

Learning Phalcon PHP

Learn Phalcon interactively and build high-performance
web applications

Calin Rada

BIRMINGHAM - MUMBAI

Learning Phalcon PHP

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1210815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-509-3

www.packtpub.com

Credits

Author
Calin Rada

Reviewers
Altaf Hussain

Stephan A. Miller

Dilanka Somarathne

Commissioning Editor
Kunal Parikh

Acquisition Editors
Harsha Bharwani

Rebecca Youe

Content Development Editor
Amey Varangaonkar

Technical Editor
Menza Mathew

Copy Editor
Vikrant Phadkay

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Calin Rada is a full-stack developer with over 10 years of experience in web
development; system architecture; database modeling; the setup, configuration,
and administration of servers and hosting systems; and understanding customer
and business needs. He is always interested in learning new things and working
with new technologies.

I'd like to thank my family and all the people involved in writing
this book.

"Touch the untouchable star and don't forget about the people
who believed in you."

 – Octavian Paler

About the Reviewers

Altaf Hussain is an electrical engineer on paper and a software engineer at heart.
He is an e-commerce and mobile applications enthusiast. He acquired his BE degree
in electrical engineering (with specialization in computers and communication) from
Pakistan. He then worked for numerous organizations as a backend developer and
moved to Saudi Arabia to work as a software engineer.

Currently, Altaf is working in the fashion industry at Shy7lo.com. He manages
dedicated servers, different VPSes, Staging Servers, and GitLab instances
for fast deployment. As a senior team member, he is responsible for creating
cross-platform mobile applications and APIs. He also works on different caching
systems, such as Varnish and Full Page Cache. In his free time, Altaf writes
posts for http://www.programmingtunes.com.

Stephan A. Miller is a software engineer from Kansas City, Missouri, USA. He is
currently working for Kinetic Supply Company. He has worked with open source
software technologies for over a decade. Some of the languages that he uses are
PHP, JavaScript, and Python. He also uses various frameworks in these languages,
including Phalcon, Zend, Laravel, jQuery, AngularJS, and Flask. Stephan has written
Piwik Web Analytics Essentials and Getting Started with Phalcon for Packt Publishing.

Dilanka Somarathne has worked with the LAMP stack for 2 years. He always
tries to learn something new. He performs experiments in PHP to find out the
best PHP framework for programming. He also conducted a tech talk session in
benchmarking several PHP frameworks at his previous organization, thinkCube
Systems, for which he received good feedback from the audience and appreciation
from other technical leads and architects. Dilanka has experience of working on
Laravel, Zend Framework 2, CodeIgniter, and Phalcon. He has worked on Node.js
and Angular projects too.

Phalcon is a new and very fast PHP framework. He started following and learning
Phalcon after he attended a Phalcon meetup. As his first step, he created a small
application with Phalcon. Because of his amazing experience with the application,
he was able to get a clear idea about it.

I feel fortunate to get a chance to join the reviewing panel of Packt
Publishing. Leena Purkait gave me this awesome chance. I would
like to take this opportunity to thank her. Then, Bijal Patel joined the
team. From the first day, she has been very helpful and has always
replied to my e-mails patiently. Thank you very much, Bijal.

Working as a Phalcon reviewer for Packt Publishing was a really
good experience for me. Thank you very much guys for giving me
this huge opportunity.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

[i]

Table of Contents
Preface vii
Chapter 1: Getting Started with Phalcon 1

Installing the required software 2
Installing PHP 2
Installing Nginx 3
Installing MySQL 3
Installing Redis 4
Installing MongoDB 4
Installing Git 4

Installing Phalcon 4
The Apache and Nginx configuration files 5

Apache 5
The host file 6
Nginx 7

Understanding the framework's internals 8
The dependency injection 9

The request component 10
The response component 12
The logger component 14
The crypt component 15
The flash component 16
The router component 18
The config component 20
The view component 22
The session component 26
The cache component 27

Summary 29

Table of Contents

[ii]

Chapter 2: Setting Up the MVC Structure and the Environment
for Our Project 31

What is MVC? 31
Model 32
View 34
Controller 34

The MVC structure 35
Creating the structure for our project 36

PSR 37
Creating the configuration file and the Bootstrap 38
Preparing the initial DI interface and the router 41
Using the router component in a module 44
Create the base layout 52
Summary 55

Chapter 3: Learning Phalcon's ORM and ODM 57
The main differences between SQL and NoSQL databases 57
Connecting to the database 58
ORM/ODM operations (create, update, delete,
transactions, and validations) 67

Adding the routing information 69
Creating the controller and the actions 69
Creating the views 70

CRUD operations using ORM 74
CRUD – reading data 75
CRUD – creating data 77
CRUD – updating data 80
CRUD – deleting data 81

Using PHQL 83
Using raw SQL 84
Database transactions 85

A manual transactions example 86
An implicit transactions example 87
An isolated transactions example 88

ODM/MongoDB 89
ORM – drawbacks and caching 90
Summary 92

Chapter 4: Database Architecture, Models, and
CLI Applications 93

The database architecture 93
The User table 94

Table of Contents

[iii]

The UserGroup table 95
The UserProfile table 95

Models 96
The User model 97
The UserGroup model 98
The UserProfile model 99
Registering a new user 100
Creating a user profile 112
The Category model 118
The Category translation model 119
The Article translation model 120
The Article model 121
The Article-Category-Article model 122

Summary 128
Chapter 5: The API Module 129

Using APIs – recommended practices 129
Enabling SSL on our local machine 131
Creating the module structure 133
Writing a fully functional REST module with Phalcon PHP 139

Articles 140
Securing an API 155

Using SSL 155
Adding an API key for extra protection 155
Limiting the number of requests per second from the same IP 157
Limiting access to resources such as DELETE, PUT, and POST
for authenticated users 158

Documenting the API 160
Installation 160
Usage 160

Summary 163
Chapter 6: Assets, Authentication, and ACL 165

Assets management 165
Developing an authentication system 169

The database structure 169
Models 171

Securing the application using the ACL component 187
Summary 194

Table of Contents

[iv]

Chapter 7: The Backoffice Module (Part 1) 195
Editing the main layout 195

common/topbar.volt 197
common/sidebar.volt 198

Cleaning the Core module 200
Hashtag CRUD 201

The hashtag controller within the API module 201
A common method to reduce code duplication 206
Retrieving the data 206
The layout structure 207
The hashtag form 210
The hashtag controller 211
The hashtag manager 212
The View template for the add() method 213
Improving the database table structure and adding validation 214
Editing hashtags 214
Deleting hashtags 217

Category CRUD 219
The Category form 220
Creating the Category templates 222

list.volt 222
add.volt 224
edit.volt 224
delete.volt 225

Creating the Category controller 225
Creating the Category manager 228

Summary 232
Chapter 8: The Backoffice Module (Part 2) 233

User CRUD 233
Creating the controller (API) 233
The user controller from the Backoffice module 235
The user form 237
The user manager 240

User templates 243
Article CRUD 247

The Controller (API) 247
The Article controller from the Backoffice module 250
The Article form 252
The Article manager 261

Summary 266

Table of Contents

[v]

Chapter 9: The Frontend Module 267
The Frontend layout and basic functionality 267

footer.volt 267
paginator.volt 268
navbar.volt 268
layout.volt 268

Modifying BaseController.php 271
The Article item template 276
Retrieving articles from a category 278

Implementing ElasticSearch 279
Installing ElasticSearch 280
Enabling a client in DI 281
Indexing (storing) documents 281

Implementing MongoDB 286
Mongo models 287

modules/Core/Models/Mongo/BaseCollection.php 287
modules/Core/Models/Mongo/ArticleLog.php 287

Summary 291
Chapter 10: Going Further 293

Uploading files with Phalcon 293
Using the Annotation router 296
Summary 297

Index 299

[vii]

Preface
Phalcon is the fastest PHP framework out there, and it is delivered as a C extension.
More than that, you will find it very easy to learn. This book will present in detail the
most common and useful parts of Phalcon PHP, as well as guide you to lean towards
making the right decision when developing a Phalcon-driven application.

Learning Phalcon PHP is an interesting journey that starts with guides for installing
the required software and preparing the working environment and project structure,
and continues with a step-by-step approach development of each module.

By the end of this book, you will have developed a simple but fully functional news
website and gained advanced knowledge on how Phalcon works.

What this book covers
Chapter 1, Getting Started with Phalcon, introduces the Phalcon Framework. In this
chapter, you learn how to install and configure Phalcon.

Chapter 2, Setting Up the MVC Structure and the Environment for Our Project, helps
you get to grips with the basics of MVC (Model-View-Controller) and setting up
the work environment.

Chapter 3, Learning Phalcon's ORM and ODM, is about Phalcon's ORM (Object-relational
Mapping) and ODM (Object-Document Mapper). You learn how to connect to a
database and create models and relations between them.

Chapter 4, Database Architecture, Models, and CLI Applications, teaches you how to
create the database architecture and the models needed for our project. You also
learn about Phalcon CLI and develop a simple CLI application.

Chapter 5, The API Module, helps you start the development of a RESTful API module.

Preface

[viii]

Chapter 6, Assets, Authentication, and ACL, explains assets management (JavaScript
files, style sheets, and images), and you create a simple authentication system based
on an ACL (access control list).

Chapter 7, The Backoffice Module (Part 1), shows you how to develop CRUD
operations. This first part is about CRUD for categories and hashtags.

Chapter 8, The Backoffice Module (Part 2), is a continuation of the previous chapter.
Here, you develop CRUD operations for users and articles.

Chapter 9, The Frontend Module, helps you develop the frontend template. You learn
how to implement Elasticsearch and Mongo to improve the speed of your application.

Chapter 10, Going Further, teaches you common operations, such as file uploads
and annotations.

What you need for this book
The most important thing that you need is some knowledge of PHP 5.3 or later
and Linux environments (this book is written based on Ubuntu/Debian). If you
are not using a Linux distribution, or you are using a distribution other than
Ubuntu/Debian, you will need to look up their official documentation to install
the required software.

Who this book is for
If you are an intermediate PHP developer with some basic knowledge of installing
and configuring your environment, then this book is for you. Familiarity with PHP
frameworks will make your life easier.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Deleting data is easier, since we don't
need to do more than calling the built-in delete() method."

Preface

[ix]

A block of code is set as follows:

<?php
$di['session'] = function () {
 $session = new Phalcon\Session\Adapter\Files();
 $session->start();
 return $session;
};

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public function registerServices(\Phalcon\DiInterface $di) {
 $config = include __DIR__ . "/Config/config.php";
 $di['config'] = $config;
 include __DIR__ . "/Config/services.php";
}

Any command-line input or output is written as follows:

$ cd modules/Frontend/Views/Default

$ mkdir index

$ cd index

$ touch index.volt

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Going
back to the article list, you will see the new title, and the Updated column will
have a new value."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[x]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Preface

[xi]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[1]

Getting Started with Phalcon
What is Phalcon? Let's start by quoting from the documentation of the official
website (http://phalconphp.com/):

"Phalcon is an open source, full stack framework for PHP written as a C-extension,
optimized for high performance."

Version 2.0 of Phalcon was released in April, and it was developed with a new
language called Zephir (http://zephir-lang.com/). Zephir was designed
especially for developing PHP extensions, and it is quite user friendly for both
(PHP and C) developers.

There are many frameworks out there. The main reasons why we choose Phalcon
were for its steep learning curve, speed, and because it is decoupled. (We can use
any of its components independently.) If you have some knowledge of the Model-
View-Controller (MVC) and some experience with any Object-Relational Mapping
(ORM), you will find working with it pretty straightforward.

We will start our journey with this first chapter where we will:

• Configure our web server
• Install Phalcon
• Discuss a bit about how Phalcon works

Before starting, we assume that you are using a *nix environment. Personally, I feel
comfortable with Debian distributions, especially Ubuntu, which I am using on a
daily basis; so, the installations steps that we will talk about are for Ubuntu. The
OS is a matter of personal choice, but I highly recommend any *nix distribution for
development. (Even Microsoft decided to open source their ASP.NET for Linux early
this year)

For other types of OS, you will have to search their official documentation, in terms
of "how to". This book is intended to be about Phalcon and tutorials on installing
different software on different kinds of OS are out of the scope of this book.

Getting Started with Phalcon

[2]

Here is the list of URLs that contain installation instructions for
different operating systems:

• http://docs.phalconphp.com/en/latest/
reference/install.html#windows

• http://docs.phalconphp.com/en/latest/
reference/install.html#mac-os-x

• http://docs.phalconphp.com/en/latest/
reference/install.html#freebsd

Senior developers might not agree with me on certain subjects or certain techniques
and/or recommendations. In general, as a developer, I think you should analyze
what is suitable for you and develop a platform according to your (or client)
requirements. In addition, most importantly, there is no such thing as "The Perfect
Solution". There is always room for improvement.

Installing the required software
We need to install the following software that we are going to use in this book:

• PHP
• Nginx and Apache
• MongoDB
• MySQL
• GIT
• Redis
• Phalcon

Installing PHP
You have probably already installed PHP on your system since you are reading this
book. However, just in case you haven't, here are the simple steps to quickly install
the latest PHP version (Phalcon is running on PHP version >= 5.3). I recommend you
to use the Personal Package Archive (PPA) from Ondřej Surý (https://launchpad.
net/~ondrej/+archive/ubuntu/php5) because it has the latest PHP version
available on it:

$ sudo add-apt-repository ppa:ondrej/php5

$ sudo apt-get update

Chapter 1

[3]

If you don't want to use this step, you can simply install PHP from the official
repositories:

$ sudo apt-get install php

Apache will be installed by default with PHP. However, if you want Nginx instead
of Apache, you must install PHP in a certain order.

The following command will automatically install PHP and Apache. If you don't
need/want to use Apache, please skip using this command:

$ sudo apt-get install php5 php5-fpm

To avoid Apache installation, execute the following commands in the exact
same order:

$ sudo apt-get install php5-common

$ sudo apt-get install php5-cgi

$ sudo apt-get install php5 php5-fpm

The php5-cgi package fulfills the dependencies that would otherwise be fulfilled
by Apache.

Installing Nginx
To install the Nginx web server, we need to execute the following commands:
$ sudo add-apt-repository ppa:nginx/stable

$ sudo apt-get update

$ sudo apt-get install nginx

Installing MySQL
MySQL is probably the most widely spread RDBMS system with a market share that
is greater than 50 percent. Since we are going to use it to develop our project, we
need to install it by executing the following command:

$ sudo apt-get install mysql-server

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files e-mailed
directly to you.

Getting Started with Phalcon

[4]

Installing Redis
Redis is an advanced key-value storage/cache system. We are going to use this
mostly for our session and to cache objects to improve the speed of our application.
Let's install it by executing the following commands:

$ sudo add-apt-repository ppa:chris-lea/redis-server

$ sudo apt-get update

$ sudo apt-get install redis-server

$ sudo apt-get install php5-redis

Installing MongoDB
MongoDB is a document database (NoSQL database) system. We will use this to
store data that is accessed frequently. Let's install it:

$ sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv
 7F0CEB10

$ echo 'deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart
 dist 10gen' | sudo tee /etc/apt/sources.list.d/mongodb.list

$ sudo apt-get update

$ sudo apt-get install -y mongodb-org

$ sudo service mongodb start

$ sudo apt-get install php5-mongo

Installing Git
Git is a distributed version control system that we will use to track changes to our
application and much more. We will install Git by executing the following command:

$ sudo apt-get install git

I strongly recommend that you use the latest versions of all software
as much as possible.

Installing Phalcon
Now that we have installed all the required software, we will proceed with the
installation of Phalcon. Before we continue, we must install some dependencies:

$ sudo apt-get install php5-dev libpcre3-dev gcc make php5-mysql

Chapter 1

[5]

For Windows systems and more details about how to compile the extension on
different systems, please check the latest documentation at http://phalconphp.
com/en/download.

Now, we can clone the repository and compile our extension:

$ git clone --depth=1 git://github.com/phalcon/cphalcon.git

$ cd cphalcon/build

$ sudo ./install

$ echo 'extension=phalcon.so' | sudo tee /etc/php5/mods-available/
 phalcon.ini

$ sudo php5enmod phalcon

$ sudo service php5-fpm restart

If everything goes well, you should be able to see Phalcon in the list of PHP
installed modules:

$ php -m | grep phalcon

The Apache and Nginx configuration files
We will use /var/www/learning-phalcon.localhost as the default directory for
our project, and we will refer to it as the root folder. Please create this folder:

$ sudo mkdir -p /var/www/learning-phalcon.localhost/public

Of course, if you want, you can use another folder. Let's create a test file in our
public folder under the root directory with some PHP content:

$ cd /var/www/learning-phalcon.localhost/public

$ echo "<?php date();" > index.php

Apache
Let's switch to the default directory where Apache holds the configuration files
for the available websites, using the command line: $ cd /etc/apache2/sites-
available/. After that, perform the following set of steps:

1. Using your favorite editor, create a file named learning-phalcon.localhost
for apache version < 2.4 or learning-phalcon.localhost.conf for apache
version >= 2.4:
$ vim learning-phalcon.localhost.conf

Getting Started with Phalcon

[6]

2. Now, paste the following content to this file:
<VirtualHost *:80>
 DocumentRoot "/var/www/learning-phalcon.localhost"
 DirectoryIndex index.php
 ServerName learning-phalcon.localhost
 ServerAlias www.learning-phalcon.localhost

 <Directory "/var/www/learning-phalcon.localhost/public">
 Options All
 AllowOverride All
 Allow from all
 </Directory>
</VirtualHost>

3. Then, switch to the public folder and add a file named .htaccess to it:
$ cd /var/www/learning-phalcon.localhost/public

$ vim .htaccess

4. Then, add the following content to the .htaccess file:
<IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteCond %{REQUEST_FILENAME} !-d
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteRule ^(.*)$ index.php?_url=/$1 [QSA,L]
</IfModule>

5. This will not work unless you have enabled mod_rewrite. To do so, execute
this command:
$ sudo a2enmod rewrite

6. Now that we have configured our virtual host, let's enable it:
$ sudo a2ensite learning-phalcon.localhost

$ sudo service apache2 reload

The host file
If you open a browser and type http://www.learning-phalcon.localhost/,
you'll receive a host not found or connection error. This is because there is no name
resolver for this TLD (short for Top Level Domain). To fix this, we edit our host file
and add this name:

$ echo "127.0.0.1 learning-phalcon.localhost www.learning-phalcon.
 localhost" | sudo tee /etc/hosts

Chapter 1

[7]

Restart your browser and type the address http://www.learning-phalcon.
localhost/ again. If everything goes well, you should see the current date/time.

Nginx
If you choose to use Nginx (which I recommend, especially because it can serve
more concurrent clients with higher throughput, and it serves static content more
efficiently) instead of Apache, here is what you need to do:

Locate the config folder of Nginx (in Ubuntu, it is installed under /etc/nginx/).
Create a file named learning-phalcon.localhost in your sites-available folder
(by navigating to /etc/nginx/sites-available):

$ cd /etc/nginx/sites-available

$ vim learning-phalcon.localhost

Now, add the following content to it:

server {
 listen 80;
 server_name learning-phalcon.localhost;

 index index.php;
 set $root_path "/var/www/learning-phalcon.localhost/public";
 root $root_path;

 client_max_body_size 10M;

 try_files $uri $uri/ @rewrite;

 location @rewrite {
 rewrite ^/(.*)$ /index.php?_url=/$1;
 }

 location ~ \.php {
 fastcgi_index /index.php;
 fastcgi_pass unix:/var/run/php5-fpm.sock;
 fastcgi_intercept_errors on;
 include fastcgi_params;

 fastcgi_split_path_info ^(.+\.php)(/.*)$;

 fastcgi_param PATH_INFO $fastcgi_path_info;
 fastcgi_param PATH_TRANSLATED
 $document_root$fastcgi_path_info;

Getting Started with Phalcon

[8]

 fastcgi_param SCRIPT_FILENAME
 $document_root$fastcgi_script_name;
 fastcgi_param DOCUMENT_ROOT $realpath_root;
 fastcgi_param SCRIPT_FILENAME $realpath_root/index.php;
 }

 location ~* ^/(css|img|js|flv|swf|download)/(.+)$ {
 root $root_path;
 }

 location ~ /\.ht {
 deny all;
 }
}

In some environments, you might need to edit your php.ini file and set
cgi.fix_pathinfo = 0.

Then, save the file and restart Nginx:

$ sudo service nginx restart

Please edit and save your host file (check The host file section), then open your
browser and type http://www.learning-phalcon.localhost/. At this point,
you should see a page that shows the current date/time.

There are many possible methods to install and configure PHP and Apache/Nginx.
Feel free to do a simple Google search and choose one that fits you better, if my
method is not the optimal one for your needs.

Assuming that everything went well until now, we will go further by learning a little
bit about Phalcon's internals.

Understanding the framework's internals
In this section, I will try to make a short introduction to the common parts of the
framework. Most of the text presented here is part of the official documentation that
you should always read. The idea of this section is to make you familiar with the
most common methods and components that will help you to understand quickly
how the framework works.

Chapter 1

[9]

Please note that images in this book might contain the text http://
learning-phalcon.dev. You need to ignore that and use http://
learning-phalcon.localhost as suggested in the chapter.

The dependency injection
Probably one of the most powerful characteristics of Phalcon is the dependency
injection (DI). If you have no idea about dependency injection, you should read
at least the wiki page for this design pattern at http://en.wikipedia.org/wiki/
Dependency_injection:

"Dependency injection is a software design pattern that implements inversion of
control for resolving dependencies. An injection is the passing of a dependency
(a service or software module) to a dependent object (a client). The service is made
part of the client's state. Passing the service to the client, rather than allowing a
client to build or find the service, is the fundamental requirement of the pattern.

Dependency injection allows a program design to follow the dependency inversion
principle."

The term "Dependency injection" was coined by Martin Fowler.

A real-life example of dependency injection might be the following situation:
Suppose you go shopping. At the mall, you will need a bag to put your groceries, but
you forgot to take one when you left your home. In this case, you will need to buy a
bag. In development, buying this bag can be quite expensive. So, what if your door
has a scanner that scans your body for a bag, and will not open unless you have one?
This can be called dependency injection.

Phalcon uses the \Phalcon\DI component, which is a component that implements
the Inversion of Control pattern. This reduces the overall code complexity.

The framework itself or the developer can register services. Phalcon has many built-
in components that are available in the DI container, such as the following ones:

• Request and response
• Logger
• Crypt
• Flash
• Router and configuration

Getting Started with Phalcon

[10]

• View
• Cache
• Session

Setting up a new component in the DI is as easy as the following code:

<?php

$di = new Phalcon\DI();
// Lazy load
$di['mail'] = function() {
 return new \MyApp\Mail();
};

When you need to access the "mail" component, in a controller for example, you can
simply call it:

<?php

$mail = $this->getID()->get('mail');
// or
$mail = $this->getDI()->getMail();

If you need to create your own DI, Phalcon or the DiInterface interface must
be implemented to replace the one provided by Phalcon, or you must extend the
current one.

These are just a few dummy examples so that you can have an idea about Phalcon's
DI by the time we start our project. In the meanwhile, please take your time and read
the official documentation that can be found at http://docs.phalconphp.com/en/
latest/reference/di.html.

The request component
The request component is probably one of the most used components in any
framework. It handles any HTTP request (such as GET, POST, or DELETE, among
others) and also provides a few shortcuts for the $_SERVER variable. Most of the time,
we will use the request component in the controllers. The Phalcon documentation
(http://docs.phalconphp.com/en/latest/reference/mvc.html) states
the following:

"The controllers provide the "flow" between models and views. Controllers
are responsible for processing the incoming requests from the web browser,
interrogating the models for data, and passing that data on to the views for
presentation."

Chapter 1

[11]

In Phalcon, all controllers should extend the \Phalcon\Mvc\Controller component,
and the name of the public methods that we want to access via HTTP GET should
have the suffix Action. For example:

<?php

class ArticleController extends \Phalcon\Mvc\Controller
{
 // Method for rendering the form to create an article
 public function createAction()
 {
 }

 // Method for searching articles
 public function searchAction()
 {
 }

 // This method will not be accessible via http GET
 public function search()
 {
 }
}

Okay. So, how do we use the request component? Easy! Do you remember that we
talked about built-in components in the DI section? The request component is one of
them. All we need to do is get the DI. Here is an example of how to get and use the
request component:

<?php

class ArticleController extends \Phalcon\Mvc\Controller
{
 public function searchAction()
 {
 $request = $this->getDI()->get('request');
 // You can also use $request = $this->request; but I don't
 // recommend it because $this->request can be easily overwritten
 // by mistake and you will spend time to debug ... nothing.

 $request->getMethod(); // Check the request method
 $request->isAjax(); // Checks if the request is an ajax
 request
 $request->get(); // Gets everything, from the request (GET,
 POST, DELETE, PUT)

Getting Started with Phalcon

[12]

 $request->getPost(); // Gets all the data submitted via POST
 method
 $request->getClientAddress(); // Return the client IP
 }
}

These are just a few common methods that are built into the request component.
Let's continue with the next important component—Response.

The response component
So, what can this component do? Well, pretty much everything that is response or
output related. Using it, we can set headers, do redirects, send cookies, set content,
and much more. Here is a list of common methods from this component:

<?php

public function testRedirectAction()
{
 $response = $this->getDI()->get('response');
 // or you can use $this->response directly

 // Redirect the user to another url
 $this->view->disable();
 return $response->redirect('http://www.google.com/', true);
}

The redirect method accepts three parameters: a location (string), if it is an external
redirect (this is a Boolean type which is by default false), and a status code (http
status code range). The following lines of code is the redirect method:

 <?php

 /**
 * Redirect by HTTP to another action or URL
 *
 * @param string $location
 * @param boolean $externalRedirect
 * @param int $statusCode
 * @return \Phalcon\Http\ResponseInterface
 */
 public function redirect($location, $externalRedirect,
 $statusCode);

Chapter 1

[13]

Another useful method is the setHeader method:

<?php

public function testSetHeaderAction()
{
 $this->response->setHeader('APIKEY', 'AWQ23XX258561');
}

The preceding example sets a header named APIKEY with the value as
AWQ23XX258561. Sending headers is a common approach when you develop APIs.
You can send any type of headers and overwrite current headers using this method.

Content related methods: setContent() and setJsonContent(). Let's take for
example the following code:

<?php

public function testContentAction()
{
 // First, we disable the view if there is any
 $this->view->disable();

 // Set a plain/text or html content
 $this->response->setContent('I love PhalconPHP');

 // OR

 // Set a json content (this will return a json object)
 $this->response->setJsonContent(array(
 'framework' => 'PhalconPHP'
 'versions' => array(
 '1.3.2',
 '1.3.3',
 '2.0.0'
)
));

 // We send the output to the client
 return $this->response->send();
}

Getting Started with Phalcon

[14]

When you need to send any JSON content, you should set the header as
application/json using the built-in method in the response object:

<?php

$this->response->setContentType('application/json', 'UTF-8');

Now that we know the basics about response/request components, we might find
ourselves in a situation where we may need to log different things, such as errors.
For this, we need to check the logger component.

The logger component
In a production environment, we cannot afford to throw errors or blank pages at the
client. We will avoid this and log the errors in a log file. You will read more about
this in the next chapters. To sum it up, we will implement a custom logger to our DI,
catch exceptions, and then log them. For example, perform the following set of steps:

1. Set the custom logger in DI using the following code:
<?php

$di['logger'] = function() {
 $error_file = __DIR__.'/../logs/'.date("Ymd_error").'log';
 return new \Phalcon\Logger\Adapter\File($error_file,
 array('mode' => 'a+'));
};

2. Create a method that will throw an exception, catch it, and log it, as follows:
<?php

public function testLoggerAction()
{
 try {
 $nonExistingComponent = $this->getDI()->get(
 'nonExistingComponent');
 $nonExistingComponent->executeNonExistingMethod();
 } catch (\Exception $e) {
 $this->logger->error($e->getMessage());
 return $this->response->redirect('error/500.html');
 }
}

Chapter 1

[15]

In the preceding example, we try to execute a nonexistent method, and our code
will throw an exception that we catch. It will log it and then redirect the user to a
friendly error page, error/500.html. You will notice that our logger component
calls a method named error. There are other methods that are implemented, such
as, debug, info, notice, warning, and so on.

The logger component can be transactional. (Phalcon stores the logs temporarily
in memory, and later on, it writes the data to the relevant adapter.) For example,
consider the following code snippet:

<?php

$this->logger->begin();

$this->logger->error('Ooops ! Error !');
$this->logger->warning('A warning message');

$this->logger->commit();

The crypt component
Crypt is a very useful component if someone needs to encrypt data and decrypt it
on your side. One situation where you might want to use the crypt component is to
send data over the HTTP get method or save sensitive information in your database.

This component has many built-in methods such as encrypt, decrypt,
getAvailableChipers, setKey, getKey, and so on. Here is an example of using the
crypt component in the HTTP get method.

First, we overwrite the DI, and then we pass a key to it in order to avoid setting it
every time:

<?php

$di['crypt'] = function () {
 $crypt = new \Phalcon\Crypt();
 $crypt->setKey('0urSup3rS3cr3tK3y!?');

 return $crypt;
};

public function sendActivationAction()
{
 $activation_code = $this->crypt->encryptBase64('1234');

Getting Started with Phalcon

[16]

 $this->view->setVar('activation_code', $activation_code);
}

public function getActivationAction($code)
{
 if ('1234' == $this->crypt->decryptBase64($code)) {
 $this->flash->success('The code is valid ');
 } else {
 $this->flash->error('The code is invalid');
 }
}

Of course, you are probably never going to use it this way. The preceding example
just demonstrates the power of this component. You might have noticed that there
is a new DI method called flash. We are going to talk about it next.

The flash component
This component is used to send notifications to the client and inform him or her
about the status of the component's actions. For example, we can send a successful
message after a user has completed the registration on our website or submitted a
contact form.

There are two kinds of flash messages—direct and session—and both are available in
DI. The direct method outputs the message directly and cannot be loaded on a future
request. On the contrary, the session method, stores the messages in a session, and
they are automatically cleared after they are printed.

Here is a common usage of flash direct and flash session, assuming that you have a
page called register, and you post the data on the same page:

public function registerAction()
{
 // … code
 if ($errors) {
 $this->flash->warning('Please fix the following errors: ');
 foreach($errors as $error) {
 $this->flash->error($error);
 }
 } else {
 $this->flash->success('You have successfully registered on our
 website');
 }
}

Chapter 1

[17]

In our view, we will render the messages using the getContent() method or
content() in the template engine Volt (we'll cover this later in the chapter).

If we need to redirect our user to another page (let's call it registerSuccess), then
we need to use the flash session method; otherwise, the message will not appear.

<?php

public function registerAction()
{
 // render our template
}

The register template will contain a form with method post and action pointing
to the create method. The create method will look something like this:

<?php

public function createAction()
{
 if ($errors) {
 $this->flashSession->warning('Please fix the following errors: ');
 foreach($errors as $error) {
 $this->flashSession->error($error);
 }
 } else {
 $this->flashSession->success('You have successfully registered
 on our website');
 }

 return $this->response->redirect('/register');
}

In the preceding example, we set the messages in the session using the
flashSession method, and we redirect the user back to the register page. In order
to render the messages in our view, we need to call the method flashSession()-
>output();.

The recommended way is to forward the request with the help of
dispatcher, not using redirects. If you use redirects, the user will
lose all the data that he or she filled in the form.

Getting Started with Phalcon

[18]

The router component
The router component helps us to map friendly URLs to our controllers and actions.

By default, if the rewrite module is enabled in your web server, you will be able
to access a controller named Post and the read action like this: http://www.
learning-phalcon.localhost/post/read. Our code can look like this:

<?php

class PostController extends \Phalcon\Mvc\Controller
{
 public function readAction()
 {
 // get the post
 }
}

However, sometimes, this code is not apt if you need to translate the URLs into
multiple languages, or if you need to name the URLs in a different way to how
they are defined in the code. Here is a usage example for the router component:

<?php

$router = new \Phalcon\Mvc\Router();
// Clear the default routes
$router->clear();

$st_categories = array(
 'entertainment',
 'travel',
 'video'
);

$s_categories = implode('|', $st_categories);

$router->add('#^/('.$s_categories.')[/]{0,1}$#', array(
 'module' => 'frontend',
 'controller' => 'post',
 'action' => 'findByCategorySlug',
 'slug' => 0
));

Chapter 1

[19]

In the preceding example, we map all the categories to the controller post and action
findByCategorySlug. The router component allows us to use regular expressions
for our URLs. With preg_match, this can be represented as follows

$url = 'http://www.learning-phalcon.localhost/video';
preg_match('#^/(entertainment|travel|video)[/]{0,1}$#', $url);

By accessing http://www.learning-phalcon.localhost/video, the request will
be forwarded to the findByCategorySlug action from the post controller:

<?php

class PostController extends \Phalcon\Mvc\Controller
{
 public function findByCategorySlug()
 {
 $slug = $this->dispatcher->getParam('slug', array('string',
 'striptags'), null);

 // We access our model (entity) to get all the posts from this
 category
 $posts = Posts::findByCategorySlug($slug);

 if ($posts->count() > 0) {
 $this->view->setVar('posts', $posts);
 } else {
 throw new \Exception('There are no posts', 404);
 }
 }
}

The getParam() method has three parameters. The first one is the name that we
are searching for, the second parameter is an array of filters that can be applied
automatically, and the third parameter is the default value in case the requested
name does not exist or is not set.

We will discuss models in the next chapter. This was just a simple example of how
you can use the router.

The router also supports a precheck of the request method. You may be used to
check whether the method is POST, DELETE, PUT, or GET, like this:

<?php

if ($_SERVER['REQUEST_METHOD'] == 'post') {
 // process the information
}

Getting Started with Phalcon

[20]

While this is perfectly correct, it is not very friendly for our code. Phalcon's router
has this capability by which you can add the right type of request that you are
expecting, without the need to check this in your code:

<?php

// Add a get route for register method within the user controller
$router->addGet('register', 'User::register');

// Add a post route for create method, from the user controller
$router->addPost('create', 'User::create');

This is the basic usage of the router. As always, please read the documentation in
order to learn everything about this component.

You can find out more about routing on the official documentation
at http://docs.phalconphp.com/en/latest/reference/
routing.html.

The config component
This component can handle configuration files of various formats by using adapters.
Phalcon has two built-in adapters for it, which are INI and Array. Using INI
files is probably never a good idea. Therefore, I recommend you to make use
of native arrays.

What kind of data can or needs to be stored in these files? Well, pretty much
everything that will be needed globally in our application, such as database
connection parameters. In the old days, we used $_GLOBALS (a big security issue),
or we used the define() method, and then gradually we started using it globally.

Here is an example of a config file, and how we can use it:

<?php

$st_settings = array(
 'database' => array(
 'adapter' => 'Mysql',
 'host' => 'localhost',
 'username' => 'john',
 'password' => 'johndoe',
 'dbname' => 'test_database',
),
 'app' => array(

Chapter 1

[21]

 'name' => 'Learning Phalcon'
)
);

$config = new \Phalcon\Config($st_settings);

// Get our application name:
echo $config->app->name; // Will output Learning Phalcon

The config object can be converted back to an array by using toArray() method:

<?php

$st_config = $config->toArray();
echo $config['app']['name']; // Will output Learning Phalcon

Another useful method for this object is the merge method. If we have multiple
configuration files, we can easily merge them into one object:

<?php

$config = array(
 'database' => array(
 'adapter' => 'Mysql',
 'host' => 'localhost',
 'dbname' => 'test_database',
),
 'app' => array(
 'name' => 'Learning Phalcon'
)
);

$config2 = array(
 'database' => array(
 'username' => 'john',
 'password' => 'johndoe',
)

Now, the $config object will have the same content as it did before.

There are two other adapters that are not implemented yet (YAML
and JSON), but you can use them if you clone Phalcon's incubator
repository (https://github.com/phalcon/incubator). This
repository contains a collection of adapters/helpers that might be
integrated in Phalcon in the near future.

Getting Started with Phalcon

[22]

The view component
This component is used to render our templates. By default, the templates have the
.phtml extension, and they contain HTML and PHP code. Here are some examples
on how to use the view:

1. First, we set up the view in the DI using the following code snippet:
<?php

$di['view'] = function () use ($config) {
 $view = \Phacon\Mvc\View();
 // Assuming that we hold our views directory in the
configuration file
 $view->setViewsDir($config->view->dir);

 return $view;
};

2. Now, we can use this service as follows:
<?php

class PostControler extends \Phalcon\Mvc\Controller
{
 public function listAction()
 {
 // Retrieve posts from DB
 $posts = Post:find();
 $this->view->setVar('pageTitle', 'Posts');
 $this->view->setVar('posts', $posts);
 }
}

3. Next, we need to create a view template that must look like this:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title><?php echo $pageTitle; ?></title>
</head>
<body>
<?php foreach($posts as $post) { ?>
 <p><?php echo $post->getPostTitle(); ?></p>
 <p><?php echo $post->getPostContent(); ?></p>

Chapter 1

[23]

<?php } ?>
</body>
</html>

Simple, isn't it? This component also supports hierarchical rendering. You can have a
base layout, a general template for posts, and a template for a single post. Let's take,
for example, the following directory structure:

app/views/
- index.phtml
- post/detail.phtml

Phalcon will first render app/views/index.phtml. Then, when we request for
detailAction() from the post controller, it will render app/views/post/details.
phtml. The main layout can contain something similar to this code:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Learning Phalcon</title>
</head>
<body>
<?php echo $this->getContent(); ?>
</body>
</html>

And, the details.phtml template will have the following content:

<?php foreach($posts as $post) { ?>
 <p><?php echo $post->getPostTitle(); ?></p>
 <p><?php echo $post->getPostContent(); ?></p>
<?php } ?>

This component also allows you to pick different templates to set a render level,
disable or enable the view, and much more.

Phalcon has a built-in template engine named Volt. If you are familiar with PHP
template engines such as Smarty or Twig, you will want to use them for sure. Volt
is almost identical to Twig, and you will find it very useful—it is inspired by Jinja
(http://jinja.pocoo.org/). You can even use your own template engine, or any
other template engine that you can find there.

Getting Started with Phalcon

[24]

In order to enable the Volt template engine, we need to make a small modification
to our view service, and we need to create a Volt service; here is how to do this:

<?php

$di['voltService'] = function($view, $di) use ($config) {

 $volt = new \Phalcon\Mvc\View\Engine\Volt($view, $di);

 if (!is_dir($config->view->cache->dir)) {
 mkdir($config->view->cache->dir);
 }

 $volt->setOptions(array(
 "compiledPath" => $config->view->cache->dir,
 "compiledExtension" => ".compiled",
 "compileAlways" => false
));

 $compiler = $volt->getCompiler();

 return $volt;
};

// First, we setup the view in the DI
$di['view'] = function () use ($config) {
 $view = \Phacon\Mvc\View();
 $view->setViewsDir($config->view->dir);
 $view->registerEngines(array(
 '.volt' => 'voltService'
));

 return $view;
};

By adding this modification and voltService, we can now use this template engine.
From the inheritance point of view, Volt acts a little bit differently. We first need
to define a main layout with named blocks. Then, the rest of the templates should
extend the main layout, and we need to put our content in the same blocks as the
main layout. Before we look at some examples, I will tell you a little bit about Volt's
syntax, the details are as follows.

• The syntax for outputting data or for echoing content:
{{ my_content }}

• The syntax for defining blocks:
{% block body %} Content here {% endblock %}

Chapter 1

[25]

• The syntax to extend a template (this should be the first line in your
template):
{% extends 'layouts/main.volt' %}

• The syntax to include a file:
{% include 'common/sidebar.volt' %}

• The syntax to include a file and pass variables:
{% include 'common/sidebar' with{'section':'homepage'} %}

Please note the missing extension. If you pass variables, you
MUST omit the extension.

• The syntax for control structures (for, if, else):
{% for post in posts %}
 {% if post.getCategorySlug() == 'entertainment' %}
 <h3 class="pink">{{ post.getPostTitle() }}</h3>
 {% else %}
 <h3 class="normal">{{ post.getPostTitle() }}</h3>
 {% endif %}
{% endfor %}

• The syntax for the loop context:
{% for post in posts %}
 {% if loop.first %}
 <h1>{{ post.getPostTitle() }}</h1>
 {% endif %}
{% endif %}

• The syntax for assignments:

{% set title = 'Learning Phalcon' %}
{% set cars = ['BMW', 'Mercedes', 'Audi'] %}

The list is long. Additionally, you can use expressions, comparison operators, logic
operators, filters, and so on. Let's write a simple template to see how it works:

<!-- app/views/index.volt -->
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>{% block pageTitle %}Learning Phalcon{% endblock%}</title>
</head>

Getting Started with Phalcon

[26]

<body>
 <div class='header'>{% block header %}Main layout header{%
 endblock%}</div>
 <div class='content'>{% block content %}This is the main layout
 content{% endblock %}</div>
</body>
</html>

<!-- app/views/post/detail.volt
{% extends 'index.volt' %}

{% block pageTitle %}
 {{ post.getPostTitle() }}
{% endblock %}

{% block header %}
 Post layout
{% endblock %}

{% block content %}
 <p>{{ post.getPostContent() }}</p>
{% endblock%}

You can read the full documentation for the view component at
http://docs.phalconphp.com/en/latest/reference/
views.html and for Volt at http://docs.phalconphp.com/
en/latest/reference/volt.html.

The session component
This component provides object-oriented wrappers to access session data. To start
the session, we need to add the service into the DI container:

<?php

$di['session'] = function () {
 $session = new Phalcon\Session\Adapter\Files();
 $session->start();
 return $session;
};

Chapter 1

[27]

The following is a code example for working with session:

<?php

public function testSessionAction()
{
 // Set a session variable
 $this->session->set('username', 'john');

 // Check if a session variable is defined
 if ($this->session->has('username')) {
 $this->view->setVar('username', $this->session->get(
 'username'));
 }

 // Remove a session variable
 $this->session->remove('username');

 // Destroy the session
 $this->session->destroy();
}

If you check Phalcon's incubator, there are many available adapters, such as Redis,
Database, Memcache, and Mongo. You can also implement your own adapter.

You can read the official documentation at http://docs.phalconphp.
com/en/latest/reference/session.html.

The cache component
To improve the performance of some applications, you will need to cache data. For
example, we can cache the query results for a post. Why? Imagine 1 million views
or posts. Normally, you will query the database for it, but this will mean 1 million
queries (you can multiply this by at least 3, if you are using it, and for ORM—this
means 3 million queries at least). Why? When you query, the ORM will act like this:

1. It'll check if the table exists, in the information schema:
SELECT IF(COUNT(*)>0, 1 , 0)
FROM `INFORMATION_SCHEMA`.`TABLES`
WHERE `TABLE_NAME`='user'

Getting Started with Phalcon

[28]

2. Then, it'll check whether it's executing a "Describe" of the table:
DESCRIBE `user`

3. Then, whether it's executing the actual query:
SELECT * FROM user.

4. If the user table has relations, the ORM will repeat each of the preceding
steps for each relation.

To solve this problem, we will save the post object into our caching system.

Personally, I use Redis and Igbinary. Redis is probably the most powerful tool,
since it stores the data in memory and, saves the data on disk for redundancy. This
means that every time you request the data from cache, you will get it from memory.
Igbinary (https://pecl.php.net/package/igbinary) is a replacement for the
standard php serializer. Here is an example cache service:

<?php

$di['redis'] = function () {
 $redis = new \Redis();
 $redis->connect(
 '127.0.0.1',
 6379
);

 return $redis;
};

$di['cache'] = function () use ($di, $config) {
 $frontend = new \Phalcon\Cache\Frontend\Igbinary(array(
 'lifetime' => 86400
));
 $cache = new \Phalcon\Cache\Backend\Redis($frontend, array(
 'redis' => $di['redis'],
 'prefix' => 'learning_phalcon'
));

 return $cache;
};

Chapter 1

[29]

The cache component has the following methods that are commonly used:

<?php

// Save data in cache
$this-cache->save('post', array(
 'title' => 'Learning Phalcon',
 'slug' => 'learning-phalcon',
 'content' => 'Article content'
));

// Get data from cache
$post = $this->cache->get('post');

// Delete data from cache
$this->cache->delete('post');

Summary
In this chapter, we installed the required software, created the configuration files
for the web servers, and you learned a little bit about Phalcon's internals. In the
next chapters, we will learn by example, and everything will be much clearer.

