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Introduction

When we first started talking about writing a book about SQL Server Big Data Clusters,
it was still in one of its first iterations. We both were very excited about all the
technologies included in the product and the way it could potentially change the field
of data processing and analytics. Little did we know how much changes the product
was going to receive while we were writing this. Ultimately this resulted in us almost
rewriting the entire book on a monthly basis. While this was a massive endeavor, it also
allowed us to follow, and document, everything the product went through during its
development. Now that the final product has shipped, we thought it was about time to
provide an updated version that reflects everything that Big Data Clusters is today; the
result is the book in front of you right now!

SQL Server Big Data Clusters is an incredibly exciting new platform. As mentioned
earlier, it consists of a wide variety of different technologies that make it work.
Kubernetes, HDFS, Spark, and SQL Server on Linux are just some of the major players
inside a Big Data Cluster. Besides all these different products combined into a single
product, you can also deploy it on-premises or in the Azure cloud depending on your
use case. As you can imagine, it is near impossible for a single book to discuss all these
different products in depth (as a matter of fact, there are plenty of books available
that do go into all the tiny details for each individual product that is part of a Big Data
Cluster like Spark or SQL Server on Linux). For this reason, we have opted for a different
approach for this book and will focus more on the architecture of Big Data Clusters in
general and practical examples on how to leverage the different approaches on data
processing and analytics Big Data Clusters offer.

With this approach, we believe that while you read this book, you will be able to
understand what makes Big Data Clusters tick, what their use cases are, and how to get
started with deploying, managing, and working with a Big Data Cluster. In that manner
this book tries to deliver useful information that can be used for the various job roles
that deal with data - from data architects that would like more information on how Big
Data Clusters can serve as a centralized data hub to database administrators that want
to know how to manage and deploy databases to the cluster, data scientists that want to
train and operationalize machine learning models on the Big Data Cluster, and many
more different roles. If you are working with data in any way, this book should have
something for you to think about!
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Book Layout

We split this book into nine separate chapters that each highlight a specific area, or

feature, of Big Data Clusters:

Chapter 1: “What Are Big Data Clusters?” In this chapter we will
describe a high-level overview of SQL Server Big Data Clusters and

their various use cases.

Chapter 2: “Big Data Cluster Architecture.” We will go into more
depth about what makes up a Big Data Cluster in this chapter,
describing the various logical areas inside a Big Data Cluster and
looking at how all the different parts work together.

Chapter 3: “Deployment of Big Data Clusters.” This chapter will walk
you through the first steps of deploying a Big Data Cluster using an
on-premises or cloud environment and describe how to connect to
your cluster and finally what management options are available to
manage and monitor your Big Data Cluster.

Chapter 4: “Loading Data into Big Data Clusters.” This chapter will
focus on data ingression from various sources unto a Big Data
Cluster.

Chapter 5: “Querying Big Data Clusters Through T-SQL.” This chapter
focuses on working with external tables through PolyBase and
querying your data using T-SQL statements.

Chapter 6: “Working with Spark in Big Data Clusters.” While the
previous chapter focused mostly on using T-SQL to work with the
data on Big Data Clusters, this chapter puts the focus on using Spark
to perform data exploration and analysis.

Chapter 7: “Machine Learning on Big Data Clusters.” One of the main
features of Big Data Clusters is the ability to train, score, and opera-
tionalize machine learning models inside a single platform. In this
chapter we will focus on building and exploiting machine learning
models through SQL Server In-Database Machine Learning Services
and Spark.
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Chapter 8: “Create and Consume Big Data Cluster Apps.” In the
second to last chapter of this book, we are going to take a close look at
how you can deploy and use custom applications through the Big
Data Cluster platform. These applications can range from manage-
ment tasks to providing a REST API to perform machine learning
model scoring.

Chapter 9: “Maintenance of Big Data Clusters.” To finish off your Big
Data Cluster experience, we'll look at what it takes to manage and
maintain a Big Data Cluster.

xvii



CHAPTER 1

What Are Big Data
Clusters?

SQL Server 2019 Big Data Clusters - or just Big Data Clusters - are a new feature set
within SQL Server 2019 with a broad range of functionality around data virtualization,
data mart scale out, and artificial intelligence (AI).

SQL Server 2019 Big Data Clusters are only available as part of the box-product
SQL Server. This is despite Microsoft’s “cloud-first” strategy to release new features and
functionality to Azure first and eventually roll it over to the on-premises versions later
(if at all).

Major parts of Big Data Clusters run only on Linux. Let that sink in and travel back
a few years in time. If somebody had told you in early 2016 that you would be able to
run SQL Server on Linux, you probably would not have believed them. Then SQL Server
on Linux was announced, but it was only delivering a subset of what it’s “big brother” -
SQL Server on Windows - actually contained. And now we have a feature that actually
requires us to run SQL Server on Linux.

Oh, and by the way, the name is a bit misleading. Some parts of SQL Server Big Data
Clusters don'’t really form a cluster - but more on that later.

Speaking of parts, Big Data Clusters is not a single feature but a huge feature set
serving a whole lot of different purposes, so it is unlikely that you will be embracing
every single piece of it. Depending on your role, specific parts may be more useful to you
than others. Over the course of this book, we will guide you through all capabilities to
allow you to pick those functions that will help you and ignore those that wouldn’t add
any value for you.

© Benjamin Weissman and Enrico van de Laar 2020
B. Weissman and E. van de Laar, SQL Server Big Data Clusters,
https://doi.org/10.1007/978-1-4842-5985-6_1



CHAPTER 1 WHAT ARE BIG DATA CLUSTERS?

What Is a SQL Server 2019 Big Data Cluster Really?

SQL Server 2019 Big Data Clusters are essentially a combination of SQL Server, Apache
Spark, and the HDFS filesystem running in a Kubernetes environment. As mentioned
before, Big Data Clusters is not a single feature. Figure 1-1 categorizes the different
parts of the feature set into different groups to help you better understand what is being
provided. The overall idea is, through virtualization and scale out, SQL Server 2019
becomes your data hub for all your data, even if that data is not physically sitting in SQL

Server.
Data Virtualizantion Managed SQL Server, Spark Complete Al Platform
and Data Lake
| o] | o]
Admin portal and management
services Integrated AD-based security
Analytics Apps
T-sQL REST API Containers for Models
| SQL Server External Tables ] | spark || saLserver | | spark || satsewer |
I Scalable, shared Storage
| Compute and Data Pools | (HDFS)
Open  NoSQL Relational HDFS Fxigrnal Data HDFS
Database Databases
Connectivity

Figure 1-1. Feature overview of SQL Server 2019 Big Data Clusters

The major aspects of Big Data Clusters are shown from left to right in Figure 1-1.
You have support for data virtualization, then a managed data platform, and finally an
artificial intelligence (AI) platform. Each of these aspects is described in more detail in
the remainder of this chapter.

Data Virtualization

The first feature within a SQL Server 2019 Big Data Cluster is data virtualization. Data
virtualization - unlike data integration - retains your data at the source instead of
duplicating it. Figure 1-2 illustrates this distinction between data integration and data
virtualization. The dotted rectangles in the data virtualization target represent virtual
data sources that always resolve back to a single instance of the data at the original



CHAPTER 1 WHAT ARE BIG DATA CLUSTERS?

source. In the world of Microsoft, this resolution of data to its original source is done
via a SQL Server feature named PolyBase, allowing you to virtualize all or parts of your
data mart.

Data Integration Data Virtualization
Source Source
~7 SQL Server !
PolyBase

|

I

.2‘:\ —— 1

& EJ PowerShel !
T-SQL !
|

Target

Figure 1-2. Data virtualization vs. data integration

One obvious upside to data virtualization is that you get rid of redundant data as
you don'’t copy it from the source but read it directly from there. Especially in cases
where you only read a big flat file once to aggregate it, there may be little to no use to
that duplicate and redundant data. Also, with PolyBase, your query is real time, whereas
integrated data will always carry some lag.

On the other hand, you can’t put indexes on an external table. Thus if you have data
that you frequently query with different workloads than on the original source, which
means that you require another indexing strategy, it might still make sense to integrate
the data rather than virtualize it. That decision may also be driven by the question on
whether you can accept the added workload to your source that would result from more
frequent reporting queries and so on.
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Note While data virtualization solves a couple of issues that come with data
integration, it won’t be able to replace data integration. This is NOT the end of SSIS

or ETL @.

Technically, PolyBase has been around since SQL Server 2016, but so far only

supported very limited types of data sources. In SQL Server 2019, PolyBase has been

greatly enhanced by support for multiple relational data sources such as SQL Server
or Oracle and NoSQL sources like MongoDB, HDFS, and all other kinds of data as we

illustrate in Figure 1-3.

-
1

SQL Server
PolyBase
PDW (Orchestrator

.

