simple, we'll just call the function we just created in the previous
step:

Now that we have done a significant amount of code, let's build and run our project and see
how it turns out:

Integrating Web Content Chapter 6

[154]

The result shown doesn't really look that great. For some reason, the new web view doesn't
seem to scale properly even on an expanding size policy, at least on Qt version 5.10, which
is being used when writing this book. It might be fixed in the future version, but let's find a
way to solve this issue. What I did was to override an inherited function in the main
window called . In , simply add the function declaration, like
this:

 void paintEvent(QPaintEvent *event);

Then, write its definition in like so:

Integrating Web Content Chapter 6

[155]

This function will be automatically called by Qt whenever the main
window needs to re-render its widgets (such as when the window is being resized). Since
this function will be called when the application is being initialized and also when the
window is being resized, we will use this function to manually resize the web view to fit
with its parent widget.

Build and run the program again and you should be able to get the web view to fit nicely,
regardless of how you resize the main window. Additionally, I also removed the menu bar,
toolbar, and status bar to make the whole interface look more tidy, since we're not using
any of those in this application:

Next, we need a progress bar to show users the current progression of the page load. To do
that, first we need to place a progress bar widget below the web view:

Integrating Web Content Chapter 6

[156]

Then, add these two slot functions to :

Their function definition in looks like this:

Integrating Web Content Chapter 6

[157]

The first function, simply takes the progression level (in the form of a
percentage value) from the web view and directly supplies it to the progress bar widget.

The second function will replace the URL text on the address input with
the actual URL of the web page loaded by the web view. Without this function, the address
input will not display the correct URL after you've pressed the back button or the forward
button. Once you're done, let's compile and run the project again. The result looks amazing:

You will ask me, what's the actual use of this if I'm not making a web browser using Qt?
There are many other uses for embedding a web view into your application, for instance,
showing the latest news and updates of your product to the users through a nicely
decorated HTML page, which is a common method used by most of the online games in the
gaming market. The stream client, for example, also uses a web view to display the latest
games and discounts to their players.

Integrating Web Content Chapter 6

[158]

These are often called hybrid applications, which combine web content with native x, so
you can leverage both dynamic contents from the web as well as code running natively that
has the benefits of high performance and a consistent look and feel.

Other than that, you can also use it to display the printable report in HTML format. You can
easily send the report to the printer, or save it as a PDF file by calling

 or .

To learn more about printing from the web view, check out the following
link:

You might also want to create the entire user interface of your program using HTML and
embed all the HTML, CSS and image files into Qt's resource package and run it locally from
the web view. The possibilities are endless, the only limit is your imagination!

To learn more about Qt WebEngine, check out the documentation here:

Managing browser history
Qt's web engine stores all the links which the user has visited into an array structure for
later use. The web view widget uses this to move back and forth between history by calling

 and .

If you need to manually access this browsing history, add the following header to
:

After that, use the following code to obtain the browsing history in the form of a
 object:

You can get the entire list of visited links from or navigate between
history using functions such as or . To clear the browsing history, call

. Alternatively, you can also do this:

Integrating Web Content Chapter 6

[159]

To learn more about the class, visit the following
link:

Sessions, cookies, and cache
Just like any other web browser, the module also supports mechanisms used to
store temporary data and persistent data for session and cache. Sessions and cache are very
important as they allow websites to remember your last visit and associate you with data,
such as a shopping cart. The definitions of a session, a cookie, and a cache are shown as
follows:

Session: Normally, sessions are server-side files that contain user information
with a unique identifier, which gets sent from the client side to map them to a
specific user. In Qt, however, a session simply means a cookie that doesn't have
any expiration date, and hence it will be gone when the program is closed.
Cookie: Cookies are client-side files that contain user information or any other
information that you want to save. Unlike sessions, cookies have an expiration
date which means they will remain valid and can be retrieved before reaching the
expiration date, even if the program has been closed and re-opened again.
Cache: Caching is a method used to speed up page loading by saving the page
and its resources to a local disk during its first load. If the user loads the same
page again on the next visit, the web browser will reuse the cached resources
instead of waiting for the download to complete, which can significantly speed
up the page loading time.

Managing sessions and cookies
By default, doesn't save any cookie and treats all user information as temporary
sessions, which means when you close the program, your login session on the web page
will automatically become invalid.

To enable cookies on Qt's module, first add the following header to
:

Integrating Web Content Chapter 6

[160]

Then, simply call the following function to force persistent cookies:

After calling the preceding function, your login session will continue to exist after closing
the program. To revert it to non-persistent cookies, we simply call:

Other than that, you can also change the directory in which your Qt program stores the
cookies. To do that, add the following code to your source file:

If, for some reason, you want to manually delete all the cookies, use the following code:

Managing cache
Next, let's talk about a cache. There are two types of cache which you can use in the web
engine module, namely, Memory Cache and Disk Cache. Memory Cache uses the
computer's memory to store the cache, which will be gone once you've closed the program.
On the other hand, Disk Cache saves all the files in the hard disk, and hence they will still
remain, even after you've turned off your computer.

By default, the web engine module saves all the cache to the disk, if you need to change
them to Memory Cache, call the following function:

Alternatively, you can also disable caching completely by calling:

Integrating Web Content Chapter 6

[161]

As for changing the folder to which your program saves the cache files, call the
 function:

Lastly, to delete all the cache files, call :

There are many other functions that you can use to change the settings related to cookies
and cache.

You can read more about it at the following
link:

Integrating JavaScript and C++
One powerful feature of using Qt's web engine module is that it can call JavaScript
functions from C++, as well as calling C++ functions from JavaScript. This makes it more
than just a web browser. You can use this to access features that are not supported by the
web browser standard, such as file management and hardware integration. Things like that
are not possible with W3C standards; hence, it is not possible to do it in native JavaScript.
However, you can implement these features using C++ and Qt, then simply call the C++
functions from your JavaScript. Let's take a look at how we can achieve this with Qt.

Calling JavaScript functions from C++
After that, add in the following code to the HTML file we just created:

Integrating Web Content Chapter 6

[162]

These are the basic HTML tags which show you nothing other than a line of words that says
. You can try and load it using your web browser:

After that, let's go back to our Qt project and go to File | New File or Project and create a
Qt Resource File:

Integrating Web Content Chapter 6

[163]

Then, open up the Qt resource file we just created and add in an /html prefix followed by
adding the HTML file to the resource file, like so:

Right-click on text.html while the resource file is still opened, then select Copy Resource
Path to Clipboard. Right after that, change the URL of your web view to:

You can use the link you just copied from the resource file, but make sure you add the URL
scheme at the front of the link. Build and run your project now and you should be
able to see the result instantly:

Integrating Web Content Chapter 6

[164]

Next, we need to set up a function in JavaScript that will be called by C++ in just a moment.
We'll just create a simple function that pops up a simple message box and changes the

 text to something else when called:

Note that I have added an ID to the text so that we are able to find it and
change its text. Once you're done, let's go to our Qt project again.

Let's proceed to add a push button to our program UI, and when the button is pressed, we
want our Qt program to call the function we just created in JavaScript. It's actually
very easy to do that in Qt; you simply call the function from the

 class, like so:

Integrating Web Content Chapter 6

[165]

The result is pretty astounding, as you can see from the following screenshot:

You can do a lot more than just change the text or call a message box. For example, you can
start or stop an animation in an HTML canvas, show or hide an HTML element, trigger an
Ajax event to retrieve information from a PHP script, and so on and so forth... endless
possibilities!

Calling C++ functions from JavaScript
Next, let's take a look at how we can call C++ functions from JavaScript instead. For the sake
of demonstration, I'll put a text label above the web view and we will change its text using a
JavaScript function:

Integrating Web Content Chapter 6

[166]

Normally, JavaScript can only work within the HTML environment and hence, is only able
to alter HTML elements and not something outside the web view. However, Qt allows us to
do just that by using the web channel module. So let's open up our project () file and
add the web channel module to the project:

webchannel

After that, open up and add in the header:

#include <QWebChannel>

Integrating Web Content Chapter 6

[167]

At the same time, we also declare a function called , with a
macro in front of it:

The macro tells Qt to expose the function to the JavaScript engine, and thus
the function can then be called from JavaScript (and QML, since QML is also based on
JavaScript).

Then in , we'll have to first create a object and register our
main window as a JavaScript object. You can register any Qt object as a JavaScript object as
long as it is derived from the class.

Since we're going to call the function from JavaScript, we must register the
main window to the JavaScript engine. After that, we also need to set the
object we just created as the web channel of our web view. The code looks like the
following:

Once you're done with that, let's define the function. We're just going to
do something simple change the text label on our Qt GUI, and that's all:

We're done with the C++ code, let's open up our HTML file. There are couple of things we
need to do to make this work. First, we need to include the script that is
embedded in your Qt program by default, so you don't have to search for that file in your
Qt directory. Add the following code in between the tags:

Then, we create a object in JavaScript when the document is successfully
being loaded by web view and link the variable to the actual main window
object from Qt (which we registered earlier in C++). This step must only be done after the
web page has been loaded (through callback); otherwise, there might be
problems creating the web channel:

Integrating Web Content Chapter 6

[168]

After that, we create a JavaScript function that calls the function:

Finally, add a button to the HTML body and make sure is called when the
button is pressed:

Build and run the program now and you should be able to get the following result:

Integrating Web Content Chapter 6

[169]

You can do a lot of useful things using this method other than altering the properties of a Qt
widget. For example, saving a file to the local hard disk, getting scanned data from a
barcode scanner, and so on. There is no longer any barrier between native and web
technology. However, do be extra aware of any possible security implications of this
technique. As the old saying goes:

"With great power comes great responsibility."

Summary
In this chapter, we have learned how to create our own web browser and make it interact
with the native code. Qt provides us with the web channel technology that makes Qt a very
powerful platform for software development.

It takes advantage of both the power of Qt and the beauty of web technology, which means
you can have a lot more options when it comes to development and not just be limited to
Qt's methods. I'm really excited and can't wait to see what you can achieve with this!

Join us in the next chapter to learn how to create a map viewer similar to Google Maps,
using Qt!

77
Map Viewer

User location and map display are two features that have become more common these days
and have been used in various types of applications. They are commonly used for both
backend analytics and frontend display purposes.

The map viewer can be used for navigation, nearby point-of-interest lookup, location-based
services (such as calling for a taxi), and so on. You can use Qt to achieve most of it but you
will require an advanced database system, if you're going for something more complex.

In the previous chapter, we learned how to embed a web browser into your application. In
this chapter, we will try something more fun, which covers the following topics:

Creating a map display
Marker and shape display
Obtaining a user's location
Geo Routing Request

Let's proceed to create our own map viewer!

Map display
The Qt Location module provides developer access to geocoding and navigation
information. It can also allow the user to do a place search for which the data needs to be
retrieved, either from a server or from the user's device.

At the moment, Qt's map view does not support C++, only QML. This means that we can
only use QML script to alter anything related to the visual displaying a map, adding a
marker, and so on; on the other hand, we can use the C++ classes provided by the module to
obtain information from a database or from a service provider, before displaying it to the
user via QML.

Map Viewer Chapter 7

[171]

Just a quick note, QML (Qt Modeling Language) is a user interface markup language for Qt
Quick applications. Since QML is powered by the JavaScript framework, its coding syntax is
almost similar to the JavaScript. If you need an in-depth learning on QML and Qt Quick,
please proceed to , Qt Quick and QML, as it is an entire chapter dedicated to it.

There are many tutorials out there that teach you how to create a fully fledged map viewer
using Qt Quick and QML language, but there isn't a lot that teaches you how to combine
C++ with QML. Let's get started!

Setting up the Qt location module
First, create a new Qt Widgets Application project.1.
After that, open up your project file () and add the following modules to2.
your Qt project:

location qml quickwidgets

Besides the module, we also added and modules, which are
required by the map display widget in the next section. That is all we need to do for
enabling the module in our project. Next, we will proceed to add the map
display widget to our project.

Creating a map display
Once you are ready, let's open up and remove the menuBar, toolBar, and
statusBar as we don't need any of those in this project:

Map Viewer Chapter 7

[172]

After that, drag a QQuickWidget from the widget box to the UI canvas. Then, click on the
Lay Out Horizontally button located at the top of the canvas to add layout properties to it:

Then, set all the margin properties of the central widget to 0:

Map Viewer Chapter 7

[173]

Next, we need to create a new file called by going to File | New File or
Project.... After that, select Qt category and follow QML File (Qt Quick 2):

Once the QML file has been created, open it up and add the following code to include the
 and modules to this file so that we can use its functions later:

import QtLocation 5.3
import QtPositioning 5.0

Map Viewer Chapter 7

[174]

After that, we create a object and name it osm (Open Street Map), we then create a
Map object and apply the plugin to its property. We also set the
starting coordinates to (), which is somewhere in New York.
Other than that, the default is set to , which is enough to have a good view
of the city:

Before we're able to display the map on our application, we must first create a resource file
and add the QML file to it. This can be done by going to File | Create New File or Project....
Then, select Qt category and pick Qt Resource File.

Once the resource file has been created, add a prefix called , and add the QML file to the
prefix, like so:

We can now open up and set the property of the QQuickWidget
to . You may also click the button behind the source property to
select the QML file straight from the resources.

Map Viewer Chapter 7

[175]

Once you're done, let's compile and run our project and see what we've got! You can try
panning around and zooming in and out from the map using the mouse, too:

Even though we can achieve the same result by using the web view widget, it will make us
write a ton of JavaScript code just to display a map like this. By using Qt Quick, we only
need to write a few simple lines of QML code and that's it.

Marker and shape display
In the previous section, we successfully created a map display, but that is just the beginning
of this project. We need to be able to display custom data in the form of markers or
shapes layered on top of the map, so that the user can understand the data.

Map Viewer Chapter 7

[176]

Displaying position markers on a map
If I tell you my favorite restaurant is located at (), you won't be
able to make sense of it. However, if those coordinates are being displayed on the map view
in the form of a location marker, instantly, you will have an idea of where it is. Let's see
how we can add position markers to our map view!

First of all, we need a marker image that should look something like this, or even better,
design your own marker:

After that, we need to register this image to our project's resource file. Open up
 with Qt Creator and create a new prefix called . Then, add the

marker image to the newly created prefix. Do make sure that the image has a transparent
background to look good on the map:

Next, open up and replace the code with the following:

Map Viewer Chapter 7

[177]

Image
 {
 id: icon
 source: "qrc:///images/map-marker-icon.png"
 sourceSize.width: 50
 sourceSize.height: 50
 }

 MapQuickItem
 {
 id: marker
 anchorPoint.x: marker.width / 4
 anchorPoint.y: marker.height
 coordinate: QtPositioning.coordinate(40.7274175,-73.99835)

 sourceItem: icon
 }

Component.onCompleted:
 {
 map.addMapItem(marker)
 }

In the preceding code, we first added an image object that will be used as the marker's
image. Since the original image is really huge, we have to resize it by setting the

 property to . We must also set the of the marker image
to the of the image because that is where the tip of the marker is located.

Map Viewer Chapter 7

[178]

After that, we create a object that will be served as the marker itself. Set the
marker image as the of the object, then add the marker to the
map by calling . This function must be called after the map has been
created and is ready to be displayed, which means we can only call it after
the event has been triggered.

Now that we're done with the code, let's compile and look at the result:

Even though it's now looking all good, we don't want to hardcode the marker in QML.
Imagine adding hundreds of markers to the map, it's simply impossible to manually add
each marker using a distinct set of code.

Map Viewer Chapter 7

[179]

In order to create a function that allows us to dynamically create position markers, we need
to first separate the marker QML code from to a new QML file. Let's create a
new QML file called and add it to the resource file:

Next, remove both the and objects from and move it
to :

As you can see from the preceding code, I have merged the object with the
 object. The coordinate property has also been removed as we will only set it

when putting the marker on the map.

Map Viewer Chapter 7

[180]

Now, open up again, and add this function to the object:

From the preceding code, we first created a component by loading the file.
Then, we created an object/item from the component by calling . In the

 function, we made the window object as its parent and set its position to
the coordinate supplied by the function. Finally, we added the item to the
map for it to be rendered.

Whenever we want to create a new position marker, we'll just have to call this
 function. To demonstrate this, let's create three different markers by calling
 three times:

Map Viewer Chapter 7

[181]

Build and run the project again, and you should be able to see something like this:

We can go even further by adding a text label to each of the markers. To do that, first open
up , then add another module called :

After that, add a custom property to the object called :

Map Viewer Chapter 7

[182]

Once you're done, change its property into this:

From the preceding code, we created an object to group multiple objects together.
Then, we created a object to serve as the label background and a object
for the text. The property of the object will get linked to the

 property of the object. We can add another input to the
 function for setting the property, like so:

Map Viewer Chapter 7

[183]

Therefore, when we create the markers, we can call the function like this:

Build and run the project again and you should see this:

Pretty awesome isn't it? However, we're not done yet. Since we're most likely using C++ to
obtain data from the database through Qt's SQL module, we need to find a way to call the
QML function from C++.

To achieve that, let's comment out the three functions in and
open up and the following headers:

After that, open up and call the
function, like this:

Map Viewer Chapter 7

[184]

 QObject* target =
qobject_cast<QObject*>(ui->quickWidget->rootObject());
 QString functionName = "addMarker";

 QMetaObject::invokeMethod(target, functionName, Qt::AutoConnection,
Q_ARG(QVariant, "Testing"), Q_ARG(QVariant, 40.7274175),
Q_ARG(QVariant, -73.99835));

The preceding code might seem complex, but it's actually really simple if we dissect it and
analyze each of its arguments. The first argument of the preceding function is the object that
we want to call the function from, and in this case, it is the root object (the object in

) of the map view widget. Next, we want to tell which function name we
want to call, and it is the function. After that, the third argument is the
connection type used by the signal and slot system to invoke this method. For this, we'll just
let it be the default setting, which is . The rest are the arguments that
are needed by the function. We used the macro for indicating the type
and value of the data.