Take your time, and before going further, read a little bit more about anything in
which you don't have experience.

In the following chapter, we will look at how to set up the MVC structure and the
environment for our project.

[31]

Setting Up the MVC Structure
and the Environment for

Our Project
In the previous chapter, we summarized the most common parts of Phalcon. Next,
we will try to set up the "Hello world" page for our project. In this chapter, we will
cover these topics:

• An introduction to MVC—what is MVC?
• The MVC structure
• Creating a configuration file and the Bootstrap
• Preparing the initial DI interface and the router
• Using the router component in a module
• Creating the base layout

What is MVC?
I am pretty sure that if you are reading this book, you are already familiar with the
MVC pattern, but for beginners, we will try to explain this in a few words.

MVC is defined as an architectural pattern, and it stands for Model-View-Controller;
it is used mostly in web development, but it is widely applied in software that needs
a Graphical User Interface (GUI). To make this introduction quick, let's explain
these components:

• Model: This is usually used as an abstraction layer, and validation for the
tables of a database, but it can be used to handle any kind of logic within
the application.

Setting Up the MVC Structure and the Environment for Our Project

[32]

• View: A view, usually, represents a template (can be an HTML file) that the
controller will render.

• Controller: In a web application, the controller handles all the HTTP requests
and sends an appropriate response. This response can mean rendering a
template, outputting JSON data, and so on.

For the exact definition, I suggest you check out the Wikipedia page of
the MVC pattern at http://code.tutsplus.com/tutorials/mvc-
for-noobs--net-10488).

Let's take a quick look at an example of MVC for a news/blog application by
assuming that a user will make a request to http://www.learning-phalcon.
localhost/article/list. To match this URL, we will need to implement the
routing component, but we are going to cover this in the next chapters.

Model
As mentioned earlier, a model is an abstraction layer for a database table and
probably, in 99 percent of cases, you will use it for this purpose. In this example,
we will extend the Phalcon\Mvc\Model component that has some built-in methods,
such as the find method. By default, this method will return all the records found
in a table named article.

Let's assume that we have the following MySQL table structure:

CREATE TABLE IF NOT EXISTS `article` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `article_short_title` varchar(255) COLLATE utf8_unicode_ci NOT NULL,
 `article_long_title` varchar(255) COLLATE utf8_unicode_ci NOT NULL,
 `article_slug` varchar(255) COLLATE utf8_unicode_ci NOT NULL,
 `article_description` text COLLATE utf8_unicode_ci NOT NULL,
 PRIMARY KEY (`id`),
 KEY `id` (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci
 AUTO_INCREMENT=1;

For this table, our model would look like this:

<?php
namespace \App\Core\Models\Article;

class Article extends \Phalcon\Mvc\Model
{
 protected $id;

Chapter 2

[33]

 protected $article_short_title;
 protected $article_long_title;
 protected $article_slug;
 protected $article_description;

 public function getId()
 {
 return $this->id;
 }

 public function getArticleShortTitle()
 {
 return $this->article_short_title;
 }

 public function getArticleLongTitle()
 {
 return $this->article_long_title;
 }

 public function getArticleSlug()
 {
 return $this->article_slug;
 }

 public function getArticleDescription()
 {
 return $this->article_description;
 }

 public function setId($id)
 {
 $this->id = $id;
 }

 public function setArticleShortTitle($article_short_title)
 {
 $this->article_short_title = $article_short_title;
 }

 public function setArticleLongTitle($article_long_title)
 {
 $this->article_long_title = $article_long_title;
 }

Setting Up the MVC Structure and the Environment for Our Project

[34]

 public function setArticleSlug($article_slug)
 {
 $this->article_slug = $article_slug;
 }

 public function setArticleDescription($article_description)
 {
 $this->article_description = $article_description;
 }
}

If we need to overwrite the default find method, we can create one in our model.
For example:

public static function find($parameters = null)
{
 return parent::find($parameters);
}

View
Let's consider the following PHP/HTML template as our view:

<div class="list">
 <?php foreach ($articles as $article) {?>
 <article>
 <h1><?php echo $article->getArticleShortTitle();?></h1>
 <p><?php echo $article->getArticleLongTitle() ?></p>
 <a href="<?php echo $article->getArticleSlug(); ?>">
 Read more
 </article>
 <?php } ?>
</div>

$article is an instance of our model. This is why we can call
our getters from it.

Controller
The controller will handle requests and will send the information to the appropriate
method from a model. In this example, the controller will extend the \Phalcon\Mvc\
Controller component:

<?php
namespace App\Frontend\Controllers;

Chapter 2

[35]

use \App\Core\Models\Article;

class ArticleController extends \Phalcon\Mvc\Controller
{
 public function listAction()
 {
 $articles = Article::find();
 $this->view->setVar('articles', $articles);
 }
}

As you can see, we created a public method called listAction that calls the find
method from the model, and it assigns the results to our view component. You
probably noticed that the namespace of the controller contains the Frontend word.
This is because we will use a multi-module application. (We will discuss this in the
latter sections of this chapter.)

With this, we will close our short introduction to MVC or Phalcon MVC. Next, we
will talk about the folder structure of an MVC application.

The MVC structure
This subject (like many other subjects) is quite sensitive. It depends on how much
experience you have and how you are used to structure your projects. In a web
application, most of the time we have models, views (templates), controllers, and
assets (images, JavaScript files, and style sheets). Based on this, I like the following
structure, because it's easy to understand where a file resides and what its purpose is.

For a single module application, we can have the following structure:

Setting Up the MVC Structure and the Environment for Our Project

[36]

For a multi-module application, we can have the following structure:

As you can see, it is quite easy to know exactly what a file is used for and where we
can find it. In the end, you should choose the structure that fits your needs but keep
in mind that if you are going to work in a team, it should be intuitive enough for any
new member.

Creating the structure for our project
Now, we are going to create the structure for our project. In the first chapter, we
created the /var/www/learning-phalcon.localhost folder. If you have another
location, go there and create the following directory structure:

Next, let's create the index.php file that will handle our application. This file will be
the default file in our web server:

<?php

header('Content-Type: text/html; charset=utf-8');
mb_internal_encoding("UTF-8");

Chapter 2

[37]

require_once __DIR__.'/../modules/Bootstrap.php';

$app = new Bootstrap('frontend');
$app->init();
?>

In the first two lines, we set the header and internal encoding to UTF-8. This is a
good practice if you are going to use special characters / diacritics. In the fourth line,
we include a file named Bootstrap.php. This file is the Bootstrap of our project,
and we will create its content in a few moments. On the next lines, we create a new
instance of Bootstrap with a default module (frontend), and we initialize it.

We will need to find a way to autoload any file in our application without manually
including it. We will make use of the \Phalcon\Loader component that will register
all our modules in the namespace. In the config folder, we will create a new file
called loader.php with the following content:

<?php

$loader = new \Phalcon\Loader();

$loader->registerNamespaces(array(
 'App\Core' => __DIR__ . '/../modules/Core/',
 'App\Frontend' => __DIR__ . '/../modules/Frontend/',
 'App\Api' => __DIR__ . '/../modules/Api/',
 'App\Backoffice' => __DIR__ . '/../modules/Backoffice/',
));

$loader->register();
?>

PSR
PSR is a collection of standards used in PHP development, which is supported by a
group of people, the PHP Framework Interop Group. The standards include these:

• The autoloading standard
• The basic coding standard
• The coding style guide
• Logger interface

Setting Up the MVC Structure and the Environment for Our Project

[38]

The \Phalcon\Loader component is PSR-4 (https://github.com/php-fig/
fig-standards/blob/master/accepted/PSR-4-autoloader.md) compliant, and
it helps us to load only the file that we need, when we need them. In this way, we
increase the speed of our application. Meanwhile, you can find more information
about this component in the official documentation (at http://docs.phalconphp.
com/en/latest/reference/loader.html).

Creating the configuration file and the
Bootstrap
Almost any application has some constants that will be reused (database credentials,
SMTP credentials, and so on). For our application, we will create a global
configuration file. This file will be an instance of the \Phalcon\Config component.
Switch to the config directory and create it with the following content:

<?php

return new \Phalcon\Config(array(
 'application' => array(
 'name' => 'Learning Phalcon'
),
 'root_dir' => __DIR__.'/../',
 'redis' => array(
 'host' => '127.0.0.1',
 'port' => 6379,
),
 'session' => array(
 'unique_id' => 'learning_phalcon',
 'name' => 'learning_phalcon',
 'path' => 'tcp://127.0.0.1:6379?weight=1'
),
 'view' => array(
 'cache' => array(
 'dir' => __DIR__.'/../cache/volt/'
)
),
));

Chapter 2

[39]

The Phalcon\Config component simplifies the access to the configuration
data within our application. By default, data is returned as an object (for example,
we have access to the application name using $config->application->name path),
but it also has a magic method to return data as an array—$config->toArray(). If
you use $config->toArray(), then you will access the application name using the
$config['application']['name'] syntax. Another cool fact about this component
is that we can merge another array into it using the $config->merge($new_config)
syntax.

Now that we have an autoloader and a configuration, let's set up our Bootstrap
file. To do this, create a file named Bootstrap.php in the modules folder with the
following content:

<?php
class Bootstrap extends \Phalcon\Mvc\Application
{
 private $modules;
 private $default_module = 'frontend';

 public function __construct($default_module)
 {
 $this->modules = array(
 'core' => array(
 'className' => 'App\Core\Module',
 'path' => __DIR__ . '/Core/Module.php'
),
 'api' => array(
 'className' => 'App\Api\Module',
 'path' => __DIR__ . '/Api/Module.php'
),
 'frontend' => array(
 'className' => 'App\Frontend\Module',
 'path' => __DIR__ . '/Frontend/Module.php'
),
 'backoffice' => array(
 'className' => 'App\Backoffice\Module',
 'path' => __DIR__ . '/Backoffice/Module.php'
),
);

 $this->default_module = $default_module;
 }

Setting Up the MVC Structure and the Environment for Our Project

[40]

 private function _registerServices()
 {
 $default_module = $this->default_module;
 $di = new \Phalcon\DI\FactoryDefault();
 $config = require __DIR__.'/../config/config.php';
 $modules = $this->modules;

 include_once __DIR__.'/../config/loader.php';
 include_once __DIR__.'/../config/services.php';
 include_once __DIR__.'/../config/routing.php';

 $this->setDI($di);
 }

 public function init()
 {
 $debug = new \Phalcon\Debug();
 $debug->listen();

 $this->_registerServices();
 $this->registerModules($this->modules);

 echo $this->handle()->getContent();
 }
}

Our Bootstrap file extends \Phalcon\Mvc\Application (http://docs.
phalconphp.com/en/latest/reference/applications.html) that gives us access
to the registerModules() method. The class constructor registers all our modules
and sets the default module. The _registerServices() method initializes the
DI and includes the required files for our application. Finally, the init() method
initializes the application. Here, we make use of the \Phalcon\Debug component,
because we need to be able to debug the application at any time. This should not be
enabled in a production environment.

Until now, we created the folder structure, the configuration file, the autoloader, and
the Bootstrap. We will go further by creating the services, routing, and the frontend
modules files.

Chapter 2

[41]

Preparing the initial DI interface and
the router
In the Bootstrap, we don't have two files: services.php and routing.php.
The services.php file will hold the information about global services that our
application will use, and the routing.php file will hold information about our
routes. Let's start by creating the services.php file in our config folder with
the following content:

<?php
use \Phalcon\Logger\Adapter\File as Logger;

$di['session'] = function () use ($config) {

 $session = new \Phalcon\Session\Adapter\Redis(array(
 'uniqueId' => $config->session->unique_id,
 'path' => $config->session->path,
 'name' => $config->session->name
));

 $session->start();

 return $session;
};

$di['security'] = function () {
 $security = new \Phalcon\Security();
 $security->setWorkFactor(10);

 return $security;
};

$di['redis'] = function () use ($config) {
 $redis = new \Redis();
 $redis->connect(
 $config->redis->host,
 $config->redis->port
);

 return $redis;
};

Setting Up the MVC Structure and the Environment for Our Project

[42]

$di['url'] = function () use ($config, $di) {
 $url = new \Phalcon\Mvc\Url();

 return $url;
};

$di['voltService'] = function($view, $di) use ($config) {

 $volt = new \Phalcon\Mvc\View\Engine\Volt($view, $di);

 if (!is_dir($config->view->cache->dir)) {
 mkdir($config->view->cache->dir);
 }

 $volt->setOptions(array(
 "compiledPath" => $config->view->cache->dir,
 "compiledExtension" => ".compiled",
 "compileAlways" => true
));

 return $volt;
};

$di['logger'] = function () {
 $file = __DIR__."/../logs/".date("Y-m-d").".log";
 $logger = new Logger($file, array('mode' => 'w+'));

 return $logger;
};

$di['cache'] = function () use ($di, $config) {

 $frontend = new \Phalcon\Cache\Frontend\Igbinary(array(
 'lifetime' => 3600 * 24
));

 $cache = new \Phalcon\Cache\Backend\Redis($frontend, array(
 'redis' => $di['redis'],
 'prefix' => $config->application->name.':'
));

 return $cache;
};

Chapter 2

[43]

The $di variable is available because we initialized it in the _registerServices()
method from the Bootstrap. $di is an instance of \Phalcon\DI\FactoryDefault().
Let's try to understand each component that we set:

• $di['session'] is available by default, but we overwrite it because we want
to use Redis to store our session.

• $di['security'] is available by default, but we overwrite it because we
want to set a higher work factor than the default one. We will use this
component to encrypt our passwords.

• $di['redis'] connects to the Redis server. We pass the parameters from our
configuration file. The \Redis class is already available, because we installed
it in the first chapter (php5-redis).

• $di['url'] is available by default. The reason why we overwrite this is
for backwards compatibility with older versions of Phalcon. In the past, I
wasn't able to access it without being defined. Since Phalcon 1.3, it works
as expected.

• $di['voltService'] is a custom DI component that we will use for the Volt
template engine (you will learn about Volt soon).

• $di['logger'] is a custom DI component, and it uses \Phalcon\Logger\
Adapter\File. We will use this to log different errors/warnings.

• $di['cache'] is also a custom DI component that uses Igbinary as frontend
cache and redis for backend. You will need to install Igbinary from PECL, if
you don't have it, by issuing the following command: sudo pecl install
igbinary. Note that you might need to reinstall php5-redis after installing
Igbinary.

Since we are going to use some components that are not available by default in
Phalcon, we will need to install them from phalcon/incubator (https://github.
com/phalcon/incubator). Incubator is a collection of components developed by
the community, which may or may not be included in Phalcon's core. One of the
components that we need right now is the \Phalcon\Cache\Backend\Redis.

We will use Composer (https://getcomposer.org/) to manage our package
dependency. To install composer, execute the following command in the
learning-phalcon.localhost folder:

$ curl -s http://getcomposer.org/installer | php

Now, you should have a new file named composer.phar in your root folder. Next,
let's install phalcon/incubator by executing the following command:

$ php composer.phar require phalcon/incubator dev-master

Setting Up the MVC Structure and the Environment for Our Project

[44]

This will install other dependencies such as Swift Mailer, so it might take a few
minutes to finish. If you check the folder structure, you will see that a new directory
named vendor has been created. This is the default installation folder for composer,
and all the packages will reside here.

However, this is not enough. In order to autoload the files from vendor, we need to
make a small modification to our public/index.php file by adding the autoloader
from composer. The new index.php file should look like this:

<?php
header('Content-Type: text/html; charset=utf-8');
mb_internal_encoding("UTF-8");

require_once __DIR__.'/../vendor/autoload.php';
require_once __DIR__.'/../modules/Bootstrap.php';

$app = new Bootstrap('frontend');
$app->init();

Using the router component in a module
We will continue this chapter by creating the routes for our application. To do
this, switch to the config directory, and create a file named routing.php with
the following content:

<?php

$di['router'] = function() use ($default_module, $modules, $di,
$config) {

 $router = new \Phalcon\Mvc\Router(false);
 $router->clear();

 $moduleRouting = __DIR__.'/../apps/'.ucfirst($default_module).'/
Config/routing.php';

 if (file_exists($moduleRouting) && is_file($moduleRouting)) {
 $router = include $moduleRouting;
 } else {
 $router->add('#^/(|/)$#', array(
 'module' => $default_module,
 'controller' => 'index',
 'action' => 'index',
));

Chapter 2

[45]

 $router->add('#^/([a-zA-Z0-9_]+)[/]{0,1}$#', array(
 'module' => $default_module,
 'controller' => 1,
));

 $router->add('#^/{0,1}([a-zA-Z0-9_]+)/([a-zA-Z0-9_]+)
 (/.*)*$#', array(
 'module' => $default_module,
 'controller' => 1,
 'action' => 2,
 'params' => 3,
));
 }

 return $router;
};

In this file, we make use of the \Phalcon\Mvc\Router component. We check
whether there is any routing information for the module and we load it; otherwise,
we create the default routing rules. If you've been following us until now, you
should have the following directory structure:

In the first chapter, we already created and enabled the configuration files for the
web server. In addition, we edited the host file, and www.learning-phalcon.localhost
is pointing to our local host (127.0.0.1). Let's try to access http://www.learning-
phalcon.localhost in our browser

Setting Up the MVC Structure and the Environment for Our Project

[46]

Please use http://. Otherwise, Chrome and probably other browsers
will fail to access this URL, because .dev is not a registered Top Level
Domain.

If you managed to access the application, you should see an error page similar to the
following screenshot:

Chapter 2

[47]

Let's fix this error by creating the files needed for our Frontend module. Go to
the modules/Frontend folder, and create a file named Module.php with the
following content:

<?php
namespace App\Frontend;

use Phalcon\Mvc\ModuleDefinitionInterface;

class Module implements ModuleDefinitionInterface
{
 /**
 * Registers the module auto-loader
 */
 public function registerAutoloaders(\Phalcon\DiInterface di =
null) {}

 /**
 * Registers the module-only services
 *
 * @param Phalcon\DI $di
 */
 public function registerServices(\Phalcon\DiInterface $di)
 {
 $config = include __DIR__ . "/Config/config.php";
 $di['config'] = $config;
 include __DIR__ . "/Config/services.php";
 }
}

Now, copy this file into each module and change the namespace. For example, the
Module.php file that resides in the Api module should have the App\Api namespace.
Now, your modules directory structure should be like this:

Setting Up the MVC Structure and the Environment for Our Project

[48]

If you refresh the page, you will get another error that says Phalcon\DI\Exception:
Service 'view' was not found in the dependency injection container.
This happens because each module will have its own config folder, and we need
to create the files there. Go to the modules/Frontend/ directory and create a new
folder named Config with C in uppercase.

We use the uppercase because it's more easy to read and load
within the namespace.

Now, in modules/Frontend/Config/ create a file named config.php with the
following content:

<?php
$config = require __DIR__.'/../../../config/config.php';
$module_config = array(
 'application' => array(
 'controllersDir' => __DIR__ . '/../Controllers/',
 'modelsDir' => __DIR__ . '/../Models/',
 'viewsDir' => __DIR__ . '/../Views/',
 'baseUri' => '/',
 'cryptSalt' => '5up3r5tr0n6p@55',
 'publicUrl' => 'http://www.learning-phalcon.localhost'
));

$config->merge($module_config);
return $config;

In the first line, we assign the content of the global configuration file to the $config
variable. Then, we set the module configuration, and we merge this information into
our global $config variable. Next, let's create the routing and services files in the
same folder (modules/Frontend/Config/):

services.php:

<?php

$di['dispatcher'] = function () use ($di) {
 $eventsManager = $di->getShared('eventsManager');

 $dispatcher = new \Phalcon\Mvc\Dispatcher();
 $dispatcher->setEventsManager($eventsManager);
 $dispatcher->setDefaultNamespace('App\Frontend\Controllers');

Chapter 2

[49]

 return $dispatcher;
};

$di['url']->setBaseUri(''.$config->application->baseUri.'');

$di['view'] = function () {

 $view = new \Phalcon\Mvc\View();
 $view->setViewsDir(__DIR__ . '/../Views/Default/');
 $view->registerEngines(array(
 ".volt" => 'voltService'
));

 return $view;
};

In the services.php file, we overwrite the DI's URL and dispatcher components,
and we create a custom view service that will use voltService that we declared in
the global services file (config/services.php).

routing.php:

<?php
$router = new \Phalcon\Mvc\Router(false);
$router->clear();

$router->add('/', array(
 'module' => 'frontend',
 'controller' => 'index',
 'action' => 'index'
));

return $router;

We need the routing.php file here, because we are going to create custom routes
for our Frontend module. The next thing that we need is a controller. It is a good
practice in general to create a base file and all the other files to extend the base. This
way you will avoid code duplication. Of course, you can use traits of other methods,
but for this project, we will use a base file most of the time.

So, let's create the Controllers directory in modules/Frontend/ and a blank base
controller in modules/Frontend/Controllers/ directory:

$ cd modules/Frontend/

$ mkdir Controllers

$ touch Controllers/BaseController.php

Setting Up the MVC Structure and the Environment for Our Project

[50]

Now, put the following content in BaseController.php file:

<?php
namespace App\Frontend\Controllers;

class BaseController extends \Phalcon\Mvc\Controller
{

}

Next, create another file here named IndexController.php with the following
content:

<?php
namespace App\Frontend\Controllers;

class IndexController extends BaseController
{
 public function indexAction()
 {

 }
}

If you check the routing.php file, you will notice that the default route goes to index
controller → index action. In Phalcon, the standard is that any controller should have
the Controller suffix, and any public action that matches a route should have the
Action suffix.

Let's take a look at our directory structure from modules/Frontend. It should be
exactly like this:

If you try to refresh the page at http://www.learning-phalcon.localhost, you
will see a blank page. This is perfectly normal. Next, let's copy the Controllers and
Config folders from our Frontend module into each remaining module (Api, Core,
and Backoffice). After we copy the files, we need to change the namespace and
replace anything related to frontend with the new module name.

Chapter 2

[51]

For example, after we copy the files into the Api module, we need to do the
following:

1. Replace the App\Frontend\Controllers namespace with App\Api\
Controllers in the Controllers/ folder.

2. Replace the word "frontend" with the word "api" in Config/routing.php.
3. Replace \App\Frontend\Controllers with App\Api\Controllers in

services.php.
4. Append the module name in lowercase to the baseUri key from the

config.php file. The result should be 'baseUri' => '/api/'.

After you finish, the new directory structure should be this:

Setting Up the MVC Structure and the Environment for Our Project

[52]

Create the base layout
Now, it's time to focus a little bit on the layout (templates). We are going to use
twitter-bootstrap for CSS and jQuery. Then, we are going to create first view in
order to close this chapter.

Navigate to public/folder and create a folder named assets. Then, go to assets
and create a folder named default:

$ cd public

$ mkdir -p assets/default

I am using Bower (http://bower.io/) as a package manager for my assets. It is
what composer is for php packages.

If you don't have Bower installed and you don't want to use it, you will need to
create a folder named bower_components in your public/default/assets folder
and clone twitter-bootstrap repository from GitHub. You will also need to download
jQuery and unzip it into the bower_components folder.

$ cd public/default/assets/bower_components

$ git clone https://github.com/twbs/bootstrap.git

If you have Bower, then just go to the public/default/assets folder and install
twitter Bootstrap:

$ cd public/default/assets

$ bower install bootstrap

This will install jQuery automatically because Bootstrap requires jQuery, and Bower
is smart enough to check for dependencies.

In the near future, we will also need some custom JavaScript, CSS files, and images.
We need to create these directories in the public/assets/default folder, and we will
also create two empty files named lp.js and lp.css. The folder structure of your
public folder should be like this:

Chapter 2

[53]

Let's get back to our frontend module. Navigate to modules/Frontend and create a
folder named Views. Then, in the Views folder, create another one named Default:

$ cd modules/Frontend

$ mkdir -p Views/Default

Remember that we are using Volt (http://docs.phalconphp.com/en/latest/
reference/volt.html) as our template engine. We already discussed Volt's syntax
in the first chapter, and as we move forward, we will dig more into this subject, but
at the right moment. For now, we just want to finish our project structure and render
a dummy layout for our fronted module.

This way we can ensure that we did everything as expected until now. In the
dependency injection from services.php, we assigned the file extension .volt to our
template engine. Therefore, all the views that we are going to create will have the
extension .volt. Let's create the main layout. Navigate to modules/Frontend/Views/
Default and create a new file named layout.volt with the following content:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">

Setting Up the MVC Structure and the Environment for Our Project

[54]

<meta name="viewport" content="width=device-width, initial-scale=1">
<title>{% block pageTitle %}Learning Phalcon{% endblock %}</title>

{{ stylesheetLink('../assets/default/bower_components/bootstrap/dist/
css/bootstrap.min.css') }}
{{ stylesheetLink('../assets/default/css/lp.css') }}

<!--[if lt IE 9]>
 <script src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.
min.js"></script>
 <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.
js"></script>
<![endif]-->
</head>
<body>
 {% block body %}
 <h1>Main layout</h1>
 {% endblock %}

 {{ javascriptInclude("../assets/default/bower_components/jquery/
dist/jquery.min.js") }}
 {{ javascriptInclude("../assets/default/bower_components/
bootstrap/dist/js/bootstrap.min.js") }}
 {{ javascriptInclude("../assets/default/js/lp.js") }}
 {% block javascripts %} {% endblock %}
</body>
</html>

As we mentioned earlier, we are not going to talk about volt's syntax for now. There
is one more step that needs to be performed in order to render the templates. We
need to create a new folder named index; then, in the index folder, we also need to
create a file named index.volt. This will match IndexController → IndexAction.

$ cd modules/Frontend/Views/Default

$ mkdir index

$ cd index

$ touch index.volt

The content of the index.volt file is this:

{% extends 'layout.volt' %}

{% block body %}

I did it !

{% endblock %}

Chapter 2

[55]

The final directory structure for our frontend module should be this:

Now, let's try to refresh the page http://www.learning-phalcon.localhost. If
you see a page like the one in the following screenshot, then you have made it!

Summary
In this chapter, we learned the basics of MVC, created the folder structure for
our project, and learned a little bit about how to use the DI component, routing
component, and the view component. We also created the views and rendered
the first page from the Frontend module.

In the next chapters, we will learn about Phalcon's ORM and ODM, and we will
continue to add features until we have a fully functional online newspaper website.

[57]

Learning Phalcon's ORM
and ODM

Now that you have learned a little bit about Phalcon's internals and we have our
project structure, we can move forward to a more serious thing—databases. In this
chapter, we will cover these topics:

• The main differences between SQL and NoSQL databases
• Learning how to connect to a database
• ORM/ODM CRUD operations (create, read, update, and delete)

and transactions
• Understanding the drawbacks of an ORM in general, and how we can

improve performance using caching methods

The main differences between SQL and
NoSQL databases
MySQL is good! It is a powerful RDBMS with a big market share, supported by a
large community. It is open source (though enterprise flavors exist), and almost
every PHP application uses it as the main database system.

But once in a while, you will notice that MySQL isn't good enough for your needs.
Maybe you have heard people talk about MongoDB, CouchDB, Cassandra, and
so on. We will use MongoDB in our project, so I am going to talk about it.

In general, you will use a NoSQL system, such as MongoDB, when you want to
develop real-time analytics, cache, and logs; store big data, such as comments or
likes; and handle many other situations.

Learning Phalcon's ORM and ODM

[58]

A few of the differences between a SQL and NoSQL database are as follows:

• NoSQL is not relational
• NoSQL is not reliable; or better said, it is not safe to use in a complex system,

because it does not support transactions
• A relational database requires a structure with defined attributes to hold the

data, but a NoSQL database usually allows free-flow operations

Later in our project, we will use MongoDB mainly for logging and comments. We
have already installed MongoDB in the first chapter.

Let's look at a few usage examples:

SQL MongoDB
SELECT a,b FROM users $db->users->find([], ["a" => 1,

"b" => 1]);

SELECT * FROM users WHERE age=33 $db->users->find(["age" => 33]);

On the official PHP website, you can check out the full SQL-to-MongoDB mapping
chart (http://php.net/manual/ro/mongo.sqltomongo.php).

Connecting to the database
In the previous chapter, we added a global configuration file and configuration files
per module. In order to be able to connect to a database, we need to add some lines
to our configuration file first.

Chapter 3

[59]

Let's recall our directory structure:

In order to connect to a database, we need to create it. Create a database named
learning_phalcon. You can do this quickly with the help of the following
command line:

$ mysql -u YOURUSERNAME -p -e 'create database learning_phalcon;'

Open the global configuration file (config/config.php), and add these lines:

 'database' => array(
 'adapter' => 'Mysql',
 'host' => 'localhost',
 'username' => 'Input your username here',
 'password' => 'Input your password here',
 'dbname' => 'learning_phalcon',
),

Now that we have the configuration parameters for our database, we must
create a service. Open the global services file (config/service.php) and add
the following lines:

$di['db'] = function () use ($config) {

 return new \Phalcon\Db\Adapter\Pdo\Mysql(array(
 "host" => $config->database->host,

Learning Phalcon's ORM and ODM

[60]

 "username" => $config->database->username,
 "password" => $config->database->password,
 "dbname" => $config->database->dbname,
 "options" => array(
 \PDO::MYSQL_ATTR_INIT_COMMAND => "SET NAMES 'UTF8'",
 \PDO::ATTR_CASE => \PDO::CASE_LOWER,
 \PDO::MYSQL_ATTR_USE_BUFFERED_QUERY => true,
 \PDO::ATTR_PERSISTENT => true
)
));
};

We can now save and close this file. Next, we are going to create a table named
article in our database, and we'll insert one sample record into this table:

USE learning_phalcon;

CREATE TABLE IF NOT EXISTS `article` (

`id` int(11) NOT NULL AUTO_INCREMENT,

`article_short_title` varchar(255) COLLATE utf8_unicode_ci NOT NULL,

`article_long_title` varchar(255) COLLATE utf8_unicode_ci NOT NULL,

`article_slug` varchar(255) COLLATE utf8_unicode_ci NOT NULL,

`article_description` text COLLATE utf8_unicode_ci NOT NULL,

PRIMARY KEY (`id`),

KEY `id` (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci AUTO_
INCREMENT=1 ;

INSERT INTO `learning_phalcon`.`article` (

`id` ,

`article_short_title` ,

`article_long_title` ,

`article_slug` ,

`article_description`

)

VALUES (

NULL , 'Test article short title', 'Test article long title', 'test-
article-short-title', 'Test article description'

);

Chapter 3

[61]

To test the database connection, we will use our Frontend and Core modules. In
the Core module, we are going to create a model for the article table. Based on the
previous chapter, the directory structure of the Frontend module should look like this:

For the Core module, the structure should look like this:

We will create the model for the article table in a new folder, named Models.
Create the Models directory in modules/Core:

$ cd modules/Core

$ mkdir Models

In the Models directory, create two new files: Base.php and Article.php. We'll now
look at these files:

• The content of Base.php is as follows:
<?php
namespace App\Core\Models;

class Base extends \Phalcon\Mvc\Model
{

}

Learning Phalcon's ORM and ODM

[62]

• The content of Article.php is this:
<?php
namespace App\Core\Models;

class Article extends \Phalcon\Mvc\Model
{
 protected $id;
 protected $article_short_title;
 protected $article_long_title;
 protected $article_slug;
 protected $article_description;

 public function setId($id)
 {
 $this->id = $id;
 return $this;
 }

 public function setArticleShortTitle($article_short_title)
 {
 $this->article_short_title = $article_short_title;
 return $this;
 }

 public function setArticleLongTitle($article_long_title)
 {
 $this->article_long_title = $article_long_title;
 return $this;
 }

 public function setArticleSlug($article_slug)
 {
 $this->article_slug = $article_slug;
 return $this;
 }

 public function setArticleDescription(
 $article_description)
 {
 $this->article_description = $article_description;
 return $this;
 }

Chapter 3

[63]

 public function getId()
 {
 return $this->id;
 }

 public function getArticleShortTitle()
 {
 return $this->article_short_title;
 }

 public function getArticleLongTitle()
 {
 return $this->article_long_title;
 }

 public function getArticleSlug()
 {
 return $this->article_slug;
 }

 public function getArticleDescription()
 {
 return $this->article_description;
 }
}

Personally, I like to work in the cleanest manner possible. We are going to use an
intermediate file—a manager—to handle all of the heavy logic. This means that you
are not going to use the models in the controller, and you are not going to alter the
models by adding queries or other kind of data. The models should be as clean as
possible. On the other hand, some people prefer to move the heavy logic to models.
It's your choice, but in this book we are going to use managers. This being said, let's
create the manager for the article:

1. Go to modules/Core/ and create a folder named Managers:
$ cd modules/Core/

$ mkdir Managers

2. Create two new files named BaseManager.php and ArticleManager.php,
and add the following content:

 ° The BaseManager.php file will be placed under modules/Core/
Managers/:
<?php
namespace App\Core\Managers;

Learning Phalcon's ORM and ODM

[64]

class BaseManager extends \Phalcon\Mvc\User\Module
{
}

 ° The ArticleManager.php file will be placed under modules/Core/
Managers/:
<?php
namespace App\Core\Managers;

use App\Core\Models\Article;

class Article extends Base
{
 public function find($parameters = null)
 {
 return Article::find($parameters);
 }
}

The new directory structure of the Core module should now look like this:

All good so far! Let's try to make use of this manager to list the records from our
Article table. For that, we need to declare it as a service first. To do so, perform the
following steps:

1. Open the global services file (config/service.php), and add the
following content:
$di['core_article_manager'] = function() {
 return new App\Core\Managers\ArticleManager();
};

We will use the frontend module to carry out this test.

Chapter 3

[65]

2. Navigate to the Frontend directory, edit the modules/Frontend/Config/
routing.php file, and add this content:
$router->add('#^/articles[/]{0,1}$#', array(
 'module' => 'frontend',
 'controller' => 'article',
 'action' => 'list'
));

$router->add('#^/articles/([a-zA-Z0-9\-]+)[/]{0,1}$#', array(
 'module' => 'frontend',
 'controller' => 'article',
 'action' => 'read',
 'slug' => 1
));

The first routing pattern will point any request made at http://www.
learning-phalcon.localhost/articles to the frontend module, the
article controller, and the listAction action.
The second pattern will point to a different action within the article
controller, named readAction and will pass the slug parameter to
this action.

3. Next, we will create the article controller and the template.
Navigate to modules/Frontend/Controllers, and create a file
named ArticleController.php with the following content:
<?php
namespace App\Frontend\Controllers;

class ArticleController extends BaseController
{
 public function listAction()
 {
 $article_manager = $this->getDI()->get(
 'core_article_manager');
 $this->view->articles = $article_manager->find();
 }
}

In listAction, we get the article manager from DI, and assign the result
of the find() method to a view variable named articles.

Learning Phalcon's ORM and ODM

[66]

4. Now let's create a template for this action. Navigate to modules/Frontend/
Views/Default, and create a new directory named article:
$ cd modules/Frontend/Views/Default

$ mkdir article

5. In the article folder, create a file named list.volt and add the following
content to it:
{% extends 'layout.volt' %}

{% block body %}

 {% for article in articles %}

 <a href="{{ url('article/' ~ article.
 getArticleSlug()) }}">{{
 article.getArticleShortTitle() }}

 {% endfor %}

{% endblock %}

The Frontend directory structure should look like this:

If you did everything by the book, you're all set. You can now go to http://www.
learning-phalcon.localhost/articles, and you should be able to see our test
article as shown here:

Chapter 3

[67]

Great job! You are now connected to the database, and you have the first model and
manager. We will continue this chapter with data manipulation, validations, and
simple queries over MySQL and MongoDB.

ORM/ODM operations (create, update,
delete, transactions, and validations)
Before we continue, let's make our article table a little more complex, by adding a
few columns. We will add three more columns: is_published, created_at, and
updated_at.

The is_published field will be a Boolean type (in MySQL, it will have a value of 0
or 1), and the created_at and updated_at fields will have the datetime type. They
will hold information about when our article was created and when it was updated.
You can alter the article table and add these fields using the following code:

ALTER TABLE `article` ADD `is_published` BOOLEAN NOT NULL DEFAULT FALSE ,

ADD `created_at` DATETIME NOT NULL ,

ADD `updated_at` DATETIME NULL DEFAULT NULL ;

We also need to make modifications to our Article model and add the getters and
setters for these new fields. Open the modules/Core/Models/Article.php file and
add the following content:

 protected $is_published;
 protected $created_at;
 protected $updated_at;

 public function setIsPublished($is_published)
 {
 $this->is_published = $is_published;
 return $this;
 }

 public function setCreatedAt($created_at)
 {
 $this->created_at = $created_at;
 return $this;
 }

 public function setUpdatedAt($updated_at)
 {
 $this->updated_at = $updated_at;

Learning Phalcon's ORM and ODM

[68]

 return $this;
 }

 public function getIsPublished()
 {
 return $this->is_published;
 }

 public function getCreatedAt()
 {
 return $this->created_at;
 }

 public function getUpdatedAt()
 {
 return $this->created_at;
 }

Since most of the CRUD actions that we will use will be handled by the Backoffice
module, we are going to set up this module as we did with the Frontend. The actual
development of this module will be done later in the book. For now, we will enable
a quick and simple CRUD operation for the Article table.

Let's review our Backoffice directory structure. At this point, you should have the
following structure:

For this to be functional, we will need to:

• Add routing information
• Create the controller and the actions
• Create the views

Chapter 3

[69]

Adding the routing information
Edit the config/routing.php global routing file by adding the following content:

foreach ($modules as $moduleName => $module){
 if ($default_module == $moduleName) {
 continue;
}

$moduleRouting = __DIR__.'/../modules/'.ucfirst(
 $moduleName).'/Config/routing.php';
 include $moduleRouting;
}

Delete (or overwrite) the routing file from the Backoffice module modules/
Backoffice/Config/routing.php, and add a new one with the following content:

<?php

$router->add('#^/backoffice(|/)$#', array(
 'module' => 'backoffice',
 'controller' => 'index',
 'action' => 'index',
));

$router->add('#^/backoffice/([a-zA-Z0-9_]+)[/]{0,1}$#', array(
 'module' => 'backoffice',
 'controller' => 1,
));

$router->add('#^/backoffice[/]{0,1}([a-zA-Z0-9_]+)/([a-zA-Z0-9_]+)
(/.*)*$#', array(
 'module' => 'backoffice',
 'controller' => 1,
 'action' => 2,
 'params' => 3,
));

Creating the controller and the actions
Navigate to modules/Backoffice/Controllers/, and create a new file named
ArticleController.php with the following content:

<?php
namespace App\Backoffice\Controllers;

class ArticleController extends BaseController

Learning Phalcon's ORM and ODM

[70]

{
 public function indexAction()
 {
 return $this->dispatcher->forward(['action' => 'list']);
 }

 public function listAction()
 {
 $article_manager = $this->getDI()->get(
 'core_article_manager');
 $this->view->articles = $article_manager->find();
 }
}

Creating the views
Copy the views from Frontend. We will adapt them for our Backoffice module in
Chapter 7, The Backoffice Module (Part 1):

$ cd modules/Backoffice

$ cp -r ../Frontend/Views .

Now let's modify the views a bit so that we can have a nice Backoffice module.
Go to modules/Backoffice/Views/, open the layout.volt file, and make the
following change.

Look for this line:

<title>{% block pageTitle %}Learning Phalcon{% endblock %}</title>

Replace it with the following line:

<title>{% block pageTitle %}Backoffice - Learning Phalcon{% endblock
%}</title>

Create a new file named lp.backoffice.css in public/assets/default/css/,
and add the following content to it:

body { padding-top: 50px; }
.sub-header { padding-bottom: 10px; border-bottom: 1px solid
#eee; }
.navbar-fixed-top { border: 0; }
.sidebar { display: none; }

@media (min-width: 768px) {

Chapter 3

[71]

 .sidebar {position: fixed;top: 51px;bottom: 0;left: 0;z-index:
1000;display: block;padding: 20px;overflow-x: hidden;overflow-y:
auto;background-color: #f5f5f5;border-right: 1px solid #eee;}
}

.nav-sidebar { margin-right: -21px; margin-bottom: 20px;
margin-left: -20px; }
.nav-sidebar > li > a { padding-right: 20px; padding-left: 20px; }
.nav-sidebar > .active > a,
.nav-sidebar > .active > a:hover,
.nav-sidebar > .active > a:focus { color: #fff; background-color:
#428bca; }

.main { padding: 20px; }
@media (min-width: 768px) {
 .main { padding-right: 40px; padding-left: 40px; }
}
.main .page-header { margin-top: 0; }

Then we include the preceding file in our layout.volt file. We do this by looking
for this line:

{{ stylesheetLink('../assets/default/css/lp.css') }}

We replace it with the following line:

{{ stylesheetLink('../assets/default/css/lp.backoffice.css') }}

In the same layout.volt file, remove the following code snippet:

{% block body %}
<h1>I did it !</h1>
{% endblock %}

Add the following content between the <body> and </body> tags:

 <nav class="navbar navbar-inverse navbar-fixed-top"
 role="navigation">
 <div class="container-fluid">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle collapsed"
 data-toggle="collapse" data-target="#navbar"
 aria-expanded="false" aria-controls="navbar">
 Toggle navigation

 </button>

Learning Phalcon's ORM and ODM

[72]

 Learning Phalcon
 </div>
 <div id="navbar" class="navbar-collapse collapse">
 <ul class="nav navbar-nav navbar-right">
 Sign out

 </div>
 </div>
 </nav>

 <div class="container-fluid">
 <div class="row">
 <div class="col-sm-3 col-md-2 sidebar">
 <ul class="nav nav-sidebar">
 <li class="active"><a href="{{ url('article/list')
}}">Articles (current)
 Other menu item

 </div>
 <div class="col-sm-9 col-sm-offset-3 col-md-10 col-md-offset-2
main">
 {% block body %}
 <h1 class="page-header">Dashboard</h1>
 <h2 class="sub-header">Section title</h2>
 <div class="table-responsive">

 </div>
 {% endblock %}
 </div>
 </div>
 </div>

We are done editing our layout.volt file, but we need to make one more change.
Open modules/Backoffice/Views/Default/article/list.volt, and replace
its content with the following code:

{% extends 'layout.volt' %} {% block body %}
<h1 class="page-header">Articles</h1>
<h2 class="sub-header">List</h2>
<div class="table-responsive">

 <table class="table table-striped">
 <thead>
 <tr>
 <th>#</th>

Chapter 3

[73]

 <th>Title</th>
 <th>Is published</th>
 <th>Created at</th>
 <th>Updated at</th>
 <th>Options</th>
 </tr>
 </thead>
 <tbody>
 {% for article in articles %}
 <tr>
 <td>{{ article.getId() }}</td>
 <td>{{ article.getArticleShortTitle() }}</td>
 <td>{{ article.getIsPublished() }}</td>
 <td>{{ article.getCreatedAt() }}</td>
 <td>{{ article.getUpdatedAt() }}</td>
 <td>
 <a href="{{ url('article/edit/' ~ article.getId())
 }}">Edit |
 <a href="{{ url('article/delete/' ~ article.
 getId()) }}">Delete |
 </td>
 </tr>
 {% endfor %}
 </tbody>
 </table>

</div>
{% endblock %}

After all of these changes, the new directory structure should look like what is shown
in the following screenshot:

Learning Phalcon's ORM and ODM

[74]

Let's open http://www.learning-phalcon.localhost/backoffice/article/
list in a browser. If everything goes well, you should be able to see the new
Backoffice layout and our test article in a list exactly like this:

Now that we have a UI, you can start learning about Phalcon's ORM. You need
to know that Phalcon provides three ways of working with databases:

• Using ORM
• Using PHQL
• Using raw SQL

We will learn about all of these in this chapter. Let's start with ORM.