Data Source
(Format)
External Table

DMS

NoSQL

!

mongo i

PolyBase Connector

(Executor - Performs Operations)

DMS (Executor)

RDBMS
Microsoft
SQL Server
ORACLE

PolyBase Connector

DMS (Executor)

Scale-Out

s o0 PR

HORTONWORKS®

cloudera

aracwr

PolyBase Connector

Figure 1-3. PolyBase sources and capabilities in SQL Server 2019
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Effectively, you can query a table in another database or even on a completely
different machine as if it were a local table.

The use of PolyBase for virtualization may remind you of a linked server and there
definitely are some similarities. One big difference is that the query toward a linked
server tends to be longer and more involved than a PolyBase query. For example, here is
a typical query against a remote table:

SELECT * FROM MyOtherServer.MyDatabase.DBO.MyTable

Using PolyBase, you would write the same query more simply, as if the table were in
your local database. For example:

SELECT * FROM MyTable

PolyBase will know that the table is in a different database because you will have
created a definition in PolyBase indicating where the table can be found.

An advantage of using PolyBase is that you can move MyDatabase to another server
without having to rewrite your queries. Simply change your PolyBase data source
definition to redirect to the new data source. You can do that easily, without harming or
affecting your existing queries or views.

There are more differences between the use of linked servers and PolyBase. Table 1-1
describes some that you should be aware of.

Table 1-1. Comparison of linked servers and PolyBase

Linked Server PolyBase

— Instance scoped — Database scoped

— OLEDB providers — ODBC drivers

— Read/write and pass-through statements — Read-only operations

— Single-threaded — Queries can be scaled out

— Separate configuration needed for each — No separate configuration needed for Always On
instance in Always On Availability Group Availability Group
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Outsource Your Data

You may have heard of “Stretch Database,”! a feature introduced in SQL Server 2016,
which allows you to offload parts of your data to Azure. The idea is to use the feature for
“cold data” - meaning data that you don’t access as frequently because it’s either old (but
still needed for some queries) or simply for business areas that require less attention.

The rationale behind cold data is that it should be cheaper to store that data in Azure
than on premise. Unfortunately, the service may not be right for everyone as even its
entry tier provides significant storage performance which obviously comes at a cost.

With PolyBase, you can now, for example, offload data to an Azure SQL Database
and build your own very low-level outsourcing functionality.

Reduce Data Redundancy and Development Time

Besides offloading data, the reason to virtualize it instead of integrating it is obviously
the potentially tremendous reduction of data redundancy. As data virtualization keeps
the data at its original source and the data is therefore not persisted at the destination,
you basically cut your storage needs in half compared to a traditional ETL-based staging

process.

Note Our “cut in half” assertion may not be super accurate as you may not
have staged the full dataset anyway (reducing the savings) or you may have used
different datatypes (potentially even increasing the savings even more).

Think of this: You want to track the number of page requests on your website per
hour which is logging to text files. In a traditional environment, you would have written
a SQL Server Integration Services (SSIS) package to load the text file into a table, then
run a query on it to group the data, and then store or use its result. In this then new
virtualization approach, you would still run the query to group the data but you'd run
it right on your flat file, saving the time it would have taken to develop the SSIS package
and also the storage for the staging table holding the log data which would otherwise
have coexisted in the file as well as the staging table in SQL Server.

'https://azure.microsoft.com/en-us/pricing/details/sql-server-stretch-database/
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A Combined Data Platform Environment

One of the big use cases of SQL Server Big Data Clusters is the ability to create an
environment that stores, manages, and analyzes data in different formats, types, and
sizes. Most notably, you get the ability to store both relational data inside the SQL Server
component and nonrelational data inside the HDFS storage subsystem. Using Big Data
Clusters allows you to create a data lake environment that can answer all your data needs
without a huge layer of complexity that comes with managing, updating, and configuring
various parts that make up a data lake.

Big Data Clusters completely take care of the installation and management of your
Big Data Cluster straight from the installation of the product. Since Big Data Clusters
is being pushed as a stand-alone product with full support from Microsoft, this means
Microsoft is going to handle updates for all the technologies that make up Big Data
Clusters through service packs and updates.

So why would you be interested in a data lake? As it turns out, many organizations
have a wide variety of data stored in different formats. In many situations, a large
portion of data comes from the use of applications that store their data inside relational
databases like SQL Server. By using a relational database, we can easily query the data
inside of it and use it for all kinds of things like dashboards, KPIs, or even machine
learning tasks to predict future sales, for instance.

A relational database must follow a number of rules, and one of the most important
of those rules is that a relational database always stores data in a schema-on-write
manner. This means that if you want to insert data into a relational database, you have
to make sure the data complies to the structure of the table being written to. Figure 1-4
illustrates schema-on-write.

For instance, a table with the columns OrderID, OrderCustomer, and
“OrderAmount” dictates that data you are inserting into that table will also need to
contain those same columns. This means that when you want to write a new row in this
table, you will have to define an OrderID, OrderCustomer, and OrderAmount for the
insert to be successful. There is no room for adding additional columns on the fly, and in
many cases, the data you are inserting needs to be the same datatype as specified in the
table (for inside integers for numbers and strings for text).
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| e | orsecimore | osenon | Analytics

Write Data Analytics

DataWarehouse Apply Schema Analytics

Figure 1-4. Scheme-on-write

Now in many situations the schema-on-write approach is perfectly fine. You make
sure all your data is formatted in the way the relational databases expect it to be, and
you can store all your data inside of it. But what happens when you decide to add new
datasets that do not necessarily have a fixed schema? Or, you want to process data that
is very large (multiple terabytes) in terms of size? In those situations, it is frequently
advised to look for another technology to store and process your data since a relational
database has difficulties handling data with those characteristics.

Solutions like Hadoop and HDFS were created to solve some of the limitations
around relational databases. Big Data platforms are able to process large volumes of data
in a distributed manner by spreading the data across different machines (called nodes)
that make up a cluster architecture. Using a technology like Hadoop, or as we will use in
this book Spark, allows you to store and process data in any format. This means we can
store huge CSV (comma-separated values) files, video files, Word documents, PDFs, or
whatever we please without having to worry about complying to a predefined schema
like we’'d have to when storing data inside a relational database.

Apache’s Spark technology makes sure our data is cut up into smaller blocks and
stored on the filesystem of the nodes that make up a Spark cluster. We only have to worry
about the schema when we are going to read in and process the data, something that
is called schema-on-read. When we load in our CSV file to check its contents, we have
to define what type of data it is and, in the case of a CSV file, what the columns are of
the data. Specifying these details on read allows us a lot of flexibility when dealing with
this data, since we can add or remove columns or transform datatypes without having
to worry about a schema before we write the data back again. Because a technology
like Spark has a distributed architecture, we can perform all these data manipulation
and querying steps very quickly on large datasets, something we are explaining in more
detail in Chapter 2.

What you see in the real world is that in many situations organizations have both
relational databases and a Hadoop/Spark cluster to store and process their data. These
solutions are implemented separately from each other and, in many cases, do not “talk”

8
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to each other. Is the data relational? Store it in the database! Is it nonrelational like CSV,
IoT data, or other formats? Throw it on the Hadoop/Spark cluster! One reason why we
are so excited over the release of SQL Server Big Data Clusters is that it combines both
these solutions into a single product, a product that contains both the capabilities of a
Spark cluster together with SQL Server. And while you still must choose whether you
are going to store something directly in the SQL Server database or store it on the HDFS
filesystem, you can always access it from both technologies! Want to combine relational
data with a CSV file that is stored on HDFS? No problem, using data virtualization we
described earlier in this chapter, you can read the contents from the CSV file from HDFS
and merge it with your relational data using a T-SQL query producing a single result!

In this sense, SQL Server Big Data Clusters are made up from technologies that
complement each other very well, allowing you to bridge the gap on how limited you
are in processing data based on the manner in which it is stored. Big Data Clusters
ultimately let you create a scalable and flexible data lake environment in which you
can store and process data in any format, shape, or size, even allowing you to choose
between processing the data using SQL Server or Spark, whichever you prefer for the
tasks you want to perform.

The Big Data Cluster architecture will also be able to optimize performance in terms
of data analytics. Having all data you require stored inside a single cluster, whether it is
relational or not, means that you can access it immediately whenever you require it. You
avoid data movement across different systems or networks, which is a huge advantage in
aworld where we are constantly trying to find solutions to analyze data faster and faster.

If you ask us what the ultimate advantage of SQL Server Big Data Clusters is, we
firmly believe it is the ability to store, process, and analyze data in any shape, size, or type
inside a single solution.