Finally, build and run the application again. You will see a marker with the label has been
added to the map, but this time, it's called from our C++ code instead of QML:

Map Viewer Chapter 7

[185]

Displaying shapes on a map
Besides adding markers to the map, we can also draw different types of shapes on the map
to indicate an area of interest or serve as geofences, which give out warnings whenever a
target is entering or leaving the area covered by the shape. A geofence is a polygonal shape
that defines an area of interest or virtual geographic boundary on a map for location-based
services. Usually, geofences are used to trigger an alarm when a device is entering and/or
exiting a geofence. A good example of using a geofence is when you need a shopping
reminder, you can draw a geofence around the supermarket and attach a shopping list
along with the geofence. When you (and your phone) are entering the area of the geofence,
you will get a notification on your phone that reminds you what to buy. Wouldn't that be
great?

For more information about geofences, please
visit:

We won't be creating a functional geofence in this chapter as it is quite an advanced topic,
and it usually runs as a server-side service for checking and triggering an alarm. We will
only use Qt to draw the shape and display it visually on the screen.

To draw shapes on the map view widget, we'll create a few more QML files for each type of
shape and add them to the program's resources:

For each of the newly created QML files, we'll do something similar to the position marker.
For , it looks like this:

Map Viewer Chapter 7

[186]

We only declare in this file because we can directly set the other properties
later, when calling the function. The same goes for :

Repeat a similar step for :

You can set other properties if you want, but for the sake of demonstration, we only change
a few of the properties such as color, shape, and border width. Once you're done, let's open
up and define a few functions for adding the shapes:

Map Viewer Chapter 7

[187]

These functions are very similar to the function, except it takes in different
arguments that are later passed to the function. After that, let's try and
create the shapes using the preceding function:

The following are the shapes created using the functions we have just defined. I have called
each of the functions separately to demonstrate its outcome, hence the three different
windows:

Map Viewer Chapter 7

[188]

Obtaining a user's location
Qt provides us with a set of functions to retrieve a user's location information, but it will
only work if the user's device supports geopositioning. This should work on all modern
smartphones and might work on some of the modern computers as well.

Map Viewer Chapter 7

[189]

To obtain the user's location using the module, first let's open up
 and add the following header files:

After that, declare the following function in the same file:

Right after that, open up and add the following code to the place where
you want it to start getting the user's location. For demonstration purposes, I'll just call it
within the constructor:

Then, implement the function we declared earlier, like this:

If you build and run the application now, you may or may not get any location information,
depending on the device you use to run the test. If you get debug messages like these:

serialnmea: No serial ports found
Failed to create Geoclue client interface. Geoclue error:
org.freedesktop.DBus.Error.Disconnected

Map Viewer Chapter 7

[190]

Then you probably need to find some other devices for the test. Otherwise, you may get a
result similar to this:

Position updated: QGeoPositionInfo(QDateTime(2018-02-22 19:13:05.000 EST
Qt::TimeSpec(LocalTime)), QGeoCoordinate(45.3333, -75.9))

I will leave you an assignment here which you can try and do by making use of the
functions that we have created thus far. Since you can now obtain the coordinates of your
location, try and further enhance your application by adding a marker to the map display to
show where you are currently located. That should be fun to work with!

Geo Routing Request
There is another important feature called Geo Routing Request, which is a set of functions
that help you plot out the route (often the shortest route) from point A to point B. This
feature requires a service provider; in this case, we will be using Open Street Map (OSM)
as it is completely free.

Do note that OSM is an online collaborative project, which means that if no one from your
area contributed the route data to the OSM server, then you won't be able to get an accurate
result. Optionally, you can also use paid services such as Mapbox or ESRI.

Let's see how we can implement Geo Routing Request in Qt! First, include the following
headers to our file:

Map Viewer Chapter 7

[191]

After that, add two slot functions to class, namely, and
:

Once you're done, open up and create a service provider object in the
 constructor method. We will be using the OSM service so we'll place the

acronym when initiating the class:

Right after that, we'll get the pointer of the routing manager from the service provider
object we just created:

Then, connect the signal and signal from the routing manager with
the functions we just defined:

These slot functions will be triggered when there is a reply from the service provider upon a
successful request, or when the request is failed and returned with an error message
instead. The slot function looks something like this:

Map Viewer Chapter 7

[192]

As you can see, the pointer contains route information sent by the service
provider upon a successful request. Sometimes it comes with more than one route, so in the
example, we just obtain the first route and display it through Qt's application output
window. Alternatively, you can use these coordinates to draw a path or animate your
marker along the route.

As for slot function, we'll just output the error string sent by the service
provider:

Once you're done with that, let's initiate a Geo Routing Request in the
constructor method and send it to the service provider:

Build and run the project now and you should see results like the following:

Map Viewer Chapter 7

[193]

Here comes another challenging assignment for you try to put all these coordinates into
an array and create an function that takes in the array and draws a series of
straight lines that represent the route described by the Geo Routing service.

Geo Routing has been one of the most important features ever since GPS navigator systems
were invented. Hopefully, you will be able to create something useful after going through
the tutorial!

Summary
In this chapter, we have learned how to create our own map view similar to Google Maps.
We have learned how to create a map display, placing markers and shapes on the map, and
finally finding a user's location. Do note that you can also use the web view and call
Google's JavaScript mapping API to create a similar map display. However, using QML is
much simpler, lightweight (we don't have to load the entire web engine module just to use
the map), works very well on mobile and touch screens, and it can also be easily ported to
other map services. Hopefully, you can make use of this knowledge and create something
really awesome and useful.

In the next chapter, we will look into how to display information using graphical items.
Let's move on!

88
Graphics View

In the previous chapter, we learned about the importance of visual presentation for the user
by displaying coordinate data on a map. In this chapter, we will further explore the
possibility of graphics data representation using Qt's Graphics View framework.

In this chapter, we will cover the following topics:

Graphics View framework
Moveable graphics items
Creating an organization chart

At the end of this chapter, you will be able to create an organization chart display using C++
and Qt's API. Let's get started!

Graphics View framework
The Graphics View framework is part of the widgets module in Qt so it is already
supported by default, unless you're running Qt console application instead, which does not
need the widgets module.

The Graphics View view in Qt works pretty much like a whiteboard, where you can draw
anything on it using C/C++ code, such as drawing shapes, lines, text, and even images. This
chapter may be a little hard to follow for beginners but it will definitely be a fun project to
work with. Let's get started!

Graphics View Chapter 8

[195]

Setting up a new project
First, create a new Qt Widgets Application project. After that, open and
drag and drop the Graphics View widget onto the main window, like this:

Then, create a layout for the graphics view by clicking on the Lay Out Vertically button at
the top of the canvas. After that, open up and add the following headers
and variables:

#include <QGraphicsScene>
#include <QGraphicsRectItem>
#include <QGraphicsEllipseItem>
#include <QGraphicsTextItem>
#include <QBrush>
#include <QPen>

Graphics View Chapter 8

[196]

QGraphicsScene* scene;

After that, open . Once it is opened, add the following code:

scene = new QGraphicsScene(this);
 ui->graphicsView->setScene(scene);

 QBrush greenBrush(Qt::green);
 QBrush blueBrush(Qt::blue);
 QPen pen(Qt::black);
 pen.setWidth(2);

 QGraphicsRectItem* rectangle = scene->addRect(80, 0, 80, 80, pen,
greenBrush);
 QGraphicsEllipseItem* ellipse = scene->addEllipse(0, -80, 200, 60,
pen, blueBrush);
 QGraphicsTextItem* text = scene->addText("Hello World!",
QFont("Times", 25));

Build and run the program now, and you should see something like this:

Graphics View Chapter 8

[197]

The code is a bit long so let me explain to you what it does and how it draws the graphics
onto the screen.

As I said earlier, the Graphics View widget is like a canvas or whiteboard that allows you
to draw anything you want on it. However, we also need something called Graphics Scene,
which is essentially a scene graph that stores all the graphical components in a parent child
hierarchy before displaying them on the Graphics View, accordingly. Scene graph
hierarchy is something that the image that appears in the previous screenshot, where each
object could have a parent or children that link together:

In the preceding code, we first created a object and set it as the Graphics
Scene for our Graphics View widget:

Graphics View Chapter 8

[198]

In this example, however, we don't have to link the graphics items together so we'll just
create them independently, like so:

The and classes are used to define the rendering style of these graphics items.
 is usually for defining the background color and pattern for the item, while

 normally affects the outline of the item.

Qt provides many types of graphics items for the most common shapes, including:

 ellipse item
 line item
 arbitrary path item

 pixmap item
 polygon item

 rectangular item
 simple text label item

 advanced formatted text item

For more information, please visit this link:

Movable graphics items
In the previous example, we have successfully drawn some simple shapes and text onto the
Graphics View widget. However, these graphics items are not interactive and thus don't
suit our purpose. What we want is an interactive organization chart where the user can
move the items around using mouse. It is actually really easy to make these items movable
under Qt; let's see how we can do that by continuing our previous project.

Graphics View Chapter 8

[199]

First, make sure you don't change the default interactive property of our Graphics View
widget, which is set to enabled (checkbox is checked):

After that, add the following code below each of the graphics items we just created in the
previous example:

rectangle->setFlag(QGraphicsItem::ItemIsMovable);
rectangle->setFlag(QGraphicsItem::ItemIsSelectable);

ellipse->setFlag(QGraphicsItem::ItemIsMovable);

Graphics View Chapter 8

[200]

ellipse->setFlag(QGraphicsItem::ItemIsSelectable);

text->setFlag(QGraphicsItem::ItemIsMovable);
text->setFlag(QGraphicsItem::ItemIsSelectable);

Build and run the program again, and this time you should be able to select and move the
items around the Graphics View. Do note that and

 both give you a different behavior the former flag will make the item
movable by mouse, and the latter makes the item selectable, which typically gives it a visual
indication using dotted outline when selected. Each of the flags works independently and
will not affect the other.

We can test out the effect of flag by using the signal and slot
mechanism in Qt. Let's go back to our code and add the following line:

connect(scene, &QGraphicsScene::selectionChanged, this,
&MainWindow::selectionChanged);

The signal will be triggered whenever you selected an item on the
Graphics View widget and the slot function under our
class will then be called (which we need to write). Let's open up and add in
another header for displaying debug messages:

Then, we declare the slot function, like this:

 void selectionChanged();

Graphics View Chapter 8

[201]

After that open and define the slot function, like this:

Now try and run the program again; you should see a line of debug messages that say Item
selection which appears whenever a graphics item has been clicked. It's really simple, isn't
it?

As for the flag, we won't be able to test it using the signal and slot method.
This is because all classes inherited from class are not inherited from the

 class, and therefore the signal and slot mechanism doesn't work on these classes.
This is intentionally done by Qt developers to make it lightweight, which improves the
performance, especially when rendering thousands of items on the screen.

Even though signal and slot is not an option for this, we can still use the event system,
which requires an override to the virtual function, which I will demonstrate
in the next section.

Creating an organization chart
Let's proceed to learn how to create an organization chart using Graphics View. An
organization chart is a diagram that shows the structure of an organization and the
relationship hierarchy of its employee positions. It is easy to understand a company's
structure by using graphical representation; therefore it's best to use Graphics View instead
of, say, a table.

This time, we need to create our own classes for the graphics items so that we can make use
of Qt's event system, as well as have more control of how it's grouped and displayed.

Graphics View Chapter 8

[202]

First, create a C/C++ class by going to File | New File or Project:

Graphics View Chapter 8

[203]

Next, name our class as before clicking the Next and Finish button:

After that, open and add in these headers:

#include <QFont>
#include <QGraphicsScene>
#include <QGraphicsItemGroup>
#include <QGraphicsItem>
#include <QGraphicsRectItem>
#include <QGraphicsTextItem>
#include <QGraphicsPixmapItem>

Graphics View Chapter 8

[204]

Then, open and make our class inherit
instead:

After that, open and at the constructor of the class, set up ,
and , which will be used for rendering in a moment:

After that, also in the constructor, create a , and
a :

Then, add these items to the group, which is the current class, since this class is inherited
from the class:

Graphics View Chapter 8

[205]

Finally, set three flags for the current class, which are ,
 and :

These flags are very important because they are all disabled by default for performance
reasons. We have covered both and in the previous
section, while is something new. This flag makes the
graphics item notify Graphics Scene when it's being moved by the user, hence the name.

Next, create another function called for setting up the employee profile. For the
sake of simplicity, we only set the employee name, however, you can do more if you wish,
such as setting a different background color based on the rank, or changing their profile
picture:

Do notice that we also set the main window and Graphics Scene pointers here so that we
can use them later on. We must add the to a scene before it will render on
screen. In this case, we group all the graphics items into a so we
only need to add the group to the scene instead of an individual item.

Do note that you must do a forward declaration for the class in
 after to avoid the error that says recursive

header inclusion. At the same time, we also placed the and
 pointers in so that we can call them later:

Graphics View Chapter 8

[206]

You will also notice that I have used an icon in the as a decorative
icon:

This icon is a PNG image that is stored within the resource file. You can get this image from
our sample project files on our GitHub page:

Let's create a resource file for your project. Go to File | New File or Project and select
the Qt Resource File option under Qt category:

Graphics View Chapter 8

[207]

After you have created an empty resource file, add a new prefix by going to Add |
AddPrefix. We will just call this prefix :

Then, select the newly created prefix and click Add | Add Files. Add the icon
image to your resource file and save. You have now successfully added the image to your
project.

If your prefix name or filename is different than the prefix name or
filename in this book, you may right-click on your image in the resource
file and select Copy Resource Path to Clipboard and replace the one in
the code with your path.

Graphics View Chapter 8

[208]

After that, open and add in:

Then, open and add the following code to create a profile box manually:

profileBox* box = new profileBox();
 box->init("John Doe", this, scene);

Build and run the project now and you should see something like this:

Graphics View Chapter 8

[209]

Looks neat; but we're far from done. There are a few things left to be done we must allow
the user to add or delete profile boxes with a user interface, and not by using code. At the
same time, we also need to add lines that connect different profile boxes to showcase the
relationship between different employees and their position within the company.

Let's start with the easy part. Open again and add a push button to the
bottom of the Graphics View widget and name it :

Then, right-click on the push button and select Go to slot... After that, select the clicked
option and click Ok. A new slot function will be created for you automatically, called

. Add the following code to allow the user to create a profile
box when they click the Add button:

Graphics View Chapter 8

[210]

Instead of creating each profile box using code, users can now easily create any number of
profile boxes they want by clicking the Add button. A message box will also appear and let
the user type in the employee name before creating the profile box:

Next, we'll create another class called . This time, we will make this class
inherit . The basically looks like this:

Similar to class, we also create an function for class, called
the function. This function takes in two objects as the starting
point and ending point for rendering the line. Besides that, we also create an

 function to redraw the line whenever the profile boxes move.

Graphics View Chapter 8

[211]

Next, open and add the following code to the constructor:

We used to set the color of the line to be black and its width to be . After that, we also
set the of the line to be so that it will always remain at the back of the profile
boxes.

After that, add the following code to our function so that it looks something
like this:

What it does is basically set the boxes for it to position its starting point and ending point.
After that, call function to render the line.

Finally, the function looks like this:

The preceding code looks a little complicated, but it's really simple if I put it this way:

Graphics View Chapter 8

[212]

The values and are basically the center position of the first profile box while and
 are the center position of the second profile box. Since the position value we get from

calling starts from the top-left corner, we must get the bounding size of the profile
box and divide it by two to get its center position. Then, add that value to the top-left corner
position to offset it to the center.

Once you're done, let's open again and add the following code to
the function:

if (scene->selectedItems().size() > 0)
 {
 profileLine* line = new profileLine();
 line->initLine(box, scene->selectedItems().at(0));
 scene->addItem(line);

 lines.push_back(line);
 }

In the preceding code, we check whether there is any profile box selected by the user. If
there is none, we don't have to create any line. Otherwise, create a new object
and set the newly created profile box and the currently selected profile box as the
and properties.

After that, add the line to our Graphics Scene so that it will appear on the screen. Lastly,
store this object to a array so that we can use it later. The array
declaration looks like this in :

QList<profileLine*> lines;

Graphics View Chapter 8

[213]

Build and run the project now. You should be able to see the line appear when you created
the second profile box by clicking on the button, entering a name, and selecting OK
while the first box remains selected. However, you may notice a problem whenever you
move the profile box away from its original position the lines simply won't update
themselves!:

That is the main reason we put the lines into a array, so that we can update these
lines whenever a profile box has been moved by the user.

To do that, first, we need to override the virtual function in the class called
. Let's open and add the following line of code:

Graphics View Chapter 8

[214]

Then, open and add the code for :

The function is a virtual function in class which will
automatically be called by Qt's event system when something has changed in the graphics
item, be it position change, visibility change, parent change, selection change, and so on.

Therefore, all we need to do is to override the function and add in our own custom behavior
to the function. In the preceding sample code, all we did was to call the
function in our main window class.

Next, open and define the function. As the function
name implies, what you're going to do in this function is to loop through all the profile line
objects stored in the lines array and update every single one of them, like so:

Graphics View Chapter 8

[215]

Once you're done, build and run the project again. This time, you should be able to create
an organization chart, such as the following:

This is just a simpler version that shows you how you can make use of Qt's powerful
Graphics View system to display graphical representation of a set of data that can be easily
understood by an average Joe.

Graphics View Chapter 8

[216]

One last thing before it's done we have yet to cover how to delete the profile box yet. It's
actually pretty simple, let's open and add the
function, which looks like this:

This virtual function will also get called by Qt's event system automatically when a
keyboard button is being pressed and released. The content of the function looks like this in

:

Graphics View Chapter 8

[217]

What we did in this function is first to detect the keyboard button that's being pressed by
the user. If the button is , then we'll check if the user
has selected any profile box by checking whether is
empty. If the user has indeed selected a profile box, then remove that item from the
Graphics Scene. After that, loop through the lines array and check whether any profile line
has connected to the profile box that has been deleted. Remove any lines that are connected
to the profile box from the scene and we're done:

This screenshot shows the result of deleting the profile box from the
organization chart. Notice that the lines connecting the profile box have been correctly
removed. That's it for this chapter; I hope you found this interesting and will perhaps go on
to create something even better than this!

Summary
In this chapter, we have learned how to create an application using Qt that allows the user
to easily create and edit an organization chart. We have learned about classes such as

, , , and so
on that help us to create an interactive organization chart in a short period of time. In the
upcoming chapter, we will learn how to capture images using our webcam!

99
The Camera Module

After working your way through so many chapters with increasing difficulty, let's try out
something simpler and more fun for this chapter instead! We will learn how to access our
camera through Qt's multimedia module and take photos using it.

