
SQL Server
Big Data Clusters

Data Virtualization, Data Lake, and
AI Platform
—
Second Edition
—
Benjamin Weissman
Enrico van de Laar

SQL Server Big Data
Clusters

Data Virtualization, Data Lake,
and AI Platform

Second Edition

Benjamin Weissman
Enrico van de Laar

SQL Server Big Data Clusters: Data Virtualization, Data Lake, and AI Platform

ISBN-13 (pbk): 978-1-4842-5984-9			 ISBN-13 (electronic): 978-1-4842-5985-6	
https://doi.org/10.1007/978-1-4842-5985-6

Copyright © 2020 by Benjamin Weissman and Enrico van de Laar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484259849. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Benjamin Weissman
Nurnberg, Germany

Enrico van de Laar
Drachten, The Netherlands

https://doi.org/10.1007/978-1-4842-5985-6

This one is dedicated to all the ravers in the nation.

v

Table of Contents

Chapter 1: ��What Are Big Data Clusters?�� 1

What Is a SQL Server 2019 Big Data Cluster Really?��� 2

Data Virtualization�� 2

Outsource Your Data��� 6

Reduce Data Redundancy and Development Time��� 6

A Combined Data Platform Environment�� 7

Centralized AI Platform�� 9

Chapter 2: ��Big Data Cluster Architecture�� 11

Physical Big Data Cluster Infrastructure�� 11

Containers�� 11

SQL Server on Linux��� 15

Spark�� 18

HDFS��� 22

Tying the Physical Infrastructure Parts Together�� 23

Logical Big Data Cluster Architecture�� 25

Control Plane�� 27

Compute Area��� 28

Data Area�� 28

Summary��� 31

About the Authors��� ix

About the Technical Reviewer�� xi

Acknowledgments�� xiii

Introduction��xv

vi

Chapter 3: ��Deployment of Big Data Clusters��� 33

A Little Helper: Chocolatey��� 33

Installation of an On-Premises PolyBase Instance��� 35

Using Azure Data Studio to Work with Big Data Clusters��� 51

What Is Azure Data Studio?�� 52

Getting and Installing Azure Data Studio�� 52

Installation of a “Real” Big Data Cluster�� 53

kubeadm on Linux�� 53

Azure Kubernetes Service (AKS)�� 56

Deploy Your Big Data Cluster Through Azure Data Studio�� 63

What Is azdata?�� 72

Others��� 81

Advanced Deployment Options�� 81

Active Directory Authentication for Big Data Clusters�� 82

HDFS Tiering in Big Data Clusters�� 82

Summary��� 83

Chapter 4: ��Loading Data into Big Data Clusters�� 85

Getting Azure Data Studio Fully Ready for Your Big Data Clusters��� 85

Getting Some Sample Files into the Installation�� 89

Empty Database��� 89

Sample Data Within Your Big Data Cluster��� 89

Azure SQL Database��� 95

Summary��� 104

Chapter 5: ��Querying Big Data Clusters Through T-SQL�� 105

External Tables��� 105

Automated External Tables with Biml��� 118

External Tables from CSV Files in HDFS��� 123

Accessing Data in an Azure Blob Storage��� 138

External Tables from Other Data Sources�� 138

File-Based Data Sources�� 138

ODBC�� 140

Table of Contents

vii

Others��� 140

The SqlDataPool��� 141

Indexes on the SqlDataPool�� 143

Summary��� 145

Chapter 6: ��Working with Spark in Big Data Clusters��� 147

Loading Data and Creating a Spark Notebook��� 148

Working with Spark Data Frames�� 151

More Advanced Data Frame Handling�� 161

Working with SQL Queries on Spark Data Frames��� 173

Reading Data from the SQL Server Master Instance��� 175

Plotting Graphs�� 178

Data Frame Execution�� 188

Data Frame Caching��� 190

Data Frame Partitioning��� 198

Summary��� 202

Chapter 7: ��Machine Learning on Big Data Clusters��� 203

SQL Server In-Database Machine Learning Services�� 204

Training Machine Learning Models in the SQL Server Master Instance������������������������������� 205

Scoring Data Using In-Database Machine Learning Models�� 213

Machine Learning in Spark�� 217

Summary��� 224

Chapter 8: ��Create and Consume Big Data Cluster Apps�� 225

Create a Big Data Cluster App�� 226

Consume Big Data Cluster Apps Through REST API��� 233

Summary��� 238

Chapter 9: ��Maintenance of Big Data Clusters�� 239

Checking the Status of a Big Data Cluster��� 239

Retrieving a Big Data Cluster’s Status Using azdata�� 239

Manage a Big Data Cluster Using ADS��� 241

Table of Contents

viii

Metrics (Grafana)�� 244

Log Search Analytics (Kibana)�� 246

Troubleshooting Big Data Clusters��� 247

Upgrading Big Data Clusters�� 249

Removing a Big Data Cluster Instance��� 251

Summary��� 252

Index�� 253

Table of Contents

ix

About the Authors

Benjamin Weissman is the owner and founder of Solisyon, a consulting firm based in

Germany and focused on business intelligence, business analytics, data warehousing, as

well as forecasting and budgeting. He is a Microsoft Data Platform MVP, the first German

BimlHero, and has been working with SQL Server since SQL Server 6.5. If he’s not

currently working with data, he is probably traveling and exploring the world, running,

or enjoying delicious food. You can find Ben on Twitter at @bweissman. 

Enrico van de Laar has been working with data in various formats and sizes for over

15 years. He is a data and advanced analytics consultant at Dataheroes where he helps

organizations get the most out of their data. Enrico is a Microsoft Data Platform MVP

since 2014 and a frequent speaker at various data-related events all over the world.

He writes about a wide variety of Microsoft data-related technologies on his blog at

enricovandelaar.com. You can reach Enrico on Twitter at @evdlaar.

xi

About the Technical Reviewer

Mohammad Darab is a data professional with over

20 years of IT experience, 10 years of that working with SQL

Server. He’s a speaker, blogger, and a self-proclaimed Big

Data Cluster advocate. Since the introduction of Big Data

Clusters in SQL Server 2019, Mohammad has been actively

advocating what he calls “the future of SQL Server” through

his social media outlets and blog at MohammadDarab.com. 

When he’s not creating Big Data Cluster content, he’s

spending time with his wife and their three kids in their

home in Virginia.

xiii

Acknowledgments

As with every publication, a big THANK YOU goes to our families for the support they

gave us during this time-consuming process!

Also, thank you very much to Mohammad for his support by reviewing this book!

We would also like to thank the Microsoft SQL Server product team for helping us

out whenever we had a question or ran into situations we didn’t quite understand. JRJ,

Travis, Buck, Mihaela, and all the others – you rock!

Last but not least, thank you #sqlfamily – your ongoing support, feedback, and

motivation is what keeps us going when it comes to exploring and talking about exciting

technologies like Big Data Clusters!

xv

Introduction

When we first started talking about writing a book about SQL Server Big Data Clusters,
it was still in one of its first iterations. We both were very excited about all the
technologies included in the product and the way it could potentially change the field
of data processing and analytics. Little did we know how much changes the product
was going to receive while we were writing this. Ultimately this resulted in us almost
rewriting the entire book on a monthly basis. While this was a massive endeavor, it also
allowed us to follow, and document, everything the product went through during its
development. Now that the final product has shipped, we thought it was about time to
provide an updated version that reflects everything that Big Data Clusters is today; the
result is the book in front of you right now!

SQL Server Big Data Clusters is an incredibly exciting new platform. As mentioned
earlier, it consists of a wide variety of different technologies that make it work.
Kubernetes, HDFS, Spark, and SQL Server on Linux are just some of the major players
inside a Big Data Cluster. Besides all these different products combined into a single
product, you can also deploy it on-premises or in the Azure cloud depending on your
use case. As you can imagine, it is near impossible for a single book to discuss all these
different products in depth (as a matter of fact, there are plenty of books available
that do go into all the tiny details for each individual product that is part of a Big Data
Cluster like Spark or SQL Server on Linux). For this reason, we have opted for a different
approach for this book and will focus more on the architecture of Big Data Clusters in
general and practical examples on how to leverage the different approaches on data
processing and analytics Big Data Clusters offer.

With this approach, we believe that while you read this book, you will be able to
understand what makes Big Data Clusters tick, what their use cases are, and how to get
started with deploying, managing, and working with a Big Data Cluster. In that manner
this book tries to deliver useful information that can be used for the various job roles
that deal with data – from data architects that would like more information on how Big
Data Clusters can serve as a centralized data hub to database administrators that want
to know how to manage and deploy databases to the cluster, data scientists that want to
train and operationalize machine learning models on the Big Data Cluster, and many
more different roles. If you are working with data in any way, this book should have

something for you to think about!

xvi

�Book Layout
We split this book into nine separate chapters that each highlight a specific area, or

feature, of Big Data Clusters:

–– Chapter 1: “What Are Big Data Clusters?” In this chapter we will

describe a high-level overview of SQL Server Big Data Clusters and

their various use cases.

–– Chapter 2: “Big Data Cluster Architecture.” We will go into more

depth about what makes up a Big Data Cluster in this chapter,

describing the various logical areas inside a Big Data Cluster and

looking at how all the different parts work together.

–– Chapter 3: “Deployment of Big Data Clusters.” This chapter will walk

you through the first steps of deploying a Big Data Cluster using an

on-premises or cloud environment and describe how to connect to

your cluster and finally what management options are available to

manage and monitor your Big Data Cluster.

–– Chapter 4: “Loading Data into Big Data Clusters.” This chapter will

focus on data ingression from various sources unto a Big Data

Cluster.

–– Chapter 5: “Querying Big Data Clusters Through T-SQL.” This chapter

focuses on working with external tables through PolyBase and

querying your data using T-SQL statements.

–– Chapter 6: “Working with Spark in Big Data Clusters.” While the

previous chapter focused mostly on using T-SQL to work with the

data on Big Data Clusters, this chapter puts the focus on using Spark

to perform data exploration and analysis.

–– Chapter 7: “Machine Learning on Big Data Clusters.” One of the main

features of Big Data Clusters is the ability to train, score, and opera-

tionalize machine learning models inside a single platform. In this

chapter we will focus on building and exploiting machine learning

models through SQL Server In-Database Machine Learning Services

and Spark.

Introduction

xvii

–– Chapter 8: “Create and Consume Big Data Cluster Apps.” In the

second to last chapter of this book, we are going to take a close look at

how you can deploy and use custom applications through the Big

Data Cluster platform. These applications can range from manage-

ment tasks to providing a REST API to perform machine learning

model scoring.

–– Chapter 9: “Maintenance of Big Data Clusters.” To finish off your Big

Data Cluster experience, we’ll look at what it takes to manage and

maintain a Big Data Cluster.

Introduction

1
© Benjamin Weissman and Enrico van de Laar 2020
B. Weissman and E. van de Laar, SQL Server Big Data Clusters,
https://doi.org/10.1007/978-1-4842-5985-6_1

CHAPTER 1

What Are Big Data
Clusters?
SQL Server 2019 Big Data Clusters – or just Big Data Clusters – are a new feature set

within SQL Server 2019 with a broad range of functionality around data virtualization,

data mart scale out, and artificial intelligence (AI).

SQL Server 2019 Big Data Clusters are only available as part of the box-product

SQL Server. This is despite Microsoft’s “cloud-first” strategy to release new features and

functionality to Azure first and eventually roll it over to the on-premises versions later

(if at all).

Major parts of Big Data Clusters run only on Linux. Let that sink in and travel back

a few years in time. If somebody had told you in early 2016 that you would be able to

run SQL Server on Linux, you probably would not have believed them. Then SQL Server

on Linux was announced, but it was only delivering a subset of what it’s “big brother” –

SQL Server on Windows – actually contained. And now we have a feature that actually

requires us to run SQL Server on Linux.

Oh, and by the way, the name is a bit misleading. Some parts of SQL Server Big Data

Clusters don’t really form a cluster – but more on that later.

Speaking of parts, Big Data Clusters is not a single feature but a huge feature set

serving a whole lot of different purposes, so it is unlikely that you will be embracing

every single piece of it. Depending on your role, specific parts may be more useful to you

than others. Over the course of this book, we will guide you through all capabilities to

allow you to pick those functions that will help you and ignore those that wouldn’t add

any value for you.

2

�What Is a SQL Server 2019 Big Data Cluster Really?
SQL Server 2019 Big Data Clusters are essentially a combination of SQL Server, Apache

Spark, and the HDFS filesystem running in a Kubernetes environment. As mentioned

before, Big Data Clusters is not a single feature. Figure 1-1 categorizes the different

parts of the feature set into different groups to help you better understand what is being

provided. The overall idea is, through virtualization and scale out, SQL Server 2019

becomes your data hub for all your data, even if that data is not physically sitting in SQL

Server.

The major aspects of Big Data Clusters are shown from left to right in Figure 1-1.

You have support for data virtualization, then a managed data platform, and finally an

artificial intelligence (AI) platform. Each of these aspects is described in more detail in

the remainder of this chapter.

�Data Virtualization
The first feature within a SQL Server 2019 Big Data Cluster is data virtualization. Data

virtualization – unlike data integration – retains your data at the source instead of

duplicating it. Figure 1-2 illustrates this distinction between data integration and data

virtualization. The dotted rectangles in the data virtualization target represent virtual

data sources that always resolve back to a single instance of the data at the original

Figure 1-1.  Feature overview of SQL Server 2019 Big Data Clusters

Chapter 1 What Are Big Data Clusters?

3

source. In the world of Microsoft, this resolution of data to its original source is done

via a SQL Server feature named PolyBase, allowing you to virtualize all or parts of your

data mart.

One obvious upside to data virtualization is that you get rid of redundant data as

you don’t copy it from the source but read it directly from there. Especially in cases

where you only read a big flat file once to aggregate it, there may be little to no use to

that duplicate and redundant data. Also, with PolyBase, your query is real time, whereas

integrated data will always carry some lag.

On the other hand, you can’t put indexes on an external table. Thus if you have data

that you frequently query with different workloads than on the original source, which

means that you require another indexing strategy, it might still make sense to integrate

the data rather than virtualize it. That decision may also be driven by the question on

whether you can accept the added workload to your source that would result from more

frequent reporting queries and so on.

Figure 1-2.  Data virtualization vs. data integration

Chapter 1 What Are Big Data Clusters?

4

Note  While data virtualization solves a couple of issues that come with data
integration, it won’t be able to replace data integration. This is NOT the end of SSIS
or ETL .

Technically, PolyBase has been around since SQL Server 2016, but so far only

supported very limited types of data sources. In SQL Server 2019, PolyBase has been

greatly enhanced by support for multiple relational data sources such as SQL Server

or Oracle and NoSQL sources like MongoDB, HDFS, and all other kinds of data as we

illustrate in Figure 1-3.

Figure 1-3.  PolyBase sources and capabilities in SQL Server 2019

Chapter 1 What Are Big Data Clusters?

5

Effectively, you can query a table in another database or even on a completely

different machine as if it were a local table.

The use of PolyBase for virtualization may remind you of a linked server and there

definitely are some similarities. One big difference is that the query toward a linked

server tends to be longer and more involved than a PolyBase query. For example, here is

a typical query against a remote table:

SELECT * FROM MyOtherServer.MyDatabase.DBO.MyTable

Using PolyBase, you would write the same query more simply, as if the table were in

your local database. For example:

SELECT * FROM MyTable

PolyBase will know that the table is in a different database because you will have

created a definition in PolyBase indicating where the table can be found.

An advantage of using PolyBase is that you can move MyDatabase to another server

without having to rewrite your queries. Simply change your PolyBase data source

definition to redirect to the new data source. You can do that easily, without harming or

affecting your existing queries or views.

There are more differences between the use of linked servers and PolyBase. Table 1-1

describes some that you should be aware of.

Table 1-1.  Comparison of linked servers and PolyBase

Linked Server PolyBase

− Instance scoped

− OLEDB providers

− Read/write and pass-through statements

− Single-threaded

− �Separate configuration needed for each

instance in Always On Availability Group

− Database scoped

− ODBC drivers

− Read-only operations

− Queries can be scaled out

− �No separate configuration needed for Always On

Availability Group

Chapter 1 What Are Big Data Clusters?

6

�Outsource Your Data
You may have heard of “Stretch Database,”1 a feature introduced in SQL Server 2016,

which allows you to offload parts of your data to Azure. The idea is to use the feature for

“cold data” – meaning data that you don’t access as frequently because it’s either old (but

still needed for some queries) or simply for business areas that require less attention.

The rationale behind cold data is that it should be cheaper to store that data in Azure

than on premise. Unfortunately, the service may not be right for everyone as even its

entry tier provides significant storage performance which obviously comes at a cost.

With PolyBase, you can now, for example, offload data to an Azure SQL Database

and build your own very low-level outsourcing functionality.

�Reduce Data Redundancy and Development Time
Besides offloading data, the reason to virtualize it instead of integrating it is obviously

the potentially tremendous reduction of data redundancy. As data virtualization keeps

the data at its original source and the data is therefore not persisted at the destination,

you basically cut your storage needs in half compared to a traditional ETL-based staging

process.

Note  Our “cut in half” assertion may not be super accurate as you may not
have staged the full dataset anyway (reducing the savings) or you may have used
different datatypes (potentially even increasing the savings even more).

Think of this: You want to track the number of page requests on your website per

hour which is logging to text files. In a traditional environment, you would have written

a SQL Server Integration Services (SSIS) package to load the text file into a table, then

run a query on it to group the data, and then store or use its result. In this then new

virtualization approach, you would still run the query to group the data but you’d run

it right on your flat file, saving the time it would have taken to develop the SSIS package

and also the storage for the staging table holding the log data which would otherwise

have coexisted in the file as well as the staging table in SQL Server.

1�https://azure.microsoft.com/en-us/pricing/details/sql-server-stretch-database/

Chapter 1 What Are Big Data Clusters?

https://azure.microsoft.com/en-us/pricing/details/sql-server-stretch-database/

7

�A Combined Data Platform Environment
One of the big use cases of SQL Server Big Data Clusters is the ability to create an

environment that stores, manages, and analyzes data in different formats, types, and

sizes. Most notably, you get the ability to store both relational data inside the SQL Server

component and nonrelational data inside the HDFS storage subsystem. Using Big Data

Clusters allows you to create a data lake environment that can answer all your data needs

without a huge layer of complexity that comes with managing, updating, and configuring

various parts that make up a data lake.

Big Data Clusters completely take care of the installation and management of your

Big Data Cluster straight from the installation of the product. Since Big Data Clusters

is being pushed as a stand-alone product with full support from Microsoft, this means

Microsoft is going to handle updates for all the technologies that make up Big Data

Clusters through service packs and updates.

So why would you be interested in a data lake? As it turns out, many organizations

have a wide variety of data stored in different formats. In many situations, a large

portion of data comes from the use of applications that store their data inside relational

databases like SQL Server. By using a relational database, we can easily query the data

inside of it and use it for all kinds of things like dashboards, KPIs, or even machine

learning tasks to predict future sales, for instance.

A relational database must follow a number of rules, and one of the most important

of those rules is that a relational database always stores data in a schema-on-write

manner. This means that if you want to insert data into a relational database, you have

to make sure the data complies to the structure of the table being written to. Figure 1-4

illustrates schema-on-write.

For instance, a table with the columns OrderID, OrderCustomer, and

“OrderAmount” dictates that data you are inserting into that table will also need to

contain those same columns. This means that when you want to write a new row in this

table, you will have to define an OrderID, OrderCustomer, and OrderAmount for the

insert to be successful. There is no room for adding additional columns on the fly, and in

many cases, the data you are inserting needs to be the same datatype as specified in the

table (for inside integers for numbers and strings for text).

Chapter 1 What Are Big Data Clusters?

8

Now in many situations the schema-on-write approach is perfectly fine. You make

sure all your data is formatted in the way the relational databases expect it to be, and

you can store all your data inside of it. But what happens when you decide to add new

datasets that do not necessarily have a fixed schema? Or, you want to process data that

is very large (multiple terabytes) in terms of size? In those situations, it is frequently

advised to look for another technology to store and process your data since a relational

database has difficulties handling data with those characteristics.

Solutions like Hadoop and HDFS were created to solve some of the limitations

around relational databases. Big Data platforms are able to process large volumes of data

in a distributed manner by spreading the data across different machines (called nodes)

that make up a cluster architecture. Using a technology like Hadoop, or as we will use in

this book Spark, allows you to store and process data in any format. This means we can

store huge CSV (comma-separated values) files, video files, Word documents, PDFs, or

whatever we please without having to worry about complying to a predefined schema

like we’d have to when storing data inside a relational database.

Apache’s Spark technology makes sure our data is cut up into smaller blocks and

stored on the filesystem of the nodes that make up a Spark cluster. We only have to worry

about the schema when we are going to read in and process the data, something that

is called schema-on-read. When we load in our CSV file to check its contents, we have

to define what type of data it is and, in the case of a CSV file, what the columns are of

the data. Specifying these details on read allows us a lot of flexibility when dealing with

this data, since we can add or remove columns or transform datatypes without having

to worry about a schema before we write the data back again. Because a technology

like Spark has a distributed architecture, we can perform all these data manipulation

and querying steps very quickly on large datasets, something we are explaining in more

detail in Chapter 2.

What you see in the real world is that in many situations organizations have both

relational databases and a Hadoop/Spark cluster to store and process their data. These

solutions are implemented separately from each other and, in many cases, do not “talk”

Figure 1-4.  Scheme-on-write

Chapter 1 What Are Big Data Clusters?

9

to each other. Is the data relational? Store it in the database! Is it nonrelational like CSV,

IoT data, or other formats? Throw it on the Hadoop/Spark cluster! One reason why we

are so excited over the release of SQL Server Big Data Clusters is that it combines both

these solutions into a single product, a product that contains both the capabilities of a

Spark cluster together with SQL Server. And while you still must choose whether you

are going to store something directly in the SQL Server database or store it on the HDFS

filesystem, you can always access it from both technologies! Want to combine relational

data with a CSV file that is stored on HDFS? No problem, using data virtualization we

described earlier in this chapter, you can read the contents from the CSV file from HDFS

and merge it with your relational data using a T-SQL query producing a single result!

In this sense, SQL Server Big Data Clusters are made up from technologies that

complement each other very well, allowing you to bridge the gap on how limited you

are in processing data based on the manner in which it is stored. Big Data Clusters

ultimately let you create a scalable and flexible data lake environment in which you

can store and process data in any format, shape, or size, even allowing you to choose

between processing the data using SQL Server or Spark, whichever you prefer for the

tasks you want to perform.

The Big Data Cluster architecture will also be able to optimize performance in terms

of data analytics. Having all data you require stored inside a single cluster, whether it is

relational or not, means that you can access it immediately whenever you require it. You

avoid data movement across different systems or networks, which is a huge advantage in

a world where we are constantly trying to find solutions to analyze data faster and faster.

If you ask us what the ultimate advantage of SQL Server Big Data Clusters is, we

firmly believe it is the ability to store, process, and analyze data in any shape, size, or type

inside a single solution.

�Centralized AI Platform
As we described in the preceding section, SQL Server Big Data Clusters allow you to

create a data lake environment that can handle all types and formats of data. Next to

having huge advantages when processing, it naturally also has immense advantages

when dealing with advanced analytics like machine learning. Since all your data is

essentially stored in one place, you can perform tasks like machine learning model

training on all the data that is available on the Big Data Cluster, instead of having to

gather data from multiple systems across your organization.

Chapter 1 What Are Big Data Clusters?

10

By combining SQL Server and Spark, we also have multiple options available when

working with machine learning. We can choose to train and score machine learning

models through Spark directly by accessing data that is stored on the HDFS filesystem, or

use the In-Database Machine Learning Services available to us through SQL Server. Both

these options allow a wide variety in languages and libraries you, or your data science

team, can use, for instance, R, Python, and Java for SQL Server Machine Learning

Services, or PySpark and Scala when running your machine learning workload through

the Spark cluster.

In terms of use cases, Big Data Clusters can handle just about any machine learning

process, from handling real-time scoring to using GPUs in combination with TensorFlow

to optimize the handling of CPU-intensive workloads or, for instance, perform image

classification tasks.

Chapter 1 What Are Big Data Clusters?

11
© Benjamin Weissman and Enrico van de Laar 2020
B. Weissman and E. van de Laar, SQL Server Big Data Clusters,
https://doi.org/10.1007/978-1-4842-5985-6_2

CHAPTER 2

Big Data Cluster
Architecture
SQL Server Big Data Clusters are made up from a variety of technologies all working together

to create a centralized, distributed data environment. In this chapter, we are going to look at

the various technologies that make up Big Data Clusters through two different views.

First, we are evaluating the more-or-less physical architecture of Big Data Clusters.

We are going to explore the use of containers, the Linux operating system, Spark, and the

HDFS storage subsystem that make up the storage layer of Big Data Clusters.

In the second part of this chapter, we are going to look at the logical architecture

which is made up of four different logical areas. These areas combine several

technologies to provide a specific function, or role(s), inside the Big Data Cluster.

�Physical Big Data Cluster Infrastructure
The physical infrastructure of Big Data Clusters is made up from containers on which

you deploy the major software components. These major components are SQL Server on

Linux, Apache Spark, and the HDFS filesystem. The following is an introduction to these

infrastructure elements, beginning with containers and moving through the others to

provide you with the big picture of how the components fit together.

�Containers
A container is a kind of stand-alone package that contains everything you need to run an

application in an isolated or sandbox environment. Containers are frequently compared

to virtual machines (VMs) because of the virtualization layers that are present in both

solutions. However, containers provide far more flexibility than virtual machines. A

notable area of increased flexibility is the area of portability.

12

One of the main advantages of using containers is that they avoid the

implementation of an operating system inside the container. Virtual machines require

the installation of their own operating system inside each virtual machine, whereas with

containers, the operating system of the host on which the containers are being run is

used by each container (through isolated processes). Tools like Docker enable multiple

operating systems on a single host machine by running a virtual machine that becomes

the host for your containers, allowing you to run a Linux container on Windows, for

example.

You can immediately see an advantage here: when running several virtual machines,

you also have an additional workload of maintaining the operating system on each

virtual machine with patches, configuring it, and making sure everything is running

the way it is supposed to be. With containers, you do not have those additional levels

of management. Instead, you maintain one copy of the operating system that is shared

among all containers.

Another advantage for containers over virtual machines is that containers can be

defined as a form of “infrastructure-as-code.” This means you can script out the entire

creation of a container inside a build file or image. This means that when you deploy

multiple containers with the same image or build file, they are 100% identical. Ensuring

100% identical deployment is something that can be very challenging when using virtual

machines, but is easily done using containers.

Figure 2-1 shows some differences between containers and virtual machines around

resource allocation and isolation. You can see how containers reduce the need for

multiple guest operating systems.

Figure 2-1.  Virtual machine vs. containers

Chapter 2 Big Data Cluster Architecture

13

A final advantage of containers we would like to mention (there are many more to

name, however, that would go beyond the scope of this book) is that containers can

be deployed as “stateless” applications. Essentially this means that containers won’t

change, and they do not store data inside themselves.

Consider, for instance, a situation in which you have a number of application

services deployed using containers. In this situation, each of the containers would run

the application in the exact same manner and state as the other containers in your

infrastructure. When one container crashes, it is easy to deploy a new container with

the same build file filling in the role of the crashed container, since no data inside the

containers is stored or changed for the time they are running.

The storage of your application data could be handled by other roles in your

infrastructure, for instance, a SQL Server that holds the data that is being processed by

your application containers, or, as a different example, a file share that stores the data

that is being used by the applications inside your containers. Also, when you have a

new software build available for your application servers, you can easily create a new

container image or build file, map that image or build file to your application containers,

and switch between build versions practically on the fly.

SQL Server Big Data Clusters are deployed using containers to create a scalable,

consistent, and elastic environment for all the various roles and functions that are

available in Big Data Clusters. Microsoft has chosen to deploy all the containers using

Kubernetes. Kubernetes is an additional layer in the container infrastructure that acts

like an orchestrator. By using Kubernetes (or K8s as it is often called), you get several

advantages when dealing with containers. For instance, Kubernetes can automatically

deploy new containers whenever it is required from a performance perspective, or

deploy new containers whenever others fail.

Because Big Data Clusters are built on top of Kubernetes, you have some flexibility in

where you deploy Big Data Clusters. Azure has the ability to use a managed Kubernetes

Service (AKS) where you can also choose to deploy Big Data Clusters if you so want to.

Other, on-premises options are Docker or Minikube as container orchestrators. We will

take a more in-depth look at the deployment of Big Data Clusters inside AKS, Docker, or

Minikube in Chapter 3.

Using Kubernetes also introduces a couple of specific terms that we will be using

throughout this book. We’ve already discussed the idea and definition of containers.

However, Kubernetes (and also Big Data Clusters) also frequently uses another term

Chapter 2 Big Data Cluster Architecture

14

called “pods.” Kubernetes does not run containers directly; instead it wraps a container

in a structure called a pod. A pod combines one or multiple containers, storage

resources, networking configurations, and a specific configuration governing how the

container should run inside the pod.

Figure 2-2 shows a simple representation of the node – pods – container architecture

inside Kubernetes.

Generally, pods are used in two manners: a single container per pod or multiple

containers inside a single pod. The latter is used when you have multiple containers

that need to work together in one way or the other – for instance, when distributing a

load across various containers. Pods are also the resource managed to allocate more

system resources to containers. For example, to increase the available memory for your

containers, a change in the pod’s configuration will result in access to the added memory

for all containers inside the pod. On that note, you are mostly managing and scaling

pods instead of containers inside a Kubernetes cluster.

Pods run on Kubernetes nodes. A node is the smallest unit of computing hardware

inside the Kubernetes cluster. Most of the time, a node is a single physical or virtual

machine on which the Kubernetes cluster software is installed, but in theory every

machine/device with a CPU and memory can be a Kubernetes node. Because these

machines only function as hosts of Kubernetes pods, they can easily be replaced, added,

or removed from the Kubernetes architecture, making the underlying physical (or

virtual) machine infrastructure very flexible.

Figure 2-2.  Representation of containers, pods, and nodes in Kubernetes

Chapter 2 Big Data Cluster Architecture

15

�SQL Server on Linux
In March 2016, Microsoft announced that the next edition of SQL Server, which turned

out to be SQL Server 2017, would be available not only on Windows operating systems

but on Linux as well – something that seemed impossible for as long as Microsoft has

been building software suddenly became a reality and, needless to say, the entire IT

world freaked out.

In hindsight, Microsoft had perfect timing in announcing the strategic decision to

make one of its flagship products available on Linux. The incredible adaptation of new

technologies concerning containers, which we discussed in the previous section, was

mostly based on Linux distributions. We believe that without the capability’s containers,

and thus the Linux operating system those containers provide, there would never have

been a SQL Server Big Data Cluster product.

Thankfully Microsoft pushed through on their adoption of Linux, and with the

latest SQL Server 2019 release, many of the issues that plagued the SQL Server 2017

release on Linux are now resolved and many capabilities that were possible on the

Windows version have been brought to Linux as well.

So how did Microsoft manage to run an application designed for the Windows

operating system on Linux? Did they rewrite all the code inside SQL Server to make it

run on Linux? As it turns out, things are far more complicated than a rewrite of the code

base to make it Linux compatible.

To make SQL Server run on Linux, Microsoft introduced a concept called a Platform

Abstraction Layer (or PAL for short). The idea of a PAL is to separate the code needed to

run, in this case, SQL Server from the code needed to interact with the operating system.

Because SQL Server has never run on anything other than Windows, SQL Server is full

of operating system references inside its code. This would mean that getting SQL Server

to run on Linux would end up taking enormous amounts of time because of all the

operating system dependencies.

Chapter 2 Big Data Cluster Architecture

16

The SQL Server team looked for different approaches to resolve this issue of

operating system dependencies and found their answer in a Microsoft research project

called Drawbridge. The definition of Drawbridge can be found on its project page at

www.microsoft.com/en-us/research/project/drawbridge/ and states:

Drawbridge is a research prototype of a new form of virtualization for
application sandboxing. Drawbridge combines two core technologies:
First, a picoprocess, which is a process-based isolation container with a
minimal kernel API surface. Second, a library OS, which is a version of
Windows enlightened to run efficiently within a picoprocess.

The main part that attracted the SQL Server team to the Drawbridge project was the

library OS technology. This new technology could handle a very wide variety of Windows

operating system calls and translate them to the operating system of the host, which in

this case is Linux.

Now, the SQL Server team did not adapt the Drawbridge technology one-on-one as

there were some challenges involved with the research project. One of the challenges

was that the research project was officially completed which means that there was no

support on the project. Another challenge was a large overlap of technologies inside

the SQL Server OS (SOS) and Drawbridge. Both solutions, for example, have their own

functionalities to handle memory management and threading/scheduling.

What eventually was decided was to merge the SQL Server OS and Drawbridge

into a new platform layer called the SQLPAL (SQL Platform Abstraction Layer). Using

SQLPAL, the SQL Server team can develop code as they have always done and leave the

translation of operating system calls to the SQLPAL. Figure 2-3 shows the interaction

between the various layers while running SQL Server on Linux.

Chapter 2 Big Data Cluster Architecture

http://www.microsoft.com/en-us/research/project/drawbridge/

17

There is a lot more information available on various Microsoft blogs that cover

more of the functionality and the design choices of the SQLPAL. If you want to know

more about the SQLPAL, or how it came to life, we would recommend the article “SQL

Server on Linux: How? Introduction” available at https://cloudblogs.microsoft.com/

sqlserver/2016/12/16/sql-server-on-linux-how-introduction/.

Figure 2-3.  Interaction between the various layers of SQL Server on Linux

Chapter 2 Big Data Cluster Architecture

https://cloudblogs.microsoft.com/sqlserver/2016/12/16/sql-server-on-linux-how-introduction/
https://cloudblogs.microsoft.com/sqlserver/2016/12/16/sql-server-on-linux-how-introduction/

18

Next to the use of containers, SQL Server 2019 on Linux is at the heart of the Big Data

Cluster product. Almost everything that happens inside the Big Data Cluster in terms of

data access, manipulation, and the distribution of queries occurs through SQL Server on

Linux instances which are running inside containers.