Centralized Al Platform

As we described in the preceding section, SQL Server Big Data Clusters allow you to
create a data lake environment that can handle all types and formats of data. Next to
having huge advantages when processing, it naturally also has immense advantages
when dealing with advanced analytics like machine learning. Since all your data is
essentially stored in one place, you can perform tasks like machine learning model
training on all the data that is available on the Big Data Cluster, instead of having to
gather data from multiple systems across your organization.
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By combining SQL Server and Spark, we also have multiple options available when
working with machine learning. We can choose to train and score machine learning
models through Spark directly by accessing data that is stored on the HDFS filesystem, or
use the In-Database Machine Learning Services available to us through SQL Server. Both
these options allow a wide variety in languages and libraries you, or your data science
team, can use, for instance, R, Python, and Java for SQL Server Machine Learning
Services, or PySpark and Scala when running your machine learning workload through
the Spark cluster.

In terms of use cases, Big Data Clusters can handle just about any machine learning
process, from handling real-time scoring to using GPUs in combination with TensorFlow
to optimize the handling of CPU-intensive workloads or, for instance, perform image
classification tasks.
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CHAPTER 2

Big Data Cluster
Architecture

SQL Server Big Data Clusters are made up from a variety of technologies all working together
to create a centralized, distributed data environment. In this chapter, we are going to look at
the various technologies that make up Big Data Clusters through two different views.

First, we are evaluating the more-or-less physical architecture of Big Data Clusters.
We are going to explore the use of containers, the Linux operating system, Spark, and the
HDFS storage subsystem that make up the storage layer of Big Data Clusters.

In the second part of this chapter, we are going to look at the logical architecture
which is made up of four different logical areas. These areas combine several
technologies to provide a specific function, or role(s), inside the Big Data Cluster.

Physical Big Data Cluster Infrastructure

The physical infrastructure of Big Data Clusters is made up from containers on which
you deploy the major software components. These major components are SQL Server on
Linux, Apache Spark, and the HDEFS filesystem. The following is an introduction to these
infrastructure elements, beginning with containers and moving through the others to
provide you with the big picture of how the components fit together.

Containers

A container is a kind of stand-alone package that contains everything you need to run an
application in an isolated or sandbox environment. Containers are frequently compared
to virtual machines (VMs) because of the virtualization layers that are present in both
solutions. However, containers provide far more flexibility than virtual machines. A
notable area of increased flexibility is the area of portability.
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One of the main advantages of using containers is that they avoid the
implementation of an operating system inside the container. Virtual machines require
the installation of their own operating system inside each virtual machine, whereas with
containers, the operating system of the host on which the containers are being run is
used by each container (through isolated processes). Tools like Docker enable multiple
operating systems on a single host machine by running a virtual machine that becomes
the host for your containers, allowing you to run a Linux container on Windows, for
example.

You can immediately see an advantage here: when running several virtual machines,
you also have an additional workload of maintaining the operating system on each
virtual machine with patches, configuring it, and making sure everything is running
the way it is supposed to be. With containers, you do not have those additional levels
of management. Instead, you maintain one copy of the operating system that is shared
among all containers.

Another advantage for containers over virtual machines is that containers can be
defined as a form of “infrastructure-as-code.” This means you can script out the entire
creation of a container inside a build file or image. This means that when you deploy
multiple containers with the same image or build file, they are 100% identical. Ensuring
100% identical deployment is something that can be very challenging when using virtual
machines, but is easily done using containers.

Figure 2-1 shows some differences between containers and virtual machines around
resource allocation and isolation. You can see how containers reduce the need for
multiple guest operating systems.

Physical Computer Physical Computer

a

Python Python Python

Python

Binaries Binaries

Binaries Binaries Binaries

Host Operating System Host Operating System
| Infrastructure | Infrastructure

Figure 2-1. Virtual machine vs. containers
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A final advantage of containers we would like to mention (there are many more to
name, however, that would go beyond the scope of this book) is that containers can
be deployed as “stateless” applications. Essentially this means that containers won't
change, and they do not store data inside themselves.

Consider, for instance, a situation in which you have a number of application
services deployed using containers. In this situation, each of the containers would run
the application in the exact same manner and state as the other containers in your
infrastructure. When one container crashes, it is easy to deploy a new container with
the same build file filling in the role of the crashed container, since no data inside the
containers is stored or changed for the time they are running.

The storage of your application data could be handled by other roles in your
infrastructure, for instance, a SQL Server that holds the data that is being processed by
your application containers, or, as a different example, a file share that stores the data
that is being used by the applications inside your containers. Also, when you have a
new software build available for your application servers, you can easily create a new
container image or build file, map that image or build file to your application containers,
and switch between build versions practically on the fly.

SQL Server Big Data Clusters are deployed using containers to create a scalable,
consistent, and elastic environment for all the various roles and functions that are
available in Big Data Clusters. Microsoft has chosen to deploy all the containers using
Kubernetes. Kubernetes is an additional layer in the container infrastructure that acts
like an orchestrator. By using Kubernetes (or K8s as it is often called), you get several
advantages when dealing with containers. For instance, Kubernetes can automatically
deploy new containers whenever it is required from a performance perspective, or
deploy new containers whenever others fail.

Because Big Data Clusters are built on top of Kubernetes, you have some flexibility in
where you deploy Big Data Clusters. Azure has the ability to use a managed Kubernetes
Service (AKS) where you can also choose to deploy Big Data Clusters if you so want to.
Other, on-premises options are Docker or Minikube as container orchestrators. We will
take a more in-depth look at the deployment of Big Data Clusters inside AKS, Docker, or
Minikube in Chapter 3.

Using Kubernetes also introduces a couple of specific terms that we will be using
throughout this book. We've already discussed the idea and definition of containers.
However, Kubernetes (and also Big Data Clusters) also frequently uses another term

13
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called “pods.” Kubernetes does not run containers directly; instead it wraps a container
in a structure called a pod. A pod combines one or multiple containers, storage
resources, networking configurations, and a specific configuration governing how the
container should run inside the pod.

Figure 2-2 shows a simple representation of the node - pods - container architecture
inside Kubernetes.

A

el !
Node Node Node
Pod Pod

Pod
Container

Container

Container Container

Figure 2-2. Representation of containers, pods, and nodes in Kubernetes

Generally, pods are used in two manners: a single container per pod or multiple
containers inside a single pod. The latter is used when you have multiple containers
that need to work together in one way or the other - for instance, when distributing a
load across various containers. Pods are also the resource managed to allocate more
system resources to containers. For example, to increase the available memory for your
containers, a change in the pod’s configuration will result in access to the added memory
for all containers inside the pod. On that note, you are mostly managing and scaling
pods instead of containers inside a Kubernetes cluster.

Pods run on Kubernetes nodes. A node is the smallest unit of computing hardware
inside the Kubernetes cluster. Most of the time, a node is a single physical or virtual
machine on which the Kubernetes cluster software is installed, but in theory every
machine/device with a CPU and memory can be a Kubernetes node. Because these
machines only function as hosts of Kubernetes pods, they can easily be replaced, added,
or removed from the Kubernetes architecture, making the underlying physical (or

virtual) machine infrastructure very flexible.
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SQL Server on Linux

In March 2016, Microsoft announced that the next edition of SQL Server, which turned
out to be SQL Server 2017, would be available not only on Windows operating systems
but on Linux as well - something that seemed impossible for as long as Microsoft has
been building software suddenly became a reality and, needless to say, the entire IT
world freaked out.

In hindsight, Microsoft had perfect timing in announcing the strategic decision to
make one of its flagship products available on Linux. The incredible adaptation of new
technologies concerning containers, which we discussed in the previous section, was
mostly based on Linux distributions. We believe that without the capability’s containers,
and thus the Linux operating system those containers provide, there would never have
been a SQL Server Big Data Cluster product.

Thankfully Microsoft pushed through on their adoption of Linux, and with the
latest SQL Server 2019 release, many of the issues that plagued the SQL Server 2017
release on Linux are now resolved and many capabilities that were possible on the
Windows version have been brought to Linux as well.

So how did Microsoft manage to run an application designed for the Windows
operating system on Linux? Did they rewrite all the code inside SQL Server to make it
run on Linux? As it turns out, things are far more complicated than a rewrite of the code
base to make it Linux compatible.

To make SQL Server run on Linux, Microsoft introduced a concept called a Platform
Abstraction Layer (or PAL for short). The idea of a PAL is to separate the code needed to
run, in this case, SQL Server from the code needed to interact with the operating system.
Because SQL Server has never run on anything other than Windows, SQL Server is full
of operating system references inside its code. This would mean that getting SQL Server
to run on Linux would end up taking enormous amounts of time because of all the
operating system dependencies.
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The SQL Server team looked for different approaches to resolve this issue of
operating system dependencies and found their answer in a Microsoft research project
called Drawbridge. The definition of Drawbridge can be found on its project page at
www.microsoft.com/en-us/research/project/drawbridge/ and states:

Drawbridge is a research prototype of a new form of virtualization for
application sandboxing. Drawbridge combines two core technologies:
First, a picoprocess, which is a process-based isolation container with a
minimal kernel API surface. Second, a library OS, which is a version of
Windows enlightened to run efficiently within a picoprocess.