In this chapter, we will cover the following topics:

The Qt multimedia module
Connecting to the camera
Capturing a camera image to file
Recording a camera video to file

You can use this to create a video conference app, a security camera system, and more. Let's
get started!

The Qt multimedia module
The multimedia module in Qt is the module that handles a platform's multimedia
capabilities, such as media playback and the use of camera and radio devices. This module
covers a wide range of topics, but we will just focus on the camera for this chapter.

Setting up a new project
First, create a new Qt Widgets Application project.

Then, the first thing we need to do is to open up the project file () and add two
keywords and :

The Camera Module Chapter 9

[219]

By detecting these keywords in the project file, Qt will include the multimedia module and
all the widgets that are related to multimedia into your project when it compiles. The
multimedia module includes four major components which are listed as follows:

Audio
Video
Camera
Radio

Each component includes a range of classes that provide respective functionality. By using
this module, you no longer have to implement low-level, platform-specific code yourself.
Let Qt do the job for you. It's really that easy.

After you have finished adding the multimedia module, let's open and
drag and drop a Horizontal Layout on to the main window, shown as follows:

Then, add a Label, Combo Box (name it), and a Push Button into the
Horizontal Layout we just added in the previous step. After that, add a Horizontal Spacer
between the combo box and a push button to push them apart from each other. Once you're
done, select the central widget and click on the Layout Vertically button located above the
workspace.

The Camera Module Chapter 9

[220]

Then, add another Horizontal Layout to the bottom of the previous horizontal layout and
right-click on it and select Morph into | QFrame. After that, set its sizePolicy (Horizontal
Policy and Vertical Policy) settings to Expanding. Refer the following screenshot:

Your program's user interface should look something like this by now:

The Camera Module Chapter 9

[221]

The reason we convert the layout to a frame is so that we can set the sizePolicy (both
Horizontal policy and Vertical policy) to Expanding. However, if we just add a Frame
widget (which is essentially a QFrame) from the widget box, we don't get the layout
component on it which is needed for attaching the viewfinder later.

Next, right click on the QFrame again and select Change styleSheet. A window will pop up
for setting the style sheet of that widget. Add the following style sheet code to make the
background black:

This step is optional; we made its background black just to indicate the viewfinder's
location. Once this is done, let's put another Horizontal Layout above the QFrame, such as
the following:

The Camera Module Chapter 9

[222]

After that, add two Push Buttons to the Horizontal Layout and a Horizontal Spacer to
keep them aligned to the right:

The Camera Module Chapter 9

[223]

That's it; we have finished setting up our project with the multimedia module and laid out
the user interface nicely for our next sections.

Connecting to the camera
Here comes the most exciting part. We are going to learn how to access our camera(s) using
Qt's multimedia module! First, open and add the following headers:

Next, add the following variable, as shown here:

QCamera* camera;
 QCameraViewfinder* viewfinder;
 bool connected;

Then, open up and add the following code to the class constructor to
initiate the object. We then use the class to retrieve a list of
connected cameras and fill in that information in the combo box widget:

The Camera Module Chapter 9

[224]

Let's build and run the project now. After that, check the debug output for any detected
cameras on your computer. The cameras that have been detected should also be displayed
in the drop-down box. If you are running on a laptop with a supported camera, you should
see it listed. If you're running a system with no built-in camera, then the debug output may
not display anything and the drop-down box will remain empty as well. If that's the case,
try plugging in an inexpensive USB camera and run the program again:

After that, open up and right click on the Connect button, and select Go to
slot.... Select the option and click OK. Qt Creator will automatically create a

 function for you; add the following code into the function, like so:

The Camera Module Chapter 9

[225]

When the Connect button is being clicked, we first check whether the is already
connected by checking the variable. If it's not connected yet, we run the

 function which we will define in the next step. If the camera is already
connected, we stop the , delete the and set the Connect button's text to

. Finally, set the variable to . Do note that we're using
 here instead of , which is the recommended way to delete a

memory pointer. is called on an object that lives in a thread with no
running event loop, the object will be destroyed when the thread finishes.

Next, we will add a new function in our class called . The
function looks like the following code block:

The Camera Module Chapter 9

[226]

In the function, we repeat what we did in the construction and get the
current list of connected cameras. Then, we loop through the list and compare the name of
the camera (stored in the variable) with the currently selected device name
on the combo box widget.

If there's a matching name, it means the user is intending to connect to that particular
camera, and thus we will proceed to connect to that camera by initializing a object
and a new object. We then link the to the and
add the to the layout with the black color background. Then, we set the

 variable to and set the Connect button's text to . Finally, call
the function to start running the camera.

Build and run the project now. Select the camera you are intending to connect to and click
the Connect button. You should be able to connect to your camera and see yourself in the
program:

The Camera Module Chapter 9

[227]

If your camera is unable to connect, do the following steps to display any errors returned by
the operating system. First, open up and add in the following
function:

After that, open and add the following code to
function to connect the signal to the , function:

The slot function looks like this:

The Camera Module Chapter 9

[228]

In the preceding code, we display the error message and make sure the camera has
completely stopped, just in case. By looking at the error message, you should be able to
debug the problem more easily.

Capturing a camera image to file
We have learned how to connect to our camera using Qt's multimedia module in the
previous section. Now, we will try and capture a still image from the camera and save it
into a JPEG file. It's actually very very simple with Qt.

First, open and add the following variable:

 QCameraImageCapture* imageCapture;

Then, right-click on the Capture button in and select Go to slot.... Then,
select and press OK. Now, a new function will be created for you in

. Add the following code to capture an image from the camera:

The Camera Module Chapter 9

[229]

What we did in the preceding code is basically create a new object
and set its media object as the active camera. Then, set its capture mode as a still image.
Before we ask the object to capture an image, we must lock the
camera so that the settings remain unchanged during the process of capturing the image.
You may unlock it by calling after you have successfully captured the
image.

We used to get the application directory so that the image
will be saved alongside the executable file. You can change this to whatever directory you
want. You can also put your desired filename behind the directory path; otherwise, it will
save the images sequentially using the default filename format starting with

, , and so on.

Recording a camera video to file
After we have learned how to capture a still image from our camera, let's proceed to learn
how to record videos as well. First, open and add the following variables:

QCameraImageCapture* imageCapture;
 QMediaRecorder* recorder;

bool recording;

Next, open again and right-click on the Record button. Choose Go to
slot... from the menu and select the option, then, click the OK button. A
function will be created for you; then proceed to add the following code into the
function:

The Camera Module Chapter 9

[230]

This time, we use a for recording video instead. We must also set the
camera's capture mode to before calling .

To check the error message produced by the media recorder during the recording stage, you
may connect the signal of the media recorder to a function like this:

The Camera Module Chapter 9

[231]

Then, simply display the error message in the function:

Do note that, at the time of writing this chapter, the class only supports
video recording on macOS, Linux, mobile platforms and Windows XP. It doesn't work on
Windows 8 and Windows 10 at the moment, but it will be ported over in one of the
upcoming versions. The main reason is that Qt is using Microsoft's API to
record video on the Windows platform, but it has since been deprecated from the Windows
operating system. Hopefully, by the time you're reading this book, this feature has been
completely implemented in Qt for Windows 8 and 10.

If it hasn't, you may use third-party plugins that use API for recording video, such
as the Qt Media Encoding Library (QtMEL) API, as a temporary solutions. Do note that the
code used in QtMEL is completely different than the one we're showing here in this chapter.

For more information about QtMEL, please check out the following link:
.

Summary
In this chapter, we have learned how to connect to our camera using Qt. We have also
learned how to capture an image or record a video from the camera. In the next chapter, we
will learn about the networking module and try and make an instant messenger using Qt!

110
Instant Messaging

One important feature of corporate software is the ability to communicate with staff. Thus,
an internal instant messaging system is a crucial part of the software. By incorporating the
networking module in Qt, we can easily create a chat system out of it.

In this chapter, we will cover the following topics:

Qt networking module
Creating an instant messaging server
Creating an instant messaging client

Creating an instant messaging system using Qt is a lot easier than you think. Let's get
started!

The Qt networking module
In the following section, we will learn about the Qt networking module and how it can help
us to achieve server-client communication via the TCP or UDP connection protocols.

Connection protocols
The networking module in Qt is the module that offers both low-level networking
functionality, such as TCP and UDP sockets, as well as high-level networking classes for
web integration and network communication.

In this chapter, we will use the TCP (Transmission Control Protocol) internet protocol for
our program instead of the UDP (User Datagram Protocol) protocol. The main difference is
that TCP is a connection-oriented protocol that requires all clients to establish a connection
to the server before they are able to communicate with each other.

Instant Messaging Chapter 10

[233]

UDP on the other hand is a connectionless protocol that does not require a connection. The
client will just send whatever data it needs to send to the destination, without checking if
the data has been received by the other end. There are pros and cons for both protocols, but
TCP is much more suitable for our sample project. We want to make sure every chat
message is being received by the recipient, don't we?

The differences between both protocols are as follows:

TCP:
Connection-oriented protocol
Suitable for applications that require high reliability, and it is less
critical toward its data transmission time
The speed for TCP is slower than UDP
Requires acknowledgment of receipt from the receiving client
before sending the next data
There is an absolute guarantee that the data transferred remains
intact and arrives in the same order in which it was sent

UDP:
Connectionless protocol
Suitable for applications that need fast, efficient transmission, such
as games and VOIP
UDP is lightweight and faster than TCP because error recovery is
not attempted
Also suitable for servers that answer small queries from huge
numbers of clients
There is no guarantee that the data sent reaches its destination at all
as there is no tracking connections and no need for any
acknowledgment from the receiving client

Since we are not going for the peer-to-peer connection approach, our chat system will
require two different pieces of software the server program and the client program. The
server program will act as the middleman (just like a postman) who receives all the
messages from all the users and sends them to the targeted recipients accordingly. The
server program will be locked away from the normal users in one of the computers in the
server room.

Instant Messaging Chapter 10

[234]

The client program, on the other hand, is the instant messaging software that is used by all
the users. This program is the one that is being installed on the users' computers. Users can
send their messages using this client program and see the messages sent by others as well.
The overall architecture of our messaging system looks something like this:

Let's proceed to setting up our project and enabling Qt's networking module! For this
project, we will start on the server program before working on the client program.

Setting up a new project
First, create a new Qt Console Application project. Then, open up the project file ()
and add in the following module:

network
Qt -= gui

You should have noticed that this project doesn't have any module (we make sure it's
explicitly removed) as we don't need any user interface for the server program. That is also
the reason why we chose Qt Console Application instead of the usual Qt Widgets
Application.

Actually, that's it you have successfully added the networking module to your project. In
the next section, we will learn how to create the server program for our chat system.

Instant Messaging Chapter 10

[235]

Creating an instant messaging server
In the following section, we will learn how to create an instant messaging server that
receives messages sent by the users and redistributes them to their respective recipients.

Creating TCP Server
In this section, we will learn how to create a TCP server that constantly listens to a specific
port for incoming messages. For the sake of simplicity, we will just create a global chat
room in which every user can see the messages sent by each and every user within the chat
room, instead of a one-to-one messaging system with a friend list. You can easily improvise
this system to the latter once you have understood how a chat system functions.

First, go to File | New File or Project and choose C++ Class under the C++ category. Then,
name the class as and select QObject as the base class. Make sure the Include
QObject option is ticked before proceeding to create the custom class. You should have also
noticed the absence of , , and . This is
because there is no user interface in a console application project.

Once the server class has been created, let's open up and add in the following
headers, variables and functions:

#include <QTcpServer>
#include <QTcpSocket>
#include <QDebug>
#include <QVector>

QTcpServer* chatServer;
 QVector<QTcpSocket*>* allClients;

 void startServer();
 void sendMessageToClients(QString message);

 void newClientConnection();
 void socketDisconnected();

Instant Messaging Chapter 10

[236]

 void socketReadyRead();
 void socketStateChanged(QAbstractSocket::SocketState state);

Next, create a function called and add the following code to the function
definition in :

We created a object called and made it constantly listen to port
. You can choose any unused port number ranging from to . Other

numbers outside of this range are usually reserved for common systems, such as HTTP or
FTP services, so we better not use them to avoid conflicts. We also created a array
called to store all the connected clients so that we can make use of it later to
redirect incoming messages to all users.

We also used the function to limit the maximum pending
connections to 10 clients. You can use this method to keep the number of active clients to a
specific amount so that your server's bandwidth is always within its limit. This can ensure
good service quality and maintain a positive user experience.

Instant Messaging Chapter 10

[237]

Listening to clients
The will trigger the signal whenever a client has connected
to the server, so we connect that signal to our custom slot function called

. The slot function looks like this:

Every new client connected to the server is a object, which can be obtained
from the object by calling . You can obtain
information about the client such as its IP address and port number by calling

 and , respectively. We then store each new client into the
 array for future use. We also connect the client's ,

 and signals to its respective slot function.

When a client is disconnected from the server, the signal will be
triggered, and subsequently the , function will be called.
What we are doing in this function is just displaying the message on the server console
whenever it happens, and nothing more. You can do anything you like here such as saving
the user's offline state to the database and so on. For the sake of simplicity, we will just print
out the message on the console window:

Instant Messaging Chapter 10

[238]

Next, whenever a client is sending in a message to the server, the signal will
be triggered. We have connected the signal to a slot function called
and it looks something like this:

In the preceding code, we simply redirect the message to a custom function called
, which handles passing the message to all connected clients.

We will look at how this function works in a minute. We use to get
the pointer of the object that emitted the signal and convert it to
the class so that we can access its function.

After that, we also connected another signal called to the
 slot function. The slow function looks like this:

Instant Messaging Chapter 10

[239]

This function gets triggered whenever a client's network state has changed, such as
connected, disconnected, listening, and so on. We will simply print out a relevant message
according to its new state so that we can debug our program more easily.

Now, let's look at what the function looks like:

In the preceding code, we simply loop through the array and pass the message
data to all the connected clients.

Lastly, open up and add the following code to start our server:

Instant Messaging Chapter 10

[240]

Build and run the program now, and you should see something like this:

It doesn't look like anything is happening except showing that the server is listening to port
. Don't worry, because we haven't created the client program yet. Let's proceed!

Creating an instant messaging client
In the following section, we will proceed to create our instant messaging client, which the
users will be using to send and receive messages.

Instant Messaging Chapter 10

[241]

Designing the user interface
In this section, we will learn how to design the user interface for the instant messaging
client and create functionality for it:

First, create another Qt project by going to File | New File or Project. Then select1.
Qt Widget Application under the Application category.
After the project has been created, open up and drag a Line Edit2.
and Text Browser to the window canvas. Then, select the central widget and click
the Lay Out Vertically button, located on the widget bar above, to apply the
vertical layout effect to the widgets:

After that, place a Horizontal Layout at the bottom and put the Line Edit into the3.
layout. Then, pull a Push Button from the widget box into the Horizontal Layout
and name it as ; we also set its label as , like this:

Instant Messaging Chapter 10

[242]

Once you're finished, drag and drop another Horizontal Layout and place it on4.
top of the text browser. After that, place a Label, Line Edit, and a Push Button
into the horizontal layout, like this:

Instant Messaging Chapter 10

[243]

We call the line edit widget and set a default text for it as , just so the
user has a default name. Then, we call the push button and change its
label to .

We have completed the user interface design for a very simple instant messaging program,
which will do the following tasks:

Connect to a server1.
Let a user set their name2.
Can see messages sent by all users3.
A user can type and send their messages for all to see4.

Compile and run the project now, you should see your program looking something like
this:

Instant Messaging Chapter 10

[244]

Do note that I also changed the window title to so that it looks slightly more
professional. You can do so by selecting the object at the hierarchy window
and change its property.

In the next section, we will start working on the programming part and implement the
features mentioned in the list above.

Implementing chat features
Before we start writing any code, we must first enable the networking module by opening
our project file () and add the keyword there:

network

Next, open up and add the following headers and variables:

#include <QDebug>
#include <QTcpSocket>

bool connectedToHost;
 QTcpSocket* socket;

We set the variable to by default in :

connectedToHost = false;

Instant Messaging Chapter 10

[245]

Once this is done, the first feature we need to implement is the server connection. Open up
, right-click on the Connect button, then choose Go to slot..., and pick

. After that, a slot function will be created for you automatically. Add in the
following code to the function:

What we did in the preceding code was basically check for the variable.
If the variable is (meaning the client is not connected to the server), create a

 object called and make it connect to a host at on port
. The IP address stands for a localhost. Since this is only for testing

purposes, we will connect the client to our test server, which is located on the same
computer. If you're running the server on another computer, you may change the IP
address to a LAN or WAN address, depending on your need.

We also connected the object to its respective slot functions when ,
, and signals were triggered. This is exactly the same as the

server code, which we did previously. If the client is already connected to the server and the
Connect (now labeled) button is clicked, then send a disconnection message to
the server and terminate the connection.

Instant Messaging Chapter 10

[246]

Next, we will look at the slot functions, which we connected to the object in the
previous step. The first one is the function, which will be called when
the client has successfully connected to the server:

First, the client will display a message on both the application
output and the text browser widget. We will see what the function looks
like in a minute. Then, we take the user's name from the input field and incorporate it into a
text message and send it to the server so that all users are being notified. Finally, set the
Connect button's label to , and set the variable to .

After this, let's look at , which as its name implies, will be called
whenever the client is disconnected from the server:

The preceding code is quite straightforward. All it does is show disconnected messages on
both the application output and text browser widget, then sets the Disconnect button's label
to and the variable to . Do note that since this function
will only be called after the client has been disconnected from the server, we can no longer
send any message to the server at that point to notify it of the disconnection. You should
check for the disconnection at the server side and notify all users accordingly.

Instant Messaging Chapter 10

[247]

Then, there is the function, which will be triggered whenever the
server is sending data to the client. This function is even simpler than the previous ones, as
all it does is pass the incoming data to the function and nothing else:

Finally, let's look at what the function looks like. Actually, it is just as
simple. All it does is to append the message to the text browser and it is done:

Last but not least, let's check out how to implement the function for sending messages to the
server. Open up , right-click on the Send button, select Go to slot..., and
choose the option. Once the slot function has been created for you, add the
following code to the function:

First, we take the user's name and combine it with the message. Then, we set the name to a
blue color before sending the entire thing to the server by calling . After that, clear
the message input field, and we're done. Since the text browser accepts rich text by default,
we can use that to color our text by placing the text within the tags.