When deploying a Big Data Cluster, the deployment script will take care of the full

SQL Server on Linux installation inside the containers. This means there is no need to

manually install SQL Server on Linux, or even to keep everything updated. All of this is

handled by the Big Data Cluster deployment and management tools.

�Spark
With the capability to run SQL Server on Linux, a load of new possibilities became

available regarding the integration of SQL Server with various open source and Linux-

based products and technologies. One of the most exciting combinations that became a

reality inside SQL Server Big Data Clusters is the inclusion of Apache Spark.

SQL Server is a platform for relational databases. While technologies like PolyBase

enable the reading of nonrelational data (or relational data from another relational

platform like Oracle or Teradata) into the relational format SQL Server requires, in its

heart SQL Server never dealt much with unstructured or nonrelational data. Spark is a

game changer in this regard.

The inclusion of Spark inside the product means you can now easily process and

analyze enormous amounts of data of various types inside your SQL Server Big Data

Cluster using either Spark or SQL Server, depending on your preferences. This ability

to process large volumes of data allows for maximum flexibility and makes parallel and

distributed processing of datasets a reality.

Apache Spark was created at the University of Berkeley in 2009 mostly as an answer

to the limitations of a technology called MapReduce. The MapReduce programming

model was developed by Google and was the underlying technology used to index all

the web pages on the Internet (and might be familiar to you in the Hadoop MapReduce

form). MapReduce is best described as a framework for the parallel processing of huge

datasets using a (large) number of computers known as nodes. This parallel processing

across multiple nodes is important since datasets reached such sizes that they could

no longer efficiently be processed by single machines. By spreading the work, and data,

across multiple machines, parallelism could be achieved which results in the faster

processing of those big datasets.

Chapter 2 Big Data Cluster Architecture

19

Running a query on a MapReduce framework usually results in going through four

steps of execution:

	 1.	 Input splits

The input to a MapReduce job is split into logical distribution of

the data stored in file blocks. The MapReduce job calculates which

records fit inside a logical block, or “splits,” and decides on the

number of mappers that are required to process the job.

	 2.	 Mapping

During mapping our query is being performed on each of the

“splits” separately and produces the output for the specific query

on the specific split. The output is always a form of key/value pairs

that are returned by the mapping process.

	 3.	 Shuffling

The shuffling process is, simply said, the process of sorting and

consolidating the data that was returned by the mapping process.

	 4.	 Reducing

The final step, reducing, aggregates the results returned by the

shuffling process and returns a single output.

The best way to explain the MapReduce process is by looking at a visual example.

Figure 2-4 shows an example of a MapReduce task that calculates word occurrences

inside a dataset. To keep things simple and visually easy to display, we use a simple,

short sentence that acts as a dataset: “SQL Server is no longer just SQL but it is much

more.”

Chapter 2 Big Data Cluster Architecture

20

What happens in the example is that the dataset that contains the input for our job

(the sentence “SQL Server is no longer just SQL but is also much more”) is split up into

three different splits. These splits are processed in the mapping phase, resulting in the

word counts for each split. The results are sent to the shuffling step which places all

the results in order. Finally, the reduce step calculates the total occurrences for each

individual word and returns it as the final output.

As you can see from the (simple) example in Figure 2-4, MapReduce is very efficient

in distributing and coordinating the processing of data across a parallel environment.

However, the MapReduce framework also had a number of drawbacks, the most notable

being the difficulty of writing large programs that require multiple passes over the data

(for instance, machine learning algorithms). For each pass over a dataset, a separate

MapReduce job had to be written, each one loading the data it required from scratch

again. Because of this, and the way MapReduce accesses data, processing data inside the

MapReduce framework can be rather slow.

Spark was created to address these problems and make big data analytics more

flexible and better performing. It does so by implementing in-memory technologies that

allow sharing of data between processing steps and by allowing ad hoc data processing

instead of having to write complex MapReduce jobs to process data. Also, Spark supports

a wide variety of libraries that can enhance or expand the capabilities of Spark, like

processing streaming data or performing machine learning tasks, and even query data

through the SQL language.

Figure 2-4.  MapReduce example job

Chapter 2 Big Data Cluster Architecture

21

Spark looks and acts a lot like the MapReduce framework in that Spark is also a

coordinator, and manager, of tasks that process data. Just like MapReduce, Spark uses

workers to perform the actual processing of data. These workers get told what to do

through a so-called Spark application which is defined as a driver process. The driver

process is essentially the heart of a Spark application, and it keeps track of the state

of your Spark application, responds to input or output, and schedules and distributes

work to the workers. One advantage of the driver process is that it can be “driven” from

different programming languages, like Python or R, through language APIs. Spark

handles the translation of the commands in the various languages to Spark code that

gets processed on the workers.

Figure 2-5 shows an overview of the logical Spark architecture.

Figure 2-5.  Spark logical architecture

Chapter 2 Big Data Cluster Architecture

22

There is a reason why we specifically mentioned the word “logical” in connection

with Spark’s architecture. Even though Figure 2-5 implies that worker nodes are

separate machines that are part of a cluster, it is in fact possible in Spark to run as

many worker nodes on a machine as you please. As a matter of fact, both the driver

process and worker nodes can be run on a single machine in local mode for testing and

development tasks.

Figure 2-5 also shows how a Spark application coordinates work across the cluster.

The code you write as a user is translated by the driver process to a language your worker

nodes understand; it distributes the work to the various worker nodes which handle

the data processing. In the illustration, we specifically highlighted the cache inside

the worker node. The cache is one part of why Spark is so efficient in performing data

processing since it can store intermediate processing results in the memory of the node,

instead of on disk like, for example, Hadoop MapReduce.

Inside SQL Server Big Data Clusters, Spark is included inside a separate container

that shares a pod together with a SQL Server on Linux container.

One thing we haven’t touched upon yet is the way nonrelational data outside SQL

Server is stored inside Big Data Clusters. If you are familiar with Spark- or Hadoop-based

big data infrastructure, the next section should not come as a surprise.

�HDFS
HDFS, or the Hadoop Distributed File System, is the primary method of storing data

inside a Spark architecture. HDFS has many advantages in how it stores and processes

data stored on the filesystem, like fault tolerance and distribution of data across multiple

nodes that make up the HDFS cluster.

The way HDFS works is it breaks up the data in separate blocks (called chunks) and

distributes them across the nodes that make up the HDFS environment when data is

stored inside the filesystem. The chunks, with a default size of 64 MB, are then replicated

across multiple nodes to enable fault tolerance. If one node fails, copies of data chunks

are also available on other nodes, which means the filesystem can easily recover from

data loss on single nodes.

Figure 2-6 shows a simplified overview of the HDFS architecture.

Chapter 2 Big Data Cluster Architecture

23

In many aspects, HDFS mirrors the architecture of Hadoop and, in that sense, of

Spark as we have shown in the previous section. Because of the distributed nature of data

stored inside the filesystem, it is possible, and in fact expected, that data is distributed

across the nodes that also handle the data processing inside the Spark architecture. This

distribution of data brings a tremendous advantage in performance; since data resides

on the same node that is responsible for the processing of that data, it is unnecessary to

move data across a storage architecture. With the added benefit of data caching inside of

the Spark worker nodes, data can be processed very efficiently indeed.

One thing that requires pointing out is that unlike with Hadoop, Spark is not

necessarily restricted to data residing in HDFS. Spark can access data that is stored in

a variety of sources through APIs and native support. Examples include various cloud

storage platforms like Azure Blob Storage or relational sources like SQL Server.

�Tying the Physical Infrastructure Parts Together
Now it’s time to look at the big picture. Figure 2-7 shows a complete overview of how

the technologies discussed in the previous sections work together inside SQL Server Big

Data Clusters.

Figure 2-6.  HDFS architecture

Chapter 2 Big Data Cluster Architecture

24

As you can see from Figure 2-7, SQL Server Big Data Clusters combine a number of

different roles inside the containers that are deployed by Kubernetes. Placing both SQL

Server and Spark together in a container with the HDFS Data Node allows both products

to access data that is stored inside HDFS in a performance-optimized manner. In SQL

Server this data access will occur through PolyBase, while Spark can natively query data

residing in HDFS.

The architecture in Figure 2-7 also gives us two distinct different paths in how we

can process and query our data. We can decide on storing data inside a relational format

using the SQL Server instances available to us, or we can use the HDFS filesystem and

store (nonrelational) data in it. When the data is stored in HDFS, we can access and

process that data in whichever manner we prefer. If your users are more familiar with

writing T-SQL queries to retrieve data, you can use PolyBase to bring the HDFS-stored

data inside SQL Server using an external table. On the other hand, if users prefer to use

Spark, they can write Spark applications that access the data directly from HDFS. Then

if needed, users can invoke a Spark API to combine relational data stored in SQL Server

with the nonrelational data stored in HDFS.

Figure 2-7.  SQL Server Big Data Cluster architecture with Spark, HDFS, and
Kubernetes

Chapter 2 Big Data Cluster Architecture

25

�Logical Big Data Cluster Architecture
As mentioned in the introduction of this chapter, Big Data Clusters can be divided into

four logical areas. Consider these areas as a collection of various infrastructure and

management parts that perform a specific function inside the cluster. Each of the areas

in turn has one or more roles it performs. For instance, inside the Data Pool area, there

are two roles: the Storage Pool and the SQL Data Pool.

Figure 2-8 shows an overview of the four logical areas and the various roles that are

part of each area.

You can immediately infer the four logical areas: the Control area (which internally

is named the Control Plane) and the Compute, Data, and App areas. In the following

sections, we are going to dive into each of these logical areas individually and describe

Figure 2-8.  Big Data Cluster architecture

Chapter 2 Big Data Cluster Architecture

26

their function and what roles are being performed in it. Before we start taking a closer

look at the Control Plane, you might have noticed there is an additional role displayed in

Figure 2-8, the SQL Server Master Instance.

The SQL Server master instance is a SQL Server on Linux deployment inside a

Kubernetes node. The SQL Server master instance acts like an entry point toward your

Big Data Cluster and provides the external endpoint to connect to through Azure Data

Studio (ADS) (see Figure 2-9) or from other tools like SQL Server Management Studio.

In many ways the SQL Server master instance acts like a normal SQL Server instance.

You can access it and browse through the instance using Azure Data Studio and query

the system and user databases that are stored inside of it. One of the big changes

Figure 2-9.  Connection to the SQL Server master instance through Azure Data
Studio

Chapter 2 Big Data Cluster Architecture

27

compared to a traditional SQL Server instance is that the SQL Server master instance

will distribute your queries across all SQL Server nodes inside the Compute Pool(s) and

access data that is stored, through PolyBase, on HDFS inside the Data Plane.

By default, the SQL Server master instance also has Machine Learning Services

enabled. This allows you to run in-database analytics using R, Python, or Java straight

from your queries. Using the data virtualization options provided in SQL Server Big

Data Cluster, Machine Learning Services can also access nonrelational data that is

stored inside the HDFS filesystem. This means that your data analysists or scientists

can choose to use either Spark or SQL Server Machine Learning Services to analyze, or

operationalize, the data that is stored in the Big Data Cluster. We are going to explore

these options in a more detailed manner in Chapter 7.

�Control Plane
The Control Plane shown in Figure 2-10 is your entry into the Big Data Cluster

management environment. It provides various management and log tools like Grafana

and is the centralized place where you perform all your Big Data Cluster management.

Also, security inside the Big Data Cluster is managed and controlled through the Control

Plane.

In terms of managing Big Data Clusters, we are going to discuss the various

management tools we can use to manage Big Data Clusters in Chapter 3.

Next to providing a centralized location where you can perform all your Big Data

Cluster management tasks, the Control Plane also plays a very important part in the

coordination of tasks to the underlying Compute and Data areas. The access to the

Control Plane is available through the controller endpoint.

Figure 2-10.  Big Data Cluster Control Plane

Chapter 2 Big Data Cluster Architecture

28

The controller endpoint is used for the Big Data Cluster management in terms of

deployment and configuration of the cluster. The endpoint is accessed through REST

APIs, and some services inside the Big Data Cluster, as well as the command-line tool we

use to deploy and configure our Big Data Cluster, access those APIs.

You are going to get very familiar with the controller endpoint in the next chapter, in

which we will deploy and configure a Big Data Cluster using azdata.

�Compute Area
The Compute area (see Figure 2-11) is made up from one or more Compute Pools. A

Compute Pool is a collection Kubernetes Pods which contain SQL Server on Linux. Using

a Compute Pool, you can access various data sources through PolyBase in a distributed

manner. For instance, a Compute Pool can access data stored inside HDFS on the Big Data

Cluster itself or access data through any of the PolyBase connectors like Oracle or MongoDB.

The main advantage of having a Compute Pool is that it opens up options to

distribute, or scale out, queries across multiple nodes inside each Compute Pool,

boosting the performance of PolyBase queries.

By default, you will have access to a single Compute Pool inside the Compute logical

area. You can, however, add multiple Compute Pools in situations where, for instance,

you want to dedicate resources to access a specific data source. All management and

configuration of each Kubernetes Pod inside the Compute Pool is handled by the SQL

Server Master Instance.

�Data Area
The Data area (Figure 2-12) is used to persist and cache data inside your Big Data

Cluster, and it is split into two different roles, the Storage Pool and the SQL Data Pool,

which both have different functionalities inside the Big Data Cluster.

Figure 2-11.  Big Data Cluster Compute area

Chapter 2 Big Data Cluster Architecture

29

�Storage Pool

The Storage Pool consists of Kubernetes Pods that combine Spark, SQL Server on Linux,

and a HDFS Data Node. Figure 2-13 illustrates the pod contents.

The HDFS Data Nodes are combined into a single HDFS cluster that is present inside

your Big Data Cluster. The main function of the Storage Pool is to provide a HDFS storage

cluster to store data on what is ingested through, for instance, Spark. By creating a HDFS

cluster, you basically have access to a data lake inside the Big Data Cluster where you can

store a wide variety of nonrelational data, like Parquet or CSV files.

The HDFS cluster automatically arranges data persistence since the data you import

into the Storage Pool is automatically spread across all the Storage Nodes inside the

Storage Pool. This spreading of data across nodes also allows you to quickly analyze

large volumes of data, since the load of analysis is spread across the multiple nodes. One

advantage of this architecture is that you can either use the local storage present in the

Data Node or add your own persistent storage subsystem to the nodes.

Figure 2-12.  Data Plane architecture

Figure 2-13.  Storage Node inside the Storage Pool

Chapter 2 Big Data Cluster Architecture

30

Just like the Compute Pool, the SQL Server instances that are present in the Storage

Node are accessed through the SQL Server master instance. Because the Storage Node

combines SQL Server and Spark, all data residing on or managed by the Storage Nodes

can also be directly accessed through Spark. That means you do not have to use PolyBase

to access the data inside the HDFS environment. This allows more flexibility in terms of

data analysis or data engineering.

�SQL Data Pool

Another area of the Data Plane is the SQL Data Pool. This collection of pods is different

compared to the Storage Pool in that it doesn’t combine Spark or HDFS together into

the node. Instead, the SQL Data Pool consists of one, or multiple, SQL Server on Linux

instances. These instances are termed as shards, and you can see them illustrated in

Figure 2-14.

The main role of the SQL Data Pool is to optimize access to external sources using

PolyBase. The SQL Data Pool can than partition and cache data from those external

sources inside the SQL Server instances and ultimately provide parallel and distributed

queries against the external data sources. To provide this parallel and distributed

functionality, datasets inside the SQL Data Pool are divided into shards across the nodes

inside the SQL Data Pool.

Chapter 2 Big Data Cluster Architecture

31

�Summary
In this chapter, we’ve looked at the SQL Server Big Data Cluster architecture in

two manners: physical and logical. In the physical architecture, we focused on the

technologies that make up the Big Data Cluster like containers, SQL-on-Linux and

Spark. In the logical architecture, we discussed the different logical areas inside Big Data

Clusters that each perform a specific role or task inside the cluster.

For each of the technologies used in Big Data Clusters, we gave a brief introduction

in its origins as well as what part the technology plays inside Big Data Clusters. Because

of the wide variety of technologies and solutions used in SQL Server Big Data Clusters,

we tried to be as thorough as possible in describing the various technologies; however,

Figure 2-14.  Scaling and caching of external data sources inside the SQL Data
Pool

Chapter 2 Big Data Cluster Architecture

32

we also realize we cannot describe each of these technologies in as much detail as we

would have liked. For instance, just on Spark, there have been dozens of books written

and published describing how it works and how you can leverage the technology. In

the area of SQL-on-Linux, HDFS, and Kubernetes, the situation isn’t much different.

For that reason, it is best to consider this chapter a simple and brief introduction to the

technology or solution, enough to get you started on understanding and using SQL

Server Big Data Clusters.

Chapter 2 Big Data Cluster Architecture

33
© Benjamin Weissman and Enrico van de Laar 2020
B. Weissman and E. van de Laar, SQL Server Big Data Clusters,
https://doi.org/10.1007/978-1-4842-5985-6_3

CHAPTER 3

Deployment of Big Data
Clusters
Now it is time to install your very own SQL Server 2019 Big Data Cluster! We will be

handling three different scenarios in detail and we will be using a fresh machine for each

of those scenarios:

–– Stand-alone PolyBase installation on Windows

–– Big Data Cluster using kubeadm on Linux

–– Big Data Cluster using Azure Kubernetes Service (AKS)

It is perfectly fine to run all options from the same box. But as it is likely that you will

not be using all of them, we figured it would make sense to start fresh each time.

We will be covering the installation using the Microsoft Windows operating system.

The goal of this guide is to get your Big Data Cluster up and running as quick as possible,

so we will configure some options that may not be best practice (like leaving all the service

accounts and directories on default). Feel free to modify those as it may fit your needs.

If you opt for the AKS installation, you will need an active Azure subscription. If you

do not already have an Azure subscription, you can create one for free which includes

credits which you can spend free of charge.

�A Little Helper: Chocolatey
Before we get started, we’d like to point your attention to Chocolatey – or choco. In

case you haven’t heard about it, choco is a free package manager for Windows which

will allow us to install many of our prerequisites with a single line in PowerShell or a

command prompt. You can find more information on http://chocolatey.org (see

Figure 3-1) and you can even create an account and provide your own packages there.

http://chocolatey.org

34

From a simple user perspective though, there is no need to create an account or to

download any installer.

To make choco available on your system, open a PowerShell window in

Administrative mode and run the script shown in Listing 3-1.

Listing 3-1.  Install script for Chocolatey in PowerShell

Set-ExecutionPolicy Bypass -Scope Process -Force; [System.Net.Servic

ePointManager]::SecurityProtocol = [System.Net.ServicePointManager]:

:SecurityProtocol -bor 3072; iex ((New-Object System.Net.WebClient).

DownloadString('https://chocolatey.org/install.ps1'))

Once the respective command has completed, choco is installed and ready to be

used.

Figure 3-1.  Home page of Chocolatey

Chapter 3 Deployment of Big Data Clusters

35

�Installation of an On-Premises PolyBase Instance
In case you’re only interested in the data virtualization feature of SQL Server 2019 Big

Data Clusters, the installation is actually much easier and lightweight than for a full

environment. The PolyBase feature, which enabled the data virtualization feature, can be

installed during the regular setup routine of SQL Server 2019 on any platform.

If you want to use Teradata through PolyBase, the C++ Redistributable 2012 is

required to actually communicate with our SQL Server instance. Having SQL Server

Management Studio (SSMS) may be helpful in either case and is nice to have it installed

and ready to replay the examples we are showing throughout this book.

Let’s install the packages we mentioned earlier through Chocolatey. Just run the

three commands from Listing 3-2 and choco will take care of the rest.

Listing 3-2.  Install script for PolyBase prerequisites

choco install sql-server-management-studio -y

choco install vcredist2012 -y

With our prerequisites installed, we can get to the actual SQL Server installation.

Navigate to www.microsoft.com/en-us/evalcenter/evaluate-sql-server-2019 and

follow the instructions to download.

Run the downloaded file, as shown in Figure 3-2.

Select “Download Media” as the installation type.

Chapter 3 Deployment of Big Data Clusters

http://www.microsoft.com/en-us/evalcenter/evaluate-sql-server-2019

36

Then confirm language and directory as shown in Figure 3-3.

Figure 3-2.  SQL Server 2019 installer – Installation type selection

Chapter 3 Deployment of Big Data Clusters

37

When the download is complete and successful, you will see the message in

Figure 3-4.

Figure 3-3.  SQL Server 2019 installer – Download Media dialog

Chapter 3 Deployment of Big Data Clusters

38

Now navigate to the folder in which you have placed the download. Mount the image

as shown in Figure 3-5.

Figure 3-4.  SQL Server 2019 installer – Download Media successful

Chapter 3 Deployment of Big Data Clusters

39

The installation can be run unattended, but for a first install, it probably makes more

sense to explore your options. Run setup.exe, go to the Installation tab, and pick “New

SQL Server stand-alone installation,” as shown in Figure 3-6.

Figure 3-5.  SQL Server 2019 installer – mount ISO

Chapter 3 Deployment of Big Data Clusters

40

Pick the evaluation edition as shown in Figure 3-7, confirm the License Terms, and

the check the “Check for updates” check box on the subsequent screens.

Figure 3-6.  SQL Server 2019 installer – main screen

Chapter 3 Deployment of Big Data Clusters

41

Setup rules identify potential problems that might occur while running the Setup.

Failures and warnings as shown in Figure 3-8 must be corrected before the Setup can be

completed.

Figure 3-7.  SQL Server 2019 installer – edition selection

Chapter 3 Deployment of Big Data Clusters

42

From the feature selection dialog shown in Figure 3-9, tick the “PolyBase Query

Service for External Data.” Also tick its child node “Java connector for HDFS data

sources.”

Figure 3-8.  SQL Server 2019 installer – Install Rules

Chapter 3 Deployment of Big Data Clusters

43

Using Instance Configuration specify the name and Instance ID for the Instance SQL

Server. The Instance ID as shown in Figure 3-10 becomes part of the installation path.

Figure 3-9.  SQL Server 2019 installer – Feature Selection

Chapter 3 Deployment of Big Data Clusters

44

From the dialog in Figure 3-11, choose to configure a stand-alone PolyBase-enabled

instance.

Figure 3-10.  SQL Server 2019 installer – Instance Configuration

Chapter 3 Deployment of Big Data Clusters

45

As you can see in Figure 3-12, the PolyBase HDFS connector requires Java; you will

be prompted to either install Open JRE with SQL Server or provide the location of an

existing Java installation on your machine, if there is any.

Figure 3-11.  SQL Server 2019 installer – PolyBase Configuration

Chapter 3 Deployment of Big Data Clusters

46

Then confirm the default accounts as shown in Figure 3-13.

Figure 3-12.  SQL Server 2019 installer – Java Install Location

Chapter 3 Deployment of Big Data Clusters

47

Stick with Windows authentication and add your current user as shown in Figure 3-14.

Figure 3-13.  SQL Server 2019 installer – Server Configuration

Chapter 3 Deployment of Big Data Clusters

48

Click Install on the summary page shown in Figure 3-15 and wait for the installer to

finish.

Figure 3-14.  SQL Server 2019 installer – Database Engine Configuration

Chapter 3 Deployment of Big Data Clusters

49

Once the setup is successfully completed, a status summary as shown in Figure 3-16

is displayed and you can close the installer.

Figure 3-15.  SQL Server 2019 installer – overview

Chapter 3 Deployment of Big Data Clusters

50

Connect to the instance using SQL Server Management Studio (SSMS) or any other

SQL Server client tool like Azure Data Studio, open a new query, and run the script

shown in Listing 3-3.

Listing 3-3.  Enable PolyBase through T-SQL

exec sp_configure @configname = 'polybase enabled', @configvalue = 1;

RECONFIGURE

The output should be

Configuration option 'polybase enabled' changed from 0 to 1. Run the

RECONFIGURE statement to install.

Figure 3-16.  SQL Server 2019 installer – Complete

Chapter 3 Deployment of Big Data Clusters

51

Click “Restart” in the Object Explorer menu as shown in Figure 3-17 to restart the

SQL Server Instance.

You’re done – you do now have access to a PolyBase-enabled SQL Server 2019

installation.

�Using Azure Data Studio to Work with Big Data
Clusters
As part of Microsoft’s SQL Client tool strategy, it may not surprise you that most of the

tasks necessary to work with a Big Data Cluster are achieved through Azure Data Studio

(ADS) rather than SQL Server Management Studio or other tools. For those of you who

Figure 3-17.  Restart SQL Server Instance

Chapter 3 Deployment of Big Data Clusters

52

are not familiar with this tool, we’re going to start with a little introduction including how

to get your hands on this tool.

�What Is Azure Data Studio?
Azure Data Studio is a cross-platform (Windows, MacOS, and Linux), extendable, and

customizable tool which can be used for classic T-SQL queries and commands, as well

as multiple new functions like notebooks. The latter can be enabled through extensions

which are usually installed through a VSIX file, which you might be familiar with from

working with other extensions for Visual Studio or Visual Studio Code.1

It was originally made public in 2017 as SQL Operations Studio but was rebranded

before its official release in 2018. While the product name is a bit misleading, it is not

only for cloud (Azure)-based services but for on-premises solutions and needs as well.

The fact that it, for example, does not come with an out-of-the-box interface for

SQL Server Agent, but in exchange offers built-in charting, shows that it is not so

much a replacement but more of a complimenting tool for SQL Server Management

Studio (SSMS). SSMS is targeting an administrating and managing group (database

administrators), whereas Azure Data Studio is more suitable for data professionals of all

kinds, including data scientists.

�Getting and Installing Azure Data Studio
You can get your free copy of Azure Data Studio directly from Microsoft at https://

docs.microsoft.com/en-us/sql/azure-data-studio/download. Download the

installer of your choice for your platform and run it.

Alternatively, simply run this Chocolatey command (Listing 3-4) which will install

the latest version for you.

Listing 3-4.  Install ADS via choco

choco install azure-data-studio -y

1�https://docs.microsoft.com/en-us/visualstudio/extensibility/shipping-visual-
studio-extensions?view=vs-2019

Chapter 3 Deployment of Big Data Clusters

https://docs.microsoft.com/en-us/sql/azure-data-studio/download
https://docs.microsoft.com/en-us/sql/azure-data-studio/download
https://docs.microsoft.com/en-us/visualstudio/extensibility/shipping-visual-studio-extensions?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/extensibility/shipping-visual-studio-extensions?view=vs-2019

53

�Installation of a “Real” Big Data Cluster
If you want to make use of the full Big Data Cluster feature set, you will need a full

installation including all the different roles and pools.

�kubeadm on Linux
A very easy way to deploy a Big Data Cluster is using kubeadm on a vanilla (freshly

installed) Ubuntu 16.04 or 18.04 virtual or physical machine.

Microsoft provides a script for you that does all the work, so besides the Linux

installation itself, there is not much to do for you, which makes this probably the easiest

way to get your first Big Data Cluster up and running.

First, make sure your Linux machine is up to date by running the commands in

Listing 3-5.

Listing 3-5.  Patch Ubuntu

sudo apt update&&apt upgrade -y

sudo systemctl reboot

Then, download the script, make it executable, and run it with root permissions as

shown in Listing 3-6.

Listing 3-6.  Download and execute the deployment script

curl --output setup-bdc.sh https://raw.githubusercontent.com/microsoft/

sql-server-samples/master/samples/features/sql-big-data-cluster/deployment/

kubeadm/ubuntu-single-node-vm/setup-bdc.sh

chmod +x setup-bdc.sh

sudo ./setup-bdc.sh

As you can see in Figure 3-18, the script will ask you for a password and

automatically start preparational steps afterward.

Chapter 3 Deployment of Big Data Clusters

54

After pre-fetching the images, provisioning Kubernetes, and all other required steps,

the deployment of the Big Data Cluster is started as shown in Figure 3-19.

Figure 3-18.  Deployment on Linux with kubeadm

Chapter 3 Deployment of Big Data Clusters

55

Once the whole script completes, you are done! As demonstrated in Figure 3-20, the

script will also provide all the endpoints that were created during the deployment.

Your cluster is now fully deployed and ready!

Figure 3-20.  Successful deployment on Linux with kubeadm

Figure 3-19.  Deployment on Linux with kubeadm

Chapter 3 Deployment of Big Data Clusters

56

�Azure Kubernetes Service (AKS)
Another straightforward way to deploy your cluster is to use Azure Kubernetes Service, in

which the Kubernetes cluster is set up and provided in the Microsoft Azure cloud. While

the deployment is started and controlled through any machine (either your local PC or a

VM), the cluster itself will run in Azure, so this means that deployment requires an Azure

account and will result in cost on your Azure subscription.

You can deploy either through a wizard in Azure Data Studio or manually through

a tool called azdata (which was also called by the script deploying your previous cluster

on Linux). Both methods have some prerequisites that need to be installed first. A full

installation actually requires several tools and helpers:

•	 Python

•	 Curl and the SQL Server command-line utilities

So we can communicate with the cluster and upload data to it.

•	 The Kubernetes CLI

•	 azdata

This will create, maintain, and delete a big data cluster.

•	 Notepad++ and 7Zip

These are not actual requirements, but if you want to debug your

installation, you will get a tar.gz file with potentially huge text files.

Windows does not handle these out of the box.

The script in Listing 3-7 will install those to your local machine (or whichever

machine you are running the script on), as this is where the deployment is controlled

and triggered from. We will be installing those prerequisites through Chocolatey.

Listing 3-7.  Install script for Big Data Cluster prerequisites

choco install python3 -y

choco install sqlserver-cmdlineutils -y

$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine")

+ ";" + [System.Environment]::GetEnvironmentVariable("Path","User")

python -m pip install --upgrade pip

python -m pip install requests

Chapter 3 Deployment of Big Data Clusters

57

python -m pip install requests --upgrade

choco install curl -y

choco install kubernetes-cli -y

choco install notepadplusplus -y

choco install 7zip -y

choco install visualcpp-build-tools -y

pip3 install kubernetes

pip3 install -r https://aka.ms/azdata

While the respective vendors obviously supply visual/manual installation routines

for most of these tools, the scripted approach just makes the whole experience a lot

easier.

In addition, as we want to deploy to Azure using a script, we need the azure-cli

package shown in Listing 3-8 to be able to connect to our Azure subscription.

Listing 3-8.  Install azure-cli

choco install azure-cli -y

While you technically could prepare everything (we need a resource group, the

Kubernetes cluster, etc.) in the Azure Portal or through manual PowerShell scripts, there

is a much easier way: get the Python script from https://github.com/Microsoft/

sql-server-samples/tree/master/samples/features/sql-big-data-cluster/

deployment/aks, which will automatically take care of the whole process and setup for

you.

Download the script to your desktop or another suitable location and open a

command prompt. Navigate to the folder where you’ve saved the script. You can also

download using a command prompt as shown in Listing 3-9.

Listing 3-9.  Download deployment script

curl --output deploy-sql-big-data-aks.py https://raw.githubusercontent.com/

microsoft/sql-server-samples/master/samples/features/sql-big-data-cluster/

deployment/aks/deploy-sql-big-data-aks.py

Of course, you can also modify and review the script as per your needs, for example,

to make some parameters like the VM size static rather than a variable or to change the

defaults for some of the values.

Chapter 3 Deployment of Big Data Clusters

https://github.com/Microsoft/sql-server-samples/tree/master/samples/features/sql-big-data-cluster/deployment/aks
https://github.com/Microsoft/sql-server-samples/tree/master/samples/features/sql-big-data-cluster/deployment/aks
https://github.com/Microsoft/sql-server-samples/tree/master/samples/features/sql-big-data-cluster/deployment/aks

58

First, we need to log on to Azure which will be done with the command shown in

Listing 3-10.

Listing 3-10.  Trigger login to azure from command prompt

az login

A website will open; log on using your Azure credentials as shown in Figure 3-21.

The website will confirm that you are logged on; you can close the browser as shown

in Figure 3-22.

Figure 3-21.  Azure logon screen

Chapter 3 Deployment of Big Data Clusters

59

Your command prompt, as shown in Figure 3-23, shows all subscriptions linked

to the credentials you just used. Copy the ID of the subscription you want to use and

execute the Python script, which will ask for everything ranging from subscription ID to

the number of nodes inside the Kubernetes cluster.

The script now runs through all the required steps. Again, this can take from a couple

of minutes to hours, depending on the size of VM, number of nodes, and so on.

Figure 3-22.  Azure logon confirmation

Figure 3-23.  Input of parameters in Python deployment script

Chapter 3 Deployment of Big Data Clusters

60

The script will report back in between just like the script during the installation on

Linux. It is using the same tool (azdata), so the output when creating the actual Big Data

Cluster is very similar as you can see in Figure 3-24.

The script will also use azdata bdc config to create your JSON file.

As this SQL Server 2019 Big Data Cluster is being deployed to Azure, unlike during

your local install which you could just reach it using the localhost address, you will need

information about the IP addresses and ports of the installation. Therefore, IP addresses

and ports are provided at the end as shown in Figure 3-25.

Figure 3-25.  Final output of Python deployment script including IP addresses

Figure 3-24.  Output of Python deployment script

Chapter 3 Deployment of Big Data Clusters

61

If you ever forget what your IPs were, you can run this simple script as shown in

Listing 3-11.

Listing 3-11.  Retrieve Kubernetes service IPs using kubectl

kubectl get service -n <clustername>

And if you forgot the name of your cluster as well, try Listing 3-12.

Listing 3-12.  Retrieve Kubernetes namespaces using kubectl

kubectl get namespaces

If you are running more than one cluster at a time, the script in Listing 3-13 might

also become helpful. Just save it as IP.py and you can run it as shown in Figure 3-26.