CRUD operations using ORM
By using the ORM, there is virtually no need to write any SQL in your code.
Everything is OOP, and it is using the models to perform operations. The first, and
the most basic, operation is retrieving data. In the old days, you would do this:

$result = mysql_query("SELECT * FROM article");

The class that our models are extending is \Phalcon\Mvc\Model. This class has
some very useful methods built in, such as find(), findFirst(), count(), sum(),
maximum(), minimum(), average(), save(), create(), update(), and delete().

Chapter 3

[75]

CRUD – reading data
We have already used the find() method in our article manager when calling
Article::find(). By default, this method will return all the records from the
article table, sorting them in a natural order. It also accepts an array with
parameters. The following code examples will explain this:

$article_slug = "test-article-short-title";

$result = Article::find(
 [
 "article_slug = :article_slug:",
 "bind" => ["article_slug" => $article_slug]
 "order" => "created_at DESC",
 "limit" => 1
]
);

In the preceding example, we are searching for records that contain the test-
article-short-title article slug. We bind the data order by the created_at field
in a descending order, and limit the number of rows returned to one. The first key
of the parameters array should always be the condition. Binding parameters is good
practice in order to avoid SQL injections. I recommend that you always use it.

The result of Article::find() is an array of objects. This means that if we need to
iterate between the results, we can do it like this:

foreach ($result as $article) {
 echo $article->getTitle();
}

Let's add two new records to our article table, so that you can see live what it is
happening:

INSERT INTO `learning_phalcon`.`article` (`id` ,`article_short_title`
,`article_long_title` ,`article_slug` ,`article_description` ,`is_
published` ,`created_at` ,`updated_at`)
VALUES (NULL , 'Test article short title 2', 'Test article long
title 2', 'test-article-short-title-2', 'Test article description
2', '0', '2014-12-14 05:13:26', NULL);

INSERT INTO `learning_phalcon`.`article` (`id` ,`article_short_title`
,`article_long_title` ,`article_slug` ,`article_description` ,`is_
published` ,`created_at` ,`updated_at`)
VALUES (NULL , 'Test article short title 3', 'Test article long
title 3', 'test-article-short-title-3', 'Test article description
3', '0', '2014-12-14 05:13:26', NULL);

Learning Phalcon's ORM and ODM

[76]

If you access http://www.learning-phalcon.localhost/backoffice/article/
list now, you should be able to see the new records, as shown in this screenshot:

Next, we are going to make some sorting tests. For reference, the default order
shown in the preceding screenshot is a natural one, and the IDs are 1, 2, and 3.
Keep this in mind, because we will refer to these IDs in the next few lines.

Open the article controller modules/Backoffice/Controllers/
ArticleController.php, and then remove the following line:

$this->view->articles = $article_manager->find();

Now add the following line, which will order the articles by creation date in
descending order:

$articles = $article_manager->find([
 'order' => 'created_at DESC'
]);
$this->view->articles = $articles;

If you refresh the page at http://www.learning-phalcon.localhost/
backoffice/article/list, you will see that the records are ordered differently.
The order that you should see is this: 3, 2, and 1.

Feel free to practice and try to order by different columns and by adding limits.

Another useful method is findFirst(). This method accepts the same parameters
as find(), except that the result will be an instance of the Article model; this means
that you don't need to iterate between records:

$article = Article::findFirst();
echo $article->getTitle();

Chapter 3

[77]

Some of the helpful methods are the magic methods, findBy*() and
findFirstBy*(). For example, if you need to search articles by slug,
you can do it like this with these magic methods:

$articles = Article::findByArticleSlug('test-article-short-title');
foreach ($articles as $article) {
 echo $article->getId();
}

$article = Article:;findFirstByArticleSlug('test-article-short-
title');
echo $article->getId();

CRUD – creating data
Creating data with the help of ORM is easier than it sounds. We are going to make
use of the model. Remember what I told you—that I like to keep the models as clean
as possible. This is why most of the time, we will create and make use of managers.
Open the article manager in modules/Core/Managers/ArticleManager.php,
and add the following code:

 public function create($data)
 {
 $article = new Article();
 $article->setArticleShortTitle(
 $data['article_short_title']);
 $article->setArticleLongTitle(
 $data['article_long_title']);
 $article->setArticleDescription(
 $data['article_description']);
 $article->setArticleSlug($data['article_slug']);
 $article->setIsPublished(0);
 $article->setCreatedAt(new \Phalcon\Db\RawValue('NOW()'));

 if (false === $article->create()) {
 foreach ($article->getMessages() as $message) {
 $error[] = (string) $message;
 }
 throw new \Exception(json_encode($error));
 }
 return $article;
 }

Learning Phalcon's ORM and ODM

[78]

Next, we will add a dummy createAction method to our controller. Open
modules/Backoffice/Controllers/ArticleController.php, and add the
following content:

 public function createAction()
{
 $this->view->disable();
 $article_manager = $this->getDI()->
 get('core_article_manager');

 try {
 $article = $article_manager->create([]);
 echo $article->getArticleShortTitle(), " was created.";
 } catch (\Exception $e) {
 echo $e->getMessage();
 }
 }

Upon accessing http://www.learning-phalcon.localhost/backoffice/article/
create, you will see some errors, similar to the ones shown in this screenshot:

This is perfectly normal, since we didn't pass any parameters to our create() method.
Modify the createAction method by adding these parameters to the create method:

$article = $article_manager->create([
 'article_short_title' => 'Test article short title 5',
 'article_long_title' => 'Test article long title 5',
 'article_description' => 'Test article description 5',
 'article_slug' => 'test-article-short-title-5'
]);

Chapter 3

[79]

If we refresh the page at http://www.learning-phalcon.localhost/backoffice/
article/create, we should see a success message similar to what is shown here:

Each time you refresh this page, a new record will be inserted into
the database. You can access http://www.learning-phalcon.
localhost/backoffice/article/list to see the new records.

Let's quickly analyze the create() method:

We instantiate the Article model and assign values to it using the setters that we
wrote for it. Then, we call the built-in create() method to create the data. If there
are any errors, we read them and throw an exception with those errors (JSON-
encoded), otherwise we return the newly created object.

You can also use the save() method instead of create().

If you have a big table (tens of columns), you might want to use the built-in
assign() method when you create the object, instead of assigning it via setters for
each column. You can do this using a key-value array, where the keys are the names
of the columns, like this for example:

$article = $article_manager->create([
 'article_short_title' => 'Test article short title 5',
 'article_long_title' => 'Test article long title 5',
 'article_description' => 'Test article description 5',
 'article_slug' => 'test-article-short-title-5'
]);

// create() method from manager:

$article = new Article();
$article->assign($data);
$article->create();

Learning Phalcon's ORM and ODM

[80]

You might wonder what's with \Phalcon\Db\RawValue('NOW()') assigned to
created_at. Well, whenever you need to assign database-driver-specific / driver
built-in data, you will need to use \Phalcon\Db\RawValue().

In our example, we are using it to call the NOW() MySQL function, which returns the
current date and time. If you are working with date-sensitive data, I recommend that
you use the PHP date and not rely on any database timestamp.

CRUD – updating data
Updating data is as easy as creating it. The only thing that we need to do is find the
record that we want to update. Open the article manager and add the following
code:

 public function update($id, $data)
 {
 $article = Article::findFirstById($id);

 if (!$article) {
 throw new \Exception('Article not found', 404);
 }

 $article->setArticleShortTitle($data[
 'article_short_title']);
 $article->setUpdatedAt(new \Phalcon\Db\RawValue('NOW()'));

 if (false === $article->update()) {
 foreach ($article->getMessages() as $message) {
 $error[] = (string) $message;
 }
 throw new \Exception(json_encode($error));
 }
 return $article;
 }

As you can see, we are passing a new variable, $id, to the update method and
searching for an article that has its ID equal to the value of the $id variable. For
the sake of an example, this method will update only the article title and the
updated_at field for now.

Chapter 3

[81]

Next, we will create a new dummy method as we did for the article, create.
Open modules/Backoffice/Controllers/ArticleController.php and
add the following code:

 public function updateAction($id)
 {
 $this->view->disable();

 $article_manager = $this->getDI()->get(
 'core_article_manager');

 try {
 $article = $article_manager->update($id, [
 'article_short_title' => 'Modified article 1'
]);
 echo $article->getId(), " was updated.";
 } catch (\Exception $e) {
 echo $e->getMessage();
 }
 }

If you access http://www.learning-phalcon.localhost/backoffice/article/
update/1 now, you should be able to see the 1 was updated. response. Going back
to the article list, you will see the new title, and the Updated column will have a
new value.

CRUD – deleting data
Deleting data is easier, since we don't need to do more than calling the built-in
delete() method. Open the article manager, and add the following code:

 public function delete($id)
 {
 $article = Article::findFirstById($id);

 if (!$article) {
 throw new \Exception('Article not found', 404);
 }

 if (false === $article->delete()) {
 foreach ($article->getMessages() as $message) {
 $error[] = (string) $message;
 }

Learning Phalcon's ORM and ODM

[82]

 throw new \Exception(json_encode($error));
 }

 return true;
 }

We will once again create a dummy method to delete records. Open modules/
Backoffice/Controllers/ArticleControllers.php, and add the following code:

 public function deleteAction($id)
{
 $this->view->disable();
 $article_manager = $this->getDI()->get('core_article_manager');

 try {
 $article_manager->delete($id);
 echo "Article was deleted.";
 } catch (\Exception $e) {
 echo $e->getMessage();
 }
 }

To test this, simply access http://www.learning-phalcon.localhost/
backoffice/article/delete/1. If everything went well, you should see the Article
was deleted. message. Going back to, article list, you won't be able to see the article
with ID 1 anymore.

These are the four basic methods: create, read, update, and delete. Later in this book,
we will use these methods a lot.

If you need/want to, you can use the Phalcon Developer Tools to
generate CRUD automatically. Check out https://github.com/
phalcon/phalcon-devtools for more information.

Chapter 3

[83]

Using PHQL
Personally, I am not a fan of PHQL. I prefer using ORM or Raw queries. But if you are
going to feel comfortable with it, feel free to use it. PHQL is quite similar to writing
raw SQL queries. The main difference is that you will need to pass a model instead of
a table name, and use a models manager service or directly call the \Phalcon\Mvc\
Model\Query class. Here is a method similar to the built-in find() method:

public function find()
{
 $query = new \Phalcon\Mvc\Model\Query("SELECT * FROM App\Core\
Models\Article", $this->getDI());
 $articles = $query->execute();
return $articles;
}

To use the models manager, we need to inject this new service. Open the global
services file, config/service.php, and add the following code:

$di['modelsManager'] = function () {
 return new \Phalcon\Mvc\Model\Manager();
};

Now let's rewrite the find() method by making use of the modelsManager service:

public function find()
{
 $query = $this->modelsManager->createQuery(
 "SELECT * FROM App\Core\Models\Article");
 $articles = $query->execute();

 return $articles;
}

If we need to bind parameters, the method can look like this one:

public function find()
{
 $query = $this->modelsManager->createQuery(
 "SELECT * FROM App\Core\Models\Article WHERE id = :id:");
 $articles = $query->execute(array(
 'id' => 2
));
 return $articles;
}

Learning Phalcon's ORM and ODM

[84]

We are not going to use PHQL at all in our project. If you are
interested in it, you can find more information in the official
documentation at http://docs.phalconphp.com/en/latest/
reference/phql.html.

Using raw SQL
Sometimes, using raw SQL is the only way of performing complex queries.
Let's see what a raw SQL will look like for a custom find() method and a
custom update() method :

<?php

use Phalcon\Mvc\Model\Resultset\Simple as Resultset;

class Article extends Base
{
 public static function rawFind()
 {

 $sql = "SELECT * FROM robots WHERE id > 0";
 $article = new self();

 return new Resultset(null, $article,
 $article->getReadConnection()->query($sql));
 }

 public static function rawUpdate()
 {
 $sql = "UPDATE article SET is_published = 1";
 $this->getReadConnection()->execute($sql);
 }
}

As you can see, the rawFind() method returns an instance of \Phalcon\Mvc\
Model\Resultset\Simple. The rawUpdate() method just executes the query (in
this example, we will mark all the articles as published). You might have noticed the
getReadConnection() method. This method is very useful when you need to iterate
over a large amount of data or if, for example, you use a master-slave connection. As
an example, consider the following code snippet:

<?php
class Article extends Base
{

Chapter 3

[85]

 public function initialize()
 {
 $this->setReadConnectionService('a_slave_db_connection_
service'); // By default is 'db'
 $this->setWriteConnectionService('db');
 }
}

Working with models might be a complex thing. We cannot cover
everything in this book, but we will work with many common techniques
to achieve this part of our project. Please spare a little time and read more
about working with models at http://docs.phalconphp.com/en/
latest/reference/models.html.

Database transactions
If you need to perform multiple database operations, then in most cases you need
to ensure that every operation is successful, for the sake of data integrity. A good
database architecture in not always enough to solve potential integrity issues. This is
the case where you should use transactions. Let's take as an example a virtual wallet
that can be represented as shown in the next few tables.

The User table looks like the following:

ID NAME
1 John Doe

The Wallet table looks like this:

ID USER_ID BALANCE
1 1 5000

The Wallet transactions table looks like the following:

ID WALLET_ID AMOUNT DESCRIPTION
1 1 5000 Bonus credit
2 1 -1800 Apple store

Learning Phalcon's ORM and ODM

[86]

How can we create a new user, credit their wallet, and then debit it as the result of a
purchase action? This can be achieved in three ways using transactions:

• Manual transactions
• Implicit transactions
• Isolated transactions

A manual transactions example
Manual transactions are useful when we are using only one connection and the
transactions are not very complex. For example, if any error occurs during an update
operation, we can roll back the changes without affecting the data integrity:

<?php
class UserController extends Phalcon\Mvc\Controller
{
 public function saveAction()
 {
 $this->db->begin();

 $user = new User();
 $user->name = "John Doe";

 if (false === $user->save() {
 $this->db->rollback();
 return;
 }

 $wallet = new Wallet();
 $wallet->user_id = $user->id;
 $wallet->balance = 0;

 if (false === $wallet->save()) {
 $this->db->rollback();
 return;
 }

 $walletTransaction = new WalletTransaction();
 $walletTransaction->wallet_id = $wallet->id;
 $walletTransaction->amount = 5000;
 $walletTransaction->description = 'Bonus credit';

Chapter 3

[87]

 if (false === $walletTransaction1->save()) {
 $this->db->rollback();
 return;
 }

 $walletTransaction1 = new WalletTransaction();
 $walletTransaction1->wallet_id = $wallet->id;
 $walletTransaction1->amount = -1800;
 $walletTransaction1->description = 'Apple store';

 if (false === $walletTransaction1->save()) {
 $this->db->rollback();
 return;
 }

 $this->db->commit();
 }
}

An implicit transactions example
Implicit transactions are very useful when we need to perform operations on related
tables / exiting relationships:

<?php
class UserController extends Phalcon\Mvc\Controller
{
 public function saveAction()
 {
 $walletTransactions[0] = new WalletTransaction();
 $walletTransactions[0]->wallet_id = $wallet->id;
 $walletTransactions[0]->amount = 5000;
 $walletTransactions[0]->description = 'Bonus credit';

 $walletTransactions[1] = new WalletTransaction();
 $walletTransactions[1]->wallet_id = $wallet->id;
 $walletTransactions[1]->amount = -1800;
 $walletTransactions[1]->description = 'Apple store';

 $wallet = new Wallet();
 $wallet->user_id = $user->id;
 $wallet->balance = 0;
 $wallet->transactions = $walletTransactions;

Learning Phalcon's ORM and ODM

[88]

 $user = new User();
 $user->name = "John Doe";
 $user->wallet = $wallet;
 }
}

An isolated transactions example
Isolated transactions are always executed in a separate connection, and they require
a transaction manager:

<?php

use Phalcon\Mvc\Model\Transaction\Manager as TxManager,
 Phalcon\Mvc\Model\Transaction\Failed as TxFailed;

class UserController extends Phalcon\Mvc\Controller
{
 public function saveAction()
 {
 try {
 $manager = new TxManager();
 $transaction = $manager->get();

 $user = new User();
 $user->setTransaction($transaction);
 $user->name = "John Doe";

 if ($user->save() == false) {
 $transaction->rollback("Cannot save user");
 }

 $wallet = new Wallet();
 $wallet->setTransaction($transaction);
 $wallet->user_id = $user->id;
 $wallet->balance = 0;

 if ($wallet->save() == false) {
 $transaction->rollback("Cannot save wallet");
 }

Chapter 3

[89]

 $walletTransaction = new WalletTransaction();
 $walletTransaction->setTransaction($transaction);;
 $walletTransaction->wallet_id = $wallet->id;
 $walletTransaction->amount = 5000;
 $walletTransaction->description = 'Bonus credit';

 if ($walletTransaction1->save() == false) {
 $transaction->rollback("Cannot create transaction");
 }

 $walletTransaction1 = new WalletTransaction();
 $walletTransaction1->setTransaction($transaction);
 $walletTransaction1->wallet_id = $wallet->id;
 $walletTransaction1->amount = -1800;
 $walletTransaction1->description = 'Apple store';

 if ($walletTransaction1->save() == false) {
 $transaction->rollback("Cannot create transaction");
 }

 $transaction->commit();

 } catch(TxFailed $e) {
 echo "Error: ", $e->getMessage();
 }
}

ODM/MongoDB
We will not discuss ODM too much. It mostly supports the same actions as ORM.
CRUD operations can be done in the same way as we did with ORM. Of course, we
can't use transactions here, since MongoDB is not a transactional database.

Another important thing is that we need to declare the variables as public, not
protected, as we did with the article model. This is the case in Phalcon version 1.3.4,
but maybe in version 2.0, things will change.

A big difference is in the parameters that we pass to a find() method. Suppose we
used something like the following code for ORM:

Article::find([
 'article_slug' => 'test-article-title'
]);

Learning Phalcon's ORM and ODM

[90]

For the ODM, we need to do it like this:

Article::find([
 [
 'article_slug' => 'test-article-title'
]
]);

Please read more about these differences at http://docs.
phalconphp.com/en/latest/reference/odm.html and
http://php.net/manual/ro/mongo.sqltomongo.php.

Because we will be using MongoDB later, for now, we will just set up the connection.
Open the config/services.php global services file, and add the following code:

$di['mongo'] = function() {
 $mongo = new MongoClient();
 return $mongo->selectDB("bitpress");
};

$di['collectionManager'] = function(){
 return new Phalcon\Mvc\Collection\Manager();
};

ORM – drawbacks and caching
If you are developing a small-to-medium project, or if you are working with a
big team of developers (more than three), using an ORM—in general—is a good
idea. This is because firstly, it forces you to follow some rules, and secondly, the
development will be much faster.

Let's take as an example the SELECT * FROM article query . Using a raw query,
the MySQL log will return you this:

141214 23:35:53 572 Connect root@localhost on
 572 Query select @@version_comment limit 1
 572 Query SELECT DATABASE()
 572 Init DB learning_phalcon
 572 Query SELECT * FROM article
 572 Quit

Chapter 3

[91]

By using the ORM and the find() method, your MySQL log will look like the
following:

141214 23:37:26 490 Query SELECT IF(COUNT(*)>0, 1 , 0) FROM
`INFORMATION_SCHEMA`.`TABLES` WHERE `TABLE_NAME`='article'
 490 Query DESCRIBE `article`
 490 Query SELECT `article`.`id`, `article`.`article_short_
title`, `article`.`article_long_title`, `article`.`article_
slug`, `article`.`article_description`, `article`.`is_published`,
`article`.`created_at`, `article`.`updated_at` FROM `article` ORDER BY
`article`.`created_at` DESC

The ORM first checks whether the table exists. Then it executes the describe
operation of the table, and after that, it executes the query we need. I am not
saying that the ORM's logic is not right. I am just trying to point out the number of
operations needed to finish a job. Things are quite messy when you have relations
across multiple tables, and you can end up with hundreds of queries returning
data for just 10 records.

To avoid querying the database server every time, we can use the automatic caching
method. Phalcon accepts a parameter named cache, which can be passed in the
find() method. To enable the cache, we need a modelsCache service. Open the
config/services.php global services file and add the following code:

$di['modelsCache'] = $di['cache'];

Now let's modify the listAction function from modules/Backoffice/
Controllers/ArticleController.php by adding a cache key. The final
function is as follows:

public function listAction() {
 $article_manager = $this->getDI()->get(
 'core_article_manager');

 $articles = $article_manager->find([
 'order' => 'created_at DESC',
 'cache' => [
 'key' => 'articles',
 'lifetime' => 3600
]
]);

 $this->view->articles = $articles;
}

Learning Phalcon's ORM and ODM

[92]

The cache key contains two parts: key is the key name, and lifetime represents the
time in seconds. That's it! For the next hour, your database will not be queried again.
This is a simple example, and I recommend that you pay attention to what kind of
data are you caching and for how long. Also, invalidating the cache can become
a complex and very hard job. We will work on caching in the upcoming chapters,
where you will be able to see more interesting things.

As always, please take some time to read the official
documentation at http://docs.phalconphp.com/en/
latest/reference/models-cache.html, so that you
can learn more about caching data.

Summary
In this chapter, you learned about ORM and ODM in general and how to use
the main built-in methods to perform CRUD operations. You also learned about
database transactions and ORM caching, and how to use PHQL or raw SQL queries.

In the next chapter, we will start developing our database architecture, and you will
learn more about ORM. We will create forms and implement validations. We will
also develop a CLI application to help us test our code faster.

[93]

Database Architecture,
Models, and CLI Applications

Now that we know the basics of Phalcon's ORM and ODM, we can create the
database architecture and most of the models needed for our project. We will also
create some CLI tasks in order to help us work faster. Because there is a large amount
of code, when referring to some of the parts in Chapter 1, Getting Started with Phalcon,
I will use the abbreviation CSC (check source code).

We will cover the following topics in the chapter:

• The database architecture
• Models
• CLI applications

The database architecture
The main goal of this book is to learn by example and we are achieving this by
developing an online news/magazine website. We will assume the following
tables as mandatory:

• User

• UserGroup

• UserProfile

• Article

• ArticleCategory

• ArticleTranslation

Database Architecture, Models, and CLI Applications

[94]

• ArticleCategoryArticle

• Hashtag

• ArticleHashtagArticle

These are basic tables, and we will add a few more in the later chapters. I like to use
singular terms as part of the naming convention, but it's a matter of choice. To work
faster, I recommend tools such as PhpMyAdmin or MySQL Workbench. Let's start
with the first table.

The User table
The User table will hold basic information about a user:

CREATE TABLE IF NOT EXISTS `user` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `user_first_name` varchar(16) COLLATE utf8_unicode_ci NOT NULL,

 `user_last_name` varchar(16) COLLATE utf8_unicode_ci NOT NULL,

 `user_email` varchar(32) COLLATE utf8_unicode_ci NOT NULL,

 `user_password` varchar(128) COLLATE utf8_unicode_ci NOT NULL,

 `user_group_id` int(11) DEFAULT NULL,

 `user_is_active` tinyint(1) NOT NULL DEFAULT '0',

 `user_created_at` datetime NOT NULL,

 `user_updated_at` datetime DEFAULT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `idx_email` (`user_email`),

 KEY `idx_user_group_id` (`user_group_id`),

 KEY `idx_is_active` (`user_is_active`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci AUTO_
INCREMENT=1 ;

The group_id and profile_id fields will have a relation to the UserGroup
and UserProfile tables. After we have created these tables, we will also create
the relations.

Chapter 4

[95]

The UserGroup table
The UserGroup table will hold information about user groups, and each user will be
part of one of the available groups. We are not going to use one-to-many relationship
between users and groups, but if you need them, feel free to implement them:

CREATE TABLE IF NOT EXISTS `user_group` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `user_group_name` varchar(16) COLLATE utf8_unicode_ci NOT NULL,

 `user_group_created_at` datetime NOT NULL,

 `user_group_updated_at` datetime DEFAULT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci AUTO_
INCREMENT=1 ;

The UserProfile table
UserProfile is useful if you want a profile for the user. We are going to hold
information about the user's location and date of birth:

CREATE TABLE IF NOT EXISTS `user_profile` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `user_profile_user_id` int(11) NOT NULL,

 `user_profile_location` varchar(64) COLLATE utf8_unicode_ci NOT NULL,

 `user_profile_birthday` date NOT NULL,

 `user_profile_created_at` datetime NOT NULL,

 `user_profile_updated_at` datetime DEFAULT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `idx_user_profile_user_id` (`user_profile_user_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci AUTO_
INCREMENT=1 ;

For simplicity, the user location field will be free text, not a location based on
coordinates. Now that we have all the user tables, let's create the relations/
constraints between them:

ALTER TABLE `user_profile`

 ADD CONSTRAINT `user_profile_ibfk_1` FOREIGN KEY (`user_profile_user_
id`) REFERENCES `user` (`id`) ON DELETE CASCADE ON UPDATE NO ACTION;

Database Architecture, Models, and CLI Applications

[96]

ALTER TABLE `user`

 ADD CONSTRAINT `user_ibfk_2` FOREIGN KEY (`user_profile_id`) REFERENCES
`user_profile` (`id`) ON UPDATE NO ACTION,

 ADD CONSTRAINT `user_ibfk_1` FOREIGN KEY (`user_group_id`) REFERENCES
`user_group` (`id`) ON UPDATE NO ACTION;

Finally, your database structure should look like what is shown in the following
screenshot:

Models
Now that we have the user architecture, before we continue with the rest of the
database, let's create the models and a simple CLI task to register a new user.

If you have already installed the Phalcon Developer Tools, you can use them to
generate models, or you can manually create them. You can also find them in the
source code for this chapter.

Chapter 4

[97]

Using the model generator will not create relations between tables. You
have to manually create them.

All our models will extend the Base models created in the previous chapter. Next,
I will show you a few lines of code containing the important parts of the models,
excluding the getters, setters, and protected variables.

The User model
The User model will be located under the App\Core\Models namespace in the
apps/Core/Models/ directory:

<?php
namespace App\Core\Models;

class User extends Base {
 public static function find($parameters = array()) {
 return parent::find($parameters);
 }

 public static function findFirst($parameters = array()) {
 return parent::findFirst($parameters);
 }

 public function initialize() {
 $this->hasOne('id', 'App\Core\Models\UserProfile',
 'user_profile_user_id', array(
 'alias' => 'profile',
 'reusable' => true
));

 $this->hasOne('user_group_id', 'App\Core\Models\UserGroups',
 'id', array(
 'alias' => 'group',
 'reusable' => true
));
 }
}

The initialize() method acts like a constructor, so here we will put most of the
code that we need to execute when the model is loaded.

Database Architecture, Models, and CLI Applications

[98]

In the preceding example, we created relations between the models in the
initialize() method. We have already talked about relations, but you can always
read more on the official website at http://docs.phalconphp.com/en/latest/
reference/models.html#relationships-between-models.

The model contains two other methods for quick access (find and findFirst).
Remember that Phalcon's ORM supports calls using magic methods, for example,
if you want to find a user by ID, you can use findFirstById(); if you want to find
the first user by e-mail, you can use findFirstByEmail(); and so on.

The find() and findFirst() methods are automatically created if you generate
the model using the Phalcon Developer Tools.

The UserGroup model
UserGroup will be located under the App\Core\Models namespace in the apps/
Core/Models/ directory:

<?php
namespace App\Core\Models;

class UserGroup extends Base{
 public static function find($parameters = array()){
 return parent::find($parameters);
 }
 public static function findFirst($parameters = array()){
 return parent::findFirst($parameters);
 }
 public function initialize(){
 $this->hasMany('id', 'App\Core\Models\User', 'group_id',
 array(
 'alias' => 'users'
));
 }
}

This model has a 1-n relationship with users, which means that when you invoke
$group->users, the command will return the names of all the users assigned to the
users group.

Chapter 4

[99]

The UserProfile model
The UserProfile model will be located under the App\Core\Models namespace in
the apps/Core/Models/ directory:

<?php
namespace App\Core\Models;

class UserProfile extends Base
{
 public static function find($parameters = array())
 {
 return parent::find($parameters);
 }

 public static function findFirst($parameters = array())
 {
 return parent::findFirst($parameters);
 }

 public function initialize()
 {
 $this->hasOne('user_profile_user_id', 'App\Core\Models\User',
 'id', array(
 'alias' => 'user',
 'reusable' => true
));
 }
}

The UserProfile model has a 1-1 relationship with the user, which means that a
profile is tightly coupled to a single user.

We're all set. Let's take a look at our modules\Core\Models directory structure. It
should look like this:

Article.php is in the list because we created it in the previous chapter. We can now
go forward and create a CLI task to register a new user.

Database Architecture, Models, and CLI Applications

[100]

In general, you develop CLI applications to be used within cron jobs, to create
utilities, and so on. We are going to develop a few tasks in this book for different
situations. One of them is for registering a new user via command line.

Registering a new user
Create a new directory named Task in the modules\ folder:

$ cd modules

$ mkdir Task

Go to the Task directory, create a new file named BaseTask.php, and append the
following content to it:

<?php

class BaseTask extends \Phalcon\CLI\Task
{
 public function consoleLog($s_message, $color = 'green',
 $endline = true)
 {
 $start = "\033[";
 $end = "\033[0m\n";
 $bash_color = '0;32';
 $colors = array(
 'green' => '0;32',
 'red' => '0;31',
 'yellow' => '0;33',
 'blue' => '0;34',
 'grey' => '0;30',
);
 if (isset($colors[$color])) {
 $bash_color = $colors[$color];
 }
 echo $start, $bash_color, 'm', $s_message;
 if ($endline) echo $end;
 }

 public function countdown($time)
 {
 for ($i=1;$i<=$time;$i++) {
 sleep(1);
 $this->consoleLog(($time-$i).' seconds left ...', 'red');
 }

Chapter 4

[101]

 }

 public function quit($s_message)
 {
 $this->consoleLog($s_message, 'red');
 exit;
 }

 public function log($s_message, $log_file='/tmp/app.log')
 {
 error_log(PHP_EOL.$s_message.PHP_EOL, 3, $log_file);
 }

 protected function confirm($message='Are you sure you want to
 process it')
 {
 echo "\033[0;31m".$message.' [y/N]: '."\033[0m";

 $confirmation = trim(fgets(STDIN));
 if ($confirmation !== 'y') {
 exit (0);
 }
 }
}

I wrote the content of this file a few years ago to "prettify" my
command-line scripts a bit. If you are not happy with it, please
feel free to remove it or change it.

Next, we are going to need a bootstrap for our CLI application, but before we do
that, we need to install some dependencies. Assuming that you have installed
Composer (http://getcomposer.org), edit composer.json and add this content:

{
 "require": {
 "phalcon/incubator": "dev-master",
 "crada/php-apidoc": "@dev"
 }
}

Update Composer by using the following command:

$ php composer.phar update

Database Architecture, Models, and CLI Applications

[102]

Go back to the modules\ folder and create a new file named cli.php.

We will try to split and explain the contents of the following code:

#!/usr/bin/env php
<?php
umask(0022);
set_time_limit(1200);
require_once __DIR__.'/../vendor/autoload.php';

use Phalcon\DI\FactoryDefault\CLI as CliDI;
use Phalcon\CLI\Console as ConsoleApp;
use Crada\Apidoc\Extractor;

In these first lines, we include the autoloader generated by Composer and make use
of Phalcon's DI and CLI and the Extractor helper, which will be needed to parse
annotation comments for the methods:

class Cli
{
 private $arguments;
 private $params;
 private $console;

 public function __construct($argv)
 {
 $di = new CliDI();

 include __DIR__ .'/../config/loader.php';
 $config = include __DIR__ . '/../config/config.php';

 $di->set('config', $config);

 include __DIR__ . '/../config/services.php';

 $console = new ConsoleApp();
 $console->setDI($di);

 foreach ($argv as $k => $arg) {
 if ($k == 1) {
 $this->arguments['task'] = $arg;
 } elseif ($k == 2) {
 $this->arguments['action'] = $arg;
 } elseif ($k >= 3) {
 $this->params[] = $arg;

Chapter 4

[103]

 }
 }

 if (count($this->params) > 0) {
 $this->arguments['params'] = $this->params;
 }

 $this->console = $console;
 }

The preceding class constructor will set up the DI for us and load the configuration
files needed to run the tasks. It will also read any argument assigned to a task:

public function readTasks() {
 if ($handle = opendir(__DIR__.'/Task/')) {

 require_once __DIR__.'/Task/BaseTask.php';
 $util = new BaseTask();
 $util->consoleLog('Learning Phalcon CLI','grey');
 $util->consoleLog(str_repeat('-', 80),'grey');

 while (false !== ($entry = readdir($handle))) {
 if ($entry != '.' && $entry != '..' && $entry !=
 'BaseTask.php' && preg_match("/\.php$/",$entry)) {
 $entries[] = $entry;
 }
 }

 asort($entries);

 $charCountActionName = 0;

 foreach ($entries as $entry) {
 $task = str_replace('Task.php', '', $entry);

 require_once __DIR__.'/Task/'.$entry;
 $tmp_className = str_replace('.php','',$entry);
 $tmp = new $tmp_className();

 $taskName = PHP_EOL.strtolower(preg_replace('/\
 B([A-Z])/', '_$1', $task));
 $taskDescription = '';

Database Architecture, Models, and CLI Applications

[104]

$util->consoleLog(str_pad($taskName,
 25).$taskDescription, 'yellow');
$st_classMethods = get_class_methods($tmp);
asort($st_classMethods);
foreach ($st_classMethods as $value) {
 if (preg_match('/Action/', $value)) {
 $theActionName = str_pad(str_replace('Action',
 '', $value), 6);
 if (strlen($theActionName) >
 $charCountActionName) {

 $charCountActionName = strlen(
 $theActionName);
 }
 }
 }
 foreach ($st_classMethods as $value) {
 if (preg_match('/Action/', $value)) {
 $theActionName = str_replace('Action', '',
 $value);
 $theActionDescription = '';
 $annotations = Extractor::getMethodAnnotations(
 $tmp_className, $value);
 if (count($annotations) > 0) {
 foreach ($annotations as $key =>
 $st_values) {

 if ($key == 'Description') {
 $theActionDescription .= implode(', ', $st_values);
 }
 }
 }
 $util->consoleLog(str_pad($theActionName,
 $charCountActionName + 5)."\033[
 0;28m".$theActionDescription, 'green');
 }
 }
 }
 closedir($handle);
 }
}

Chapter 4

[105]

We use the readTask method to read the annotation from each task and to list the
tasks available in our application. By executing $ php modules/cli.php in your
terminal, you will understand the purpose of this method better:

 public function getArguments()
 {
 return $this->arguments;
 }

 public function getConsole()
 {
 return $this->console;
 }
}

Finally, we need to initialize our newly created class. We do this with the help of
the next few lines:

try {
 $cli = new Cli($argv);
 $arguments = $cli->getArguments();

 if (0 === count($arguments)) {
 $cli->readTasks();
 } else {
 $console = $cli->getConsole();
 $console->handle($arguments);
 }
} catch (\Phalcon\Exception $e) {
 echo $e->getMessage();
}

…

We need to register the new task folder. Open the config/loader.php file and add
this content:

$loader->registerDirs(array(
 __DIR__ . '/../modules/Task/'
));

We're now ready to create our first task. Let's create a test task just to be sure that
our code is working. Go to the modules/Task/ folder and create a new file named
UserTask.php with the following content:

<?php
class UserTask extends BaseTask
{

Database Architecture, Models, and CLI Applications

[106]

 /**
 * @Description("Test action")
 */
 public function testAction()
 {
 $this->consoleLog('OK');
 }
}

Execute the task from your project root folder:

$ php modules/cli.php user test

You should see something similar to the following screenshot:

So far, we have the database structure and the models for the user* tables. We also
have a working CLI application and a dummy test task. We can move forward with
the user task.

Next, we are going to develop a user registration process that can be accessed from
a CLI. The first thing we need to do is implement a registration method in our
manager. This manager does not exist yet, but we will create it in modules/Core/
Managers/, where ArticleManager.php resides (from the previous chapter).

Go to modules/Core/Managers/ and create a new file named UserManager.php
with the following content:

<?php
namespace App\Core\Managers;

use \App\Core\Models\User;
use \App\Core\Models\UserGroup;
use \App\Core\Models\UserProfile;

class UserManager extends BaseManager
{
 public function find($parameters = null)

Chapter 4

[107]

 {
 return User::find($parameters);
 }

 /**
 * Create a new user
 *
 * @param array $data
 * @return string|\App\Core\Models\User
 */
 public function create($data)
 {
 $security = $this->getDI()->get('security');

 $user = new User();
 $user->setUserFirstName($data['user_first_name']);
 $user->setUserLastName($data['user_last_name']);
 $user->setUserEmail($data['user_email']);
 $user->setUserPassword($security->hash($data[
 'user_password']));
 $user->setUserIsActive($data['user_is_active']);

 if (false === $user->create()) {
 foreach ($user->getMessages() as $message) {
 $error[] = (string) $message;
 }

 throw new \Exception(json_encode($error));

 }

 return $user;
 }
}

Note that we are using the security service to hash the user's password.
The hash method uses the bcrypt algorithm.

After this, we need to register the newly created manager. To do this, open the
service file located at config/service.php and add the following content:

$di['core_user_manager'] = function () {
 return new \App\Core\Managers\UserManager();
};

Database Architecture, Models, and CLI Applications

[108]

Now we can implement the user creation task. Open modules/Task/UserTask.php
and append the following content:

/**
 * @Description("Create a new user")
 * @Example("php modules/cli.php user create F_NAME L_NAME
 EMAIL@DOMAIN.TLD PASSWORD IS_ACTIVE")
*/
public function createAction($params = null) {
 if (!is_array($params) || count($params) < 5) {
 $this->quit('Usage: php modules/cli.php user create F_NAME
 L_NAME EMAIL@DOMAIN.TLD PASSWORD IS_ACTIVE');
 }

 $this->confirm('You will create a user with the following data:
 '.implode(' | ', $params));

 $manager = $this->getDI()->get('core_user_manager');

 try {
 $user = $manager->create(array(
 'user_first_name' => $params[0],
 'user_last_name' => $params[1],
 'user_email' => $params[2],
 'user_password' => $params[3],
 'user_is_active' => $params[4],
));

 $this->consoleLog(sprintf(
 "User %s %s has been created. ID: %d",
 $user->getUserFirstName(),
 $user->getUserLastName(),
 $user->getId()
));

 } catch (\Exception $e) {
 $this->consoleLog("There were some errors creating the
 user: ","red");
 $errors = json_decode($e->getMessage(), true);
 foreach ($errors as $error) {
 $this->consoleLog(" - $error", "red");
 }
 }
}

Chapter 4

[109]

In the first two lines of the createAction() method, we just make a simple
validation of parameters and ask the developer for a confirmation of the input.
You can now execute the task:

$ php modules/cli.php user create john doe john.doe@john.tld P@ss0rd!1

But you will get an error similar to the one shown in this screenshot:

The user_created_at is required exception is thrown, because in our create()
method from the user manager, we didn't add this field—and we are not going
to add it. Instead, we are going to use Phalcon's "timestampable" behavior.

Open the User model (modules/Core/Models/User.php) and add the following
code to the initialize() method:

$this->addBehavior(new Timestampable(array(
 'beforeValidationOnCreate' => array(
 'field' => 'user_created_at',
 'format' => 'Y-m-d H:i:s'
),
 'beforeValidationOnUpdate' => array(
 'field' => 'user_updated_at',
 'format' => 'Y-m-d H:i:s'
),
)));

Add this behavior to all the models where we are using *_created_at
and *_updated_at. Also, don't forget to make use of use \Phalcon\
Mvc\Model\Behavior\Timestampable;.

Now, you can execute the user creation task again. If everything goes OK, you
should see something similar to the following screenshot:

Database Architecture, Models, and CLI Applications

[110]

We now have a functional CLI application for a user and a user manager, but
the user has no profile and no group. We will modify the create() method from
the user manager to be able to assign groups and create a profile. Because the
user_group table is empty, we need to insert some data:

INSERT INTO `user_group` (`id`, `user_group_name`, `user_group_
created_at`, `user_group_updated_at`) VALUES
(1, 'User', '2015-01-13 00:00:00', NULL);

Here, we created a new group named User. This will be the default group. Next,
we will modify the create() method from the user manager to be able to assign
an existing group to a user. The new create() method will look like this:

public function create($data, $user_group_name = 'User') {
 $security = $this->getDI()->get('security');

 $user = new User();
 $user->setUserFirstName($data['user_first_name']);
 $user->setUserLastName($data['user_last_name']);
 $user->setUserEmail($data['user_email']);
 $user->setUserPassword($security->hash($data['user_password']));
 $user->setUserIsActive($data['user_is_active']);

 $user_group_id = $this->findFirstGroupByName($user_group_name)-
>getId();
 $user->setUserGroupId($user_group_id);

 if (false === $user->create()) {
 foreach ($user->getMessages() as $message) {
 $error[] = (string) $message;
 }

 throw new \Exception(json_encode($error));

 }
 return $user;
}

We also need to create the findFirstGroupByName() method. Append the following
content to the UserManager.php file:

public function findFirstGroupByName($user_group_name) {
 return UserGroup::findFirstByUserGroupName($user_group_name);
}

Chapter 4

[111]

Before we run the user create task again, we need to ensure data integrity,
avoiding duplicate e-mails. Because of the database structure, we are not allowed
to insert duplicate records (the email column is unique), and the create() method
will throw a SQL exception similar to SQLSTATE[23000]: Integrity constraint
violation: 1062 Duplicate entry 'john.doe@john.tld' for key 'idx_email'.

To avoid this, we will make use of the built-in validators. In this case, we will
implement two of them: a uniqueness validator and an e-mail validator, both for the
user_email column. We achieve this by adding the following code to the user model
in the modules/Core/Models/User.php file:

public function validation() {
 $this->validate(new \Phalcon\Mvc\Model\Validator\Email(array(
 "field" => "user_email",
 "message" => "Invalid email address"
)));

 $this->validate(new \Phalcon\Mvc\Model\Validator\Uniqueness(
 array(
 "field" => "user_email",
 "message" => "The email is already registered"
)));

 return $this->validationHasFailed() != true;
}

Now that we have a validator, we can be sure that an e-mail has the correct format
and it does exist in our database. Let's execute the same task to see what happens:

$ php modules/cli.php user create john doe john.doe@john.tld P@ss0rd!1

If you did everything well, you should see a response similar to the one presented in
the following screenshot:

Now, execute the task again by changing the e-mail address and checking whether
the group ID has been assigned to the new user. Let's call it me@me.com:

$ php modules/cli.php user create john doe me@me.com P@ss0rd! 1

Database Architecture, Models, and CLI Applications

[112]

If you get a response similar to the one shown in the following screenshot, it means
that you have done a great job!:

You can read more about validating data integrity at http://
docs.phalconphp.com/en/latest/reference/models.
html#validating-data-integrity.