Compile and run the project now; you should be able to chat among yourselves on different
clients! Don't forget to turn on the server before connecting the clients. If everything goes
right, you should see something like this:

Instant Messaging Chapter 10

[248]

Meanwhile, you should also see all the activities on the server side as well:

That's it! We have successfully created a simple chat system using Qt. You are welcome to
improvise on this and create a fully fledged messaging system!

Instant Messaging Chapter 10

[249]

Summary
In this chapter, we learned how to create an instant messaging system using Qt's
networking module. In the following chapter, we will dive into the wonders of graphics
rendering using Qt.

111
Implementing a Graphics Editor

Qt provides us with low-level graphics rendering using the class. Qt is capable of
rendering both bitmap and vector images. In this chapter, we will learn how to draw shapes
using Qt, and finally, create a paint program of our own.

In this chapter, we will cover the following topics:

Drawing vector shapes
Saving vector images to an SVG file
Creating a paint program

Are you ready? Let's get started!

Drawing vector shapes
In the following section, we will learn how to render vector graphics on our Qt application
using the QPainter class.

Vector versus bitmap
There are two types of format in computer graphics bitmap and vector. Bitmap images
(also known as raster images) are images that are stored as a series of tiny dots called
pixels. Each pixel will be assigned a color and gets displayed on screen exactly how it's
stored a one-to-one correspondence between the pixels and what is displayed on the
screen.

On the other hand, vector images are not based on bitmap patterns but rather use
mathematical formulas to represent lines and curves that can be combined to create
geometrical shapes.

Implementing a Graphics Editor Chapter 11

[251]

The main characteristics of both formats are listed here:

Bitmap:
Usually a larger file size
Cannot be enlarged into a higher resolution as the image quality
will be affected
Used to display complex images with many colors, such as
photographs

Vector:
Very small in file size
Graphics can be resized without affecting the image quality
Only a limited amount of color can be applied to each shape (single
color, gradient, or pattern)
Complex shapes require high-processing power to be generated

The diagram here compares bitmap and vector graphics:

We will focus on learning how to draw vector graphics using Qt in this section, but we will
also cover bitmap graphics later in this chapter.

Implementing a Graphics Editor Chapter 11

[252]

Drawing vector shapes using QPainter
First, create another Qt project by going to File | New File or Project. Then select Qt Widget
Application under the Application category. After the project has been created, open up

 and add in the header:

#include <QPainter>

After that, we also declare a virtual function called , which is a standard
event handler in Qt that gets called whenever there is something that needs to be painted,
be it a GUI update, a window resize, or when the function is being called
manually:

virtual void paintEvent(QPaintEvent *event);

Then, open up and add the function:

Implementing a Graphics Editor Chapter 11

[253]

If you build the program now, you should see the following:

The preceding code is really long. Let's break it down, so it's easier for you to understand.
Whenever the is called (usually it will be called once when the window
needs to be drawn), we call to tell Qt we're about to draw something,
and we call when we're done. Therefore, the code that draws graphics
will be contained within and .

Implementing a Graphics Editor Chapter 11

[254]

Let's look at the following steps:

The first thing that we drew was a straight line, which is quite simple just call1.
 and insert the start point and end point values to the

function. Do note that the coordinate system used by Qt is in pixel format. Its
origin starts from the top-left corner of the application window and increases to
the right and bottom directions, depending on the x and y values. The increment
of the x value moves the position to the right direction, while the increment of the
y value moves the position to the bottom direction.
Next, draw a rectangle that has a hatching pattern within the shape. This time, we2.
called to set the pattern, before calling .
After that, we drew an elliptical shape with a dash-dot outline and hatching3.
pattern within the shape. Since we have already set the pattern in the previous
step, we don't have to do it again. Instead, we use the QPen class to set the
outline style before calling . Just remember that in Qt's terms, a
brush is used to define the inner color or pattern of a shape, while a pen is used to
define the outline.
The next two shapes are basically similar to the previous ones; we only changed4.
different colors and patterns so that you can see the distinctions between them
and the previous examples.

Drawing text
Additionally, you can also draw text using the class. All you need to do is to call

 to set the font properties before calling ,
like so:

Implementing a Graphics Editor Chapter 11

[255]

The function is optional as you will get a default font if you don't specify it.
Once you're done, build and run the program. You should see the word Hello
World! displayed in the window:

As you can see here, the vector shapes are basically generated by Qt in real time, which
looks perfectly fine regardless of how you rescale the window and change its aspect ratio. If
you're rendering a bitmap image instead, its visual quality may get degraded when its
rescaled along with the window or changed in its aspect ratio.

Saving vector images to an SVG File
Beside drawing vector graphics, Qt allows us to save these graphics into a vector image file,
called the SVG (Scalable Vector Graphics) file format. The SVG format is an open format
used by a lot of software, including web browsers to display vector graphics. In fact, Qt can
also read SVG files and render them on screen, but we'll skip that for now. Let's check out
how we can save our vector graphics to an SVG file!

This example continues from where we left it in the previous section. Therefore, we don't
have to create a new Qt project and can just stick to the previous one.

Implementing a Graphics Editor Chapter 11

[256]

First, let's add a menu bar to our main window if it doesn't already have one. Then, open
, and in the form editor, right-click on the MainWindow object on the

hierarchy window and select Create Menu Bar:

Once you're done, add File to the menu bar, followed by Save as SVG underneath it:

Implementing a Graphics Editor Chapter 11

[257]

Then, go to the Action Editor at the bottom and right-click on the menu option we just
added and select Go to slot...:

A window will pop up and ask you to pick a signal. Choose triggered() and click OK. A
new slot function will be created for you in . Before we open up

, let's open up our () and add the following
module:

svg

The keyword tells Qt to add relevant classes to your project that can help you to handle
the SVG file format. Then, we also need to add two more headers to our :

#include <QtSvg/QSvgGenerator>
#include <QFileDialog>

After that, open up and add the following code to the slot function we
just added in the previous step:

QString filePath = QFileDialog::getSaveFileName(this, "Save SVG",

Implementing a Graphics Editor Chapter 11

[258]

"", "SVG files (*.svg)");

 if (filePath == "")
 return;

 QSvgGenerator generator;
 generator.setFileName(filePath);
 generator.setSize(QSize(this->width(), this->height()));
 generator.setViewBox(QRect(0, 0, this->width(), this->height()));
 generator.setTitle("SVG Example");
 generator.setDescription("This SVG file is generated by Qt.");

 paintAll(&generator);
}

In the preceding code, we used to let the users choose where they want to
save their SVG file. Then, we used the class to export the graphics into an
SVG file. Finally, we called the function, which is a custom function we are
going to define in the next step.

Actually, we need to modify the existing method and put our rendering code
into it. Then, pass the object into the function input as the paint device:

if (generator)
 painter.begin(generator);
 else
 painter.begin(this);

Therefore, our now simply looks like this in :

paintAll();

The procedure here might seem a little confusing, but what it does is basically call the
 function to draw all the graphics once when the window is being created, and

then you call again when you want to save the graphics to an SVG file.

Implementing a Graphics Editor Chapter 11

[259]

The only difference is the paint device one is the main window itself, which we use as the
drawing canvas, and for the latter one we will pass the object as the paint
device, which will save the graphics into an SVG file instead.

Build and run the program now, click File | Save SVG File, you should be able to save the
graphics into an SVG file. Try and open up the file with the web browser and see what it
looks like:

It seems like my web browser (Firefox) does not support the hatching pattern, but other
things turn out to be fine. Since vector graphics are generated by the program and the
shapes are not stored in the SVG file (only the mathematical formula and its variables are
stored), you may need to make sure the features that you use are supported by the user's
platform.

In the next section, we will learn how to create our own paint program and draw bitmap
images using it!

Implementing a Graphics Editor Chapter 11

[260]

Creating a paint program
In the following section, we will move over to the realm of pixels and learn how to create a
paint program using Qt. Users will be able to express their creativity by using different sizes
and colors of the brush to draw pixel images!

Setting up a user interface
Again, for this example, we will create a new Qt Widget Application. After that, open up

 and add a menu bar to the main window. Then, add the following options
to the menu bar:

Implementing a Graphics Editor Chapter 11

[261]

We have three menu items on the menu bar File, Brush Size, and Brush Color. Under the
File menu are functions for saving the canvas into a bitmap file, as well as clearing the
entire canvas. The Brush Size category contains different options for the brush size; last but
not least, the Brush Color category contains several options for setting the brush color.

You can go for something more paint-like or Photoshop-like for the GUI design, but we will
use this for now for the sake of simplicity.

Once you're done with all that, open up and add the following headers on
top:

#include <QPainter>
#include <QMouseEvent>
#include <QFileDialog>

After that, we also declare a few virtual functions, like so:

virtual void mousePressEvent(QMouseEvent *event);
 virtual void mouseMoveEvent(QMouseEvent *event);
 virtual void mouseReleaseEvent(QMouseEvent *event);
 virtual void paintEvent(QPaintEvent *event);
 virtual void resizeEvent(QResizeEvent *event);

Besides the function which we used in the previous example, we can also
add a few more for handling mouse events and window resize events. Then, we also add
the following variables to our class:

 QImage image;
 bool drawing;
 QPoint lastPoint;
 int brushSize;
 QColor brushColor;

After that, let's open up and start with the class constructor:

Implementing a Graphics Editor Chapter 11

[262]

 image = QImage(this->size(), QImage::Format_RGB32);
 image.fill(Qt::white);

 drawing = false;
 brushColor = Qt::black;
 brushSize = 2;
}

We need to first create a object, which acts as the canvas, and set its size to match
our window size. Then, we set the default brush color to black and its default size to .
After that, we will look at each of the event handlers and how they work.

First, let's take a look at the function, which we also used in the vector
graphics, example. This time, all it does is call and render the

 object (our image buffer) on top of our main window:

Next, we will look at the function, which gets triggered whenever the
main window is being resized by the user. To avoid image stretching, we must resize our
image buffer to match the new window size. This can be achieved by creating a new

 object and setting its size the same as the resized main window, then copying the
previous QImage's pixel information and placing it at the exact same spot on the new image
buffer.

This means that your image will be cropped if the window size is smaller than the drawing,
but at least the canvas will not be stretched and distort the image when the window is
resized. Let's take a look at the code:

Implementing a Graphics Editor Chapter 11

[263]

Next, we will look at the mouse event handlers, which we use to apply colors on the canvas.
First, the function, which will be triggered when we start pressing
our mouse button (left mouse button in this case). We are still not drawing anything at this
point, but set the drawing Boolean to and save our cursor position to the
variable:

Then, here is the function, which will be called when the mouse cursor
is moved:

In the preceding code, we check if indeed we are moving the mouse while holding the left
mouse button. If we are, then we draw a line from the previous cursor position to our
current cursor position. Then, we save the current cursor position to the
variable and call to notify Qt to trigger the function.

Implementing a Graphics Editor Chapter 11

[264]

Finally, when we release the left mouse button, the will be called.
We simply set the drawing variable to , and we're done:

If we build the program and run it now, we should be able to start drawing something on
our little paint program:

Even though we can draw something now, it's all the same brush size and with the same
color all the time. That's a little boring! Let's right-click on each of the options on the Brush
Size category in the main menu and select Go to slot..., then pick the triggered() option and
then press OK. Qt will then create the slot functions accordingly for us, and what we need
to do within these functions is basically change the brushSize variable, like so:

Implementing a Graphics Editor Chapter 11

[265]

The same goes for all the options under the Brush Color category. This time, we set the
 variable accordingly:

If you build and run the program again, you will be able to draw your images with a
variety of settings for your brush:

Implementing a Graphics Editor Chapter 11

[266]

Other than that, we can also add an existing bitmap image to our canvas so that we can
draw on top of it. Let's say I have a penguin image in the form of a PNG image (called

), we can then add the following code to the class constructor:

Implementing a Graphics Editor Chapter 11

[267]

The preceding code basically opens up the image file and moves it to position 100 x 100
before drawing the image onto our image buffer. Now we can see a penguin on the canvas
whenever we start the program:

Next, we will look at the Clear option under File. When the user clicks on this option on the
menu bar, we use the following code to clear the entire canvas (including the penguin) and
start all over again:

Implementing a Graphics Editor Chapter 11

[268]

Finally, when the user clicks on the Save option under File, we open up a file dialog and let
the users save their artwork into a bitmap file. In the following code, we filter out the image
formats and only allow the users to save PNG and JPEG formats:

That's it, we have successfully created a simple paint program from scratch using Qt! You
may even combine the knowledge learned from this chapter with the previous chapter to
create an online collaborative whiteboard! The only limitation is your creativity. Lastly, I
would like to say thank you to all the readers for creating the following masterpiece, using
our newly created paint program:

Implementing a Graphics Editor Chapter 11

[269]

Summary
In this chapter, we have learned how to draw vector and bitmap graphics, and
subsequently we created our very own paint program using Qt. In the following chapter,
we will look into the aspects of creating a program that transfers and stores our data on to
the cloud.

112
Cloud Storage

In the previous chapter, we learned how to draw images on-screen using Qt. In this chapter,
however, we are going learn something totally different, which is setting up our own file
server and linking it to our Qt application.

In this chapter, we will cover the following topics:

Setting up the FTP server
Displaying the file list on the list view
Uploading files to the FTP server
Downloading files from the FTP server

Let's get started!

Setting up the FTP server
In the following section, we will learn how to set up an FTP server, which stores all the files
uploaded by a user and allows them to download them at any time. This section is not
related to Qt, so if you already have a running FTP server, please skip this part and proceed
to the next section of this chapter.

Introducing FTP
FTP is an acronym for File Transfer Protocol. FTP is used to transfer files from one
computer to another on a network, usually over the internet. FTP is just one of the many
different forms of cloud storage technology, but it is also a simple one that you can easily
set up on your own computer.

Cloud Storage Chapter 12

[271]

There are many different FTP servers that have been developed by different groups of
people for a specific operating system. In this section of the chapter, we will learn how to set
up a FileZilla server, which runs on the Windows operating system. If you're running other
operating systems such as GNU, Linux, or macOS, there are many other FTP server
programs that you can use, such as VSFTP and Pure-FTPd.

On Debian, Ubuntu, or other similar variants of Linux, running
 on the Terminal will install and configure an FTP server. On macOS, open System

Preferences from the Apple menu and select Sharing. Then, click on the Service tab and
select FTP access. Finally, click the Start button to start running the FTP server.

If you already have a running FTP server, please skip to the next section, in which we'll start
learning about C++ programming.

Downloading FileZilla
FileZilla is really easy to set up and configure. It provides a fully functional and easy-to-use
user interface and doesn't require any prior experience to operate it. The first thing we need
to do is download FileZilla. We will do it as follows:

Open up your browser and hop over to . You1.
will see two download buttons located at the Home page.
Click on Download FileZilla Server and it will bring us to the download page:2.

Cloud Storage Chapter 12

[272]

Once you're at the download page, click on the Download FileZilla Server3.
button and start downloading the software. We're not going to use the FileZilla
Client, so you don't have to download that. Once everything is ready, let's
proceed to install the software.
Like most Windows software, the installation process is very straightforward.4.
Keep everything as default and click Next all the way until the installation
process begins. It will take a couple of minutes at most for the installation to
complete.
Once it's completed, click on the Close button and we're done!:5.

Cloud Storage Chapter 12

[273]

Setting up FileZilla
Once you have installed FileZilla, the control panel will most likely open by itself.

Since this is the first time you have launched FileZilla, it will ask you to set up the1.
server. Keep the server IP address as (which means localhost) and
the admin port to .
Key in your desired password for administrating the server and check on the2.
Always connect to this server option. Press Connect and the FTP server will now
start up! This is shown in the following screenshot:

Cloud Storage Chapter 12

[274]

After the FTP server has started running, we need to create a user account. Click3.
on the fourth icon from the left to open up the Users dialog:

Then, under the General page, click on the Add button located at the right side of4.
the window. Create an account by setting a username and press OK.

Cloud Storage Chapter 12

[275]

We don't have to set the user to any group for now, as user groups are only5.
useful when you have many users that have the same privilege settings since it is
easier to change all users settings at once or move users to different groups. Once
you have created the user, check on the Password option and key in your desired
password. It is always a good practice to put the password on your FTP account:

Cloud Storage Chapter 12

[276]

After that, we will proceed to the Shared folders page and add a shared directory6.
for our newly created user.
Make sure the Delete and Append options are checked so that files that have the7.
same name can be replaced. We will be using that for updating our file list in a
moment:

Cloud Storage Chapter 12

[277]

If you click on the third icon from the left, the FileZilla Server options dialog will8.
appear. You can basically configure everything here to suit your needs. For
instance, if you don't want to use the default port number , you can simply
change it on the options window, under the General settings page:

You can also set the speed limit for all users or a specific user under the Speed9.
Limits page. This can prevent your server from becoming low performance when
many users are downloading huge files at the same time:

Cloud Storage Chapter 12

[278]

Next, let's proceed to create our Qt project!

Displaying the file list on the list view
In the previous section, we successfully set up a FTP server and kept it running. In the
following section, we will learn how to create an FTP client program that displays the file
list, uploads files to the FTP server, and finally downloads files from it.

Cloud Storage Chapter 12

[279]

Setting up a project
As usual, let's create a new project using Qt Creator. The following steps will help:

We can create a new project by going to File | New File or Project and1.
selecting Qt Widgets Application.
Once your project has been created, open your project () file and add the2.

 keyword so that Qt knows that you need the Networking module in
your project:

network

Setting up user interface
After that, open up and perform the following steps to design the upper
part of our user interface for uploading files:

Place a Label that says Upload File: on top of every other widget.1.
Put a horizontal layout and two Push Buttons alongside it that say Open and2.
Upload, under the Label respectively.
Place a Progress Bar under the Horizontal Layout.3.
Put a Horizontal Line followed by a Vertical Spacer at the bottom:4.

Cloud Storage Chapter 12

[280]

Next, we're going to construct the bottom part of the user interface that is used for
downloading files:

This time, our user interface is very similar to the upper part, except we have added a List
View before the second Progress Bar for displaying the file list. We put everything on the
same page for this example program so that it's simpler and less confusing to explain.

Displaying the file list
Next, we will learn how to save and display the file list on the FTP server. Actually, the FTP
server does provide the file list by default, and Qt was able to display it using the
module back in older versions. However, since Version 5, Qt has completely dropped the

 module and this feature no longer exists.