Listing 3-13.  Python script to retrieve endpoints of a Big Data Cluster

CLUSTER_NAME="myfirstbigdatacluster"

from subprocess import check_output, CalledProcessError, STDOUT, Popen,

PIPE

import os

import getpass

def executeCmd (cmd):

 if os.name=="nt":

 process = Popen(cmd.split(),stdin=PIPE, shell=True)

 else:

 process = Popen(cmd.split(),stdin=PIPE)

 stdout, stderr = process.communicate()

 if (stderr is not None):

 raise Exception(stderr)

print("")

print("SQL Server big data cluster connection endpoints: ")

print("SQL Server master instance:")

command="kubectl get service master-svc-external -o=custom-columns=""IP:.

status.loadBalancer.ingress[0].ip,PORT:.spec.ports[0].port"" -n "+CLUSTER_

NAME

executeCmd(command)

print("")

Chapter 3 Deployment of Big Data Clusters

62

print("HDFS/KNOX:")

command="kubectl get service gateway-svc-external -o=custom-

columns=""IP:status.loadBalancer.ingress[0].ip,PORT:.spec.ports[0].port""

-n "+CLUSTER_NAME

executeCmd(command)

print("")

print("Cluster administration portal (https://<ip>:<port>):")

command="kubectl get service mgmtproxy-svc-external -o=custom-

columns=""IP:status.loadBalancer.ingress[0].ip,PORT:.spec.ports[0].port""

-n "+CLUSTER_NAME

executeCmd(command)

print("")

You’re done! Your Big Data Cluster in Azure Kubernetes Service is now up and

running.

Note  Whether you use it or not, this cluster will accumulate cost based on the
number of VMs and their size so it’s a good idea not to leave it idling around!

Figure 3-26.  Output of IP.py

Chapter 3 Deployment of Big Data Clusters

63

Figure 3-27.  New Deployment in ADS

�Deploy Your Big Data Cluster Through Azure Data Studio
If you prefer a graphical wizard for your deployment, the answer is Azure Data Studio

(ADS)! ADS provides you multiple options to deploy SQL Server, and Big Data Clusters

are among them. In ADS, locate the link “New Deployment” which can be found on the

welcome screen as well as in a context menu next to your active connections as shown in

Figure 3-27.

On the following screen, select “SQL Server Big Data Cluster.” The wizard will ask

you to accept the license terms, select a version, and also pick a deployment target.

Supported targets for this wizard are currently a new Azure Kubernetes Service (AKS)

cluster, an existing AKS cluster, or an existing kubeadm cluster. If you plan to deploy

toward an existing cluster, the Kubernetes contexts/connections need to be present in

your Kubernetes configuration. If the Kubernetes cluster was not created from the same

Chapter 3 Deployment of Big Data Clusters

64

machine, it’s probably still missing. In this case, you can either copy the .kube file to your

local machine or configure Kubernetes manually as described at https://kubernetes.

io/docs/tasks/access-application-cluster/access-cluster/.

On the lower end of the screen, the wizard will also list the required tools again

and confirm whether all of them are installed in the appropriate version as shown in

Figure 3-28.

Let’s try another deployment using a new AKS cluster (which is also the default).

Click “Select” and the wizard will take you to the first step. It will provide you the

matching deployment templates for your target environment. The different templates

differ by size as well as features, like authentication type and high availability, as you can

see in Figure 3-29.

Figure 3-28.  Deploy a BDC through ADS – intro

Chapter 3 Deployment of Big Data Clusters

https://kubernetes.io/docs/tasks/access-application-cluster/access-cluster/
https://kubernetes.io/docs/tasks/access-application-cluster/access-cluster/

65

Figure 3-29.  Deploy a BDC through ADS – Step 1

The following screen will depend on your target. As we chose to deploy to Azure

including a new cluster, we need to provide a subscription, resource group name,

location, cluster name, as well as the number and size of the underlying VMs (see

Figure 3-30).

Chapter 3 Deployment of Big Data Clusters

66

In Step 3, as illustrated in Figure 3-31, we define the name of the Big Data Cluster

(unlike in the previous step where we’ve set the name for the Kubernetes cluster!) as well

as the authentication type.

Figure 3-30.  Deploy a BDC through ADS – Step 2

Chapter 3 Deployment of Big Data Clusters

67

Figure 3-31.  Deploy a BDC through ADS – Step 3

In the last configuration screen which we show in Figure 3-32, you can modify

the number of instances per pool as well as claim sizes and storage classes for data

and logs.

Chapter 3 Deployment of Big Data Clusters

68

The final screen as shown in Figure 3-33 gives you a summary of your configuration.

If you want to proceed, hit “Script to Notebook”; otherwise, you can navigate back using

the “Previous” button to make any necessary changes and adjustments.

Figure 3-32.  Deploy a BDC through ADS – Step 4

Chapter 3 Deployment of Big Data Clusters

69

Figure 3-33.  Deploy a BDC through ADS – Summary

Unless you did so before, ADS will prompt you to install Python for notebooks as

shown in Figure 3-34.

Chapter 3 Deployment of Big Data Clusters

70

Wait for the installation to complete. All your settings have been populated to a

Python notebook which you could either save and store for later or run right away. To

execute the notebook, simply click “Run Cells” as shown in Figure 3-35. Just make sure

that the Python installation has finished. The kernel combo box should read “Python 3”.

If it’s still showing “Loading kernels…”, be patient .

Figure 3-34.  Deploy a BDC through ADS – install Python

Chapter 3 Deployment of Big Data Clusters

71

Figure 3-35.  Deploy a BDC through ADS – notebook predeployment

Once you click “Run Cells,” the deployment process will run through and – unless

there are any problems on the way – will report back with the cluster’s endpoints at the

end, as you can see in Figure 3-36. You will also get a direct link to connect to the master

instance. The deployment will take as long as it would with the same parameters using

the scripted deployment option.

Chapter 3 Deployment of Big Data Clusters

72

�What Is azdata?
As mentioned before, no matter which path of deployment you choose, the deployment

of your Big Data Cluster will always be controlled through a tool call azdata. It’s a

command-line tool that will help you to create a Big Data Cluster configuration, deploy

your Big Data Cluster, and later potentially delete or upgrade your existing cluster.

The logical first step (which is somehow happening behind the scenes in the

previous scripts) is to create a configuration as shown in Listing 3-14.

Listing 3-14.  Create cluster config using azdata

azdata bdc config init [--target -t] [--src -s]

Target is just the folder name for your config files (bdc.json and control.json). The src

is one of the existing base templates to start with.

Figure 3-36.  Deploy a BDC through ADS – notebook postdeployment

Chapter 3 Deployment of Big Data Clusters

73

Figure 3-37.  Output of azdata bdc config init without specifying a source

Possible values are (at the time of writing)

–– aks-dev-test

–– aks-dev-test-ha

–– kubeadm-dev-test

–– kubeadm-prod

These match the options that you saw when deploying in Azure Data Studio.

You can always get all valid options by running azdata bdc config init -t <yourtarget>

without specifying a source. Keep in mind that these are just templates. If your preferred

environment is not offered as a choice, this doesn’t necessarily imply that it’s not

supported, just that you will need to make some adjustments to an existing template to

make it match your target. The output is shown is Figure 3-37.

The source to choose will depend on your deployment type.

Running azdata bdc config init results in two .JSON files – bdc.json and control.

json – to be created in a subfolder which is named after your target. This will be based

on defaults, so we need to make some changes to the configuration. This can be done

either using any text editor or using azdata again using the config replace option, as

shown in Listing 3-15, where we use it to modify the name of the Big Data Cluster in

the bdc.json file.

Listing 3-15.  Modify cluster config using azdata

azdata bdc config replace -c myfirstbigdatacluster/bdc.json -j metadata.

name=myfirstbigdatacluster

Chapter 3 Deployment of Big Data Clusters

74

The control file defines more general settings like which version, repository, and

so on you want to use, whereas the bdc file configures the actual setup of your Big

Data Cluster environment like the number of replicas per role and so on, as shown in

Listings 3-16 and 3-17.

Listing 3-16.  Sample control.json

{

 "apiVersion": "v1",

 "metadata": {

 "kind": "Cluster",

 "name": "mssql-cluster"

 },

 "spec": {

 "docker": {

 "registry": "mcr.microsoft.com",

 "repository": "mssql/bdc",

 "imageTag": "2019-CU2-ubuntu-16.04",

 "imagePullPolicy": "Always"

 },

 "storage": {

 "data": {

 "className": "",

 "accessMode": "ReadWriteOnce",

 "size": "15Gi"

 },

 "logs": {

 "className": "",

 "accessMode": "ReadWriteOnce",

 "size": "10Gi"

 }

 },

 "endpoints": [

 {

 "name": "Controller",

 "dnsName": "",

Chapter 3 Deployment of Big Data Clusters

75

 "serviceType": "NodePort",

 "port": 30080

 },

 {

 "name": "ServiceProxy",

 "dnsName": "",

 "serviceType": "NodePort",

 "port": 30777

 }

],

 "settings": {

 "controller": {

 "logs.rotation.size": "5000",

 "logs.rotation.days": "7"

 }

 }

 },

 "security": {

 "activeDirectory": {

 "ouDistinguishedName": "",

 "dnsIpAddresses": [],

 "domainControllerFullyQualifiedDns": [],

 "domainDnsName": "",

 "clusterAdmins": [],

 "clusterUsers": []

 }

 }

}

Chapter 3 Deployment of Big Data Clusters

76

Listing 3-17.  Sample bdc.json

{

 "apiVersion": "v1",
 "metadata": {
 "kind": "BigDataCluster",
 "name": "mssql-cluster"
 },
 "spec": {
 "resources": {
 "nmnode-0": {
 "spec": {
 "replicas": 2
 }
 },
 "sparkhead": {
 "spec": {
 "replicas": 2
 }
 },
 "zookeeper": {
 "spec": {
 "replicas": 3
 }
 },
 "gateway": {
 "spec": {
 "replicas": 1,
 "endpoints": [
 {
 "name": "Knox",
 "dnsName": "",
 "serviceType": "NodePort",
 "port": 30443
 }
]
 }

 },

Chapter 3 Deployment of Big Data Clusters

77

 "appproxy": {

 "spec": {

 "replicas": 1,

 "endpoints": [

 {

 "name": "AppServiceProxy",

 "dnsName": "",

 "serviceType": "NodePort",

 "port": 30778

 }

]

 }

 },

 "master": {

 "metadata": {

 "kind": "Pool",

 "name": "default"

 },

 "spec": {

 "type": "Master",

 "replicas": 3,

 "endpoints": [

 {

 "name": "Master",

 "dnsName": "",

 "serviceType": "NodePort",

 "port": 31433

 },

 {

 "name": "MasterSecondary",

 "dnsName": "",

 "serviceType": "NodePort",

 "port": 31436

 }

],

Chapter 3 Deployment of Big Data Clusters

78

 "settings": {

 "sql": {

 "hadr.enabled": "true"

 }

 }

 }

 },

 "compute-0": {

 "metadata": {

 "kind": "Pool",

 "name": "default"

 },

 "spec": {

 "type": "Compute",

 "replicas": 1

 }

 },

 "data-0": {

 "metadata": {

 "kind": "Pool",

 "name": "default"

 },

 "spec": {

 "type": "Data",

 "replicas": 2

 }

 },

 "storage-0": {

 "metadata": {

 "kind": "Pool",

 "name": "default"

 },

 "spec": {

 "type": "Storage",

 "replicas": 3,

Chapter 3 Deployment of Big Data Clusters

79

 "settings": {

 "spark": {

 "includeSpark": "true"

 }

 }

 }

 }

 },

 "services": {

 "sql": {

 "resources": [

 "master",

 "compute-0",

 "data-0",

 "storage-0"

]

 },

 "hdfs": {

 "resources": [

 "nmnode-0",

 "zookeeper",

 "storage-0",

 "sparkhead"

],

 "settings": {

 "hdfs-site.dfs.replication": "3"

 }

 },

 "spark": {

 "resources": [

 "sparkhead",

 "storage-0"

],

Chapter 3 Deployment of Big Data Clusters

80

 "settings": {

 "spark-defaults-conf.spark.driver.memory": "2g",

 "spark-defaults-conf.spark.driver.cores": "1",

 "spark-defaults-conf.spark.executor.instances": "3",

 "spark-defaults-conf.spark.executor.memory": "1536m",

 "spark-defaults-conf.spark.executor.cores": "1",

 "yarn-site.yarn.nodemanager.resource.memory-mb": "18432",

 "yarn-site.yarn.nodemanager.resource.cpu-vcores": "6",

 "yarn-site.yarn.scheduler.maximum-allocation-mb": "18432",

 "yarn-site.yarn.scheduler.maximum-allocation-vcores": "6",

 �"yarn-site.yarn.scheduler.capacity.maximum-am-resource-

percent": "0.3"

 }

 }

 }

 }

}

As you can see, the file allows you to change quite a lot of settings. While you may

leave many of them at their default, this comes in quite handy, especially in terms of

storage. You can change the disk sizes as well as the storage type. For more information

on storage in Kubernetes, we recommend reading https://kubernetes.io/docs/

concepts/storage/.

All deployments use persistent storage by default. Unless you have a good reason to

change that, you should keep it that way as nonpersistent storage can leave your cluster

in a nonfunctioning state in case of restarts, for example.

Run the following command (Listing 3-18) in a command prompt where you’ve set

the environment variables before.

Listing 3-18.  Create cluster using azdata

azdata bdc create -c myfirstbigdatacluster --accept-eula yes

Now sit back, relax, follow the output of azdata as shown in Figure 3-38, and wait for

the deployment to finish.

Chapter 3 Deployment of Big Data Clusters

https://kubernetes.io/docs/concepts/storage/
https://kubernetes.io/docs/concepts/storage/

81

Depending on the size of your machine, this may take anywhere from minutes to

hours.

�Others
There are multiple other Kubernetes environments available – from Raspberry Pi to

VMWare. Many but not all of them support SQL Server 2019 Big Data Clusters. The

number of supported platforms will grow over time, but there is no complete list of

compatible environments. If you are looking at a specific setup, the best and easiest way

is to just give it a try!

�Advanced Deployment Options
Besides the configuration options mentioned earlier, we would like to point your

attention to two additional opportunities to make more out of your Big Data Cluster:

Active Directory authentication and HDFS tiering.

Figure 3-38.  Output of azdata bdc create

Chapter 3 Deployment of Big Data Clusters

82

�Active Directory Authentication for Big Data Clusters
If you want to use Active Directory (AD) integration rather than basic authentication,

this can be achieved through additional information provided in your control.json and

bdc.json files. While bdc.json only requires the nameservers to be set to the domain

controller’s DNS, control.json needs a couple of additional parameters, which are shown

in Listing 3-19.

Listing 3-19.  AD parameters in control.json

"security": {

 "activeDirectory": {

 "ouDistinguishedName": "",

 "dnsIpAddresses": [],

 "domainControllerFullyQualifiedDns": [],

 "domainDnsName": "",

 "clusterAdmins": [],

 "clusterUsers": []

 }

At the time of writing, there are quite a few limitations though. For example, AD

authentication is only supported on kubeadm, not on AKS deployments, and you can

only have one Big Data Cluster per domain. You will also need to set up a few very

specific objects in your AD before deploying the Big Data Cluster. Please see the official

documentation at https://docs.microsoft.com/en-us/sql/big-data-cluster/

deploy-active-directory?view=sql-server-ver15 for detailed steps on how to enable

this.

�HDFS Tiering in Big Data Clusters
Should you already have an existing HDFS stored in either Azure Data Lake Store Gen2

or Amazon S3, you can mount this storage as a subdirectory of your Big Data Cluster’s

HDFS. This will be achieved through a combination of environment variables, kubectl

and azdata command. As the process differs slightly per source type, we refer you to the

official documentation which can be found at https://docs.microsoft.com/en-us/

sql/big-data-cluster/hdfs-tiering?view=sql-server-ver15.

Chapter 3 Deployment of Big Data Clusters

https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-active-directory?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-active-directory?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/big-data-cluster/hdfs-tiering?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/big-data-cluster/hdfs-tiering?view=sql-server-ver15

83

Unlike enabling AD authentication, which happens at deployment, HDFS tiering will

be configured on an existing Big Data Cluster.

�Summary
In this chapter, we’ve installed SQL Server 2019 Big Data Clusters using various methods

and to different extents.

Now that we have our Big Data Cluster running and ready for some workload,

let’s move on to Chapter 4 where we’ll show and discuss how the cluster can be

queried and used.

Chapter 3 Deployment of Big Data Clusters

85
© Benjamin Weissman and Enrico van de Laar 2020
B. Weissman and E. van de Laar, SQL Server Big Data Clusters,
https://doi.org/10.1007/978-1-4842-5985-6_4

CHAPTER 4

Loading Data into
Big Data Clusters
With our first SQL Server Big Data Cluster in place, we should have a look at how we can

use it. Therefore, we will start by adding some data to it.

�Getting Azure Data Studio Fully Ready for Your
Big Data Clusters
While Azure Data Studio can connect to any Big Data Cluster (and also manage and

deploy it) by default, we would recommend you install the Data Virtualization extension

which provides you wizards helping with the creation on external (virtual) tables.

To install that extension, first navigate to the Extensions menu in Azure Data Studio

as shown in Figure 4-1.

86

Within the extensions marketplace, it should probably already be visible as one

of the top recommendations. Otherwise you can also search for it as illustrated in

Figure 4-2.

Figure 4-1.  Install extension from VSIX package in ADS

Chapter 4 Loading Data into Big Data Clusters

87

Click the green “Install” button of the extension and the installation will immediately

be triggered as shown in Figure 4-3.

Figure 4-2.  Extensions in Azure Data Studio

Chapter 4 Loading Data into Big Data Clusters

88

The installation usually takes a few minutes and eventually you will see the status of

the extension change to “Installed” as shown in Figure 4-4.

The extension is now ready to be used!

Figure 4-3.  Extension installation in progress in Azure Data Studio

Figure 4-4.  Installed extension in Azure Data Studio

Chapter 4 Loading Data into Big Data Clusters

89

�Getting Some Sample Files into the Installation
With everything in place and ready, all we need before we can really get our hands on the

new features is some sample data!

�Empty Database
To link some external SQL Server tables into your local instance of SQL Server, the

easiest way is to simply create a blank database. Just connect to your SQL Server 2019

instance through either SQL Server Management Studio or Azure Data Studio and create

a new database named “BDC_Empty”. You can do this through the wizard or by simply

running T-SQL as shown in Listing 4-1.

Listing 4-1.  Create empty database through T-SQL

USE master

GO

CREATE DATABASE BDC_Empty

That’s it.

�Sample Data Within Your Big Data Cluster
If you went for a full installation including the Kubernetes cluster, there are some easy

ways and techniques to push some samples to that. In case you only deployed a local

installation with PolyBase enabled but without a Kubernetes cluster, you can skip this

part – it wouldn’t work anyway.

�Restoring Any SQL Server Backup to Your Master Instance

Assuming an empty database is not enough for you, you may wonder how to restore an

existing database to your Master Instance. Let’s give that a try with AdventureWorks2014.

If you don’t have a backup of AdventureWorks2014 on hand, you can just get it from

GitHub, for example, through curl (Listing 4-2).

Chapter 4 Loading Data into Big Data Clusters

90

Listing 4-2.  Download AdventureWorks2014 from GitHub using curl

curl -L -G "https://github.com/Microsoft/sql-server-samples/releases/

download/adventureworks/AdventureWorks2014.bak" -o AdventureWorks2014.bak

Now that we have an actual file to be restored, we need to push that to the Master

Instance’s filesystem first. This task will be achieved through kubectl (Listing 4-3); you

will need to replace your cluster’s namespace and master pod name accordingly.

Listing 4-3.  Copy AdventureWorks2014 to the Master Instance using kubectl

kubectl cp AdventureWorks2014.bak <CLUSTER_NAMESPACE>/<MASTER_POD_

NAME>:var/opt/mssql/data/ -c mssql-server

Last but not least, we need to restore the database from the .bak file. This can be

achieved through regular T-SQL. In this case, just connect to your master instance

and run the script. Of course, for more complex scenarios, you could use sqlcmd with

an input file or any other SQL Server mechanism you’re comfortable with. Here this

includes using the restore wizard in SQL Server Management Studio (Listing 4-4).

Listing 4-4.  Restore AdventureWorks2014 to the Master Instance

USE [master]

RESTORE DATABASE [AdventureWorks2014] FROM DISK = N'/var/opt/mssql/

data/AdventureWorks2014.bak' WITH FILE = 1, MOVE N'AdventureWorks2014_

Data' TO N'/var/opt/mssql/data/AdventureWorks2014_Data.mdf', MOVE

N'AdventureWorks2014_Log' TO N'/var/opt/mssql/data/AdventureWorks2014_Log.

ldf', NOUNLOAD, STATS = 5

�Microsoft Sample Data

We’ll start with the sample data provided by Microsoft on their GitHub page,

https://github.com/Microsoft/sql-server-samples/tree/master/samples/

features/sql-big-data-cluster. Download the files “bootstrap-sample-db.sql”

and, depending on your operating system, either “bootstrap-sample-db.cmd” (for

Windows) or “bootstrap-sample-db.sh” (for Linux).

You can then run the .cmd or .sh file with the following parameters (Listing 4-5).

Chapter 4 Loading Data into Big Data Clusters

https://github.com/Microsoft/sql-server-samples/tree/master/samples/features/sql-big-data-cluster
https://github.com/Microsoft/sql-server-samples/tree/master/samples/features/sql-big-data-cluster

91

Listing 4-5.  Install default Microsoft samples

USAGE: bootstrap-sample-db.cmd <CLUSTER_NAMESPACE> <SQL_MASTER_ENDPOINT>

<KNOX_ENDPOINT> [--install-extra-samples] [SQL_MASTER_PORT] [KNOX_PORT]

To use basic authentication please set AZDATA_USERNAME and AZDATA_PASSWORD

environment variables.

To use integrated authentication, provide the DNS names for the endpoints.

Port can be specified separately if using non-default values.

Just pass the information (IPs, password, namespace) you used or were provided

during installation of your cluster, and the script will run automatically and pump some

sample data to your installation.

The requirements of this script are

•	 sqlcmd

•	 bcp

•	 kubectl

•	 curl

If you are running this script from the same box that you used for the initial

installation, those requirements should already be satisfied.

�Flight Delay Sample Dataset

In addition to the Microsoft samples, let’s also add some more external data. A great

place to find free datasets is kaggle.com (Figure 4-5).

If you don’t have an account with them yet, just sign up for a free account. Otherwise,

just log in to your account.

Chapter 4 Loading Data into Big Data Clusters

92

Once signed in, navigate to Datasets and search for “Flight Delays,” which should

bring up the “2015 Flight Delays and Cancellations” Dataset from the Department of

Transportation as shown in Figure 4-6.

Figure 4-6.  Kaggle.com Datasets

Figure 4-5.  Kaggle.com login

Chapter 4 Loading Data into Big Data Clusters

93

Alternatively, you can also navigate directly to www.kaggle.com/usdot/flight-

delays.

The Datasets consist of three files: Airlines, Airports, and Flights. You can download

them all at once by clicking “Download,” which will trigger one ZIP file containing all

files as shown in Figure 4-7.

While not unreasonably big, this dataset provides a lot of options to explore and work

with the data. Once you’ve downloaded the file, we still need to get that data into our Big

Data Cluster. Since these are only three files, we will do this by manually uploading them

through Azure Data Studio.

Therefore, connect to your Big Data Cluster in Azure Data Studio, navigate to Data

Services, open the HDFS root folder, and create a new directory called “Flight_Delays” as

shown in Figure 4-8.

Figure 4-7.  Kaggle.com download Flight Delays Datasets

Chapter 4 Loading Data into Big Data Clusters

http://www.kaggle.com/usdot/flight-delays
http://www.kaggle.com/usdot/flight-delays

94

You can then select this directory, do a right-mouse-click, choose “Upload files,”

and upload the three CSV files. You can multiselect them so there is no need to upload

them one by one. If you do a right-mouse-click and refresh the folder, the files should be

visible as shown in Figure 4-9.

Figure 4-8.  Create new directory on HDFS in ADS

Figure 4-9.  Display of files in the new folder in ADS

Chapter 4 Loading Data into Big Data Clusters

95

The upload progress will also be visible in the footer of Azure Data Studio.

An alternative to the upload through the front end would be to use curl from a

command prompt. You can use it both to create the target directory and to upload the

actual file.

For just the airlines.csv, this would look like as shown in Listing 4-6 (you would need

to replace your IP address and password). The first line will create a directory called

“Flight_Delays”, while the second line will upload the file “airlines.csv” to it.

Listing 4-6.  Upload data to HDFS using curl

curl -i -L -k -u root:<yourpassword> -X PUT "https:// <yourIP>/gateway/

default/webhdfs/v1/Flight_Delays?op=MKDIRS"

curl -i -L -k -u root:<yourpassword> -X PUT "https://<yourIP>/gateway/

default/webhdfs/v1/Flight_Delays /airlines.csv?op=create&overwrite=true" -H

"Content-Type: application/octet-stream" -T "airlines.csv"

�Azure SQL Database
As described within the use cases in Chapter 1, one way of using the Big Data Cluster

PolyBase implementation is to stretch out data to Azure (or any other cloud-based SQL

Server for that matter). To get a better feeling of this, unless you already have a database

on either another SQL Server or in Azure SQL DB, we recommend to just set up a small

database in Azure containing the AdventureWorks Database.

To do so, log on again to the Azure Portal (Figure 4-10) as you did in Chapter 3.

Then pick “Create a resource” on the upper end of your panel on the left and either

pick “SQL Database” from the list or search for it.

Chapter 4 Loading Data into Big Data Clusters

96

On the next screen, just click “Create” (Figure 4-11).

Figure 4-10.  Create resource in Azure Portal

Chapter 4 Loading Data into Big Data Clusters

97

As the name for your database, just use “AdventureWorks,” pick the appropriate

subscription, create a new resource group or pick an existing, and choose “Sample

(AdventureWorksLT)” as your source (Figure 4-12).

Figure 4-11.  Create SQL Database in Azure Portal

Chapter 4 Loading Data into Big Data Clusters

98

You will also need to configure a Server (Figure 4-13), therefore expand the Server

submenu. Set up the server by providing a name (this has to be unique), a username,

and a password. Again, pick the location closest to you and keep the “Allow Azure

services to access server” box ticked. This will allow you to access this database from

other Azure VMs or services without having to worry about firewall settings. Depending

on your setup, you may still need to allow access from your on-premises box – we’ll get to

that later.

Figure 4-12.  Configure the SQL Database to be created through Azure Portal

Chapter 4 Loading Data into Big Data Clusters

99

You can now change the “Pricing tier” to “Basic” which is the cheapest option but

totally sufficient for what we’re trying to achieve here.

Confirm your selections by clicking “Create”; this triggers the deployment of the

server and the database which should take a couple of minutes. You’re done – you have

just created the AdventureWorksLT database which we can use for remote queries.

Try connecting to the database through Azure Data Studio (Figure 4-14).

Figure 4-13.  Configure the Server for the new SQL Database in Azure Portal

Chapter 4 Loading Data into Big Data Clusters

100

If you are not on an Azure VM or have unticked the box to allow connections from

Azure, you will likely get the error shown in Figure 4-15.

Figure 4-14.  Connection dialog in ADS

Chapter 4 Loading Data into Big Data Clusters

101

If this happens, go back to the Azure Portal (Figure 4-16), navigate to your resource

group containing the database server, and select the server (make sure to click the SQL

Server, not the SQL Database).

Figure 4-15.  Azure Data Studio – Connection error

Chapter 4 Loading Data into Big Data Clusters

102

On the left, scroll down to “Security” and pick “Firewalls and virtual networks” as

shown in Figure 4-17.

Figure 4-16.  Azure SQL Database configuration

Chapter 4 Loading Data into Big Data Clusters

103

Either click “Add client IP” or manually add your IP address.

Save your changes.

Now, try connecting to the database again in Azure Data Studio. You should be able

to see the AdventureWorks Database including the tables shown in Figure 4-18.

Figure 4-17.  Azure Portal Firewall Settings

Chapter 4 Loading Data into Big Data Clusters

104

�Summary
In this chapter, we loaded some data into the previously deployed SQL Server Big Data

Cluster. Now it’s time to look on how to consume that data!

Figure 4-18.  Table structure of AdventureWorksLT shown in ADS

Chapter 4 Loading Data into Big Data Clusters

105
© Benjamin Weissman and Enrico van de Laar 2020
B. Weissman and E. van de Laar, SQL Server Big Data Clusters,
https://doi.org/10.1007/978-1-4842-5985-6_5

CHAPTER 5

Querying Big Data
Clusters Through T-SQL
Now that we have some data to play with, let’s look at how we can process and query that

data through the multiple options provided through Azure Data Studio.

�External Tables
Querying a Big Data Cluster using T-SQL happens through external tables, a concept that

was introduced in SQL Server 2016 with the first appearance of PolyBase.

We will start to query our Big Data Cluster by adding some external tables to our new

empty database BDC_Empty which originally resides in our AdventureWorksLT database

in Azure.

To get started, connect to your SQL Server master instance (or any other SQL

Server 2019 instance with PolyBase enabled) through Azure Data Studio as shown in

Figure 5-1.

106

Your Connection type will be Microsoft SQL Server. The server will be the IP (or DNS

name) of your server (potentially adding the name of the instance if you used one) and

the port of the instance (separated by a comma), unless it’s a local installation that runs

on the standard port 1433.

Expand your Connection, Databases, the BDC_Empty database, as well as the tables

in it (Figure 5-2).

Figure 5-1.  Connection to the Master Instance

Chapter 5 Querying Big Data Clusters Through T-SQL

107

As expected, there are none so far. Let’s change that!

If you right-mouse-click the database, you will see an option called “Create External

Table.” This will open up the corresponding wizard.

In the first step, it will ask you to confirm the database in which you want the external

tables to be created as well as to choose a data source type. At this point, the wizard

(Figure 5-3) supports SQL Server and Oracle; all other sources except CSV files (which

have their own wizard) need to be scripted manually.

Figure 5-2.  Empty database in ADS

Chapter 5 Querying Big Data Clusters Through T-SQL

108

Select “SQL Server” and click Next.

In the next dialog (Figure 5-4), the wizard will ask you to set a master key password

for this database. This is required, as we’ll store credentials in the database which need

to be encrypted. If you run the wizard on a database that already has a master key

password, this step will be skipped.

Figure 5-3.  External Table Wizard in ADS – Select a Data Source

Chapter 5 Querying Big Data Clusters Through T-SQL

109

Enter and confirm a password and click Next.

The next screen (Figure 5-5) asks you for a name (an alias) for your connection,

the connection’s server name, as well as the database name. You can also use select an

existing connection, if you’ve configured it previously.

Figure 5-4.  External Table Wizard in ADS – Create Database Master Key

Chapter 5 Querying Big Data Clusters Through T-SQL

110

In addition, you are provided with a list of credentials that already exist (if any) as

well as the option to create a new credential.

Use “AW” for your data source name as well as the “New Credential Name,”

AdventureWorks as your Database Name, and provide the Server Name, Username, and

Password that you’ve configured in the previous step. Click Next.

The wizard will now load all the tables and views in the source database which you

can expand and browse as shown in Figure 5-6.

Figure 5-5.  External Table Wizard in ADS – connection and credentials

Chapter 5 Querying Big Data Clusters Through T-SQL

111

You can either select the whole database, all tables or all views, or a variable number

of single objects.

You won’t be able to change any column definitions and you will always have to

“create” all columns that exist within the source. As no data is actually moved but is only

a reference to a foreign schema, this is not an issue.

The only two things that can be changed (in the upper-right section of the screen as

shown in Figure 5-7) are the target schema and the target table name, as you may want

to create all external tables in a separate schema or add a prefix to them.

Figure 5-6.  External Table Wizard in ADS – object mapping

Figure 5-7.  External Table Wizard in ADS – table mapping

For now, pick the tables Address, Customer, and CustomerAddress and leave all

other tables unticked as well as all settings unchanged. Click Next.

You have reached the last step, which is a summary as shown in Figure 5-8.

Chapter 5 Querying Big Data Clusters Through T-SQL

112

Figure 5-8.  External Table Wizard in ADS – Summary

You can now choose to either generate a script or simply create all Objects from the

wizard.

Let us take a look at the script (Listing 5-1), so click “Generate Script” and then

“Cancel” to close the wizard. You will see the script which will start a transaction and

then create all the objects in the right order, starting with the key, followed by the

credential and the data source and finally our three tables.