The main part that attracted the SQL Server team to the Drawbridge project was the
library OS technology. This new technology could handle a very wide variety of Windows
operating system calls and translate them to the operating system of the host, which in
this case is Linux.

Now, the SQL Server team did not adapt the Drawbridge technology one-on-one as
there were some challenges involved with the research project. One of the challenges
was that the research project was officially completed which means that there was no
support on the project. Another challenge was a large overlap of technologies inside
the SQL Server OS (SOS) and Drawbridge. Both solutions, for example, have their own
functionalities to handle memory management and threading/scheduling.

What eventually was decided was to merge the SQL Server OS and Drawbridge
into a new platform layer called the SQLPAL (SQL Platform Abstraction Layer). Using
SQLPAL, the SQL Server team can develop code as they have always done and leave the
translation of operating system calls to the SQLPAL. Figure 2-3 shows the interaction
between the various layers while running SQL Server on Linux.
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Figure 2-3. Interaction between the various layers of SQL Server on Linux

There is a lot more information available on various Microsoft blogs that cover
more of the functionality and the design choices of the SQLPAL. If you want to know
more about the SQLPAL, or how it came to life, we would recommend the article “SQL
Server on Linux: How? Introduction” available at https://cloudblogs.microsoft.com/
sqlserver/2016/12/16/sql-server-on-linux-how-introduction/.
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Next to the use of containers, SQL Server 2019 on Linux is at the heart of the Big Data
Cluster product. Almost everything that happens inside the Big Data Cluster in terms of
data access, manipulation, and the distribution of queries occurs through SQL Server on
Linux instances which are running inside containers.

When deploying a Big Data Cluster, the deployment script will take care of the full
SQL Server on Linux installation inside the containers. This means there is no need to
manually install SQL Server on Linux, or even to keep everything updated. All of this is
handled by the Big Data Cluster deployment and management tools.

Spark

With the capability to run SQL Server on Linux, a load of new possibilities became
available regarding the integration of SQL Server with various open source and Linux-
based products and technologies. One of the most exciting combinations that became a
reality inside SQL Server Big Data Clusters is the inclusion of Apache Spark.

SQL Server is a platform for relational databases. While technologies like PolyBase
enable the reading of nonrelational data (or relational data from another relational
platform like Oracle or Teradata) into the relational format SQL Server requires, in its
heart SQL Server never dealt much with unstructured or nonrelational data. Spark is a
game changer in this regard.

The inclusion of Spark inside the product means you can now easily process and
analyze enormous amounts of data of various types inside your SQL Server Big Data
Cluster using either Spark or SQL Server, depending on your preferences. This ability
to process large volumes of data allows for maximum flexibility and makes parallel and
distributed processing of datasets a reality.

Apache Spark was created at the University of Berkeley in 2009 mostly as an answer
to the limitations of a technology called MapReduce. The MapReduce programming
model was developed by Google and was the underlying technology used to index all
the web pages on the Internet (and might be familiar to you in the Hadoop MapReduce
form). MapReduce is best described as a framework for the parallel processing of huge
datasets using a (large) number of computers known as nodes. This parallel processing
across multiple nodes is important since datasets reached such sizes that they could
no longer efficiently be processed by single machines. By spreading the work, and data,
across multiple machines, parallelism could be achieved which results in the faster
processing of those big datasets.
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Running a query on a MapReduce framework usually results in going through four
steps of execution:

1. Input splits

The input to a MapReduce job is split into logical distribution of
the data stored in file blocks. The MapReduce job calculates which
records fit inside a logical block, or “splits,” and decides on the
number of mappers that are required to process the job.

2. Mapping

During mapping our query is being performed on each of the
“splits” separately and produces the output for the specific query
on the specific split. The output is always a form of key/value pairs
that are returned by the mapping process.

3. Shuffling

The shuffling process is, simply said, the process of sorting and
consolidating the data that was returned by the mapping process.

4. Reducing

The final step, reducing, aggregates the results returned by the
shuffling process and returns a single output.

The best way to explain the MapReduce process is by looking at a visual example.
Figure 2-4 shows an example of a MapReduce task that calculates word occurrences
inside a dataset. To keep things simple and visually easy to display, we use a simple,
short sentence that acts as a dataset: “SQL Server is no longer just SQL but it is much

more.”
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Figure 2-4. MapReduce example job

What happens in the example is that the dataset that contains the input for our job
(the sentence “SQL Server is no longer just SQL but is also much more”) is split up into
three different splits. These splits are processed in the mapping phase, resulting in the
word counts for each split. The results are sent to the shuffling step which places all
the results in order. Finally, the reduce step calculates the total occurrences for each
individual word and returns it as the final output.

As you can see from the (simple) example in Figure 2-4, MapReduce is very efficient
in distributing and coordinating the processing of data across a parallel environment.
However, the MapReduce framework also had a number of drawbacks, the most notable
being the difficulty of writing large programs that require multiple passes over the data
(for instance, machine learning algorithms). For each pass over a dataset, a separate
MapReduce job had to be written, each one loading the data it required from scratch
again. Because of this, and the way MapReduce accesses data, processing data inside the
MapReduce framework can be rather slow.

Spark was created to address these problems and make big data analytics more
flexible and better performing. It does so by implementing in-memory technologies that
allow sharing of data between processing steps and by allowing ad hoc data processing
instead of having to write complex MapReduce jobs to process data. Also, Spark supports
a wide variety of libraries that can enhance or expand the capabilities of Spark, like
processing streaming data or performing machine learning tasks, and even query data
through the SQL language.
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Spark looks and acts a lot like the MapReduce framework in that Spark is also a
coordinator, and manager, of tasks that process data. Just like MapReduce, Spark uses
workers to perform the actual processing of data. These workers get told what to do
through a so-called Spark application which is defined as a driver process. The driver
process is essentially the heart of a Spark application, and it keeps track of the state
of your Spark application, responds to input or output, and schedules and distributes
work to the workers. One advantage of the driver process is that it can be “driven” from
different programming languages, like Python or R, through language APIs. Spark
handles the translation of the commands in the various languages to Spark code that
gets processed on the workers.

Figure 2-5 shows an overview of the logical Spark architecture.
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Figure 2-5. Spark logical architecture
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There is a reason why we specifically mentioned the word “logical” in connection
with Spark’s architecture. Even though Figure 2-5 implies that worker nodes are
separate machines that are part of a cluster, it is in fact possible in Spark to run as
many worker nodes on a machine as you please. As a matter of fact, both the driver
process and worker nodes can be run on a single machine in local mode for testing and
development tasks.

Figure 2-5 also shows how a Spark application coordinates work across the cluster.
The code you write as a user is translated by the driver process to a language your worker
nodes understand; it distributes the work to the various worker nodes which handle
the data processing. In the illustration, we specifically highlighted the cache inside
the worker node. The cache is one part of why Spark is so efficient in performing data
processing since it can store intermediate processing results in the memory of the node,
instead of on disk like, for example, Hadoop MapReduce.

Inside SQL Server Big Data Clusters, Spark is included inside a separate container
that shares a pod together with a SQL Server on Linux container.

One thing we haven’t touched upon yet is the way nonrelational data outside SQL
Server is stored inside Big Data Clusters. If you are familiar with Spark- or Hadoop-based
big data infrastructure, the next section should not come as a surprise.

HDFS

HDFS, or the Hadoop Distributed File System, is the primary method of storing data
inside a Spark architecture. HDFS has many advantages in how it stores and processes
data stored on the filesystem, like fault tolerance and distribution of data across multiple
nodes that make up the HDFS cluster.

The way HDFS works is it breaks up the data in separate blocks (called chunks) and
distributes them across the nodes that make up the HDFS environment when data is
stored inside the filesystem. The chunks, with a default size of 64 MB, are then replicated
across multiple nodes to enable fault tolerance. If one node fails, copies of data chunks
are also available on other nodes, which means the filesystem can easily recover from
data loss on single nodes.

Figure 2-6 shows a simplified overview of the HDFS architecture.
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Figure 2-6. HDFS architecture

In many aspects, HDFS mirrors the architecture of Hadoop and, in that sense, of
Spark as we have shown in the previous section. Because of the distributed nature of data
stored inside the filesystem, it is possible, and in fact expected, that data is distributed
across the nodes that also handle the data processing inside the Spark architecture. This
distribution of data brings a tremendous advantage in performance; since data resides
on the same node that is responsible for the processing of that data, it is unnecessary to
move data across a storage architecture. With the added benefit of data caching inside of
the Spark worker nodes, data can be processed very efficiently indeed.