Cloud Storage Chapter 12

[281]

If you're still interested in the old module, you can still obtain its
source code on GitHub by visiting the following
link:

In Qt, we use the class to communicate with our FTP server so
features that are specifically designed for FTP no longer work. But, don't worry, we will
look into some other alternative methods to achieve the same result.

The best method, in my opinion, is using an online database to store the file list and its
information (file size, format, status, and so on). If you're interested in learning how to
connect your Qt application to a database, please refer to , Database Connection.
However, for the sake of simplicity, we will use another method that works just fine but is
less secure by saving the file names directly on a text file and storing it on the FTP server.

If you're doing a serious project for your client or company, please do not
use this method. Check out , Database Connection, and learn to
use an actual database instead.

Alright, just assume that there is no other way but to use the text file; how are we going to
do that? It's very simple: create a text file called and place it into the FTP
directory we just created at the very beginning of this chapter.

Writing the code
Next, open up and add the following headers:

#include <QDebug>
#include <QNetworkAccessManager>
#include <QNetworkRequest>
#include <QNetworkReply>
#include <QFile>
#include <QFileInfo>
#include <QFileDialog>
#include <QListWidgetItem>
#include <QMessageBox>

Cloud Storage Chapter 12

[282]

After that, add in the following variables and functions:

 QNetworkAccessManager* manager;

 QString ftpAddress;
 int ftpPort;
 QString username;
 QString password;

 QNetworkReply* downloadFileListReply;
 QNetworkReply* uploadFileListReply;

 QNetworkReply* uploadFileReply;
 QNetworkReply* downloadFileReply;

 QStringList fileList;
 QString uploadFileName;
 QString downloadFileName;

void getFileList();

Once you are done with the previous step, open up and add the
following code to the class constructor:

 manager = new QNetworkAccessManager(this);

 ftpAddress = "ftp://127.0.0.1/";
 ftpPort = 21;
 username = "tester"; // Put your FTP user name here
 password = "123456"; // Put your FTP user password here

Cloud Storage Chapter 12

[283]

What we did was basically initialize the object and set up the
variables that store our FTP server's information, since we will be repeated using it many
times in later steps. After that, we will call the function to start
downloading from our FTP server. The function looks like the
following:

We used a object to store the information about our server and the location of the file
we're trying to download, and then fed it to a object before sending it
off by calling . Since we have no idea when all the files
will get downloaded completely, we make use of Qt's and mechanisms.

We connected the signal that comes from our
 pointer (which points to a object in

) and linked it to the function , which
we defined as follows:

Cloud Storage Chapter 12

[284]

The code is a bit long, so I have broken down the function into the following steps:

If any problems occur during the download, display a message box that tells us1.
the nature of the problem.
If everything went nicely and the download has completed, we will try and read2.
the data by calling | .
Then, clear the List Widget and start parsing the content of the text file. The3.
format we used here is very simple; we only used a comma symbol to separate
each file name: It is important that we
do not do this in the actual project.
Once we have called to split the string into a string list, do a 4.
loop and display each file name on the List Widget.

To test whether the preceding code works or not, create a text file called and
add the following text to the file:

Cloud Storage Chapter 12

[285]

Then, place the text file to your FTP directory and run your project. You should be able to
see it appear like this on the application:

Once it is working, we can clear away the content of the text file and proceed to our next
section.

Uploading files to the FTP server
Since we don't have any files in our FTP directory yet (except the file list), let's write the
code to allow us to upload our first file.

First, open and right click on the Open button. Then, select Go1.
to slot and select the clicked() option:

Cloud Storage Chapter 12

[286]

A function will be automatically created for you. Then, add the following2.
code to the function to open up the file selector window for our users to select
their desired file for upload:

Cloud Storage Chapter 12

[287]

After that, repeat this step and do the same for the Upload button. This time, the3.
code for its function looks something like the following:

The code looks a bit long, so let's break it down:

We used the class for opening the file that we want to upload (the file path1.
is taken from). If the file doesn't exist, display
a message box to inform the user.
Then, we fill in the information of our FTP server and the upload destination into2.
a object before feeding it to a object.
After that, we start reading the content of our file and provide it to the3.

 function.

Cloud Storage Chapter 12

[288]

Since we have no idea when the file will get uploaded completely, we used the4.
 and mechanisms provided by Qt. We linked the

 and signals to our two custom function
called and , respectively.

The function will tell us the current progress of our upload,
and therefore we can use it to set the progress bar:

Meanwhile, the function will be triggered when the file has been
completely uploaded:

We are not done with the preceding function yet. Since a new file has been added to the FTP
server, we must update the existing file list and replace the file stored within
the FTP directory. Since the code is slightly longer, we will break the code into several parts,
which all are occurring before showing the File successfully uploaded message box.

First, let's check whether the newly uploaded file has already existed within our1.
file list (replacing an old file on the FTP server). If it does, then we can skip the
entire thing; otherwise, append the filename to our string list, as
shown in the following code:

Cloud Storage Chapter 12

[289]

After that, create a temporary text file () in our application's directory2.
and save the new file list in the text file:

Finally, we use the class to open the text file we just created, and we3.
upload it again to the FTP server to replace the old file list:

Cloud Storage Chapter 12

[290]

Again, we use the and mechanisms so that we are notified when4.
the file list has been uploaded. The function

 looks something like the following:

We basically just call again after we have updated the file list5.
into the FTP server. If you build and run the project now, you should be able to
upload your first file to your local FTP server, hooray!

Cloud Storage Chapter 12

[291]

Downloading files from the FTP server
Now that we have successfully uploaded our first file to the FTP server, let's create the
feature for downloading the file back onto our computer!

First, open again and right-click on the Set Folder button. Select1.
Go to slot... and pick the clicked() signal to create a function. The
function is very simple; it will just open up a file selection dialog, but this time it
will only let the user select a folder instead since we provided it with a

 flag:

Then, right click on the List Widget and select Go to slot... This time around, we2.
will pick the option instead:

Cloud Storage Chapter 12

[292]

When the user double-clicks on an item in the List Widget, the following function3.
will be triggered, which kick-starts the download. The file name can be obtained
from the object by calling :

Just like what we did in the function, we also used the and 4.
mechanisms here to obtain the progression of the download process as well as
the completed signal. The function will be
called during the download process, and we used that to set the value of our
second progress bar:

Cloud Storage Chapter 12

[293]

Then, the function will be called when the file5.
has been completely downloaded. What we're going to do after that is read all the
data of the file and save it to our desired directory:

Cloud Storage Chapter 12

[294]

Build the program now and you should be able to download any files listed on6.
the file list!:

Summary
In this chapter, we learned how to create our own cloud storage client using Qt's
Networking module. In the following chapter, we will learn more about the multimedia
module and create our own multimedia player from scratch using Qt.

113
Multimedia Viewers

In the previous chapter, we learned how to upload and download files through cloud
storage. Now, in this chapter, we are going to learn how to open these files, specifically
media files such as images, music, and videos, using Qt's multimedia module.

In this chapter, we will cover the following topics:

Revisiting the multimedia module
The image viewer
The music player
The video player

Let's get started!

Revisiting the multimedia module
In this chapter, we will be using the multimedia module again, which we covered
previously in , The Camera Module. However, this time we will be using some
other parts of the module, so I thought it would be a good idea to dissect the module and
see what's inside it.

Dissecting the module
The multimedia module is a really large module that consists of many different parts, that
provide very different features and functionality. The main categories are as follows:

Audio
Video
Camera
Radio

Multimedia Viewers Chapter 13

[296]

Do note that classes that handle image formats, such as , , and so on, are
not a part of the multimedia module but rather the GUI module. This is because they are an
important part of the GUI that cannot be separated. Despite this, we will still cover the

 class within this chapter.

Under each category are subcategories that look something like the following:

Audio:
Audio output
Audio recorder

Video:
Video recorder
Video player
Video playlist

Camera:
Camera viewfinder
Camera image capture
Camera video recorder

Radio:
Radio tuner (for devices that support analog radio)

Each of the classes is designed to fulfill a different purpose. For example,
the is used for playing low latency audio files (such as WAV files).

, on the other hand, outputs raw audio data to a specific audio device, which
gives you low-level control over your audio output. Finally, the is a high-
level audio (and video) player that supports many different high-latency audio formats.
You must understand the differences between all the classes before choosing the right one
for your project.

The multimedia module in Qt is such a huge beast that often confuses newcomers, but can
be advantageous if you know which to choose from. Another issue with the multimedia
module is that it may or may not work on your target platform. This is because underneath
all these classes are native implementations for specific platforms. If a particular platform
does not support a feature, or there is not yet an implementation for it, then you won't be
able to use those functionalities.

For more information regarding the different classes provided by Qt's
multimedia module, please visit the following link:

Multimedia Viewers Chapter 13

[297]

The image viewer
Digital images have become an important aspect of our daily life. Whether it's a selfie, prom
night photo, or a funny meme, we spend a lot of our time looking at digital images. In the
following section, we will learn how to create our own image viewer using Qt and C++.

Designing a user interface for the image viewer
Let's get started with creating our first multimedia program. In this section, we will create
an image viewer, which, as its name implies, opens up an image file and displays it on the
window:

Let's open up Qt Creator and create a new Qt Widgets Application project.1.
After that, open up and add a (name it2.
as) to the central widget, which will serve as the canvas for
rendering our image. Then, add a layout to the centralWidget by selecting it and
pressing Layout Vertically, located on top of the canvas:

Multimedia Viewers Chapter 13

[298]

You can remove the tool bar and status bar to give space to the . Also, set3.
the layout margins of the central widget to :

After that, double-click on the menu bar and add a File action, followed by Open4.
File underneath it:

Then, under the Action Editor, right-click on the Open File action and select Go5.
to slot...:

Multimedia Viewers Chapter 13

[299]

A window will pop out and ask you to pick a signal, so choose triggered() and6.
click OK:

A function will be created for you automatically, but we will keep that for the next
section. We are done with the user interface, and it is really that simple. Next, let's move on
and start writing our code!

Writing C++ code for image viewers
Let's get started by using the following steps:

First, open up and add the following headers:1.

#include <QFileDialog>
#include <QPixmap>
#include <QPainter>

Multimedia Viewers Chapter 13

[300]

Then, add the following variable, called , which will serve as the2.
pointer that points to the actual image data before rescaling. Then, add the
functions as well:

 QPixmap* imageBuffer;

void resizeImage();
 void paintEvent(QPaintEvent *event);

void on_actionOpen_triggered();

Next, open up and initialize the variable in the3.
class constructor:

After that, add the following code to the function Qt created for us in the4.
previous section:

Multimedia Viewers Chapter 13

[301]

The preceding code basically opens up the file-selection dialog, and it creates a5.
 object with the selected image file. After all that is done, it will call the

 function, which looks like the following code:

What the function does is simply copy the image data from the
 variable and resize the image to fit the window size before displaying it on

the window's canvas. You could be opening an image that is way larger than your screen
resolution, and we don't want the image to get cropped when opening such a large image
file.

The reason why we use the variable is so that we can keep a copy of the
original data and not affect the image quality by resizing it many times.

Lastly, we also call this function within the function.
Whenever the main window is being resized or restored from a minimized state,

 will automatically get called, and so will the function,
shown as follows:

Multimedia Viewers Chapter 13

[302]

That's it. If you build and run the project now, you should get a pretty neat image viewer
that looks like the following:

The music player
In the following section, we will learn how to build our own custom music player using Qt
and C++.

Designing a user interface for music players
Let's move on to the next project. In this project, we will be building an audio player using
Qt. Perform the following steps:

As with the previous project, we will be creating a 1.
project.
Open up the , and add in the module:2.

multimedia

We added the text so that Qt includes classes related to the3.
multimedia module in our project. Next, open up , and refer to
the following screenshot to construct the user interface:

Multimedia Viewers Chapter 13

[303]

We basically added a Label at the top, followed by a Horizontal Slider and another
Label to show the current time of the audio. After that, we added three Push Buttons at the
bottom for the Play button, Pause button, and Stop button. Located at the right-hand side
of these buttons is another Horizontal Layout that controls the audio volume.

As you can see, all the Push Buttons have no icon for now, and it's very confusing which
button is for what purpose.

To add icons to the buttons, let's go to File | New File or Project and select Qt1.
Resource File under the Qt category. Then, create a prefix called , and add
the icon images to the prefix:

Multimedia Viewers Chapter 13

[304]

After that, add those icons to the Push Button by setting its icon property and2.
selecting Choose Resource.... Then, set the property of the label, located
beside the volume slider, as the volume icon:

After you have added the icons to the Push Button and Label, the user interface3.
should look a lot better:

We're done with the user interface; let's move on to the programming part!

Writing C++ code for music players
To write the C++ code for music players, perform the following steps:

First and foremost, open up and add the following headers:1.

#include <QDebug>

Multimedia Viewers Chapter 13

[305]

#include <QFileDialog>
#include <QMediaPlayer>
#include <QMediaMetaData>
#include <QTime>

After that, add the variable, which is a pointer. Then,2.
declare the functions that we're going to define later:

 QMediaPlayer* player;

 void stateChanged(QMediaPlayer::State state);
 void positionChanged(qint64 position);

Next, open up and initialize the player variable:3.

 player = new QMediaPlayer(this);
 player->setVolume(ui->volume->value());
 connect(player, &QMediaPlayer::stateChanged, this,
&MainWindow::stateChanged);
 connect(player, &QMediaPlayer::positionChanged, this,
&MainWindow::positionChanged);

The class is the main class that is used by our application to play
any audio file loaded by it. Thus, we need to know the state of the audio playing
and its current position. We can get this information by connecting its

 and signals to our custom
functions.

The signal allows us to obtain information about the current4.
state of the audio playing. Then, we enable and disable the Push Button
accordingly:

Multimedia Viewers Chapter 13

[306]

As for the and functions, we use them to set the5.
timeline slider, as well as the timer display:

Once you're done, open up and right-click on each of the Push6.
Buttons, and select Go to slot... followed by selecting the signal. This
will generate a function for each of the Push Buttons. The code for these

 functions is very simple:

Multimedia Viewers Chapter 13

[307]

After that, right-click on both of the Horizontal Sliders, and select Go to slot...7.
followed by choosing the signal, and click OK:

The signal will be called whenever the user drags the slider to8.
change its position. We need to send this position to the media player and tell it
to adjust the audio volume or change the current audio position. Do be cautious
not to set the default position of your volume slider to zero. Consider the
following code:

Then, we need to add File and Open File actions to the menu bar, just like we did9.
in the previous example project.

Multimedia Viewers Chapter 13

[308]

Then, right-click on the Open File action in the Action Editor and select Go to10.
slot... After that, select , and let Qt generate a function for
you. Add the following code to the function for audio file selection:

The preceding simply opens up a file-selection dialog that only accepts MP3 and WAV files.
You can add other formats too if you wish, but the supported formats vary between
platforms; therefore, you should test it to make sure the format you want to use is
supported.

After that, it will send the selected audio file to the media player for preloading. Then, we
try to get the music's title from the metadata and display it on the . However,
this feature (obtaining metadata) may or may not be supported on your platform, so just in
case it won't show up, we replace it with the audio file name. Lastly, we enable the play
button and automatically start playing the music.

That's it. If you build and run the project now, you should be able to get a simple but fully
functional music player!

Multimedia Viewers Chapter 13

[309]

The video player
In the previous section, we have learned how to create an audio player. In this chapter, we
will further improvise our program and create a video player using Qt and C++.

Designing a user interface for video players
The next example is that of the video player. Since also supports video
output, we can use the same user interface and C++ code from the previous audio player
example, and just make some minor changes to it.

First, open and add in another keyword, called1.
:

multimedia multimediawidgets

Then, open up and add a Horizontal Layout (name it as2.
) above the timeline slider. After that, right-click on the layout and

select Morph into | QFrame. We then set its sizePolicy property to Expanding,
Expanding:

Multimedia Viewers Chapter 13

[310]

After that, we set the QFrame's background to black color by setting its3.
 property, like so:

The user interface should look something like the following, and we're done:4.

Writing C++ code for video players
To write the C++ code for video players, we perform the following steps:

For , there aren't many changes to it. All we need to do is to1.
include in the header:

#include <QDebug>
#include <QFileDialog>

Multimedia Viewers Chapter 13

[311]

#include <QMediaPlayer>
#include <QMediaMetaData>
#include <QTime>
#include <QVideoWidget>

Then, open . We must define a object and set it2.
as the video output target, before adding it to the layout of the object we
just added in the previous step:

 player = new QMediaPlayer(this);

 QVideoWidget* videoWidget = new QVideoWidget(this);
 player->setVideoOutput(videoWidget);
 ui->movieLayout->addWidget(videoWidget);

 player->setVolume(ui->volume->value());
 connect(player, &QMediaPlayer::stateChanged, this,
&MainWindow::stateChanged);
 connect(player, &QMediaPlayer::positionChanged, this,
&MainWindow::positionChanged);

In the function thatgets called when the Open File action has been3.
triggered, we simply change the file-selection dialog to accept only and

 formats. You can add in other video formats too if you wish:

That's it. The rest of the code is literally the same as the audio player example. The main
difference with this example is that we defined the video output widget, and Qt will handle
the rest for us.

Multimedia Viewers Chapter 13

[312]

If we build and run the project now, we should be getting a really slick video player, like
what you see here:

On a windows system, there was a case where the video player would
throw an error. This problem is similar to the one reported here:

To resolve this error, simply download and install the K-Lite_Codec_Pack
which you can find here:

. After this, the video should play like a
charm!

Summary
In this chapter, we have learned how to create our own multimedia players using Qt. What
comes next is something quite different from our usual topics. In the following chapter, we
will learn how to use QtQuick and QML to create touchscreen-friendly, mobile-friendly,
and graphics-oriented applications.

114
Qt Quick and QML

In this chapter, we are going to learn something very different from the rest of the chapters
in this book. Qt consists of two different methods for developing an application. The first
method is Qt Widgets and C++, which we have covered in all previous chapters. The second
method is using Qt Quick controls and the QML scripting language, which we will be
covering in this chapter.

In this chapter, we will cover the following topics :

Introduction to Qt Quick and QML
Qt Quick Widgets and Controls
Qt Quick Designer
Qt Quick Layouts
Basic QML Scripting

Are you ready? Let's get started!