Listing 5-1.  T-SQL to generate external tables from Azure SQL DB

BEGIN TRY

 BEGIN TRANSACTION Tcfc2da095679401abd1ae9deb0e6eae

 USE [BDC_Empty];

 CREATE MASTER KEY ENCRYPTION BY PASSWORD = '<yourkey>';

 CREATE DATABASE SCOPED CREDENTIAL [AW]

 WITH IDENTITY = 'bigdata', SECRET = '<yourpassword>';

 CREATE EXTERNAL DATA SOURCE [AW]

 �WITH (LOCATION = 'sqlserver:// <yourserver>.database.windows.

net', CREDENTIAL = [AW]);

Chapter 5 Querying Big Data Clusters Through T-SQL

113

 CREATE EXTERNAL TABLE [dbo].[Address]

 (

 [AddressID] INT NOT NULL,

 [�AddressLine1] NVARCHAR(60) COLLATE SQL_Latin1_General_CP1_CI_

AS NOT NULL,

 [AddressLine2] NVARCHAR(60) COLLATE SQL_Latin1_General_CP1_CI_AS,

 [City] NVARCHAR(30) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,

 [�StateProvince] NVARCHAR(50) COLLATE SQL_Latin1_General_CP1_CI_

AS NOT NULL,

 [�CountryRegion] NVARCHAR(50) COLLATE SQL_Latin1_General_CP1_CI_

AS NOT NULL,

 [�PostalCode] NVARCHAR(15) COLLATE SQL_Latin1_General_CP1_CI_AS

NOT NULL,

 [rowguid] UNIQUEIDENTIFIER NOT NULL,

 [ModifiedDate] DATETIME2(3) NOT NULL

)

 �WITH (LOCATION = '[AdventureWorks].[SalesLT].[Address]',

DATA_SOURCE = [AW]);

 CREATE EXTERNAL TABLE [dbo].[Customer]

 (

 [CustomerID] INT NOT NULL,

 [NameStyle] BIT NOT NULL,

 [Title] NVARCHAR(8) COLLATE SQL_Latin1_General_CP1_CI_AS,

 [�FirstName] NVARCHAR(50) COLLATE SQL_Latin1_General_CP1_CI_AS

NOT NULL,

 [MiddleName] NVARCHAR(50) COLLATE SQL_Latin1_General_CP1_CI_AS,

 [�LastName] NVARCHAR(50) COLLATE SQL_Latin1_General_CP1_CI_AS

NOT NULL,

 [Suffix] NVARCHAR(10) COLLATE SQL_Latin1_General_CP1_CI_AS,

 [CompanyName] NVARCHAR(128) COLLATE SQL_Latin1_General_CP1_CI_AS,

 [SalesPerson] NVARCHAR(256) COLLATE SQL_Latin1_General_CP1_CI_AS,

 [EmailAddress] NVARCHAR(50) COLLATE SQL_Latin1_General_CP1_CI_AS,

 [Phone] NVARCHAR(25) COLLATE SQL_Latin1_General_CP1_CI_AS,

 [�PasswordHash] VARCHAR(128) COLLATE SQL_Latin1_General_CP1_CI_

AS NOT NULL,

Chapter 5 Querying Big Data Clusters Through T-SQL

114

 [�PasswordSalt] VARCHAR(10) COLLATE SQL_Latin1_General_CP1_CI_AS

NOT NULL,

 [rowguid] UNIQUEIDENTIFIER NOT NULL,

 [ModifiedDate] DATETIME2(3) NOT NULL

)

 �WITH (LOCATION = '[AdventureWorks].[SalesLT].[Customer]',

DATA_SOURCE = [AW]);

 CREATE EXTERNAL TABLE [dbo].[CustomerAddress]

 (

 [CustomerID] INT NOT NULL,

 [AddressID] INT NOT NULL,

 [�AddressType] NVARCHAR(50) COLLATE SQL_Latin1_General_CP1_CI_AS

NOT NULL,

 [rowguid] UNIQUEIDENTIFIER NOT NULL,

 [ModifiedDate] DATETIME2(3) NOT NULL

)

 �WITH (LOCATION = '[AdventureWorks].[SalesLT].[CustomerAddress]',

DATA_SOURCE = [AW]);

 COMMIT TRANSACTION Tcfc2da095679401abd1ae9deb0e6eae

END TRY

BEGIN CATCH

 IF @@TRANCOUNT > 0

 ROLLBACK TRANSACTION Tcfc2da095679401abd1ae9deb0e6eae

 DECLARE @ErrorMessage NVARCHAR(4000) = ERROR_MESSAGE();

 DECLARE @ErrorSeverity INT = ERROR_SEVERITY();

 DECLARE @ErrorState INT = ERROR_STATE();

 RAISERROR(@ErrorMessage, @ErrorSeverity, @ErrorState);

END CATCH;

Once you run that script (click Run on the upper-left part of the screen or simply

hit F5), it will execute and create those objects in your database.

If you refresh your tables, the three new tables will show up and it will look like

Figure 5-9. You can recognize that they are external tables easily by the hint behind the

table names.

Chapter 5 Querying Big Data Clusters Through T-SQL

115

In SSMS, they can be recognized by sitting in their own folder instead as shown in

Figure 5-10.

Figure 5-9.  External tables shown after creation in ADS

Figure 5-10.  External tables shown after creation in SSMS

From a client perspective, these tables behave like local tables. Make a right-

mouse-click on the Address table in Azure Data Studio (Figure 5-11) and click “Select

Top 1000.”

Chapter 5 Querying Big Data Clusters Through T-SQL

116

You can see that the query is basically “SELECT TOP 1000 * FROM dbo.Address”,

despite that data sitting in an external database. You can join this data against local

tables or any other kind of local data sources. We’ll get to that when we look at external

tables from CSV files.

Let us start by running a query (Listing 5-2) against all three external tables to get all

companies whose main office is in Idaho.

Listing 5-2.  SELECT statement joining two external tables

SELECT CompanyName

 FROM [Address] ADDR

 INNER JOIN CustomerAddress CADDR ON ADDR.AddressID = CADDR.AddressID

 INNER JOIN Customer CUST ON CUST.CustomerID = CADDR.CustomerID

 WHERE

 AddressType = 'Main Office'

 AND StateProvince = 'Idaho'

Again, this looks like a regular query on some local tables as shown in Figure 5-12.

Figure 5-11.  Output of SELECT statement against external table in ADS

Chapter 5 Querying Big Data Clusters Through T-SQL

117

Only, when you click the Explain button on the upper right, you will see the

execution plan (Figure 5-13), which reveals the fact that the query is running remote

(Remote Query and External Select operators).

Figure 5-12.  Output of joined SELECT statement in ADS

Figure 5-13.  Execution plan against two external tables in ADS

Chapter 5 Querying Big Data Clusters Through T-SQL

118

�Automated External Tables with Biml
As you can see, this wizard has its limitations, but the underlying T-SQL is pretty

straightforward. It is therefore a prime candidate for automation which can be achieved,

among others, through the Business Intelligence Markup Language (Biml).

If you have not been exposed to Biml so far, there are numerous resources on the

Internet1,2,3 as well as within The Biml Book.4 If you just want to use this specific example,

all you need to do is

–– Get your free copy of BimlExpress,5 a free Biml Frontend that fully

integrates with Visual Studio.

–– Get the source code provided in the following text from this book’s

website.

–– Create the mini-metadata repository as described in the following text

and populate it with your metadata.

–– Adjust the connection strings in the solution.

–– Run the solution (just right-mouse-click “11_Polybase_C.biml” in

the solution and select “Generate SSIS Package”). Despite the

confusing title, this will write all the required .SQL files to C:\Temp\

Polybase.

As mentioned before, we will use a small metadata table to manage our data sources.

In this example, we will just point Biml toward our AdventureWorksLT database in Azure

again – feel free to play with that and add your own data sources here.

To get started, create a table called Datasources (Listing 5-3), for example, in

your previously created database BDC_Empty. Obviously, this table can be named in

whichever way you want, be put in any schema or database you prefer – but let’s just

keep it simple for now.

1�www.cathrinewilhelmsen.net/biml/
2�http://bimlscript.com/
3�http://biml.blog/
4�www.apress.com/de/book/9781484231340
5�www.varigence.com/BimlExpress

Chapter 5 Querying Big Data Clusters Through T-SQL

http://www.cathrinewilhelmsen.net/biml/
http://bimlscript.com/
http://biml.blog/
http://www.apress.com/de/book/9781484231340
http://www.varigence.com/BimlExpress

119

Listing 5-3.  T-SQL to create datasources metatable

CREATE TABLE [dbo].[Datasources](

 [DataSource] [nvarchar](50) NULL,

 [Server] [nvarchar](50) NULL,

 [UserID] [nvarchar](50) NULL,

 [Password] [nvarchar](50) NULL,

 [SRC_DB] [nvarchar](50) NULL,

 [SRC_Schema] [nvarchar](50) NULL,

 [DEST_Schema] [nvarchar](50) NULL

) ON [PRIMARY]

Also, just add one record to this table pointing to your AWLT database (modify your

DNS name, username, and password as needed) using the code in (Listing 5-4).

Listing 5-4.  Populate your datasources metatable

INSERT INTO Datasources VALUES

('AW','<yourinstance>.database.windows.net','<yourUser>','<yourPassword>','

AdventureWorks','SalesLT','dbo')

This solution expects the master key to be set up already – this being a one-time task,

there is simply no need or justification to automate that step. If you skipped the manual

table creation in the previous exercise, you may want to fulfill this step manually before

continuing.

Our solution contains two Biml files (actually four – two files in C# and VB.NET,

respectively):

•	 11_Polybase_C.biml

	 This is the control file which will hold the connection strings to

our metadata as well as the target database. It will loop through

the metadata and call the other Biml file (using a function called

CallBimlScript) for every single entry, writing a .SQL file to C:\temp\

polybase (so if you have ten entries in your Datasources table, you

will end up with ten files).

•	 12_PolybaseWriter_C.biml

	 This file will generate the contents of each source schema.

Chapter 5 Querying Big Data Clusters Through T-SQL

120

If you take a look at the first file, you will notice that it starts with the declaration of

two (in this case identical) connection strings. One points to your database that holds

your metadata; the other one points to the PolyBase database in which you want the

external tables to be created or updated (Listing 5-5).

Listing 5-5.  Biml code to loop over the datasources metatable

<#@ import namespace="System.Data"#>

<# string MetaString = "Data Source=.;Initial Catalog=BDC_Empty;Provider=

SQLNCLI11.1;Integrated Security=SSPI;";

string TargetString = "Data Source=.;Initial Catalog=BDC_Empty;Provider=

SQLNCLI11.1;Integrated Security=SSPI;";

DataTable ExternalConnections = ExternalDataAccess.

GetDataTable(MetaString,"SELECT * FROM Datasources");

foreach (DataRow conn in ExternalConnections.Rows) {

System.IO.File.WriteAllText(@"C:\Temp\Polybase\" + conn ["datasource"] +

"_" + conn["SRC_Schema"] + ".sql", CallBimlScript("12_PolybaseWriter_C.

biml",conn,TargetString));

} #>

<Biml xmlns="http://schemas.varigence.com/biml.xsd"/>

The actual magic happens in the second file. It takes the DataRow containing the

metadata as well as the connection string from the target database as its parameters. It

will then generate T-SQL to

–– CREATE or ALTER the credentials for the connection

–– CREATE or ALTER the external data source

–– DROP every existing external table in the target database

–– CREATE a corresponding external table for every single table in the

source scheme

For the first three steps, it uses simple SQL Selects or semistatic T-SQL. For the fourth

part, it makes use of Biml’s ability to read and interpret a database’s schema and store it

in the Biml object model (Listing 5-6).

Chapter 5 Querying Big Data Clusters Through T-SQL

121

Listing 5-6.  Biml “12_PolybaseWriter_C.biml” called by previous Biml script

<#@ import namespace="Varigence.Biml.CoreLowerer.TSqlEmitter" #>

<#@ import namespace="System.Data" #>

<#@ property name="conn" type="DataRow" #>

<#@ property name="TargetString" type="String" #>

-- �Syncing schema <#= conn["SRC_Schema"] #> in <#= conn["SRC_DB"]#> to

<#= conn["DEST_Schema"]#>

-- This script assumes that a master key has been set

-- CREATE/ALTER CREDENTIAL

IF NOT EXISTS(select * from sys.database_credentials WHERE NAME =

'<#= conn["DataSource"]#>')

BEGIN

CREATE DATABASE SCOPED CREDENTIAL [<#= conn["DataSource"]#>]

 WITH IDENTITY = '<#= conn["UserID"]#>', SECRET = '<#= conn["Password"]#>';

END

ELSE

BEGIN

ALTER DATABASE SCOPED CREDENTIAL [<#= conn["DataSource"]#>]

 WITH IDENTITY = '<#= conn["UserID"]#>', SECRET =

'<#= conn["Password"]#>';

END

GO

-- CREATE DATASOURCE

IF NOT EXISTS(SELECT * FROM sys.external_data_sources WHERE NAME =

'<#= conn["DataSource"]#>')

BEGIN

CREATE EXTERNAL DATA SOURCE [<#= conn["DataSource"]#>]

 �WITH (LOCATION = 'sqlserver://<#= conn["Server"]#>',

CREDENTIAL = [<#= conn["DataSource"]#>]);

END

ELSE

BEGIN

ALTER EXTERNAL DATA SOURCE [<#= conn["DataSource"]#>] SET LOCATION =

N'sqlserver://<#= conn["Server"]#>', CREDENTIAL = [<#= conn["DataSource"]#>]

END

Chapter 5 Querying Big Data Clusters Through T-SQL

122

GO

-- DROP EXISTING TABLES

<# string DropSQL = "SELECT schem.name SchemaName,tbl.Name TableName,object_id

FROM sys.external_tables tbl INNER JOIN sys.schemas schem on tbl.schema_id =

schem.schema_id INNER JOIN sys.external_data_sources ds on tbl.data_source_id =

ds.data_source_id WHERE ds.name = '" + conn["DataSource"] + "'";DataTable

ExistingTables = ExternalDataAccess.GetDataTable(TargetString,DropSQL);

foreach (DataRow tbl in ExistingTables.Rows) { #>

IF EXISTS(select * from sys.external_tables WHERE object_id = <#=

tbl["object_id"]#>)

BEGIN

DROP EXTERNAL TABLE [<#= tbl["SchemaName"]#>].[<#= tbl["TableName"]#>]

END

GO

<# } #>

-- CREATE TABLES

<# string Src_ConnStr= "Data Source=" + conn["Server"] + ";Initial Catalog="

+ conn["SRC_DB"] + ";Provider=SQLNCLI11.1;user id=" + conn["UserID"] +

";Password=" + conn["password"] + ";";

string SRC_Schema = conn["SRC_Schema"] + "";

var srcMeta = SchemaManager.CreateConnectionNode("Source", Src_ConnStr).

ImportDB(SRC_Schema,null,ImportOptions.None);

foreach (AstTableNode tbl in srcMeta.TableNodes) {

 �foreach (AstTableColumnNode col in tbl.Columns.Where(c => c.DataType ==

DbType.Xml)) {

 col.DataType = DbType.AnsiString;

 col.Length = 8000;

 }

 �foreach (AstTableColumnNode col in tbl.Columns.Where(c => (c.DataType

== DbType.String) && (c.Length == -1))) {

 col.Length = 4000;

 }

 �foreach (AstTableColumnNode col in tbl.Columns.Where(c => (c.DataType ==

DbType.AnsiString || c.DataType == DbType.Binary) & c.Length == -1)) {

 col.Length = 8000;

 } #>

Chapter 5 Querying Big Data Clusters Through T-SQL

123

IF NOT EXISTS(SELECT * FROM sys.external_tables WHERE NAME = '<#=tbl.Name#>')

BEGIN

CREATE EXTERNAL TABLE [<#= conn["DEST_Schema"] #>].[<#=tbl.Name#>] (

<#=string.Join(",\n",tbl.Columns.Select(i => i.Name + " " +

TSqlTypeTranslator.Translate(i.DataType, i.Length, i.Precision, i.Scale,

i.CustomType) + (i.IsNullable ? " NULL" : " NOT NULL")))#>

)

WITH (LOCATION = '[<#= conn["SRC_DB"] #>].<#= tbl.SchemaQualifiedName#>',

DATA_SOURCE = [<#= conn["DataSource"] #>]);

END

GO

<# } #>

As the focus of this book is Big Data Clusters, not Biml, we won’t go into any more

details of this little helper. The main idea was to show you one of multiple ways on how

you can automate your way through external tables.

By the way, it would be super easy to adjust this code to work for other relational

sources such as Teradata or Oracle and automate external tables on these as well!

�External Tables from CSV Files in HDFS
As you’ve learned already, besides other relational databases, you can also query flat

files using T-SQL and PolyBase. As flat files do not have a “one-size-fits-all” format due

to different delimiters and so on, we need to define at least one format definition. This

definition resides in your database, so the same definition can be shared by multiple

files, but you need to re-create the definition for every database you want the format to

be available in.

Let’s start with a simple example (Listing 5-7) in the sales database that was included

in the Microsoft samples.

Listing 5-7.  T-SQL code to create external file format

CREATE EXTERNAL FILE FORMAT csv_file

WITH (

 FORMAT_TYPE = DELIMITEDTEXT,

 FORMAT_OPTIONS(

 FIELD_TERMINATOR = ',',

Chapter 5 Querying Big Data Clusters Through T-SQL

124

 STRING_DELIMITER = '"',

 FIRST_ROW = 2,

 USE_TYPE_DEFAULT = TRUE)

);

This T-SQL code will create a format called csv_file; the file will be a delimited text file

with double quotes as your text qualifier and a comma as your delimiter. The first row will

be skipped. The parameter USE_TYPE_DEFAULT will determine how to handle missing

fields. If it’s false, a missing field in the file will be NULL; otherwise, it will be 0 for numeric,

an empty string for character-based columns, and 01/01/1900 for any date columns.

In this case, we will use the StoragePool which is the HDFS storage that is built

into Big Data Clusters. To be able to access the StoragePool, you will need to create an

external data source that points to it as shown in Listing 5-8.

Listing 5-8.  T-SQL code to create pointer to the storage pool

IF NOT EXISTS(SELECT * FROM sys.external_data_sources WHERE name =

'SqlStoragePool')

 CREATE EXTERNAL DATA SOURCE SqlStoragePool

 WITH (LOCATION = 'sqlhdfs://controller-svc/default');

With the format and data source in place, we can now create an external table that

references this format as well as a file location (Listing 5-9).

Listing 5-9.  T-SQL code to create an external table based on a CSV file

CREATE EXTERNAL TABLE [web_clickstreams_hdfs_csv]

("wcs_click_date_sk" BIGINT , "wcs_click_time_sk" BIGINT , "wcs_sales_sk"

BIGINT , "wcs_item_sk" BIGINT , "wcs_web_page_sk" BIGINT , "wcs_user_sk"

BIGINT)

WITH

(

 DATA_SOURCE = SqlStoragePool,

 LOCATION = '/clickstream_data',

 FILE_FORMAT = csv_file

);

Chapter 5 Querying Big Data Clusters Through T-SQL

125

Just as with the SQL Server–based external tables, the first step is to define the

columns including their names and datatypes. In addition, we need to provide a DATA_

SOURCE which is our SqlStoragePool, so basically the HDFS of our Big Data Cluster

(where we also uploaded the flight delay samples earlier); a LOCATION within that

source (in this case, the clickstream_data subfolder); and a FILE_FORMAT which is our

csv_file format we’ve created in the previous step.

Again, no data is transferred at this point. All we did was to create references to data

residing somewhere else – in this case within the storage pool.

We can now live-query this file by a simple query like this (Listing 5-10).

Listing 5-10.  SELECT statement against csv-based external table

SELECT * FROM [dbo].[web_clickstreams_hdfs_csv]

But we can also join the data from the CSV with data that sits in a regular table within

this database (Listing 5-11).

Listing 5-11.  SELECT statement joining a regular table with a csv-based

external table

SELECT

 wcs_user_sk,

 �SUM(CASE WHEN i_category = 'Books' THEN 1 ELSE 0 END) AS book_category_clicks,

 SUM(CASE WHEN i_category_id = 1 THEN 1 ELSE 0 END) AS [Home & Kitchen],

 SUM(CASE WHEN i_category_id = 2 THEN 1 ELSE 0 END) AS [Music],

 SUM(CASE WHEN i_category_id = 3 THEN 1 ELSE 0 END) AS [Books],

 �SUM(CASE WHEN i_category_id = 4 THEN 1 ELSE 0 END) AS [Clothing &

Accessories],

 SUM(CASE WHEN i_category_id = 5 THEN 1 ELSE 0 END) AS [Electronics],

 �SUM(CASE WHEN i_category_id = 6 THEN 1 ELSE 0 END) AS [Tools & Home

Improvement],

 SUM(CASE WHEN i_category_id = 7 THEN 1 ELSE 0 END) AS [Toys & Games],

 SUM(CASE WHEN i_category_id = 8 THEN 1 ELSE 0 END) AS [Movies & TV],

 SUM(CASE WHEN i_category_id = 9 THEN 1 ELSE 0 END) AS [Sports & Outdoors]

 FROM [dbo].[web_clickstreams_hdfs_csv]

 INNER JOIN item it ON (wcs_item_sk = i_item_sk

 AND wcs_user_sk IS NOT NULL)

GROUP BY wcs_user_sk;

Chapter 5 Querying Big Data Clusters Through T-SQL

126

Let’s take a look at the execution plan of this query (Figure 5-14).

Figure 5-14.  Execution plan of previous SELECT statement in ADS

As you can see, this is – as expected – a combination of well-known operations like a

clustered columnstore index scan as well as new features like the external select which

are eventually merged together.

Of course, we can also join data from multiple CSVs. Therefore, we create an external

table for each of our flight delay CSV files first. To help with that, there is another wizard

(Figure 5-15).

Figure 5-15.  Create external table from CSV menu in ADS

Chapter 5 Querying Big Data Clusters Through T-SQL

127

Right-click the file “airlines.csv” in Azure Data Studio and select “Create External

Table From CSV Files.”

This will launch the wizard.

In the first screen (Figure 5-16), it will ask you for the connection details to your

SQL Server Master Instance which you can also choose from a drop-down list of active

connections, if you’re currently connected to the instance.

Figure 5-16.  Create External Table Wizard (CSV) in ADS – select master instance

Fill them in or select your connection and click “Next.”

In the next step (Figure 5-17), the wizard will propose a target database as well as the

name and the schema of the external table. All three can be modified if needed.

Chapter 5 Querying Big Data Clusters Through T-SQL

128

For now, just confirm with “Next.”

The next screen (Figure 5-18) gives you a preview of the data in the table (first 50

rows) so you can get a feeling about what the file is representing. Obviously, for rather

wide files, this is not super helpful.

Figure 5-17.  Create External Table Wizard (CSV) in ADS – target table details

Chapter 5 Querying Big Data Clusters Through T-SQL

129

There is nothing that can actually be done on this screen so just click “Next” again.

In step four (Figure 5-19), the wizard is proposing column names and data types.

Both can be overridden. Unless you have a good reason to, in many cases it’s actually

a good advice to leave it unchanged as the detection mechanisms are rather solid

so far.

Figure 5-18.  Create External Table Wizard (CSV) in ADS – Preview Data

Chapter 5 Querying Big Data Clusters Through T-SQL

130

After clicking “Next” again, we end up with a summary as shown in Figure 5-20

just like after the SQL Server table wizard.

Figure 5-19.  Create External Table Wizard (CSV) in ADS – Modify Columns

Chapter 5 Querying Big Data Clusters Through T-SQL

131

Choose “Generate Script” and click “Cancel.” Take a look at the generated script

(Listing 5-12).

Listing 5-12.  T-SQL output from the Create External Table Wizard (CSV) in ADS

BEGIN TRY

 BEGIN TRANSACTION Td436a09bbb9a472298de35f6f88d889

 USE [sales];

 CREATE EXTERNAL FILE FORMAT [FileFormat_dbo_airlines]

 �WITH (FORMAT_TYPE = DELIMITEDTEXT, FORMAT_OPTIONS (FIELD_

TERMINATOR = ',', STRING_DELIMITER = '"', FIRST_ROW = 2));

 CREATE EXTERNAL TABLE [dbo].[airlines]

 (

 [IATA_CODE] nvarchar(50) NOT NULL,

 [AIRLINE] nvarchar(50) NOT NULL

)

Figure 5-20.  Create External Table Wizard (CSV) in ADS – Summary

Chapter 5 Querying Big Data Clusters Through T-SQL

132

 �WITH (LOCATION = '/Flight_Delays/airlines.csv', DATA_SOURCE =

[SqlStoragePool], FILE_FORMAT = [FileFormat_dbo_airlines]);

 COMMIT TRANSACTION Td436a09bbb9a472298de35f6f88d889

END TRY

BEGIN CATCH

 IF @@TRANCOUNT > 0

 ROLLBACK TRANSACTION Td436a09bbb9a472298de35f6f88d889

 DECLARE @ErrorMessage NVARCHAR(4000) = ERROR_MESSAGE();

 DECLARE @ErrorSeverity INT = ERROR_SEVERITY();

 DECLARE @ErrorState INT = ERROR_STATE();

 RAISERROR(@ErrorMessage, @ErrorSeverity, @ErrorState);

END CATCH;

As you can see, the wizard does not recycle identical file formats but rather creates

one format per file. This has obviously pros and cons. The big pro is obviously that you

won’t end up with hundreds of formats. The big con is that you potentially start building

dependencies between files where you don’t want any. It is up to you whether you

change the script to use the previously created csv_file format or just keep creating new

formats for this exercise.

Repeat these steps for the other two files.

Then, we can query and join them (see Listing 5-13) as if they were SQL tables to get

the ten Airline/Destination City combinations with the highest number of cancellations.

Listing 5-13.  SELECT statement against previously created external tables

SELECT TOP 10 ap.CITY, al.AIRLINE, COUNT(*)

FROM flights fl

 INNER JOIN airlines al

 ON fl.AIRLINE = al.IATA_CODE

 INNER JOIN airports ap

 ON fl.DESTINATION_AIRPORT = ap.IATA_CODE

WHERE cancelled = 1

GROUP BY ap.CITY,

 al.AIRLINE

ORDER BY COUNT(*) DESC;

Chapter 5 Querying Big Data Clusters Through T-SQL

133

This will result in an error.

The reason for that is the fact that the wizard only looks at the first 50 lines of your

data, so if your data does not show a certain pattern in those rows, it won’t be detected.

The error message (Figure 5-21) clearly tells us what the issue is though.

Msg 7320, Level 16, State 110, Line 1
Cannot execute the query "Remote Query" against OLE DB provider "SQLNCLI11" for
linked server "(null)". 105082;Generic ODBC error: [Microsoft][ODBC Driver 17 for SQL Ser
ver][SQL Server]Bulk load data conversion error (overflow) for row 14500, column 27 (AIR_
SYSTEM_DELAY). .

Figure 5-21.  Error message when querying the external tables

In row 14500 (so way beyond the first 50), there is an overflow in the AIR_SYSTEM_

DELAY column.

If we look at the script (Listing 5-14) for this table, we notice that this was detected as

a tinyint.

Listing 5-14.  Original CREATE statement for external table flights

CREATE EXTERNAL TABLE [dbo].[flights]

 (

 [YEAR] smallint NOT NULL,

 [MONTH] tinyint NOT NULL,

 [DAY] tinyint NOT NULL,

 [DAY_OF_WEEK] tinyint NOT NULL,

 [AIRLINE] nvarchar(50) NOT NULL,

 [FLIGHT_NUMBER] smallint NOT NULL,

 [TAIL_NUMBER] nvarchar(50),

 [ORIGIN_AIRPORT] nvarchar(50) NOT NULL,

 [DESTINATION_AIRPORT] nvarchar(50) NOT NULL,

 [SCHEDULED_DEPARTURE] time NOT NULL,

 [DEPARTURE_TIME] time,

 [DEPARTURE_DELAY] smallint,

 [TAXI_OUT] tinyint,

 [WHEELS_OFF] time,

 [SCHEDULED_TIME] smallint NOT NULL,

Chapter 5 Querying Big Data Clusters Through T-SQL

134

 [ELAPSED_TIME] smallint,

 [AIR_TIME] smallint,

 [DISTANCE] smallint NOT NULL,

 [WHEELS_ON] time,

 [TAXI_IN] tinyint,

 [SCHEDULED_ARRIVAL] time NOT NULL,

 [ARRIVAL_TIME] time,

 [ARRIVAL_DELAY] smallint,

 [DIVERTED] bit NOT NULL,

 [CANCELLED] bit NOT NULL,

 [CANCELLATION_REASON] nvarchar(50),

 [AIR_SYSTEM_DELAY] tinyint,

 [SECURITY_DELAY] tinyint,

 [AIRLINE_DELAY] smallint,

 [LATE_AIRCRAFT_DELAY] smallint,

 [WEATHER_DELAY] tinyint

)

 �WITH (LOCATION = N'/Flight_Delays/flights.csv', DATA_SOURCE =

[SqlStoragePool], FILE_FORMAT = [FileFormat_flights]);

Let’s just change that to an int (or bigint) and, while we’re at it, do the same for the

other delay columns (Listing 5-15).

Listing 5-15.  Updated CREATE statement for external table flights

 CREATE EXTERNAL TABLE [dbo].[flights]

 (

 [YEAR] smallint NOT NULL,

 [MONTH] tinyint NOT NULL,

 [DAY] tinyint NOT NULL,

 [DAY_OF_WEEK] tinyint NOT NULL,

 [AIRLINE] nvarchar(50) NOT NULL,

 [FLIGHT_NUMBER] smallint NOT NULL,

 [TAIL_NUMBER] nvarchar(50),

 [ORIGIN_AIRPORT] nvarchar(50) NOT NULL,

 [DESTINATION_AIRPORT] nvarchar(50) NOT NULL,

Chapter 5 Querying Big Data Clusters Through T-SQL

135

 [SCHEDULED_DEPARTURE] time NOT NULL,

 [DEPARTURE_TIME] time,

 [DEPARTURE_DELAY] smallint,

 [TAXI_OUT] tinyint,

 [WHEELS_OFF] time,

 [SCHEDULED_TIME] smallint NOT NULL,

 [ELAPSED_TIME] smallint,

 [AIR_TIME] smallint,

 [DISTANCE] smallint NOT NULL,

 [WHEELS_ON] time,

 [TAXI_IN] tinyint,

 [SCHEDULED_ARRIVAL] time NOT NULL,

 [ARRIVAL_TIME] time,

 [ARRIVAL_DELAY] smallint,

 [DIVERTED] bit NOT NULL,

 [CANCELLED] bit NOT NULL,

 [CANCELLATION_REASON] nvarchar(50),

 [AIR_SYSTEM_DELAY] bigint,

 [SECURITY_DELAY] bigint,

 [AIRLINE_DELAY] bigint,

 [LATE_AIRCRAFT_DELAY] bigint,

 [WEATHER_DELAY] bigint

)

 �WITH (LOCATION = N'/Flight_Delays/flights.csv', DATA_SOURCE =

[SqlStoragePool], FILE_FORMAT = [FileFormat_flights]);

Note that you need to drop the external table (Listing 5-16) before you can re-create it.

Listing 5-16.  DROP statement

DROP EXTERNAL TABLE [dbo].[flights]

After dropping and re-creating the table, try running the cancellation query again.

The error is gone! YAY!

Now try to get another view of that data: simply the first ten rows (Listing 5-17) with

the matching columns from all three tables.

Chapter 5 Querying Big Data Clusters Through T-SQL

136

Listing 5-17.  Different SELECT statement against these external tables

SELECT TOP 10 *

FROM flights fl

 INNER JOIN airlines al

 ON fl.AIRLINE = al.IATA_CODE

 INNER JOIN airports ap

 ON fl.DESTINATION_AIRPORT = ap.IATA_CODE;

Unfortunately, this results in a new error (Figure 5-22).

Figure 5-22.  Different error message when querying the external tables

It’s good practice to make all flat file columns nullable.

So, let’s re-create our table (Listing 5-18) again, this time without any “NOT NULL” hints.

Listing 5-18.  DROP and CREATE external table flights again with all columns

allowing NULLS

DROP EXTERNAL TABLE [dbo].[flights]

 GO

 CREATE EXTERNAL TABLE [dbo].[flights]

 (

 [YEAR] smallint,

 [MONTH] tinyint,

 [DAY] tinyint,

 [DAY_OF_WEEK] tinyint,

 [AIRLINE] nvarchar(50),

 [FLIGHT_NUMBER] smallint,

 [TAIL_NUMBER] nvarchar(50),

 [ORIGIN_AIRPORT] nvarchar(50),

Chapter 5 Querying Big Data Clusters Through T-SQL

137

 [DESTINATION_AIRPORT] nvarchar(50),

 [SCHEDULED_DEPARTURE] time,

 [DEPARTURE_TIME] time,

 [DEPARTURE_DELAY] smallint,

 [TAXI_OUT] tinyint,

 [WHEELS_OFF] time,

 [SCHEDULED_TIME] smallint,

 [ELAPSED_TIME] smallint,

 [AIR_TIME] smallint,

 [DISTANCE] smallint,

 [WHEELS_ON] time,

 [TAXI_IN] tinyint,

 [SCHEDULED_ARRIVAL] time,

 [ARRIVAL_TIME] time,

 [ARRIVAL_DELAY] smallint,

 [DIVERTED] bit,

 [CANCELLED] bit,

 [CANCELLATION_REASON] nvarchar(50),

 [AIR_SYSTEM_DELAY] bigint,

 [SECURITY_DELAY] bigint,

 [AIRLINE_DELAY] bigint,

 [LATE_AIRCRAFT_DELAY] bigint,

 [WEATHER_DELAY] bigint

)

 �WITH (LOCATION = N'/Flight_Delays/flights.csv', DATA_SOURCE =

[SqlStoragePool], FILE_FORMAT = [FileFormat_flights]);

Now, both queries run smoothly! You will notice though that performance is not

great which is mainly due to the lookup against the other two, rather small, flat files.

In such cases, we recommend to either store that data in a persisted or temporary

SQL table (Listing 5-19).

Listing 5-19.  Store data from CSV in temp tables instead of direct queries

SELECT * into #al FROM airlines

SELECT * into #ap FROM airports

SELECT TOP 10 *

Chapter 5 Querying Big Data Clusters Through T-SQL

138

FROM flights fl

 INNER JOIN #al al

 ON fl.AIRLINE = al.IATA_CODE

 INNER JOIN #ap ap

 ON fl.DESTINATION_AIRPORT = ap.IATA_CODE;

DROP TABLE #al

DROP TABLE #ap

This improves performance tremendously without wasting too many system

resources as the large dataset stays within the CSV.

One of the biggest challenges in such an environment is finding a good trade-off

between data redundancy and performance.

�Accessing Data in an Azure Blob Storage
If you are storing data in an Azure Blob Storage, there is no need (apart from maybe

network latency) to copy that data into your SqlStoragePool. You can also access a Blob

Storage by defining it as an external data source (Listing 5-20).

Listing 5-20.  Create external data source using an Azure Blob Storage

CREATE EXTERNAL DATA SOURCE AzureStorage with (

 TYPE = HADOOP,

 �LOCATION ='wasbs://<blob_container_name>@<azure_storage_account_

name>.blob.core.windows.net',

 CREDENTIAL = AzureStorageCredential

);

�External Tables from Other Data Sources
�File-Based Data Sources
Other variations of file-based data sources are Parquet, Hive RCFile, and Hive ORC;

however, if you are using the storage pool, only delimited and Parquet files are supported

at this point.

As these are compressed file types, we need to provide the DATA_COMPRESSION as

well as, for RCFile, the SERDE_METHOD (Listing 5-21).

Chapter 5 Querying Big Data Clusters Through T-SQL

139

Listing 5-21.  Sample CREATE statements for other external table types

-- Create an external file format for PARQUET files.