One thing that requires pointing out is that unlike with Hadoop, Spark is not
necessarily restricted to data residing in HDFS. Spark can access data that is stored in
a variety of sources through APIs and native support. Examples include various cloud
storage platforms like Azure Blob Storage or relational sources like SQL Server.

Tying the Physical Infrastructure Parts Together

Now it’s time to look at the big picture. Figure 2-7 shows a complete overview of how
the technologies discussed in the previous sections work together inside SQL Server Big
Data Clusters.
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Figure 2-7. SQL Server Big Data Cluster architecture with Spark, HDFS, and
Kubernetes

As you can see from Figure 2-7, SQL Server Big Data Clusters combine a number of
different roles inside the containers that are deployed by Kubernetes. Placing both SQL
Server and Spark together in a container with the HDFS Data Node allows both products
to access data that is stored inside HDES in a performance-optimized manner. In SQL
Server this data access will occur through PolyBase, while Spark can natively query data
residing in HDFS.

The architecture in Figure 2-7 also gives us two distinct different paths in how we
can process and query our data. We can decide on storing data inside a relational format
using the SQL Server instances available to us, or we can use the HDFS filesystem and
store (nonrelational) data in it. When the data is stored in HDFS, we can access and
process that data in whichever manner we prefer. If your users are more familiar with
writing T-SQL queries to retrieve data, you can use PolyBase to bring the HDFS-stored
data inside SQL Server using an external table. On the other hand, if users prefer to use
Spark, they can write Spark applications that access the data directly from HDFS. Then
if needed, users can invoke a Spark API to combine relational data stored in SQL Server
with the nonrelational data stored in HDFS.
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Logical Big Data Cluster Architecture

As mentioned in the introduction of this chapter, Big Data Clusters can be divided into
four logical areas. Consider these areas as a collection of various infrastructure and
management parts that perform a specific function inside the cluster. Each of the areas
in turn has one or more roles it performs. For instance, inside the Data Pool area, there
are two roles: the Storage Pool and the SQL Data Pool.

Figure 2-8 shows an overview of the four logical areas and the various roles that are
part of each area.
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Figure 2-8. Big Data Cluster architecture

You can immediately infer the four logical areas: the Control area (which internally
is named the Control Plane) and the Compute, Data, and App areas. In the following
sections, we are going to dive into each of these logical areas individually and describe
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their function and what roles are being performed in it. Before we start taking a closer
look at the Control Plane, you might have noticed there is an additional role displayed in
Figure 2-8, the SQL Server Master Instance.

The SQL Server master instance is a SQL Server on Linux deployment inside a
Kubernetes node. The SQL Server master instance acts like an entry point toward your
Big Data Cluster and provides the external endpoint to connect to through Azure Data
Studio (ADS) (see Figure 2-9) or from other tools like SQL Server Management Studio.
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Figure 2-9. Connection to the SQL Server master instance through Azure Data
Studio

In many ways the SQL Server master instance acts like a normal SQL Server instance.

You can access it and browse through the instance using Azure Data Studio and query
the system and user databases that are stored inside of it. One of the big changes
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compared to a traditional SQL Server instance is that the SQL Server master instance
will distribute your queries across all SQL Server nodes inside the Compute Pool(s) and
access data that is stored, through PolyBase, on HDEFS inside the Data Plane.

By default, the SQL Server master instance also has Machine Learning Services
enabled. This allows you to run in-database analytics using R, Python, or Java straight
from your queries. Using the data virtualization options provided in SQL Server Big
Data Cluster, Machine Learning Services can also access nonrelational data that is
stored inside the HDFS filesystem. This means that your data analysists or scientists
can choose to use either Spark or SQL Server Machine Learning Services to analyze, or
operationalize, the data that is stored in the Big Data Cluster. We are going to explore
these options in a more detailed manner in Chapter 7.

Control Plane

The Control Plane shown in Figure 2-10 is your entry into the Big Data Cluster
management environment. It provides various management and log tools like Grafana
and is the centralized place where you perform all your Big Data Cluster management.
Also, security inside the Big Data Cluster is managed and controlled through the Control
Plane.

r-—-- - - - - - - - - - - - - - - — — — — /"

Control Plane

Node

Cluster Admin Portal

| Node: Kubernetes Master

Knox Gateway

Figure 2-10. Big Data Cluster Control Plane

In terms of managing Big Data Clusters, we are going to discuss the various
management tools we can use to manage Big Data Clusters in Chapter 3.

Next to providing a centralized location where you can perform all your Big Data
Cluster management tasks, the Control Plane also plays a very important part in the
coordination of tasks to the underlying Compute and Data areas. The access to the
Control Plane is available through the controller endpoint.

27



CHAPTER 2 BIG DATA CLUSTER ARCHITECTURE

The controller endpoint is used for the Big Data Cluster management in terms of
deployment and configuration of the cluster. The endpoint is accessed through REST
APIs, and some services inside the Big Data Cluster, as well as the command-line tool we
use to deploy and configure our Big Data Cluster, access those APIs.

You are going to get very familiar with the controller endpoint in the next chapter, in
which we will deploy and configure a Big Data Cluster using azdata.

Compute Area

The Compute area (see Figure 2-11) is made up from one or more Compute Pools. A
Compute Pool is a collection Kubernetes Pods which contain SQL Server on Linux. Using

a Compute Pool, you can access various data sources through PolyBase in a distributed
manner. For instance, a Compute Pool can access data stored inside HDFS on the Big Data
Cluster itself or access data through any of the PolyBase connectors like Oracle or MongoDB.

r
Compute Pool
1 1

Pod Pod Pod Pod
; FsaL |

1
" I
Coordinator _ | | o o e e - = = 4

Figure 2-11. Big Data Cluster Compute area

The main advantage of having a Compute Pool is that it opens up options to
distribute, or scale out, queries across multiple nodes inside each Compute Pool,
boosting the performance of PolyBase queries.

By default, you will have access to a single Compute Pool inside the Compute logical
area. You can, however, add multiple Compute Pools in situations where, for instance,
you want to dedicate resources to access a specific data source. All management and
configuration of each Kubernetes Pod inside the Compute Pool is handled by the SQL
Server Master Instance.

Data Area

The Data area (Figure 2-12) is used to persist and cache data inside your Big Data
Cluster, and it is split into two different roles, the Storage Pool and the SQL Data Pool,
which both have different functionalities inside the Big Data Cluster.
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SQL Data Pool Storage Pool

SQl Node SQL Node SQL Server SQL Server | SQL Server
@ @ HDFS Data Node HDFS Data Node HDFS Data Node
Storage . . Storage Kubernetes Pod

Figure 2-12. Data Plane architecture

Storage Pool

The Storage Pool consists of Kubernetes Pods that combine Spark, SQL Server on Linux,
and a HDFS Data Node. Figure 2-13 illustrates the pod contents.

The HDFS Data Nodes are combined into a single HDEFS cluster that is present inside
your Big Data Cluster. The main function of the Storage Pool is to provide a HDFS storage
cluster to store data on what is ingested through, for instance, Spark. By creating a HDFS
cluster, you basically have access to a data lake inside the Big Data Cluster where you can
store a wide variety of nonrelational data, like Parquet or CSV files.

Kubernetes Pod

SQL Server

Container

HDFS Data Node

Figure 2-13. Storage Node inside the Storage Pool

The HDFS cluster automatically arranges data persistence since the data you import
into the Storage Pool is automatically spread across all the Storage Nodes inside the
Storage Pool. This spreading of data across nodes also allows you to quickly analyze
large volumes of data, since the load of analysis is spread across the multiple nodes. One
advantage of this architecture is that you can either use the local storage present in the
Data Node or add your own persistent storage subsystem to the nodes.
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Just like the Compute Pool, the SQL Server instances that are present in the Storage
Node are accessed through the SQL Server master instance. Because the Storage Node
combines SQL Server and Spark, all data residing on or managed by the Storage Nodes
can also be directly accessed through Spark. That means you do not have to use PolyBase
to access the data inside the HDFS environment. This allows more flexibility in terms of
data analysis or data engineering.

SQL Data Pool

Another area of the Data Plane is the SQL Data Pool. This collection of pods is different
compared to the Storage Pool in that it doesn’t combine Spark or HDFS together into
the node. Instead, the SQL Data Pool consists of one, or multiple, SQL Server on Linux
instances. These instances are termed as shards, and you can see them illustrated in
Figure 2-14.