Introduction to Qt Quick and QML
In the following section, we will learn what Qt Quick and QML are, and how we can make
use of them to develop Qt applications without the need for writing C++ code.

Introducing Qt Quick
Qt Quick is a module in Qt that provides a whole set of user-interface engines and
language infrastructure for developing touch-oriented and visual-oriented applications.
Instead of using the usual Qt Widgets for user-interface design, developers who choose Qt
Quick will be using the Qt Quick objects and controls instead.

Qt Quick and QML Chapter 14

[314]

Furthermore, developers will be writing their code using the QML language, which has
similar syntax to JavaScript, rather than writing in C++ code. You can, however, use the C++
API provided by Qt to extend the QML application by cross-calling each language's
functions (calling C++ functions in QML, and vice versa).

Developers can choose which method they prefer for developing their applications by
choosing the right option when creating the project. Instead of choosing the usual Qt
Widgets Application option, developers can pick Qt Quick Application, which tells Qt
Creator to create different starting files and settings for your project that empowers the Qt
Quick modules:

When you're creating a Qt Quick Application project, Qt Creator will ask you to choose the
Minimal required Qt version for your project:

Qt Quick and QML Chapter 14

[315]

Once you have selected a Qt version, Qt Quick Designer will determine which features to
enable and which widgets will appear on the QML Types window. We will talk more about
those in later sections.

Introducing QML
QML (Qt Modeling Language) is a user-interface markup language for designing touch-
friendly user interfaces, similar to how CSS works on HTML. Unlike C++ or JavaScript,
which are both imperative languages, QML is a declarative language. In declarative
programming, you only express the logic in your script without describing its control flow.
It simply tells the computer what to do, instead of how to do it. Imperative programing,
however, requires statements to specify actions.

Qt Quick and QML Chapter 14

[316]

When you open up your newly created Qt Quick project, you will see and
 in your project, instead of the usual and

 files. You can see this in the project directory in the following screenshot:

This is because the entire project will be mainly running on QML instead of C++. The only
C++ file you will see is , and all that does is load the file during the
application startup. The code that does this in is shown in the following code:

QQmlApplicationEngine engine;
 engine.load(QUrl(QStringLiteral("qrc:/main.qml")));
 if (engine.rootObjects().isEmpty())
 return -1;

You should have realized that there are two types of QML files, one with the extension
, and another with extension . Even though they are both running on the

same syntax and so forth, they serve a very different purpose in your project.

Qt Quick and QML Chapter 14

[317]

First, the file (with an extra . at the beginning) serves as the declarative file for
Qt Quick-based user interface design. You can edit a file, using the Qt Quick
Designer visual editor, and easily design your application's GUI. You can also add your
own code to the file, but there are some limitations on what code they can contain,
especially those related to logic code. When you run your Qt Quick application, the Qt
Quick engine will read through all the information stored in the file and construct
the user interface accordingly, which is very similar to the file used in Qt Widgets
applications.

Then, we have another file with only the extension. This file is only used for
constructing the logic and functionality in your Qt Quick application, much like the and

 files used in the Qt Widget application. These two different formats separate the
visual definitions of your application from its logic blocks. This allows the developer to
apply the same logic code to different user interface templates. You cannot open a file
using Qt Quick Designer, since it is not used for GUI declaration. files are written by
developers by hand, and they have no restrictions on the QML language features they use.

Let's look at the differences with both of these QML files by first opening up
. By default, Qt Creator will open up the user interface designer (Qt

Quick Designer); however, let's move over to code-editing mode by pressing the Edit
button on the left panel:

Qt Quick and QML Chapter 14

[318]

Then, you will be able to see the QML script that forms the user interface you just saw in the
design mode. Let's analyze this code to see how QML works compared to C++. The first
thing you see in the is this line of code:

This is quite straightforward; we need to import the module with the
appropriate version number. Different Qt Quick versions may have different functionalities,
and support different widget controls. Sometimes, even the syntax could be slightly
different. Please make sure you pick the right version for your project, and that it supports
the features you need. If you don't know which version to use, do consider the latest
version.

Next, we will see different GUI objects (which we call QML types) being declared between
two curly braces. The first one that we see is a type:

The type, in this case, is the window background, much like the central widget
used in the Qt Widget Application project. Let's look at the other QML types that are under
the :

Qt Quick and QML Chapter 14

[319]

The type, as its name implies, is an invincible shape that detects mouse clicks
and touch events. You can basically turn anything into a button by placing a on
top of it. After that, we also have a type, which acts exactly like a
widget in a Qt Widget Application.

You may have noticed that there are two properties in the declaration that carry
the keyword. These two properties expose the and types, and
allow other QML scripts to interact with them, which we will learn how to do next.

Now, open up and look at its code:

In the code above, there is a type that is only available by importing the
 module. After setting the properties of the type, the

 type is declared. This type is actually the entire user interface we saw
previously in . Since the and types have been
exposed in , we can now access and make use of them in .

Qt Quick and QML Chapter 14

[320]

QML also uses the signal-and-slot mechanism provided by Qt, but in a slightly different
form of writing, since we're no longer writing C++ code. For example, we can see

 being used in the code above, which is a built-in signal equivalent to
 in a Qt Widgets Application. Since the file is the place where we define

the application logic, we can define what happens when is being called. On the
other hand, we cannot do the same in since only visual-related code is allowed in
it. You will get warnings from Qt Creator if you try to write logic-related code in a
file.

Just like the Qt Widgets Application, you can also build and run the project the same way as
before. The default example application looks something like this:

You might realize that the build process is pretty fast. This is because QML code doesn't get
compiled into binary by default. QML is an interpreted language, just like JavaScript, and
thus it doesn't need to be compiled in order for it to be executed. All the QML files will just
get packed into your application's resource system during the build process. Then, the QML
files will be loaded and interpreted by the Qt Quick engine once the application is started.

Qt Quick and QML Chapter 14

[321]

However, you can still choose to compile your QML scripts into binary, using the
 program included in Qt, to make the code execution slightly faster than

usual. It is an optional step that is not required unless you are trying to run your application
on an embedded system that has very limited resources.

Now that we have understood what Qt Quick and QML language are, let's take a look at all
the different QML types provided by Qt.

Qt Quick widgets and controls
In Qt Quick's realm, widgets and controls are known as . By default, Qt Quick
Designer provides us with a set of basic QML types. You can also import additional QML
types that come with different modules. Furthermore, you can even create your own
custom QML types if none of the existing ones fit, your needs.

Let's take a look at what QML types come with Qt Quick Designer by default. First off, here
are the QML types under the Basic category:

Qt Quick and QML Chapter 14

[322]

Let's have a look at the different options:

Border Image: Border Image is a QML type that is designed to create scalable
rectangular shapes that can maintain their corner shapes and borders.
Flickable: Flickable is a QML type that contains all its children types, and,
displays them within its clipping area. Flickable has also been extended and used
by the and types for scrolling long content. It can also be
moved by a touchscreen flick gesture.
Focus Scope: Focus Scope is a low-level QML type that is used to facilitate the
construction of other QML types that can acquire keyboard focus when being
pressed or released. We usually don't directly use this QML type, but rather use
other types that are directly inherited from it, such as , ,

, and so on.
Image: The type is pretty much self-explanatory. It loads an image either
locally or from a network.
Item: The type is the most basic QML type for all visual items in Qt Quick.
All the visual items in Qt Quick inherit from this type.
MouseArea: We have seen the example usage of the type in the
default Qt Quick Application project. It detects mouse clicks and touch events
within a predefined area, and calls the clicked signal whenever it detects one.
Rectangle: A QML type is pretty similar to the type, except it
has a background that can be filled with solid color or a gradient. Optionally, you
can also add a border to it with its own color and thickness.
Text: The QML type is also pretty self-explanatory. It simply displays a line
of text on the window. You can use it to display both plain and rich text with a
specific font family and font size.
Text Edit: The Text Edit QML type is equivalent to the widget in Qt
Widgets Application. It allows the user to key in the text when being focused. It
can display both plain and formatted text, which is very different from the

 type.
Text Input: The Text Input QML type is equivalent to the Line Edit widget in Qt
Widgets Application, in that it can only display a single line of editable plain
text, which is different from the type. You can also apply an input
constraint to it through a validator or input mask. It can also be used for
password input fields by setting the to or

.

Qt Quick and QML Chapter 14

[323]

The QML types that we have discussed here are the most basic ones that come with Qt
Quick Designer by default. These are also the basic building blocks used for constructing
some other more complex QML types. There are many additional modules that come with
Qt Quick that we can import into our project, for example, if we add the following line to
our file:

A bunch of additional QML types will then appear on your Qt Quick Designer when you
switch over to Design mode:

Qt Quick and QML Chapter 14

[324]

We won't go through all these QML types one by one, as there are too
many of them. If you are interested in learning more about these QML
types, please visit the following
link:

Qt Quick Designer
Next, we will look at the Qt Quick Designer layout for the Qt Quick Application project.
When you open up a file, Qt Quick Designer, the designer tool included in the Qt
Creator toolset, will be launched automatically for you.

Those of you who have followed all the example projects since the very first chapter of this
book may realize the Qt Quick Designer looks a bit different from the one we have been
using all this time. This is because the Qt Quick project is very different from the Qt
Widgets project, so naturally the designer tool should also look different to suit its needs.

Let's look at how the Qt Quick Designer looks in the Qt Quick project:

Qt Quick and QML Chapter 14

[325]

Library: The Library window displays all the QML types available for the current1.
project. You can click and drag it to the canvas window to add it to your UI. You
can also create your own custom QML type and display it here.
Resources: The Resources window displays all the resources in a list, which can2.
then be used in your UI design.
Imports: The Imports window allows you to import different Qt Quick modules3.
into your current project.
Navigator: The Navigator window displays the items in the current QML file as a4.
tree structure. It's similar to the object operator window in the Qt Widgets
Application project.
Connections: The Connections window consists of several different tabs:5.
Connections, Bindings, Properties, and Backends. These tabs allow you to add
Connections (signal-and-slot), Bindings, and Properties to your QML file,
without switching over to Edit mode.
State Pane: State pane displays the different states in the QML project that6.
typically describe UI configurations, such as the UI controls, their properties and
behavior, and available actions.
Canvas: Canvas is the working area where you design your application UI.7.
Properties Pane: Similar to the property editor we used in Qt Widgets8.
Application projects, the Properties pane in the QML designer displays the
properties of the selected item. You can immediately see the result in the UI after
changing the values here.

Qt Quick layouts
Just like the Qt Widget applications, a layout system also exists in Qt Quick applications.
The only difference is it's called the Positioners in Qt Quick:

Qt Quick and QML Chapter 14

[326]

The most noticeable similarity is the Column and Row positioners. These two are exactly
the same as the Vertical Layout and Horizontal Layout in Qt Widgets Application. Besides
that, the Grid positioner is also the same as the Grid Layout.

The only extra thing in Qt Quick is the Flow positioner. The items contained within the
Flow positioner arrange themselves like words on a page, with items arranged in lines
along one axis, and lines of items placed next to each other along another axis.

Basic QML scripting
In the following section, we will learn how to create our very first Qt Quick application
using Qt Quick Designer and QML!

Setting up the project
Without further ado, let's put our hands on QML and create a Qt Quick application
ourselves! For this example project, we are going to create a dummy login screen using Qt
Quick Designer and a QML script. First, let's open up Qt Creator and create a new project
by going to File | New File or Project...

After that, select Qt Quick Application and press Choose.... After that, press Next all the
way until the project is created. We are just going to use all the default settings for this
example project, including the Minimal required Qt version:

Qt Quick and QML Chapter 14

[327]

Once the project has been created, we need to add a few image files to our project, so that
we can use them later:

Qt Quick and QML Chapter 14

[328]

You can get the source files (including these images) at our GitHub page:

We can add these images to our project by right-clicking on the file in the Project
pane and selecting Open in Editor. Add a new prefix called , and add all the image
files into that prefix:

After that, open up , and delete everything in the QML file. We start all
over by adding an Item type to the canvas, set its size to 400 x 400, and call it the

. After that, add an type underneath it, and call it . We then
apply the background image to the type, and the canvas now looks like this:

Qt Quick and QML Chapter 14

[329]

Then, add a type under the type (background), and open up the Layout
tab in the Properties pane. Enable both the vertical and horizontal anchor options. After
that, set the to , the to , and the to :

Qt Quick and QML Chapter 14

[330]

Following that, we set the rectangle's color to and border color to , then
set the border value to . The user interface so far looks something like this:

Next, add an Image QML type under the rectangle, and set its anchor settings to top anchor
and horizontal anchor. We then set its top anchor margin to and apply the logo
image to its property. You can turn the QML type's bounding rectangle
and stripes on and off by clicking on the little button located on top of your canvas, so that
it's easier to look at the result, especially when your canvas is full of stuff:

Qt Quick and QML Chapter 14

[331]

Then, we add three types to the canvas under the rectangle, and
call them , , and . The anchor settings for the
rectangles are shown as follows:

Qt Quick and QML Chapter 14

[332]

Then, we set the value of both the and to , the
 to and the to . As for the , we set the

 to , the to and the to . The login screen now looks like
the following:

Looks good so far. Next, we're going to add a , , , and a
 QML type to both the and the . Since there are many QML

types here, I will list the properties that need to be set:

TextInput:
Selection color set to
Enable left anchor, right anchor, and vertical anchor
Left anchor margin , right anchor margin and vertical
margin 3
Set echoMode to Password for password input only

Image:
Enable right anchor and vertical anchor
Right anchor margin set to
Set image source to email icon or password icon respectively
Set image fill mode to PreserveAspectFit

Qt Quick and QML Chapter 14

[333]

 MouseArea:
Enable fill parent item

Text:
Set the text property to and respectively
Text color set to
Text alignment set to Left and Top
Enable left anchor, right anchor, and vertical anchor
Left anchor margin , right anchor margin , and vertical
margin -1

Once you're done, add a and to the as well. Enable
 for the , and enable both and

for the QML type. Then, set its property to .

You don't have to follow all my steps by 100%, they are just a guideline for you to achieve a
similar result as the screenshot above. However, it's better for you to apply your own
design and create something unique!

Phew! After the long process above, our login screen should now look something like this:

Qt Quick and QML Chapter 14

[334]

One last thing we need to do before moving on to is to expose some of the QML
types in our login screen, so that we can link it to our file for logic programming.
We can, in fact, do this directly on the designer tool. All you need to do is to click on the
small rectangle icon located next to the object name, and make sure the three lines on the
icon are penetrating the rectangular box, like this:

The QML types that we need to expose/export are (TextInput),
(MouseArea), (Text), (TextInput),
(MouseArea), (Text), and (MouseArea). Once you
have done all that, let's open up .

At first, our should look something like this, which will just open an empty
window:

Qt Quick and QML Chapter 14

[335]

After that, add in the object, and set its anchor setting to
. Then, print out a line of text, , on the console window when the

 is clicked (or touched, if running on the touch device):

After that, we are going to program the behavior when the on the email input is
clicked/touched. Since we are manually creating our own text field, instead of using the

 QML type provided by the module, we must manually
hide and show the and text displays, as well as changing the input focus
when the user clicks/touches down on the .

The reason why I chose not to use the type is that I can hardly customize the
 visual presentation, so why don't I create my own? The code for doing

manual focus for the email input looks like the following:

Qt Quick and QML Chapter 14

[336]

After that, do the same for the password field:

That's it; we're done! You can now compile and run the program. You should get something
like this:

Qt Quick and QML Chapter 14

[337]

If you're not seeing the images, and are getting error messages that say Qt is unable to open
the images, please go back to your and add in the prefix to the
front of the source property. This is because Qt Quick Designer loads the images without
the prefix, while your final program needs the prefix. After you have added the prefix, you
may realize you no longer see the images getting displayed on Qt Quick Designer, but it
will work just fine in your final program.

I'm not sure if this is a bug or if they intended it like that. Hopefully, Qt's developers can get
it fixed, and we won't have to do that extra step anymore. That's it; hopefully, you have
understood the similarities and differences between Qt Widgets Application and Qt Quick
Application. You can now pick the best option from the two to fit your project's needs!

Summary
In this chapter, we have learned what Qt Quick is and how to create a program using the
QML language. In the following chapter, we are going to learn how to export our Qt project
to different platforms without much hassle. Let's go!

115
Cross-Platform Development

Qt has been known for its cross-platform capability since its first release. It was also one of
the main goals of the founders when they decided to create this framework, long before it
was taken over by Nokia, and later The Qt Company.

In this chapter, we will cover the following topics:

Compilers
Build settings
Deploying to PC platforms
Deploying to mobile platforms

Let's get started.

Understanding compilers
In this chapter, we will learn about the process of generating an executable file from a Qt
project. This process is what we call compile or build. The tool that is used for this purpose
is called a compiler. In the following section, we will learn what a compiler is and how to
use it to generate an executable file for our Qt project.

What is a compiler?
When we develop an application, either using Qt or any other software development kit,
we often have to compile our project into an executable, but what is actually going on when
we're compiling our project?

Cross-Platform Development Chapter 15

[339]

A compiler is a piece of software that transforms computer code written in a high-level
programming language or computer instructions into a machine code or lower-level form
that can be read and executed by a computer. This low-level machine code is very different
depending on the operating system and computer processor you're running, but you don't
have to worry about it as the compiler will convert it for you.

That means all you need to worry about is writing your logic code in a human-readable
programming language, and let the compiler do the job for you. By using different
compilers, theoretically, you should be able to compile your code into executable programs
that can be run on different operating systems and hardware. I'm using the word
theoretically here because in practice it's actually much more difficult than just using
different compilers, you may also need to implement libraries that support the target
platform. However, Qt has already handled all this for you, so you don't have to do the
extra work.

In the current version, Qt supports the following compilers:

GNU Compiler Collection (GCC): GCC is a compiler for Linux and macOS
MinGW (Minimalist GNU for Windows): MinGW is a native software port of
GCC and GNU Binutils (binary utilities) for developing applications on Windows
Microsoft Visual C++ (MSVC): Qt supports MSVC 2013, 2015, and 2017 for
building Windows applications
XCode: XCode is the primary compiler used by developers who develop
applications for macOS and iOS
Linux ICC (Intel C++ Compiler): Linux ICC is a set of compilers of C and C++
compilers developed by Intel for Linux application development
Clang: Clang is a C, C++, Objective C, and Objective C++ frontend for the LLVM
compiler for Windows, Linux, and macOS
Nim: Nim is the Nim compiler for Windows, Linux, and macOS
QCC: QCC is the interface for compiling C++ applications for the QNX operating
system

Build automation with Make
In software development, Make is a build automation tool that automatically builds
executable programs and libraries from source code by reading configuration files called
Makefiles that specify how to derive the target platform. In a nutshell, a Make program
generates build configuration files and uses them to tell the compiler what to do before
generating the final executable program.