CREATE EXTERNAL FILE FORMAT file_format_name

WITH (

 FORMAT_TYPE = PARQUET

 [, DATA_COMPRESSION = {

 'org.apache.hadoop.io.compress.SnappyCodec'

 | 'org.apache.hadoop.io.compress.GzipCodec' }

]);

--Create an external file format for ORC files.

CREATE EXTERNAL FILE FORMAT file_format_name

WITH (

 FORMAT_TYPE = ORC

 [, DATA_COMPRESSION = {

 'org.apache.hadoop.io.compress.SnappyCodec'

 | 'org.apache.hadoop.io.compress.DefaultCodec' }

]);

--Create an external file format for RCFILE.

CREATE EXTERNAL FILE FORMAT file_format_name

WITH (

 FORMAT_TYPE = RCFILE,

 SERDE_METHOD = {

 'org.apache.hadoop.hive.serde2.columnar.LazyBinaryColumnarSerDe'

 | 'org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe'

 }

 [, DATA_COMPRESSION = 'org.apache.hadoop.io.compress.DefaultCodec']);

(taken from the official Microsoft Docs, https://docs.microsoft.com/en-us/sql/

t-sql/statements/create-external-file-format-transact-sql)

Chapter 5 Querying Big Data Clusters Through T-SQL

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-file-format-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-file-format-transact-sql

140

�ODBC
When trying to connect to an external data source through a generic ODBC, you need

to provide the server (and optionally a port) just like when adding a SQL Server, but in

addition, you will need to specify the driver as well (Listing 5-22), so SQL Server knows

how to connect to the source.

Listing 5-22.  Create external data source against an ODBC source

CREATE EXTERNAL DATA SOURCE <myODBCName>

WITH (

LOCATION = odbc://<ODBC server address>[:<port>],

CONNECTION_OPTIONS = 'Driver={<Name of Installed Driver>};

ServerNode = <name of server address>:<Port>',

PUSHDOWN = ON,

 CREDENTIAL = credential_name

);

The PUSHDOWN flag defines whether computation will be pushed down to the

source and is ON by default.

�Others
For the other built in, the syntax follows the generic schema (Listing 5-23).

Listing 5-23.  Generic CREATE statement for an external data source

CREATE EXTERNAL DATA SOURCE <myExternalDataSource>

WITH (

LOCATION = <vendor>://<server>[:<port>],

CREDENTIAL = credential_name

);

where you replace <vendor> by the name of the vendor of the built-in connector you’re

trying to use.

For Oracle, that would look like Listing 5-24.

Chapter 5 Querying Big Data Clusters Through T-SQL

141

Listing 5-24.  CREATE statement for an external data source in Oracle

CREATE EXTERNAL DATA SOURCE <myOracleSource>

WITH (

LOCATION = oracle://<server address>[:<port>],

CREDENTIAL = credential_name

The same logic applies for Teradata and MongoDB, and we expect all future vendors

to be implemented in the same way.

�The SqlDataPool
The SqlDataPool is used to address the data pool of the Big Data Cluster which allows

you to distribute data from a SQL table among the whole pool.

Just like with the storage pool, a respective pointer needs to be created first in each

database that you want to use as shown in Listing 5-25.

Listing 5-25.  T-SQL code to create pointer to the SQL Data Pool

IF NOT EXISTS(SELECT * FROM sys.external_data_sources WHERE name = 'SqlDataPool')

 CREATE EXTERNAL DATA SOURCE SqlDataPool

 WITH (LOCATION = 'sqldatapool://controller-svc/default');

We will do this again in the sales database.

First of all, we start by creating an external table (Listing 5-26) again. Notice that

unlike in previous samples, where we were addressing a specific file or location, in this

instance, we only provide the hint that this table is to be stored in the SqlDataPool and is

to be distributed using round robin.

Listing 5-26.  CREATE statement for external table on SqlDataPool

 CREATE EXTERNAL TABLE [web_clickstream_clicks_data_pool]

 ("wcs_user_sk" BIGINT , "i_category_id" BIGINT , "clicks" BIGINT)

 WITH

 (

 DATA_SOURCE = SqlDataPool,

 DISTRIBUTION = ROUND_ROBIN

);

You can now insert data into this table using a regular INSERT INTO statement as

shown in Listing 5-27.

Chapter 5 Querying Big Data Clusters Through T-SQL

142

Listing 5-27.  Populate table in SqlDataPool from SQL Query

INSERT INTO web_clickstream_clicks_data_pool

SELECT wcs_user_sk, i_category_id, COUNT_BIG(*) as clicks

 FROM sales.dbo.web_clickstreams_hdfs_parquet

 INNER JOIN sales.dbo.item it ON (wcs_item_sk = i_item_sk

 AND wcs_user_sk IS NOT NULL)

 GROUP BY wcs_user_sk, i_category_id

Just as in all previous examples, this external table can now be queried and joined

like any other table (Listing 5-28).

Listing 5-28.  SELECT against table in SqlDataPool (stand-alone and joined

against other tables)

SELECT count(*) FROM [dbo].[web_clickstream_clicks_data_pool]

SELECT TOP 10 * FROM [dbo].[web_clickstream_clicks_data_pool]

SELECT TOP (100)

 w.wcs_user_sk,

 �SUM(CASE WHEN i.i_category = 'Books' THEN 1 ELSE 0 END) AS book_

category_clicks,

 SUM(CASE WHEN w.i_category_id = 1 THEN 1 ELSE 0 END) AS [Home & Kitchen],

 SUM(CASE WHEN w.i_category_id = 2 THEN 1 ELSE 0 END) AS [Music],

 SUM(CASE WHEN w.i_category_id = 3 THEN 1 ELSE 0 END) AS [Books],

 �SUM(CASE WHEN w.i_category_id = 4 THEN 1 ELSE 0 END) AS [Clothing &

Accessories],

 SUM(CASE WHEN w.i_category_id = 5 THEN 1 ELSE 0 END) AS [Electronics],

 �SUM(CASE WHEN w.i_category_id = 6 THEN 1 ELSE 0 END) AS [Tools & Home

Improvement],

 SUM(CASE WHEN w.i_category_id = 7 THEN 1 ELSE 0 END) AS [Toys & Games],

 SUM(CASE WHEN w.i_category_id = 8 THEN 1 ELSE 0 END) AS [Movies & TV],

 SUM(CASE WHEN w.i_category_id = 9 THEN 1 ELSE 0 END) AS [Sports & Outdoors]

 FROM [dbo].[web_clickstream_clicks_data_pool] as w

 INNER JOIN (SELECT DISTINCT i_category_id, i_category FROM item) as i

 ON i.i_category_id = w.i_category_id

GROUP BY w.wcs_user_sk;

Chapter 5 Querying Big Data Clusters Through T-SQL

143

The execution plan (Figure 5-23) looks similar to what we saw before when querying

against the storage pool.

Figure 5-23.  Execution plan in ADS

Notice that unlike in the SqlStoragePool, the data that sits in the data pool is not

visible as a file in the HDFS folder in Azure Data Studio, as its data is stored in regular

SQL tables!

�Indexes on the SqlDataPool
One big difference between the SqlDataPool and other external data sources is that it

consists of regular SQL Server tables, which means you can directly control indexes on

those tables.

By default, every table in the SqlDataPool will be created with a clustered

columnstore index. As the main use case for scale out and therefore the data pool are

analytics workloads, this will probably satisfy many query needs out of the box.

If you still want to create or change an index, this needs to happen within the data pool

itself, which can be achieved using the EXECUTE AT switch as shown in Listing 5-29.

Listing 5-29.  EXEC with EXECUTE AT

exec (<your query>) AT Data_Source SqlDataPool

You can use this to run any kind of query on the data pool and it will return one

result grid for every node in the data pool. To get a list of all tables in the data pool, for

example, run Listing 5-30.

Listing 5-30.  Get a list of tables in data pool

exec ('SELECT * FROM sys.tables') AT Data_Source SqlDataPool

Chapter 5 Querying Big Data Clusters Through T-SQL

144

The result is shown in Figure 5-24.

Figure 5-25.  Result from a list of tables in data pool from sales database

It may surprise you a little bit as you were maybe expecting different tables. The

reason for that is that just like your master instance, the data pool will have multiple

databases, so context is important. Let’s try that again by switching the current database

context as shown in Listing 5-31. This will only work for databases that have at least one

table in SqlDataPool, as the database is created at that point.

Listing 5-31.  Get a list of tables in data pool from sales database

exec ('USE sales; SELECT * FROM sys.tables') AT Data_Source SqlDataPool

This time the result (see Figure 5-25) looks more as we would have expected.

Figure 5-24.  Result from a list of tables in data pool

Chapter 5 Querying Big Data Clusters Through T-SQL

145

To add an index, you would simply add the respective CREATE INDEX statement

within the EXEC statement as illustrated in Listing 5-32.

Listing 5-32.  CREATE INDEX in data pool

EXEC ('USE Sales; CREATE NONCLUSTERED INDEX [CI_wcs_user_sk] ON [dbo].

[web_clickstream_clicks_data_pool] ([wcs_user_sk] ASC)') AT DATA_SOURCE

SqlDataPool

�Summary
In this chapter, we used the previously loaded data and queried it using multiple

techniques using T-SQL, from another SQL Server to flat files. We also took a look on

how certain tasks in that aspect can be automated.

As you’ve learned before, T-SQL isn’t the only way to query a Big Data Cluster:

another way of doing so is Spark. Chapter 6 will guide you through that process!

Chapter 5 Querying Big Data Clusters Through T-SQL

147
© Benjamin Weissman and Enrico van de Laar 2020
B. Weissman and E. van de Laar, SQL Server Big Data Clusters,
https://doi.org/10.1007/978-1-4842-5985-6_6

CHAPTER 6

Working with Spark in
Big Data Clusters
So far, we have been querying data inside our SQL Server Big Data Cluster using external

tables and T-SQL code. We do, however, have another method available to query data

that is stored inside the HDFS filesystem of your Big Data Cluster. As you have read in

Chapter 2, Big Data Clusters also have Spark included in the architecture, meaning we

can leverage the power of Spark to query data stored inside our Big Data Cluster.

Spark is a very powerful option of analyzing and querying the data inside your Big

Data Cluster, mostly because Spark is built as a distributed and parallel framework,

meaning it is very fast at processing very large datasets making it far more efficient when

you want to process large datasets than SQL Server. Spark also allows a large flexibility in

terms of programming languages that it supports, the most prominent ones being Scala

and PySpark (though Spark also supports R and Java).

The PySpark and Scala syntax are both very similar in the majority of commands we

are using in the examples. There are some subtle nuances though.

The example code of Listings 6-1 and 6-2 shows how to read a CSV file into a data frame

in both PySpark and Scala (don’t worry we will get into more detail on data frames soon).

Listing 6-1.  Import CSV from HDFS using PySpark

Import the airports.csv file from HDFS (PySpark)

df_airports = spark.read.format('csv').options(header='true',

inferSchema='true').load('/Flight_Delays/airports.csv')

Listing 6-2.  Import CSV from HDFS using Scala

// Import the airports.csv file from HDFS (Scala)

val df_airports = spark.read.format("csv").option("header", "true").

option("inferSchema", "true").load("/Flight_Delays/airports.csv")

148

As you can see, the code of the example looks very similar for PySpark and Scala,

but there are some small differences. For instance, the character used for comments, in

PySpark a comment is marked with a # sign, while in Scala we use //. Another difference

is in the quotes. While we can use both a single quote and a double quote in the PySpark

code, Scala is pickier accepting only double quotes. Also, where we don’t need to

specifically define a variable in PySpark (which is called a value in Scala), we do need to

explicitly specify this when using Scala.

While this book is focused on Big Data Clusters, we believe an introduction to

writing PySpark will be very useful when working with SQL Server Big Data Clusters

since it allows you different method to work with the data inside your Big Data Cluster

besides SQL.

�Loading Data and Creating a Spark Notebook
If you followed the steps in the “Getting Some Sample Files into the Installation”

section of Chapter 4, you should have already imported the “2015 Flight Delays and

Cancellations” dataset from Kaggle to the HDFS filesystem of your Big Data Cluster. If

you haven’t done so already, and want to follow along with the examples in this section,

we recommend following the steps outlined in the “Getting Some Sample Files into

the Installation” section before continuing. If you imported the dataset correctly, you

should be able to see the “Flight_Delays” folder and the three CSV files inside the HDFS

filesystem through Azure Data Studio as shown in Figure 6-1.

Chapter 6 Working with Spark in Big Data Clusters

149

With our sample dataset available on HDFS, let’s start with exploring the data a bit.

The first thing we need to do is to create a new notebook through the “New

Notebook” option inside the Tasks window of our SQL Big Data Cluster tab (Figure 6-2).

Figure 6-1.  Flight delay files in HDFS store

Chapter 6 Working with Spark in Big Data Clusters

150

After creating a new notebook, we can select what language we want to use by

selecting it through the “Kernel” drop-down box at the top of the notebook as shown in

Figure 6-3.

Figure 6-2.  Tasks in Azure Data Studio

Figure 6-3.  Kernel selection in ADS notebook

During the remainder of this chapter, we will be using PySpark as the language

of all the examples. If you want to follow along with the examples in this chapter, we

recommend selecting the “PySpark” language.

With our notebook created and our language configured, let’s look at our flight delay

sample data!

Chapter 6 Working with Spark in Big Data Clusters

151

�Working with Spark Data Frames
Now that we have access to our data, and we have a notebook, what we want to do is

load our CSV data inside a data frame. Think of a data frame as a table-like structure that

is created inside Spark. Conceptually speaking, a data frame is equal to a table inside

SQL Server, but unlike a table that is generally stored on a single computer, a data frame

consists of data distributed across (potentially) all the nodes inside your Spark cluster.

The code to load the data inside the “airports.csv” file into a Spark data frame

can be seen in Listing 6-3. You can copy the code inside a cell of the notebook. All

of the example code shown inside this chapter is best used as a separate cell inside

a notebook. The full example notebook that contains all the code is available at this

book’s GitHub page.

Listing 6-3.  Import CSV data into data frame

Import the airports.csv file from HDFS (PySpark)

df_airports = spark.read.format('csv').options(header='true',

inferSchema='true').load('/Flight_Delays/airports.csv')

If everything worked, you should end up with a Spark data frame that contains the

data from the airports.csv file.

As you can see from the example code, we provided a number of options to the

spark.read.format command. The most important one is the type of file we are reading;

in our case this is a CSV file. The other options we provide tell Spark how to handle the

CSV file. By setting the option header='true', we specify that the CSV file has a header

row which contains the column names. The option inferSchema='true' helps us with

automatically detecting what datatypes we are dealing with in each column. If we do

not specify this option, or set it to false instead, all the columns will be set to a string

datatype instead of the datatype we would expect our data to be (e.g., an integer datatype

for numerical data). If you do not use the inferSchema='true' option, or inferSchema

configures the wrong datatypes, you have to define the schema before importing the

CSV file and supply it as an option to the spark.read.format command as shown in the

example code of Listing 6-4.

Chapter 6 Working with Spark in Big Data Clusters

152

Listing 6-4.  Define schema and supply it to spark.read.format

Manually set the schema and supply it to the spark.read function

We need to import the pyspark.sql.types library

from pyspark.sql.types import *

df_schema = StructType([

 StructField("IATA_CODE", StringType(), True),

 StructField("AIRPORT", StringType(), True),

 StructField("CITY", StringType(), True),

 StructField("STATE", StringType(), True),

 StructField("COUNTRY", StringType(), True),

 StructField("LATITUDE", DoubleType(), True),

 StructField("LONGITUDE", DoubleType(), True)

])

With the schema declared, we can supply it to the spark.read function

df_airports = spark.read.format('csv').options(header='true').schema(df_

schema).load('/Flight_Delays/airports.csv')

If this was your first notebook command against the Spark cluster, you will get some

information back regarding the creation of a Spark session as you can see in Figure 6-4.

Figure 6-4.  Output of spark.read.format

A Spark session represents your entry point to interact with the Spark functions. In

the past, we would have to define a Spark context to connect to the Spark cluster, and

depending on what functionality we needed, we would have to create a separate context

for that specific functionality (like Spark SQL, or streaming functionalities). Starting from

Spark 2.0, Spark sessions became available as entry point, and it, by default, includes

all kinds of different functions that we had to create a separate context for in the past,

making it easier to work with them. When we run the first command inside a notebook

Chapter 6 Working with Spark in Big Data Clusters

153

against the Spark cluster, a Spark session needs to be created so we are able to send

commands to the cluster. Running subsequent commands will make use of the initially

created Spark session.

Now that we have our CSV data inside a data frame we can run all kind of commands

to retrieve information about our data frame. For instance, the example of Listing 6-5

returns the number of rows that are inside the data frame.

Listing 6-5.  Retrieve row count of the data frame

Display the amount of rows inside the df_airports data frame

df_airports.count()

The result should be 322 rows as shown in Figure 6-5 which returns the number of rows.

Figure 6-5.  Output of row count

Another very useful command is to return the schema of the data frame. This shows

us which columns make up the data frame and their datatypes. The code of Listing 6-6

gets the schema of the df_airports data frame and returns it as output (Figure 6-6).

Listing 6-6.  Retrieve the schema of the data frame

Display the schema of the df_flights data frame (PySpark)

df_airports.printSchema()

Figure 6-6.  Schema output of the df_airports data frame

Chapter 6 Working with Spark in Big Data Clusters

154

Now that we know the schema of the data frame, let’s return some data from it. One easy

way to do that is to use the head() function. This function will return the top n rows from

the data frame. In the following example, we will return the first row of the data frame. The

output of the command is shown below the example (Listing 6-7 is followed by Figure 6-7).

Listing 6-7.  Retrieve first row of data frame

Let's return the first row

df_airports.head(1)

Figure 6-7.  First row of the df_airports data frame

As you can see in Figure 6-7, the results aren’t by default returned in a table-like

structure. This is because head() only returns the output as a string-like structure.

To return a table structure when getting data from a dataset, you can use the show()

function as shown in the following example. Show() accepts an integer as a parameter to

indicate how many rows should be returned. In the example (Listing 6-8), we supplied a

value of 10, indicating we want the top ten rows returned by the function (Figure 6-8).

Listing 6-8.  Retrieve first row of data frame as a table structure

Select top ten rows, return as a table structure

df_airports.show(10)

Figure 6-8.  Show the top ten rows of the df_airports data frame

Chapter 6 Working with Spark in Big Data Clusters

155

Next to returning the entire data frame, we can, just like in SQL, select a subset of the

data based on the columns we are interested in. The following example (Listing 6-9) only

returns the top ten rows of the AIRPORT and CITY columns of the df_airports data

frame (Figure 6-9).

Listing 6-9.  Select specific columns of the first ten rows of the data frame

We can also select specific columns from the data frame

df_airports.select('AIRPORT','CITY').show(10)

Figure 6-9.  Top ten rows for the AIRPORT and CITY column of the df_airports
data frame

Just like in SQL, we also have the ability to sort the data based on one or multiple

columns. In the following example (Listing 6-10), we are retrieving the top ten rows of

the df_airports data frame order first by STATE descending, then by CITY descending

(Figure 6-10).

Chapter 6 Working with Spark in Big Data Clusters

156

Listing 6-10.  Retrieve the first ten rows of the data frame using sorting

We can also sort on one or multiple columns

df_airports.orderBy(df_airports.STATE.desc(), df_airports.CITY.desc()).show(10)

Figure 6-10.  df_airports data frame sorted on STATE and CITY columns

So far when getting data from the data frame, we have been selecting the top n rows

but we can also filter the data frame on a specific column value. To do this, we can add

the filter function and supply a predicate. The following example (Listing 6-11) filters

the data frame and only returns information about airports located in the city Jackson

(Figure 6-11).

Listing 6-11.  Filter a date frame

Filter results based on a column value

df_airports.filter(df_airports.CITY == 'Jackson').show()

Figure 6-11.  df_airports filtered on the CITY column

Chapter 6 Working with Spark in Big Data Clusters

157

Besides filtering on a single value, we can also supply a list of values we want to filter

on, much in the same way as you would use the IN clause in SQL. The code shown in

Listing 6-12 results in Figure 6-12.

Listing 6-12.  Multifiltering a data frame

Besides filtering on a single value, we can also use IN to supply

multiple filter items

We need to import the col function from pyspark.sql.functions

from pyspark.sql.functions import col

Declare a list with city names

city_list = ['Jackson','Charleston','Cody']

Filter the data frame

df_airports.where(col("CITY").isin(city_list)).show()

Figure 6-12.  Filtering on multiple values stored in a list

In the example in Figure 6–12, we declared a list of values we want to filter on and

used the isin function to supply the list to the where function.

Besides the == operator to indicate values should be equal, there are multiple

operators available when filtering data frames which you are probably already familiar

with, the most frequently used are shown in Table 6-1.

Chapter 6 Working with Spark in Big Data Clusters

158

We have been focusing on getting data out of the data frame so far. However, there

might also be situations where you want to remove a row from the data frame, or

perhaps, update a specific value. Generally speaking, updating values inside Spark data

frames is not as straightforward as, for instance, writing an UPDATE statement in SQL,

which updates the value in the actual table. In most situations, updating rows inside data

frames revolves around creating a sort of mapping data frame and joining your original

data frame to the mapping data frame and storing that as a new data frame. This way

your final data frame contains the updates.

Simply speaking, you perform a selection on the data you want to update (as shown

in Figure 6-13) and return the updated value for the row you want to update and save

that to a new data frame as shown in the example code of Listing 6-13.

Listing 6-13.  Perform multiple actions on the data frame

Update a row

We need to import the col and when function from pyspark.sql.functions

from pyspark.sql.functions import col, when

Select the entire data frame but set the CITY value to "Cody" instead of

"Jackson" where the IATA_CODE = "COD"

Store the results in the new df_airports_updated data frame

df_airports_updated = df_airports.withColumn("CITY", when(col("IATA_CODE") ==

"COD", "Jackson"))

Return the results, filter on IATA_CODE == "COD"

df_airports_updated = df_airports_updated.filter(df_airports_updated.IATA_

CODE == 'COD').show()

Table 6-1.  Compare operators in PySpark

== Equal to

Unequal to

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

Chapter 6 Working with Spark in Big Data Clusters

159

If we are interested in removing rows the same reasoning applies, we do not

physically delete rows from the data frame; instead, we perform a selection that does not

include the rows we want removed and store that as a separate data frame (Figure 6-14

shows the result of using Listing 6-14).

Listing 6-14.  Remove a row from a data frame

Remove a row

Select the entire data frame except where the IATA_CODE = "COD"

Store the results in the new df_airports_removed data frame

df_airports_removed = df_airports.filter(df_airports.IATA_CODE <> "COD")

Return the results, filter on IATA_CODE == "COD"

df_airports_removed.filter(df_airports_removed.IATA_CODE == "COD").show()

Figure 6-13.  Updated value to Jackson instead of Cody

Figure 6-14.  No data is present where IATA_CODE == “COD”

The concept of no deleting or updating the physical data itself but rather working

through selections to perform update or delete operations (and then store them in new

data frames) is very important when working with data frames inside Spark and has

everything to do with the fact that a data frame is only a logical representation of the data

stored inside your Spark cluster. A data frame behaves more like a view to the data stored

in one or multiple files inside your Spark cluster. While we can filter and modify the way

the view returns the data, we cannot modify the data through the view itself.

Chapter 6 Working with Spark in Big Data Clusters

160

One final example we want to show before we continue with a number of more

advanced data frame processing examples is grouping data. Grouping data based

on columns in a data frame is very useful when you want to perform aggregations

or calculations based on the data inside the data frame column. For instance, in the

following example code (Listing 6-15), we perform a count of how many airports a

distinct city has in the df_airports data frame (Figure 6-15).

Listing 6-15.  Group a data frame

Count the number of airports of each city and sort on the count descending

df_airports.groupby("City").count().sort(col("count").desc()).show(10)

Figure 6-15.  Count the number of airports for each unique city

In this example, we used the sort function instead of the orderBy we used earlier in

this section to sort the results. Both functions are essentially identical (orderBy is actually

an alias for sort) and there is no difference in terms of functionality between both

functions.

Chapter 6 Working with Spark in Big Data Clusters

161

�More Advanced Data Frame Handling
So far, we’ve looked at – relatively – simple operations we can perform on data frames

like selecting specific rows, grouping data, and ordering data frames.

However, there are far more things we can do in Spark when it comes to data frames,

for instance, joining multiple data frames together into a new data frame. In this section,

we are going to focus on doing some more advanced data frame wrangling.

To start off, so far, we have been working with a single dataset which we imported

into a data frame that contains information of the various airports in America. In many

situations you do not have a single dataset that contains everything you need, meaning

you will end up with multiple data frames. Using PySpark we can join these data frames

together on a key the data frames share and build a new, joined, data frame.

Before we can get started on joining data frames together, we will need to import the

other sample datasets from the 2015 Flight Delays and Cancellations examples we are

working with. If you are following along with the examples in this chapter, you should

already have a data frame called df_airports that contains the data of the airports.csv

file. If you haven’t, you can run the following code (Listing 6-16) to import the data from

the file into a data frame.

Listing 6-16.  Import airports.csv into data frame

df_airports = spark.read.format('csv').options(header='true',

inferSchema='true').load('/Flight_Delays/airports.csv')

We can use the same command (Listing 6-17) to import the other two CSV files:

airlines.csv and flights.csv.

Listing 6-17.  Import airlines.csv and flights.csv into data frames

Importing the other CSV files into data frames as well

df_airlines = spark.read.format('csv').options(header='true',

inferSchema='true').load('/Flight_Delays/airlines.csv')

df_flights = spark.read.format('csv').options(header='true',

inferSchema='true').load('/Flight_Delays/flights.csv')

After executing Listing 6-17, we should have three separate data frames available to

us in the PySpark notebook: df_airports, df_airlines, and df_flights.

Chapter 6 Working with Spark in Big Data Clusters

162

To join two data frames, we have to supply the key on which we are joining the

two data frames on. If this key is identical on both data frames, we do not have to

explicitly set the mapping in the join (and we only need to supply the column name as a

parameter). However, we believe it is always good practice to describe the join mapping

to make the code easier to understand. Also, in the sample dataset we are using, the data

frame columns have different column names on which we need to join requiring an

explicit join mapping.

The code example of Listing 6-18 will join the df_flights and df_airlines data

frames together using an inner join and output a new data frame called df_flightinfo.

We return the schema of the newly created data frame to see how the two data frames are

joined together (Figure 6-16).

Listing 6-18.  Join two data frames and retrieve the schema of the result

from pyspark.sql.functions import *

Let's join the df_airlines and df_flights data frames using an inner join

on the airline code

df_flightinfo = df_flights.join(df_airlines, df_flights.AIRLINE == df_

airlines.IATA_CODE, how="inner")

Print the schema of the joined data frame

df_flightinfo.printSchema()

Chapter 6 Working with Spark in Big Data Clusters

163

Figure 6-16.  Schema of the df_flightinfo data frame which is a join between
df_flights and df_airlines

Chapter 6 Working with Spark in Big Data Clusters

164

As you can see in Figure 6-16, the two columns (IATA_CODE and AIRLINE) that make

up the df_airlines data frame are added to the right side of the new df_flightinfo data

frame. Because we already have the IATA_CODE in the df_flights data frame, we end

up having duplicate columns in the new data frame (to make matters more interesting:

in this sample dataset the df_flights data frame uses the column “AIRLINE” to

denote the IATA code on which we join the df_airlines data frame. The df_airlines

data frame also has the AIRLINE column but it shows the full airline name. Essentially

this means both AIRLINE columns in the df_flightinfo data frame contain different

data).

We can easily drop the duplicate column when joining both data frames by

specifying it in the join command (Listing 6-19 and Figure 6-17).

Listing 6-19.  Joining two data frames while dropping a column

from pyspark.sql.functions import *

We will join both data frames again but this time drop the AIRLINE column

of the df_flights data frame

df_flightinfo = df_flights.join(df_airlines, df_flights.AIRLINE == df_

airlines.IATA_CODE, how="inner").drop(df_flights.AIRLINE)

Print the schema of the joined data frame

df_flightinfo.printSchema()

Chapter 6 Working with Spark in Big Data Clusters

165

Figure 6-17.  df_flightinfo schema without the duplicate AIRLINE column

Chapter 6 Working with Spark in Big Data Clusters

166

As you can see from the schema shown in Figure 6-17, we now end up with only one

AIRLINE column which contains the data we are after (the full airline name).

With the duplicate column removed, let’s select some information from the new

df_flightinfo data frame. For this example, let’s say we are interested in seeing the

scheduled and actual elapsed travel times for each flight together with the airline that

performed the flight. We can simply select the columns we are interested in just as

we did a number of times already in this chapter. This time using the code shown in

Listing 6-20 results in the table shown in Figure 6-18.

Listing 6-20.  Select a number of columns from the joined data frame

Select a number of columns from the joined data frame

df_flightinfo.select("FLIGHT_NUMBER", "AIRLINE", "SCHEDULED_TIME",

"ELAPSED_TIME").show()

Figure 6-18.  Scheduled and elapsed flight time for each flight number

Chapter 6 Working with Spark in Big Data Clusters

167

Now let’s say we are analyzing this data since we are interested in the differences

between the scheduled time for a flight and the actual time the flight took. While we

can manually look at each of the rows in the data frame to figure out what the difference

between both of the time columns is, it is far easier to let Spark perform this calculation

for you. For this scenario, we are using the following code (Listing 6-21) to create a new

data frame that selects a subset of the columns of the original df_flightinfo data frame

and does a simple calculation between the SCHEDULE_TIME and the ELAPSED_TIME

columns (Figure 6-19).

Listing 6-21.  Add a calculated column to a data frame

Create a new df_flightinfo_times data frame from df_flightinfo

with a new column that does a calculation between the scheduled and

elapsed time

df_flightinfo_times = df_flightinfo.withColumn("Time_diff", df_flightinfo.

ELAPSED_TIME - df_flightinfo.SCHEDULED_TIME).select("FLIGHT_NUMBER",

"AIRLINE", "SCHEDULED_TIME", "ELAPSED_TIME", "Time_diff")

Return the first ten rows

df_flightinfo_times.show(10)

Figure 6-19.  df_flightinfo_times data frames that show travel time information

Chapter 6 Working with Spark in Big Data Clusters

168

As we can see from Figure 6-19, the majority of the flights in our selection of ten rows

actually spend less travel time than scheduled.

While seeing this information on an individual flight is very useful, it would also be

very interesting to see how all the flights in our sample performed. To get an idea on

things like the average, maximum (Listing 6-22 resulting in Figure 6-20), or minimum

(Listing 6-23 resulting in Figure 6-21) of time difference (Listing 6-24 resulting in

Figure 6-22) between the scheduled and elapsed flight time, we can call a number of

functions in PySpark.

Listing 6-22.  Retrieve a single aggregated value

Show the maximum time diff value

df_flightinfo_times.select([max("Time_diff")]).show()

Figure 6-20.  Maximum time difference between the scheduled and elapsed time

Figure 6-21.  Minimum time difference between the scheduled and elapsed time

Listing 6-23.  Retrieve a single aggregated value

Show the minimum time diff value

df_flightinfo_times.select([min("Time_diff")]).show()

Listing 6-24.  Retrieve a single aggregated value

Show the average time diff value

df_flightinfo_times.select([mean("Time_diff")]).show()

Chapter 6 Working with Spark in Big Data Clusters

169

Figure 6-22.  Average time difference between the scheduled and elapsed time

While it is undoubtedly helpful to know the separate commands to retrieve a number

of summary statistics for a dataset, Spark also has a separate function (Listing 6-25)

that can directly do that for you and combine the multiple results into a single output

(Figure 6-23).

Listing 6-25.  Generate summary statistics from a specific column

We can generate summary statistics for a specific column using a single command

df_flightinfo_times.select("Time_diff").describe().show()

Figure 6-23.  Summary statistics for the Time_diff column of the df_flightinfo_
times data frame

As we can see from the preceding summary statistics (Figure 6–23), on average the

flights were performed almost 5 minutes faster than originally scheduled. We can also

see there are some outliers in the data; the fastest flight arrived 201 minutes earlier

than scheduled, while one of the flights took 330 minutes longer to perform than

scheduled.

Chapter 6 Working with Spark in Big Data Clusters

170

Perhaps we can gain some more understanding of the delays by looking at the data of

flights that had a delay of more than 180 minutes. The code of Listing 6-26 selects the top

20 of those rows and sorts them based on the delay descending, meaning the flights that

were delayed the most are at the top of the results (Figure 6-24).

Listing 6-26.  Select and sort based on a single column

Select all flights that had more than 60 minutes delay

df_flightinfo_times.filter(df_flightinfo_times.Time_diff < -60).

sort(desc("Time_diff")).show(20)

Figure 6-24.  Top 20 flights with the most delay

What we can see in these results is that the airline “American Airlines” has ran into

quite some flight delays based on this dataset. But are they also the airline with the most

delay on average? One way to figure that out is to calculate the average time difference

Chapter 6 Working with Spark in Big Data Clusters

171

for each airline and return them. We can do this by grouping the data based on the

airline and calculate the average delay across all flights for each distinct airline. The

code example of Listing 6-27 does just that, using the groupby function together with

an aggregate option (written as agg) to supply to method on which the data needs to be

grouped and on which column (Figure 6-25).

Listing 6-27.  Aggregate a column grouped by another column

Group the Time_diff data for each airline and return the average

difference between the scheduled and the elapsed time of a flight

df_flightinfo_times.groupby("AIRLINE").agg({"Time_diff": "mean"}).

sort(desc("avg(Time_diff)")).show()

Figure 6-25.  Average difference between scheduled and elapsed time for each
airline total over all flights

Chapter 6 Working with Spark in Big Data Clusters

172

The groupby function is very useful when you want to calculate values across the

entire data frame and group them on a specific function. Besides the mean option we

supplied using the agg parameter, we can also use other calculation methods like

sum to calculate the totals for each grouped column, or count to count the amount of

occurrences for each column value (Figure 6-26).