The main role of the SQL Data Pool is to optimize access to external sources using
PolyBase. The SQL Data Pool can than partition and cache data from those external
sources inside the SQL Server instances and ultimately provide parallel and distributed
queries against the external data sources. To provide this parallel and distributed
functionality, datasets inside the SQL Data Pool are divided into shards across the nodes
inside the SQL Data Pool.
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SQL Server

Scale-out Data Pool

TN NEEEEEESEEEES
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PolyBase
Connectors

HDFS Cosmos DB SQL Server

Figure 2-14. Scaling and caching of external data sources inside the SQL Data
Pool

Summary

In this chapter, we've looked at the SQL Server Big Data Cluster architecture in

two manners: physical and logical. In the physical architecture, we focused on the
technologies that make up the Big Data Cluster like containers, SQL-on-Linux and
Spark. In the logical architecture, we discussed the different logical areas inside Big Data
Clusters that each perform a specific role or task inside the cluster.

For each of the technologies used in Big Data Clusters, we gave a brief introduction
in its origins as well as what part the technology plays inside Big Data Clusters. Because
of the wide variety of technologies and solutions used in SQL Server Big Data Clusters,
we tried to be as thorough as possible in describing the various technologies; however,
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we also realize we cannot describe each of these technologies in as much detail as we
would have liked. For instance, just on Spark, there have been dozens of books written
and published describing how it works and how you can leverage the technology. In
the area of SQL-on-Linux, HDFS, and Kubernetes, the situation isn’t much different.
For that reason, it is best to consider this chapter a simple and brief introduction to the
technology or solution, enough to get you started on understanding and using SQL
Server Big Data Clusters.
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Deployment of Big Data
Clusters

Now it is time to install your very own SQL Server 2019 Big Data Cluster! We will be
handling three different scenarios in detail and we will be using a fresh machine for each
of those scenarios:

— Stand-alone PolyBase installation on Windows
— Big Data Cluster using kubeadm on Linux
— Big Data Cluster using Azure Kubernetes Service (AKS)

It is perfectly fine to run all options from the same box. But as it is likely that you will
not be using all of them, we figured it would make sense to start fresh each time.

We will be covering the installation using the Microsoft Windows operating system.
The goal of this guide is to get your Big Data Cluster up and running as quick as possible,
so we will configure some options that may not be best practice (like leaving all the service
accounts and directories on default). Feel free to modify those as it may fit your needs.

If you opt for the AKS installation, you will need an active Azure subscription. If you
do not already have an Azure subscription, you can create one for free which includes
credits which you can spend free of charge.

A Little Helper: Chocolatey

Before we get started, we'd like to point your attention to Chocolatey - or choco. In
case you haven’t heard about it, choco is a free package manager for Windows which
will allow us to install many of our prerequisites with a single line in PowerShell or a
command prompt. You can find more information on http://chocolatey.org (see
Figure 3-1) and you can even create an account and provide your own packages there.
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el E}| B Chocolatey - The packs % | o =N

« O @ | Fitps:ffchocolatey.ong | = L B -

Install About Kickstarter Blog ® Pricing Packages FAQ Docs

Search

The package manager for Windows
Chocolatey - Software Management Automation

The sane way to manage software on

Windows C:\> choco search nodejs --id-starts-
with|

«" Chocolatey builds on technologies you know - ded installation
and PowerShell. Chocolatey works with all existing software installation
technologies like MSI, NSIS, InnoSetup, etc, but also works with runtime
binaries and zip archives. Go Pro/Business to dial that experience up to
!

« Easily manage all aspects of Windows software (installation,

cenfiguration, upgrade, and uninstallation). Chocolatey is the most
reliable when software is included in the package, but can also easily

download resources. =
& Install Chocolatey Now OPEN CHAT
o

Figure 3-1. Home page of Chocolatey

From a simple user perspective though, there is no need to create an account or to
download any installer.

To make choco available on your system, open a PowerShell window in
Administrative mode and run the script shown in Listing 3-1.

Listing 3-1. Install script for Chocolatey in PowerShell

Set-ExecutionPolicy Bypass -Scope Process -Force; [System.Net.Servic
ePointManager]: :SecurityProtocol = [System.Net.ServicePointManager]:
:SecurityProtocol -bor 3072; iex ((New-Object System.Net.WebClient).
DownloadString('https://chocolatey.org/install.ps1'))

Once the respective command has completed, choco is installed and ready to be
used.
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Installation of an On-Premises PolyBase Instance

In case you're only interested in the data virtualization feature of SQL Server 2019 Big
Data Clusters, the installation is actually much easier and lightweight than for a full

environment. The PolyBase feature, which enabled the data virtualization feature, can be

installed during the regular setup routine of SQL Server 2019 on any platform.
If you want to use Teradata through PolyBase, the C++ Redistributable 2012 is
required to actually communicate with our SQL Server instance. Having SQL Server

Management Studio (SSMS) may be helpful in either case and is nice to have it installed

and ready to replay the examples we are showing throughout this book.
Let’s install the packages we mentioned earlier through Chocolatey. Just run the
three commands from Listing 3-2 and choco will take care of the rest.

Listing 3-2. Install script for PolyBase prerequisites

choco install sql-server-management-studio -y
choco install vcredist2012 -y

With our prerequisites installed, we can get to the actual SQL Server installation.
Navigate to waw.microsoft.com/en-us/evalcenter/evaluate-sql-server-2019 and
follow the instructions to download.

Run the downloaded file, as shown in Figure 3-2.

Select “Download Media” as the installation type.
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SQL Server 2019
Evaluation Edition

Select an installation type:

Basic Custom Download Media

SQL Server transmits information about 10 , as well as other usage a ' oft to help improve
t To learn more about data ] rols, and to tum off the c s informati r installation, see the

Figure 3-2. SQL Server 2019 installer - Installation type selection

Then confirm language and directory as shown in Figure 3-3.
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SQL Server 2019
Evaluation Edition

Specify SQL Server installer download

SELECT LANGUAGE
English

WHICH PACKAGE WOULD YOU LIKE TO DOWNLOAD?
® IS0 (1360 MB)
Uncompressed, mountable disk image media

CAB (1409 MB)
essed media, .exe and .box files

SELECT DOWNLOAD LOCATION

C:\Users\book\Downloads

Figure 3-3. SQL Server 2019 installer - Download Media dialog

When the download is complete and successful, you will see the message in

Figure 3-4.
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SQL Server 2019

Evaluation Edition

Download successful!

Figure 3-4. SQL Server 2019 installer - Download Media successful

Now navigate to the folder in which you have placed the download. Mount the image
as shown in Figure 3-5.
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¥+ 2 v Discimage Tooks  Downloads - (m] X
Home Share iew Manage (7]

&« - 4 ¥ » ThisPC » Downloads ~ &  Search Downloads 2
Name Date modified Type Sire
# Quick access .
SO Server2019R.C-xAd-FHILL 9/3/7019 8:20 AM Dise Image File 0KB
Dieskt: - -
B Desktop 3
4 Downloads % Bum dizc image
7| Documents * -Tp >
= Pictures * CRC SHA b3
I This PC [ Edit with Notepad==
3 Scan with Windows Defender...
b Network Open with...
Share with B
Restore previous versions
Send to >
Cut
Copy
Create shorteut
Delete
Rename
Properties
Titern 1 item selected 0 bytes ==

Figure 3-5. SQL Server 2019 installer - mount 1ISO

The installation can be run unattended, but for a first install, it probably makes more
sense to explore your options. Run setup.exe, go to the Installation tab, and pick “New
SQL Server stand-alone installation,” as shown in Figure 3-6.
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™ SQL Server Installation Center - 0 X

Planning % New SQL Server stand-alone installation or add features to an existing installation

Launch a wizard to install SOL Server 2019 in a non-clustered environment or to add

Installation
features to an existing SQL Server 2019 instance.

Maintenance

Install SQL Server Reporting Services
Tools R

Launch a download page that provides a link to install SQL Server Reporting Services.
Resources An internet connection is required to install SSRS.

T W™ Install SQL Server Management Tools

Options % Launch a download page that provides a link to install SQL Server Management
Studio, SQL Server command-line utilities (SQLCMD and BCP), SQL Server PowerShell
provider, SQL Server Profiler and Database Tuning Advisor. An internet connection is
required to install these tools.

lﬁ Install SQL Server Data Tools

Launch a download page that provides a link to install SQL Server Data Tools (SSDT).
S5DT provides Visual Studio integration including project system support for
Microsoft Azure SQL Database, the SQL Server Database Engine, Reporting Services,
Analysis Services and Integration Services. An internet connection is required to install
SSDT.

% New SQL Server failover cluster installation

Launch a wizard to install a single-node SQL Server 2019 failover cluster.
This action is only availabe in the clustered environment.

% ?T Add node to a SOL Server failover cluster

Launch a wizard to add a node to an existing SQL Server 2019 failover cluster.
This action is only availabe in the clustered environment.