Creating a user profile
What we need to do next is repeat almost the same process to create a user profile.
The final create() method in UserManager.php should look like this:

public function create($data, $user_group_name = 'User') {
 $security = $this->getDI()->get('security');

 $user = new User();
 $user->setUserFirstName($data['user_first_name']);
 $user->setUserLastName($data['user_last_name']);
 $user->setUserEmail($data['user_email']);
 $user->setUserPassword($security->hash($data['user_password']));
 $user->setUserIsActive($data['user_is_active']);

 $user_group_id = $this->findFirstGroupByName($user_group_name)
 ->getId();
 $user->setUserGroupId($user_group_id);

 $profile = new UserProfile();
 $profile->setUserProfileLocation($data['user_profile_location']);
 $profile->setUserProfileBirthday($data['user_profile_birthday']);

 $user->profile = $profile;

 return $this->save($user);
}

To avoid code repetition, we will create a save() method in the BaseManager file.
Open modules/Core/Managers/BaseManager.php and append the following code:

public function save($object, $type = 'save') {
 switch($type) {
 case 'save':

Chapter 4

[113]

 $result = $object->save();
 break;
 case 'create':
 $result = $object->create();
 break;
 case 'update':
 $result = $object->update();
 break;
 }

 if (false === $result) {
 foreach ($object->getMessages() as $message) {
 $error[] = (string) $message;
 }

 throw new \Exception(json_encode($error));
 }

 return $object;
}

One last change we need to make is in the UserTask.php file. Open it and update
the createAction() method by replacing the $user = $manager->create … block
of code with the following code:

$user = $manager->create(array(
 'user_first_name' => $params[0],
 'user_last_name' => $params[1],
 'user_email' => $params[2],
 'user_password' => $params[3],
 'user_is_active' => $params[4],
 'user_profile_location' => $params[5],
 'user_profile_birthday' => $params[6],
));

We can try to execute the task again and test whether the new user has been created
and a profile has also been created:

$ php modules/cli.php user create john doe other@email.com P@ss0rd! 1
Barcelona 1985-03-25

You should see something like this:

Database Architecture, Models, and CLI Applications

[114]

If you check out the records in the database, you should get a profile linked to the
user, as follows:

Remember that when you create or update a record using the ORM, it is not
mandatory to use the setters. Phalcon has a method named assign() that accepts
the key => value array, where the key is the column name as defined in the table
structure, for example, our create() method can also look like this:

public function create($data, $user_group_name = 'User') {
 $security = $this->getDI()->get('security');

 $user = new User();
 $user->assign(array(
 'user_first_name' => $data['user_first_name'],
 'user_last_name' => $data['user_last_name'],
 'user_email' => $data['user_email'],
 'user_password' => $security->hash($data['user_password']),
 'user_is_active' => $data['user_is_active']
));

 $user_group_id = $this->findFirstGroupByName($user_group_name)
 ->getId();
 $user->setUserGroupId($user_group_id);

 $profile = new UserProfile();
 $profile->assign(array(
 'user_profile_location' => $data['user_profile_location'],
 'user_profile_birthday' => $data['user_profile_birthday'],
));

Chapter 4

[115]

 $user->profile = $profile;

 return $this->save($user);
}

We are ready to go further with this project by creating the rest of our database
structure. Let's start with the Article table. First, drop the existing table from
your database, and then create a new one:

DROP TABLE IF EXISTS `article`;
CREATE TABLE IF NOT EXISTS `article` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `article_user_id` int(11) NOT NULL,
 `article_is_published` tinyint(1) NOT NULL DEFAULT '0',
 `article_created_at` datetime NOT NULL,
 `article_updated_at` datetime DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `id` (`id`),
 KEY `article_user_id` (`article_user_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci AUTO_
INCREMENT=1 ;

ALTER TABLE `article`
 ADD CONSTRAINT `fk_user_id` FOREIGN KEY (`article_user_id`)
REFERENCES `user` (`id`) ON DELETE CASCADE ON UPDATE NO ACTION;

For simplicity, an article will be assigned to a user through the article_user_id
column.

If you want to implement more complex things, such as "blameable"
behavior, you can read an interesting article here http://blog.
phalconphp.com/post/47652831003/tutorial-creating-a-
blameable-behavior-with.

As you can see, we eliminated all the text fields from the article table. This is
because we are going to create another table named article_translation. In this
way, we will be able to create multilingual articles/website content. The article_
translation table is as follows:

CREATE TABLE IF NOT EXISTS `article_translation` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `article_translation_article_id` int(11) NOT NULL,
 `article_translation_short_title` varchar(255) COLLATE utf8_unicode_
ci NOT NULL,

Database Architecture, Models, and CLI Applications

[116]

 `article_translation_long_title` varchar(255) COLLATE utf8_unicode_
ci NOT NULL,
 `article_translation_slug` varchar(255) COLLATE utf8_unicode_ci NOT
NULL,
 `article_translation_description` text COLLATE utf8_unicode_ci NOT
NULL,
 `article_translation_lang` char(2) COLLATE utf8_unicode_ci DEFAULT
'en',
 PRIMARY KEY (`id`),
 KEY `id` (`id`),
 KEY `article_translation_article_id` (`article_translation_article_
id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci AUTO_
INCREMENT=1 ;

ALTER TABLE `article_translation`
 ADD CONSTRAINT `fk_article_id` FOREIGN KEY (`article_translation_
article_id`) REFERENCES `article` (`id`) ON DELETE CASCADE ON UPDATE
NO ACTION;

The article_lang column will accept the two-letter ISO code for languages (ISO
639-1). Any news item, blog, or magazine has two major factors: categories and
hashtags/keywords. We are going to create many-to-many relationship between
articles and categories and between articles and hashtags. First, let's create the tables:

CREATE TABLE IF NOT EXISTS `category` (
 `id` smallint(5) NOT NULL AUTO_INCREMENT,
 `category_is_active` tinyint(1) NOT NULL DEFAULT '1',
 `category_created_at` datetime NOT NULL,
 `category_updated_at` datetime DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `category_is_active` (`category_is_active`),
 KEY `category_created_at` (`category_created_at`),
 KEY `category_updated_at` (`category_updated_at`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci AUTO_
INCREMENT=1 ;

CREATE TABLE IF NOT EXISTS `category_translation` (
 `category_translation_category_id` smallint(5) NOT NULL,
 `category_translation_name` varchar(64) COLLATE utf8_unicode_ci NOT
NULL,
 `category_translation_slug` varchar(128) COLLATE utf8_unicode_ci NOT
NULL,
 `category_translation_lang` char(2) COLLATE utf8_unicode_ci NOT
NULL,

Chapter 4

[117]

 PRIMARY KEY (`category_translation_category_id`),
 UNIQUE KEY `category_translation_slug` (`category_translation_
slug`),
 KEY `category_translation_lang` (`category_translation_lang`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

ALTER TABLE `category_translation`
 ADD CONSTRAINT `category_translation_ibfk_1` FOREIGN KEY (`category_
translation_category_id`) REFERENCES `category` (`id`) ON DELETE
CASCADE ON UPDATE NO ACTION;

If you check out the code from incubator (https://github.com/
phalcon/incubator/tree/master/Library/Phalcon/Mvc/
Model/Behavior), you will see that there is a nice solution for a
nested set, if you ever need to implement it.

Because we will use a many-to-many relationship, we need to create an intermediate
table between articles and categories:

CREATE TABLE IF NOT EXISTS `article_category_article` (
 `article_id` int(11) NOT NULL,
 `category_id` smallint(5) NOT NULL,
 KEY `idx_article_id` (`article_id`),
 KEY `idx_category_id` (`category_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

ALTER TABLE `article_category_article`
 ADD CONSTRAINT `article_category_article_ibfk_2` FOREIGN KEY
(`category_id`) REFERENCES `category` (`id`) ON DELETE CASCADE ON
UPDATE NO ACTION,
 ADD CONSTRAINT `article_category_article_ibfk_1` FOREIGN KEY
(`article_id`) REFERENCES `article` (`id`) ON DELETE CASCADE ON UPDATE
NO ACTION;

Having made these tables, let's create the models and the managers. The Article
model already exists; remove it and create a new one with the new getters and
setters. The next code samples will not contain the getters and setters, so you
have to create them manually or check out the source code for this chapter.

Database Architecture, Models, and CLI Applications

[118]

The Category model
The Category model can be seen with the modules/Core/Models/Category.php
file. The following code contains an important method—initialize(). Here, we
create a relation between models and add certain kinds of behavior for the date and
time fields:

<?php
namespace App\Core\Models;

class Category extends Base
{
 public function initialize()
 {
 /*
 * @param string $fields
 * @param string $intermediateModel
 * @param string $intermediateFields
 * @param string $intermediateReferencedFields
 * @param string $referencedModel
 * @param string $referencedFields
 * @param array $options
 * @return \Phalcon\Mvc\Model\Relation
 */
 $this->hasManyToMany(
 "id",
 "App\Core\Models\ArticleCategoryArticle",
 "category_id",
 "article_id",
 "App\Core\Models\Article",
 "id",
 array('alias' => 'articles')
);

 $this->hasMany('id', 'App\Core\Models\CategoryTranslation',
 'category_translation_category_id', array(

 'alias' => 'translations',
 'foreignKey' => true
));

 $this->addBehavior(new Timestampable(array(
 'beforeValidationOnCreate' => array(
 'field' => 'category_created_at',
 'format' => 'Y-m-d H:i:s'
),

Chapter 4

[119]

 'beforeValidationOnUpdate' => array(
 'field' => 'category_updated_at',
 'format' => 'Y-m-d H:i:s'
),
)));
 }
}

The Category translation model
The Category translation model makes use of \Phalcon\Utils\Slug to generate
slugs. It uses the Uniqueness validator to ensure the uniqueness of the newly
generated slug. This verification is made by interrogating the database:

<?php
namespace App\Core\Models;

use \Phalcon\Mvc\Model\Validator\Uniqueness;
use \Phalcon\Utils\Slug;

class CategoryTranslation extends Base{
 public function initialize() {
 $this->belongsTo('category_translation_category_id',
 'App\Core\Models\Category', 'id', array(
 'foreignKey' => true,
 'reusable' => true,
 'alias' => 'category'
));
 }

 public function validation()
 {
 $this->validate(new Uniqueness(array(
 "field" => "category_translation_slug",
 "message" => "Category slug should be unique"
)));

 return $this->validationHasFailed() != true;
 }

 public function beforeValidation()
 {
 if ($this->category_translation_slug == '') {

Database Architecture, Models, and CLI Applications

[120]

 $this->category_translation_slug = Slug::generate($this-
>category_translation_name).'-'.$this->category_translation_category_
id;
 }
 }
}

We make use of \Phalcon\Utils\Slug to generate slugs for category. The same
applies to the Article translation model.

The Article translation model
This model, like the Category translation model, is validating the slug field to be
unique and makes use of \Phalcon\Utils\Slug to generate a slug. This model is
defined as follows. We'll be referencing the model from the modules/Core/Models/
ArticleTranslation.php file:

<?php
namespace App\Core\Models;

use \Phalcon\Mvc\Model\Validator\Uniqueness;
use \Phalcon\Utils\Slug;

class ArticleTranslation extends Base
{
 public function initialize()
 {
 $this->belongsTo('article_translation_article_id',
 'App\Core\Models\Article', 'id', array(
 'foreignKey' => true,
 'reusable' => true,
 'alias' => 'article'
));
 }

 public function validation()
 {
 $this->validate(new Uniqueness(array(
 "field" => "article_translation_slug",
 "message" => "Article slug should be unique"
)));

 return $this->validationHasFailed() != true;
 }

Chapter 4

[121]

 public function beforeValidation()
 {
 if ($this->article_translation_slug == '') {
 $this->article_translation_slug = Slug::generate($this-
>article_translation_short_title).'-'.$this->article_translation_
article_id;
 }
 }
}

The Article model
The Article model is similar to the Category model, with the difference being in
the relations and the names of the fields. We'll be referencing the model from the
modules/Core/Models/Article.php file:

<?php
namespace App\Core\Models;

use \Phalcon\Mvc\Model\Behavior\Timestampable;

class Article extends Base
{
 public function initialize() {
 $this->hasMany('id', 'App\Core\Models\ArticleTranslation',
 'article_translation_article_id', array(
 'alias' => 'translations',
 'foreignKey' => true
));

 $this->hasOne('article_user_id', 'App\Core\Models\User', 'id',
 array(
 'alias' => 'user',
 'reusable' => true
));

 $this->hasManyToMany(
 "id",
 "App\Core\Models\ArticleCategoryArticle",
 "article_id",
 "category_id",
 "App\Core\Models\Category",
 "id",
 array(

Database Architecture, Models, and CLI Applications

[122]

 'alias' => 'categories'
));

 $this->addBehavior(new Timestampable(array(
 'beforeValidationOnCreate' => array(
 'field' => 'article_created_at',
 'format' => 'Y-m-d H:i:s'
),
 'beforeValidationOnUpdate' => array(
 'field' => 'article_updated_at',
 'format' => 'Y-m-d H:i:s'
),
)));
 }
}

The Article-Category-Article model
The Article-Category-Article model is an intermediate table and model used in a
many-to-many relationship between articles and categories. We'll be referencing
this model from the modules/Core/Models/Article.php file:

<?php
namespace App\Core\Models;

class ArticleCategoryArticle extends Base
{
 public function initialize()
 {
 $this->belongsTo('category_id', 'App\Core\Models\Category',
 'id', array('alias' => 'category')
);

 $this->belongsTo('article_id', 'App\Core\Models\Article',
 'id', array('alias' => 'article')
);
 }
}

Chapter 4

[123]

The final relations between articles and categories are presented here:

We have the models. Now, let's continue by creating the managers and a simple task
to create an article. The article manager already exists, but we are going to change
the create() method. Before this, we will need to write the category manager with
a create() method and enable it.

Create a file named CategoryManager.php in modules/Core/Managers/ and add
this content:

<?php
namespace App\Core\Managers;

use \App\Core\Models\Category;
use \App\Core\Models\CategoryTranslation;

Database Architecture, Models, and CLI Applications

[124]

class CategoryManager extends BaseManager
{
 /**
 * Create method
 * @param array $input_data
 * @throws \Exception
 * @return \App\Core\Models\Category
 */
 public function create(array $input_data)
 {
 $default_data = array(
 'translations' => array(
 'en' => array(
 'category_translation_name' => 'Category name',
 'category_translation_slug' => '',
 'category_translation_lang' => 'en',
)
),
 'category_is_active' => 0
);

 $data = array_merge($default_data, $input_data);

 $category = new Category();
 $category->setCategoryIsActive($data['category_is_active']);

 $categoryTranslations = array();

 foreach ($data['translations'] as $lang => $translation) {
 $tmp = new CategoryTranslation();
 $tmp->assign($translation);
 array_push($categoryTranslations, $tmp);
 }

 $category->translations = $categoryTranslations;

 return $this->save($category, 'create');
 }
}

We will also need to register the new manager. Open config/service.php and add
the following code:

$di['core_category_manager'] = function () {
 return new \App\Core\Managers\CategoryManager();
};

Chapter 4

[125]

The $default_data array is meant to always remember the structure of the input
that we need to use. We can test everything now by creating a task. Let's name it
the Article task. Create the new file in modules/Tasks/ArticleTask.php and
add this code:

<?php
class ArticleTask extends BaseTask
{
 /**
 * @Description("Create a new category with the default data as it
is defined in the manager->create() method")
 * @Example("php modules/cli.php article createCategory")
 */
 public function createCategoryAction()
 {
 $manager = $this->getDI()->get('core_category_manager');

 try {
 $category = $manager->create(array());
 $this->consoleLog(sprintf(
 "The category has been created. ID: %d",
 $category->getId()
));

 } catch (\Exception $e) {
 $this->consoleLog("There were some errors creating the
 category: ","red");
 $errors = json_decode($e->getMessage(), true);

 if (is_array($errors)) {
 foreach ($errors as $error) {
 $this->consoleLog(" - $error", "red");
 }
 } else {
 $this->consoleLog(" - $errors", "red");
 }
 }
 }
}

This task will create a new category and generate a slug for it. Execute this task:

$ php modules/cli.php article createCategory

Database Architecture, Models, and CLI Applications

[126]

You should see something similar to the following screenshot:

We have pretty much everything we need to create a new article. Let's go back to our
ArticleManager.php file and replace the existing create() method with this one:

 public function create($input_data)
{
 $default_data = array(
 'article_user_id' => 1,
 'article_is_published' => 0,
 'translations' => array(
 'en' => array(
 'article_translation_short_title' => 'Short title',
 'article_translation_long_title' => 'Long title',
 'article_translation_description' => 'Description',
 'article_translation_slug' => '',
 'article_translation_lang' => 'en',
)
),
 'categories' => array()
);
 $data = array_merge($default_data, $input_data);
 $article = new Article();
 $article->setArticleUserId($data['article_user_id']);
 $article->setArticleIsPublished(
 $data['article_is_published']);
 $articleTranslations = array();
 foreach ($data['translations'] as $lang => $translation) {
 $tmp = new ArticleTranslation();
 $tmp->assign($translation);
 array_push($articleTranslations, $tmp);
 }
 $article->translations = $articleTranslations;
 return $this->save($article, 'create');
}

Chapter 4

[127]

The createAction() method from ArticleTask.php, which will enable us to create
the new article, is given as follows:

 public function createAction()
 {
 $manager = $this->getDI()->get('core_article_manager');

 try {
 $article = $manager->create(array(
 'article_user_id' => 12
));
 $this->consoleLog(sprintf(
 "The article has been created. ID: %d",
 $article->getId()
));

 } catch (\Exception $e) {
 $this->consoleLog("There were some errors creating the
 article: ","red");
 $this->consoleLog($e->getMessage(),"yellow");
 $errors = json_decode($e->getMessage(), true);

 if (is_array($errors)) {
 foreach ($errors as $error) {
 $this->consoleLog(" - $error", "red");
 }
 } else {
 $this->consoleLog(" - $errors", "red");
 }
 }
 }

Pay attention to this code:

$article = $manager->create(array(
 'article_user_id' => 12
));

In this case, I have assigned a user ID that I already have in the database. Check
your database and add the specific user ID. Normally, this will be the ID of the
authenticated user.

Database Architecture, Models, and CLI Applications

[128]

You can now run the task and you should see something similar to the next
screenshot:

$ php modules/cli.php article create

The newly created article does not have any category assigned to it.

We will close this chapter with a small summary, and you will learn more about
models when we develop the API module. In the meantime, I recommend that you
try and develop the hashtag and article_hashtag_article tables, tasks, and
models. There is no point in writing about this here, because it's the same thing as
we did for categories (only the names have been changed). Also, you have it in the
source code of this chapter.

As always, please spare some time to read the official documentation at
http://docs.phalconphp.com/en/latest/reference/models.
html, where you can learn more about working with models.

Summary
In this chapter, we created the database structure for our project, and you
learned how to create a CLI application. We created models and managers and
saw how relations between tables work. You also learned about model behavior
("timestampable"), model validations, and the storage of related records.

The next chapter will be about developing an API module, and we will have the
chance to discover more techniques of working with models, searching for data,
authenticating users, and much more.

[129]

The API Module
An Application Programming Interface (API) is the most common way of exposing
services to third parties, and lately, most of the software out there is driven by APIs.
Why? Because, by having an API for your application, not only is it easy to implement
a fully functional HTML + JS frontend, but you can also use it if you develop a
mobile application, for example. In this chapter, we will implement most of the
functionalities needed for our project, covering topics such as these:

• Using APIs—recommended practices
• Enabling SSL on our local machine
• Creating the module structure
• Writing a fully functional REST module with Phalcon PHP
• Securing an API
• Documenting the API

Using APIs – recommended practices
If you are completely new to APIs, I recommend that you read at least the basics
about developing an API. In the simplest way, an API response can be created
with plain PHP, like this:

$data = [
 'name' => 'John Doe',
 'age' => 50
];

echo json_encode($data);

The API Module

[130]

Next, we are going to talk about some general rules that you should follow when
developing an API, which are discussed as follows:

• Use plural nouns instead of verbs, use concrete names, and make use of
HTTP verbs (GET, POST, PUT, and DELETE) to operate on them:
This format is bad:
GET /getAllArticles
GET /getArticle
POST /newArticle

This format is good:

GET /articles (Retrieve all articles)
GET /article/12 (Retrieve article with id 12)
POST /article (Create a new article)
PUT /article/12 (Update article with id 12)
DELETE /article/12 (Delete article with id 12)

• Use verbs when the response does not involve a resource:
GET /search?title=Learning+Phalcon

Always version your API. In this way, when you make changes
to your application, you ensure backward compatibility. Some
examples are given here:

https://learning-phalcon.localhost/api/v1
https://api.learning-phalcon.localhost/v1/

• Always use a secure connection (HTTPS), as you can see in the preceding
information box.

• Allow data filtering and sorting:
GET /articles?author=John
GET /articles?author=John&sort=created_at

• Use camelCase instead of snake_case. I know that using snake case it would
be easier to read, and I agree with you. But since (I assume that) you are
going to represent your data in JSON format, you should use the JavaScript
naming conventions. Anyway, this is a recommendation. After many years, I
still cannot get used to camel case for these situations. In this book, I will use
snake case.

Chapter 5

[131]

If a business decision does not force you to expose XML format, go with JSON. From
my point of view, XML is kind of dead.

These are just a few general rules. You are going to learn about a few more, later in
this chapter.

If you don't know much about APIs, please check out resources such as
https://blog.apigee.com/taglist/restful, http://www.
vinaysahni.com/best-practices-for-a-pragmatic-restful-
api, or Web API design, an e-book by Brian Mulloy (38 pages).

Enabling SSL on our local machine
We will take into account one of the API rules: always use a secure connection.
Assuming that you are using Nginx, this can be done in four easy steps:

1. Create a directory, /etc/nginx/ssl:
$ sudo mkdir /etc/nginx/ssl

2. Generate a new certificate using the following command:
$ sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 -
 keyout /etc/nginx/ssl/nginx.key -out /etc/nginx/ssl/
 nginx.crt

At this point you will be asked to provide some information about the new
certificate, as shown in the following diagram:

The API Module

[132]

3. Open the learning-phalcon.localhost configuration file (/etc/nginx/
sites-available/learning-phalcon.localhost) and enable SSL:
server {
 listen 80;
 listen 443 ssl;

 ssl_certificate /etc/nginx/ssl/nginx.crt;
 ssl_certificate_key /etc/nginx/ssl/nginx.key;

 #....rest of the code
}

4. Then reload the Nginx configuration:
$ sudo service nginx reload

Now you can try to access https://learning-phalcon.localhost/. In any
browser that you are using, you will get a warning saying that the server certificate
is not trusted. This is normal because it has not been signed by any authority. On
Chrome, you should click on the Advanced link (seen in the following screenshot)
and then on the Proceed to learning-phalcon.localhost (unsafe) link (shown in the
next screenshot). Other browsers will have similar links:

Chapter 5

[133]

After you click on Advanced, a new page will open and it should look like the
following screenshot:

Note that your connection is not actually secured. The purpose of this was for us
to be able to access our project via HTTPS.

Creating the module structure
We have already created the basic structure in the previous chapters. The directory
structure should look like this:

The API Module

[134]

This is okay. What we need to do here is enable the routing and add some
methods to BaseController so that we can move forward. Let's start this
process by performing the following steps:

1. Open the routing.php file from the api module, delete its content,
and put in this code:
<?php
$versions = [
 'v1' => '/api/v1',
 'v2' => '/api/v2'
];
$router->removeExtraSlashes(true);

// Articles group
$articles = new \Phalcon\Mvc\Router\Group(array(
 'module' => 'api',
 'controller' => 'articles'
));

$articles->setPrefix($versions['v1'].'/articles');
$articles->addGet('', array(
 'module' => 'api',
 'controller' => 'articles',
 'action' => 'list'
));

$router->mount($articles);

2. Next, we add an array with the available versions of our API, and we tell the
router to remove extra slashes. Therefore, a request to /api/v1/articles
will be the same as a request to /api/v1/articles/.

3. After that, we make use of the router's capability of grouping and create a
new group for the articles.

4. Finally, we mount the articles group onto the router.

There are a few things that we need to fix regarding the routing system. They are
as follows:

1. We'll be putting in new content in the global routing file
(config/routing.php), like the following:
<?php

$di['router'] = function () use ($default_module, $modules,
 $di, $config) {

Chapter 5

[135]

 $router = new \Phalcon\Mvc\Router(false);
 $router->clear();

 $moduleRouting = __DIR__.'/../modules/'.ucfirst(
 $default_module).'/Config/routing.php';

 if (file_exists($moduleRouting) && is_file(
 $moduleRouting)) {
 include $moduleRouting;
 } else {
 $router->add('#^/(|/)$#', array(
 'module' => $default_module,
 'controller' => 'index',
 'action' => 'index',
));

 $router->add('#^/([a-zA-Z0-9_]+)[/]{0,1}$#', array(
 'module' => $default_module,
 'controller' => 1,
));

 $router->add('#^/{0,1}([a-zA-Z0-9_]+)/([a-zA-Z0-9_]+)
 (/.*)*$#', array(
 'module' => $default_module,
 'controller' => 1,
 'action' => 2,
 'params' => 3,
));
 }

 foreach ($modules as $moduleName => $module) {
 if ($default_module == $moduleName) {
 continue;
 }

 $moduleRouting = __DIR__.'/../modules/'.ucfirst(
 $moduleName).'/Config/routing.php';

 if (file_exists($moduleRouting) && is_file(
 $moduleRouting)) {
 include $moduleRouting;
 }
 }

 return $router;
};

The API Module

[136]

2. Delete the modules/App/Core/Config/routing.php file—we are not going
to have any routes for the core module. This module is more like a library.

3. Finally, replace the content of modules/Frontend/Config/routing.php
with this content:

<?php
$router->add('/', array(
 'module' => 'frontend',
 'controller' => 'index',
 'action' => 'index'
));

$router->add('#^/articles[/]{0,1}$#', array(
 'module' => 'frontend',
 'controller' => 'article',
 'action' => 'list'
));

$router->add('#^/articles/([a-zA-Z0-9\-]+)[/]{0,1}$#',
 array(
 'module' => 'frontend',
 'controller' => 'article',
 'action' => 'read',
 'slug' => 1
));

The new router group uses a controller named Articles, which does not exist.
Now, let's continue with further processes:

1. Let's create ArticlesController.php with the following content:
<?php
namespace App\Api\Controllers;

class ArticlesController extends BaseController {
 public function listAction() {
 $this->view->disable();
 echo __METHOD__;
 }
}

Chapter 5

[137]

The following screenshot shows the output after running the
ArticlesController.php file:

Now, if you access https://learning-phalcon.localhost/api/v1/
articles, you should see the same content as shown in the preceding
screenshot.

2. Next, let's modify our base controller. Open BaseController.php and
append this content:
<?php
namespace App\Api\Controllers;

use \Phalcon\Http\Response;

class BaseController extends \Phalcon\Mvc\Controller {
 protected $statusCode = 200;

 protected $headers = [
 'Access-Control-Allow-Origin' => '*',
 'Access-Control-Allow-Headers' => 'X-Requested-With,
 content-type, access-control-allow-origin, accept,
 apikey',
 'Access-Control-Allow-Methods' => 'GET, PUT, POST,
 DELETE, OPTIONS',
 'Access-Control-Allow-Credentials' => 'true'
];

 protected $payload = '';

 protected $format = 'json';

 protected function initResponse($status = 200) {
 $this->statusCode = $status;
 $this->headers = array();
 $this->payload = '';
 }

The API Module

[138]

 protected function _getContent($payload) {
 return json_encode($payload);
 }

 protected function output() {
 $payload = $this->getPayload();
 $status = $this->getStatusCode();
 $description = $this->getHttpCodeDescription($status);
 $headers = $this->getHeaders();

 $response = (new Response())
 ->setStatusCode($status, $description)
 ->setContentType('application/json', 'UTF-8')
 ->setContent(json_encode($payload,
 JSON_PRETTY_PRINT))
 ;

 foreach ($headers as $key => $value) {
 $response->setHeader($key, $value);
 }

 $this->view->disable();

 return $response;
 }

 protected function render($st_output, $statusCode = 200){
 $this->initResponse();

 $this->setStatusCode($statusCode);
 $this->setPayload($st_output);

 return $this->output();
 }
}

Note that we have left out some methods. For a complete class,
check out the source code for this chapter.

Chapter 5

[139]

3. Now, let's edit the listAction() function in ArticlesController.php.
The new listAction()function will look like this:
public function listAction() {
 try {
 $st_output = [
 'method' => __METHOD__
];

 return $this->render($st_output);
 } catch (\Exception $e) {
 return $this->render($e->getMessage(), 500);
 }
}

We can now reopen https://learning-phalcon.localhost/api/v1/articles
and check the result. You should see JSON-encoded text, as shown in this screenshot:

We have the basics. Let's move forward with our project and develop its API.

Writing a fully functional REST module
with Phalcon PHP
Before starting, I recommend that you use a RESTful client that will help you test
things faster. Personally, I prefer DHC (it's a Chrome extension), which can be found
at https://chrome.google.com/webstore/detail/dhc-resthttp-api-client/
aejoelaoggembcahagimdiliamlcdmfm?hl=en.

We are going to develop the CRUD operations for Articles, Categories, Hashtags
and Users. Let's start with Articles.

The API Module

[140]

Articles
We have already created the controller, so by executing a GET method on
https://learning-phalcon.localhost/api/v1/articles, you should get a
response. Let's implement the article manager for the articles listing so that we can
retrieve real data.

First of all, we will make some changes to the Article model and overwrite the
toArray() method. Open modules/Core/Models/Article.php and append the
following code:

public function getTranslations($arguments = null) {
 return $this->getRelated('translations', $arguments);
}

public function getCategories($arguments = null) {
 return $this->getRelated('categories', $arguments);
}

public function getHashtags($arguments = null) {
 return $this->getRelated('hashtags', $arguments);
}

public function getUser($arguments = null) {
 return $this->getRelated('user', $arguments);
}

public function toArray($columns = null) {
 $output = parent::toArray($columns);

 $output['article_translations'] = $this->getTranslations([
 'columns' => [
 'article_translation_short_title',
 'article_translation_long_title',
 'article_translation_slug',
 'article_translation_description',
 'article_translation_lang'
]
])->toArray();

 $output['article_categories'] = $this->getCategories()
 ->filter(function($category){
 return $category->toArray(['id','category_translations']);
 });

Chapter 5

[141]

 $output['article_hashtags'] = $this->getHashtags([
 'columns' => [
 'id',
 'hashtag_name'
]
])->filter(function($hashtag){
 return $hashtag->toArray();
 });

 $output['article_author'] = $this->getUser([
 'columns' => [
 'user_first_name',
 'user_last_name',
 'user_email'
]
])->toArray();

 return $output;
}

As you can see, we append everything related to the article: translations, information
about the author, categories, and hashtags.

As the categories have translations, we will also overwrite the toArray() method
from the category model. Open modules/Core/Models/Category.php and add the
following code:

public function getTranslations($arguments = null) {
 return $this->getRelated('translations', $arguments);
}

public function toArray($columns = null) {
 $output = parent::toArray($columns);

 $output['category_translations'] = $this->getTranslations([
 'columns' => [
 'category_translation_name',
 'category_translation_slug',
 'category_translation_lang'
]
])->toArray();

 return $output;
}

The API Module

[142]

All we have to do now is implement a new method in the Article manager. We call
that method from the Article controller, and we should have our first call ready.

Open modules/Core/Managers/ArticleManager.php and append the
following code:

public function restGet(array $parameters = null, array $options =
 null, $page = 1, $limit = 10) {
 $articles = $this->find($parameters);

 $result = $articles->filter(function($article){
 return $article->toArray();
 });

 $paginator = new \Phalcon\Paginator\Adapter\NativeArray([
 'data' => $result,
 'limit' => $limit,
 'page' => $page
]);

 $data = $paginator->getPaginate();

 if ($data->total_items > 0) {
 return $data;
 }

 if (isset($parameters['bind']['id'])) {
 throw new \Exception('Not Found', 404);
 } else {
 throw new \Exception('No Content', 204);
 }
}

You will see that the method name is restGet. I like to append the rest prefix to my
methods that are strictly used for APIs. It is a personal preference; you can use any
naming conventions for your projects.

Chapter 5

[143]

The restGet() method will throw exceptions. If we request a list of articles and the
request is successful but we don't have the articles in the database, we use HTTP
code 204. In simple words, it means, Your request was okay, but I have no content. We
use HTTP 404 (not found) if we try to get an article by ID but that article does not
exist in our database.

The final step is to call this method from our controller. Open modules/Api/
Controllers/ArticlesController.php and update the listAction() method
with the following code:

public function listAction() {
 try {
 $manager = $this->getDI()->get('core_article_manager');
 $page = $this->request->getQuery('p', 'int', 0);

 $st_output = $manager->restGet([], [], $page);

 return $this->render($st_output);
 } catch (\Exception $e) {
 return $this->render([
 'code' => $e->getCode(),
 'message' => $e->getMessage()
], $e->getCode());
 }
}

That's it! From your favorite API client, make a GET request to http://learning-
phalcon.localhost/api/v1/articles, or do it from the command line with
CURL:

$ curl -i -X GET \

 'http://learning-phalcon.localhost/api/v1/articles'

The API Module

[144]

If you did everything well, you should be able to see a response similar to what is
presented in the following screenshot:

We now have all of the information needed to render the most common data for an
article. Consider, for example, if you are going to get this data with jQuery, it is easy:

$.get('http://learning-phalcon.localhost/api/v1/articles',
function(data){
 // render a list with articles
});

Chapter 5

[145]

You can also append the page number in your request like this: http://learning-
phalcon.localhost/api/v1/articles?p=2.

Let's continue with our CRUD operations as follows:

1. We will now create a service to retrieve a single article. Open the
routing.php file from the api module, and append the following
route to the $articles group:
$articles->addGet('/{id}', array(
 'module' => 'api',
 'controller' => 'articles',
 'action' => 'get'
));

2. Then, we add the get() method to ArticlesController.php:
public function getAction($id) {
 try {
 $manager = $this->getDI()->get('core_article_manager');

 $st_output = $manager->restGet([
 'id = :id:',
 'bind' => [
 'id' => $id
],
]);

 return $this->render($st_output);
 } catch (\Exception $e) {
 return $this->render([
 'code' => $e->getCode(),
 'message' => $e->getMessage()
], $e->getCode());
 }
}

That's it! You can now request an article that exists in your database, and you should
get exactly the same structure. Also, the items key will contain only this article. In
my case, it was the article with the ID equal to 6:

$ curl -i -X GET 'http://learning-phalcon.localhost/api/v1/articles/6'

The API Module

[146]

If you request a non-existing article, you should get a response similar to what is
shown in this screenshot:

Next, we are going to implement the update method for an article as follows:

1. First, we need to add the routing information. Open modules/Api/Config/
routing.php and append the following code:
$articles->addPut('/{id}', array(
 'module' => 'api',
 'controller' => 'articles',
 'action' => 'update'
));

Note that we use PUT, the recommended method for
updating resources.

2. Create a new method named updateAction() in ArticlesController.php
with the following code:

public function updateAction($id) {
 try {
 $manager = $this->getDI()->get('core_article_manager');

 if ($this->request->getHeader('CONTENT_TYPE') ==
 'application/json') {
 $data = $this->request->getJsonRawBody(true);
 } else {
 $data = [$this->request->getPut()];
 }

 if (count($data[0]) == 0) {
 throw new \Exception('Please provide data', 400);
 }

 $result = $manager->restUpdate($id, $data);

Chapter 5

[147]

 return $this->render($result);
 } catch (\Exception $e) {
 return $this->render([
 'code' => $e->getCode(),
 'message' => $e->getMessage()
], $e->getCode());
 }
}

In updateAction(), we check whether the content-type header is of the
application/json type. If it is, we call getJsonRawBody() from the request
object. The true Boolean parameter means that we force decoding as an
array. If the data is received via a form, we will make use of the getPut()
method.

3. Submitting data as a JSON body is the best approach from my point of view.
Using jQuery, you can do this very simply, as follows:
var data = [{ "article_is_published" : 1 }];
$.ajax({
 type: "PUT",
 url: "/api/v1/articles/6",
 processData: false,
 contentType: 'application/json',
 data: JSON.stringify(data),
 success: function(response) {
 console.log(response);
 }
});

Now, let's see how our restUpdate() method looks. Open ArticleManager.php
and add the following code:

public function restUpdate($id, $data) {
 $article = Article::findFirstById((int)$id);

 if (!$article) {
 throw new \Exception('Not found', 404);
 }

 $article->setArticleIsPublished($data[0][
 'article_is_published']);

 if (false === $article->update()) {
 foreach ($article->getMessages() as $message) {
 throw new \Exception($message->getMessage(), 500);

The API Module

[148]

 }
 }
 return $article->toArray();
}

As you can see, for now, we are going to update only one field:
article_is_published. If the article has been successfully updated, you will
get the new update article as a response (check out the following screenshot).
Now let's test this:

$ curl -i -X PUT -H "Content-Type:application/json" -d '[{"article_is_pu
blished": 0}]' 'http://learning-phalcon.localhost/api/v1/articles/6'

Chapter 5

[149]

If we don't provide any data, we will get a 400 Bad Request message, like this:

Well done! So far, we have exposed a service with three methods: GET for a list of
articles, GET for a single article, and PUT for updating an article.

We will continue developing the remaining two methods: DELETE (for deleting) and
POST (for creation). Let's start with the easier one, which is DELETE. To do so, let's
perform the following steps:

1. Open the API routing file and append the following code:
$articles->addDelete('/{id}', array(
 'module' => 'api',
 'controller' => 'articles',
 'action' => 'delete'
));

2. Next, we create a method named deleteAction() in
ArticlesController.php:
public function deleteAction($id) {
 try {
 $manager = $this->getDI()->get('core_article_manager');

 $st_output = $manager->restDelete($id);

 return $this->render($st_output);
 } catch (\Exception $e) {
 return $this->render([
 'code' => $e->getCode(),
 'message' => $e->getMessage()
], $e->getCode());
 }
}

The API Module

[150]

3. Finally, create the restDelete() method in ArticlesManager.php:
public function restDelete($id) {
 $article = Article::findFirstById((int)$id);

 if (!$article) {
 throw new \Exception('Not found', 404);
 }

 if (false === $article->delete()) {
 foreach ($article->getMessages() as $message) {
 throw new \Exception($message->getMessage(), 500);
 }
 }

 return true;
}

Before testing, we must make a small change to the Articles.php model by
adding \Phalcon\Mvc\Model\Relation::ACTION_CASCADE to the foreign key for
translations, otherwise, we will get an error message saying Record is referenced by
model App\\Core\\Models\\ArticleTranslation. This change is needed because
of the existing relation between articles and translations. When we delete an article,
its translation will be automatically deleted.

Open modules/Core/Models/Article.php file and replace the relation for
translations with the following code snippet:

$this->hasMany('id', 'App\Core\Models\ArticleTranslation',
 'article_translation_article_id', array(
 'alias' => 'translations',
 'foreignKey' => array(
 'action' => \Phalcon\Mvc\Model\Relation::ACTION_CASCADE
)
));

We can now test our code, and the result should be similar to what is shown in
the following screenshot. If the article was not found, you will receive a 404 error
instead of 200:

$ curl -i -X DELETE 'http://learning-phalcon.localhost/api/v1/articles/1'

Chapter 5

[151]

That's it! You can delete articles by simply making a DELETE request to the right URL.

Now, let's continue with the implementation of POST (to create an article). To do so,
perform the following steps:

1. Open modules/Api/Config/routing.php and add this code:
$articles->addPost('', array(
 'module' => 'api',
 'controller' => 'articles',
 'action' => 'create'
));

2. Implement a createAction() method in ArticlesController.php:
public function createAction() {
 try {
 $manager = $this->getDI()->get(
 'core_article_manager');

 if ($this->request->getHeader('CONTENT_TYPE') ==
 'application/json') {
 $data = $this->request->getJsonRawBody(true);
 } else {
 $data = $this->request->getPost();
 }

 if (count($data) == 0) {
 throw new \Exception('Please provide data', 400);
 }

 $st_output = $manager->restCreate($data);

 return $this->render($st_output);
 } catch (\Exception $e) {
 return $this->render([
 'code' => $e->getCode(),
 'message' => $e->getMessage()
], $e->getCode());
 }
}

The API Module

[152]

3. The manager (ArticleManager.php) will contain a new method named
restCreate(), but we will also update the create() method:
public function restCreate($data) {
 $result = $this->create($data);

 return $result->toArray();
}

public function create($input_data) {
 $default_data = array(
 'article_user_id' => 1,
 'article_is_published' => 0,
 'translations' => array(
 'en' => array(
 'article_translation_short_title' => 'Short title',
 'article_translation_long_title' => 'Long title',
 'article_translation_description' => 'Description',
 'article_translation_slug' => '',
 'article_translation_lang' => 'en',
)
),
 'categories' => array(),
 'hashtags' => array(),
);

 $data = array_merge($default_data, $input_data);

 $article = new Article();
 $article->setArticleIsPublished($data[
 'article_is_published']);

 $articleTranslations = array();

 foreach ($data['translations'] as $lang => $translation){
 $tmp = new ArticleTranslation();
 $tmp->assign($translation);
 array_push($articleTranslations, $tmp);
 }

 if (count($data['categories']) > 0) {
 $article->categories = Category::find([

Chapter 5

[153]

 "id IN (".implode(',', $data['categories']).")"
])->filter(function($category){
 return $category;
 });
 }

 if (count($data['hashtags']) > 0) {
 $article->hashtags = Hashtag::find([
 "id IN (".implode(',', $data['hashtags']).")"
])->filter(function($hashtag){
 return $hashtag;
 });
 }

 $user = User::findFirstById((int) $data[
 'article_user_id']);

 if (!$user) {
 throw new \Exception('User not found', 404);
 }

 $article->setArticleUserId($data['article_user_id']);

 $article->translations = $articleTranslations;

 return $this->save($article, 'create');
}

Let's test the new code. Create a JSON body content and the POST method data
to /api/v1/articles as follows:

$ curl -i -X POST -H "Content-Type:application/json" -d '{"article_
user_id":12,"article_is_published":1,"translations":{"en":{"artic
le_translation_short_title":"Test API create","article_translation_
long_title":"Test API create","article_translation_description":"Test
API create description","article_translation_slug":"test-api-
create","article_translation_lang":"en"}},"categories":[9,16],"hashta
gs":[1]}' 'http://learning-phalcon.localhost/api/v1/articles'

The API Module

[154]

Don't forget to replace the user ID, and the IDs of the categories and hashtags that
you have in your database. The result should be a newly created article, similar to
the following screenshot:

Following the same rule as followed in Articles, you should try to develop the rest
of the endpoints (categories, hashtags, and users). If you don't feel comfortable with
it, you can always check out the source code for this chapter.

Chapter 5

[155]

Securing an API
In general, when you put something online, it is not secure anymore. Virtually
anything can be hacked. What can you do in this case? Well, if you are not a
billionaire who can afford huge investments in human resources and security
software and hardware, all that you can do is try to make the attackers' life a bit
rough and always monitor your stuff.

There are hundreds of books about security and securing an API. We will try to
implement a few basic security methods that can help you avoid a disaster.

So what are these methods? Here is a list:

• Always use SSL
• Add an API key for extra protection
• Limit the number of requests per second from the same IP
• Limit access to resources, such as DELETE, PUT, POST, for authenticated users

Using SSL
There is no need to elaborate on SSL. Using a secure connection is how you need to
go about it. SSL certificates are quite cheap these days. For example, the guys from
http://www.namecheap.com sell the multi-domain SSL certificate for 80 EUR
per year.