Figure 6-26.  Total difference between scheduled and elapsed time for each airline
calculated over all flights

Another thing worth pointing out is how we passed the column that is returned by

the groupby function to the sort function. Whenever a calculated column is added to

the data frame, it also becomes available for selecting and sorting, and you can pass the

column name into those functions.

Chapter 6 Working with Spark in Big Data Clusters

173

If we continue with our flight delay investigation, we can see from the grouped

average and total results that American Airlines isn’t performing as badly in the delay

department as we first expected. As a matter of fact, on average, their flights arrive 5

minutes earlier than planned!

We are going to return to this dataset in Chapter 7, explore it further, and even make

some predictions on flight delays.

�Working with SQL Queries on Spark Data Frames
So far in this chapter, we have used functions related to data frame handling to perform

actions like selecting a specific column, sorting, and grouping data. Another option

we have to work with the data inside data frame is by accessing it through SQL queries

directly in Spark. For those who are familiar with writing SQL code, this method might

prove far easier to use than learning all the new functions (and many more we haven’t

touched) earlier.

Before we can write SQL queries against a data frame, we have to register it as a table

structure which we can do through the code in Listing 6-28.

Listing 6-28.  Registering a temporary table

Register the df_flightinfo data frame as a (temporary) table so we can

run SQL queries against it

df_flightinfo.registerTempTable("FlightInfoTable")

Now that we have registered our data frame as a (temporary) table, we can run SQL

queries against it using the sqlContext command (Listing 6-29) which calls the Spark

SQL module which is included in the Spark engine (Figure 6-27).

Listing 6-29.  Select first ten rows of a table using SQL

Select the top ten rows from the FlightInfoTable for a selection of

columns

sqlContext.sql("SELECT FLIGHT_NUMBER, ORIGIN_AIRPORT, DESTINATION_AIRPORT,

ELAPSED_TIME FROM FlightInfoTable").show(10)

Chapter 6 Working with Spark in Big Data Clusters

174

As you can see in the preceding example, we executed a simple SELECT SQL query

in which we supplied a number of columns we want to return. The Spark SQL modules

process the SQL query and execute it against the table structure we created earlier. Just

like the example we’ve shown before, we still need to supply the .show() function to

return the results in a table-like structure.

Practically everything you can do using SQL code can be applied in Spark as well. For

instance, the last example (Listing 6-30) in the previous section showed how to group

data and calculate an average. We can do identical processing using a SQL query as

shown in the example in Figure 6-28.

Listing 6-30.  Aggregate a column grouped by another column with SQL

Group the flight distance for each airline and return the average flight

distance for each flight

sqlContext.sql("SELECT AIRLINE, AVG(DISTANCE) FROM FlightInfoTable GROUP BY

AIRLINE ORDER BY 'avg(Distance)' DESC").show()

Figure 6-27.  Top ten rows of the FlightInfoTable queried using Spark SQL

Chapter 6 Working with Spark in Big Data Clusters

175

�Reading Data from the SQL Server Master Instance
A huge advantage of SQL Server Big Data Clusters is that we have access to data stored

in SQL Server instances and HDFS. So far, we have mostly worked with datasets that

are stored on the HDFS filesystem, accessing them directly through Spark or creating

external tables using PolyBase inside SQL Server. However, we can also access data

stored inside a SQL Server database inside the Big Data Cluster directly from Spark. This

can be very useful in situations where you have a part of the data stored in SQL Server

and the rest on HDFS and you want to bring both together. Or perhaps you want to use

the distributed processing capabilities of Spark to work with your SQL table data from a

performance perspective.

Figure 6-28.  Average flight distance grouped for each airline

Chapter 6 Working with Spark in Big Data Clusters

176

Getting data stored inside the SQL Server Master Instance of your Big Data Cluster is

relatively straightforward since we can connect using the SQL Server JDBC driver that is

natively supported in Spark. We can use the master-0.master-svc server name to indicate

we want to connect to the SQL Server Master Instance (Listing 6-31).

Listing 6-31.  Execute SQL Query against Master Instance

Connect to the SQL Server master instance inside the Big Data Cluster

and read data from a table into a data frame

df_sqldb_sales = spark.read.format("jdbc") \

 �.option("url", "jdbc:sqlserver://master-0.master-svc;databaseName=

AdventureWorks2014") \

 .option("dbtable", "Sales.SalesOrderDetail") \

 .option("user", "sa") \

 .option("password", "[your SA password]"). ").load()

The preceding code sets up a connection to our SQL Server Master Instance and

connects to the AdventureWorks2014 database we created there earlier in this book.

Using the “dbtable” option, we can directly map a SQL table to the data frame we are

going to create using the preceding code.

After executing the code, we have a copy of the SQL table data stored inside a data

frame inside our Spark cluster and we can access it like we’ve shown earlier (Listing 6-31

leads to Figure 6-30).

To only retrieve the first ten rows, run Listing 6-32. This will result in Figure 6-29.

Listing 6-32.  Retrieve first ten rows

df_sqldb_sales.show(10)

Figure 6-29.  Data frame created from a table inside the SQL Server Master Instance

Chapter 6 Working with Spark in Big Data Clusters

177

Something that is interesting to point out for this process is the fact that Spark

automatically sets the datatypes for each column to the same type as it is configured

inside the SQL Server database (with some exceptions in datatype naming, datetime in

SQL is timestamp in Spark, and datatypes that are not directly supported in Spark, like

uniqueidentifier) which you can see in the schema of the data frame shown in Figure 6-30.

Figure 6-30.  Data frame schema of our imported data frame from the SQL Server
Master Instance

Next to creating a data frame from a SQL table, we can also supply a query to select

only the columns we are after, or perhaps perform some other SQL functions like

grouping the data. The example in Listing 6-33 shows how we can load a data frame

using a SQL query (Figure 6-31).

Listing 6-33.  Use SQL Query instead of mapping a table for a data frame

While we can map a table to a data frame, we can also execute a SQL query

df_sqldb_query = spark.read.format("jdbc") \

 �.option("url", "jdbc:sqlserver:// master-0.master-svc;databaseName=Adve

ntureWorks2014") \

 �.option("query", "SELECT SalesOrderID, OrderQty, UnitPrice,

UnitPriceDiscount FROM Sales.SalesOrderDetail") \

 .option("user", "sa") \

 .option("password", "[your SA password]").load()

df_sqldb_query.printSchema()

Chapter 6 Working with Spark in Big Data Clusters

178

�Plotting Graphs
So far, we have mostly dealt with results that are returned in a text like format whenever

we execute a piece of code inside our PySpark notebook. However, when performing

tasks like data exploration, it is often far more useful to look at the data in a more

graphical manner. For instance, plotting histograms of your data frame can provide a

wealth of information regarding the distribution of your data, while a scatter plot can

help you visually understand how different columns can correlate with each other.

Thankfully, we can easily install and manage packages through Azure Data Studio

that can help us plot graphs of the data that is stored inside our Spark cluster and display

those graphs inside notebooks. That’s not to say that plotting graphs of data that is stored

inside data frames is easy. As a matter of fact, there are a number of things we need to

consider before we can start plotting our data.

The first, and most important one, is that a data frame is a logical representation

of our data. The actual, physical data itself is distributed across the worker nodes that

make up our Spark cluster. This means that if we want to plot data through a data frame,

things get complex very fast since we need to combine the data from the various nodes

into a single dataset on which we can create our graph. Not only would this lead to very

bad performance since we are basically removing the distributed nature of our data,

but it can also potentially lead to errors since we would need to fit all of our data inside

the memory of a single node. While these issues might not occur on small datasets, the

larger your dataset gets, the faster you will run into these issues.

To work around these problems, we usually resort to different methods of analyzing

the data. For instance, instead of analyzing the entire dataset, we can draw a sample from

the dataset, which is a representation of the dataset as a whole, and plot our graphs on

this smaller sample dataset. Another method can be to filter out only the data that you

need, and perhaps do some calculations on it in advance, and save that as a separate,

smaller, dataset before plotting it.

Figure 6-31.  Schema of the df_sqldb_query data frame

Chapter 6 Working with Spark in Big Data Clusters

179

Whichever method you choose to create a smaller dataset for graphical exploration,

one thing we will be required to do is to bring the dataset to our main Spark master

node on which we submit our code. The Spark master node needs to be able to load

the dataset in memory, meaning that the master node needs enough physical memory

to load the dataset and not run out-of-memory and crash. One way we can do this

is by converting our Spark data frame to a Pandas data frame. Pandas, which is an

abbreviation for “panel data,” is a term that is used in the world of statistics to describe

multidimensional datasets. Pandas is a Python library written for data analysis and

manipulation, and if you have ever done anything with data inside Python, you are

bound to have worked with it. Pandas also brings in some plotting capabilities by using

the matplotlib library. While Pandas is, by default, included inside the libraries of Big

Data Clusters, matplotlib isn’t. The installation of the matplotlib package is however

very straightforward and easy to achieve by using the “Manage Packages” option inside a

notebook that is connected to your Big Data Cluster (Figure 6-32).

Figure 6-32.  Manage Packages option inside the notebook header

After clicking the Manage Packages button, we can see what packages are already

installed and are presented an option to install additional packages through the “Add

new” tab (Figure 6-33).

Chapter 6 Working with Spark in Big Data Clusters

180

In this case we are going to install the matplotlib packages so we can work through

the examples further on in this chapter. In Figure 6-34 I searched for the matplotlib

package inside the Add new packages tab and selected the latest stable build of

matplotlib currently available.

Figure 6-33.  Manage Packages

Chapter 6 Working with Spark in Big Data Clusters

181

After selecting the package and the correct version, you can click the “Install” button

to perform the installation of the package unto your Big Data Cluster. The installation

process is visible through the “TASKS” console at the bottom area of Azure Data Studio

as shown in Figure 6-35.

Figure 6-34.  Matplotlib package installation

Figure 6-35.  Matplotlib installation task

Chapter 6 Working with Spark in Big Data Clusters

182

After installing the matplotlib library, we are ready to create some graphs of our data

frames!

The first thing we need to do when we want to plot data from a data frame is to

convert the data frame to a Pandas data frame. This removes the distributed nature of

the Spark data frame and creates a data frame in-memory of the Spark master node.

Instead of converting an existing data frame, I used a different method to get data inside

our Pandas data frame. To create some more interesting graphs, I read data from a CSV

file that is available on a GitHub repository and load that into the Pandas data frame. The

dataset itself contains a wide variety of characteristics of cars, including the price, and

is frequently used as a machine learning dataset to predict the price of a car based on

characteristics like weight, horsepower, brand, and so on.

Another thing that I would like to point out is the first line of the example code

shown in Listing 6-34. The %matplotlib inline command needs to be the first

command inside a notebook cell if you want to return graphs. This command is a so-

called “magic” command that influences the behavior of the matplotlib library to return

the graphs. If we do not include this command, the Pandas library will return errors

when asked to plot a graph and we would not see the image itself.

Listing 6-34.  Import data to a data frame from GitHub

%matplotlib inline

import pandas as pd

Create a local Pandas data frame from a csv through a URL

pd_data_frame = pd.read_csv("https://github.com/Evdlaar/Presentations/raw/

master/Advanced%20Analytics%20in%20the%20Cloud/automobiles.csv")

After running the preceding code, we can start to create graphs using the pd_data

frame as a source.

The code of Listing 6-35 will create a histogram of the horsepower column inside

our Pandas data frame (Figure 6-36) using the hist() function of Pandas. Histograms

are incredibly useful for seeing how your data is distributed. Data distribution is very

important when doing any form of data exploration since you can see, for instance,

outliers in your data that influence your mean value.

Chapter 6 Working with Spark in Big Data Clusters

183

Listing 6-35.  Create a histogram for a single column

%matplotlib inline

We can create a histogram, for instance, for the horsepower column

pd_data_frame.hist("horsepower")

Figure 6-36.  Histogram of the horsepower column of the pd_data frame Pandas
data frame

Next to histograms we can basically create any graph type we are interested in.

Pandas supports many different graph types and also many options to customize how

your graphs look like. A good reference for what you can do can be found on the Pandas

documentation page at https://pandas.pydata.org/pandas-docs/stable/user_

guide/visualization.html.

To give you another example of the syntax, the code of Listing 6-36 creates a boxplot

of the price column inside our Pandas data frame (Figure 6-37).

Listing 6-36.  Generate a boxplot based on a single column

%matplotlib inline

Also other graphs like boxplots are supported

In this case we create a boxplot for the "price" column

pd_data_frame.price.plot.box()

Chapter 6 Working with Spark in Big Data Clusters

https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html

184

Just like histograms, boxplots graphically tell us information about how our data

is distributed. Boxplots, or box-and-whisker plots as they are also called, show us a bit

more detail regarding the distribution of the data compared to a histogram. The “box”

of the boxplot is called the interquartile range (IQR) and contains the middle 50% of our

data. In our case we can see that the middle 50% of our price data is somewhere between

7,500 and 17,500. The line, or whisker, beneath the IQR shows the bottom 25% of our

data and the whisker above the IQR the top 25%. The circles above the top whisker show

the outliers of our dataset, in the case of this example dataset, to indicate cars that are

priced higher than 1.5 ∗ IQR. Outliers have a potentially huge impact on the average

price and are worth investigating to make sure they are not errors. Finally, the green bar

inside the IQR indicates the mean, or average, price for the price column.

Boxplots are frequently used to compare the data distribution of multiple datasets

against each other. Something we can also do inside our PySpark notebook by setting

the subplot() function of the matplotlib library. The parameters we set for subplot()

dictate the location, expressed in rows and columns, the plot following the subplot()

function should be displayed in. In the example in Listing 6-37, the boxplot for the price

column is shown in location 1,2,1 which means 1 row, 2 columns, first column. The plot

for the horsepower is shown in location 1 row, 2 columns, second column effectively

plotting both boxplots next to each other (Figure 6-38).

Figure 6-37.  Boxplot of the price column inside the pd_data frame

Chapter 6 Working with Spark in Big Data Clusters

185

Listing 6-37.  Generate multiple boxplots to compare two values

%matplotlib inline

Boxplots are frequently used to compare the distribution of datasets

We can plot multiple boxplots together and return them as one image using

the following code

import matplotlib.pyplot as plt

plt.subplot(1, 2, 1)

pd_data frame.price.plot.box()

plt.subplot(1, 2, 2)

pd_data frame.horsepower.plot.box()

plt.show()

Figure 6-38.  Two different boxplots plotted next to each other

We won’t go into further detail about boxplots since they are outside the scope of this

book, but if you are interested in learning more about them, there are plenty of resources

available online about how to interpret them.

Chapter 6 Working with Spark in Big Data Clusters

186

One final example we would like to show displays how powerful the graphical

capabilities of Pandas is. Using the code of Listing 6-38, we will create a so-called scatter

matrix (Figure 6-39). A scatter matrix consists of many different graphs all combined

into a single, large, graph. The scatter matrix returns a scatter plot for each interaction

between the columns we provide and a histogram if the interaction is on an identical

column.

Listing 6-38.  Create scatter matrix

%matplotlib inline

import matplotlib.pyplot as plt

from pandas.plotting import scatter_matrix

Only select a number of numerical columns from our data frame

pd_num_columns = pd_data frame[['length','width','height','curb-

weight','horsepower','price']]

More advanced plots, like a scatter matrix plot

scatter_matrix(pd_num_columns, alpha=0.5, figsize=(10, 10),

diagonal="hist")

plt.show()

Chapter 6 Working with Spark in Big Data Clusters

187

A scatter matrix plot is incredibly useful when you want to detect correlations

between the various columns inside your dataset. Each of the scatter plots draws a dot

for each value on the x axis (for instance, length) and the y axis (for instance, price). If

these dots tend to group together, making up a darker dot in the case of the plot above,

the data inside the columns could potentially be correlated to each other, meaning that if

one has a higher or lower value, the other generally moves in the same direction. A more

practical example of this is the plot between price (bottom left of the preceding graph)

and curb weight (fourth from the right in the preceding graph). As the price, displayed

Figure 6-39.  Scatter matrix plot on various columns inside the pd_data frame

Chapter 6 Working with Spark in Big Data Clusters

188

on the y axis, goes up, the curb weight of the car also tends to increase. This is very useful

information to know, especially if we were interested in predicting the price of a car

based on the column values that hold the characteristics of the car. If a car has a high

curb weight, chances are the price will be high as well.

�Data Frame Execution
In this chapter I have mentioned a number of times that a data frame is just a logical

representation of the data you imported to the data frame. Underneath the hood of

the data frame, the actual, physical data is stored on the Spark nodes of your Big Data

Clusters. Because the data frame is a logical representation, processing the data inside

a data frame, or modifying the data frame itself, happens differently than you might

expect.

Spark uses a method called “lazy evaluation” before processing any commands.

What lazy evaluation basically means in terms of Spark processing is that Spark will

delay just about every operation that occurs on a data frame until an action is triggered.

These operations, called transformations, are actions like joining data frames. Every

transformation we perform on a Spark data frame gets added to an execution plan, but

not executed directly. An execution plan will only be executed whenever an action is

performed against the data frame. Actions include operations like count() or top().

Simply speaking, all the transformations we do on a data frame, like joining, sorting,

and so on, are being added to a list of transformations in the shape of an execution plan.

Whenever we perform an action like a count() on the data frame, the execution plan will

be processed and the resulting count() result will be displayed.

From a performance perspective, the lazy evaluation model Spark uses is very

effective on big datasets. By grouping transformations together, less passes over the data

are required to perform the requested operations. Also, grouping the transformations

together creates room for optimization. If Spark knows all operations it needs to perform

on the data, it can decide on the optimal method to perform the actions required for the

end result, perhaps some operations can be avoided or others can be combined together.

From inside our PySpark notebook, we can very easily see the execution plan by

using the explain() command. In the example in Listing 6-39, we are going to import

flight and airport information into two separate data frames and look at the execution

plan of one of the two data frames (Figure 6-40).

Chapter 6 Working with Spark in Big Data Clusters

189

Figure 6-40.  Execution plan of a newly imported data frame

Listing 6-39.  Explain the execution plan of a single table data frame

Import the flights and airlines data again if you haven't already

df_flights = spark.read.format('csv').options(header='true',

inferSchema='true').load('/Flight_Delays/flights.csv')

df_airlines = spark.read.format('csv').options(header='true',

inferSchema='true').load('/Flight_Delays/airlines.csv')

Just like SQL Server, Spark uses execution plans which you can see

through .explain()

df_flights.explain()

As you can see in Figure 6-40, there is only a single operation so far, a FileScan,

which is responsible for reading the CSV contents into the df_flights data frame. As

a matter of fact, the data is not already loaded into the data frame when we execute the

command, but it will be the first step in the execution plan whenever we perform an

action to trigger the actual load of the data.

To show changes occurring to the execution plan, we are going to join both the data

frames we created earlier together (Listing 6-40) and look at the plan (Figure 6-41).

Listing 6-40.  Explain the execution plan of a multitable data frame

Let's join both data frames again and see what happens to the plan

from pyspark.sql.functions import *

df_flightinfo = df_flights.join(df_airlines, df_flights.AIRLINE == df_

airlines.IATA_CODE, how="inner").drop(df_flights.AIRLINE)

df_flightinfo.explain()

Figure 6-41.  Execution plan of a data frame join

Chapter 6 Working with Spark in Big Data Clusters

190

From the execution plan, we can see two FileScan operations that will read the

contents of both source CSV files into their data frames. Then we can see that Spark

decided on performing a hash join on both data frames on the key columns we supplied

in the preceding code.

Again, the actions we performed against the data frame have not been actually

executed. We can trigger this by performing an action like a simple count() (Listing 6-41).

Listing 6-41.  Perform an action to execute the execution plan

Even though we joined the data frames and see that reflected in the

execution plan, the plan hasn't been executed yet

Execution plans only get executed when performing actions like count() or top()

df_flightinfo.count()

The execution plan will still be attached to the data frame, and any subsequent

transformations we perform will be added to it. Whenever we perform an action at a

later point in time, the execution plan will be executed with all the transformations that

are part of it.

�Data Frame Caching
One method to optimize the performance of working with data frames is to cache them.

By caching a data frame, we place it inside the memory of the Spark worker nodes and

thus avoid the cost of reading the data from disk whenever we perform an action against

a data frame. When you need to cache, a data frame is depended on a large number

of factors, but generally speaking whenever you perform multiple actions against a

data frame in a single script, it is often a good idea to cache the data frame to speed up

performance of subsequent actions.

We can retrieve information about whether or not (Figure 6-42) our data frame is

cached by calling the storageLevel function as shown in the example in Listing 6-42.

Listing 6-42.  Retrieve the data frame’s storage level

df_flightinfo.storageLevel

Figure 6-42.  Caching information of the df_flightinfo data frame

Chapter 6 Working with Spark in Big Data Clusters

191

The function returns a number of Boolean values on the level of caching that is active

for this data frame: Disk, Memory, OffHeap, and Deserialized. By default, whenever we

cache a data frame, it will be cached to both Disk and Memory.

As you can see in Figure 6-43, the df_flightinfo data frame is not cached at this

point. We can change that by calling the cache() function as shown in the code in

Listing 6-43.

Listing 6-43.  Enable caching on a data frame

To cache our data frame, we just have to use the .cache() function

The default cache level is Disk and Memory

df_flightinfo.cache()

df_flightinfo.storageLevel

If we look at the results of the storageLevel function, shown in Figure 6-43, we can

see the data frame is now cached.

Figure 6-43.  Caching information of the df_flightinfo data frame

Even though the storageLevel function returns that the data frame is cached, it

actually isn’t yet. We still need to perform an action before the actual data that makes up

the data frame is retrieved and can be cached. One example of an action is a count(),

which is shown in the code of Listing 6-44.

Listing 6-44.  Initialize cache by performing a count on the data frame

Even though we get info back that the data frame is cached, we have to

perform an action before it actually is cached

df_flightinfo.count()

Besides the storageLevel() command which returns limited information about the

caching of a data frame, we can expose far more detail through the Yarn portal.

To get to the Yarn portal, you can use the web link to the “Spark Diagnostics and

Monitoring Dashboard” which is shown in the SQL Server Big Data Cluster tab whenever

you connect, or manage, a Big Data Cluster through Azure Data Studio (Figure 6-44).

Chapter 6 Working with Spark in Big Data Clusters

192

After logging into the Yarn web portal, we are shown an overview of all applications

as shown in Figure 6-45.

Figure 6-44.  Service Endpoints in Azure Data Studio

Chapter 6 Working with Spark in Big Data Clusters

193

Consider an application inside Spark as a unit of computation. An application

can, for instance, be an interactive session with Spark through a notebook or a Spark

job. Everything that we have been doing throughout this chapter inside our PySpark

notebook has been processed in Spark as one or multiple applications.

As a matter of fact, the first command we execute against our Spark cluster returns

information about our Spark application as you can see in Figure 6-46.

Figure 6-45.  Yarn web portal

Figure 6-46.  Spark application information

For us the most important bit of information we are after is the “YARN Application

ID.” This ID should be present on the Yarn All Applications page, and if you are still

connected to Spark through this Application ID, it should be marked as “RUNNING” like

our session displayed in Figure 6-47.

Chapter 6 Working with Spark in Big Data Clusters

194

The information about data frame caching we are looking for is stored inside the

application logging. We can access more details about the application by clicking the link

inside the ID page. This brings us to a more detailed view for this specific application as

shown in Figure 6-48.

Figure 6-47.  Spark application overview from the Yarn web portal

Figure 6-48.  Application detail view inside the Yarn web portal

To see the information we’re after, we have to click the “ApplicationMaster” link at

the “Tracking URL:” option. This opens up a web page with Spark Jobs that were, or

are being, processed by this specific application. If you consider an application as your

connection to the Spark cluster, a job is a command you send through your application

to perform work like counting the number of rows inside a data frame. Figure 6-49 shows

an overview of our Spark Jobs inside the application we are currently connected to

through our PySpark notebook.

Chapter 6 Working with Spark in Big Data Clusters

195

You can open the details of a job by clicking the link inside the “Description” column

and access a wealth of information about the job processing including how the job was

processed by each worker node and the Spark equivalent of the graphical execution plan

for the job called the DAG (directed acyclic graph) of which an example is included in

Figure 6-50.

Figure 6-49.  Spark job overview

Chapter 6 Working with Spark in Big Data Clusters

196

Figure 6-50.  DAG of a count() function across a data frame

To view information about data frame caching, we do not have to open the job

details (though we can if we want to see storage processing for only a specific job);

instead we can look at the general storage overview by clicking the “Storage” menu item

at the top bar of the web page.

Chapter 6 Working with Spark in Big Data Clusters

197

On this page we can see all the data frames that are currently using storage, either

physical on disk, or in-memory. Figure 6-51 shows the web page on our environment

after executing the cache() and count() commands we performed at the beginning of

this section.

Figure 6-51.  Storage usage of data frames

What we can see from Figure 6-51 is that our data frame is completely stored in-

memory, using 345.6 MB of memory spread across five partitions. We can even see on

which Spark nodes the data is cached and partitioned to by clicking the link beneath the

“RDD Name” column. In our case, we get back the information shown in Figure 6-52.

Figure 6-52.  Storage usage of our data frame across Spark nodes

We can see our data frame is actually cached across three Spark worker nodes,

each of which cached a different amount of data. We can also see how our data frame

is partitioned and how those partitions are distributed across the worker nodes.

Partitioning is something that Spark handles automatically and it is essential for the

distributed processing of the platform.

Chapter 6 Working with Spark in Big Data Clusters

198

�Data Frame Partitioning
Like we mentioned at the end of the previous section, Spark handles the partitioning of

your data frame automatically. As soon as we create a data frame, it automatically gets

partitioned and those partitions are distributed across the worker nodes.

We can see in how many partitions a data frame is partitioned through the function

shown in Listing 6-45.

Listing 6-45.  Retrieve the number of partitions of a data frame

Spark cuts our data into partitions

We can see the number of partitions for a data frame by using the

following command

df_flightinfo.rdd.getNumPartitions()

In our case, the df_flightinfo data frame we’ve been using throughout this chapter

has been partitioned into five partitions – something we also noticed in the previous

section where we looked at how the data is distributed across the Spark nodes that make

up our cluster through the Yarn web portal.

If we want to, we can also set the amount of partitions ourselves (Listing 6-46).

One simple way to do this is by supplying the number of partitions you want to the

repartition() function.

Listing 6-46.  Repartition a data frame

If we want to, we can repartition the data frame to more or less partitions

df_flightinfo = df_flightinfo.repartition(1)

In the example code of Listing 6-46, we would repartition the df_flightinfo data

frame to a single partition. Generally speaking, this isn’t the best idea, since only having

a single partition would mean that all the processing of the data frame would end up on

one single worker node. Ideally you want to partition your data frame in as equally sized

partitions as possible. Whenever an action is performed against the data frame, it can get

split up into equally large operations, having maximum computing efficiency.

To make sure your data frame is as efficiently partitioned as possible, it is in many cases

not very efficient in just supplying the number of partitions you are interested in. In most

cases you would like to partition your data on a specific key/value, making sure all rows

inside your data frame that have the same key/value are partitioned together. Spark also

allows partitioning on a specific column as we show in the example code of Listing 6-47.

Chapter 6 Working with Spark in Big Data Clusters

199

Listing 6-47.  Created partitioned data frame

df_flights_partitioned = df_flightinfo.repartition("AIRLINE")

In this specific example, we are partitioning the df_flights_partitioned data

frame on the AIRLINE column. Even though there are only 14 distinct airlines inside

our data frame, we still end up with 200 partitions if we look at the partition count of the

newly created data frame. That is because, by default, Spark uses a minimum partition

count of 200 whenever we partition on a column. For our example, this would mean that

14 of the 200 partitions actually contain data, while the rest is empty.

Let’s take a look at how the data is being partitioned and processed. Before we can

do that, however, we need to perform an action against the data frame so that it actually

gets partitioned (Listing 6-48).

Listing 6-48.  Retrieved count from partitioned data frame

Let's run a count so we can get some partition information back through

the web portal

df_flights_partitioned.count()

After running this command, we are going to return to the Yarn web portal which we

visited in the previous section when we looked at data frame caching. If you do not have

it opened, you need to navigate to the Yarn web portal and open the currently running

application and finally clicking the ApplicationMaster URL to view the jobs inside your

application as shown in Figure 6-53.

Chapter 6 Working with Spark in Big Data Clusters

200

We are going to focus at the topmost job (Figure 6-54) of the list shown in Figure 6-53.

This is the count we performed after manually partitioning our data frame on the AIRLINE

column which you can also see in the name of the operation that was performed.

Figure 6-53.  Spark jobs inside our active application

Figure 6-54.  Spark job for our count() operation

By clicking the link in the Description, we are brought to a page that shows more

information about that specific job which is shown in Figure 6-55.

Figure 6-55.  Spark Job details

Chapter 6 Working with Spark in Big Data Clusters

201

What is very interesting to see is that the jobs themselves are also divided into

substeps called “Stages.” Each stage inside a job performs a specific function. To show

how our partitioning was handled, the most interesting stage is the middle one on which

we zoom in in Figure 6-56.

Figure 6-57.  Tasks that occurred beneath our count step, sorted on Shuffle Read
Size / Records

In this stage, the actual count was performed across all the partitions of the data

frame; remember, there were 200 partitions that were created when we created our

partition key on the AIRLINE column. In the “Tasks: Succeeded/Total” column, you see

that number being returned.

If we go down even deeper in the details of this stage, by clicking the link inside

the Description column, we receive another page that shows us exactly how the data

was processed for this specific stage. While this page provides a wealth of information,

including an event timeline, another DAG visualization, and summary metrics for all

the 200 steps (which are again called tasks on this level), I mostly want to focus on the

table at the bottom of the page that returns processing information about the 200 tasks

beneath this stage.

If we sort the table on the column “Shuffle Read / Records” in a descending manner,

we can exactly see how many records were read from each partition for that task and

from which host they were read as shown in Figure 6-57, which shows the first couple of

tasks that processed rows of the total of 14 tasks that actually handled rows (the other 186

partitions are empty; thus no rows are processed from them).

Figure 6-56.  Stage inside a Spark job

Chapter 6 Working with Spark in Big Data Clusters

202

From the results in Figure 6-57, we can immediately also see a drawback of setting

our partitioning on a column value. The biggest partition contains far more rows

(1,261,855) than the smallest one (61,903), meaning most of the actions we perform will

occur on the Spark worker that contains our largest partition. Ideally, you want to make

your partitions as even as possible and distributed in such a way that work is spread

evenly across your Spark worker nodes.

�Summary
In this chapter, we took a detailed look at working with data inside the Spark architecture

that is available in SQL Server Big Data Clusters.

Besides exploring the programming language PySpark to work with data frames

inside Spark, we also looked at more advanced methods like plotting data. Finally, we

looked a bit underneath the hood of Spark data frame processing by looking at execution

plans, caching, and partitioning while introducing the Yarn web portal which provides a

wealth of information about how Spark processes our data frames.

With all that data now on hand within our Big Data Cluster, let’s move on to Chapter 7

to take a look at machine learning in the Big Data Cluster environment!

Chapter 6 Working with Spark in Big Data Clusters

203
© Benjamin Weissman and Enrico van de Laar 2020
B. Weissman and E. van de Laar, SQL Server Big Data Clusters,
https://doi.org/10.1007/978-1-4842-5985-6_7

CHAPTER 7

Machine Learning on
Big Data Clusters
In the previous chapters, we spent significant time on how we can query data stored

inside SQL Server instances or on HDFS through Spark. One advantage of having access

to data stored in different formats is that it allows you to perform analysis of the data at

a large, and distributed, scale. One of the more powerful options we can utilize inside

Big Data Clusters is the ability to implement machine learning solutions on our data.

Because Big Data Clusters allow us to store massive amounts of data in all kinds of

formats and sizes, the ability to train, and utilize, machine learning models across all of

that data becomes far easier.

In many situations where you are working with machine learning, the challenge to

get all the data you need to build your models on in one place takes up the bulk of the

work. Building a machine learning model (or training as it is called in the data science

world) becomes far easier if you can directly access all the data you require without

having to move it from different data sources to one place. Besides having access to the

data from a single point of entry, Big Data Clusters also allow you to operationalize your

machine learning models at the same location where your data resides. This means that,

technically, you can use your machine learning models to score new data as it is stored

inside your Big Data Cluster. This greatly increases the capabilities of implementing

machine learning inside your organization since Big Data Clusters allow you to train,

exploit, and store machine learning models inside a single solution instead of having

various platforms in place to perform a specific action inside your organization’s

advanced analytics platform.

In this chapter we are going to take a closer look at the various options available

inside Big Data Clusters to train, store, and operationalize machine learning models.

Generally speaking, there are two directions we are going to cover: In-Database Machine

Learning Services inside SQL Server and machine learning on top of the Spark platform.

204

Both of these areas cover different use cases, but they can also overlap. As you have seen

in the previous chapter, we can easily bring data stored inside a SQL Server instance to

Spark and vice versa if we so please. The choice of which area you choose to perform

your machine learning processes on is, in this situation, more based on what solution

you personally prefer to work in. We will discuss the various technical advantages and

disadvantages of both machine learning surfaces inside Big Data Clusters in each section

of this chapter. This will give you a better understanding of how each of these solutions

works and hopefully will help you select which one fits your requirements the best.

�SQL Server In-Database Machine Learning Services
With the release of SQL Server 2016, Microsoft introduced a new feature named in-

database R Services. This new feature allows you to execute R programming code

directly inside SQL Server queries using either the new sp_execute_external_script

stored procedure or the sp_rxPredict CLR procedure. The introduction of in-database

R Services was a new direction that allowed organizations to integrate their machine

learning models directly inside their SQL Server databases by allowing the user to

train, score, and store models directly inside SQL Server. While R was the only language

available inside SQL Server 2016 for use with sp_execute_external_script, Python

was added with the release of SQL Server 2017 which also resulted in a rename of the

feature to Machine Learning Services. With the release of SQL Server 2019, on which Big

Data Clusters are built, Java was also added as the third programming language that is

available to access directly from T-SQL code.