Upgrade from a previous version of SQL Server

Launch a wizard to upgrade a previous version of SQL Server to SQL Server 2019,
Click here to first view Upgrade Documentation

Microsoft SQL Server 2019 @

Figure 3-6. SQL Server 2019 installer - main screen

Pick the evaluation edition as shown in Figure 3-7, confirm the License Terms, and
the check the “Check for updates” check box on the subsequent screens.
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T SQL Server 2019 Setup

Product Key

Product Key
License Terms
Global Rules
Microsoft Update
Product Updates
Install Setup Files
Install Rules

Feature Selection
Feature Rules
Feature Configuration Rules
Ready to Install
Installation Progress
Complete

Specify the edition of SQL Server 2019 to install.

Validate this instance of SQL Server 2019 by entering the 25-character key from the Microsoft certificate
of authenticity or product packaging. You can also specify a free edition of SQL Server: Developer,
Evaluation, or Express. Evaluation has the largest set of SQL Server features, as documented in SQL Server
Books Online, and is activated with a 180-day expiration. Developer edition does not have an expiration,
has the same set of features found in Evaluation, but is licensed for non-production database application

development only. To upgrade from one installed edition to another, run the Edition Upgrade Wizard.
(@ Specify a free edition:

Evaluation ~
O Enter the product key:

Figure 3-7. SQL Server 2019 installer - edition selection

Setup rules identify potential problems that might occur while running the Setup.

Failures and warnings as shown in Figure 3-8 must be corrected before the Setup can be

completed.
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T SQL Server 2019 Setup - O X
Install Rules
Setup rules identify potential problems that might accur while running Setup. Failures must be corrected before Setup
can continue.
Product Key Operation completed. Passed: 3. Failed 0. Warning 1. Skipped 0.
Global Rules
Microscft Update Hide details << Re-run
Product Updates View detailed report
Install Setup Files
Install Rules Result Rule Status
Feature Selection @ Consistency validation for SQL Server registry keys Passed
Feature Rules (] Computer domain controller Passed
Feature Configuration Rules A Windows Firewall . Warning
Ready to Install &  |50QL 2019 minimum CTP for Upgrade and Side by Side Support | Passed

Installation Progress
Complete

< Back Next > Cancel

Figure 3-8. SQL Server 2019 installer - Install Rules

From the feature selection dialog shown in Figure 3-9, tick the “PolyBase Query
Service for External Data.” Also tick its child node “Java connector for HDFS data

sources.
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= erver u —
SQL S 2019 Setup a X
Feature Selection
Select the Evaluation features to install.
Product Key o . K 5 n
" " s i
Dicense Terms Looking for Reporting Services whl it from the w
Global Rules Features: Feature description:
Sl [ tonce Feotures | T e |
Product Updates [] Database Engine Services instance feature of a SQL Server instance is
Install Setup Files [[] sQL Server Replication isolated from other SQL Server instances. SQL
Install Rules [J Machine Learning Services and Language || S€TVer instances can operate side-by-side on
z rerequisites for selected features:
Feature Selection ggﬁhun P isites for selected f
Feature Rules O Java Already installed:
Instance Configuration [ Full-Text and Semantic Extractions for Sez " Windows PowerShell 3.0 or higher
PolyBase Configuration ity-Gere Tf’ b‘_'“m““‘ from media: "
Java Install Locatio [4] PolyBase Query Service for External Data Microsoft Visual C++ 2017 Redistributable
e P [A Java connector for HDFS data sources Disk Space Requirements
Server Configuration i
Database Engine Confi Shared Features Dri\fe C: 10391 MB required, 116724 MB
Feature Configuration Rules [ Machine Learning Server (Standalone) o || 2vailable
Ready to Install £ 2
Installation Progress 1 1
Pt SelectAll || Unselect All

Complete

Instance root directory: |[C:\Prograrn Files\Microsoft SQL Server\ l

Shared feature directory: I[C:\Prograrn Files\Microsoft SQL Server\ l

r
I

Shared feature directory (x86): |C:\Prngrarn Files (x86)\Microsoft SQL Server\ | .

< Back Next > Cancel

Figure 3-9. SQL Server 2019 installer - Feature Selection

Using Instance Configuration specify the name and Instance ID for the Instance SQL
Server. The Instance ID as shown in Figure 3-10 becomes part of the installation path.
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8 SQL Server 2019 Setup

Instance Configuration

Product Key

License Terms

Global Rules

Microsoft Update

Product Updates

Install Setup Files

Install Rules

Feature Selection

Feature Rules

Instance Configuration
PolyBase Configuration
Java Install Location

Server Configuration
Database Engine Configuration
Feature Configuration Rules
Ready to Install

Installation Progress
Complete

- a X
Specify the name and instance ID for the instance of SQL Server. Instance ID becomes part of the installation path.

(®) Default instance

O Named instance:  MSSOLSERVER

Instance ID: MSSQLSERVER

SQL Server directory:  C:\Program Files\Microsoft SQL Server\MSSQL15.MSSQLSERVER

Installed instances:

Instance Name Instance ID Features Edition Version
<Back || Next> Cancel

Figure 3-10. SQL Server 2019 installer - Instance Configuration

From the dialog in Figure 3-11, choose to configure a stand-alone PolyBase-enabled

instance.
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8 SQL Server 2019 Setup - o X

PolyBase Configuration

Specify PolyBase scale-out option and port range.

Product Key ® Use this SOL Server as standalone PolyBase-enabled instance.

= Choose this option to use this SQL Server instance as a standalone Head node.

Global Rules

Microsoft Update O Use this SQL Server as a part of PolyBase scale-out group.

Product Updates Choose this option to use this SQL Server instance as a Compute node in a PolyBase Scale-out

Install Setup Files group. To ensure that your PolyBase scale-out group can be configured after installation, make sure
that the head node is on enterprise license of SQL Server 2019, Selecting this option will open

Install Rules Firewall on this machine to allow incoming connections to SQL Server Database Engine, SQL Server

Feature Selection PolyBase services and SQL Browser. Selecting this option will also enable MSDTC firewall

Featiire Rules connections and modify MSDTC registry settings.

Instance Configuration Specify a port range for PolyBase services (6 or more ports):

e fresoroie |

Java Install Location
Server Configuration
Database Engine C

Feature Configuration Rules
Ready to Install

Installation Progress
Complete

< Back MNext > Cancel

Figure 3-11. SQL Server 2019 installer - PolyBase Configuration

As you can see in Figure 3-12, the PolyBase HDFS connector requires Java; you will
be prompted to either install Open JRE with SQL Server or provide the location of an
existing Java installation on your machine, if there is any.
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T SQL Server 2019 Setup - a

Java Install Location

Specify Java installed location

Product Key Some selected features require a local installation of a JDK or JRE. Zulu Open JRE version 11.0.3 is

License Terms included with this installation, or you can download and install a different JOK or JRE and provide that
installed location here.

Global Rules

Microsoft Update

Product Updates IFm infom«;tim?on Azul Zulu OpenJDK third party licensing, see https://go.microsoft.com/fwlink/?
inkid=2097167.

Install Setup Files

Install Rules

e @ Install Open JRE 11.0.3 included with this installation

ure ion

Feature Rulec (O Provide the location of a different version that has been installed on this computer

Instance Configuration JDK or JRE installed location: Browse

PolyBase Configuration

Java Install Location

Server Configuration

Database Engine Config

Feature Configuration Rules

Ready to Install

Installation Progress
Complete

< Back Next > Cancel

Figure 3-12. SQL Server 2019 installer - Java Install Location

Then confirm the default accounts as shown in Figure 3-13.

46



CHAPTER 3  DEPLOYMENT OF BIG DATA CLUSTERS

T SQL Server 2019 Setup

Server Configuration

Product Key

License Terms

Global Rules

Microsoft Update
Product Updates

Install Setup Files

Install Rules

Feature Selection
Feature Rules

Instance Configuration
PolyBase Configuration
Java Install Location
Server Configuration
Database Engine Config

Feature Configuration Rules
Ready to Install

Installation Progress
Complete

Specify the service accounts and collation configuration.