Adding an API key for extra protection
We will create a white list of API keys in our global configuration. We will append
an APIKEY header to all our requests and check it against the values from config. If
the API key does not match, the server will respond with a 403 Forbidden error.
If you use this key in a JavaScript environment, everyone will be able to see it, but
at least you can take control and change the API key in a second. Let's implement
the protection:

1. Open the config/config.php global configuration file and append this code
to the $config array:
'apiKeys' => array(

'6y825Oei113X3vbz78Ck7Fh7k3xF68Uc0lki41GKs2Z73032T4z8m1I81648JcrY'
)

The API Module

[156]

2. Create a new directory named Listeners in modules/Core/, and create a
new file named ApiListener.php with the following content:
<?php
namespace App\Core\Listeners;

class ApiListener extends \Phalcon\Mvc\User\Plugin{
 public function beforeExecuteRoute($event, $dispatcher) {
 $hasValidKey = $this->checkForValidApiKey();

 if (false === $hasValidKey) {
 return false;
 }
 }

 private function checkForValidApiKey() {
 $apiKey = $this->request->getHeader('APIKEY');

 if (!in_array($apiKey, $this->config->apiKeys->
 toArray())) {
 $this->response->setStatusCode(403, 'Forbidden');
 $this->response->sendHeaders();
 $this->response->send();
 $this->view->disable();

 return false;
 }

 return true;
 }
}

3. Finally, inject this service into dispatcher. Open modules/Api/service.php
and replace the $di['dispatcher'] array with this:
$di['dispatcher'] = function () use ($di) {
 $eventsManager = $di->getShared('eventsManager');

 $apiListener = new \App\Core\Listeners\ApiListener();
 $eventsManager->attach('dispatch', $apiListener);

 $dispatcher = new Phalcon\Mvc\Dispatcher();
 $dispatcher->setEventsManager($eventsManager);
 $dispatcher->setDefaultNamespace(
 "App\Api\Controllers");

 return $dispatcher;
};

Chapter 5

[157]

If you make a request using the following command line, you will notice that all
you get is a 403 Forbidden error:

$ curl -i -X GET 'http://learning-phalcon.localhost/api/v1/articles/6'

The 403 Forbidden error is as presented in the following screenshot:

This happened because you didn't provide the APIKEY header. All you need to do is
provide the correct header with the correct key, and you will get the article:

$ curl -i -X GET -H "APIKEY:6y825Oei113X3vbz78Ck7Fh7k3xF68Uc0lki41GK
s2Z73032T4z8m1I81648JcrY" 'http://learning-phalcon.localhost/api/v1/
articles/6'

This is it! Of course, this method can be improved, but that is beyond the scope of
this book. Additionally, you can map API keys with clients and/or IP addresses,
and so on.

Limiting the number of requests per second
from the same IP
We will use a simple solution from Redis for limiting the number of requests per
second from the same IP. Let's assume that we want a limit of five requests per
second from the same IP:

1. Open ApiListener.php and add the following method:
private function checkIpRateLimit() {
 $ip = $this->request->getClientAddress();
 $time = time();
 $key = $ip.':'.$time;

 $redis = $this->getDI()->get('redis');
 $current = $redis->get($key);

 if ($current != null && $current > 5) {

 $this->response->setStatusCode(429, 'Too Many Requests');
 $this->response->sendHeaders();
 $this->response->send();

The API Module

[158]

 $this->view->disable();

 return false;
 } else {
 $redis->multi();
 $redis->incr($key, 1);
 $redis->expire($key, 5);
 $redis->exec();
 }

 return true;
}

2. Then, update the beforeExecuteRoute() method with the following code:
public function beforeExecuteRoute($event, $dispatcher) {
 $hasValidKey = $this->checkForValidApiKey();
 $ipRateLimit = $this->checkIpRateLimit();

 if (false === $hasValidKey || false === $ipRateLimit) {
 return false;
 }
}

That's all! You can easily test it by replacing 5 with 2, and make some requests. You
will get a 429 response. You can use this method in conjunction with API keys and
users to limit the requests for a certain user.

Limiting access to resources such as
DELETE, PUT, and POST for authenticated
users
If you are going to expose your API, you need to be sure that only authenticated
users can access certain resources. This means that you shouldn't access these
resources from a public interface, for example, the frontend. A quick and convenient
solution would be to use another header (let's call it TOKEN) that will be used in
CRUD operations from the admin interface. Let's perform the following set of steps:

1. Here, we'll first add a new method, resourceWithToken(), in
ApiListener.php as follows, and then update beforeExecuteRoute()
method:
private function resourceWithToken() {
 if (in_array($this->dispatcher->getActionName(),
 ['update','delete','create'])) {

Chapter 5

[159]

 if ($this->request->getHeader('TOKEN') !=
 'mySecretToken') {
 $this->response->setStatusCode(405, 'Method Not
 Allowed');
 $this->response->sendHeaders();
 $this->response->send();
 $this->view->disable();

 return false;
 }

 return true;
 }
}

2. Append the following code to the beforeExecuteRoute() method:

if (false === $this->resourceWithToken()) {
 return false;
}

If you try POST, PUT, or DELETE, you will get a 405 error. From now on, you need
to append the header named TOKEN with the mySecretToken value, as shown
in this example:

$ curl -i -X PUT -H "Content-Type:application/json" -H "APIKEY:6
y825Oei113X3vbz8Ck7Fh7k3xF68Uc0lki41GKs2Z73032T4z8m1I81648JcrY" -H
"TOKEN:mySecretToken" -d '{"article_user_id":12,"article_is_publish
ed":1,"translations":{"en":{"article_translation_short_title":"Test API
create","article_translation_long_title":"Test API create","article_
translation_description":"Test API create description","article_
translation_slug":"test-api-create","article_translation_lang":"en"}},"c
ategories":[9,16],"hashtags":[1]}' 'http://learning-phalcon.localhost/
api/v1/articles/6'

Remember that this will not secure your API if you call it from a frontend using
JavaScript, because the value of the token will be visible to everyone.

There are hundreds of other solutions, and you should carefully study what is
needed. Also, securing your API is not enough. Securing the entire application,
plus the server (for example, by using firewalls), is important too. But just for the
purpose of this chapter, what we did should be enough to protect us from the
most common attacks.

Read more, document yourself, and ask for experts' opinions. Most of the time, what
seems to be a good solution for someone might not be a good solution for you.

The API Module

[160]

Documenting the API
Documentation is probably one of the most important things you should spend
time on. When I discovered Phalcon, the first thing that I did was to develop a
simple API. When I needed to create documentation for my API, I found myself in
a strange situation; there were just a few solutions out there, and most of them had
dependencies. This was back in the summer of 2013 or so.

So, I decided to create my own API documentation generator, without any
dependencies—just pure PHP. I am going to use this tool (it is publicly available on
GitHub at https://github.com/calinrada/php-apidoc) to create and generate
the API documentation for our project.

Installation
You should already have it, because I was using the extractor from it to generate
comments for the CLI tasks. If you missed it, you can do it in two easy steps:

$ php composer.phar require crada/php-apidoc

$ php composer.phar update

Usage
We'll perform a couple of steps to properly understand the usage:

1. Let's create a new CLI task named ApidocTask.php with the following
content:
<?php
use Crada\Apidoc\Builder;
use Crada\Apidoc\Exception;

class ApidocTask extends BaseTask {
 /**
 * @Description("Build API Documentation")
 * @Example("php apps/cli.php apidoc generate")
 */
 public function generateAction($params = null) {
 $classes = [
 'App\Api\Controllers\ArticlesController'
];

 try {
 $builder = new Builder($classes, __DIR__.'/../../
 docs/api', 'index.html');

Chapter 5

[161]

 $builder->generate();
 exec("ln -s ".__DIR__."/../../docs/api ".__DIR__."/
 ../../public/apidoc");
 $this->consoleLog('ok! : '.__DIR__.'/../../
 docs/api/index.html');

 } catch (Exception $e) {
 $this->consoleLog($e->getMessage(), 'red');
 }
 }
}

We are going to use annotation to document each method.

For additional information on this, check out
https://github.com/calinrada/php-
apidoc#usage and https://github.com/
calinrada/php-apidoc#available-methods.

2. Open ArticlesController.php and append the following content to the
listAction() method:
/**
 * @ApiDescription(section="Articles",
 description="Retrieve a
 list of articles")
 * @ApiMethod(type="get")
 * @ApiRoute(name="/articles")
 * @ApiParams(name="p", type="integer", nullable=true,
 description="Page number")
 * @ApiReturnHeaders(sample="HTTP 200 OK")
 * @ApiReturn(type="object", sample="{
 * 'items': [{
 * 'id':'int',
 * 'article_user_id':'int',
 * 'article_is_published':'int',
 * 'article_created_at':'string',
 * 'article_updated_at':'string',
 * 'article_translations':[{
 * 'article_translation_short_title':'string',
 * 'article_translation_long_title':'string',
 * 'article_translation_slug':'string',
 * 'article_translation_description':'string',
 * 'article_translation_lang':'string'
 * }],

The API Module

[162]

 * 'article_categories':[{
 * 'id':'int',
 * 'category_translations':[{
 * 'category_translation_name':'string',
 * 'category_translation_slug':'string',
 * 'category_translation_lang':'string'
 * }]
 * }],
 * 'article_hashtags':[{
 * 'id':'int',
 * 'hashtag_name':'string'
 * }],
 * 'article_author':{
 * 'user_first_name':'string',
 * 'user_last_name':'string',
 * 'user_email':'string'
 * }
 * }],
 * 'before':'int',
 * 'first':'int',
 * 'next':'int',
 * 'last':'int',
 * 'current':'int',
 * 'total_pages':'int',
 * 'total_items':'int',
 *}")
 */
public function listAction() {

}

Now switch to the command prompt and execute the following command line:

$ php modules/cli.php apidoc generate

Chapter 5

[163]

The task creates a new symlink in your public folder. Now you can access the API
documentation at http://learning-phalcon.localhost/apidoc/, and you should
be able to see exactly the same output as presented in the following screenshot:

It's time to close this chapter. Please take your time to read as much as possible about
developing APIs, especially secure APIs.

Summary
In this chapter, we discovered how easily and quickly we can develop an API. You
learned about the recommended practices and a few common ways of securing an
API. We covered new topics, such as route grouping and filtering results.

In the next chapters, we will switch layouts and JavaScript integration, but we will
continue to adapt, or change, things in the API, database, and models.

[165]

Assets, Authentication,
and ACL

We will make use of our Backoffice module for this chapter, since it will be the
second module that we will develop.

We will cover the following topics in this chapter:

• Assets management
• Developing an authentication system
• Securing the application using the Access Control List (ACL) component

Assets management
Before going further, I would like to introduce you to Phalcon's assets manager. This
is a very useful component when you need to handle lots of assets (in general, CSS
files, images, and JavaScript files). The service should already be available, and you
can access it via DI using the following command:

$manager = $this->assets;

Otherwise, you can use the following command:

$manager = $this->getDI()->get('assets');

Assets, Authentication, and ACL

[166]

I've heard some people complaining that after its installation, this service
does not exist. If you are using Phalcon version 1.3.* (and you should be),
then you wouldn't have any problem. If you use an older version, you
might need to inject this service into the DI:

$di->set('assets', function () {
 return new Phalcon\Assets\Manager();
}, true);

Now, let's open the main layout for the back office and do some changes. Open
modules/Backoffice/Views/Default/layout.volt and remove all the lines
containing stylesheetLink and javascriptInclude.

Now, between <head> and </head> sections, add the following code:

{{ assets.outputCss('headerCss') }}
{% block css %}{% endblock %}

And before the </body> close tag:

{{ assets.outputJs('footerJs') }}
{% block javascripts %} {% endblock %}

The outputJs and outputCss methods contain two parameters (headerCss and
footerJs). These parameters are the names of the assets collections that we are
going to build in a few moments. I have added two blocks (css and javascripts),
because we might want to add some special resource for a certain page.

Now, we are going to modify the BaseController.php file, and we will add
the assets. Open Backoffice/Controllers/BaseController.php and append
this code:

<?php
namespace App\Backoffice\Controllers;

class BaseController extends \Phalcon\Mvc\Controller
{
 public function afterExecuteRoute()
 {
 $this->buildAssets();
 }

 /**
 * Build the collection of assets
 */
 private function buildAssets()

Chapter 6

[167]

 {
 $assets_dir = __DIR__.'/../../../public/assets/';

 $this->assets
 ->collection('headerCss')
 ->addCss($assets_dir.'default/bower_components/
 bootstrap/dist/css/bootstrap.min.css')
 ->addCss($assets_dir.'default/css/lp.backoffice.css')
 ->setTargetPath('assets/default/prod/backoffice.css')
 ->setTargetUri(
 '../assets/default/prod/backoffice.css')
 ->join(true)
 ->addFilter(new \Phalcon\Assets\Filters\Cssmin());

 $this->assets
 ->collection('footerJs')
 ->addJs($assets_dir.'default/bower_components/jquery/dist/
 jquery.min.js')
 ->addJs($assets_dir.'default/bower_components/bootstrap/
 dist/js/bootstrap.min.js')
 ->addJs($assets_dir.'default/js/lp.js')
 ->setTargetPath('assets/default/prod/backoffice.js')
 ->setTargetUri('../assets/default/prod/backoffice.js')
 ->join(true)
 ->addFilter(new \Phalcon\Assets\Filters\Jsmin());
 }
}

You can see the new private method buildAssets(), where we create the asset
groups and use special filters to minify them. After that, we call this method in
afterExecuteRoute(). You can create your own custom filters, if you want, by
extending Phalcon\Assets\FilterInterface class. Note that the output goes
to a new folder named prod. We must create this directory and give it the proper
permissions:

$ cd public/assets/default
$ mkdir prod && chmod 777 prod

If you handle many assets, you might want to save a list in a config array or
something similar. If you use assets from a CDN, you need to pass some special
parameter, for example, something like the following.

$js->addJs('cnd.mysite.com/jquery.js', true, false);
// An external resource that does not need filtering.

Assets, Authentication, and ACL

[168]

Before checking the result, we need to do two more things. First, remove any content
from the IndexController class to indexAction(). The final IndexController.
php file should look like this:

<?php
namespace App\Backoffice\Controllers;

class IndexController extends BaseController
{
 public function indexAction()
 {
 }
}

Then, open the template for IndexAction() that can be found at Backoffice/
Views/Default/index/index.volt, remove any content from it, and append
this code to it:

{% extends 'layout.volt' %}

{% block body %}

Welcome, User !

{% endblock %}

This is it. You should now be able to access http://www.learning-phalcon.
localhost/backoffice, and the result should be exactly the same as that shown in
the following screenshot:

Fig. 1

This is pretty much everything about assets manager, which is a simple, yet powerful
and useful tool.

Chapter 6

[169]

You can see an example of custom filters in the official documentation at
http://docs.phalconphp.com/en/latest/reference/assets.
html#assets-management.

Developing an authentication system
There are always parts within your application that need to be protected. In this
section, we will implement an authentication system that is partially based on the
user tables that we created in the previous chapters, and we will use Phalcon's
ACL component.

We are not going to reinvent the wheel, so parts of the HTML code are taken from
the official Bootstrap website (http://getbootstrap.com). In addition, you can find
parts of the PHP code in a plugin that I developed a long time ago and which can be
found at https://github.com/calinrada/PhalconUserPlugin. That being said,
let's start developing our authentication system.

The database structure
We will add a few more tables for users, and we will create new ones for the ACL
according to the example found at https://github.com/phalcon/incubator/
tree/master/Library/Phalcon/Acl/Adapter because we will use the database
adapter. The incubator page contains a structure for the SQLite database, but we are
going to "convert it" for MySQL. The new user_* tables are extracted as follows:

CREATE TABLE IF NOT EXISTS `user_failed_logins` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `user_id` int(11) DEFAULT NULL,

 `ip_address` char(15) CHARACTER SET utf8 COLLATE
 utf8_unicode_ci NOT NULL,

 `attempted` int(11) unsigned NOT NULL,

 PRIMARY KEY (`id`),

 KEY `usersId` (`user_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;

CREATE TABLE IF NOT EXISTS `user_remember_tokens` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `user_id` int(11) NOT NULL,

 `token` char(32) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT
 NULL,

Assets, Authentication, and ACL

[170]

 `user_agent` varchar(255) CHARACTER SET utf8 COLLATE
 utf8_unicode_ci DEFAULT NULL,

 `created_at` int(11) NOT NULL,

 PRIMARY KEY (`id`),

 KEY `token` (`token`),

 KEY `user_id` (`user_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin AUTO_INCREMENT=1 ;

CREATE TABLE IF NOT EXISTS `user_success_logins` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `user_id` int(11) NOT NULL,

 `ip_address` char(15) CHARACTER SET utf8 COLLATE utf8_unicode_ci
 NOT NULL,

 `user_agent` varchar(255) CHARACTER SET utf8 COLLATE
 utf8_unicode_ci NOT NULL,

 `created_at` datetime NOT NULL,

 PRIMARY KEY (`id`),

 KEY `usersId` (`user_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin AUTO_INCREMENT=1 ;

ALTER TABLE `user_failed_logins`

 ADD CONSTRAINT `user_failed_logins_ibfk_1`
 FOREIGN KEY (`user_id`) REFERENCES `user` (`id`) ON DELETE
 CASCADE ON UPDATE NO ACTION;

ALTER TABLE `user_remember_tokens`

 ADD CONSTRAINT `user_remember_tokens_ibfk_1`
 FOREIGN KEY (`user_id`) REFERENCES `article_translation` (`id`)
 ON DELETE CASCADE ON UPDATE NO ACTION;

ALTER TABLE `user_success_logins`

 ADD CONSTRAINT `user_success_logins_ibfk_1`
 FOREIGN KEY (`user_id`) REFERENCES `user` (`id`) ON DELETE
 CASCADE ON UPDATE NO ACTION;

And the new acl_* tables can look like this:

CREATE TABLE IF NOT EXISTS `acl_access_list` (
 `roles_name` varchar(32) COLLATE utf8_unicode_ci NOT NULL,
 `resources_name` varchar(32) COLLATE utf8_unicode_ci NOT NULL,

Chapter 6

[171]

 `access_name` varchar(32) COLLATE utf8_unicode_ci NOT NULL,
 `allowed` smallint(3) NOT NULL,
 PRIMARY KEY (`roles_name`,`resources_name`,`access_name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

CREATE TABLE IF NOT EXISTS `acl_resources` (
 `name` varchar(32) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT
NULL,
 `description` varchar(255) CHARACTER SET utf8 COLLATE utf8_unicode_
ci DEFAULT NULL,
 PRIMARY KEY (`name`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE IF NOT EXISTS `acl_resources_accesses` (
 `resources_name` varchar(32) COLLATE utf8_unicode_ci NOT NULL,
 `access_name` varchar(32) COLLATE utf8_unicode_ci NOT NULL,
 PRIMARY KEY (`resources_name`,`access_name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

CREATE TABLE IF NOT EXISTS `acl_roles` (
 `name` varchar(32) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT
NULL,
 `description` varchar(255) CHARACTER SET utf8 COLLATE utf8_unicode_
ci DEFAULT NULL,
 PRIMARY KEY (`name`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE IF NOT EXISTS `acl_roles_inherits` (
 `roles_name` varchar(32) CHARACTER SET utf8 COLLATE utf8_unicode_ci
NOT NULL,
 `roles_inherit` varchar(32) CHARACTER SET utf8 COLLATE utf8_unicode_
ci NOT NULL,
 PRIMARY KEY (`roles_name`,`roles_inherit`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Models
Now that we have the DB structure, we need to generate the models for the newly
created user_* tables. There is really no point in filling pages with complete models
because for now, they will contain only getters and setters. The sort version of our
models (without getters and setters) is this:

<?php
namespace App\Core\Models;
class UserFailedLogins extends Base

Assets, Authentication, and ACL

[172]

{
 public function getSource()
 {
 return 'user_failed_logins';
 }
}

<?php
namespace App\Core\Models;
class UserSuccessLogins extends Base
{
 public function getSource()
 {
 return 'user_success_logins';
 }
}

<?php
namespace App\Core\Models;
class UserRememberTokens extends Base
{
 public function getSource()
 {
 return 'user_remember_tokens';
 }
}

You can add the getters and setters on your own or check the source code for
this chapter.

Next, we will add the relations to the User models so that we can have quick access
to the data from these new tables. Open App\Core\Models\User.php and append
this code to the initialize() method:

$this->hasMany('id', 'App\Core\Models\UserFailedLogins', 'user_id',
array(
 'alias' => 'failedLogins',
 'foreignKey' => array(
 'action' => \Phalcon\Mvc\Model\Relation::ACTION_CASCADE
)
));

$this->hasMany('id', 'App\Core\Models\UserSuccessLogins',
 'user_id', array(
 'alias' => 'successLogins',

Chapter 6

[173]

 'foreignKey' => array(
 'action' => \Phalcon\Mvc\Model\Relation::ACTION_CASCADE
)
));

$this->hasMany('id', 'App\Core\Models\UserRememberTokens',
 'user_id', array(
 'alias' => 'rememberTokens',
 'foreignKey' => array(
 'action' => \Phalcon\Mvc\Model\Relation::ACTION_CASCADE
)
));

As for the acl_* tables, for now, we don't need to create any models. The acl
database adapter will handle most of the data from them. We can also add data
manually or create a task for it. We have database tables and models. Next, we
will create an authentication component that will interact with them.

To do this, navigate to modules/Core/ directory and create a new folder
named Security:

$ cd modules/Core

$ mkdir Security

In the security folder, create a new file named Auth.php and add the following
content:

<?php
namespace App\Core\Security;

use App\Core\Models\User,
 App\Core\Models\UserRememberTokens,
 App\Core\Models\UserSuccessLogins,
 App\Core\Models\UserFailedLogins;

class Auth extends \Phalcon\Mvc\User\Component
{
 /**
 * Checks the user credentials
 *
 * @param array $credentials
 * @return boolean
 */
 public function check($credentials)
 {

Assets, Authentication, and ACL

[174]

 $user = User::findFirstByUserEmail(strtolower(
 $credentials['email']));
 if ($user == false) {
 $this->registerUserThrottling(null);
 throw new \Exception('Wrong email/password
 combination');
 }

 if (!$this->security->checkHash($credentials['password'],
 $user->getUserPassword())) {
 $this->registerUserThrottling($user->getId());
 throw new \Exception('Wrong email/password
 combination');
 }

 $this->checkUserFlags($user);
 $this->saveSuccessLogin($user);

 if (isset($credentials['remember'])) {
 $this->createRememberEnviroment($user);
 }

 $this->setIdentity($user);
 }

 /**
 * Set identity in session
 *
 * @param object $user
 */
 private function setIdentity($user)
 {
 $st_identity = [
 'id' => $user->getId(),
 'email' => $user->getUserEmail(),
 'name' => $user->getUserFirstName().
 ' '.$user->getUserLastName(),
 'roles' => [
 'Administrator'
]
];

 $this->session->set('identity', $st_identity);
 }

Chapter 6

[175]

 /**
 * Login user - normal way
 *
 * @param App\Core\Forms\UserSigninForm $form
 * @return \Phalcon\Http\ResponseInterface
 */
 public function signin($form)
 {
 if (!$this->request->isPost()) {
 if ($this->hasRememberMe()) {
 return $this->loginWithRememberMe();
 }
 } else {
 if ($form->isValid($this->request->getPost()) ==
 false) {
 foreach ($form->getMessages() as $message) {
 $this->flashSession->error($message->
 getMessage());
 }
 } else {
 $this->check([
 'email' => $this->request->getPost(
 'email'),
 'password' => $this->request->getPost(
 'password'),
 'remember' => $this->request->getPost(
 'remember')
]);

 $redirect = $this->getDI()->get('config')->
 auth->redirect;

 return $this->response->redirect($redirect->
 success);
 }
 }

 return false;
 }

 /**
 * Creates the remember me environment settings the related
 cookies and generating tokens
 */
 public function saveSuccessLogin($user)

Assets, Authentication, and ACL

[176]

 {
 $successLogin = new UserSuccessLogins();
 $successLogin->setUserId($user->getId());
 $successLogin->setIpAddress($this->request->
 getClientAddress());
 $successLogin->setUserAgent($this->request->
 getUserAgent());

 if (!$successLogin->save()) {
 $messages = $successLogin->getMessages();
 throw new \Exception($messages[0]);
 }
 }

 /**
 * Implements login throttling
 * Reduces the efectiveness of brute force attacks
 *
 * @param int $user_id
 */
 public function registerUserThrottling($user_id)
 {
 $failedLogin = new UserFailedLogins();
 $failedLogin->setUserId($user_id == null ?
 new \Phalcon\Db\RawValue('NULL') : $user_id);
 $failedLogin->setIpAddress($this->request->
 getClientAddress());
 $failedLogin->setAttempted(time());
 $failedLogin->save();

 $attempts = UserFailedLogins::count([
 'ip_address = ?0 AND attempted >= ?1',
 'bind' => [
 $this->request->getClientAddress(),
 time() - 3600 * 6
]
]);

 switch ($attempts) {
 case 1:
 case 2:
 // no delay
 break;
 case 3:
 case 4:

Chapter 6

[177]

 sleep(2);
 break;
 default:
 sleep(4);
 break;
 }
 }

 /**
 * Check if the user is signed in
 *
 * @return boolean
 */
 public function isUserSignedIn()
 {
 $identity = $this->getIdentity();

 if (is_array($identity)) {
 if (isset($identity['id'])) {
 return true;
 }
 }

 return false;
 }

 /**
 * Checks if the user is banned/inactive/suspended
 *
 * @param App\Core\Models\User $user
 */
 public function checkUserFlags($user)
 {
 if (false === $user->getUserIsActive()) {
 throw new \Exception('The user is inactive');
 }
 }

 /**
 * Returns the current identity
 *
 * @return array
 */
 public function getIdentity()

Assets, Authentication, and ACL

[178]

 {
 return $this->session->get('identity');
 }

 /**
 * Removes the user identity information from session
 */
 public function remove()
 {
 if ($this->cookies->has('RMU')) {
 $this->cookies->get('RMU')->delete();
 }

 if ($this->cookies->has('RMT')) {
 $this->cookies->get('RMT')->delete();
 }

 $this->session->remove('identity');
 }

 public function getUser()
 {
 $identity = $this->session->get('identity');

 if (isset($identity['id'])) {
 $user = User::findFirstById($identity['id']);
 if ($user == false) {
 throw new \Exception('The user does not exist');
 }

 return $user;
 }

 return false;
 }

}

Please note that this is not the complete code due to its size. Please check
the source code for this chapter. You can see that this file is extending \
Phalcon\Mvc\User\Component. This means that we already have
access to the DI, so we don't have to inject any services because they are
already available.

Chapter 6

[179]

Let's analyze a few of the methods from the Auth component a little bit:

• registerUserThrottling($user_id): This method logs any failed login
attempts with a time stamp, and it checks the number of attempts for a user
from a certain IP. If the number of attempts is greater than three, we will
delay the response. This is a simple method to reduce the effectiveness of
brute force attacks.

• checkUserFlags($user): This method checks whether or not a user is
active. Here, you can add other checks, for example, whether a user is
banned or temporarily suspended.

• saveSuccessLogin($user): This method saves all the successful logins of a
user and contains the user ID, IP, user agent, and the date and time.

• createRememberEnviroment($user): This method (check the source code
for Chapter 6) creates tokens that we will hold in the database and some
cookies. If this operation is successful, next time, we can auto login the user,
using this information.

• setIdentity($user): This method simply saves an array containing
information about the current authenticated user in the session. We can
retrieve this information by using the getIdentity() method or directly
from the session by calling $session->get('identity').

• check($credentials): This method is the most important one. Here, we
first check whether there is any user in our database, registered with the
e-mail that we provided. If the user exists, we compare their password
with the one that is provided, by making use of the checkHash() security
component. After that, we check whether the user is active, save a log in
successful login table, create a Remember me environment, and then save the
information of the user in the session, by calling the setIdentity() method.

• signin($form): We use this method to log in the user with the help of a
form (and we will create this form in a few moments). If the form is valid, we
call the check() method to validate the credentials. The rest of the methods
are quite easy to understand.

We have the Auth component, but it is not available just yet. We need to add it to our
DI. Open modules/Backoffice/Config/services.php and add this code:

$di['auth'] = function () use ($di) {
 return new App\Core\Security\Auth();
};

Assets, Authentication, and ACL

[180]

Then, open the config.php file and append this code to the $module_config array:

 'auth' => array(
 'redirect' => array(
 'success' => 'index/index',
 'failure' => 'auth/signin',
),
),

The component is now active, and we can use it. We will create the templates, forms,
and controllers for a sign in action. Navigate to modules/Backoffice/Controllers
and create a new file named AuthController.php with the following content:

<?php
namespace App\Backoffice\Controllers;

use App\Core\Forms\UserSigninForm;

class AuthController extends BaseController
{
 public function signinAction()
 {
 $form = new UserSigninForm();

 if ($this->request->isPost()) {
 try {
 $this->auth->signin($form);
 } catch (\Exception $e) {
 $this->flash->error($e->getMessage());
 }
 }

 $this->view->signinForm = $form;
 }

 public function signoutAction()
 {
 $this->auth->remove();

 return $this->response->redirect('auth/signin');
 }
}

Chapter 6

[181]

We don't have the UserSinginForm. Navigate to modules/Core/ directory and
create a new folder named Forms:

$ cd modules/Core

$ mkdir Forms

In the Forms directory, create a new file named UserSigninForm.php with the
following content:

<?php
namespace App\Core\Forms;

use Phalcon\Forms\Form;
use Phalcon\Forms\Element\Text;
use Phalcon\Forms\Element\Password;
use Phalcon\Forms\Element\Submit;
use Phalcon\Forms\Element\Check;
use Phalcon\Forms\Element\Hidden;
use Phalcon\Validation\Validator\PresenceOf;
use Phalcon\Validation\Validator\Email;
use Phalcon\Validation\Validator\Identical;

class UserSigninForm extends Form
{
 public function initialize()
 {
 $email = new Text('email', array(
 'placeholder' => 'Email',
));

 $email->addValidators(array(
 new PresenceOf(array(
 'message' => 'The e-mail is required',
)),
 new Email(array(
 'message' => 'The e-mail is not valid',
)),
));

 $this->add($email);

 //Password
 $password = new Password('password', array(
 'placeholder' => 'Password',
));

Assets, Authentication, and ACL

[182]

 $password->addValidator(
 new PresenceOf(array(
 'message' => 'The password is required',
))
);

 $this->add($password);

 //Remember
 $remember = new Check('remember', array(
 'value' => 'yes',
));

 $remember->setLabel('Remember me');

 $this->add($remember);

 //CSRF (Cross-Site Request Forgery)
 $csrf = new Hidden('csrf');

 $csrf->addValidator(
 new Identical(array(
 'value' => $this->security->getSessionToken(),
 'message' => 'CSRF validation failed',
))
);

 $this->add($csrf);

 $this->add(new Submit('signin', array(
 'class' => 'btn btn-lg btn-primary btn-block',
)));
 }
}

You might have noticed that we are using CSRF fields in order to prevent Cross-Site
Request Forgery attacks. If you have no idea what this is, please take a few moments
and read about it at https://www.owasp.org/index.php/Cross-Site_Request_
Forgery_(CSRF)_Prevention_Cheat_Sheet.

Chapter 6

[183]

Next, we will create the templates. We will use the example template from http://
getbootstrap.com/examples/signin/, but we will adapt it to our needs. Since
our main template, layout.volt, contains information that would be available just
to authenticated users, we will clone this template and clean it so that we can use
it for our sign in action and other actions that requires simple templates. Navigate
to modules/Backoffice/Views/Default/ and duplicate the layout.volt file by
renaming it to layout_simple.volt:

$ cd modules/Backoffice/Views/Default/

$ cp layout.volt layout_simple.volt

Then, remove the code from layout_simple.volt and append the new cleaned code:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>{% block pageTitle %}Learning Phalcon{% endblock %}</title>

{{ assets.outputCss('headerCss') }}
{% block css %}{% endblock %}

<!--[if lt IE 9]>
 <script src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.
min.js"></script>
 <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.
js"></script>
<![endif]-->
</head>
<body>
 <div class="container-fluid">
 <div class="row">
 <div class="col-sm-12 main">
 {% block body %}

 {% endblock %}
 </div>
 </div>
 </div>

 {{ assets.outputJs('footerJs') }}
 {% block javascripts %} {% endblock %}
</body>
</html>

Assets, Authentication, and ACL

[184]

The final step is to create the template for signingAction(). Navigate to modules/
Backoffice/Views/Default and create a new folder named auth. After that,
in the auth folder, create a file named signin.volt with the following content:

{% extends 'layout_simple.volt' %}

{% block pageTitle %}Sign in{% endblock %}

{% block css %}

 {{ assets.outputCss('signin') }}

{% endblock %}

{% block body %}

<form class="form-signin" method="post" action="">

 {{ content() ~ flashSession.output() }}

 <h2 class="form-signin-heading">Sign in</h2>

 <label for="inputEmail" class="sr-only">Email address</label>

 {{ signinForm.render('email', {'class':'form-control',
 'required':true, 'autofocus':true, 'type':'email'}) }}

 <label for="inputPassword" class="sr-only">Password</label>

 {{ signinForm.render('password', {'class':'form-control',
 'required':true}) }}

 <div class="checkbox">

 <label>

 {{ signinForm.render('remember') }} Remember me

 </label>

 </div>

 {{ signinForm.render('signin', {'value':'Sign in'}) }}

 {{ signinForm.render('csrf', {'value':security.getToken()}) }}

</form>

{% endblock %}

The signin.volt template extends the newly created layout_simple.volt.
Note the new css block. We have added a new css group named signin. We will
enable it in a few moments. The {{ content() ~ flashSession.output() }}
line is a concatenation, because the flashSession component is not returned in
the content() file. So, if we output just the content() method, the flashSession
messages will not be seen.

Chapter 6

[185]

The template is missing a css file. We need to create it and add it to our assets
collection. To do this, navigate to public/assets/default/css/ and create
a new file named lp.backoffice.signin.css with the following content:

body {
 padding-top: 40px;
 padding-bottom: 40px;
 background-color: #eee;
}

.form-signin {
 max-width: 330px;
 padding: 15px;
 margin: 0 auto;
}

.form-signin .form-signin-heading,

.form-signin .checkbox {
 margin-bottom: 10px;
}

.form-signin .checkbox {
 font-weight: normal;
}

.form-signin .form-control {
 position: relative;
 height: auto;
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
 padding: 10px;
 font-size: 16px;
}

.form-signin .form-control:focus {
 z-index: 2;
}

.form-signin input[type="email"] {
 margin-bottom: -1px;
 border-bottom-right-radius: 0;
 border-bottom-left-radius: 0;
}

Assets, Authentication, and ACL

[186]

.form-signin input[type="password"] {
 margin-bottom: 10px;
 border-top-left-radius: 0;
 border-top-right-radius: 0;
}

Then, we add this file to our assets collection. Open modules/Backoffice/
Controllers/BaseController.php and append the following code to the
buildAssets() method:

$this->assets

 ->collection('signin')

 ->addCss($assets_dir.'default/css/lp.backoffice.signin.css')

 ->setTargetPath('assets/default/prod/backoffice.signin.css')

 ->setTargetUri('../assets/default/prod/backoffice.signin.css')

 ->addFilter(new \Phalcon\Assets\Filters\Cssmin());

This should be all. Our Backoffice module is not yet protected, but we can actually
do a signin action. Using your browser, go to http://www.learning-phalcon.
localhost/backoffice/auth/signin, and you should be able to see the exact
result that is shown in the following screenshot:

The Sign in page

Chapter 6

[187]

If you already have a user name, you can try to log in. If not, you can create a new
user using the task that we created in Chapter 4, Database Architecture, Models, and CLI
Applications:

$ php modules/cli.php user create John Doe john.doe@learning-phalcon.
localhost myPassw0rd 1 Barcelona 1985-03-25

This will create a user who has the e-mail address as john.doe@learning-phalcon.
localhost and the password as myPassw0rd. You can use these details to test the
form. On success, you will be redirected to index page, on failure; you will see some
error messages.

Now that we have a fully functional authentication system, we can secure the entire
application. For this, we will make use of Phalcon's Acl component.

Securing the application using the ACL
component
An ACL is very useful when you have users with different roles. For example, an
administrator should have unlimited access, but an editor should have access only
to the Articles section. We already have the database structure for the Acl, so we just
need to create some relations. First, we will create a new intermediate table named
user_roles that will hold information about each user's role. A user can have
many roles.

CREATE TABLE IF NOT EXISTS `user_role` (

 `user_id` int(11) NOT NULL,

 `role` varchar(32) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL,

 UNIQUE KEY `user_id_2` (`user_id`,`role`),

 KEY `role` (`role`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

ALTER TABLE `user_role`

 ADD CONSTRAINT `user_role_ibfk_2` FOREIGN KEY (`role`) REFERENCES `acl_
roles` (`name`) ON DELETE CASCADE ON UPDATE CASCADE,

 ADD CONSTRAINT `user_role_ibfk_1` FOREIGN KEY (`user_id`) REFERENCES
`user` (`id`) ON DELETE CASCADE ON UPDATE NO ACTION;

Assets, Authentication, and ACL

[188]

Another thing that we can do is get rid of the user_group table since we are not
going to use it anymore.

1. Delete the modules/Core/Models/UserGroup.php file.
2. Remove this code from User.php:

$this->hasOne('user_group_id', 'App\Core\Models\UserGroups',
 'id', array(

 'alias' => 'group',

 'reusable' => true,

));

3. Remove the column from user table and drop the user_group table:
ALTER TABLE `user` DROP FOREIGN KEY `user_ibfk_1` ;

ALTER TABLE `user` DROP `user_group_id` ;

DROP TABLE user_group;

4. Update the user create() method by navigating to Core/Managers/
UserManager.php, and remove the following lines of code:
$user_group_id = $this->findFirstGroupByName(
 $user_group_name)->getId();

$user->setUserGroupId($user_group_id);

5. On the create() method, replace the param $user_group_name = 'User'
with $user_role = 'Guest'. (We will implement the functionality in
a few moments.)

Now, let's create the models from user_role and acl_roles. Remember that I will
not write down the getters and the setters, just the important stuff.

<?php
namespace App\Core\Models;

class UserRole extends Base
{
 public function initialize()
 {
 $this->belongsTo('user_id', 'App\Core\Models\User', 'id',
 array(
 'foreignKey' => true,
 'reusable' => true,
 'alias' => 'user',
));

Chapter 6

[189]

 $this->belongsTo('user_role', 'App\Core\Models\AclRoles',
 'name', array(
 'foreignKey' => true,
 'reusable' => true,
 'alias' => 'role',
));
 }
}

<?php

namespace App\Core\Models;

class AclRoles extends Base
{
// Nothing important here for now, just getters and setters
}

We need to make some changes to the create() method from UserManager.php in
order to assign existing roles to a user. The new method should look like this:

 public function create($data, $user_role = 'Guest')
 {
 $security = $this->getDI()->get('security');

 $user = new User();
 $user->setUserFirstName($data['user_first_name']);
 $user->setUserLastName($data['user_last_name']);
 $user->setUserEmail($data['user_email']);
 $user->setUserPassword($security->hash(
 $data['user_password']));
 $user->setUserIsActive($data['user_is_active']);

 $o_acl_role = AclRoles::findFirstByName($user_role);

 if (!$o_acl_role) {
 throw new \Exception("Role $user_role does not
 exists");
 };

 $o_user_role[0] = new UserRole();
 $o_user_role[0]->setUserRole($user_role);

Assets, Authentication, and ACL

[190]

 $user->roles = $o_user_role;

 $profile = new UserProfile();
 $profile->setUserProfileLocation(
 $data['user_profile_location']);
 $profile->setUserProfileBirthday(
 $data['user_profile_birthday']);

 $user->profile = $profile;

 return $this->save($user);
 }

The reason why we define $o_user_role as array collection of objects is because the
relationship between a user and the roles is one-to-many. We also need to modify the
createAction() method from the UserTask.php. Open the file located at modules/
Tasks/UserTask.php and append the user's role as follows:

$user = $manager->create(array(

 'user_first_name' => $params[0],

 'user_last_name' => $params[1],

 'user_email' => $params[2],

 'user_password' => $params[3],

 'user_is_active' => $params[4],

 'user_profile_location' => $params[5],

 'user_profile_birthday' => $params[6],

), 'Guest');

We will use Guest by default. Later, we will create a method that will add and
remove roles for a user. Now, we are going to implement the security check. Switch
to modules/Core/Security folder and create a new file with the following content:

<?php
namespace App\Core\Security;

class Acl extends \Phalcon\Mvc\User\Plugin
{
 public function beforeDispatch(\Phalcon\Events\Event $event,
 \Phalcon\Mvc\Dispatcher $dispatcher)
 {
 $controller = $dispatcher->getControllerName();
 $action = $dispatcher->getActionName();

Chapter 6

[191]

 $redirect = $this->getDI()->get('config')->auth->
 redirect;

 if ($controller == 'auth' && $action == 'signin') {
 return true;
 }

 $account = $this->auth->getIdentity();

 if (!$account) {
 if ($this->getDI()->get('auth')->hasRememberMe()) {
 return $this->getDI()->get('auth')->
 loginWithRememberMe();
 }
 }

 if (!is_array($account) || !array_key_exists('roles',
 $account)) {

 $this->view->disable();
 $this->response->setStatusCode(403, 'Forbidden');
 $this->flashSession->error('You are not allowed to
 access this section');
 return $this->response->redirect($redirect->failure);
 }

 $acl = $this->getDI()->get('acl');

 foreach ($account['roles'] as $role) {
 if ($acl->isAllowed($role, $controller, $action) ==
 \Phalcon\Acl::ALLOW) {
 return true;
 }
 }

 $this->view->disable();
 $this->response->setStatusCode(403, 'Forbidden');
 return $this->response->redirect($redirect->failure);
 }
}

Assets, Authentication, and ACL

[192]

Basically, using the beforeDispatch() method, we check for what the user is
requesting, whether it is authenticated, and whether the role that they have allows
them to access a certain resource. We need to enable the Acl service and attach the
Acl to the events manager. In config/services.php (globally), add the setting for
the Acl service:

$di['acl'] = function () use ($di) {
 $acl = new \Phalcon\Acl\Adapter\Database([
 'db' => $di['db'],
 'roles' => 'acl_roles',
 'rolesInherits' => 'acl_roles_inherits',
 'resources' => 'acl_resources',
 'resourcesAccesses' => 'acl_resources_accesses',
 'accessList' => 'acl_access_list',
]);

 $acl->setDefaultAction(\Phalcon\Acl::DENY);

 return $acl;
};

Then, update the dispatcher with the following code:

$di['dispatcher'] = function () use ($di) {
 $eventsManager = $di->getShared('eventsManager');

 $eventsManager->attach('dispatch', new
 App\Core\Security\Acl($di));

 $dispatcher = new \Phalcon\Mvc\Dispatcher();
 $dispatcher->setEventsManager($eventsManager);
 $dispatcher->setDefaultNamespace(
 "App\Backoffice\Controllers");

 return $dispatcher;
};

We will also need to update the setIdentity() method from Auth.php. Replace it
with this code to get the user roles from the database:

private function setIdentity($user)
{
 $roles = [];
 foreach ($user->roles as $role) {
 $roles[] = $role->getUserRole();
 }

Chapter 6

[193]

 $st_identity = [
 'id' => $user->getId(),
 'email' => $user->getUserEmail(),
 'name' => $user->getUserFirstName().' '.$user->
 getUserLastName(),
 'roles' => $roles
];

 $this->session->set('identity', $st_identity);
}

If you followed the steps closely and did everything by the book, you should be able
to access http://www.learning-phalcon.localhost/backoffice/; the browser
will redirect you to the Sign in page (the same page where we saw the Sign in page).

We are almost at the end of this chapter. What we will do next is create a task that
will handle Acl, and we will use this task in the future when we need to modify
someone's permissions. Let's see how a simple task for Acl can look.