While there are some restrictions in place regarding In-Database Machine Learning

Services (for instance, some functions that are available with In-Database Machine

Learning Services, like PREDICT, only accept algorithms developed by Revolution

Analytics machine learning models), it is a very useful feature if you want to train and

score your machine learning models very closely to where your data is stored. This is also

the area where we believe In-Database Machine Learning Services shine. By utilizing the

feature data movement is practically minimal (considering that the data your machine

learning models require is also directly available in the SQL Server instance), model

management is taken care of by storing the models inside SQL Server tables, and it

opens the door for (near) real-time model scoring by passing the data to your machine

learning model before it is stored inside a table in your database.

Chapter 7 Machine Learning on Big Data Clusters

205

All of the example code inside this chapter is available as a T-SQL notebook at this

book’s GitHub page. For the examples in this section, we have chosen to use R as the

language of choice instead of Python which we used in the previous chapter.

�Training Machine Learning Models in the SQL Server
Master Instance
Before we can get started training our machine learning models, we have to enable

the option to allow the use of the sp_execute_external_script function inside the

SQL Server Master Instance of the Big Data Cluster. If you do not enable the option to

run external scripts inside the SQL Instance, a large portion of the functionality of In-

Database Machine Learning Services is disabled.

Some In-Database Machine Learning functionality is still with external scripts disabled.
For instance, you can still use the PREDICT function together with a pretrained
machine learning model to score data. However, you cannot run the code needed to
train the model, since that mostly happens through the external script functionality.

If you do not have external scripts enabled and want to run a section of R code using

sp_execute_external_script, you will be confronted with the following error message

(Figure 7-1).

Figure 7-1.  Error running sp_execute_external_script with external scripts disabled

Enabling sp_execute_external_script is simple and straightforward. Connect to

your SQL Server Master Instance and run the code shown in Listing 7-1 to immediately

enable the option.

Listing 7-1.  Enable external scripts

-- Before we can start, we need to enable external scripts

EXEC sp_configure 'external scripts enabled',1

RECONFIGURE WITH OVERRIDE

GO

Chapter 7 Machine Learning on Big Data Clusters

206

After enabling the use of external scripts, we can directly run R, Python, or Java

code through the sp_execute_external_script procedure. Like we mentioned in the

introduction of this section, we have chosen to use R as the language of choice for this

section of the book, and the code of Listing 7-2 shows a simple R command to return the

version information of R.

Listing 7-2.  Sample R code using sp_execute_external_script

EXEC sp_execute_external_script

 @language =N'R',

 @script=N'print (version)'

Running the code in Listing 7-2 should return the results shown in Figure 7-2.

Figure 7-2.  R version results through sp_execute_external_script

Chapter 7 Machine Learning on Big Data Clusters

207

As you can see from the code, the sp_execute_external_script procedure accepts

a number of parameters. Our example displays the minimal parameters that need to be

supplied when calling the procedure, namely, @language and @script. The @language

parameter sets the language that is used in the @script section. In our case, this is

R. Through the @script parameter, we can run the R code we want to execute, in this

case the print (version) command.

While sp_execute_external_script always returns results regarding the machine

it is executed on, the output of the print (version) R command starts on line 5

with _ platform x86_64.

While we can work just fine with R output being returned inside the message

window, we can also supply additional parameters to sp_execute_external_script to

return the output generated with R to a table format. We do that by mapping a variable

we defined in R (using the @output_data_1_name parameter shown in the following) to a

variable we define in T-SQL and using the WITH RESULT SETS statement when we call the

procedure as shown in the example of Listing 7-3.

Listing 7-3.  Returning data using WITH RESULT SETS

EXEC sp_execute_external_script

 @language =N'R',

 @script=N'

 r_hi <- "Hello World!"

 r_hello <- as.data.frame(r_hi)',

 @output_data_1_name = N'r_hello'

WITH RESULT SETS (([hello] nvarchar(250)));

GO

By running the code in Listing 7-3, you should get the text “Hello World!” returned

inside a table result as shown in Figure 7-3.

Figure 7-3.  Output returned to a table format

Chapter 7 Machine Learning on Big Data Clusters

208

Just like how we can define and map output results through the sp_execute_

external_script procedure, we can define input datasets. This is of course incredibly

useful since this allows us to define a query as an input dataset to the R session and

map it to an R variable. Being able to get data stored inside your SQL Server database

inside the In-Database Machine Learning Service feature opens up the door to perform

advanced analytics on that data like training or score machine learning models.

We are going to train a machine learning model on the “Iris” dataset. This dataset

is directly available inside R and shows various characteristics of Iris flowers and to

which species a specific Iris flower belongs. We can use this data to create a classification

machine learning model in which we are going to predict which species an Iris flower

belongs to.

Since the dataset is already present inside R, we can use a bit of R scripting together

with the sp_execute_external_script procedure to return the dataset as a SQL table.

The code of Listing 7-4 creates a new database called “InDBML” and a new table called

“Iris” and fills that table from the Iris dataset inside an R session.

Listing 7-4.  Create a new database and fill it with test data

-- Create a new database to hold the Iris data

CREATE DATABASE InDBML

GO

USE [InDBML]

GO

-- Create a table to hold the Iris data

CREATE TABLE Iris

 (

 Sepal_Length FLOAT,

 Sepal_Width FLOAT,

 Petal_Length FLOAT,

 Petal_Width FLOAT,

 Species VARCHAR(50)

)

-- Get the Iris dataset from the R session and insert it into our table

INSERT INTO Iris

Chapter 7 Machine Learning on Big Data Clusters

209

EXEC sp_execute_external_script

 @language =N'R',

 @script=N'

 r_iris <- iris',

 @output_data_1_name = N'r_iris'

-- Get data from the new table

SELECT * FROM Iris

If everything processed correctly, you should have received the results as shown in

Figure 7-4 which shows the values stored inside the Iris table.

Figure 7-4.  Iris table values

Now that we have some data to create a machine learning model on, we can

get started by training a model. But before we do that, we are going to perform two

additional tasks. We are going to create a “Model” table. One very useful feature of

In-Database Machine Learning Services is the ability to “serialize” a model into a

binary string which we can then store inside a SQL table. When the model is stored

Chapter 7 Machine Learning on Big Data Clusters

210

inside a table, we can retrieve it whenever we need it through a SQL query. The code

of Listing 7-5 creates a model table inside the InDBML database.

Listing 7-5.  Create model table

-- Create a table to hold our trained ML models

CREATE TABLE models

 (

 model_name nvarchar(100) not null,

 model_version nvarchar(100) not null,

 model_object varbinary(max) not null

)

 GO

Next to the model_object column that is going to hold our serialized model, we also

create two additional columns that store the name and the version of the model. This

can be very useful in situation where you are storing multiple models inside your SQL

Server database and want to select a specific model version or name.

The next thing we are going to do is to split our Iris dataset into a training and

a testing set. Splitting a dataset is a common task when you are training machine

learning models. The training dataset is the data you are going to use to feed into the

model you are training; the test dataset is a portion of the data you are “hiding” from

the model while it is training. In that way the model was never exposed to the testing

data, which means we can use the data inside the testing set to validate how well the

model performs when shown data is has never seen before. For that reason, it is very

important that both the training and the testing datasets are a good representation

of the full dataset. For instance, if we train the model only on characteristics of the

“Setosa” Iris species inside our dataset and then show it data from another species

through our test dataset, it will predict wrong (predicting Setosa) since it has never

seen that other species during training.

The code of Listing 7-6 randomly selects 80% of the rows from the Iris table and

inserts them into a new Iris_train table. The other 20% of the data goes into a new

Iris_test table.

Chapter 7 Machine Learning on Big Data Clusters

211

Listing 7-6.  Split dataset into training and testing dataset

-- Randomly select 80% of the data into a separate training table

SELECT TOP 80 PERCENT *
INTO Iris_train

FROM Iris

ORDER BY NEWID()

-- Select the remaining rows into a testing table

SELECT *
INTO Iris_test

FROM Iris

EXCEPT

SELECT * FROM Iris_train

Now that we have a model table and got our training and testing data separated, we

are ready to train our machine learning model and store it inside our model table after

training which is exactly what the code of Listing 7-7 does.

Listing 7-7.  Train a machine learning model using sp_execute_external_script

DECLARE @model VARBINARY(MAX)

-- Train a decision tree based on our training dataset

EXEC sp_execute_external_script

 @language = N'R',

 @script = N'

 �iris.dtree <- rxDTree(Species ~ Sepal_Length + Sepal_Width +

Petal_Length + Petal_Width, data = iris_sqldata)

 �trained_model <- rxSerializeModel(iris.dtree,

realtimeScoringOnly = FALSE)',

 @input_data_1 = N'SELECT * FROM Iris_train',

 @input_data_1_name = N'iris_sqldata',

 @params = N'@trained_model VARBINARY(MAX) OUTPUT',

 @trained_model = @model OUTPUT

-- Insert the model into our model table

INSERT INTO models

Chapter 7 Machine Learning on Big Data Clusters

212

 (

 model_name,

 model_version,

 model_object

)

 VALUES

 (

 'iris.dtree',

 'v1.0',

 @model

)

The preceding code performs a number of steps to train and store a machine

learning model. To make sure you understand how sp_execute_external_script can

be used to train and store models inside your SQL Server Master Instance, we are going

to describe each step that is being performed in the preceding code.

	 1.	 The first line of the script, DECLARE @model VARBINARY(MAX),

declares a T-SQL variable of the VARBINARY datatype that will

hold our model after training it.

	 2.	 In the second step, we execute the sp_execute_external_script

procedure and supply the R code needed to train our model.

Notice we are using an algorithm called rxDTree. rxDTree is

a decision tree algorithm building by Revolution Analytics, a

company that Microsoft bought in 2015 and provided parallel

and chunk-based algorithms for machine learning. The syntax

for the model training is pretty straightforward; we are predicting

the species based on the other columns (or as they are called:

features) of the training dataset.

The line trained_model <- rxSerializeModel(iris.dtree,

realtimeScoringOnly = FALSE) is the command to serialize our

model and store inside the trained_model R variable. We map

that variable as an output parameter to the T-SQL @model variable

in the call to the sp_execute_external_script procedure. We

map the query that selects all the records from the training dataset

as an input variable for R to use as input for the algorithm.

Chapter 7 Machine Learning on Big Data Clusters

213

	 3.	 Finally, in the last step, we insert the trained model inside the

model table we created earlier. We supply some additional data

like a name and a version so we can easily select this model when

we use it to predict Iris species in the next step.

After running this code, which should only take a few seconds, we should end up

with our model stored as a binary string inside our model table as shown in Figure 7-5.

Figure 7-5.  Trained decision tree model inside the model table

�Scoring Data Using In-Database Machine Learning Models
Now that we have trained our model, we can use it to score, or predict, the data we stored

in the Iris_test table. To do that we can use two methods, one using the sp_execute_

external_script procedure which we have also used to train our model and the other

by using the PREDICT function that is available in SQL Server.

The code of Listing 7-8 shows the first approach; notice that the syntax is mostly the

same as the earlier examples of this method, but this time we supply the trained model

as an input parameter together with a query to select the data from the Iris_test table.

Listing 7-8.  Run a prediction using the in-database stored model

-- Retrieve the model from the model table

DECLARE @model VARBINARY(MAX) = (SELECT model_object FROM models WHERE

model_name = 'iris.dtree')

-- Run a prediction using the Iris_test data as input

-- Return all columns, including the probability for each species

EXEC sp_execute_external_script

 @language = N'R',

 @script = N'

 model = rxUnserializeModel(model);

 Iris_prediction = rxPredict(model, data=Iris_test)

 Iris_pred_results <- cbind(Iris_test, Iris_prediction)

Chapter 7 Machine Learning on Big Data Clusters

214

 str(Iris_pred_results)

 ',

 @input_data_1 = N'

 SELECT

 Sepal_Length,

 Sepal_Width,

 Petal_Length,

 Petal_Width,

 Species

 FROM Iris_test',

 @input_data_1_name = N'Iris_test',

 @output_data_1_name = N'Iris_pred_results',

 @params = N'@model varbinary(max)',

 @model = @model

 �WITH RESULT SETS (("Sepal_Length" FLOAT, "Sepal_Width" FLOAT,

"Petal_Length" FLOAT, "Petal_Width" FLOAT, Species VARCHAR(50),

setosa_Pred FLOAT, versicolor_Pred FLOAT, verginica_Pred FLOAT))

In the first part of the R script inside the sp_execute_external_script code,

we have to unserialize our model again using rxUnserializeModel. With the model

unserialized, we can perform a prediction of the input data. The last line of R code adds

the probability columns for each Iris species to the input dataset. This means we end up

with a single table as output that contains all the input columns as well as the columns

generated by the scoring process.

We won’t go into details about machine learning or machine learning algorithms

in this book, but the problem we are trying to solve using machine learning in this case

is one called classification. Machine learning algorithms can basically be grouped into

three different categories: regression, classification, and clustering. With regression we

are trying to predict a numerical value, for instance, the price of a car. Classification

usually deals with predicting a categorical value, like the example we went through in

this chapter: What species of Iris plant is this? Clustering algorithms try to predict a

result by trying to group categories together based on their characteristics. In the Iris

example we could also have chosen to use a clustering algorithm since there might be

clear Iris species characteristics that tend to group together based on the species.

Chapter 7 Machine Learning on Big Data Clusters

215

After running the code in Listing 7-8, we see the results shown in Figure 7-6. If you

ran the code yourself, you might see some different results since we split our training and

test data based on randomly selected rows.

Figure 7-6.  Scored results for the data inside the Iris_test table using our trained
machine learning model

Performing a prediction using the sp_execute_external_script method works

perfectly fine and gives you maximum flexibility in terms of what you can do using R

code. However, it does result in quite a lot of lines of code. Another method we have

available inside SQL Server is using the PREDICT function; PREDICT is far easier to use,

has a simpler syntax, and, in general, performs faster than sp_execute_external_

script. It does have its drawbacks though, for instance, you cannot write custom R

code to perform additional steps on the data and you are required to use a serialized

model that was trained using a Revolution Analytics algorithm (by using sp_execute_

external_script you can basically use every algorithm available in R or R libraries).

We performed the same scoring on our data inside the Iris_test table using the

PREDICT function in the code of Listing 7-9.

Listing 7-9.  Running a model prediction using the PREDICT function

DECLARE @model VARBINARY(MAX) = (SELECT model_object FROM models WHERE

model_name = 'iris.dtree')

-- Alternative method is using the PREDICT function

SELECT

Chapter 7 Machine Learning on Big Data Clusters

216

 Iris_test.*,

 pred.*
FROM PREDICT(MODEL = @model, DATA = dbo.Iris_test as Iris_test)

WITH(setosa_Pred FLOAT, versicolor_Pred FLOAT, virginica_Pred FLOAT) AS pred

As you can directly see, PREDICT is far more readable than sp_execute_external_

script and, for those more familiar with T-SQL, far easier to understand. In a sense, we

are joining the model, and its outputs, to the data inside the Iris_test table. We need to

supply the column names and datatypes of the prediction output inside the WITH clause

and can select what we want to return using the SELECT statement. In this case we are

selecting all the columns of the Iris_test table together with all the columns that are

returned by the prediction, and the results should look like those shown in Figure 7-7.

Figure 7-7.  Iris species prediction using PREDICT

Now that we have trained a machine learning model, and scored data using it, inside

SQL Server Machine Learning Services, you should have a general idea of the capabilities

of these methods. In general, we believe In-Database Machine Learning Services is

especially useful when all, or the largest part, of your data is stored inside SQL Server

databases. With the model stored inside a SQL Server database as well, you can build

solutions that are able to (near) real-time score data as soon as it is stored inside your

SQL Server database (for instance, by using triggers that call the PREDICT function). If you

want to, you are not limited to just SQL Server tables however. As you have seen in earlier

chapters, we can map data stored inside the Spark cluster (or on other systems all together)

using external tables and pass that data to the In-Database Machine Learning Services.

Chapter 7 Machine Learning on Big Data Clusters

217

In some situations, however, you cannot use In-Database Machine Learning

Services, perhaps because your data doesn’t fit inside SQL Server, either by size or by

data type, or you are more familiar with working on Spark. In any of those cases, we

always have the option of performing machine learning tasks on the Spark portion of the

Big Data Cluster which we are going to explore in more detail in the next section.

�Machine Learning in Spark
Since Big Data Clusters are made up from SQL Server and Spark nodes, we can easily

choose to run our machine learning processes, from training to scoring, inside the Spark

platform. There are many reasons we can come up with why you would choose Spark over

SQL for a machine learning platform (and vice versa). However, when you have a very

large dataset that doesn’t make sense to load into a database, you are more or less stuck on

using Spark since Spark can handle large datasets very well and can train various machine

learning algorithms in the same distributed nature as it handles data processing.

As expected on an open, distributed, data processing platform, there are many

libraries available which you can use to satisfy your machine learning needs. In this book

we decided on using the built-in Spark ML libraries which provide a large selection of

different algorithms and should cover most of your advanced analytical needs.

Just like we did for the In-Database Machine Learning Services for SQL Server

section, we need to get some data inside Spark to work with. For the sake of simplicity,

we decided on reusing the Iris dataset we also used for the SQL Server section. Just like

we did in the previous chapter, all the data processing, wrangling, and analysis we are

doing in Spark happen on a dataframe. Assuming you worked through the examples

in the previous SQL Server section, we are going to extract the Iris dataset from inside

the SQL Server Master Instance and load it into a dataframe in Spark using the code of

Listing 7-10. If you are unfamiliar with connecting to the SQL Server Master Instance

through Spark, we suggest reading the last section of the previous chapter where we go

into detail how you can make this scenario work.

Listing 7-10.  Reading data from the SQL Server Master Instance

Before we get started, let's get the Iris data from the database/table we

created in the previous section

df_Iris = spark.read.format("jdbc") \

 .option("url", "jdbc:sqlserver://master-0.master-svc;databaseName=InDBML") \

Chapter 7 Machine Learning on Big Data Clusters

218

 .option("dbtable", "dbo.Iris") \

 .option("user", "[username]") \

 .option("password", "[password]").load()

If we look at some of the contents of the df_Iris dataframe, using the df_Iris.

show(10) command, we should see that all the Iris species characteristics, as well as the

species itself, are present in the dataframe (Figure 7-8).

Figure 7-8.  df_Iris dataframe top ten rows

With our data inside a dataframe in Spark, we are almost ready to start to do some

machine learning. First thing we need to handle though is the loading of a number of

Spark ML libraries as shown in the code in Listing 7-11.

Listing 7-11.  Loading machine learning libraries

To perform machine learning tasks, we need to import a number of libraries

In this case we are going to perform classification

from pyspark.ml.classification import *
from pyspark.ml.evaluation import *
from pyspark.ml.feature import *

Chapter 7 Machine Learning on Big Data Clusters

219

In this case, since we are doing a so-called classification problem, we only need to

import the pyspark.ml.classification libraries together with the libraries we need to

perform some modification to the features (which is another name for the columns of

our dataframe in this case) of the dataframe and evaluate our model performance.

After the libraries are loaded, we are going to perform some modifications on our

dataframe to make it suitable to work for our machine learning algorithm. Different

machine learning algorithms have different requirements in terms of your data,

for instance, some algorithms only work on numerical values as input, just like the

classification algorithm we are using. The code of Listing 7-12 performs a number of

tasks on our df_Iris dataframe.

Listing 7-12.  Process the data so it is suitable for machine learning

We are going to combine all the features we need to predict the Iris species

into a single vector feature

feature_cols = df_Iris.columns[:-1]

assembler = VectorAssembler(inputCols=feature_cols, outputCol="features")

df_Iris = assembler.transform(df_Iris)

df_Iris = df_Iris.select("features", "Species")

Since we are going to perform logistic regression, we are going to convert

the string values inside species to a numerical value

label_indexer = StringIndexer(inputCol="Species", outputCol="label").fit(df_Iris)

df_Iris = label_indexer.transform(df_Iris)

The first code section combines the different features inside a new column called

“features.” All of these features are Iris species characteristics and they are combined into

a single format called a vector (we will take a look at how this visually looks a bit further

down in the book). The line feature_cols = df_Iris.columns[:-1] selects all the

columns of the dataframe except the rightmost column which is the actual species of the

Iris plant.

In the second section, we are mapping the different Iris species to a numerical value.

The algorithm we are going to use to predict the Iris species requires numerical input,

which means we have to perform a conversion. This is not unusual in the realm of machine

learning and data science. In many cases you have to convert a string value to a numerical

value so the algorithm can work with it. After the conversion from string to numerical, we

add a new column called “label” which contains the species in a numerical value.

Chapter 7 Machine Learning on Big Data Clusters

220

In the next step, we are only selecting the features and the label column from the

df_Iris dataframe and return the top ten rows (code of Listing 7-13 results in Figure 7-9)

to give you an idea how the data looks after the transformations we’ve performed in the

previous code segment.

Listing 7-13.  Only select the features and label dataframe columns

We only need the feature column and the label column

df_Iris = df_Iris.select("features", "label")

df_Iris.show(10)

Figure 7-9.  modified df_Iris dataframe

As you can see from Figure 7-9, all of the features (Petal_Length, Petal_Width, etc.)

have been transformed inside a single vector inside a single column of our dataframe.

The label column now returns a number for the species, 2.0 being Setosa, 1.0 virginica,

and 0.0 versicolor.

Chapter 7 Machine Learning on Big Data Clusters

221

Now that we have our entire dataframe converted into a format that is workable

for our machine learning classification algorithm, we can split our data into a training

dataframe and a testing dataframe like we did in the previous section as well. The code

of Listing 7-14 handles the split in which 80% of the data goes into the Iris_train

dataframe and the remaining 20% in the Iris_test dataframe.

Listing 7-14.  Split the dataframe into a training and testing dataframe

Split the dataset

(Iris_train, Iris_test) = df_Iris.randomSplit([0.8, 0.2])

Now that we have our datasets ready for training, we can start the actual machine

learning phase. The first thing we need to do is to initialize the machine learning

algorithm (Listing 7-15). In this part we can supply which algorithm we want to use

and various parameters (also called hyperparameters) we want to configure during the

training phase of the machine learning model.

Listing 7-15.  Initiate the classifier

Initiate the classifier, in this case LogisticRegression

lr = LogisticRegression(maxIter=10, tol=1E-6, fitIntercept=True)

In this case we have chosen to use a logistic regression algorithm to try and predict

which species of Iris a plant belongs to, based on its characteristics. We are going to

ignore the algorithm parameters for now. When you are in the phase when you try to

optimize and tune your model, you will frequently go back to the parameters (either

manually or programmatically) and modify them to find the optimal setting.

Training the model is actually very easy and straightforward and, in this case, can be

achieved by a single line of PySpark code (Listing 7-16).

Listing 7-16.  Train the model

Train the multiclass model

model = lr.fit(Iris_train)

After the preceding code (Listing 7-16) finished running, we have access to a

trained machine learning model in the form of the variable “model.” We can then use

the trained model to perform predictions on our test dataset to analyze how well it

performed. Using the code of Listing 7-17, we are going to “fit” the trained model on our

test dataset and return the top 20 results which are shown in Figure 7-10.

Chapter 7 Machine Learning on Big Data Clusters

222

As you can see in Figure 7-10, our model performed a good job on the test dataset. In

the top 20 rows that were returned by the command, only a single row had a prediction

for a different species instead of the actual one (we predicted virginica while it should

have been versicolor). While we could analyze each and every row to look for differences

between the actual species and the predicted species, a far faster way to look at model

performance is by using the Spark ML evaluation library which we loaded earlier.

Figure 7-10.  Prediction results on our test dataset

Listing 7-17.  Perform a prediction

Predict on our test dataset using the model we trained

and return the predictions

Iris_pred = model.transform(Iris_test)

Iris_pred.show(20)

Chapter 7 Machine Learning on Big Data Clusters

223

The code of Listing 7-18 evaluated the model performance against our test dataset

and measured it on the performance metric accuracy. Accuracy is frequently used

to measure how well a classification model is performing and is the ratio of correct

predictions divided by the number of incorrect predictions.

Listing 7-18.  Measuring model performance

How good did our model perform?

evaluator = MulticlassClassificationEvaluator(metricName='accuracy')

accuracy = evaluator.evaluate(Iris_pred)

print("Accuracy: " + format(accuracy))

The results the preceding code returns will probably vary each time you run

the code. This is because the dataset we are using is rather small and we perform a

randomize split, which means the number of unique species which ends up in the

training and testing datasets has a huge influence on model performance. We ended up

with the results shown in Figure 7-11, which is quite a respectable level of accuracy.

Figure 7-11.  Accuracy of our trained model

With our model trained and tested, we can take additional steps depending on

what we are planning to do with the model. If we are interested in optimizing model

performance more, we could go back and tune our algorithm parameters before training

the model again. Perhaps it would also be useful, in this scenario, to look how good the

split is between the training and test dataset since that has a huge impact on the model

accuracy and there are a hundred more things we could do to optimize our model even

further if we wanted to (even selecting a different algorithm to see if that predicts better

than the current one).

Another thing we could do is store the model. We are way more flexible in that area

than inside SQL Server In-Database Machine Learning Services where the model had to be

serialized and stored inside a table. In the case of Spark, we can choose different methods

and libraries to store our models. For instance, we can use a library called Pickle to store

our model on the filesystem, or use the .save function on the model variable to store it

on an HDFS location of our choosing. Whenever we need our trained model to score new

data, we can simply load it from the filesystem and use it to score the new data.

Chapter 7 Machine Learning on Big Data Clusters

224

�Summary
In this chapter we explored the various methods available to perform machine

learning tasks inside SQL Server Big Data Clusters. We looked at SQL Server In-

Database Machine Learning Services which allowed us to train, utilize, and store

machine learning models directly inside the SQL Server Master Instance using a

combination of T-SQL queries and the new sp_execute_external_script procedure.

In the Spark department, we also have a wide variety of machine learning capabilities

available to use. We used the Spark ML library to train a model on a dataframe and

used it to score new data. Both of the methods have their strengths and weaknesses,

but having both of these solutions available inside a single box allows optimal

flexibility for all our machine learning needs.

Chapter 7 Machine Learning on Big Data Clusters

225
© Benjamin Weissman and Enrico van de Laar 2020
B. Weissman and E. van de Laar, SQL Server Big Data Clusters,
https://doi.org/10.1007/978-1-4842-5985-6_8

CHAPTER 8

Create and Consume
Big Data Cluster Apps
One of the capabilities of SQL Server Big Data Clusters is the ability to build and run

custom applications on its surface. This is actually a very powerful feature, since it

allows you to script and run a wide variety of solutions on top of your Big Data Cluster.

For instance, you can create an application, or app as we will call it in the remainder of

this chapter, to perform various maintenance tasks on top of your data like a database

backup. Another example is the ability to create an entry point for your machine learning

processes through a REST API, a use case which we will explore later in this chapter.

Apps that you create on your Big Data Cluster can, at the moment of writing this

book, be written in R and Python, and there is an additional option to run SQL Server

Integration Services (SSIS) packages as well. By creating apps, you can utilize all the

computational resources available inside the Big Data Cluster as well as access all the

data that is stored inside of it.

Apps inside Big Data Clusters are run inside a dedicated container and can be

replicated and scaled across the cluster. This means that you can make your apps handle

parallel workloads and be high-performant solutions.

In this chapter we are going to create an app that will use a pretrained machine

learning model to classify the species of Iris plants, much like we have done in the

previous chapter which focused on developing machine learning solutions inside Big

Data Clusters. By building an app to score data using a machine learning solution, we

can easily operationalize that model through a REST API. This means that applications

that you use or build yourself can receive a prediction directly from the Big Data Cluster

through JSON messages, allowing near real-time scoring directly from your application

without the need to store and process the data first inside the Big Data Cluster.

226

�Create a Big Data Cluster App
There are two methods we can use to deploy apps to the Big Data Cluster, Visual Studio

Code through the App Deploy Extension and through the azdata command-line utility.

We are going to focus on the latter method to create and deploy our app.

Before we can deploy our app, we first have to write it. As mentioned in the

introduction of this chapter, apps can be written in R or Python and we have selected

R as the language of choice for our app. While it is not strictly necessary to have access

to R if you want to follow the examples in this chapter, it can be useful if you want to

train the machine learning model we are using inside our app yourself. In any case, the

pretrained model and the other files that are required for app deployment are available

for download at this book’s GitHub page.

Since we are going to create a Big Data Cluster app that is going to score new data

using a machine learning model, we need to create and store the model first. The code in

Listing 8-1 will use the built-in Iris dataset to create a machine learning model through

a decision tree and store it inside an .RDS file (make sure to set a directory path before

running the code). We will use the model stored inside the .RDS file later to score new

data. You can execute the following code from an R session on your local computer. You

can download and install R from www.r-project.org/.

Listing 8-1.  Building a prediction model in R

Read the Iris data into a new dataframe

Iris_Data <- iris

Change the column names

colnames(Iris_Data) <- c('Sepal_Length', 'Sepal_Width', 'Petal_Length',

'Petal_Width', 'Species')

Sample a number of rows for splitting training and testing datasets

sample_size <- floor(0.75 ∗ nrow(Iris_Data))

set.seed(1234)

train_id <- sample(seq_len(nrow(Iris_Data)), size = sample_size)

Iris_train <- Iris_Data[train_id,]

Iris_test <- Iris_Data[-train_id,]

Chapter 8 Create and Consume Big Data Cluster Apps

http://www.r-project.org/

227

Train the model, a decision tree, on the training data

Iris_Dtree <- rpart(Species~., data = Iris_train, method = 'class')

Save the model to disk

saveRDS(Iris_Dtree, "[folder path]/iris_dtree.rds")

As you can see in Listing 8-1, we went through the additional steps of splitting our

data into a training and testing dataset. However, in the preceding code, we only use the

training dataset to train the model and do not test its accuracy using the test dataset. We

aren’t necessarily interested in the model performance in this chapter, but rather the

ability to use the pretrained model to score new data through our Big Data Cluster app. If

you want to see how the model training performed, you can run the lines of the code in

Listing 8-2, which will perform an Iris species prediction based on the model we trained

and combine those predictions with the original testing dataset.

Listing 8-2.  Predict using our trained model

Iris_Predict <- predict(Iris_Dtree, Iris_test, method = 'class')

Prediction_results <- cbind(Iris_test, Iris_Predict)

Now that we have a pretrained model available to us inside and RDS file, we can take

a look at the actual code required to create a Big Data Cluster app.

A Big Data Cluster app consists a minimum of two files: the actual code we are

going to run inside the app and a YAML file that holds the configuration of our app.

Both of these files, and any additional files you want to upload to the app container like

our pretrained machine learning model, must all be stored inside a single directory as

shown in Figure 8-1.

Figure 8-1.  App files

Chapter 8 Create and Consume Big Data Cluster Apps

228

With the exception of the “spec.yaml” file, you are free to name your files in

whichever way you want.

Let’s first look at the contents of the “Predict_Iris.R” file. This file will contain the

code necessary to load the pretrained model from the “iris_dtree.rds” file and perform a

prediction based on the input variables we pass to the script file. The contents of the file

can be seen in Listing 8-3.

Listing 8-3.  Contents of the Predict_Iris.R file

library(rpart)

runpredict <- function(SepalLength, SepalWidth, PetalLength, PetalWidth) {

 �input_dataframe = data.frame(Sepal_Length = SepalLength, Sepal_Width =

SepalWidth, Petal_Length = PetalLength, Petal_Width = PetalWidth)

 Iris_Dtree <- readRDS("iris_dtree.rds")

 Iris_Predict <- predict(Iris_Dtree, input_dataframe, method = 'class')

 result <- as.data.frame(Iris_Predict)

}

In the preceding code, we firstly load the R library needed to perform a prediction

based on a decision tree. We also used the rpart library to train the model in the first

place; hence, it is also required to load the library when we want to perform a prediction.

The entire processing through our script file is handled through an R function. This

is necessary since we are going to define an entry point inside the spec.yaml file which

is called whenever we run the app. In the function definition, I am defining four input

variables, SepalLength, SepalWidth, PetalLength, and PetalWidth. When we are going

to call our app, we are supplying these variables as input parameters for the model to

perform a prediction. In the first line of code inside the function, I am grouping the input

variables and storing them inside an R dataframe called input_dataframe, taking care to

rename the columns to the identical format we also used when training the model. This

is required, else the prediction would not know which data is residing in which column.

In the next step, we are loading the pretrained model from the RDS file which we

also upload to the app container, after which we call the R predict function to perform a

prediction using the model and the input dataframe. Finally, we convert the result of the

prediction into a dataframe format and map it to the result variable.

Chapter 8 Create and Consume Big Data Cluster Apps

229

Now that we have actually completed our application script, we have to create the

spec.yaml file. For the example app we are deploying to our Big Data Cluster inside this

chapter, the spec.yaml file looks like Listing 8-4.

Listing 8-4.  Contents of the spec.yaml file

name: predictiris

version: v1

runtime: R

src: ./Predict_Iris.R

entrypoint: runpredict

replicas: 1

poolsize: 1

inputs:

 SepalLength: numeric

 SepalWidth: numeric

 PetalLength: numeric

 PetalWidth: numeric

output:

 out: data.frame

Most of the contents of the spec.yaml file are pretty much self-explanatory. We

supply a name and a version of the app, the runtime language, and the file that is called

whenever we run our app. In the bottom section, we define our input parameters (which

are identical to the ones we defined in the R function) and their datatypes, as well as

the datatype of our output parameter. In this case we didn’t explicitly set an output

parameter name. This is because R automatically uses the last set variable (in our case

result) as output when you call a function.

The more interesting parameters of the YAML file are the replicas and poolsize

parameters. These are the parameters we can configure to replicate and scale our app.

The input of the replicas parameter dictates how many pods should be deployed for

the application and the poolsize configures how many occurrences of the app should

be present inside a pod. The number of parallel operations your app is able to perform

is the product of the calculation replicas x poolsize. For instance, having replicas

configured to a value of 4 and the poolsize set to 2 will result in your app being able to

handle 8 parallel requests. In our spec.yaml, we configured both these settings to be 1,

meaning we will be able to handle one single request at a time.