Cross-Platform Development Chapter 15

[340]

Qt supports two types of Make programs:

qmake: It is the native Make program developed by the Qt team. It works best on
Qt Creator, and I strongly recommend using it for all Qt projects.
CMake: On the other hand, although this is a very powerful build system, it
doesn't do all the things that qmake does specifically for a Qt project, such as:

Running the Meta Object Compiler (MOC)
Telling the compiler where to look for Qt headers
Telling the linker where to look for Qt libraries

You have to do the preceding steps manually on CMake in order to successfully compile a
Qt project. You should use CMake only if:

You're working on a non-Qt project but wish to use Qt Creator for writing the
code

You're dealing with a massive project that requires complex configurations,
which qmake simply cannot handle

You really love to use CMake and you know exactly what you're doing

Qt is really flexible when it comes to choosing the right tools for your project. It doesn't stick
to just its own build system and compiler. It gives the developers freedom to choose what
suits best for their projects.

Build settings
Before a project is compiled or built, the compiler needs to know several details before
proceeding. These details are known as the build settings, which are a very important
aspect of the compilation process. In the following section, we will learn what the build
settings are and how we can configure them in an accurate manner.

Cross-Platform Development Chapter 15

[341]

Qt Project (.pro) File
I'm sure you already know about the Qt Project File since we have mentioned it countless
times throughout the book. A file is actually the project file used by qmake to build
your application, library, or plugin. It contains all the information, such as links to the
headers and source files, libraries required by the project, custom-build processes for
different platforms/environments, and so on. A simple project file could look something like
this:

It simply tells qmake which Qt modules should be included in the project, what the name of
the executable program is, what's the type of the application, and finally the links to the
header files, source files, form declaration files, and resource files that need to be included
in the project. All of this information is crucial in order for qmake to generate the
configuration files and successfully build the application. For a more complex project, you
may want to configure your project differently for different operating systems. This can also
be done easily in the Qt Project File.

To learn more about how you can configure your project differently for
different operating systems, please refer to the following link:

Cross-Platform Development Chapter 15

[342]

Comment
You can add your own comments in the project file to remind yourself of the purpose of
adding a specific line of configuration, so that you won't forget why you added a line after
not touching it for a while. A comment starts with the hash symbol () after which you can
write anything since the build system will simply ignore the entire line of text. For example:

You can also add dash lines or use spaces to make your comment stand out from others:

Modules, configurations, and definitions
You can add different Qt modules, configuration options, and definitions to your project.
Let's take a look at how we can achieve these. To add additional modules, you simply add
the keyword behind , like so:

Or you can also add in a condition in front to determine when to add a specific module to
your project:

You can also add configuration settings to your project. For example, we want to
specifically ask the compiler to follow the 2011 version of the C++ specifications (known as
C++11) when compiling our project, as well as making it a multithreaded application:

Cross-Platform Development Chapter 15

[343]

You must use , not , or qmake will not be able to use Qt's configuration
to determine the settings needed for your project. Alternatively, you can
also use to remove a module, configuration, and definition from your
project.

As for adding definitions (or variables) to our compiler, we use the keyword, like
so:

Qmake adds the values of this variable as a compiler C preprocessor macro (option)
before compiling your project. The earlier definition tells the Qt compiler to emit warnings
if you have used any feature of Qt that has been marked as deprecated.

Platform-specific settings
You can set different configurations or settings for different platforms, since not every
setting can fit all use cases. For example, if we want to include different header paths for
different operating systems, we can do the following:

Alternatively, you can also put your settings in curly braces which behave like the
statements in a programming language:

You can check out all the settings you can use in your project file by
visiting the following link:

Cross-Platform Development Chapter 15

[344]

Deploying to PC platforms
Let's move on to learn how to deploy our applications on platforms such as Windows,
Linux, and macOS.

Windows
In this section, we will learn how to deploy our application to different operating systems.
Even though Qt supports all major platforms out of the box, there might be some
configurations which you need to set in order to make your application easily deployable to
all platforms.

The first operating system we're going to cover is the most common one, Microsoft
Windows.

Starting from Qt 5.6, Windows XP is no longer supported by Qt.

There could be certain plugins that may not work properly on the Windows version you're
trying to deploy, so do check out the documentation before you decide to work on your
project. However, it's safe to say most of the features will work out of the box on Qt.

By default, the MinGW 32-bit compiler comes together with Qt when you're installing it to
your Windows PC. Unfortunately, it doesn't support 64-bit by default unless you compile
Qt from source. If you need to build 64-bit applications, you can consider installing the
MSVC version of Qt alongside the Microsoft Visual Studio. Microsoft Visual Studio can be
obtained for free from the following link: .

Cross-Platform Development Chapter 15

[345]

You can set up your compiler settings in Qt Creator by going to Tools | Options, then go to
the Build & Run category and select the Kits tab:

As you can see, there are multiple kits that run on different compilers, in which you can
configure. By default, Qt already comes with five kits one for Android, one for MinGW,
and three for MSVC (version 2013, 2015, and 2017). Qt will automatically detect the
existence of these compilers and configure these settings for you accordingly.

Cross-Platform Development Chapter 15

[346]

If you have not installed Visual Studio or Android SDK, there will be a red icon with an
exclamation mark appearing in front of the kit option. After you have installed the compiler
you need, try restarting Qt Creator. It will now detect the newly installed compilers. You
should have no problem compiling for the Windows platform as Qt will handle the rest for
you. We will talk more about the Android platform in another section.

Once you have compiled your application, open up the folder in which you installed Qt.
Copy the relevant DLL files to your application folder, and pack it together before
distributing it to your users. Without these DLL files, your users may not be able to run the
Qt application.

For more information, please visit the following
link:

As for setting a custom icon for your application, you must add the following code to your
project () file:

The preceding code only works on Windows platforms, which is why we have to add the
 keyword before it.

Linux
Linux (or GNU/Linux) in general is considered a major operating system that dominates the
cloud/server market. Since Linux is not a single operating system (Linux is offered by
different vendors in the form of different Linux distributions that are not entirely
compatible) like Windows or macOS, it is very hard for developers to build their
applications and expect them to run flawlessly on different Linux distributions (distros).
However, if you develop your Linux application on Qt, there is a high chance that it will
work on most distributions, if not on all of the major distros out there, as long as the Qt
library exists on the target system.

Cross-Platform Development Chapter 15

[347]

The default kit selection on Linux is much simpler than Windows. Since a 64-bit application
has been mainstream and standard on most Linux distros for some time now, we only need
to include the GCC 64-bit compiler when installing Qt. There is also an option for Android,
but we will talk more about it later:

If you are compiling your Linux application on Qt Creator for the first time, I'm pretty sure
you will get the following error:

Cross-Platform Development Chapter 15

[348]

This is because you have not installed the relevant tools required to build Linux
applications, such as Make, GCC, and other programs.

Different Linux distros have a slightly different method to install programs, but I won't be
explaining every single one of them here. In my case, I'm using an Ubuntu distro, so I did
was first opened up the terminal and typed the following command to install the

 package which includes Make and GCC:

sudo apt-get install build-essential

The preceding command only works on distros that inherit from Debian and Ubuntu, and
it may not work on other distributions such as Fedora, Gentoo, Slackware, and so on. You
should search for the appropriate command used by your Linux distro to install these
packages, as shown in the following screenshot:

Cross-Platform Development Chapter 15

[349]

Once you have installed the appropriate packages, restart Qt Creator and go to
Tools | Options. Then, go to the Build & Run category and open up the Kits tab. You
should now be able to select the compilers for both C and C++ options for your Desktop kit:

Cross-Platform Development Chapter 15

[350]

However, you might get another error that says cannot find -lGL when trying to compile
again:

This is because Qt is trying to look for the libraries, and it can't find them on your
system. This can be easily fixed by installing the library package with
the following command:

sudo apt-get install libgl1-mesa-dev

Cross-Platform Development Chapter 15

[351]

Again, the preceding command only works on Debian and Ubuntu variants. Please look for
the appropriate command for your Linux distro if you're not running one of the Debian or
Ubuntu forks:

Once the package has been installed, you should be able to compile and run your Qt
application without any problem:

Cross-Platform Development Chapter 15

[352]

As for using one of the other compilers that are less popular, such as Linux ICC, Nim, or
QCC, you must set it manually by clicking on the Add button located on the right-hand
side of the Kits interface, then key in all the appropriate settings to get it to work. Most
people do not use these compilers, so we'll just skip them for now.

When it comes to distributing Linux applications, it's a lot more complicated than Windows
or macOS. This is owing to the fact that Linux is not a single operating system, but rather a
bunch of different distros with their own dependencies and configurations, which makes
distributing programs very difficult.

Cross-Platform Development Chapter 15

[353]

The safest way is to compile your program statically, which has its own pros and cons. Your
program will become really huge in size, and that makes updating software a great burden
to users who have slow internet connections. Other than that, the Qt license also forbids you
from building statically if you're not doing an open source project and do not have a Qt
commercial license. To learn more about Qt's licensing options, please visit the following
link:

Another method is to ask your users to install the right version of Qt before running your
application, but that will yield a ton of problems on the user side since not every user is
very tech savvy and has the patience to go through all those hassles to avoid the
dependency hell.

Therefore, the best way is to distribute the Qt library alongside your application, just like
we did on the Windows platform. The library might not work on some of the Linux distros
(rarely the case, but there is a slight possibility), but that can be easily overcome by creating
a different installer for different distros, and everyone's happy now.

However, due to security reasons, a Linux application doesn't usually look for its
dependencies in its local directory by default. You must use the keyword in the
executable's setting in your qmake project () file:

Setting the clears the default setting for the Qt libraries. This allows
for bundling the Qt libraries with the application. If you want the to include the path
to the Qt libraries, don't set .

After that, just copy all the library files from the Qt installation folder to your application's
folder and remove its minor version numbers from the filename. For example, rename

 to and now it should be able to get detected by
your Linux application.

As for application icons, you can't apply any icon to Linux applications by default as it is
not supported. Even though some desktop environments such as KDE and GNOME do
support application icons, the icon has to be installed and configured manually, which is
not very convenient to the users. It may not even work on some user's PC since every distro
works a little bit differently than the others. The best way to set icons for your application is
to create a desktop shortcut (symlink) during installation and apply the icon to the shortcut.

Cross-Platform Development Chapter 15

[354]

macOS
In my opinion, macOS is the single most centralized operating system in the software
world. Not only is it designed to run only on the Macintosh machines, you are also required
to download or buy software only from the Apple App Store.

No doubt this has caused an uneasy feeling for some people who care about freedom of
choice, but on the other hand it also means that developers have less problems to deal with
when it comes to application building and distribution.

Other than that, macOS applications behave pretty much similar to a ZIP archive, where
each and every application has its own directory that carries the appropriate libraries with
it. Therefore, there is no need for the users to install the Qt libraries on their operating
system beforehand and everything just works out of the box.

As for the Kit Selection, Qt for macOS supports kits for Android, clang 64-bit, iOS, and iOS
Simulator:

Cross-Platform Development Chapter 15

[355]

As of Qt 5.10 and above, Qt no longer supports 32-bit builds for macOS. Also, Qt does not
support OS X on PowerPC; and since Qt uses Cocoa internally, building for Carbon is also
not possible, please be aware of that.

Before compiling your macOS applications, please install Xcode from the App Store before
proceeding. Xcode is an integrated development environment for macOS, containing a suite
of software development tools developed by Apple for developing software for macOS and
iOS. Once you have installed Xcode, Qt Creator will detect its existence and automatically
set the compiler settings for you, which is great:

Once you have compiled your project, the resulting executable program is a single app
bundle that can be easily distributed to your users. Since all the library files are packed
within the application bundle, it should work out of the box on the user's PC.

Setting application icons for Mac is quite a simple task. Just add the following line of code
to your project () file and we're good to go:

Do note that the icon format is , instead of , which we usually use for Windows.

Cross-Platform Development Chapter 15

[356]

Deploying to mobile platforms
Apart from platforms such as Windows, Linux, and macOS, mobile platforms do hold equal
importance. There are many developers who would like to deploy their applications to
mobile platforms. Let's see how that's done. We will cover two major platforms, they are,
iOS and Android.

iOS
Deploying Qt applications on iOS is really simple and easy. Just like we did previously for
macOS, you need to first install Xcode on your development PC:

Cross-Platform Development Chapter 15

[357]

Then, restart Qt Creator. It should now detect the existence of Xcode, and it will then
automatically set the compiler settings for you:

After that, just plug in your iPhone and hit the Run button!

Building iOS applications on Qt is really that easy. However, distributing them is not. This
is because iOS is a very closed ecosystem, just like a walled garden. You are not only
required to register as an app developer with Apple, you also need to code sign your iOS
applications before you're able to distribute it to your users. There is no way you can avoid
these steps if you want to build your apps for the iOS.

You can learn more about these by visiting the following
link:

Cross-Platform Development Chapter 15

[358]

Android
Even though Android is a Linux-based operating system, it is very different when
comparing it to the Linux platforms that you run on your PC. To build Android
applications on Qt, you must first install Android SDK, Android NDK, and Apache ANT
to your development PC, regardless of whether you're running Windows, Linux, or macOS:

Cross-Platform Development Chapter 15

[359]

These three packages are essential when it comes to building Android applications on Qt.
Once all of them have been installed, restart Qt Creator, and voil , it should have now
detected their existence and the build settings will now have been set automatically:

Lastly, you can configure your Android app by opening the file
with Qt Creator:

Cross-Platform Development Chapter 15

[360]

You can set everything here, such as the package name, version code, SDK version,
application icon, permissions, and so on.

Android is an open system compared to iOS, so there is no need for you to do anything
before you're able to distribute your applications to your users. You can, however, choose to
register as a Google Play developer if you want to distribute your apps on the Google Play
Store.

Summary
In this chapter, we have learned how to compile and distribute our Qt applications for
different platforms, such as Windows, Linux, macOS, Android, and iOS. In the next
chapter, we will learn different debugging methods that could save development time. Let's
check it out!

116
Testing and Debugging

We often see the word debug when reading tutorials or articles related to programming. But
do you know what debugging means? A bug in programming terms means an error or
defect within a computer program that prevents the software from operating correctly,
which often leads to incorrect output or even a crash.

In this chapter, we will cover the following topics and learn how to debug our Qt project:

Debugging techniques
Debuggers supported by Qt
Unit testing

Let's get started.

Debugging techniques
Technical issues occur all the time during the development process. To tackle these
problems, we need to find out all these issues and solve them before releasing our
application to the users, so as not to affect the company/team's reputation. The method used
to look for technical issues is called debugging. In this section, we will look at the common
debugging techniques used by professionals to ensure their program is reliable and of a
high quality.

Testing and Debugging Chapter 16

[362]

Identifying the problem
The most important thing when it comes to debugging your program, regardless of
programming language or platform, is to know which part of your code is causing the
problem. There are several ways you can identify your problematic code:

Ask the user at which point the bug happened; for example, which button was
pressed, what were the steps leading to the crash, and so on.
Comment away part of your code, then build and run the program again to check
whether the problem still occurs or not. If it still does, continue to comment out
more code until you find the problematic line of code.
Use the built-in debugger to check for the variable changes within your targeted
function by setting a data breakpoint. You can easily spot if one of your variables
has changed to an unexpected value or an object pointer has become an
undefined pointer.
Make sure all the libraries that you included in the installer for your users have
matching version numbers with the ones used in your project.

Print variables using QDebug
You can also print out the value of a variable to the application output window, using the

 class. is quite similar to in the standard library, but the
advantage of using is that since it is part of Qt, it supports Qt classes out of the box,
and it is able to output its value without the need for any conversion.

To enable , we must first include its header:

After that, we can call to print out variables to the application output window:

Testing and Debugging Chapter 16

[363]

The result will look like this:

By using , we will be able to check if our function is running correctly. You can just
comment out the particular line of code that contains after you have finished
checking for the problem.

Setting breakpoints
Setting a breakpoint is another good way to debug your program. When you right-click on
the line number of your script in Qt Creator, you will get a pop-up menu with three
options, which you can see in the following screenshot:

Testing and Debugging Chapter 16

[364]

The first option is called Set Breakpoint at Line..., which lets you set a breakpoint at a
specific line on your script. A red dot icon will appear beside the line number once you
have created a breakpoint:

The second option is called Set Message Tracepoint at Line..., which prints a message
when the program reaches this particular line of code. An eye icon will appear beside the
line number once you have created a breakpoint:

Testing and Debugging Chapter 16

[365]

The third option is Toggle Bookmark, which lets you set a bookmark for your own
reference. Let's create a function called to try out the breakpoint:

After that, we call the function at the constructor:

Then, press the start debug button located at the bottom left of your Qt Creator window:

Testing and Debugging Chapter 16

[366]

You may get an error message that looks like this:

In this case, make sure your project kit has a debugger linked to it. If this error still occurs,
close your Qt Creator, go to your project folder and delete the file. After that,
open up your project with Qt Creator. Qt Creator will reconfigure your project again, and
the debug mode should work by now.

Let's add two breakpoints to our code and run it. Once our program has been started, we
will see a yellow arrow appearing on top of the first red dot:

This means that the debugger has stopped at the first breakpoint. The Locals and
Expression window, which is located on the right-hand side of your Qt Creator, will now
display the variable along with its value and type here:

Testing and Debugging Chapter 16

[367]

In the preceding image, you can see the value is still at 100 because at this point the minus
operation has not yet been run. The next thing we need to do is to click on the Step Into
button on top of the Stack window located at the bottom of your Qt Creator:

After that, the debugger will move on to the next breakpoint, and here we can see the value
has decreased to 90 as expected:

You can use this method to easily examine your application. To delete a breakpoint, you
just have to click on the red dot icon again.