Switch to modules/Tasks and create a new file named AclTask.php, with the
following content:

<?php
class AclTask extends BaseTask
{
 /**
 *
 * @var \Phalcon\Acl\Adapter\Database
 */
 private $acl;

 public function __construct()
 {
 $this->acl = $this->getDI()->get('acl');
 }

 /**
 * @Description("Install the initial(default) acl
 resources")
 */
 public function initAction()
 {
 $roles = array(
 'Administrator' => new
 \Phalcon\Acl\Role('Administrator'),

Assets, Authentication, and ACL

[194]

 'Guest' => new \Phalcon\Acl\Role('Guest'),
);

 foreach ($roles as $role) {
 $this->acl->addRole($role);
 }

 $userResources = array(
 'index' => array('index'),
);

 foreach ($userResources as $resource => $actions) {
 //$this->acl->addResource(new
 \Phalcon\Acl\Resource($resource), $actions);
 foreach ($actions as $action) {
 $this->acl->allow('Administrator', $resource,
 $action);
 }
 }

 $this->consoleLog('Default resources created');
 }
}

We created only one method named initAction() that will create the two default
acl roles: Administrator and Guest. An administrator will be allowed to access
everything, whereas a Guest role will be able to access nothing. Run this task:

$ php modules/cli.php acl init

Now you should be able to see records in your database with the two roles inserted. If
you see them, you can navigate to the user_role table and insert an Administrator
role for your user, then try to login, then delete the Administrator role and add the
Guest one. We will add more methods to this task in the next chapters.

Summary
In this chapter, you learned about assets management and Access Control List. We
also developed an authentication system for our application. We will continue our
journey with the development of the Backoffice module, where you will learn
more about Forms, Volt, and Models.

[195]

The Backoffice Module
(Part 1)

Unless you are developing a static website, you will need a section/module where
an administrator can add and manage content, such as articles, categories, and
users. This is where Backoffice comes into the picture. In this chapter, we will
develop parts of the CRUD (Create, Read, Update, and Delete) operations needed
to administrate our website. We will also use part of the API that we developed in
Chapter 5, The API Module. We will play more with forms and validations. We will
cover this chapter in two parts, namely:

• Hashtag CRUD
• Category CRUD

Editing the main layout
Let's start this chapter with some modifications to the main layout. Edit the main
layout located at modules/Backoffice/Views/Default/layout.volt and add
the following code:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>{% block pageTitle %}Learning Phalcon{% endblock %}</title>

{{ assets.outputCss('headerCss') }}
{% block css %}{% endblock %}

The Backoffice Module (Part 1)

[196]

<!--[if lt IE 9]>
 <script src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.
min.js"></script>
 <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.
js"></script>
<![endif]-->
</head>
<body>
 {% include 'common/topbar.volt' %}
 <div class="container-fluid">
 <div class="row">
 <div class="col-sm-3 col-md-2 sidebar">
 {% include 'common/sidebar.volt' %}
 </div>
 <div class="col-sm-9 col-sm-offset-3 col-md-10
 col-md-offset-2 main">
 {% block body %}
 <h1 class="page-header">Dashboard</h1>
 <h2 class="sub-header">Section title</h2>
 <div class="table-responsive">

 </div>
 {% endblock %}
 </div>
 </div>
 </div>

 {{ assets.outputJs('footerJs') }}
 {% block javascripts %} {% endblock %}
</body>
</html>

You can see that we are using include to include two new files: topbar.volt
and sidebar.volt. In Volt, you can use the include method or the partial()
method. The main difference between partial and include is that a partial
method is included in the runtime but an include file compiles the content and
returns it as part of the view that was included. I prefer include because it improves
performance. If you need to assign variables to a file that will be included, you need
to avoid the file extension. Here is an example:

{% include 'common/sidebar' with {'categories': categories} %}

Chapter 7

[197]

You can read more about include at http://docs.phalconphp.
com/en/latest/reference/volt.html#include.

The code for the two new files is the same code that resided in the main layout earlier
but with a small modification for the sidebar. Let's create the folder and the files. Go
to modules/Backoffice/Views/Default/ and create a new folder named common.
In this new folder, create two new files named sidebar.volt and topbar.volt with
the following code.

common/topbar.volt
Here is the code for the navigation bar that can be found at the top of the page.
It contains a link to the home page and a link that is used to sign out:

<nav class="navbar navbar-inverse navbar-fixed-top"
 role="navigation">
 <div class="container-fluid">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle collapsed"
 data-toggle="collapse" data-target="#navbar"
 aria-expanded="false" aria-controls="navbar">
 Toggle navigation

 </button>
 Learning
 Phalcon
 </div>
 <div id="navbar" class="navbar-collapse collapse">
 <ul class="nav navbar-nav navbar-right">
 Sign out

 </div>
 </div>
</nav>

The Backoffice Module (Part 1)

[198]

common/sidebar.volt
The following is the code for the sidebar (the left menu) and the code that contains
the links to different controllers from our application:

{% set c_name = dispatcher.getControllerName() %}
<ul class="nav nav-sidebar">
 <li{% if c_name == 'article' %} class="active"{% endif %}>
 Articles
 <li{% if c_name == 'category' %} class="active"{% endif %}>
 Categories
 <li{% if c_name == 'hashtag' %} class="active"{% endif %}>
 Hashtags
 <li{% if c_name == 'user' %} class="active"{% endif %}>
 Users

There is something new about these two files. We are making use of a method named
url(), the sidebar has incorporated some logic, and we notice that the dispatcher
from DI is available without the need to assign it from a controller.

By default, Volt has access to a number of methods. The url() method, which uses
the URL service, is one of them. For a list of supported methods, you can check
out the official documentation at http://docs.phalconphp.com/en/latest/
reference/volt.html#functions. Sometimes, you need special functions that are
not accessible from Volt. In such a case, you will need to extend the Volt engine and
implement your own methods. How do you extend Volt?

In our case, we can do it directly in the voltService DI, which can be found in
config/services.php, for example, we want to add a method named randomGen()
that generates a number of random strings, and it's located in modules/Core/
Library/Util.php. The voltService DI will look like this:

$di['voltService'] = function ($view, $di) use ($config) {
 $volt = new \Phalcon\Mvc\View\Engine\Volt($view, $di);
 // ... code
 $compiler = $volt->getCompiler();
 $compiler->addFunction('randomGen', function($resolvedArgs,
 $exprArgs) {
 return 'App\Core\Library\Util::randomGen(' . $resolvedArgs . ')';
 });
 //...code

 return $volt;
};

Chapter 7

[199]

We will be able to call this method in Volt by using the following syntax:

{{ randomGen(5) }}

The preceding method will generate five random strings.

You can learn more about extending Volt at http://docs.
phalconphp.com/en/latest/reference/volt.
html#extending-volt.

In the sidebar file (sidebar.volt), we use IF statements to check the name of the
current controller. The name is available through the dispatcher, and we assign it to
a variable named c_name. The equivalent PHP code for our IF statements and set is
as follows:

<?php
$c_name = $this->dispatcher->getControllerName();

if (c_name == 'article') {
 // Link is active
}

Of course, there are other ways of generating the code for this menu, but try to use
Volt as much as you can, so that you get used to the syntax. Now that we have
made a few modifications, let's access http://www.learning-phalcon.localhost/
backoffice/. If there are no errors, you should see the same things as shown in the
following screenshot:

The Backoffice Module (Part 1)

[200]

Cleaning the Core module
Let's also clean our Core module. We will use this folder as a collection of libraries
instead of using it as a module. First, remove the following files:

modules/Core/Config/config.php
modules/Core/Config/services.php
modules/Core/Controllers/IndexController.php
modules/Core/Module.php

Then remove these lines from modules/Bootstrap.php:

'core' => array(
 'className' => 'App\Core\Module',
 'path' => __DIR__.'/Core/Module.php',
),

Now we have a clean core and our bootstrap will not register it as part of our
modules any more. We will make modifications to modules/Core/Controllers/
BaseController.php and modules/Backoffice/Controllers/BaseController.
php so that this controller will extend modules/Core/Controllers/
BaseController.php:

• In the modules/Api/Controllers/BaseController.php file:
<?php
namespace App\Api\Controllers;

use Phalcon\Http\Response;

class BaseController extends \App\Core\Controllers\BaseController
{
 // code
}

• In the modules/Backoffice/Controllers/BaseController.php file:
<?php
namespace App\Backoffice\Controllers;

class BaseController extends \App\Core\Controllers\BaseController
{
 // code
}

These modifications help us reuse some code in all our modules.

Chapter 7

[201]

Hashtag CRUD
The reason we leave articles at the end is that when we implement it, we will need
to assign hashtags, categories, and users to it. Before going further, we will make a
slight modification to layout.volt and BaseController. We will remove this line
from BaseController.php:

->addCss($assets_dir.'default/bower_components/bootstrap/dist/
 css/bootstrap.min.css')

Also, we will add this line to layout.volt, right before {{ assets.
outputCss('headerCss') }}:

{{stylesheetLink('../assets/default/bower_components/bootstrap/dist/
css/bootstrap.min.css') }}

We are doing this because the CSS for bootstrap is already minified, and if we do
it again, the bootstrap fonts will not be rendered correctly. Remember to apply the
same modification to layout_simple.volt.

In Chapter 5, The API Module, when we developed the API module, one of our tasks
was to create the rest of the required models and managers. They included the hashtag
manager and models. If you didn't do this, don't worry. You have it in the source code.
Here, I will show you just the part of the code that we need in order to develop CRUD
operations for hashtags. The first thing that you have to do is create the controller in
the API module, if you haven't done so already.

The hashtag controller within the API module
All the methods found in this controller follow the same logic:

• We retrieve an instance of the hashtag manager
• We get parameters from the request object
• We call its specific API method and send the response

Let's write the code for this controller. We will start with listAction(). All the
methods are written between the try{}-catch(){} statements:

<?php
namespace App\Api\Controllers;

class HashtagsController extends BaseController{
 public function listAction() {
 try {

The Backoffice Module (Part 1)

[202]

 $manager = $this->getDI()->get('core_hashtag_manager');
 $page = $this->request->getQuery('p', 'int', 0);

 $st_output = $manager->restGet([], [], $page);

 return $this->render($st_output);
 } catch (\Exception $e) {
 return $this->render([
 'code' => $e->getCode(),
 'message' => $e->getMessage(),
], $e->getCode());
 }
}

This method calls the hashtag manager and it reads the page number from
the request. Next, we output the result of the $manager->restGet() method,
which is an array of records with pagination:

public function getAction($id) {
 try {
 $manager = $this->getDI()->get('core_hashtag_manager');

 $st_output = $manager->restGet([
 'id = :id:',
 'bind' => [
 'id' => $id,
],
]);

 return $this->render($st_output);
 } catch (\Exception $e) {
 return $this->render([
 'code' => $e->getCode(),
 'message' => $e->getMessage(),
], $e->getCode());
 }
}

This method is mostly similar to listAction(), the difference being that it will
only return one record. Notice that we bind the ID of the requested object to the
$manager->restGet() method:

public function updateAction($id) {
 try {
 $manager = $this->getDI()->get('core_hashtag_manager');

Chapter 7

[203]

 if ($this->request->getHeader('CONTENT_TYPE') ==
 'application/json') {
 $data = $this->request->getJsonRawBody(true);
 } else {
 $data = [$this->request->getPut()];
 }

 if (count($data[0]) == 0) {
 throw new \Exception('Please provide data', 400);
 }

 $result = $manager->restUpdate($id, $data);

 return $this->render($result);
 } catch (\Exception $e) {
 return $this->render([
 'code' => $e->getCode(),
 'message' => $e->getMessage(),
], $e->getCode());
 }
}

This method calls the hashtag manager and it reads the page number and content
from the request. If the body that we are posting is in the JSON format, we will read
it with getJsonRawBody(). The true parameter is used to convert data into arrays.
If we don't have data, we throw an exception. Next, we output the result of the
$manager->restUpdate() method:

public function deleteAction($id) {
 try {
 $manager = $this->getDI()->get('core_hashtag_manager');

 $st_output = $manager->restDelete($id);

 return $this->render($st_output);
 } catch (\Exception $e) {
 return $this->render([
 'code' => $e->getCode(),
 'message' => $e->getMessage(),
], $e->getCode());
 }
}

The Backoffice Module (Part 1)

[204]

The deleteAction() method simply calls $manager->restDelete() with the ID of
the object as the argument. If the object is found, it will be deleted:

public function createAction() {
 try {
 $manager = $this->getDI()->get('core_hashtag_manager');

 if ($this->request->getHeader('CONTENT_TYPE') ==
 'application/json') {
 $data = $this->request->getJsonRawBody(true);
 } else {
 $data = $this->request->getPost();
 }

 if (count($data) == 0) {
 throw new \Exception('Please provide data', 400);
 }

 $st_output = $manager->restCreate($data);

 return $this->render($st_output);
 } catch (\Exception $e) {
 return $this->render([
 'code' => $e->getCode(),
 'message' => $e->getMessage(),
], $e->getCode());
 }
 }
}

This method is similar to updateAction(), but instead of updating an object, it
creates it.

The routing is missing, so we are going to add it to modules/Api/Config.routing.
php. We will create a new routing group for hashtags:

$hashtags = new \Phalcon\Mvc\Router\Group([
 'module' => 'api',
 'controller' => 'hashtags',
]);

$hashtags->setPrefix($versions['v1'].'/hashtags');

$hashtags->addGet('', ['action' => 'list']);
$hashtags->addGet('/{id}', ['action' => 'get']);

Chapter 7

[205]

$hashtags->addPut('/{id}', ['action' => 'update']);
$hashtags->addDelete('/{id}', ['action' => 'delete']);
$hashtags->addPost('', ['action' => 'create']);

$router->mount($hashtags);

If everything is okay, you can now insert a few records into the hashtag table and call
the API to get the records by using the following command line:

$ curl -i -X GET -H "Content-Type:application/json" -H "APIKEY:6y8
25Oei113X3vbz78Ck7Fh7k3xF68Uc0lki41GKs2Z73032T4z8m1I81648JcrY" -H
"TOKEN:mySecretToken" 'http://learning-phalcon.localhost/api/v1/hashtags'

The output of the command line should be similar to what is shown in the following
screenshot:

This cURL command makes a request to /api/v1/hashtags. The -H option is used
to send header information; in our case, we send the token and the API key.

The Backoffice Module (Part 1)

[206]

A common method to reduce code duplication
Let's create a method in modules/Core/Controllers/BaseController.php
that will help us get data from our API. This method will be available within the
controllers that extend it:

public function apiGet($uri, $params = []) {
 $config = $this->getDI()->get('config')->toArray();
 $uri = $config['apiUrl'].$uri;
 $curl = new \Phalcon\Http\Client\Provider\Curl();
 $response = $curl->get($uri, $params, ["APIKEY:".$config[
 'apiKeys'][0]]);

 if ($response->header->statusCode != 200) {
 throw new \Exception('API error: '.$response->header->status);
 }

 return json_decode($response->body, true);
}

Retrieving the data
To get the data, we just need to provide the URL and extra parameters, if needed.
With the help of Phalcon's built-in cURL provider, we make the call. Next,
we create a hashtag controller in the Backoffice module. It will look like this:

<?php
namespace App\Backoffice\Controllers;

class HashtagController extends BaseController {
 public function indexAction() {
 return $this->dispatcher->forward(['action' => 'list']);
 }

 /**
 * Hashtags list
 */
 public function listAction() {
 $page = $this->request->getQuery('p', 'int', 1);

 try {
 $hashtags = $this->apiGet('hashtags?p='.$page);

Chapter 7

[207]

 $this->view->hashtags = $hashtags;
 } catch (\Exception $e) {
 $this->flash->error($e->getMessage());
 }
 }
}

As you can see, the only thing that we do here is call the API's URL, and it returns an
array of paginated items.

The layout structure
Creating the layout for this listing is quite simple. Go to modules/Backoffice/
Views/Default and create a new folder named hashtag. In this new folder,
create a new file named list.volt with the following content:

{% extends 'layout.volt' %}
{% block body %}
<div class="pull-left">
 <h1>Hashtags</h1>
</div>
<div class="pull-right">
 <a class="btn btn-success" href="{{ url('hashtag/add') }}"
 aria-label="Left Align">

 New

</div>
<div class="clearfix"></div>
<hr>
<div class="panel panel-default">
 <div class="panel-body">
 <table class="table table-striped">
 <thead>
 <tr>
 <th>#</th>
 <th>Hashtag</th>
 <th>Created at</th>
 <th>Options</th>
 </tr>
 </thead>
 <tbody>
 {% for hashtag in hashtags['items'] %}
 <tr>

The Backoffice Module (Part 1)

[208]

 <th scope="row">{{ hashtag['id'] }}</th>
 <td>{{ hashtag['hashtag_name'] }}</td>
 <td>{{ hashtag['hashtag_created_at'] }}</td>
 <td>
 <a class="btn btn-default btn-xs" href="#"
 aria-label="Left Align">
 <span class="glyphicon glyphicon-pencil"
 aria-hidden="true">

 <a class="btn btn-danger btn-xs" href="#"
 aria-label="Left Align">
 <span class="glyphicon glyphicon-trash"
 aria-hidden="true">

 </td>
 </tr>
 {% else %}
 <tr>
 <td colspan="4">There are no hashtags in your
 database</td>
 </tr>
 {% endfor %}
 </tbody>
 </table>
 </div>
</div>
{% if (hashtags['total_pages'] > 1) %}
{% include 'common/paginator' with {'page_url' : url(
 'hashtag/list'), 'stack' : hashtags} %}
{% endif %}
{% endblock %}

Before ending the block of the code for the list template, we include another template
named paginator. This is the paginator that will help us navigate through records.
Create a file named paginator.volt in modules/Backoffce/Views/Default/
common/ and write this code in it:

<nav>
 <ul class="pager">
 <li class="previous {% if (stack['current'] < 2) %}disabled
 {% endif %}"><a href="{{ page_url ~ '?p=' ~ stack['before']
 }}">← Previous

Chapter 7

[209]

 <li class="next {% if (stack['current'] == stack['total_pages'
]) %}disabled{% endif %}"><a href="{{ page_url ~ '?p=' ~
 stack['next'] }}">Next <span aria-hidden=
 "true">→

</nav>

The preceding code makes use of the paginator variables that are
already available (see http://docs.phalconphp.com/en/latest/
reference/pagination.html).

Now, you can authenticate and access the hashtags listing at http://www.
learning-phalcon.localhost/backoffice/hashtag/list. You should
be able to see something similar to what is shown in the next screenshot:

Let's continue with the rest of the actions (create, delete, and update). There are
several ways to achieve this, but we will not make use of our API for create and
update, mainly because of the time needed to cover all the aspects, and also because
doing it the "old normal way" is faster. However, you can play with the idea and try
to migrate these two actions to be API-driven.

The Backoffice Module (Part 1)

[210]

The hashtag form
For create and update, I like to use forms because it's easier to maintain the code and
also to validate it. We will start with the create action by writing the code for the
create form (the same form will be used for update). Switch to modules/Core/Forms
and create a new file named HashtagForm.php with the following code:

<?php
namespace App\Core\Forms;

use Phalcon\Forms\Form;
use Phalcon\Forms\Element\Text;
use Phalcon\Forms\Element\Submit;
use Phalcon\Forms\Element\Hidden;
use Phalcon\Validation\Validator\PresenceOf;
use Phalcon\Validation\Validator\Identical;

class HashtagForm extends Form {
 public function initialize() {
 $hashtag_name = new Text('hashtag_name', array(
 'placeholder' => 'Name',
));

 $hashtag_name->addValidators(array(
 new PresenceOf(array(
 'message' => 'Name is required',
))
));

 $this->add($hashtag_name);

 //CSRF
 $csrf = new Hidden('csrf');

 $csrf->addValidator(
 new Identical(array(
 'value' => $this->security->getSessionToken(),
 'message' => 'CSRF validation failed',
))
);

 $this->add($csrf);

Chapter 7

[211]

 $this->add(new Submit('add', array(
 'class' => 'btn btn-lg btn-primary btn-block',
)));
 }
}

Our new form is quite simple. We have three elements: the name of the hashtag, a
csrf field, and a Submit button. We validate the name and the csrf field with the
help of two validators: PresenceOf and Identical.

The hashtag controller
We continue by writing the code for the create action and for the template. Open
modules/Backoffice/Controllers/HashtagController.php and add these
two methods:

public function addAction() {
 $manager = $this->getDI()->get('core_hashtag_manager');
 $this->view->form = $manager->getForm();
}

public function createAction() {
 if (!$this->request->isPost()) {
 return $this->response->redirect('hashtag/list');
 }

 $manager = $this->getDI()->get('core_hashtag_manager');
 $form = $manager->getForm();

 if ($form->isValid($this->request->getPost())) {
 try {
 $manager = $this->getDI()->get('core_hashtag_manager');
 $manager->create($this->request->getPost());
 $this->flashSession->success('Object was created
 successfully');

 return $this->response->redirect('hashtag/list');
 } catch (\Exception $e) {
 $this->flash->error($e->getMessage());
 return $this->dispatcher->forward(['action' => 'add']);
 }
 } else {
 foreach ($form->getMessages() as $message) {

The Backoffice Module (Part 1)

[212]

 $this->flash->error($message->getMessage());
 }
 return $this->dispatcher->forward(['action' => 'add',
 'controller' => 'hashtag']);
 }
}

The addAction() method simply renders the form we just created. The processes
of creation and validation take place in the createAction() method. This method
accepts only POST data, as you can see in the first two lines. When you're working
on a big project, you might want to use custom routes, just as we did in the
API module.

The hashtag manager
You might notice a new method named getForm() in the hashtag manager. This
method returns an instance of HashtagForm and it looks like this:

use App\Core\Forms\HashtagForm;
class HashtagManager extends BaseManager{
 ...
 public function getForm($entity = null, $options = null) {
 return new HashtagForm($entity, $options);
 }
 ...
}

If you have already created the hashtag manager, you should have a create()
method similar to this one:

public function create(array $st_inputData)
{
 $st_defaultData = [
 'hashtag_name' => new \Phalcon\Db\RawValue('NULL')
];

 $st_data = array_merge($st_defaultData, $st_inputData);

 $hashtag = new Hashtag();
 $hashtag->setHashtagName($st_data['hashtag_name']);

 return $this->save($hashtag, 'create');
}

Chapter 7

[213]

The View template for the add() method
We also need to write the code for the template. Create a new file named add.volt in
modules/Backoffice/Views/Default/hashtag and add the following code:

{% extends 'layout.volt' %}
{% block body %}
<h1>Add</h1>
<hr>
<div class="panel panel-default">
 <div class="panel-body">
 <form method="post" action="{{ url('hashtag/create') }}">
 <div class="form-group">
 <label for="hashtag_name">Name</label>
 {{ form.render('hashtag_name',
 {'class':'form-control'}) }}
 </div>
 {{ form.render('add', {'value':'Add'}) }}
 {{ form.render('csrf', {'value':security.getToken()}) }}
 </form>
 </div>
</div>
{% endblock %}

Our template extends layout.volt and renders the hashtag form elements. At this
point, you should be able to add a new hashtag from your Backoffice module.
Open http://www.learning-phalcon.localhost/backoffice/hashtag/add,
fill in the name for the hashtag, and click on the Add button, like this:

The Backoffice Module (Part 1)

[214]

If the hashtag was saved correctly, you will be redirected to a hashtags list page,
otherwise an error message will be shown.

Improving the database table structure and
adding validation
Now that we can add hashtags, we will face a problem, because we are able to add
duplicated hashtags. To fix this, we will make a small change to our hashtags table
and implement a new validator in the hashtag model.

The change that we will apply to this table is meant to make the name field unique.
Do this by executing the following SQL query against your database:

ALTER TABLE hashtag ADD UNIQUE (hashtag_name);

If you try to add a new hashtag, you will get an Integrity constraint violation error.
This is good enough to avoid duplicates in your database, but you will need to
implement a more human-friendly error by making use of Phalcon\Mvc\Model\
Validator\Uniqueness. Open the hashtag model and append the following code:

public function validation(){
 $this->validate(new Uniqueness([
 "field" => "hashtag_name",
 "message" => "This hashtag already exists",
]));

 return $this->validationHasFailed() != true;
}

This is it! If you try to add the same hashtag, you will get an error message saying
This hashtag already exists. We can now continue with the edit/update methods
for the hashtags.

Editing hashtags
Editing follows the same workflow as creating, except that we need to search for
an existing object to edit. Let's first create the update() method in modules/Core/
Managers/HashtagManager.php:

public function update(array $st_inputData){
 $st_defaultData = [
 'hashtag_name' => new \Phalcon\Db\RawValue('NULL')
];

Chapter 7

[215]

 $st_data = array_merge($st_defaultData, $st_inputData);

 $hashtag = Hashtag::findFirstById($st_data['id']);

 if (!$hashtag) {
 throw new \Exception('Object not found');
 }

 $hashtag->setHashtagName($st_data['hashtag_name']);

 return $this->save($hashtag, 'update');
}

As you can see, there are only two differences between update() and create(). One
is that we searched for a hashtag based on its ID, and the second is that we changed
the second parameter from $this->save() to update. The template is the same
as that for the create() method. Create a new file named edit.volt in modules/
Backoffice/Views/Default/hashtag with the following code:

{% extends 'layout.volt' %}
{% block body %}
<h1>Edit</h1>
<hr>
<div class="panel panel-default">
 <div class="panel-body">
 <form method="post" action="{{ url('hashtag/update') }}">
 <div class="form-group">
 <label for="hashtag_name">Name</label>
 {{ form.render('hashtag_name', {'class':'form-control'})}}
 </div>
 {{ form.render('save', {'value':'Save'}) }}
 {{ form.render('csrf', {'value':security.getToken()})}}
 </form>
 </div>
</div>
{% endblock %}

The only modification that we have done here is that we changed the <h1> title
from Add to Edit. We can now switch to HashtagController and create two new
methods, editAction() and updateAction():

public function editAction($id){
 $manager = $this->getDI()->get('core_hashtag_manager');
 $hashtag = $manager->findFirstById($id);

The Backoffice Module (Part 1)

[216]

 if (!$hashtag) {
 $this->flashSession->error('Object not found');
 return $this->response->redirect('hashtag/list');
 }

 $this->persistent->set('id', $id);

 $this->view->form = $manager->getForm($hashtag);
}

In this method, we search for an object and output an error message if we can't find
it. If it is found, we save the ID in a persistent bag (when using persistent bags, data
is temporarily saved in the session and removed the first time you get the variable)
and then assign the object to the form to be rendered. The updateAction() method
looks like this:

public function updateAction(){
 if (!$this->request->isPost()) {
 return $this->response->redirect('hashtag/list');
 }

 $manager = $this->getDI()->get('core_hashtag_manager');
 $hashtag_id = $this->persistent->get('id');
 $hashtag = $manager->findFirstById($hashtag_id);
 $form = $manager->getForm($hashtag);

 if ($form->isValid($this->request->getPost())) {
 try {
 $manager = $this->getDI()->get('core_hashtag_manager');
 $manager->update([
 'hashtag_name' => $this->request->getPost(
 'hashtag_name',['string','trim']),
 'id' => $hashtag_id
]);
 $this->flashSession->success('Object was updated
 successfully');

 return $this->response->redirect('hashtag/list');
 } catch (\Exception $e) {
 $this->flash->error($e->getMessage());
 return $this->dispatcher->forward(['action' => 'edit']);
 }
 } else {
 foreach ($form->getMessages() as $message) {

Chapter 7

[217]

 $this->flash->error($message->getMessage());
 }
 return $this->dispatcher->forward(['action' => 'edit',
 'controller' => 'hashtag']);
 }
}

The main difference between this method and the createAction() method is that
we get the object ID from the persistent bag and search for it. The final step is to
create a link from the listing page to the edit page. Update list.volt and replace
the current edit link with this code:

<a class="btn btn-default btn-xs" href="{{ url('hashtag/edit/' ~
hashtag['id']) }}" aria-label="Left Align">
 </
span>

This is it! You can now access http://www.learning-phalcon.localhost/
backoffice/hashtag/list, click on the Edit button of an existing record,
and try to edit (change the name).

Deleting hashtags
We can move forward and write the code for the last step in this process—deletion.
Deletion is very simple and quick. We will use an intermediate page so that a user
can confirm when they want to delete an object. Let's start by writing the code for
the template. Create a new file named delete.volt in the hashtag folder and
write this code:

{% extends 'layout.volt' %}
{% block body %}
<h1>Confirm deletion</h1>
<h3>Are you sure you want to delete the selected element?</3>
<hr>
<div class="panel panel-default">
 <div class="panel-body">
 <form method="post" action="{{ url('hashtag/delete/' ~ id) }}"
 class="form-inline">
 <input type="submit" value="Yes, delete" class="btn btn-sm
 btn-danger btn-block">
 <a href="{{ url('hashtag/list') }}" class="btn btn-lg
 btn-default btn-block">Cancel
 </form>
 </div>
</div>
{% endblock %}

The Backoffice Module (Part 1)

[218]

This template has a simple form. When a user clicks on the Yes, delete button, the
actual deletion takes place. Switch to HashtagController.php and create a method
named deleteAction():

public function deleteAction($id){
 if ($this->request->isPost()) {
 try {
 $manager = $this->getDI()->get('core_hashtag_manager');
 $manager->delete($id);
 $this->flashSession->success('Item has been deleted
 successfully');
 } catch (\Exception $e) {
 $this->flash->error($e->getMessage());
 }

 return $this->response->redirect('hashtag/list');
 }
 $this->view->id = $id;
}

By default, the deleteAction($id) method only renders its template (delete.
volt). When we confirm the deletion, we make a post and delete the record. If you
haven't already written the code for the delete() method from manager, here is
what it should look like:

public function delete($id){
 $object = Hashtag::findFirstById($id);

 if (!$object) {
 throw new \Exception('Hashtag not found');
 }

 if (false === $object->delete()) {
 foreach ($object->getMessages() as $message) {
 $error[] = (string) $message;
 }

 throw new \Exception(json_encode($error));
 }

 return true;
}

Chapter 7

[219]

In the final step, we need to update the list.volt template to create a link to the
delete page. Open hashtag/list.volt and replace the delete link with this one:

<a class="btn btn-danger btn-xs" href="{{ url('hashtag/delete/' ~
hashtag['id']) }}" aria-label="Left Align">

This is pretty much all there is to know about deleting. You can test it by clicking on
the Delete link from the list. You should see exactly the same output as presented in
the next screenshot:

If you click on Cancel, you should be redirected to the listing page. If you click on
Yes, delete and there are no errors, you will be redirected to the listing page and the
following success message will be shown: Item has been deleted successfully. We
will now continue with CRUD development for categories.

Category CRUD
When we created the architecture for category tables, we added a category_
translation table. We will alter this table and add a unique index to avoid
duplicates for the same country code and category ID. Execute the following query:

ALTER TABLE `learning_phalcon`.`category_translation` ADD UNIQUE (
`category_translation_category_id` ,
`category_translation_lang`
) COMMENT '';

The Backoffice Module (Part 1)

[220]

We will add a new array to the config/config.php global configuration file that
will hold information about i18n:

'i18n' => [
 'locales' => [//ISO 639-1: two-letter codes, one per language
 'en' => 'English'
]
]

The Category form
We will now create the form for the add/edit categories. Create a new file in
modules/Core/Forms/, name it CategoryForm.php, and write the following code:

<?php
namespace App\Core\Forms;

use Phalcon\Forms\Form;
use Phalcon\Forms\Element\Text;
use Phalcon\Forms\Element\Select;
use Phalcon\Forms\Element\Submit;
use Phalcon\Forms\Element\Hidden;
use Phalcon\Validation\Validator\Identical;

class CategoryForm extends Form{
 private $edit = false;

 public function initialize($entity = null, $options = null) {
 if (isset($options['edit']) && $options['edit'] === true) {
 $this->edit = true;
 }

 $locales = $this->getDI()->get('config')->i18n->locales->
 toArray();

 foreach ($locales as $locale => $name) {

 if (true === $this->edit) {
 $translations = $entity->getTranslations([
 "category_translation_lang = '$locale'"])->toArray();
 }

 $category_name[$locale] = new Text ("translations[
 $locale][category_translation_name]", [

Chapter 7

[221]

 'value' => $this->edit === true ? $translations[0]
 ['category_translation_name'] : null
]);

 $category_slug[$locale] = new Text ("translations[$locale][
 category_translation_slug]", [
 'value' => $this->edit === true ? $translations[0]
 ['category_translation_slug'] : null
]);

 $category_lang[$locale] = new Hidden ("translations[
 $locale][category_translation_lang]", [
 'value' => $locale
]);

 $this->add($category_name[$locale]);
 $this->add($category_slug[$locale]);
 $this->add($category_lang[$locale]);
 }

 //CSRF
 $csrf = new Hidden('csrf');

 $csrf->addValidator(
 new Identical(array(
 'value' => $this->security->getSessionToken(),
 'message' => 'CSRF validation failed',
))
);

 $this->add($csrf);

 $this->add(new Submit('save', array(
 'class' => 'btn btn-lg btn-primary btn-block',
)));
 }
}

In this form, we automatically add the required fields based on the available locales.
If we edit a record, we need to retrieve the translations and assign the correct values
to each field. We use the array naming style for easy processing. This means that
the name of the generated field will look like this: translations[en][category_
translation_name].

The Backoffice Module (Part 1)

[222]

Next, we need to assign the available locales to the view. Open BaseController.
php from modules/Backoffice/Controllers/ and append the following line
to the afterExecuteRoute() method:

$this->view->locales = $this->getDI()->get('config')->i18n
 ->locales->toArray();

Creating the Category templates
Let's see how our templates will look. Create a new folder in modules/Backoffice/
Views/Default and name it category. In this new folder, create the list.volt,
add.volt, edit.volt, and delete.volt template files. The following sections
contain the code for each file.

list.volt
Usually, listing is pretty much the same for any section. Here is the list.volt
template file for Category:

{% extends 'layout.volt' %}
{% block body %}
<div class="pull-left">
 <h1>Categories</h1>
</div>
<div class="pull-right">
 <a class="btn btn-success" href="{{ url('category/add') }}"
 aria-label="Left Align">
 <span class="glyphicon glyphicon-plus" aria-hidden=
 "true"> New

</div>
<div class="clearfix"></div>
<hr>
<div class="panel panel-default">
 <div class="panel-body">
 <table class="table table-striped">
 <thead>
 <tr>
 <th>#</th>
 <th>Category</th>
 <th>Slug</th>
 <th>Created at</th>
 <th>Options</th>
 </tr>

Chapter 7

[223]

 </thead>
 <tbody>
 {% for record in records['items'] %}
 <tr>
 <th scope="row">{{ record['id'] }}</th>
 <td>{{ record['category_translations'][0]
 ['category_translation_name'] }}</td>
 <td>{{ record['category_translations'][0]
 ['category_translation_slug'] }}</td>
 <td>{{ record['category_created_at'] }}</td>
 <td>
 <a class="btn btn-default btn-xs" href="{{
 url('category/edit/' ~ record['id']) }}"
 aria-label="Left Align">
 <span class="glyphicon glyphicon-pencil"
 aria-hidden="true">

 <a class="btn btn-danger btn-xs" href="{{
 url('category/delete/' ~ record['id']) }}"
 aria-label="Left Align">
 <span class="glyphicon glyphicon-trash"
 aria-hidden="true">

 </td>
 </tr>
 {% else %}
 <tr>
 <td colspan="4">There are no records in your
 database</td>
 </tr>
 {% endfor %}
 </tbody>
 </table>
 </div>
</div>
{% if (records['total_pages'] > 1) %}
{% include 'common/paginator' with {'page_url' : url('category/list'),
'stack' : records} %}
{% endif %}
{% endblock %}

The Backoffice Module (Part 1)

[224]

add.volt
The only important thing to notice in this template is how we render the elements.
We loop through the locales variable that we assigned from BaseController.php,
and for each locale, we render the element:

{% extends 'layout.volt' %}
{% block body %}
<h1>Add</h1>
<hr>
<div class="panel panel-default">
 <div class="panel-body">
 <form method="post" action="{{ url('category/create') }}">
 {% for locale, name in locales %}
 <h4>Category ({{ name }})</h4>
 <div class="form-group">
 <label for="category_name">Name</label>{{ form.render(
 'translations['~locale~'][category_translation_name]',
 {'class':'form-control'}) }}
 </div>
 <div class="form-group">
 <label for="category_slug">Slug</label>
 {{ form.render('translations['~locale~']
 [category_translation_slug]', {'class':'form-control'
 }) }}
 </div>
 {{ form.render('translations['~locale~']
 [category_translation_lang]') }}
 {% endfor %}
 {{ form.render('save', {'value':'Save'}) }}
 {{ form.render('csrf', {'value':security.getToken()}) }}
 </form>
 </div>
</div>
{% endblock %}

edit.volt
The edit.volt file is mostly the same as add.volt. We just need to change the
form action to {{ url('category/update') }}. If you know that you're not going
to develop a complex system, you can use the same file for add/edit. Personally,
I prefer to use two separate files because it happened to me many times that the
complexity of editing was very high compared to adding.

Chapter 7

[225]

delete.volt
This is the simplest template, but for the same reason as for add/edit, I prefer to keep
these files separate:

{% extends 'layout.volt' %}
{% block body %}
<h1>Confirm deletion</h1>
<h3>Are you sure you want to delete the selected element?</3>
<hr>
<div class="panel panel-default">
 <div class="panel-body">
 <form method="post" action="{{ url('category/delete/' ~ id)
 }}" class="form-inline">
 <input type="submit" value="Yes, delete" class="btn btn-sm
 btn-danger btn-block">
 <a href="{{ url('category/list') }}" class="btn btn-lg
 btn-default btn-block">Cancel
 </form>
 </div>
</div>
{% endblock %}

If you want, and if you don't have any complex operations, you can create
a delete.volt file in the common/ folder and include it from there for
all sections. Here is an example of how you can do so:

{% extends 'layout.volt' %}
{% block body %}
{% include 'common/delete' with {'url':url('category/
delete/' ~ id)} %}
{% endblock %}

Creating the Category controller
Now that we have the code for the templates, let's create the controller.
Switch to modules/Backoffice/Controllers/ and create a new file named
CategoryController.php with the following code:

<?php
namespace App\Backoffice\Controllers;

class CategoryController extends BaseController{
 public function indexAction() {
 return $this->dispatcher->forward(['action' => 'list']);

The Backoffice Module (Part 1)

[226]

 }

 public function listAction() {
 $page = $this->request->getQuery('p', 'int', 1);

 try {
 $records = $this->apiGet('categories?p='.$page);

 $this->view->records = $records;
 } catch (\Exception $e) {
 $this->flash->error($e->getMessage());
 }
 }

 public function addAction() {
 $manager = $this->getDI()->get('core_category_manager');
 $this->view->form = $manager->getForm();
 }

 public function editAction($id) {
 $manager = $this->getDI()->get('core_category_manager');
 $object = $manager->findFirstById($id);

 if (!$object) {
 $this->flashSession->error('Object not found');
 return $this->response->redirect('category/list');
 }

 $this->persistent->set('id', $id);

 $this->view->form = $manager->getForm($object,[
 'edit' => true]);
 }

 public function createAction() {
 if (!$this->request->isPost()) {
 return $this->response->redirect('category/list');
 }

 $manager = $this->getDI()->get('core_category_manager');
 $form = $manager->getForm();

 if ($form->isValid($this->request->getPost())) {
 try {

Chapter 7

[227]

 $manager = $this->getDI()->get('core_category_manager');
 $post_data = $this->request->getPost();
 $data = array_merge($post_data,
 ['category_is_active' => 1]);

 $manager->create($data);
 $this->flashSession->success('Object was created
 successfully');

 return $this->response->redirect('category/list');
 } catch (\Exception $e) {
 $this->flash->error($e->getMessage());
 return $this->dispatcher->forward(['action' => 'add']);
 }
 } else {
 foreach ($form->getMessages() as $message) {
 $this->flash->error($message->getMessage());
 }
 return $this->dispatcher->forward(['action' => 'add',
 'controller' => 'category']);
 }
 }

 public function updateAction() {
 if (!$this->request->isPost()) {
 return $this->response->redirect('category/list');
 }

 $manager = $this->getDI()->get('core_category_manager');
 $object_id = $this->persistent->get('id');
 $object = $manager->findFirstById($object_id);
 $form = $manager->getForm($object);

 if ($form->isValid($this->request->getPost())) {
 try {
 $manager = $this->getDI()->get('core_category_manager');
 $manager->update(array_merge($this->request->getPost(),
 ['id' => $object_id]));
 $this->flashSession->success('Object was updated
 successfully');

 return $this->response->redirect('category/list');
 } catch (\Exception $e) {
 $this->flash->error($e->getMessage());

The Backoffice Module (Part 1)

[228]

 return $this->dispatcher->forward(['action' => 'edit']);
 }
 } else {
 foreach ($form->getMessages() as $message) {
 $this->flash->error($message->getMessage());
 }
 return $this->dispatcher->forward(['action' => 'edit',
 'controller' => 'category']);
 }
 }
 public function deleteAction($id) {
 if ($this->request->isPost()) {
 try {
 $manager = $this->getDI()->get('core_category_manager');
 $manager->delete($id);
 $this->flashSession->success('Object has been deleted
 successfully');
 } catch (\Exception $e) {
 $this->flashSession->error($e->getMessage());
 }

 return $this->response->redirect('category/list');
 }

 $this->view->id = $id;
 }
}

If you check out the updateAction() and createAction() methods, you will
notice that we use $post_data as it is. We can do it this way because the form fields
have the array-style name, so we send the data in exactly the same format that the
manager expects.

The editAction() method renders the form to edit a record. Notice the second
parameter from $manager->getForm(). It is an array containing the edit key and
the true value, which we use in CategoryForm.php.

Creating the Category manager
We are missing the manager. Create a new file named CategoryManager.php in
modules/Core/Managers/CategoryManager.php with the following content:

<?php
namespace App\Core\Managers;

Chapter 7

[229]

use App\Core\Models\Category;
use App\Core\Models\CategoryTranslation;
use App\Core\Forms\CategoryForm;

class CategoryManager extends BaseManager{
 public function getForm($entity = null, $options = null) {
 return new CategoryForm($entity, $options);
 }

 public function find($parameters = null) {
 return Category::find($parameters);
 }

 public function findFirst($parameters = null) {
 return Category::findFirst($parameters);
 }

 public function findFirstById($id) {
 return Category::findFirstById($id);
 }

 public function create(array $input_data) {
 $default_data = array('translations' => array(
 'en' => array(
 'category_translation_name' => 'Category name',
 'category_translation_slug' => '',
 'category_translation_lang' => 'en',
),
),
 'category_is_active' => 0,);

 $data = array_merge($default_data, $input_data);

 $category = new Category();
 $category->setCategoryIsActive($data['category_is_active']);

 $categoryTranslations = array();

 foreach ($data['translations'] as $lang => $translation) {
 $tmp = new CategoryTranslation();
 $tmp->assign($translation);
 array_push($categoryTranslations, $tmp);
 }

The Backoffice Module (Part 1)

[230]

 $category->translations = $categoryTranslations;

 return $this->save($category, 'create');
 }

 public function update(array $st_inputData) {
 $st_defaultData = array('translations' => array(
 'en' => array(
 'category_translation_name' => 'Category name',
 'category_translation_slug' => '',
 'category_translation_lang' => 'en',
),
));

 $st_data = array_merge($st_defaultData, $st_inputData);

 $object = Category::findFirstById($st_data['id']);

 if (!$object) {
 throw new \Exception('Object not found');
 }

 foreach ($st_data['translations'] as $locale => $values) {
 $translation = $object->getTranslations([
 "category_translation_lang = '$locale'"]);
 $translation[0]->setCategoryTranslationName($values[
 'category_translation_name']);
 $translation[0]->setCategoryTranslationSlug($values[
 'category_translation_slug']);
 $translation[0]->setCategoryTranslationLang($values[
 'category_translation_lang']);
 $this->save($translation[0], 'update');
 }

 return $this->save($object, 'update');
 }

 public function delete($id) {
 $object = Category::findFirstById($id);

 if (!$object) {
 throw new \Exception('Object not found');
 }

Chapter 7

[231]

 if (false === $object->delete()) {
 foreach ($object->getMessages() as $message) {
 $error[] = (string) $message;
 }

 throw new \Exception(json_encode($error));
 }

 return true;
 }
}

We need to enable this manager. Add the following code to config/managers.php:

$di['core_category_manager'] = function () {
 return new \App\Core\Managers\CategoryManager();
};

That's all! You can now access http://www.learning-phalcon.localhost/
backoffice/category/list and you should see something similar to this:

The Backoffice Module (Part 1)

[232]

If you don't have any records, click on the + New button to create a new category.
This action will render the template for add.volt and you will see the following
screenshot:

This is it! You can check out the source code for this chapter and play with the
API with different categories. Note that the API documentation is always available
in docs/api/index.html.