Chapter 8 Create and Consume Big Data Cluster Apps

230

With all the files we require for our app deployment ready and stored inside a single

folder, we are ready to deploy the app to the Big Data Cluster. As we mentioned earlier,

we are using the azdata program to perform the deployment.

Before we can connect to the Big Data Cluster, we need to retrieve the external

IP of the controller-svc-external service. To do that, you can run the following

command: kubectl get svc controller-svc-external -n [clustername], where

[clustername] is the name of your cluster. If you are using AKS to host your Big Data

Cluster, you will first need to log on to Azure using the az login command.

Now that we have the IP and port number of the management service, we need to

connect to it through azdata using our admin username and password. You supplied

both of these during the deployment of your Big Data Clusters. The code of Listing 8-5

sets up a connection to your Big Data Cluster. Make sure to change the variables between

[] to the values you have for your cluster.

Listing 8-5.  Login to the controller endpoint

azdata login –-controller-endpoint https://[IP address]:30080 –-controller-

username [username]

You will be asked to enter the password of the admin user. If everything went well,

you should get a logged in successfully message.

Now that we are connected through azdata to our Big Data Cluster, we can deploy

our application. To do that, we can use the code shown in Listing 8-6. Make sure to

change the [directory path] to the path of the directory that holds your application

files like the spec.yaml.

Listing 8-6.  Deploy Big Data Cluster app

azdata app create --spec [directory path]

In our case we called the following command (Listing 8-7).

Listing 8-7.  Deploying our Big Data Cluster app

azdata app create --spec /Users/enricovandelaar/Documents/BDC.

When running the preceding command, a number of validations will occur to check

if the spec.yaml file is present and the input is correct. If everything is correct, you should

receive the message shown in Figure 8-2.

Chapter 8 Create and Consume Big Data Cluster Apps

231

Even though you receive a message that the app was created successfully, it isn’t

directly available. It usually takes around a minute before you can actually run your

application after you create it. If you want to know the status of application creation, you

can run the command in Listing 8-8.

Listing 8-8.  Retrieving App status through azdata

azdata app list -n predictiris

This returns the current status of the app deployment as shown in Figure 8-3.

Figure 8-2.  Big Data Cluster app created

Figure 8-3.  App creation status

After a minute or so, we ran the command again and received a state of “Ready,”

shown in Figure 8-4, meaning we can continue with the next step to test our app.

Figure 8-4.  App deployment completed and app is in the ready state

When the app is in the “Ready” state, we can test it’s functionality through the azdata

program. If we defined any parameters, we need to supply them when calling the app,

together with the name and version of the app which we supplied in the spec.yaml file.

The command in Listing 8-9 calls our predictiris app together with a number of input

parameters which we defined in the R script and YAML file.

Listing 8-9.  Run the app through azdata

azdata app run -n predictiris -v v1 --inputs PetalLength=1.4,PetalWidth=0.2,

SepalLength=5.1,SepalWidth=3.5

If everything completed successfully, we should get the results, in a JSON format,

shown in Figure 8-5.

Chapter 8 Create and Consume Big Data Cluster Apps

232

Since we are returning the output from the R script file inside a dataframe, the output

is automatically converted to a JSON array. The prediction in the case of the predictiris

app returns three output parameters which contain the probability for each possible Iris

species. In this case, the virginica species seems to be the most likely giving the values of

the input parameters we supplied with a certainty of 0.97 or 97%.

Whenever there is an issue with your app, you can in most cases see the error inside

the “errorMessage” or “consoleOutput” sections of the returned JSON. In our case the

app was executed successfully and we didn’t run into any errors.

Now that we have our app deployed and tested, we can keep using the azdata

method to call the app programmatically or on demand whenever we need to. Another

method to execute the app, which I find far more elegantly, is through the REST API that

is automatically created when we deploy our app.

Figure 8-5.  App prediction results

Chapter 8 Create and Consume Big Data Cluster Apps

233

�Consume Big Data Cluster Apps Through REST API
When we deploy our app, a dedicated container is created that holds our app and all

additional files we supplied through the application folder. During the deployment, a

RESTful web service is also created inside the container as an additional method to call

the app. RESTful APIs use HTTP requests to perform tasks. In our case, we can use the

REST API to call the app we created and return the outputs inside a JSON message. This

can be very useful in situations where you create apps on your Big Data Cluster that

you want to directly access from, for instance, your applications. Since all the code, and

the data, resides on the Big Data Cluster, your application only needs to be able to send

REST API calls and process the return messages returning data immediately into your

application.

To make use of the REST API for our app, we need to perform a number of steps. The

most important one being that we need to generate a token to securely call the REST

API. A number of these steps need to be performed through a tool that can send REST

API calls and process their results. In our case we used Postman (www.getpostman.com/)

as the tool of our choice.

The first thing we need to do before we are able to connect to the REST API that

belongs to our app is to generate a so-called “bearer token.” Only by supplying this token

in our REST API call can we access the app.

To generate a bearer token, we need to connect to the token URL. You can find the

URL and port number you need to connect to by running the command in Listing 8-10.

Listing 8-10.  Retrieve app URL and port number through azdata

azdata app describe --name predictiris -v v1

Running the preceding command returns information about your app, in our case

the predictiris app which is shown in Figure 8-6. The line we are after is returned in

the “links” section and is the URL and port number of the “swagger” property.

Chapter 8 Create and Consume Big Data Cluster Apps

http://www.getpostman.com/

234

Copy the URL and port number, or write them down, for now and start Postman (or

any other REST API call app you prefer). When Postman is started, we must change a

setting to avoid an error. Since the Big Data Cluster is configuring self-signed certificates

on its endpoint, we can potentially run into a security issue when we perform the REST

API calls later on. Inside Postman you can find the SSL certificate verification inside the

Preferences menu item as shown in Figure 8-7. Make sure to disable this setting before

performing the REST API calls to your Big Data Cluster.

Figure 8-6.  Output of the app describe command for the predictiris app

Chapter 8 Create and Consume Big Data Cluster Apps

235

With the setting disabled, you can open a new tab inside Postman. Paste or

enter the URL and port string we received from the app describe command into the

request URL field and expand the URL with /api/v1/token and change the method to

POST. Finally open the Authorization tab, change the Type to “Basic Auth,” and enter

your Big Data Cluster administrator username and password in the correct fields.

Figure 8-8 shows a screenshot of Postman with all these items filled in for our Big Data

Cluster and app URL.

Figure 8-7.  Request options inside Postman

Figure 8-8.  Postman setting to generate the bearer token

With everything configured in Postman, click the Send button to send the request

to the URL. If everything processed correctly, you should receive a return message that

contains the bearer token inside the “access_token” property of the JSON response as

shown in Figure 8-9 (we’ve removed the contents of the access_token and token_id

properties in Figure 8-9).

Chapter 8 Create and Consume Big Data Cluster Apps

236

Now that we generated a bearer token, we can use it to actually call the REST API of the

app itself. The URL of the app REST API is hidden by default and can be found in the swagger.

json file which we can open by visiting the URL inside the “swagger” property that we

received when running the azdata app describe --name predictiris -v v1 command.

When you open the URL (in our case https://104.46.56.134:30080/docs/

swagger.json), you can find a property in the JSON file called “host” as shown in

Figure 8-10.

Figure 8-9.  JSON return message that contains the bearer token

Figure 8-10.  Host property of the swagger.json file

Copy or write down the value of the “host” property and start a new session inside

Postman. Change the request method to “POST” and copy the contents of the “host”

property inside the request URL field preceding it with HTTPS://. After the port number

of the URL, we can copy the contents of the “basePath” property shown in Figure 8-10

and, as a last step to make the URL complete, add a /run.

Go to the Authorization tab and this time select the option “Bearer Token” and add

the token we received in the previous step inside the token field.

We now have one step left, generate the body content of our REST API call and

supply the input parameters needed to perform the Iris species prediction. Inside

Postman, click the Body tab, check the option “raw,” and from the drop-down button,

select “JSON (application/json).” Copy the contents of the code section in Listing 8-11

inside the body textarea to supply the input parameters needed for the predictiris app.

Chapter 8 Create and Consume Big Data Cluster Apps

https://104.46.56.134:30080/docs/swagger.json
https://104.46.56.134:30080/docs/swagger.json

237

Listing 8-11.  Input parameters for predictiris app (JSON)

{

 "PetalLength": 1.4,

 "PetalWidth": 0.2,

 "SepalLength": 5.1,

 "SepalWidth": 3.5

}

With all of these areas filled in, the Postman screen should look like Figure 8-11.

Figure 8-11.  Body of the REST API call to the predictiris app

Now all that is left to do is to click the “Send” button to send the JSON message to the

predictiris Big Data Cluster app.

If everything was configured correctly, we should receive a return message that

resembles the same output as when we executed the predictiris app using azdata

containing the predicted probabilities for each species of Iris plant. The return message

we received can be seen in Figure 8-12.

Figure 8-12.  REST API response body with the probabilities of each Iris plant species

Chapter 8 Create and Consume Big Data Cluster Apps

238

�Summary
In this chapter, we took a look at creating and accessing Big Data Cluster applications.

Big Data Cluster apps are a method to run containerized custom code inside the Big

Data Cluster, for instance, to serve as an access point to perform machine learning

scoring on a model that is stored inside the Big Data Cluster. We have created our own

app that was able to predict the species of an Iris plant, uploaded it to the Big Data

Cluster, and used azdata to execute the app. Apps are not only accessible through azdata

though; by using a RESTful web service, we were able to access the app and send data

to it of which it returned a scored result, using the machine learning model we trained,

inside a JSON message.

In the upcoming last chapter of the book, we will be taking a look at how you can

manage and administer an existing Big Data Cluster.

Chapter 8 Create and Consume Big Data Cluster Apps

239
© Benjamin Weissman and Enrico van de Laar 2020
B. Weissman and E. van de Laar, SQL Server Big Data Clusters,
https://doi.org/10.1007/978-1-4842-5985-6_9

CHAPTER 9

Maintenance of Big Data
Clusters
Last but not least, we want to look at how you can check the health of your Big Data

Cluster, how an existing Big Data Cluster can be upgraded to a newer version, and how

you can remove a Big Data Cluster instance, if it’s no longer needed.

�Checking the Status of a Big Data Cluster
Big Data Clusters provide you with two different portals from which to learn more about

their current state and health. These portals provide metrics and insights on the status of

the nodes as well as relating to log files. In addition to show, azdata can also provide you

a high-level overview of your cluster’s health.

�Retrieving a Big Data Cluster’s Status Using azdata
To check your cluster’s status from the command line, log in to your cluster using

the command azdata login. As you can see in Figure 9-1, azdata will ask you for your

namespace (your cluster’s name), username, and password. Use the values provided

during deployment.

240

Once you’ve successfully logged in, you can run the command azdata bdc status

show. This will give you an overview of all your services, hopefully reporting them all as

“healthy.” A sample output is illustrated in Figure 9-2.

Figure 9-1.  Output of azdata login

Figure 9-2.  Output of azdata bdc status show

Chapter 9 Maintenance of Big Data Clusters

241

After this, you can log out of the cluster by using azdata logout.

�Manage a Big Data Cluster Using ADS
Azure Data Studio gives you a more extensive view of your Big Data Cluster’s status and

layout. First, you need to connect to the cluster’s controller endpoint, which you were

provided at deployment.

To do so, look for the Big Data Clusters section in your ADS connections and click the

“+” symbol as pointed out in Figure 9-3.

Figure 9-3.  Big Data Clusters Connections in ADS

In the next step, provide the endpoint URL as well as your credentials to log in to the

cluster as shown in Figure 9-4.

Chapter 9 Maintenance of Big Data Clusters

242

This will take you to your Big Data Cluster overview, which will show you the state

and health status of every service as well as your endpoints as shown in Figure 9-5.

Figure 9-4.  Add new Big Data Clusters Connection in ADS

Chapter 9 Maintenance of Big Data Clusters

243

While the endpoints are more to be used as a reference, the overview itself can be

very useful to retrieve more details about every single service and instance within your

cluster.

If you click your SQL Server Service, for example, this will take you to an overview of

all your SQL instances (master, compute, data, and storage) as shown in Figure 9-6.

Figure 9-5.  Big Data Cluster overview in ADS

Chapter 9 Maintenance of Big Data Clusters

244

This will also provide you specific links toward the metrics and logs of each

component.

�Metrics (Grafana)
The Grafana Portal provides metrics and insights on the status on the node itself as well

as more SQL-specific metrics where applicable. The credentials to log in to the portal

will be the same ones you also used to connect to your cluster in Azure Data Studio.

�Node Metrics

Node metrics are typical performance indicators like CPU, RAM, and disk usage as

shown in Figure 9-7.

Figure 9-6.  Big Data Cluster details on SQL Server instances in ADS

Chapter 9 Maintenance of Big Data Clusters

245

In addition to the “big picture,” you can also get detailed information for every single

component like a specific disk or network interface.

When running into performance issues, this is always a good starting point.

Obviously, this can also be a great indicator whether you overprovisioned your cluster.

�SQL Metrics

While the node metrics were focused on the physical side of the node, the SQL metrics

as shown in Figure 9-8 provide information like wait time or number of waiting tasks

by wait type, transactions, and requests per second and other valuable metrics to

understand more about the status of the SQL components within the cluster.

Figure 9-7.  Grafana Portal – node metrics

Chapter 9 Maintenance of Big Data Clusters

246

Except for the master instance, which could also be reached through SSMS or Azure

Data Studio, you usually don’t connect to any of the other nodes directly, so think of

these metrics as your replacement for activity monitor.

�Log Search Analytics (Kibana)
The Kibana dashboard as shown in Figure 9-9 on the other hand provides you an insight

into the log files of the selected pod/node.

Figure 9-8.  Grafana Portal – SQL metrics

Chapter 9 Maintenance of Big Data Clusters

247

Kibana is part of the elastic stack. It also provides options to create visualizations

and dashboard on top of your log files. If you want to learn more about it, its website

www.elastic.co/products/kibana is a great starting point!

�Troubleshooting Big Data Clusters
At some point, your Big Data Cluster will probably run into a problem – from insufficient

disk space to a faulty component. Azure Data Studio also provides guidance and tools on

how to find and potentially fix the cause of such an error.

If you navigate back to the Big Data Cluster overview, you will see a button

“Troubleshoot” as pointed out in Figure 9-10.

Figure 9-9.  Kibana Portal – overview

Chapter 9 Maintenance of Big Data Clusters

http://www.elastic.co/products/kibana

248

Behind this button is a collection of notebooks to troubleshoot every single

component of your cluster. The first notebook to open is “TSG100 – The Big Data Cluster

troubleshooter” which will guide you through a full debugging of your Big Data Cluster.

If you have already narrowed down which service is causing issues, you can also navigate

directly to the analyzer notebook for that specific component on the left as shown in

Figure 9-11.

Figure 9-10.  Link to troubleshooting in ADS

Figure 9-11.  Troubleshooting in ADS

Chapter 9 Maintenance of Big Data Clusters

249

The notebooks are grouped by category as illustrated in Figure 9-12 and are always

your first starting point when you’re experiencing problems with a Big Data Cluster.

Figure 9-12.  Troubleshooting categories in ADS

�Upgrading Big Data Clusters
Just like any other version of SQL Server, Big Data Clusters receive regular cumulative

updates (CU) during the version’s maintenance time frame. To check your installation’s

version, you can just run SELECT @@VERSION in either SQL Server Management Studio

or Azure Data Studio. Let’s assume your current version is CU1 as shown in Figure 9-13.

Figure 9-13.  Output of SELECT @@VERSION

If you want to upgrade your Big Data Cluster to a new version, first make sure that

you have the latest version of azdata installed. To do so, run the code in Listing 9-1 just

like when you first installed azdata.

Chapter 9 Maintenance of Big Data Clusters

250

Listing 9-1.  Update azdata to the latest version

pip3 install -r https://aka.ms/azdata

Now you can use azdata to upgrade your cluster. The command for this is azdata bdc

upgrade, followed by at least your cluster’s name and the target version.

To upgrade to Big Data Clusters 2019 CU3, for example, you would use the command

shown in Listing 9-2.

Listing 9-2.  Upgrade your BDC to CU3 using azdata

azdata bdc upgrade --name mybdc --tag 2019-CU3-ubuntu-16.04

This will take some time as all the individual images will need to be pulled first

followed by an upgrade of every single component in your cluster. Just like during the

installation process, the upgrade process will give you a continuous status update on

which component it is currently working at up to the point where the upgrade process is

complete (see Figure 9-14).

Should you run into timeout issues, which has been reported as a common problem,

you can run azdata bdc upgrade with the additional, optional parameters controller-

timeout and component-timeout. Their value will be in minutes, so if you set them both

to 60, it should be more than sufficient.

Figure 9-14.  Output of azdata bdc upgrade

Chapter 9 Maintenance of Big Data Clusters

251

If you now run SELECT @@VERSION again, you will see that your Big Data Cluster

reflects CU3 as its current version as shown in Figure 9-15.

Figure 9-15.  Output of SELECT @@VERSION after upgrade

�Removing a Big Data Cluster Instance
If you want to delete an instance of your Big Data Cluster, all you need to do is use azdata

again. You will just need to provide the name of your instance as shown in Listing 9-3

and the cluster components will be deleted.

Listing 9-3.  Install script for Chocolatey in PowerShell

azdata bdc delete –-name <ClusterToBeDeleted>

You can follow the progress until the instance is fully removed as shown in Figure 9-16.

Figure 9-16.  Output of azdata bdc delete

Chapter 9 Maintenance of Big Data Clusters

252

That’s it – your instance is now removed. This will only remove the Big Data Cluster

components, so if you deployed to Azure Kubernetes Services, you may want to consider

deleting that cluster as well, unless you need it for other applications, to avoid it

accumulating costs.

�Summary
In this last chapter, we’ve explored the options of getting a quick status of your Big Data

Cluster’s health, options on what to do if something is not working as desired, as well as

how to upgrade an existing cluster to a later version.

Chapter 9 Maintenance of Big Data Clusters

253
© Benjamin Weissman and Enrico van de Laar 2020
B. Weissman and E. van de Laar, SQL Server Big Data Clusters,
https://doi.org/10.1007/978-1-4842-5985-6

Index

A
Active Directory (AD)

authentication, 82
integration, 82

AdventureWorksLT database, 104, 105
Apache Spark, 8, 18
Artificial intelligence (AI), 1, 2
Automated external tables, Biml

AdventureWorksLT database, 118
DataRow, 120
datasources metatable, 119, 120
PolyBase database, 120
12_PolybaseWriter_C.biml, 121, 122
T-SQL, 118, 120

azdata, 56
bdc config init, 73
bdc.json, 76–78, 80
bdc status show, 240
cluster config, 72, 73
cluster, creation, 80
command-line tool, 72
control file, 74
control.json, 74, 75
output, 81

Azure Blob Storage, 138
Azure Data Studio (ADS), 26

AdventureWorksLT, table
structure, 104

classic T-SQL queries/commands, 52
cluster settings, 66

connection dialog, 100
connection error, 101
deployment templates, 64
extension installation, 86–88
installation, 52
install Python, notebooks, 69
new deployment, 63
notebook postdeployment, 72
notebook predeployment, 71
script to notebook, 68
service settings, 67
settings, 65
version, 64

Azure Kubernetes Service (AKS), 13
azdata bdc config, 60
azure-cli, install, 57
Big Data Cluster prerequisites, install

script, 56
deployment script, download, 57
installation, 56
IP.py, 62
logon confirmation, 59
logon screen, 58
Python deployment script, 59, 60
Python script to retrieve endpoints, 61
retrieve Kubernetes, 61
trigger login, 58

Azure Portal
firewall settings, 103
resource, creation, 96

https://doi.org/10.1007/978-1-4842-5985-6

254

server configuration, 99
SQL database, configuration, 98, 102
SQL database, creation, 97

B
BDC_Empty database, 106
Bearer token, 233
Big Data Cluster App

app creation status, 231
app files, 227
azdata, 231
creation, 231
controller-svc-external service, 230
deploy, 230
errorMessage, 232
function definition, 228
input_dataframe, 228
login to controller endpoint, 230
machine learning model, 226
name and version, 231
parameters, YAML file, 229
prediction model in R, 226
prediction results, 232
Predict_Iris.R file, 228
pretrained machine learning

model, 227
pretrained model, 227
replicas and poolsize

parameters, 229
REST API (see REST API)
R library, 228
R or Python, 226
spec.yaml file, 229
trained model, 227
training and testing dataset, 227
Visual Studio Code, 226

Big Data Clusters
architecture, 9
data lake environment, 7
data virtualization (see Data

virtualization)
feature set, 1
removing, 251

Boxplots, 184

C
cache() function, 191
Centralized AI platform, 9, 10
Chocolatey, 33, 34
Chunks, 22
Classification, 214
Clustering, 214
Comma-separated values (CSV) files

DROP and CREATE external table
flights, 136, 137

error message, 133
external table wizard

master instance, selection, 127
preview data, 129
target table details, 128
T-SQL output, 131

SELECT statement, 125
store data, 137

Compute area, 28
Compute Pools, 28
Container

advantages, 12
application data, storage, 13
application services, 13
Docker/Minikube, 13
infrastructure-as-code, 12
Kubernetes, 13
pods, 14

Azure Portal (cont.)

INDEX

255

“stateless” applications, 13
virtual machines, 11, 12

Controller endpoint, 28
controller-svc-external service, 230
Control plane, 27, 28
csv-based external table, SELECT

statement, 125
csv_file, 124
Cumulative updates (CU), 249

D
Data frame handling

aggregate option, 171
application logging, 194
average time difference, 169
cache() and count() commands, 197
cache() function, 191
calculated column, add, 167
count() function, 191, 196
df_airports, df_airlines, and

df_flights, 161
df_flightinfo data frame, 163, 190, 191
df_flightinfo schema, 165
enable caching, 191
execution

count(), 188, 190
execution plan, 188, 189
transformations, 188

groupby function, 172
import airlines.csv and flights.csv, 161
import airports.csv, 161
joined data frame, 166
partitioning

count() operation, 200
creation, 199
df_flightinfo data frame, 198
repartition() function, 198

retrieved count, 199
Spark jobs, 200
tasks, 201
worker nodes, 198

PySpark, 161
scheduled and elapsed flight time, 166
schema, 162
select and sort based, 170
single aggregated value, retrieve, 168
Spark application information, 193
Spark job overview, 195
storageLevel function, 190
storage usage, 197
summary statistics, generation, 169
Yarn web portal, 193

Data integration, 3
Data Plane architecture, 29
Data redundancy, 6
Datasources, 118
Datatypes, 151, 177
Data virtualization

vs. data integration, 2
data redundancy, reduction, 6
indexing strategy, 3
linked servers and PolyBase, 5
PolyBase, 3–5
stretch database, 6
traditional ETL-based staging process, 6

Deployment
ADS (see Azure Data Studio (ADS))
AKS (see Azure Kubernetes Service

(AKS))
Linux with kubeadm, 54, 55

df_airlines data frame, 164
df_airports data frame, 154, 155
df_flightinfo data frame, 164, 166, 167
df_flightinfo_times data frames, 167
df_flights and df_airlines data frames, 162

INDEX

256

df_sqldb_query data frame, 178
Docker, 13
Drawbridge, 16
DROP statement, 135

E
Empty database, ADS, 107
Empty database through T-SQL, 89
Error message, 136
explain() command, 188
External data source, 140, 141
External tables

CREATE statement, 133, 134
CSV Files (see Comma-separated

values (CSV) files)
execution plan, 117
execution plan, SELECT statement, 126
joined SELECT statement, 117
master instance, connection, 106
SELECT statement, 116, 132
SSMS, 115
T-SQL, 112–114
Wizard, ADS

connection and credentials, 110
database master key, creation, 109
data source selection, 108
object mapping, 111
table mapping, 111

F
File-based data sources, 138, 139
FileScan, 189
Flight delay files, 149
Flight delay sample dataset

directory on HDFS, creation, 94
display files, 94

Kaggle.com datasets, 92
Kaggle.com download, 93
Kaggle.com login, 92
upload data to HDFS, 95

FlightInfoTable queried, 174

G
Generic CREATE statement, 140
GitHub repository, 182
groupby function, 171, 172
Grouping data, 160

H
Hadoop, 8
Hadoop Distributed File System

(HDFS), 22, 23
Data Nodes, 29
filesystem, 9, 10, 175
tiering, 82

hist() function, 182

I
In-Database Machine

Learning Services
model_object column, 210
model table, creation, 210
PREDICT, 204
restrictions, 204
scoring data, 213–217
sp_execute_external_script, 208, 211
split dataset, 211
SQL Server Master Instance, 205
WITH RESULT SETS, 207

Installation, SQL Server 2019
database engine configuration, 48

INDEX

257

download media dialog, 37
edition selection, 41
enable PolyBase

through T-SQL, 50
feature selection, 43
instance configuration, 44
Java install location, 46
main screen, 40
mount ISO, 39
overview, 49
PolyBase configuration, 45
PolyBase-enabled, 51
restart SQL Server Instance, 51
server configuration, 47
setup rules, 41, 42
type selection, 36

Interquartile range (IQR), 184
Iris species prediction, 216
Iris table values, 209
Iris_test table, 216

J
JSON message, 237

K
Kernel selection, 150
Kibana, 247
kubeadm on Linux

deployment, 54, 55
deployment script, download and

execute, 53
Patch Ubuntu, 53

Kubernetes
cluster, 14
nodes, 14
pods, 14

L
Lazy evaluation, 188
Linked servers, 5
Linux, 1
Logical architecture

compute area, 28
control plane, 27, 28
data area, 28
overview, 25
SQL Server master instance, 26
storage pool, 29

Logical Spark architecture, 21
Log Search Analytics (Kibana), 246, 247

M
Machine learning

built-in Spark ML libraries, 217
classification algorithm, 219
classifier, 221
dataframe, 217, 219
data process, 217, 219
df_Iris dataframe, 218
features, 219
filesystem, 223
loading machine learning libraries, 218
measuring model performance, 223
models

classification, 208
Iris dataset, 208
model table, creation, 210
preceding code, 212
sp_execute_external_script, 211
testing data, 211
training, 210

modified df_Iris dataframe, 220
prediction results, 222

INDEX

258

process, 10
pyspark.ml.classification

libraries, 219
reading data, 217
services, 27
trained model, 221, 223
training and testing dataframe, 221

Management, 241, 243, 244
Manage packages, 179
MapReduce framework, 19, 20
MapReduce programming model, 18
Master instance

copy AdventureWorks2014, 90
existing database, 89
restore AdventureWorks2014, 90

Matplotlib installation task, 181
Matplotlib library, 179, 182
Matplotlib package installation, 180, 181
Metrics (Grafana)

node metrics, 244, 245
SQL metrics, 245, 246

Microsoft sample data, 90, 91
Minikube, 13

N
Node metrics, 244, 245

O
ODBC source, 140

P
Pandas, 179, 183
Partitioning, 197
pd_data frame, 182

Physical infrastructure
container (see Container)
HDFS, 22, 23
spark (see Spark)
SQL Server Big Data

Clusters, 23, 24
SQL Server on Linux, 15–18

Platform abstraction layer (PAL), 15
Plotting graphs

ADS, 178
boxplot based on single

column, 183
boxplots, 184
data frame, 178
GitHub, 182
histogram, creation, 183
manage packages option, 179, 180
matplotlib library, 179, 182, 184
methods, analyzing data, 178
multiple boxplots, generate, 185
Pandas, 179, 183
Pandas library, 182
pd_data frame, 182
scatter matrix, 186

Pods, 14
PolyBase HDFS connector, 45
PolyBase inside SQL Server, 175
PREDICT function, 215
Prediction, 215
Pretrained machine learning

model, 225
PUSHDOWN flag, 140
PySpark, 147, 148, 158

Q
Querying Big Data Clusters through T-SQL

external tables (see External tables)

Machine learning (cont.)

INDEX

259

R
Regression, 214
Relational databases, 7, 8
repartition() function, 198
REST API

azdata, 237
bearer token, 233, 235
host property, swagger.json file, 236
input parameters, predictiris

app, 237
JSON return message, 236
predictiris app, 237
request options, 235
retrieve app URL and port

number, 233
return message, 237
token, 233

RESTful APIs, 233
RESTful web service, 233

S
Scala, 147, 148
Scatter matrix, 186, 187
Schema-on-read, 8
Schema-on-write approach, 8
SELECT statement, 136
show() function, 154
Sorting, 156
Spark

big data analytics, 20
cache, 22
commands translation, 21
distributed and parallel

framework, 147
driver process, 21, 22
inclusion, 18
logical architecture, 21

machine learning (see Machine
learning)

MapReduce framework, 20, 21
Spark application, 21, 22
Spark cluster, 8, 10
Spark data frames, 182

airports.csv file, 151
CSV data, 153
df_airports data frame, 153, 154
df_airports filtered, 156
filter, 156
grouping data based on columns, 160
import CSV data, 151
multifiltering, 157
multiple actions, 158
no deleting/updating, 159
remove row, 159
retrieve first row, 154
retrieve row count, 153
retrieve schema, 153
schema, 152, 153
select specific columns, 155
sorting, 156
spark.read.format command, 151, 152
SQL queries, 173–175
table structure, 154

Spark functions, 152
Spark master node, 179, 182
spark.read.format command, 152
Spark session, 152
Spark worker nodes, 197
spec.yaml file, 229
sp_execute_external_script

function, 204–207
sp_execute_external_script method, 215
SqlDataPool

CREATE statement, 141
indexes, 143–145

Index

260

SELECT against table, 142
SQL Query, 142
T-SQL code, 141

SQL Data Pool, 30, 31
SQL metrics, 245, 246
SQL Platform Abstraction Layer

(SQLPAL), 16
SQL Server–based external tables, 125
SQL Server 2019 on Linux, 18
SQL Server Integration Services

(SSIS), 6, 225
SQL Server Management Studio

(SSMS), 35, 50, 52
SQL Server Master Instance, 26, 127

data frame, creation, 176
data frame schema, 177
data stored, 176
datatypes, 177
df_sqldb_query data frame, 178
enable external scripts, 205
execute SQL Query, 176
preceding code sets up, 176
sp_execute_external_script, 212
SQL Query, 177

SQL Server on Linux, 17
SQL Server OS (SOS), 16
SqlStoragePool, 138

Status, Big Data Cluster, 239–241
storageLevel() command, 191
Storage Pool, 29, 124
subplot() function, 184

T
Table structure, 173
TensorFlow, 10
Trained decision tree model, 213
Training dataset, 210
Transformation, 188
Troubleshooting

ADS, 248, 249
link, 248

T-SQL code
external file format, 123
external table, creation, 124
pointer to storage pool, 124

T-SQL query, 9

U
UPDATE statement, 158
Upgrading, 249–251

V, W, X, Y, Z
Virtual machines (VMs), 11, 12

SqlDataPool (cont.)

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: What Are Big Data Clusters?
	What Is a SQL Server 2019 Big Data Cluster Really?
	Data Virtualization
	Outsource Your Data
	Reduce Data Redundancy and Development Time

	A Combined Data Platform Environment
	Centralized AI Platform

	Chapter 2: Big Data Cluster Architecture
	Physical Big Data Cluster Infrastructure
	Containers
	SQL Server on Linux
	Spark
	HDFS
	Tying the Physical Infrastructure Parts Together

	Logical Big Data Cluster Architecture
	Control Plane
	Compute Area
	Data Area
	Storage Pool
	SQL Data Pool

	Summary

	Chapter 3: Deployment of Big Data Clusters
	A Little Helper: Chocolatey
	Installation of an On-Premises PolyBase Instance
	Using Azure Data Studio to Work with Big Data Clusters
	What Is Azure Data Studio?
	Getting and Installing Azure Data Studio

	Installation of a “Real” Big Data Cluster
	kubeadm on Linux
	Azure Kubernetes Service (AKS)
	Deploy Your Big Data Cluster Through Azure Data Studio
	What Is azdata?
	Others

	Advanced Deployment Options
	Active Directory Authentication for Big Data Clusters
	HDFS Tiering in Big Data Clusters

	Summary

	Chapter 4: Loading Data into Big Data Clusters
	Getting Azure Data Studio Fully Ready for Your Big Data Clusters
	Getting Some Sample Files into the Installation
	Empty Database
	Sample Data Within Your Big Data Cluster
	Restoring Any SQL Server Backup to Your Master Instance
	Microsoft Sample Data
	Flight Delay Sample Dataset

	Azure SQL Database

	Summary

	Chapter 5: Querying Big Data Clusters Through T-SQL
	External Tables
	Automated External Tables with Biml
	External Tables from CSV Files in HDFS
	Accessing Data in an Azure Blob Storage

	External Tables from Other Data Sources
	File-Based Data Sources
	ODBC
	Others
	The SqlDataPool
	Indexes on the SqlDataPool

	Summary

	Chapter 6: Working with Spark in Big Data Clusters
	Loading Data and Creating a Spark Notebook
	Working with Spark Data Frames
	More Advanced Data Frame Handling
	Working with SQL Queries on Spark Data Frames
	Reading Data from the SQL Server Master Instance
	Plotting Graphs
	Data Frame Execution
	Data Frame Caching
	Data Frame Partitioning
	Summary

	Chapter 7: Machine Learning on Big Data Clusters
	SQL Server In-Database Machine Learning Services
	Training Machine Learning Models in the SQL Server Master Instance
	Scoring Data Using In-Database Machine Learning Models

	Machine Learning in Spark
	Summary

	Chapter 8: Create and Consume Big Data Cluster Apps
	Create a Big Data Cluster App
	Consume Big Data Cluster Apps Through REST API
	Summary

	Chapter 9: Maintenance of Big Data Clusters
	Checking the Status of a Big Data Cluster
	Retrieving a Big Data Cluster’s Status Using azdata
	Manage a Big Data Cluster Using ADS
	Metrics (Grafana)
	Node Metrics
	SQL Metrics

	Log Search Analytics (Kibana)

	Troubleshooting Big Data Clusters
	Upgrading Big Data Clusters
	Removing a Big Data Cluster Instance
	Summary

	Index