Do note that you must run this in the debug mode. This is because when compiling in
debug mode, additional debugging symbols will be embedded into your application or
library that allow your debugger to gain access to information from the source code of the
binary, such as the name of identifiers, variables, and routines. This is also the reason why
your application or library will be much bigger in file size if compiled in debug mode.

Testing and Debugging Chapter 16

[368]

Debuggers supported by Qt
There are different types of debuggers that are supported by Qt. Depending on the platform
and compiler you're running for your project, the debugger used will also be different. The
following is the list of debuggers commonly supported by Qt:

Windows (MinGW): GDB (GNU Debugger)
Windows (MSVC): CDB (Debugging Tools for Windows)
macOS: LLDB (LLVM Debugger), FSF GDB (Experimental)
Linux: GDB, LLDB (Experimental)
Unix (FreeBSD, OpenBSD, etc.): GDB
Android: GDB
iOS: LLDB

Debugging for PC
With GDB (GNU Debugger), there is no need for any manual setup if you're using MinGW
compiler on Windows, as it usually comes together with your Qt installation. If you're
running other operating systems such as Linux, you may need to install it manually before
linking it up with your Qt Creator. Qt Creator detects the existence of GDB and links it with
your project automatically. If it doesn't, you can easily find the GDB executable located in
your Qt directory and link it by yourself.

CDB (Debugging Tools for Windows) on the other hand, needs to be installed manually
on your Windows machine. Do note that Qt doesn't support the built-in debugger of Visual
Studio. Therefore, you need to install the CDB debugger separately by selecting an optional
component called debugging tools for windows while installing the Windows SDK. Qt
Creator also normally would recognize the existence of CDB and put it on the debugger list
under the Debuggers Options page. You can go to Tools | Options | Build and
Run | Debuggers to look for the settings as seen in the following screenshot:

Testing and Debugging Chapter 16

[369]

Debugging for Android devices
Debugging for Android devices is slightly more complicated than for a PC. You must install
all the necessary packages for Android development, such as JDK (version 6 or later),
Android SDK, and Android NDK. Then you also need the Android Debug Bridge
(ADB) driver on the Windows platform to enable USB debugging, since the default USB
driver on Windows does not allow for debugging.

Debugging for macOS and iOS
As for macOS and iOS, the debugger used is LLDB (LLVM Debugger), which comes with
Xcode by default. Qt Creator will also recognize its existence and link it with your project
automatically.

Testing and Debugging Chapter 16

[370]

Every debugger is a little different from another and may behave differently on Qt Creator.
You can also run the non-GDB debuggers on their respective IDE (Visual Studio, XCode,
and so on), if you are familiar with those tools and know what you're doing.

If you need to add other debuggers to your project, you can go over
to Tools | Options | Build and Run | Kits and click Clone to copy an existing kit. Then,
under the Debuggers tab, click on the Add button to add a new debugger selection:

In the Name field, type in the descriptive name for the debugger so you can easily
remember its purpose. Then, specify the path to the debugger binary in the Path field so
that Qt Creator knows which executable to run when you start the debugging process.
Other than that, the Type and Version fields are used by Qt Creator to identify the types of
version of the debugger. In addition, Qt Creator shows the ABI version that will be used on
embedded devices in the ABIs field.

Testing and Debugging Chapter 16

[371]

To learn more about the in-depth information on how to set up different
debuggers in Qt, please visit the following link:

Unit testing
Unit testing is an automated process for testing an individual module, class, or method in
your application. Unit testing finds problems early in the development cycle. This includes
both bugs in the programmer's implementation and flaws or missing parts of the
specification for the unit.

Unit testing in Qt
Qt comes with a built-in unit testing module, which we can use by adding the

 keyword to our project file ():

After that, add the following header to our source code:

Then, we can start testing our code. We must declare our test functions as private slots.
Other than that, the class must also inherit from the class. For example, I created
two text functions called and , like so:

The function definitions look something like this:

Testing and Debugging Chapter 16

[372]

We used some of the macros provided by the class, such as , , and
so on, to evaluate the expression passed as its argument. If the expression evaluates to

, the execution of the test function continues. Otherwise, a message describing the
failure is appended to the test log, and the test function stops executing.

We also used to simulate mouse clicking in our application. In the
earlier example, we simulate clicking on the line edit widget on our main window widget.
Then, we input a line of text to the line edit and use macro to test if the text has
been correctly inserting into the line edit widget. If anything wrong happened, Qt will show
us the problem in the application output window.

After that, comment out our function and use the function instead
to start testing our class:

If we build and run our project now, we should be getting similar results as follows:

********* Start testing of MainWindow *********
Config: Using QtTest library 5.9.1, Qt 5.9.1 (i386-little_endian-ilp32
shared (dynamic) debug build; by GCC 5.3.0)
PASS : MainWindow::initTestCase()
PASS : MainWindow::_q_showIfNotHidden()
PASS : MainWindow::testString()
PASS : MainWindow::testGui()
PASS : MainWindow::cleanupTestCase()
Totals: 5 passed, 0 failed, 0 skipped, 0 blacklisted, 880ms
********* Finished testing of MainWindow *********

There are many more macros that you can use to test your application.

For more information, please visit the following link:

Testing and Debugging Chapter 16

[373]

Summary
In this chapter, we have learned how to identify technical issues in our Qt project by using
multiple debugging techniques. Other than that, we have also learned about different
debuggers that are supported by Qt on different operating systems. Finally, we also learned
how to automate some of the debugging steps through unit testing.

That's it! We have reached the end of this book. Hopefully, you have found this book useful
on learning how to build your own applications from scratch using Qt. You can look for all
the source code on GitHub. I wish you all the best!

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering the C++17 STL
Arthur O'Dwyer

ISBN: 978-1-78712-682-4

Make your own iterator types, allocators, and thread pools.
Master every standard container and every standard algorithm.
Improve your code by replacing new/delete with smart pointers.
Understand the difference between monomorphic algorithms, polymorphic
algorithms, and generic algorithms.
Learn the meaning and applications of vocabulary type, product type and sum
type.

Other Books You May Enjoy

[375]

C++17 By Example
Stefan Bj rnander

ISBN: 978-1-78839-181-8

Acquire the key skills of ethical hacking to perform penetration testing
Learn how to perform network reconnaissance
Discover vulnerabilities in hosts
Attack vulnerabilities to take control of workstations and servers
Understand password cracking to bypass security
Learn how to hack into wireless networks
Attack web and database servers to exfiltrate data
Obfuscate your command and control connections to avoid firewall and IPS
detection

Other Books You May Enjoy

[376]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
American National Standards Institute (ANSI)
AMPPS
Android ,
Android NDK
Android SDK ,
Apache
Apache ANT
Apache Friends
AppServ
area chart

B
bar chart
box-and-whiskers chart
build
build settings
 about
 comment
 configurations ,
 definitions ,
 modules ,
 platform-specific settings
 Qt Project (.pro) File

C
C++ code
 writing, for image viewers ,
 writing, for music players , ,
 writing, for video players ,
C++
 functions, calling from JavaScript , ,
 integrating
cache
 about

 managing
camera image
 capturing, to file using Qt multimedia module

,
camera video
 recording, to file using Qt multimedia module

,
camera
 connecting, Qt multimedia module used ,

candlestick charts
Cascading Style Sheet (CSS) ,
chart
 implementing , ,
 types, in Qt
Chromium
compile
compiler
 about ,
 automation, building with Make tool ,
 Clang
 GNU Compiler Collection (GCC)
 Linux ICC (Intel C++ Compiler)
 Microsoft Visual C++ (MSVC)
 Minimalist GNU for Windows (MinGW)
 Nim
 QCC
 XCode
cookie
 about
 managing
cryptographic hash function

D
dashboard page
 creating , , , , ,

[378]

database connection
 in Qt , , , , , ,
Debian
debugging techniques
 about
 breakpoints, setting , , ,
 for Android devices
 for PC
 macOS and iOS
 problem, identifying
 variables, printing with QDebug
DELETE statement
 reference link
dialog boxes
 working , , ,
Digital Rights Management (DRM)

F
Fedora
file list
 code, writing , , ,
 displaying ,
 displaying, list view
 project, setting up
 user interface, setting up ,
file selection dialogs
 creating
 reference link
File Transfer Protocol (FTP) ,
files
 downloading, from FTP server ,
 downloading, to FTP server
 uploading, to FTP server , ,
FileZilla
 downloading ,
 setting up , , , ,
 URL
FTP server
 setting up
functional login page
 creating , , , , ,

G
GCC 64-bit compiler

Gentoo
Geo Routing Request , , ,
GNU licenses
 reference link
graphical user interface (GUI)
Graphics View framework
 about
 movable graphics items , ,
 organization chart, creating , , , ,

, , , , , , , , ,
, ,

 Qt Widgets Application project, setting up ,
,

graphs
 implementing , ,
 types, in Qt

H
Hello World Qt program
 executing , , ,
Homebrew
Hypertext Markup Language (HTML)

I
image viewer
 about
 C++ code, writing
 C++, writing
 user interface, designing ,
image
 cropping , , ,
 scaling , , ,
INNER JOIN
INSERT statement
 reference link
instant messaging client
 chat features, implementing , , ,
 creating
 user interface, creating
 user interface, designing ,
instant messaging server
 clients, listening
 creating
 TCP Server, creating

[379]

International Organization for Standardization
(ISO)

iOS ,
item view widgets
 working

J
JavaScript
 about
 functions, calling from C++ , ,
 integrating
JOIN statement
 reference link

L
LAMP
layouts
 about
 form layout
 grid layout
 horizontal layout
 vertical layout
license, Qt
 Commercial License
 Open Source License
line and spline chart
Linux , , , , , ,
List Widget
 about
 functional, creating ,
LLDB (LLVM Debugger)

M
macOS ,
Make tool
 about
 CMake
 qmake
Makefiles
map display
 about
 creating , ,
 Qt location module, setting up
MariaDB , ,

MariaDB binary tarballs, on Linux
 URL, for installing
MariaDB Connector
 URL, for downloading
marker
Meta Object Compiler (MOC)
Microsoft SQL
Microsoft Visual Studio ,
 URL
MinGW 32-bit compiler
mobile platforms
 Android ,
 deploying
 iOS ,
model-view architecture
modules, Qt
 reference link
MSVC
multimedia module
 about
 dissecting ,
 reference link
music player
 about
 C++ code ,writing , ,
 user interface, designing ,
MySQL AB
MySQL Connector
 reference link
MySQL database system
MySQL database
 setting up , , , , , , ,
MySQL
 about ,
 URL

O
Open Street Map (OSM) ,
Oracle SQL

P
paint program
 creating
 user interface, setting up , , , ,

[380]

,
PC platforms
 deploying
 Linux , , , , , ,
 macOS ,
 Windows , ,
Percona Server
PHP
phpMyAdmin
pie charts
polar charts
position markers
 displaying, on map , , , , ,

,

Q
QGraphicsItem class
 reference link
QStackedWidget
Qt Charts
 reference link
Qt Console Application project
 setting up
Qt Creator
Qt Designer , ,
 about
 action editor
 build shortcuts
 form editor
 form toolbar
 menu bar
 mode selector
 object inspector
 output panes
 property editor
 signals
 slots editor
 widget box
Qt Media Encoding Library (QtMEL)
Qt Modeling Language (QML)
 about , , , , , , ,
 project, scripting
 project, setting up , , , , ,

,
 scripting

Qt multimedia module
 about
 used, for capturing camera image to file ,

 used, for connecting camera ,
 used, for recording camera video to file ,
Qt networking module
 about
 connection protocols , ,
Qt Project (.pro) File
 about
 reference link
Qt Quick Designer ,
Qt Quick
 about , ,
 controls
 designer ,
 layouts ,
 widgets
 widgets and controls
Qt Style Sheets , , ,
Qt Style Sheets, syntax and properties
 reference link
Qt WebEngine
 reference link
Qt Widgets Application project
 setting up , , , ,
QT Widgets application
 creating ,
Qt widgets
 about , , , ,
 layouts
 spacers
Qt's licensing options
 reference link
Qt's licensing
 reference link
Qt, for Windows deployment
 reference link
Qt
 about
 charts, types
 database connection in , , , , , ,

 downloading ,

[381]

 graphs, types
 installing ,
 tools, discovering
 unit testing
 using
 working environment, setting up , ,

S
Scalable Vector Graphics (SVG)
scatter charts
SELECT statement
 reference link
session
 about
 managing
shape display
shapes
 displaying, on map
signal-slot architecture
Slackware
spacers
 about
 horizontal spacer
 vertical spacer
SQL commands
 about
 DELETE statement
 INSERT statement
 JOIN statement , , , , ,
 SELECT statement
 UPDATE statement
StackOverflow
Structured Query Language (SQL) ,
supported debuggers, Qt
 about
 CDB (Debugging Tools for Windows)
 dGDB (GNU Debugger)
 reference link
SVG file
 vector images, saving , , ,

T
table view
Table Widget ,

Transmission Control Protocol (TCP)
 about
 versus User Datagram Protocol (UDP)
Tree Widget
 about
 functionality, adding

U
Ubuntu
unit testing
 about
 in Qt ,
 reference link
UPDATE statement
 about
 reference link
User Datagram Protocol (UDP)
 about
 versus Transmission Control Protocol (TCP)
user interface
 designing, for image viewer ,
 designing, for music players ,
 designing, for video players
user's location
 obtaining ,

V
vector images
 saving, to an SVG file , , ,
vector shapes
 drawing
 drawing, QPainter used ,
 text, drawing ,
 vector, versus bitmap ,
video player
 ++ code, writing
 about
 C++ code, writing
 reference link
 user interface, designing
Visual C++
Visual Studio

W
WAMP
web browser
 creating
 history, managing
 UI, creating , , , , ,
 view widget, adding
web view, printing
 reference link
WebEngine
WebKit
What-You-See-Is-What-You-Get (WYSIWYG)

approach
widgets and controls, Qt Quick
 Border Image
 Flickable

 Focus Scope
 Image
 Item
 MouseArea
 Rectangle
 Text
 Text Edit
 Text Input
Windows , ,
Windows XP

X
XAMPP

Z
ZendServer

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Qt
	What is Qt?
	Why use Qt?
	Discovering tools in Qt
	Qt Designer
	Qt Quick Designer

	Downloading and installing Qt
	Setting up the working environment

	Running our first Hello World Qt program
	Summary

	Chapter 2: Qt Widgets and Style Sheets
	Introduction to Qt Designer
	Basic Qt widgets
	Qt Style Sheets
	Summary

	Chapter 3: Database Connection
	Introducing the MySQL database system
	Setting up the MySQL database
	SQL commands
	SELECT
	INSERT
	UPDATE
	DELETE
	JOIN

	Database connection in Qt
	Creating our functional login page
	Summary

	Chapter 4: Graphs and Charts
	Types of charts and graphs in Qt
	Line and spline charts
	Bar charts
	Pie charts
	Polar charts
	Area and scatter charts
	Box-and-whiskers charts
	Candlestick charts

	Implementing charts and graphs
	Creating the dashboard page
	Summary

	Chapter 5: Item Views and Dialogs
	Working with item view widgets
	Creating our Qt Widgets application
	Making our List Widget functional
	Adding functionality to the Tree Widget
	Finally, our Table Widget

	Working with dialog boxes
	Creating File Selection Dialogs
	Image scaling and cropping
	Summary

	Chapter 6: Integrating Web Content
	Creating your own web browser
	Adding the web view widget
	Creating a UI for a web browser
	Managing browser history

	Sessions, cookies, and cache
	Managing sessions and cookies
	Managing cache

	Integrating JavaScript and C++
	Calling JavaScript functions from C++
	Calling C++ functions from JavaScript

	Summary

	Chapter 7: Map Viewer
	Map display
	Setting up the Qt location module
	Creating a map display

	Marker and shape display
	Displaying position markers on a map
	Displaying shapes on a map

	Obtaining a user's location
	Geo Routing Request
	Summary

	Chapter 8: Graphics View
	Graphics View framework
	Setting up a new project
	Movable graphics items
	Creating an organization chart

	Summary

	Chapter 9: The Camera Module
	The Qt multimedia module
	Setting up a new project

	Connecting to the camera
	Capturing a camera image to file
	Recording a camera video to file
	Summary

	Chapter 10: Instant Messaging
	The Qt networking module
	Connection protocols
	Setting up a new project

	Creating an instant messaging server
	Creating TCP Server
	Listening to clients

	Creating an instant messaging client
	Designing the user interface
	Implementing chat features

	Summary

	Chapter 11: Implementing a Graphics Editor
	Drawing vector shapes
	Vector versus bitmap
	Drawing vector shapes using QPainter
	Drawing text

	Saving vector images to an SVG File
	Creating a paint program
	Setting up a user interface

	Summary

	Chapter 12: Cloud Storage
	Setting up the FTP server
	Introducing FTP
	Downloading FileZilla
	Setting up FileZilla

	Displaying the file list on the list view
	Setting up a project
	Setting up user interface
	Displaying the file list
	Writing the code

	Uploading files to the FTP server
	Downloading files from the FTP server
	Summary

	Chapter 13: Multimedia Viewers
	Revisiting the multimedia module
	Dissecting the module

	The image viewer
	Designing a user interface for the image viewer
	Writing C++ code for image viewers

	The music player
	Designing a user interface for music players
	Writing C++ code for music players

	The video player
	Designing a user interface for video players
	Writing C++ code for video players

	Summary

	Chapter 14: Qt Quick and QML
	Introduction to Qt Quick and QML
	Introducing Qt Quick
	Introducing QML

	Qt Quick widgets and controls
	Qt Quick Designer
	Qt Quick layouts
	Basic QML scripting
	Setting up the project

	Summary

	Chapter 15: Cross-Platform Development
	Understanding compilers
	What is a compiler?
	Build automation with Make

	Build settings
	Qt Project (.pro) File
	Comment
	Modules, configurations, and definitions
	Platform-specific settings

	Deploying to PC platforms
	Windows
	Linux
	macOS

	Deploying to mobile platforms
	iOS
	Android

	Summary

	Chapter 16: Testing and Debugging
	Debugging techniques
	Identifying the problem
	Print variables using QDebug
	Setting breakpoints

	Debuggers supported by Qt
	Debugging for PC
	Debugging for Android devices
	Debugging for macOS and iOS

	Unit testing
	Unit testing in Qt

	Summary

	Other Books You May Enjoy
	Index