Summary
In this chapter, we developed a functional CRUD for hashtags and categories.
You learned how to make API calls and render form elements dynamically.

In the next chapter, we will focus on completing the Backoffice module
(developing CRUD for articles and users). We will continue to develop this
module by writing code for the user and article CRUD.

[233]

The Backoffice Module
(Part 2)

In this chapter, we will develop the remaining sections of the Backoffice module
so that we can get a fully functional administration area. This chapter covers the
following topics:

• User CRUD
• Article CRUD

User CRUD
We have already developed part of the code needed for this function, but we will
rewrite part of it because, in the meantime, we have made changes to the database
that will affect the functionality of our application. What we are going to develop
next is similar to the previous CRUD sections. Let's start with the API controller.

Creating the controller (API)
As we did in Chapter 7, The Backoffice Module (Part 1), with hashtag and category,
we will need to create a controller for the user. Create a new file in modules/Api/
Controller/ and name it UsersController.php. Then, write the following code:

<?php
namespace App\Api\Controllers;

class UsersController extends BaseController{
 public function updateAction($id) {
 try {

The Backoffice Module (Part 2)

[234]

 $manager = $this->getDI()->get('core_user_manager');

 if ($this->request->getHeader('CONTENT_TYPE') ==
 'application/json') {
 $data = $this->request->getJsonRawBody(true);
 } else {
 $data = $this->request->getPut();
 }

 if (count($data) == 0) {
 throw new \Exception('Please provide data', 400);
 }

 $st_data = array_merge($data, ['id' => $id]);
 $result = $manager->restUpdate($st_data);

 return $this->render($result);
 } catch (\Exception $e) {
 return $this->render([
 'code' => $e->getCode(),
 'message' => $e->getMessage(),
], $e->getCode());
 }
 }

 public function createAction() {
 try {
 $manager = $this->getDI()->get('core_user_manager');

 if ($this->request->getHeader('CONTENT_TYPE') ==
 'application/json') {
 $data = $this->request->getJsonRawBody(true);
 } else {
 $data = $this->request->getPost();
 }

 if (count($data) == 0) {
 throw new \Exception('Please provide data', 400);
 }

 $st_output = $manager->restCreate($data);

 return $this->render($st_output);
 } catch (\Exception $e) {

Chapter 8

[235]

 return $this->render([
 'code' => $e->getCode(),
 'message' => $e->getMessage(),
], 500);
 }
 }
}

As you can see, there are not many differences between this controller and the other
controllers except for the parameters' binding. We have omitted the list(), get(),
and delete() methods, but you can find them in the source code for this chapter.

We will now move on to the creation of the controller in Backoffice.

The user controller from the Backoffice
module
Create a new file in modules/Backoffice/Controller/ and name it
UserController.php. Then, write the following code in it:

<?php
namespace App\Backoffice\Controllers;

class UserController extends BaseController{
 public function createAction() {
 if (!$this->request->isPost()) {
 return $this->response->redirect('user/list');
 }

 $manager = $this->getDI()->get('core_user_manager');
 $form = $manager->getForm();

 if ($form->isValid($this->request->getPost())) {
 try {
 $manager = $this->getDI()->get('core_user_manager');
 $post_data = $this->request->getPost();

 $manager->create($post_data);
 $this->flashSession->success('Object was created
 successfully');

 return $this->response->redirect('user/list');
 } catch (\Exception $e) {
 $this->flash->error($e->getMessage());

The Backoffice Module (Part 2)

[236]

 return $this->dispatcher->forward(['action' => 'add']);
 }
 } else {
 foreach ($form->getMessages() as $message) {
 $this->flash->error($message->getMessage());
 }

 return $this->dispatcher->forward(['action' => 'add',
 'controller' => 'user']);
 }
 }

 public function updateAction() {
 if (!$this->request->isPost()) {
 return $this->response->redirect('user/list');
 }

 $manager = $this->getDI()->get('core_user_manager');
 $object_id = $this->persistent->get('id');
 $object = $manager->findFirstById($object_id);
 $form = $manager->getForm($object);

 if ($form->isValid($this->request->getPost())) {
 try {
 $manager = $this->getDI()->get('core_user_manager');
 $manager->update(array_merge($this->request->getPost(),
 ['id' => $object_id]));
 $this->flashSession->success('Object was updated
 successfully');

 return $this->response->redirect('user/list');
 } catch (\Exception $e) {
 $this->flash->error($e->getMessage());

 return $this->dispatcher->forward(['action' => 'edit']);
 }
 } else {
 foreach ($form->getMessages() as $message) {
 $this->flash->error($message->getMessage());
 }

 return $this->dispatcher->forward(['action' => 'edit',
 'controller' => 'user']);
 }
 }
}

Chapter 8

[237]

The methods that require more attention are updateAction() and createAction(),
where we validate a user form and assign the data to the right action within
the manager.

The addAction(), deleteAction(), and listAction() methods
have been intentionally left out, but you can find them in the source
code of this chapter.

The user form
You have already learned how and why we use forms. We will create a form that
will help us render and validate the data required for user creation. Create a new file
in modules/Core/Forms/ and name it UserForm.php. Then, write the following
code in it:

<?php
namespace App\Core\Forms;

use Phalcon\Forms\Form;
use Phalcon\Forms\Element\Text;
use Phalcon\Forms\Element\Password;
use Phalcon\Forms\Element\Submit;
use Phalcon\Forms\Element\Select;
use Phalcon\Forms\Element\Hidden;
use Phalcon\Validation\Validator\PresenceOf;
use Phalcon\Validation\Validator\Email;
use Phalcon\Validation\Validator\StringLength;
use Phalcon\Validation\Validator\Identical;

use App\Core\Models\AclRoles;

class UserForm extends Form {
 private $edit;

 public function initialize($entity = null, $options = null) {
 if (isset($options['edit']) && $options['edit'] === true) {
 $this->edit = true;
 }

 // First name
 $user_first_name = new Text('user_first_name', array(
 'placeholder' => 'First name',
));

The Backoffice Module (Part 2)

[238]

 $user_first_name->addValidators(array(
 new PresenceOf(array(
 'message' => 'First name is required',
))
));

 $this->add($user_first_name);

 // Last name
 $user_last_name = new Text('user_last_name', array(
 'placeholder' => 'Last name',
));

 $user_last_name->addValidators(array(
 new PresenceOf(array(
 'message' => 'Last name is required',
))
));

 $this->add($user_last_name);

 // Email
 $user_email = new Text('user_email', array(
 'placeholder' => 'Email',
));

 $user_email->addValidators(array(
 new PresenceOf(array(
 'message' => 'The e-mail is required',
)),
 new Email(array(
 'message' => 'The e-mail is not valid',
)),
));

 $this->add($user_email);

 //Password
 $user_password = new Password('user_password', array(
 'placeholder' => 'Password',
));

 $user_password->addValidators(array(
 new PresenceOf(array(

Chapter 8

[239]

 'message' => 'Password is required'
)),
 new StringLength(array(
 'min' => 8,
 'messageMinimum' => 'Password is too short. Minimum 8
 characters'
))
));

 $this->add($user_password);

 // User is active
 $this->add(new Select('user_is_active', array(
 1 => 'Yes',
 0 => 'No'
)));

 // User location
 $user_profile_location = new Text('user_profile_location',
 array(
 'placeholder' => 'Location',
));

 if (true === $this->edit) {
 $user_profile_location->setDefault($entity->profile->
 getUserProfileLocation());
 }

 $this->add($user_profile_location);

 // User role
 $user_acl_role = new Select('user_acl_role', AclRoles::find(),
 array(
 'using' => array('name', 'name')
));

 $this->add($user_acl_role);

 //CSRF
 $csrf = new Hidden('csrf');

 $csrf->addValidator(
 new Identical(array(
 'value' => $this->security->getSessionToken(),
 'message' => 'CSRF validation failed',

The Backoffice Module (Part 2)

[240]

))
);

 $this->add($csrf);

 $this->add(new Submit('save', array(
 'class' => 'btn btn-lg btn-primary btn-block',
)));
 }
}

In this form, you may notice a few new things:

• We use Phalcon\Validation\Validator\StringLength to validate the
length of the password.

• We use a new form element, Phalcon\Forms\Element\Select, to generate
the select form elements.

• We use Phalcon\Validation\Validator\Email to validate the e-mail
address field.

• We assign the results of App\Core\Models\AclRoles as the second
parameter of the select element, user_acl_role. The second parameter for
this field is an array that instructs Phalcon\Forms\Element\Select to use
the field's name when generating the HTML code. Normally, we would use
the field's ID and name, or something similar. But in this particular case, the
acl_roles table does not have an ID.

The user manager
You might already have part of the user manager, or perhaps you have created it in
its entirety. Just in case you didn't, create it now. Create a new file in modules/Core/
Managers/ and name it UserManager.php. Then, write the following code in it:

<?php
namespace App\Core\Managers;

use App\Core\Models\User;
use App\Core\Models\UserRole;
use App\Core\Models\AclRoles;
use App\Core\Models\UserProfile;

use App\Core\Forms\UserForm;

Chapter 8

[241]

class UserManager extends BaseManager{
 public function getForm($entity = null, $options = null) {
 return new UserForm($entity, $options);
 }

 public function create($data, $user_role = 'Guest') {
 $security = $this->getDI()->get('security');

 if (isset($data['user_acl_role'])) {
 $user_role = $data['user_acl_role'];
 }

 $user = new User();
 $user->setUserFirstName($data['user_first_name']);
 $user->setUserLastName($data['user_last_name']);
 $user->setUserEmail($data['user_email']);
 $user->setUserPassword($security->hash($data[
 'user_password']));
 $user->setUserIsActive($data['user_is_active']);

 $o_acl_role = AclRoles::findFirstByName($user_role);

 if (!$o_acl_role) {
 throw new \Exception("Role $user_role does not exists");
 };

 $o_user_role[0] = new UserRole();
 $o_user_role[0]->setUserRole($user_role);

 $user->roles = $o_user_role;

 $profile = new UserProfile();
 $profile->setUserProfileLocation($data[
 'user_profile_location']);

 $user->profile = $profile;

 return $this->save($user, 'create');
 }
}

The Backoffice Module (Part 2)

[242]

The create() method requires two parameters. The first parameter, $data, is
an array with the values needed to create our new object. The second parameter is
$user_role, with a default value. Going further, we check whether the $data array
has a key named user_acl_role. If the key exists, we overwrite the default value
of the $user_role parameter. Finally, we assign values to each of the $user objects
and save them:

public function update(array $data) {
 $object = User::findFirstById($data['id']);

 if (!$object) {
 throw new \Exception('Object not found');
 }

 $security = $this->getDI()->get('security');

 $object->setUserFirstName($data['user_first_name']);
 $object->setUserLastName($data['user_last_name']);
 $object->setUserEmail($data['user_email']);
 $object->setUserPassword($security->hash($data[
 'user_password']));
 $object->setUserIsActive($data['user_is_active']);

 $o_acl_role = AclRoles::findFirstByName($data[
 'user_acl_role']);

 if (!$o_acl_role) {
 throw new \Exception("Role $user_role does not exists");
 };

 $o_user_role[0] = new UserRole();
 $o_user_role[0]->setUserRole($data['user_acl_role']);

 $object->roles = $o_user_role;

 $object->profile->setUserProfileLocation($data[
 'user_profile_location']);

 return $this->save($object, 'update');
}

Chapter 8

[243]

The update() method is similar to the create() method, except that we first check
whether the object that we want to update exists. The delete() method, shown as
follows, will simply search for an object by ID; if the object exists, we delete it:

public function delete($id) {
 $object = User::findFirstById($id);

 if (!$object) {
 throw new \Exception('Object not found');
 }

 if (false === $object->delete()) {
 foreach ($object->getMessages() as $message) {
 $error[] = (string) $message;
 }

 throw new \Exception(json_encode($error));
 }
 return true;
}

Again, the find(), findFirstById(), and findFirst() methods
have been intentionally left out, but you can find them in the source code
of this chapter.

Let's pay attention to the create() and update() methods and how we store the
relations of the profiles and roles. Because the relation between the user and the roles
is 1 - N, to store the values correctly, we use array notation for the $o_user_role
variable. Otherwise, saving will fail. For the password, we make use of Phalcon's
built-in security module, and we encrypt it by using the $security->hash() method.

User templates
The final step is to create the templates. Switch to modules/Backoffice/Views/
Default and create a new directory named user. In this new directory, create the
four needed files: add.volt, delete.volt, edit.volt, and list.volt. There is
nothing new to explain about these templates, so we are just going to write the
code for them.

The Backoffice Module (Part 2)

[244]

The code for add.volt is as follows:

{% extends 'layout.volt' %}
{% block body %}
<h1>Add</h1>
<hr>
<div class="panel panel-default">
 <div class="panel-body">
 <form method="post" action="{{ url('user/create') }}">
 <h4>User details</h4>
 <hr>
 <div class="form-group">
 <label for="user_first_name">First name</label>
 {{ form.render('user_first_name', {'class':
 'form-control'}) }}
 </div>
 <div class="form-group">
 <label for="user_last_name">Last name</label>
 {{ form.render('user_last_name', {'class':
 'form-control'}) }}
 </div>
 <div class="form-group">
 <label for="user_email">Email</label>
 {{ form.render('user_email', {'class':
 'form-control'}) }}
 </div>
 <div class="form-group">
 <label for="user_password">Password</label>
 {{ form.render('user_password', {'class':
 'form-control'}) }}
 </div>
 <div class="form-group">
 <label for="user_is_active">Is active</label>
 {{ form.render('user_is_active', {'class':
 'form-control'}) }}
 </div>
 <h4>User profile</h4>
 <hr>
 <div class="form-group">
 <label for="user_profile_location">Location</label>
 {{ form.render('user_profile_location',
 {'class':'form-control'}) }}
 </div>
 <h4>User role</h4>
 <hr>

Chapter 8

[245]

 <div class="form-group">
 <label for="user_acl_role">Role</label>
 {{ form.render('user_acl_role', {'class':
 'form-control'}) }}
 </div>
 {{ form.render('save', {'value':'Save'}) }}
 {{ form.render('csrf', {'value':security.getToken()}) }}
 </form>
 </div>
</div>
{% endblock %}

Here is the code for delete.volt:

{% extends 'layout.volt' %}
{% block body %}
<h1>Confirm deletion</h1>
<h3>Are you sure you want to delete the selected element?</3>
<hr>
<div class="panel panel-default">
 <div class="panel-body">
 <form method="post" action="{{ url('user/delete/' ~ id) }}"
 class="form-inline">
 <input type="submit" value="Yes, delete" class="btn btn-sm
 btn-danger btn-block">
 <a href="{{ url('user/list') }}" class="btn btn-lg
 btn-default btn-block">Cancel
 </form>
 </div>
</div>
{% endblock %}

The edit.volt file is nearly the same as add.volt. Just replace the form action and
point it to user/update:

<form method="post" action="{{ url('user/update') }}">

The code for list.volt is as follows:

{% extends 'layout.volt' %}
{% block body %}
<div class="pull-left">
 <h1>Users</h1>
</div>
<div class="pull-right">
 <a class="btn btn-success" href="{{ url('user/add') }}"
 aria-label="Left Align">

The Backoffice Module (Part 2)

[246]

 <span class="glyphicon glyphicon-plus" aria-hidden=
 "true"> New

</div>
<div class="clearfix"></div>
<hr>
<div class="panel panel-default">
 <div class="panel-body">
 <table class="table table-striped">
 <thead>
 <tr>
 <th>#</th>
 <th>Name</th>
 <th>Email</th>
 <th>Location</th>
 <th>Created at</th>
 <th>Options</th>
 </tr>
 </thead>
 <tbody>
 {% for record in records['items'] %}
 <tr>
 <th scope="row">{{ record['id'] }}</th>
 <td>{{ record['user_first_name'] }} {{
 record['user_last_name'] }}</td>
 <td>{{ record['user_email'] }}</td>
 <td>{{ record['user_profile'][
 'user_profile_location'] }}</td>
 <td>{{ record['user_created_at'] }}</td>
 <td>
 <a class="btn btn-default btn-xs" href="{{
 url('user/edit/' ~ record['id']) }}"
 aria-label="Left Align">
 <span class="glyphicon glyphicon-pencil"
 aria-hidden="true">

 <a class="btn btn-danger btn-xs" href="{{
 url('user/delete/' ~ record['id']) }}"
 aria-label="Left Align">
 <span class="glyphicon glyphicon-trash"
 aria-hidden="true">

 </td>

Chapter 8

[247]

 </tr>
 {% else %}
 <tr>
 <td colspan="4">There are no records in your
 database</td>
 </tr>
 {% endfor %}
 </tbody>
 </table>
 </div>
</div>
{% if (records['total_pages'] > 1) %}
{% include 'common/paginator' with {'page_url' : url('user/list'),
'stack' : records} %}
{% endif %}
{% endblock %}

And we are done with User CRUD! You should be able to access the Users section
in Backoffice (http://www.learning-phalcon.localhost/backoffice/user/
list) and see a list of existing users. Now that we have enabled CRUD for all the
sections that are required for adding an article, we will continue with the last part
of this chapter—Article CRUD.

Article CRUD
We partially wrote some code for this part. It is probably working for you, but
you will be changing mostly everything in it. The API controller has already
been developed, so we can move directly on to ArticleManager to refactor it.

The Controller (API)
The code for this controller is similar to that of the rest of the controllers. Let's
see what it looks like. Open the file located at modules/Api/Controllers/
ArticlesController.php, clear its content, and write the following code:

<?php
namespace App\Api\Controllers;

class ArticlesController extends BaseController{
 public function updateAction($id) {
 try {
 $manager = $this->getDI()->get('core_article_manager');

The Backoffice Module (Part 2)

[248]

 if ($this->request->getHeader('CONTENT_TYPE') ==
' application/json') {
 $data = $this->request->getJsonRawBody(true);
 } else {
 $data = $this->request->getPut();
 }

 if (count($data) == 0) {
 throw new \Exception('Please provide data', 400);
 }

 $st_inputData = array(
 'article_user_id' => $data['article_user_id'],
 'article_is_published' => $data['article_is_published'],
 'translations' => [
 $data['article_translation_lang'] => [
 'article_translation_short_title' =>
 $data['article_translation_short_title'],
 'article_translation_long_title' =>
 $data['article_translation_long_title'],
 'article_translation_description' =>
 $data['article_translation_description'],
 'article_translation_slug' => $data[
 'article_translation_slug'],
 'article_translation_lang' => $data[
 'article_translation_lang'],
],
],
 'categories' => $data['categories'],
 'hashtags' => $data['hashtags']
);

 $result = $manager->restUpdate(array_merge(
 $st_inputData, ['id' => $id]));

 return $this->render($result);
 } catch (\Exception $e) {
 return $this->render([
 'code' => $e->getCode(),
 'message' => $e->getMessage(),
], $e->getCode());
 }
 }

Chapter 8

[249]

 public function createAction() {
 try {
 $manager = $this->getDI()->get('core_article_manager');

 if ($this->request->getHeader('CONTENT_TYPE') ==
 'application/json') {
 $data = $this->request->getJsonRawBody(true);
 } else {
 $data = $this->request->getPost();
 }
 if (count($data) == 0) {
 throw new \Exception('Please provide data', 400);
 }

 $st_inputData = array(
 'article_user_id' => $data['article_user_id'],
 'article_is_published' => $data['article_is_published'],
 'translations' => [
 $data['article_translation_lang'] => [
 'article_translation_short_title' =>
 $data['article_translation_short_title'],
 'article_translation_long_title' =>
 $data['article_translation_long_title'],
 'article_translation_description' =>
 $data['article_translation_description'],
 'article_translation_slug' =>
 $data['article_translation_slug'],
 'article_translation_lang' =>
 $data['article_translation_lang'],
],
],
 'categories' => $data['categories'],
 'hashtags' => $data['hashtags']
);

 $st_output = $manager->restCreate($st_inputData);

 return $this->render($st_output);
 } catch (\Exception $e) {
 return $this->render([
 'code' => $e->getCode(),

The Backoffice Module (Part 2)

[250]

 'message' => $e->getMessage(),
], $e->getCode());
 }
 }
}

The only important thing to pay attention to in this controller is the data structure
that we expect for createAction() and updateAction(). Let's continue with the
next controller.

The addAction(), deleteAction(), and listAction() methods
have been intentionally left out, but you can find them in the source
code of this chapter.

The Article controller from the Backoffice
module
Switch to the modules/Backoffice/Controllers/ folder, create a new file named
ArticleController.php, and write the following code:

<?php
namespace App\Backoffice\Controllers;

class ArticleController extends BaseController {
 public function createAction() {
 if (!$this - > request - > isPost()) {
 return $this - > response - > redirect('article/list');
 }
 $manager = $this - > getDI() - > get('core_article_manager');
 $form = $manager - > getForm();
 if ($form - > isValid($this - > request - > getPost())) {
 try {
 $manager = $this - > getDI() - > get('core_article_manager');
 $post_data = $this - > request - > getPost();
 $data = array_merge($post_data,
 ['article_user_id ' => $this->auth->getUserId()]);

 $manager - > create($data);
 $this - > flashSession - > success('Object was created
 successfully ');
 return $this - > response - > redirect('article/list');
 } catch (\Exception $e) {
 $this - > flash - > error($e - > getMessage());

Chapter 8

[251]

 return $this - > dispatcher - > forward(['action' =>
 'add'
]);
 }
 } else {
 foreach($form - > getMessages() as $message) {
 $this - > flash - > error($message - > getMessage());
 }
 return $this - > dispatcher - > forward(['action' => 'add',
 'controller' => 'article'
]);
 }
 }
 public function updateAction() {
 if (!$this - > request - > isPost()) {
 return $this - > response - > redirect('article/list');
 }
 $manager = $this - > getDI() - > get('core_article_manager');
 $object_id = $this - > persistent - > get('id');
 $object = $manager - > findFirstById($object_id);
 $form = $manager - > getForm($object);
 if ($form - > isValid($this - > request - > getPost())) {
 try {
 $manager = $this - > getDI() - > get('core_article_manager ');
 $post_data = $this - > request - > getPost();
 $data = array_merge(
 $post_data, ['article_user_id' => $this - > auth - >
 getUserId(), 'id' => $object_id]);
 $manager - > update($data);
 $this - > flashSession - > success('Object was updated
 successfully ');

 return $this - > response - > redirect('article/list');
 } catch (\Exception $e) {
 $this - > flash - > error($e - > getMessage());
 return $this - > dispatcher - > forward(['action' =>
 'edit'
]);
 }
 } else {
 foreach($form - > getMessages() as $message) {
 $this - > flash - > error($message - > getMessage());
 }

The Backoffice Module (Part 2)

[252]

 return $this - > dispatcher - > forward(['action' => 'edit',
 'controller' => 'category'
]);
 }
 }
}

Take a look at createAction() and updateAction(). Here, we use the ID of the
authenticated user when we set the value for the article_user_id field.

Again, methods such as addAction(), deleteAction(), and
listAction() have been intentionally left out, but you can find
them in the source code of this chapter.

The Article form
This form is similar to the one for categories. Let's see what it looks like. Create
a new file named ArticleForm.php in the modules/Core/Forms directory, and
write this code in it:

<?php
namespace App\Core\Forms;

use Phalcon\Forms\Form;
use Phalcon\Forms\Element\Text;
use Phalcon\Forms\Element\TextArea;
use Phalcon\Forms\Element\Select;
use Phalcon\Forms\Element\Submit;
use Phalcon\Forms\Element\Hidden;
use Phalcon\Validation\Validator\Identical;

use App\Core\Models\CategoryTranslation;
use App\Core\Models\Hashtag;

class ArticleForm extends Form {
 private $edit = false;
 public function initialize($entity = null, $options = null) {
 if (isset($options['edit']) && $options['edit'] === true) {
 $this->edit = true;
 }
 $locales = $this->getDI()->get('config')->i18n->locales->
 toArray();
 foreach ($locales as $locale => $name) {

Chapter 8

[253]

 if (true === $this->edit) {
 $translations = $entity->getTranslations([
 "article_translation_lang = '$locale'"])->toArray();
 }
 $article_translation_short_title[$locale] = new Text
 ("translations[$locale][article_translation_short_title]", [
 'value' => $this->edit === true ? $translations[0]
 ['article_translation_short_title'] : null
]);
 $article_translation_long_title[$locale] = new Text
 ("translations[$locale][article_translation_long_title]", [
 'value' => $this->edit === true ? $translations[0]
 ['article_translation_long_title'] : null
]);
 $article_translation_description[$locale] = new TextArea
 ("translations[$locale][article_translation_description]", [
 'value' => $this->edit === true ? $translations[0]
 ['article_translation_description'] : null
]);
 $article_translation_slug[$locale] = new Text (
 "translations[$locale][article_translation_slug]", [
 'value' => $this->edit === true ? $translations[0]
 ['article_translation_slug'] : null
]);
 $article_translation_lang[$locale] = new Hidden (
 "translations[$locale][article_translation_lang]", [
 'value' => $locale
]);
 $this->add($article_translation_short_title[$locale]);
 $this->add($article_translation_long_title[$locale]);
 $this->add($article_translation_description[$locale]);
 $this->add($article_translation_slug[$locale]);
 $this->add($article_translation_lang[$locale]);
 }
 // Categories
 $categories = new Select('categories[]',
 CategoryTranslation::find([
 "category_translation_lang = 'en'"]), [
 'using' => [
 'category_translation_category_id',
 'category_translation_name'
],
 'multiple' => true
]);

The Backoffice Module (Part 2)

[254]

 if ($this->edit === true) {
 $categories_defaults = array();
 foreach ($entity->getCategories(["columns" =>
 ["id"]]) as $category) {
 $categories_defaults[] = $category->id;
 }
 $categories->setDefault($categories_defaults);
 }
 $this->add($categories);
 // Hash tags
 $hashtags = new Select('hashtags[]', Hashtag::find(), [
 'using' => ['id', 'hashtag_name'],
 'multiple' => true
]);
 if ($this->edit === true) {
 $hashtags_defaults = array();
 foreach ($entity->getHashtags(["columns" =>
 ["id"]]) as $hashtag) {
 $hashtags_defaults[] = $hashtag->id;
 }
 $hashtags->setDefault($hashtags_defaults);
 }
 $this->add($hashtags);
 // Is published
 $this->add(new Select('article_is_published', array(
 1 => 'Yes',
 0 => 'No'
)));
 //CSRF
 $csrf = new Hidden('csrf');
 $csrf->addValidator(
 new Identical(array(
 'value' => $this->security->getSessionToken(),
 'message' => 'CSRF validation failed',
))
);
 $this->add($csrf);
 $this->add(new Submit('save', array(
 'class' => 'btn btn-lg btn-primary btn-block',
)));
 }
}

Chapter 8

[255]

We manage the Article translation in the same way as we did for categories. As for
the article hashtags and article categories, when we edit a record, we must somehow
retrieve the existing ones and assign them as defaults in the form.

We have created the controllers, managers, and forms. What we need now are the
templates. Switch to modules/Backoffice/Views/Default/article/ and create
the three missing files: add.volt, delete.volt, and edit.volt. Here is the code
for each of them.

The code for add.volt is as follows:

{% extends 'layout.volt' %}
{% block body %}
<h1>Add</h1>
<hr>
<div class="panel panel-default">
 <div class="panel-body">
 <form method="post" action="{{ url('article/create') }}">
 {% for locale, name in locales %}
 <h3>Article ({{ name }})</h3>
 <hr>
 <div class="form-group">
 <label for="article_translation_short_title">Title
 </label>
 {{ form.render('translations['~locale~']
 [article_translation_short_title]', {'class':'form-control'})
}}
 </div>
 <div class="form-group">
 <label for="article_translation_long_title">
 Long title</label>
 {{ form.render('translations['~locale~']
 [article_translation_long_title]',
 {'class':'form-control'}) }}
 </div>
 <div class="form-group">
 <label for="article_translation_description">Description
 </label>
 {{ form.render('translations['~locale~']
 [article_translation_description]',
 {'class':'form-control', 'rows': 8}) }}
 </div>
 <div class="form-group">
 <label for="article_translation_slug">Slug
 </label>

The Backoffice Module (Part 2)

[256]

 {{ form.render('translations['~locale~']
 [article_translation_slug]',
 {'class':'form-control'}) }}
 </div>
 {{ form.render('translations['~locale~']
 [article_translation_lang]') }}
 {% endfor %}
 <div class="form-group">
 <label for="article_is_published">Is published
 </label>
 {{form.render('article_is_published',
 {'class':'formcontrol'}) }}
 </div>
 <h3>Categories</h3>
 <hr>
 <div class="form-group">
 <label for="categories">Select one or more
 categories</label>
 {{ form.render('categories[]', {'class':'formcontrol'}) }}
 </div>
 <h3>Hash tags</h3>
 <hr>
 <div class="form-group">
 <label for="hashtags">Select one or more hash tags
 </label>
 {{form.render('hashtags[]',
 {'class':'form-control'})}}
 </div>
 {{form.render('save', {'value':'Save'}) }}
 {{form.render('csrf', {'value':security.getToken()}) }}
 </form>
 </div>
</div>
{% endblock %}

After you have created this file, try to access http://www.learning-phalcon.
localhost/backoffice/article/add. You should see the form.

The code in edit.volt is the same as that for add.volt. Copy it and change its form
action to article/update instead of article/create.

The delete.volt file has the same content as all the delete.volt files that we have
created so far. Just copy the content from any of them and change the links actions
to point to article/delete.

Chapter 8

[257]

We have already created the list.volt file, but we will need to delete its contents
and write the following code in it:

{% extends 'layout.volt' %} {% block body %}
<div class="pull-left">
 <h1>Articles</h1>
</div>
<div class="pull-right">
 <a class="btn btn-success" href="{{ url('article/add') }}" aria-
label="Left Align">
 </
span> New

</div>
<div class="clearfix"></div>
<hr>
<div class="table-responsive">

 <table class="table table-striped">
 <thead>
 <tr>
 <th>#</th>
 <th>Title</th>
 <th>Is published</th>
 <th>Author</th>
 <th>Created at</th>
 <th>Options</th>
 </tr>
 </thead>
 <tbody>
 {% for record in records['items'] %}
 <tr>
 <td>{{record['id'] }}</td>
 <td>{{record['article_translations'][0]
 ['article_translation_short_title'] }}</td>
 <td>{{record['article_is_published'] }}</td>
 <td>{{record['article_author']['user_first_name']}}
 {{record['article_author']['user_last_name']}}
 </td>
 <td>{{ record['article_created_at'] }}</td>
 <td>
 <a class="btn btn-default btn-xs"
 href="{{url('article/edit/' ~ record['id']) }}"
 aria-label="Left Align">

The Backoffice Module (Part 2)

[258]

 <span class="glyphicon glyphicon-pencil"
 ariahidden="true">

 <a class="btn btn-danger btn-xs"
 href="{{url('article/delete/' ~ record['id']) }}"
 aria-label="Left Align">
 <span class="glyphicon glyphicon-trash"
 ariahidden="true">

 </td>
 </tr>
 {% else %}
 <tr>
 <td colspan="4">There are no records in your
 database</td>
 </tr>
 {% endfor %}
 </tbody>
 </table>
</div>
{% if (records['total_pages'] > 1) %}
{% include 'common/paginator' with {'page_url' : url('article/list'),
'stack' : records} %}
{% endif %}
{% endblock %}

By now, you should have a completely functional administration area. We will close
this chapter in a few minutes, but before that, we will prettify the UI (user interface)
a little. Let's start this process by adding the name of the authenticated user to the
top of the page.

Open the modules/Backoffice/Controller/BaseControllers.php file and
append the following code to the afterExecuteRoute() method:

$this->view->identity = $this->getDI()->get('auth')->getIdentity();

In this way, we assign the identity of our authenticated user to the views. Next, open
the modules/Backoffice/Views/Default/common/topbar.volt template file and
append the following code before the "Sign out" tag:

<li class="disabled">Welcome, {{ identity['name'] }}

Chapter 8

[259]

You can now refresh the page, and you should see the name of the authenticated
user, as shown here:

Next, instead of having a default blank page, let's transform it into a simple
dashboard. Open modules/Backoffice/Controller/IndexController.php
and modify the indexAction() method with the following code:

public function indexAction() {
 $total_articles = $this->getDI()->get(
 'core_article_manager')->find()->count();
 $total_users = $this->getDI()->get('core_user_manager')
 ->find()->count();
 $total_categories = $this->getDI()->get(
 'core_category_manager')->find()->count();
 $total_hashtags = $this->getDI()->get(
 'core_hashtag_manager')->find()->count();
 $this->view->setVar('dashboard', [
 'total_articles' => $total_articles,
 'total_users' => $total_users,
 'total_categories' => $total_categories,
 'total_hashtags' => $total_hashtags,
]);
}

The Backoffice Module (Part 2)

[260]

As you can see, we simply count the total number of articles, users, hashtags, and
categories. The template code for modules/Backoffice/Views/Default/index/
index.volt can look like this:

{% extends 'layout.volt' %}
{% block body %}
<div class="row">
 <div class="col-md-6 col-xs-6 text-center">
 <h1>{{ dashboard['total_articles'] }}

 </h1>
 <small>Articles</small>
 </div>
 <div class="col-md-6 col-xs-6 text-center">
 <h1>{{ dashboard['total_categories'] }}

 </h1>
 <small>Categories</small>
 </div>
</div>
<div class="row">
 <div class="col-md-6 col-xs-6 text-center">
 <h1>{{ dashboard['total_hashtags'] }}

 </h1>
 <small>Tags</small>
 </div>
 <div class="col-md-6 col-xs-6 text-center">
 <h1>{{ dashboard['total_users'] }}

 </h1>
 <small>Users</small>
</div>
</div>
{% endblock %}

Chapter 8

[261]

If you refresh the page, you should be able to see the result of this simple dashboard,
as shown here:

The Article manager
Open the file located at modules/Core/Manager/ArticleManager.php, clear its
contents, and write the following code:

<?php
namespace App\Core\Managers;

use App\Core\Models\Article;
use App\Core\Models\ArticleTranslation;
use App\Core\Models\ArticleCategoryArticle;
use App\Core\Models\ArticleHashtagArticle;
use App\Core\Models\Category;
use App\Core\Models\Hashtag;
use App\Core\Models\User;

In these first lines, we insert all the files that we need for the CRUD operations:

class ArticleManager extends BaseManager
{
 private $default_data = array(
 'article_user_id' => 1,
 'article_is_published' => 0,
 'translations' => array(
 'en' => array(
 'article_translation_short_title' => 'Short title',
 'article_translation_long_title' => 'Long title',
 'article_translation_description' => 'Description',
 'article_translation_slug' => '',

The Backoffice Module (Part 2)

[262]

 'article_translation_lang' => 'en',
),
),
 'categories' => array(),
 'hashtags' => array()
);

We added $default_data as a private variable to avoid code repetition. We will use
it for both the create() and update() methods:

 public function getForm($entity = null, $options = null)
 {
 return new ArticleForm($entity, $options);
 }

 public function create($input_data)
 {
 $data = $this->prepareData($input_data);

 $article = new Article();
 $article->setArticleIsPublished($data[
 'article_is_published']);

 $articleTranslations = array();

 foreach ($data['translations'] as $lang => $translation) {
 $tmp = new ArticleTranslation();
 $tmp->assign($translation);
 array_push($articleTranslations, $tmp);
 }

 if (count($data['categories']) > 0) {
 $article->categories = Category::find([
 "id IN (".implode(',', $data['categories']).")",
])->filter(function ($category) {
 return $category;
 });
 }

 if (count($data['hashtags']) > 0) {
 $article->hashtags = Hashtag::find([
 "id IN (".implode(',', $data['hashtags']).")",
])->filter(function ($hashtag) {
 return $hashtag;

Chapter 8

[263]

 });
 }

 $user = User::findFirstById((int) $data['article_user_id']);

 if (!$user) {
 throw new \Exception('User not found', 404);
 }

 $article->setArticleUserId($data['article_user_id']);

 $article->translations = $articleTranslations;

 return $this->save($article, 'create');
 }

Let's try to understand the create() method. First, we call the prepareData()
method. This a helper and we also use it for update(). Next, we initiate a new
article object and set the flag for the article_is_published field. An article needs
translations and hashtags and we must assign a user to it. We do this by initializing
a new object for each translation and hashtag. In the case of a user, we need to check
whether the user exists in our database:

 public function update($input_data)
 {
 $article = Article::findFirstById($input_data['id']);

 if (!$article) {
 throw new \Exception('Article not found', 404);
 }

 $data = $this->prepareData($input_data);

 $article->setArticleIsPublished($data[
 'article_is_published']);
 $article->setArticleUpdatedAt(
 new \Phalcon\Db\RawValue('NOW()'));

 foreach ($data['translations'] as $lang => $translation) {
 $article->getTranslations()->filter(function($t) use
 ($lang, $translation){

 if ($t->getArticleTranslationLang() == $lang) {
 $t->assign($translation);
 $t->update();

The Backoffice Module (Part 2)

[264]

 }
 });
 }

 $results = ArticleCategoryArticle::findByArticleId(
 $input_data['id']);

 if ($results) {
 $results->delete();
 }

 if (count($data['categories']) > 0) {
 $article->categories = Category::find([
 "id IN (".implode(',', $data['categories']).")",
])->filter(function ($category) {
 return $category;
 });
 }

 $results = ArticleHashtagArticle::findByArticleId(
 $input_data['id']);

 if ($results) {
 $results->delete();
 }

 if (count($data['hashtags']) > 0) {
 $article->hashtags = Hashtag::find([
 "id IN (".implode(',', $data['hashtags']).")",
])->filter(function ($hashtag) {
 return $hashtag;
 });
 }

 $user = User::findFirstById((int) $data['article_user_id']);

 if (!$user) {
 throw new \Exception('User not found', 404);
 }

 $article->setArticleUserId($data['article_user_id']);

 return $this->save($article, 'update');
 }

Chapter 8

[265]

In the preceding code, the update() method follows the same logic as the create()
method. But in the following code, we first need to delete the existing relations of the
hashtags and categories, and create new ones. This method also checks whether the
article exists in our database:

 public function delete($id)
 {
 $article = Article::findFirstById($id);

 if (!$article) {
 throw new \Exception('Article not found', 404);
 }

 if (false === $article->delete()) {
 foreach ($article->getMessages() as $message) {
 $error[] = (string) $message;
 }

 throw new \Exception(json_encode($error));
 }

 return true;
 }

 private function prepareData($input_data)
 {
 $data = array_merge($this->default_data, $input_data);

 if (!is_array($data['categories'])) {
 $data['categories'] = $data['categories'] != '' ?
 array_map('trim', explode(',', $data['categories'])) : null;

 } else {
 $data['categories'] = implode(',', $data['categories']);
 }

 if (!is_array($data['hashtags'])) {
 $data['hashtags'] = $data['hashtags'] != '' ?
 array_map('trim', explode(',', $data['hashtags'])) : null;

 } else {
 $data['hashtags'] = implode(',', $data['hashtags']);
 }

The Backoffice Module (Part 2)

[266]

 return $data;
 }
}

The prepareData() method is a helper that will help us to avoid code repetition in
the update() and create() methods.

Take a look at the create() and update() methods. We expect the categories and
hashtags to be comma-separated values of IDs. If these fields contain values, we
use the array_map() method and apply a trim operation to each ID. In the case
of update(), we always delete the existing hashtags and categories and add them
again (or add new ones). I use this approach because Phalcon's ORM doesn't do
it automatically.

Important note
In the official documentation, it says you can delete related records in this
manner:

$robots->getParts()->delete();

When using many-to-many relations, as in our case, if you execute the
preceding code for categories or hashtags, you will end up deleting the
hashtag and the category only. This will not remove the relation from the
intermediate model. Also, there is another method for updating related
records that is not supported anymore due to some strange functionality,
but it can still be found in the official documentation. Don't use it:

$robots->getParts()->update($data, function($part) {
 if ($part->type == Part::TYPE_BASIC) {
 return false;
 }
 return true;
});

Summary
We're finally done with this module. In general, there are infinite approaches to
writing code. In this chapter, I used an approach that I think is easy to understand.
Feel free to be different and code the way you like. This book is not intended to teach
you coding, but to teach you Phalcon. You might have noticed that for an API, we
don't use any validations. You can practice a little and connect your forms to the API.

In the next chapter, we will switch to the Frontend module, where we will make
some small modifications to the API. We will also try to implement a search engine
based on Elasticsearch (https://www.elastic.co/products/elasticsearch).

[267]

The Frontend Module
Developing the frontend can be a difficult job. You have to take into consideration
a variety of aspects, such as User Experience (UX), Search Engine Optimization
(SEO), browser compatibility, mobile responsiveness, and so on. We are going to
focus on creating a minimal layout and implementing Elasticsearch. We will also
use MongoDB to create some logs for articles. Step by step, we are going to cover
the following topics in this chapter:

• The frontend layout and basic functionality
• Implementing Elasticsearch
• Implementing MongoDB

The Frontend layout and basic
functionality
We are going to use a simple layout for our frontend module. Switch to the
modules/Frontend/Views/Default/common folder and create the footer.volt,
paginator.volt, and navbar.volt files with the following content.

footer.volt
The footer.volt file does not contain too much information, but in future, you will
want to add more information for sure, such as links, partners, analytics scripts,
and so on:

<footer class="lp-footer">
 <p>Learning Phalcon</p>
 <p>
 Back to top
 </p>
</footer>

The Frontend Module

[268]

paginator.volt
The paginator.volt file contains two simple links: Previous and Next. You can
modify these and create a more complex paginator if you wish:

<nav>
 <ul class="pager">
 Previous
 Next

</nav>

navbar.volt
The navbar.volt file contains a link to our home page and all the categories
available. We will assign categories to the view later in this chapter.

The code is as follows:

<div class="lp-masthead">
 <div class="container">
 <nav class="lp-nav">
 Home
 {% for category in categories['items'] %}
 <a class="lp-nav-item" href="{{ url('categories/' ~
 category['category_translations'][0]
 ['category_translation_slug']) }}">{{ category[
 'category_translations'][0]['category_translation_name']
 }}
 {% endfor %}
 </nav>
 </div>
</div>

layout.volt
Let's move on to layout.volt. There is already a file located in the
modules/Frontend/Views/Default/ folder. We created it in Chapter 2, Setting Up
the MVC Structure and the Environment for Our Project. Clear its contents and add
the following:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">

Chapter 9

[269]

<meta name="viewport" content="width=device-width, initial-scale=1">
<title>{% block pageTitle %}Learning Phalcon{% endblock %}</title>

{{ stylesheetLink('../assets/default/bower_components/bootstrap/dist/
css/bootstrap.min.css') }}
{{ stylesheetLink('../assets/default/css/lp.css') }}

<!--[if lt IE 9]>
 <script src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.
js">
</script>
 <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js">
</script>
<![endif]-->
</head>
<body>
 {% block navbar %}
 {% include 'common/navbar.volt' %}
 {% endblock %}

 <div class="container">
 <div class="lp-header">
 <h1 class="lp-title">Learning Phalcon</h1>
 <p class="lead lp-description">The fastest PHP
 Framework</p>
 </div>

 <div class="row">
 <div class="col-sm-12 lp-main">
 {% block body %}

 {% endblock %}
 </div>
 </div>
 </div>

 {% block footer %}
 {% include 'common/footer.volt' %}
 {% endblock %}

 {{ javascriptInclude("../assets/default/bower_components/jquery/
 dist/jquery.min.js") }}
 {{ javascriptInclude("../assets/default/bower_components/
 bootstrap/dist/js/bootstrap.min.js") }}

The Frontend Module

[270]

 {{ javascriptInclude("../assets/default/js/lp.js") }}
 {% block javascripts %} {% endblock %}
</body>
</html>

Notice that here we are using the javascriptInclude() and stylesheetLink()
methods, which are available by default in Volt. If you want, you can use the assets
manager as we did for the Backoffice module. We also need a simple CSS file. You
should already have a file named lp.css in the public/assets/default/css/
folder. Clear its content and add this:

@import url(http://fonts.googleapis.com/
css?family=News+Cycle:400,700);

body { font-family: "News Cycle"; color: #555; }

h1, .h1, h2, .h2, h3, .h3, h4, .h4, h5, .h5, h6, .h6 {
 margin-top: 0; font-family: "News Cycle"; font-weight: normal;
 color: #333;
}

.container {
 width: 720px;
}

.lp-masthead { background-color: #356aa0; -webkit-box-shadow: inset 0
-2px 5px rgba(0, 0, 0, .1); box-shadow: inset 0 -2px 5px rgba(0, 0, 0,
.1); }
.lp-nav-item { position: relative; display: inline-block; padding:
10px; font-weight: 500; color: #cdddeb; }

.lp-nav-item:hover,

.lp-nav-item:focus {
 color: #fff; text-decoration: none;
}

.lp-nav .active { color: #fff; }

.lp-nav .active:after { position: absolute; bottom: 0; left: 50%;
width: 0; height: 0; margin-left: -5px; vertical-align: middle;
content: " "; border-right: 5px solid transparent; border-bottom: 5px
solid; border-left: 5px solid transparent; }
.lp-header { padding-top: 20px; padding-bottom: 20px; }

.lp-title { margin-top: 30px; margin-bottom: 0; font-size: 30px;
font-weight: normal; }

Chapter 9

[271]

.lp-description { font-size: 16px; color: #999; }

.lp-main { font-size: 13px; line-height: 1.5; }

.pager { margin-bottom: 60px; text-align: left; }

.pager>li>a { width: 140px; padding: 10px 20px; text-align:
center; border-radius: 30px; }

.lp-post { margin-bottom: 60px; }

.lp-post-title { margin-bottom: 5px; font-size: 40px; }

.lp-post-meta { margin-bottom: 20px; color: #999; }

.lp-footer { padding: 40px 0; color: #999; text-align:
center; background-color: #f9f9f9; border-top: 1px solid #e5e5e5; }
.lp-footer p:last-child { margin-bottom: 0; }

Modifying BaseController.php
Now, we should modify BaseController.php from the Frontend module to extend
the core module and to assign categories globally to our views upon each request.
Open modules/Frontend/Controllers/BaseController.php, clear its contents,
and append this code:

<?php
namespace App\Frontend\Controllers;

class BaseController extends \App\Core\Controllers\BaseController
{
 public function afterExecuteRoute()
 {
 $this->view->categories = $this->apiGet('categories');
 }
}

We don't actually have a home page (but we can add one anytime we want),
so we are going to forward the request to ArticlesController. Open
modules/Frontend/Controllers/IndexController.php, remove indexAction(),
and append the following code:

 public function indexAction()
 {
 return $this->dispatcher->forward([
 'controller' => 'article',
 'action' => 'list'
]);
 }

The Frontend Module

[272]

The last step is to create the listAction() method and the view for the articles.
First, create a new file named list.item.volt in the modules/Frontend/Views/
Default/article/common/ folder with this content:

{% for record in records['items'] %}
{% if (record['article_is_published'] == 1) %}
<div class="lp-post">
 <h2 class="lp-post-title">{{ record['article_translations'][0]
 ['article_translation_short_title'] }}</h2>
 <p class="lp-post-meta">
 {{ record['article_created_at']|date("d M Y") }} by

 {{ record['article_author']['user_first_name']}}
 {{ record['article_author']['user_last_name']}}
 </p>
 <p>
 {{ record['article_translations'][0]
 ['article_translation_long_title'] }}
 <a href="{{ url('article/' ~ record['article_translations'][0]
 ['article_translation_slug']) }}">Read more
 </p>
</div>
{% endif %}
{% endfor %}

We also need to modify the layout from modules/Frontend/Views/Default/
article/list.volt. Open this file, clear its content, and append this code:

{% extends 'layout.volt' %}
{% block body %}
 {% include 'article/common/list.item' with {'records':records} %}
 {% if records['total_items'] > 2 %}
 {% include 'common/paginator' with {'records':records} %}
 {% endif %}
{% endblock %}

You can see that we show paginator only if we have more than two records (you
can change this whenever you want). This is related to the $limit parameter from
the listAction() method of ArticleController. Open modules/Frontend/
Controllers/ArticleController.php, and append the following code to it:

<?php
namespace App\Frontend\Controllers;

class ArticleController extends BaseController{

Chapter 9

[273]

 public function listAction() {
 $page = $this->request->getQuery('p', 'int', 1);

 try {
 $records = $this->apiGet('articles',['p' => $page, 'limit'
 => 2]);
 $this->view->records = $records;
 } catch (\Exception $e) {
 $this->flash->error($e->getMessage());
 }
 }
}

Basically, we are done with this part. You can now open http://www.learning-
phalcon.localhost/, and you should see something similar to this screenshot:

The Frontend Module

[274]

Next, we will make a few changes to the articles controller in order to get an article
by its slug. Personally, I like to keep things separated as much as possible, in case
I need to implement complex logic in the future. We will create a new method in
the API (ArticlesController) named getBySlugAction(). A slug is a friendly
URL used for SEO (Search Engine Optimization) purposes. Open modules/Api/
Controllers/ArticlesController.php and append the following code:

public function getBySlugAction($slug) {
 try {
 $manager = $this->getDI()->get('core_article_manager');

 $st_output = $manager->restGet([
 'article_translation_slug = :article_translation_slug:',
 'bind' => [
 'article_translation_slug' => $slug,
],
]);

 return $this->render($st_output);
 } catch (\Exception $e) {
 return $this->render([
 'code' => $e->getCode(),
 'message' => $e->getMessage(),
], $e->getCode());
 }
}

This method is similar to getAction(). We are searching by slug, therefore we will
need to modify the find() method from ArticleManager.php. Our new find()
method will look like this:

public function find($parameters = null) {
 if (isset($parameters['bind']['article_translation_slug'])) {
 $translation = ArticleTranslation::findFirst($parameters);
 if ($translation->count() !== 1) {
 return [$translation->getArticle()->toArray()];
 } else {
 throw new \Exception('Article not found', 404);
 }
 } elseif (isset($parameters['bind'][
 'category_translation_slug'])) {
 $category_translation = CategoryTranslation::
 findFirst($parameters);
 if ($category_translation->count() !== 1) {

Chapter 9

[275]

 return $category_translation->getCategory()->
 getArticles();
 } else {
 throw new \Exception('Article not found', 404);
 }
 } else {
 return Article::find($parameters);
 }
}

We check whether the article_translation_slug parameter is set. If it is set,
instead of calling the Article::find() method, we call ArticleTranslation::fin
dFirst(). If we get results, we return the object as an array. We apply the same logic
when we need to retrieve an article from a certain category. This code will not work
unless we also modify the restGet() method from BaseManager.php. Our current
restGet() method contains the following line:

$result = $objects->filter(function ($object) {
 return $object->toArray();
});

Replace this line with the following code:

if (is_array($objects)) {
 $result = $objects;
} else {
 $result = $objects->filter(function ($object) {
 return $object->toArray();
 });
}

This modified code checks whether the result from $this->find() is an array.
If it is, we don't need to filter anything. Now, we switch to modules/Frontend/
Controllers/ArticleController.php and add a new method. It will get an
article by its slug:

public function readAction($slug) {
 try {
 $records = $this->apiGet("articles/slug/$slug");

 $this->view->records = $records;
 } catch (\Exception $e) {
 $this->flash->error($e->getMessage());
 }
}

The Frontend Module

[276]

We are missing the routing information. We need to add routing for both the Api
and Frontend modules. In modules/Api/Config/routing.php (the article group),
add this line:

$articles->addGet('/slug/{slug}', ['action' => 'getBySlug']);

Then in modules/Frontend/Config/routing.php, replace the last routing line with
the following code:

$router->add('#^/articles/([a-zA-Z0-9\-]+)[/]{0,1}$#', array(
 'module' => 'frontend',
 'controller' => 'article',
 'action' => 'read',
 'slug' => 1,
));

The Article item template
We also need a template for reading an article. Switch to modules/Frontend/Views/
Default/article/common/, create a new file, name it item.volt, and add the
following code:

{% for record in records['items'] %}
{% if (record['article_is_published'] == 1) %}
<div class="lp-post">
 <h2 class="lp-post-title">{{ record['article_translations'][0]
 ['article_translation_short_title'] }}</h2>
 <p class="lp-post-meta">{{ record['article_created_at']|date(
 "d M Y") }} by
 {{ record['article_author']['user_first_name']}}
 {{ record['article_author']['user_last_name'] }}</p>
 <p>
 {{ record['article_translations'][0]
 ['article_translation_long_title'] }}
 </p>
 <p>
 {{ record['article_translations'][0]
 ['article_translation_description'] }}
 </p>
</div>
{% endif %}
{% endfor %}

Chapter 9

[277]

The template for readAction() (modules/Frontend/Views/Default/article/
read.volt) should have this code:

{% extends 'layout.volt' %}
{% block body %}
{% include 'article/common/item' with {'records':records} %}
{% endblock %}

This is it! You can now access http://www.learning-phalcon.localhost/.
Click on the Read more link and you should see a result similar to this:

The Frontend Module

[278]

Retrieving articles from a category
We are missing the implementation of retrieving articles from a category (the top bar
navigation). We need to do this by following these steps:

1. Add routing information for the Api module to modules/Api/Config/
routing.php:
$articles->addGet('/category/{slug}', ['action' =>
 'getByCategorySlug']);

2. Create a new method called getByCategorySlugAction() in modules/Api/
Controllers/ArticlesController.php:
public function getByCategorySlugAction($slug) {
 try {
 $manager = $this->getDI()->get('core_article_manager');

 $st_output = $manager->restGet([
 'category_translation_slug =
 :category_translation_slug:',
 'bind' => [
 'category_translation_slug' => $slug,
],
]);

 return $this->render($st_output);
 } catch (\Exception $e) {
 return $this->render([
 'code' => $e->getCode(),
 'message' => $e->getMessage(),
], $e->getCode());
 }
}

3. Add routing information for the Frontend module to modules/Frontend/
Config/routing.php:
$router->add('#^/categories/([a-zA-Z0-9\-]+)[/]{0,1}$#', array(
 'module' => 'frontend',
 'controller' => 'article',
 'action' => 'categories',
 'slug' => 1,
));

Chapter 9

[279]

4. Create a new method, categoriesAction(), in modules/Frontend/
Controllers/ArticleController.php:
public function categoriesAction($slug) {
 $this->view->pick('article/list');

 try {
 $records = $this->apiGet("articles/category/$slug");

 $this->view->records = $records;
 } catch (\Exception $e) {
 $this->flash->error($e->getMessage());
 }
 }

Note that we are picking the articles and list view in
categoriesAction() because there is no point in duplicating
the code; it is the same code as that for listing articles.

Now we have a minimal, functional frontend. We can navigate through the articles,
get articles from a category, and read an article. We will not go further with this
because things can get too complex. In this chapter, we will only add a feature and
improve speed by indexing articles in Elasticsearch.

If you want to practice more, you can implement a simple search form to search for
articles by title or implement a profile page for authors.

Implementing ElasticSearch
What is Elasticsearch (ES)? The short answer is: it's a search server. According to
Wikipedia, this is the complete definition:

Elasticsearch is a search server based on Lucene. It provides a distributed,
multitenant-capable full-text search engine with a RESTful web interface and
schema-free JSON documents. Elasticsearch is developed in Java and is released as
open source under the terms of the Apache License. Elasticsearch is the second most
popular enterprise search engine.

If you need full-text search, real-time analytics of structured data, or a combination
of the two, Elasticsearch is a very powerful tool, fit for you. All the big players use
it. We will use ES in front of MySQL to store and search for articles. In this way we
will reduce the traffic to MySQL and avoid querying it too often. We are not going to
discuss ES in detail, so please spend a few minutes reading about its basic operation
at http://www.elastic.co/guide/.

The Frontend Module

[280]

Installing ElasticSearch
There is an APT repository available for download. We will perform the
following steps:

1. Open a terminal and type the following commands:
$ wget -qO - https://packages.elasticsearch.org/GPG-KEY-
elasticsearch | sudo apt-key add -

$ sudo add-apt-repository "deb http://packages.elasticsearch.org/
elasticsearch/1.4/debian stable main"

$ sudo apt-get update && sudo apt-get install elasticsearch

2. After installation, you can configure the repository to start during boot-up by
executing this command:
$ sudo update-rc.d elasticsearch defaults 95 10

The command used to start the service is as follows:
$ sudo service elasticsearch start

The command used to test whether it is running is the following:
$ curl -X GET http://localhost:9200/

You should get a JSON response similar to this:

{
 "status" : 200,
 "name" : "Lord Pumpkin",
 "cluster_name" : "elasticsearch",
 "version" : {
 "number" : "1.4.4",
 "build_hash" : "c88f77ffc81301dfa9dfd81ca2232f09588bd512",
 "build_timestamp" : "2015-02-19T13:05:36Z",
 "build_snapshot" : false,
 "lucene_version" : "4.10.3"
 },
 "tagline" : "You Know, for Search"
}

3. We will need a client library to work with. Fortunately, there is one
available. In the terminal, we switch to the root folder of our project
and type this command:
$ php composer.phar require "elasticsearch/elasticsearch":"1.3.3"

Chapter 9

[281]

This will install the PHP client but also a lot of dependencies. It might take a while,
so don't worry about it. Next, we will set up this client in our project. If you have
no experience with ES, please spend 10 minutes reading the documents for the PHP
client at http://www.elastic.co/guide/en/elasticsearch/client/php-api/
current/index.html.

Enabling a client in DI
Before using the ES client, we need to enable it in DI. Open config/services.php
and add the following code:

$di['elastic'] = function() {
 return new \Elasticsearch\Client();
};

Indexing (storing) documents
If we want to index documents, we will need to add some methods to our manager.
Also, we will have to make some modifications for data types. First, we will create
a common method to paginate array results. Open modules/Core/Managers/
ArticleManager.php and append the following code:

protected function paginate($data, $limit, $page)
{
 $paginator = new \Phalcon\Paginator\Adapter\NativeArray(
 array(
 "data" => $data,
 "limit"=> $show,
 "page" => $page
)
);

 $items = $paginator->getPaginate();

 if ($items->total_items > 0) {
 return $items;
 }

 return false;
}

The Frontend Module

[282]

We create a method that should normalize the data before we send it to the ES index:

protected function esNormalize($article) {
 $body = json_decode(json_encode($article->toArray(),
 JSON_NUMERIC_CHECK), true);
 $body['article_created_at'] = str_replace(' ', 'T',
 $body['article_created_at']);
 if ($body['article_updated_at'] != '') {
 $body['article_updated_at'] = str_replace(' ', 'T',
 $body['article_updated_at']);
 } else {
 $body['article_updated_at'] = $body['article_created_at'];
 }
 return $body;
}

The json_encode and json_decode methods are used to force the conversion of
string values that contain only numbers to numeric/integer values. We also replace
the empty space between the date and time from MySQL with T. This ISO format is
auto-recognized by ES as a date and it will then set the field type accordingly. We
also force the article_updated_at field to get a valid date value. If we don't do this,
we will not be able to search for an article between certain intervals of time. Next, we
will create a method in the same manager that will index the article in ES. Append
this code in the manager:

public function esIndex($article) {
 $elastic_manager = $this->getDI()->get('elastic');

 $params = array();
 $params['index'] = 'learningphalcon';
 $params['type'] = 'article';
 $params['id'] = 'article-' . $article->getId();
 $params['body'] = $this->esNormalize($article);

 $elastic_manager->index($params);

 return true;
}

Chapter 9

[283]

Whenever we index data, ES expects a certain format. This format is represented in
the esIndex() method. To compare the parameters with a MySQL structure, you
can think about something like this:

• index: The database name
• type: The table name
• id: The ID (primary key)
• body: A field named body from a table that contains a JSON-encoded

database

The esIndex() method always returns true, but we must be careful and always
use try {},catch() {} because esindex() can throw exceptions. If an article
already exists in the ES index, it will be updated. Let's create a simple task that will
retrieve all the articles from MySQL and index them into ES. Open modules/Task/
ArticlesTask.php and append this code:

public function esindexAction() {
 $article_manager = $this->getDI()->get('core_article_manager');

 foreach ($article_manager->find() as $article) {
 try {
 $article_manager->esindex($article);
 $this->consoleLog("Article {$article->getId()} has been
 indexed");
 } catch (\Exception $e) {
 $this->consoleLog("Article {$article->getId()} has not been
 indexed. Reason: {$e->getMessage()}", "red");
 }
 }
}

Make sure that you have some articles in the database. If not, navigate to Backoffice
and add some. Then open a terminal, switch to the root folder of your project, and
execute the following command:

$ php modules/cli.php article esindex

You should see an output similar to this:

The Frontend Module

[284]

At this point, we have articles indexed in ES. Each time we update, add, or delete an
article from MySQL, we have to reflect this action in ES. We are already doing this
when we add an article. Let's implement it for updates and deletions.

We don't need to create a special method to update articles in ES. It is enough to
submit the index of the same article. ES will find it by ID and update it automatically.
All we need to do is implement the functionality as we did for createAction().

Let's follow these steps:

1. Open modules/Backoffice/Controllers/ArticleController.php.
2. Go to the updateAction() method:

$this->persistent->set('es_add_to_index_id', $object_id);

3. Append the preceding code right after the following line:
$this->flashSession->success('Object was updated successfully');

4. We need to modify the editAction() method. Remove the current method
and replace it with this one:
public function editAction($id) {
 $manager = $this->getDI()->
 get('core_article_manager');
 $object = $manager->findFirstById($id);
 if (!$object) {
 $this->flashSession->error('Object not found');
 return $this->response->redirect('article/list');
 }
 if ($es_add_to_index_id = $this->persistent->
 get('es_add_to_index_id')) {
 $article = $manager->findFirstByid(
 $es_add_to_index_id);
 try {
 $manager->esindex($article);
 } catch (\Exception $e) {
 $this->flash->error("Article was not added to ES
 index");
 }
 }

 $this->persistent->set('id', $id);
 $this->view->form = $manager->getForm(
 $object,['edit' => true]);
}

Chapter 9

[285]

This is all we need to do when updating an article. From now on, whenever you
make changes, those changes will be reflected in ES. When we delete an article from
MySQL, we will have to delete it from ES too. Let's create a simple delete method in
ArticleManager.php:

 public function esdelete($article_id)
 {
 $elastic_manager = $this->getDI()->get('elastic');

 $params['index'] = 'learningphalcon';
 $params['type'] = 'article';
 $params['id'] = 'article-'.(int)$article_id;

 try {
 $elastic_manager->delete($params);
 } catch (\Exception $e) {

 }
 }

As you can see, all that we need to do is provide three keys: index, type, and id.
Then we call the delete() method, and if it is found, the article is removed. The last
step is to call esdelete() when we delete an article. Open modules/Backoffice/
Controllers/ArticleController.php again, go to deleteAction(), and append
the $manager->esdelete($id); line right after $manager->delete($id);. Now,
when we remove articles from MySQL, they will be removed from ES too.

We will not go further into ES. You should spend some time and implement a search
form to retrieve articles from ES. As a tip, here is a simple way to search ES articles
by category slug:

 public function elasticSearchByCategorySlug($categorySlug, $show,
$page, $limit)
 {
 $elastic_manager = $this->getDI()->get('elastic');
 $params['index'] = 'learningphalcon';
 $params['type'] = 'article';

 $params['body']['from'] = 0;
 $params['body']['size'] = $limit;

The Frontend Module

[286]

 $params['body']['query']['bool']['must'] = array(
 array('match' => array('category_translation_slug' =>
 $categorySlug))
);

 $params['body']['sort'] = [
 'post_id' => ['order' => 'desc']
];

 $queryResponse = $elastic_manager->search($params);

 foreach ($queryResponse['hits']['hits'] as $hit) {
 $tmp['items'][] = $hit['_source'];
 }

 return $this->paginate($tmp['items'], $show, $page);
 }

Implementing MongoDB
In this section, we will implement a simple log for articles. Of course, you can
have your entire website running on Mongo. It is incredibly fast, but personally, I
don't like to use it for big projects because Mongo can be very greedy with space.
In order to get an overall idea, in the past, I had to index prices for nearly 5,000
properties (apartments, villas, and houses) for 4 years and the size requirement
was approximately 50 GB. At my current workplace, we have migrated SMS logs
to Mongo and we have nearly 3 million SMS logs for about 20 GB of space. For a
relatively small website, MongoDB is perfect, or if you know that space won't be
an issue, just go for it.

We will not cover Mongo in this section, but there will an example that shows how
to implement it using Phalcon. If you have no idea about Mongo, spare some time
and read the basics at http://docs.mongodb.org/manual/.

That being said, let's start implementing the logs. What are we going to log? Article
IDs, user IP addresses, user agents, and timestamps. From this, you will be able to
show the number of times an article was read and also generate simple reports.

Chapter 9

[287]

Mongo models
Switch to modules/Core/Models and create a new folder named Mongo. In this new
folder, create two new files with the following code.

modules/Core/Models/Mongo/BaseCollection.php
The modules/Core/Models/Mongo/BaseCollection.php file is a simple base
class that extends \Phalcon\Mvc\Collection. You can use it in the future to add
common logic as follows:

<?php
namespace App\Core\Models\Mongo;

class BaseCollection extends \Phalcon\Mvc\Collection
{
}

modules/Core/Models/Mongo/ArticleLog.php
This class is the model for our article_log collection and has two important
methods: log() and countVisits(). We are going to use them to log article
visits and count them:

<?php
namespace App\Core\Models\Mongo;

class ArticleLog extends BaseCollection
{
 public $article_id;

 public $client_ip;

 public $user_agent;

 public $timestamp;

 public function getSource()
 {
 return 'article_log';
 }

 public function log($article_id, \Phalcon\Http\Request $request)
 {
 $log = new self();

The Frontend Module

[288]

 $log->article_id = (int) $article_id;
 $log->client_ip = $request->getClientAddress();
 $log->user_agent = $request->getUserAgent();
 $log->timestamp = time();

 $log->save();
 }

 public function countVisits($article_id, $unique = false)
 {
 if (false === $unique) {
 return $this->count(array(
 array(
 "article_id" => $article_id
)
));
 } else {
 $result = $this->getConnection()->command(
 array(
 'distinct' => 'article_log',
 'key' => 'client_ip',
 'query' => ['article_id' => $article_id],
)
);

 return count($result['values']);
 }
 }

 public function columnMap()
 {
 return [
 'article_id' => 'article_id',
 'client_ip' => 'client_ip',
 'user_agent' => 'user_agent',
 'timestamp' => 'timestamp',
];
 }
}

Chapter 9

[289]

The log() method is pretty much straightforward. We assign values to variables
and save the information in the article_log collection. The countVisits() method
expects two parameters: $article_id and $unique. If we don't want to show the
number of unique visits, this parameter must be set to false (the default value), and
we can simply query the collection using the built-in count() method. If we need to
show only the unique visits (unique by IP address), then we execute the command()
action, which is available in MongoClient (Phalcon does not have this method
implemented).

Let's switch to ArticleManager.php from the Core module and add these two
methods so that we can call them from DI:

 public function mongoLog($article_id, \Phalcon\Http\Request
 $request)
 {
 $log = new ArticleLog();
 $log->log($article_id, $request);
 }

 public function countVisits($article_id, $unique = false)
 {
 $alog = new ArticleLog();
 return $alog->countVisits($article_id, $unique);
 }

Now, we will modify the readAction() method from ArticleController.php
(Frontend module). Remove the current one and append this code:

public function readAction($slug){
 try {
 $records = $this->apiGet("articles/slug/$slug");
 $manager = $this->getDI()->get(
 'core_article_manager');
 $total_views = $manager->countVisits(
 $records['items'][0]['id']);
 $manager->mongoLog($records['items'][0]['id'],
 $this->request);
 $this->view->records = $records;
 $this->view->total_views = $total_views;
 } catch (\Exception $e) {
 $this->flash->error($e->getMessage());
 }
}

The Frontend Module

[290]

Notice the line that contains $total_views = $manager-
>countVisits($records['items'][0]['id']);—we are not providing the
$unique parameter. This means that by default, we will not show unique visits.
If you want to show them, append true like this:

$total_views = $manager->countVisits($records['items'][0]['id'], true);

The final step consists of making small modifications to our templates. Open
modules/Frontend/Views/Default/article/read.volt and append the
total_views parameter to include:

{% extends 'layout.volt' %}
{% block body %}
 {% include 'article/common/item' with {'records':records, 'total_
views' : total_views} %}
{% endblock %}

Then, open modules/Frontend/Views/Default/article/common/item.volt, clear
its contents, and append this code:

{% for record in records['items'] %}
{% if (record['article_is_published'] == 1) %}
<div class="lp-post">
 <h2 class="lp-post-title">
 {{ record['article_translations'][0]
 ['article_translation_short_title'] }}</h2>
 <p class="lp-post-meta">
 {{ record['article_created_at']|date("d M Y") }}
 by
 {{record['article_author']['user_first_name'] }}
 {{ record['article_author']['user_last_name'] }}
 {% if dispatcher.getActionName() == 'read') %}

 {{ total_views }}

 {% endif %}
 </p>
 <p>
 {{ record['article_translations'][0]
 ['article_translation_long_title'] }}
 </p>
 <p>
 {{ record['article_translations'][0]
 ['article_translation_description'] }}
 </p>
</div>
{% endif %}
{% endfor %}

Chapter 9

[291]

The difference between the old item.volt file and new one is the code under
{% if dispatcher.getActionName() == 'read') %}. We show the number
of visits only in readAction().

That's all about MongoDB and Phalcon. The functionality of Phalcon's ODM is
similar to the ORM functionality, but it is not so advanced. You might find yourself
in situations where you will be forced to use MongoClient from PHP. You can read
more about the ODM at http://docs.phalconphp.com/en/latest/reference/
odm.html.

Summary
In this chapter, you learned a few new things about ElasticSearch and MongoDB.
We created a simple Frontend module, and we now have a simple, fully functional
website.

In the next and final chapter, we will discuss things that we didn't cover in previous
chapters, such as uploading images and the annotation router.

[293]

Going Further
In this chapter, we will try to cover a few things that we didn't use in this book. In
April 2015, Phalcon released version 2.0. You don't have to worry about it because it
is perfectly compatible with what you have learned so far.

The big difference is that version 2.0 was completely rewritten in the Zephir language
(http://www.zephir-lang.com/). You can upgrade to version 2.0.* if you want.

We will cover the following topics in this chapter:

• Uploading files with Phalcon
• Using the Annotation router

Uploading files with Phalcon
Uploading files with Phalcon is a piece of cake. We just need to check whether the
request object has files and move them to our upload directory. Let's create the
following controller in the Backoffice module:

<?php
namespace App\Backoffice\Controllers;

use App\Core\Forms\MediaForm;

class MediaController extends BaseController {
 public function addAction() {
 $this->view->form = new MediaForm();
 }

 public function uploadAction() {
 if (true == $this->request->hasFiles() &&
 $this->request->isPost()) {

Going Further

[294]

 $upload_dir = __DIR__ . '/../../../public/uploads/';

 if (!is_dir($upload_dir)) {
 mkdir($upload_dir, 0755);
 }
 foreach ($this->request->getUploadedFiles() as $file) {
 $file->moveTo($upload_dir . $file->getName());
 $this->flashSession->success($file->getName().' has been
 successfully uploaded.');
 }

 $this->response->redirect('media/add');
 }
 }
}

The uploadAction() method first checks whether the request object has a file
and the request method is POST. We assign the path to the upload directory to
the $upload_dir variable. Then we check whether this directory exists in public,
otherwise we create it. Next, we move each uploaded file to public/uploads/. You
can find the forms and the views for this example in the source code for this chapter.
The file object has some built-in methods that are very helpful:

• $file->getSize();

• $file->getRealType();

• $file->getName()

Using these methods, we can implement a simple validator for an image. Let's
assume that we only accept JPEG files that are no larger than 1 MB. This is what
an improved version of the uploadAction() method can look like:

<?php

class MediaController extends BaseController {
 private $valid_mime = [
 'image/jpeg'
];

 private $max_size = 125000;

 public function uploadAction() {
 if (true == $this->request->hasFiles() && $this->request->
 isPost()) {
 $upload_dir = __DIR__ . '/../../../public/uploads/';

Chapter 10

[295]

 if (!is_dir($upload_dir)) {
 mkdir($upload_dir, 0755);
 }

 foreach ($this->request->getUploadedFiles() as $file) {

 if (!in_array($file->getRealType(), $this->valid_mime)) {
 $this->flashSession->error($file->getName().' is
 invalid');
 continue;
 }

 if ($file->getSize() > $this->max_size) {
 $this->flashSession->error($file->getName().' is too
 big');
 continue;
 }

 $file->moveTo($upload_dir . $file->getName());
 $this->flashSession->success($file->getName().' has been
 successfully uploaded.');
 }

 $this->response->redirect('media/add');
 }
 }
}

Phalcon also supports image manipulation. Unfortunately, this is not documented,
but you can take a look at the official repository at https://github.com/phalcon/
cphalcon/tree/master/ext/phalcon/image to find out the available methods,
or the source code for the IDE stubs at https://github.com/phalcon/phalcon-
devtools/tree/master/ide/1.3.4/Phalcon/Image.

A simple example of image manipulation can be as follows:

$image = new Phalcon\Image\Adapter\GD($file);
$image->resize(200, 200)
if ($image->save()) {
 $this->flashSession->success('Image has been successfully
 resized');
}

We can also use an external library, such as https://github.com/avalanche123/
Imagine, which you will find very well documented at http://imagine.
readthedocs.org/en/latest/usage/introduction.html.

Going Further

[296]

Using the Annotation router
In this book, we used a configuration file for the router. If you come from Symfony,
for example, you might want to use annotations. For this, you need to change the
router information in the DI:

<?php

use Phalcon\Mvc\Router\Annotations;

$di['router'] = function() {
 $router = new Annotations(false);
 $router->addResource('Articles', '/api/v1/articles');

 return $router;
};

Then you must modify ArticlesController to look like this:

<?php
namespace App\Api\Controllers;

/**
 * @RoutePrefix("/api/v1/articles")
 */
class ArticlesController extends BaseController {
 /**
 * @Get("/")
 */
 public function listAction() {

 }
}

You can read more about the Annotation router at http://docs.phalconphp.
com/en/latest/reference/routing.html#annotations-router. If you need/
want, you can also develop your own router, implementing Phalcon\Mvc\
RouterInterface.

Chapter 10

[297]

Summary
In this chapter, we saw how we can upload files with Phalcon. Also, we saw how to
use the Annotation router.

Phalcon is a completely decoupled framework. There are no real "best practices", so
you, as a developer, can build your own conduit. I also recommend that you take a
look at Vegas CMF for Phalcon at https://github.com/vegas-cmf, especially if
you are going to work with a big team.

Thank you for reading this book, and I really hope that it was helpful. You can now
start developing your own application.

[299]

Index
A
ACL component

used, for securing application 187-194
Annotation router

URL 296
using 296

Apache
configuration files 5, 6

API
about 129
documenting 160
recommended practices 129, 130
reference link, for examples 130, 131

API documentation
installation 160
reference link 160
usage 160-163

API module
hashtag controller, creating within 201-205

API, securing
about 155
access to resources, limiting to

 authenticated users 158, 159
API key, adding for extra

protection 155-157
number of requests per second, limiting

from same IP 157, 158
SSL used 155

application
securing, ACL component used 187-194

Article-Category-Article model 122-128
Article CRUD

about 247
Article controller, from Backoffice

module 250-252

Article form 252-260
Article manager 261-266
Controller (API) 247-250

Article model 121
Articles

CRUD operations, creating for 140-154
Article translation model 120
assets management 165-168
Auth component

methods 179
authentication system

database structure 169, 170
developing 169
models 171-187

B
Backoffice module

reference link, for adding new hashtag 213
BaseController.php

Article item template 276
articles, retrieving from category 278, 279
modifying 271-275

base layout
creating 52-55

blameable behavior
reference link, for article 115

Bootstrap
URL 169

Bower
URL 52

C
cache component 27-29
categories 116

[300]

Category controller
creating 225-228

Category CRUD 219
Category form

creating 220, 221
Category manager

creating 228-232
Category model 118
Category templates

add.volt 224
creating 222
delete.volt 225
edit.volt 224
list.volt 222

Category translation model 119
Composer

URL 43
config component 20, 21
configuration file

creating 38-40
configuration files, Apache 5, 6
configuration files, Nginx 7, 8
controller 32-35
core module

cleaning 200
Cross-Site Request Forgery (CSRF)

URL 182
CRUD operations

creating, for Articles 140-154
CRUD operations, ORM

about 74
data, creating 77-79
data, deleting 81, 82
data, reading 75-77
data, updating 80

crypt component 15, 16
CSC (check source code) 93
custom filters

URL, for documentation 169

D
database

connecting to 58-66
database architecture

about 93
UserGroup table 95

UserProfile table 95
User table 94

database structure, authentication
system 169, 170

database transactions
about 85
implicit transactions example 87
isolated transactions example 88
manual transactions example 86

data integrity
reference link 112

dependency injection (DI)
about 9, 10
references 9, 10

E
ElasticSearch

about 279
client, enabling in DI 281
documents, indexing 281-285
installing 280
URL 281

F
files

uploading, with Phalcon 293-295
flash component 16, 17
Frontend layout

about 267
footer.volt file 267
layout.volt file 268, 270
navbar.volt file 268
paginator.volt file 268

fully functional REST module
writing, with Phalcon PHP 139

G
Git

installing 4
Graphical User Interface (GUI) 31

H
hashtag

deleting 217-219

[301]

editing 214-217
hashtag controller

about 211, 212
creating, within API module 201-205

hashtag CRUD
about 201
add validation, improving 214
common method, for reducing code

duplication 206
database table structure, improving 214
data, retrieving 206, 207
hashtag controller 211, 212
hashtag controller, creating within API

module 201-205
hashtag, deleting 217-219
hashtag, editing 214-217
hashtag form 210, 211
hashtag manager 212
layout structure 207-209
View template, for add() method 213, 214

hashtag form 210, 211
hashtag manager 212
host file 6

I
Igbinary

URL 28
implicit transactions example 87
Incubator

URL 43
initial DI interface

preparing 41-43
installing

Git 4
MongoDB 4
MySQL 3
Nginx 3
Phalcon 4, 5
PHP 2, 3
Redis 4

isolated transactions example 88

J
Jinja

URL 23

L
local machine

SSL, enabling on 131-133
logger component 14, 15

M
main layout, editing

about 195, 196
common/sidebar.volt 198, 199
common/topbar.volt 197

manual transactions example 86
methods, Auth component

check($credentials) 179
checkUserFlags($user) 179
createRememberEnviroment($user) 179
registerUserThrottling($user_id) 179
saveSuccessLogin($user) 179
setIdentity($user) 179
signin($form) 179

models
about 31-34, 96
Article-Category-Article model 122-128
Article model 121
Article translation model 120
Category model 118
Category translation model 119
new user, registering 100-111
reference link 128
UserGroup model 98
User model 97
user profile, creating 112-117
UserProfile model 99

models, authentication system 171-187
Model-View-Controller (MVC) 1
module

router component, using in 44-51
module structure

creating 133-139
MongoDB

about 89
installing 4
simple log, implementing for articles 286
URL 90

[302]

Mongo models
about 287
modules/Core/Models/Mongo/

ArticleLog.php 287-291
modules/Core/Models/Mongo/

BaseCollection.php 287
MVC pattern

about 31
structure 35, 36
URL 32

MySQL
installing 3

N
Nginx

configuration files 7, 8
installing 3

NoSQL database
versus SQL database 57, 58

O
ODM

about 89
URL 90

ORM (Object-Relational Mapping)
caching 90-92
drawbacks 90, 91

ORM/ODM operations
about 67, 68
actions, creating 69
controller, creating 69
routing information, adding 69
views, creating 70-74

P
pagination

about 202
reference link 209

Personal Package Archive (PPA) 2
Phalcon

about 1
files, uploading with 293-295

installing 4, 5
URL, for articles 65-82
URL, for documentation 10, 20
URL, for official website 1
URLs, for installation instructions 2

Phalcon framework
about 8
cache component 27-29
config component 20, 21
crypt component 15, 16
dependency injection (DI) 9, 10
flash component 16, 17
logger component 14, 15
request component 10, 11
response component 12-14
router component 18, 19
session component 26
view component 22-25

Phalcon PHP
fully functional REST module,

writing with 139
PHP

installing 2, 3
php5-cgi package 3
PHP Framework Interop Group 37
PHQL

URL 84
using 83

project
structure, creating for 36, 37

PSR 37
PSR-4

URL 38

R
raw SQL

using 84
read action

reference link 18
recommended practices, for API 129, 130
Redis

installing 4
relations

reference link 98

[303]

request component 10, 11
response component 12-14
root folder 5
router

preparing 41-43
router component

about 18, 19
using, in module 44-51

S
session component 26
Smarty 23
software

requisites 2
SQL database

versus NoSQL database 57, 58
SQL-to-MongoDB mapping chart

URL 58
SSL

enabling, on local machine 131-133
structure

creating, for project 36, 37

T
TLD (Top Level Domain) 6
Twig 23

U
user CRUD

about 233
controller (API), creating 233-235
user controller, from Backoffice

 module 235-237
user form, using 237-240
user manager 240-243

UserGroup model 98
UserGroup table 95
User model 97
UserProfile model 99
UserProfile table 95
User table 94
user templates 243-247

V
view component

about 22-25
reference link 26

Volt engine
references 198, 199

Z
Zephir

about 1
URL 1

Thank you for buying
Learning Phalcon PHP

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Getting Started with Phalcon
ISBN: 978-1-78328-767-3 Paperback: 138 pages

Design, implement, and deliver superior web
applications using the most popular PHP
framework available

1. Build impressive web applications with the
pace of C, the ease of PHP, and the structure of
the MVC framework.

2. Use Phalcon Developer Tools to build a
scaffolding for your project in minutes.

3. Detailed instructions and examples help you
build an impressive blog application using
Phalcon PHP quickly and easily.

Persistence in PHP with Doctrine
ORM
ISBN: 978-1-78216-410-4 Paperback: 114 pages

Build a model layer of your PHP applications
successfully, using Doctrine ORM

1. Develop a fully functional Doctrine-backed
web application.

2. Demonstrate aspects of Doctrine using
code samples.

3. Generate a database schema from your
PHP classes.

Please check www.PacktPub.com for information on our titles

Learning FuelPHP for Effective
PHP Development
ISBN: 978178216-036-6 Paperback: 104 pages

Use the flexible FuelPHP framework to quickly and
effectively create PHP applications

1. Scaffold with oil - the FuelPHP
command-line tool.

2. Build an administration quickly and effectively.

3. Create your own project using FuelPHP.

CakePHP 2 Application Cookbook
ISBN: 978-1-78216-008-3 Paperback: 346 pages

Over 60 useful recipes for rapid application
development with the CakePHP framework

1. Be introduced to the fundamentals of the
CakePHP framework with useful tips
and tricks.

2. Learn best practices and solve the most
common problems direct from a CakePHP
team member and official trainer.

3. Create outstanding applications as efficiently
as possible.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Phalcon
	Installing the required software
	Installing PHP
	Installing Nginx
	Installing MySQL
	Installing Redis
	Installing MongoDB
	Installing Git

	Installing Phalcon
	The Apache and Nginx configuration files
	Apache
	The host file
	Nginx

	Understanding the framework's internals
	The dependency injection
	The request component
	The response component
	The logger component
	The crypt component
	The flash component
	The router component
	The config component
	The view component
	The session component
	The cache component

	Summary

	Chapter 2: Setting Up the MVC Structure and the Environment for
Our Project
	What is MVC?
	Model
	View
	Controller

	The MVC structure
	Creating the structure for our project
	PSR

	Creating the configuration file and the Bootstrap
	Preparing the initial DI interface and
the router
	Using the router component in a module
	Create the base layout
	Summary

	Chapter 3: Learning Phalcon's ORM
and ODM
	The main differences between SQL and NoSQL databases
	Connecting to the database
	ORM/ODM operations (create, update, delete, transactions, validations)
	Adding the routing information
	Creating the controller and the actions
	Creating the views

	CRUD operations using ORM
	CRUD – reading data
	CRUD – creating data
	CRUD – updating data
	CRUD – deleting data

	Using PHQL
	Using raw SQL
	Database transactions
	A manual transactions example
	An implicit transactions example
	An isolated transactions example

	ODM/MongoDB
	ORM – drawbacks and caching
	Summary

	Chapter 4: Database Architecture, Models, and CLI Applications
	The database architecture
	The User table
	The UserGroup table
	The UserProfile table

	Models
	The User model
	The UserGroup model
	The UserProfile model
	Registering a new user
	Creating a user profile
	The Category model
	The Category translation model
	The Article translation model
	The Article model
	The Article-Category-Article model

	Summary

	Chapter 5: The API Module
	Using APIs – recommended practices
	Enabling SSL on our local machine
	Creating the module structure
	Writing a fully functional REST module with Phalcon PHP
	Articles

	Securing an API
	Using SSL
	Adding an API key for extra protection
	Limiting the number of requests per second from the same IP
	Limiting access to resources, such as DELETE, PUT, and POST, for authenticated users

	Documenting the API
	Installation
	Usage

	Summary

	Chapter 6: Assets, Authentication,
and ACL
	Assets management
	Developing an authentication system
	The database structure
	Models

	Securing the application using the ACL component
	Summary

	Chapter 7: The Backoffice Module
(Part 1)
	Editing the main layout
	common/topbar.volt
	common/sidebar.volt

	Cleaning the Core module
	Hashtag CRUD
	The hashtag controller within the API module
	A common method to reduce code duplication
	Retrieving the data
	The layout structure
	The hashtag form
	The hashtag controller
	The hashtag manager
	The View template for the add() method
	Improving the database table structure and adding validation
	Editing hashtags
	Deleting hashtags

	Category CRUD
	The Category form
	Creating the Category templates
	list.volt
	add.volt
	edit.volt
	delete.volt

	Creating the Category controller
	Creating the Category manager

	Summary

	Chapter 8: The Backoffice Module
(Part 2)
	User CRUD
	Creating the controller (API)
	The user controller from the Backoffice module
	The user form
	The user manager

	User templates
	Article CRUD
	The Controller (API)
	The Article controller from the Backoffice module
	The Article form
	The Article manager

	Summary

	Chapter 9: The Frontend Module
	The Frontend layout and basic functionality
	footer.volt
	paginator.volt
	navbar.volt
	layout.volt

	Modifying BaseController.php
	The Article item template
	Retrieving articles from a category

	Implementing ElasticSearch
	Installing ElasticSearch
	Enabling a client in DI
	Indexing (storing) documents

	Implementing MongoDB
	Mongo models
	modules/Core/Models/Mongo/BaseCollection.php
	modules/Core/Models/Mongo/ArticleLog.php

	Summary

	Chapter 10: Going Further
	Uploading files with Phalcon
	Using the Annotation router
	Summary

	Index