- ]
Service Accounts  Collation
Microsoft recommends that you use a separate account for each SQL Server service.
Service Account Name Password Startup Type

NT Service\SQLSERVERA... Manual o
SQL Server Database Engine | NT Service\MSSQLSERVER Automatic v
SQL Server PolyBase Engine | NT AUTHORITYANETW... Automatic v
SQL Server PolyBase Data Movem... | NT AUTHORITY\NETW... Automatic
SOL Server Browser NT AUTHORITV\LOCAL ... Disabled v

[[] Grant Perform Volume Maintenance Task privilege to SQL Server Database Engine Service

This privilege enables instant file initialization by avoiding zeroing of data pages. This may lead
to information disclosure by allowing deleted content to be accessed.

lick here for detail

< Back Next > Cancel

Figure 3-13. SQL Server 2019 installer - Server Configuration

Stick with Windows authentication and add your current user as shown in Figure 3-14.
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T SQL Server 2019 Setup - a X
Database Engine Configuration
Specify Database Engine authentication security mode, administrators, data directories, TempDB, Max degree of
parallelism, M y limits, and Fil settings.
Product Key Server Configuration Data Directories TempDB MaxDOP Memory FILESTREAM
License Terms ) o o )
Global Rules Specify the authentication mode and administrators for the Database Engine.
Microsoft Update Authentication Mode
Product Updates (® Windows authentication mode
Install Setup Files - e = —
(O Mixed Mode (SQL Server authentication and Windows authentication)
Install Rules
Feature Selection Specify the password for the SQL Server system administrator (sa) account.
Feature Rules Enter password:
Instance Configuration
- : fi :
PolyBase Configuration Soxfirn peessrcnt
Java Install Location Specify SQL Server administrator
Server Configuratio
el SQL Server administrators have
Database Engine Configuration unrestricted access to the Database
Feature Configuration Rules Engine.
Ready to Install
Installation Progress
Complete
Add CurrentUser | | Add.. || Remove
< Back Next > Cancel

Figure 3-14. SQL Server 2019 installer - Database Engine Configuration

Click Install on the summary page shown in Figure 3-15 and wait for the installer to
finish.
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T SQL Server 2019 Setup

Ready to Install

Verify the SQL Server 2019 features to be installed.

Product Key

License Terms

Global Rules

Microsoft Update
Product Updates
Install Setup Files
Install Rules

Feature Selection
Feature Rules

Instance Configuration
PolyBase Configuration
Java Install Location
Server Configuration

Database Engine C

)

Feature Configuration Rules

Ready to Install
Installation Progress
Complete

Ready to install SQL Server 2019:

[=- Summary A
Edition: Evaluation
- Action: Install (Product Update)
I Prerequisites
) Already installed:
- Windows PowerShell 3.0 or higher
= To be installed from media:
Microsoft Visual C++ 2017 Redistributable
- General Configuration
(- Features
Database Engine Services
- PolyBase Query Service for External Data
Java connector for HDFS data sources
=) Instance configuration
- Instance Name: MSSQLSERVER
Instance ID: MSSQLSERVER
= Instance IDs
"~ SQL Database Engine: MSSQL15.MSSQLSERVER
Instance Directory: C:\Program Files\Microsoft SQL Server\
(- Shared component root directory
Shared feature directory: C:\Program Files\Microsoft SQL Server\ v
< >

i}

Configuration file path:

C:\Program Files\Microsoft SQL Server\150\Setup Bootstrap\Log\20200227_135047\ConfigurationFile.ini

< Back Install Cancel

Figure 3-15. SQL Server 2019 installer - overview

Once the setup is successfully completed, a status summary as shown in Figure 3-16
is displayed and you can close the installer.
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8 SQL Server 2019 Setup - ] X
Complete
Your SQL Server 2019 installation completed successfully with product updates.
Product Key Information about the Setup operation or possible next steps:
License Terms
~
Global Rules fxasive i
M ft Undat € Java connector for HDFS data sources Succeeded
crosmrTpcae 1 PolyBase Query Service for External Data Succeeded
Product Updates '& Database Engine Services Succeeded
Install Setup Files (& SQL Browser Succeeded
Install Rules 1@ saL writer Succeeded
Feature Selection @ saL Ci.ient Connectivity SDK Succeeded
@ SQL Client Connectivity Succeeded
Feature Rules = - - - - ¥
Instance Configuration
PolyBase Configuration D
Java Install Location
Server Configuration )
Database Engine Config
Feature Configuration Rules
Ready to Install
Installation Progress
Complete

Summary log file has been saved to the following location:

\Program Files\Microsoft SQL Server\150\Sety otstraphl 0227 135047
m (i1} 227 135047,

Figure 3-16. SQL Server 2019 installer - Complete

Connect to the instance using SQL Server Management Studio (SSMS) or any other
SQL Server client tool like Azure Data Studio, open a new query, and run the script
shown in Listing 3-3.

Listing 3-3. Enable PolyBase through T-SQL

exec sp_configure @configname = 'polybase enabled', @configvalue = 1;
RECONFIGURE

The output should be
Configuration option 'polybase enabled' changed from 0 to 1. Run the

RECONFIGURE statement to install.
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Click “Restart” in the Object Explorer menu as shown in Figure 3-17 to restart the

SQL Server Instance.

IObjectExplorer ~+ I x'
Connect~ ¥ "ﬁ ¢ M
5 BE Connect...
® Datal: .
Disconnect
# Secur
@ Serve Register...
;+__. Replic New Query
0 PolyB
& Alway Activity Monitor
# Mana
Start
o Integ
BsqaLs Stop
@ [%] XEver Pause

Figure 3-17. Restart SQL Server Instance

Policies >

Facets

Start PowerShell

Reports »

Refresh

Properties

You're done - you do now have access to a PolyBase-enabled SQL Server 2019

installation.

Using Azure Data Studio to Work with Big Data

Clusters

As part of Microsoft’s SQL Client tool strategy, it may not surprise you that most of the

tasks necessary to work with a Big Data Cluster are achieved through Azure Data Studio

(ADS) rather than SQL Server Management Studio or other tools. For those of you who
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are not familiar with this tool, we’re going to start with a little introduction including how
to get your hands on this tool.

What Is Azure Data Studio?

Azure Data Studio is a cross-platform (Windows, MacOS, and Linux), extendable, and
customizable tool which can be used for classic T-SQL queries and commands, as well
as multiple new functions like notebooks. The latter can be enabled through extensions
which are usually installed through a VSIX file, which you might be familiar with from
working with other extensions for Visual Studio or Visual Studio Code.*

It was originally made public in 2017 as SQL Operations Studio but was rebranded
before its official release in 2018. While the product name is a bit misleading, it is not
only for cloud (Azure)-based services but for on-premises solutions and needs as well.

The fact that it, for example, does not come with an out-of-the-box interface for
SQL Server Agent, but in exchange offers built-in charting, shows that it is not so
much a replacement but more of a complimenting tool for SQL Server Management
Studio (SSMS). SSMS is targeting an administrating and managing group (database
administrators), whereas Azure Data Studio is more suitable for data professionals of all
kinds, including data scientists.

Getting and Installing Azure Data Studio

You can get your free copy of Azure Data Studio directly from Microsoft at https://
docs.microsoft.com/en-us/sql/azure-data-studio/download. Download the
installer of your choice for your platform and run it.

Alternatively, simply run this Chocolatey command (Listing 3-4) which will install
the latest version for you.

Listing 3-4. Install ADS via choco

choco install azure-data-studio -y

'https://docs.microsoft.com/en-us/visualstudio/extensibility/shipping-visual-
studio-extensions?view=vs-2019
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Installation of a “Real” Big Data Cluster

If you want to make use of the full Big Data Cluster feature set, you will need a full
installation including all the different roles and pools.

kubeadm on Linux

A very easy way to deploy a Big Data Cluster is using kubeadm on a vanilla (freshly
installed) Ubuntu 16.04 or 18.04 virtual or physical machine.

Microsoft provides a script for you that does all the work, so besides the Linux
installation itself, there is not much to do for you, which makes this probably the easiest
way to get your first Big Data Cluster up and running.

First, make sure your Linux machine is up to date by running the commands in
Listing 3-5.

Listing 3-5. Patch Ubuntu

sudo apt update88apt upgrade -y
sudo systemctl reboot

Then, download the script, make it executable, and run it with root permissions as
shown in Listing 3-6.

Listing 3-6. Download and execute the deployment script

curl --output setup-bdc.sh https://raw.githubusercontent.com/microsoft/
sql-server-samples/master/samples/features/sql-big-data-cluster/deployment/
kubeadm/ubuntu-single-node-vm/setup-bdc.sh

chmod +x setup-bdc.sh

sudo ./setup-bdc.sh

As you can see in Figure 3-18, the script will ask you for a password and
automatically start preparational steps afterward.
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bigdat
Create

FEEEES
Starti
Hit:l
Get:2
Get:3
Get:4
Get:5
Get:6
Get:7
Get:8
Get:9
Get:10
Get:11
Get:12
Get:13
Get:14
Get:15
Get:16
Get:17
Get:18
Get:l9
Get:20

a@bdc-ubuntu:~$ sudo ./setup-bdc.sh
Password for Big Data Cluster:

Confirm your Password:

k]
ng installing packages...

http://azure.archive.ubuntu.com/ubuntu
http://azure.archive.ubuntu.com/ubuntu
http://azure.archive.ubuntu.com/ubuntu
http://security.ubuntu.com/ubuntu kioni
http://azure.archive.ubuntu.com/ubuntu
http://azure.archive.ubuntu.com/ubuntu
http://azure.archive.ubuntu.com/ubuntu
http://azure.archive.ubuntu.com/ubuntu
http://azure.archive.ubuntu.com/ubuntu
http://azure.archive.ubuntu.com/ubuntu
http://azure.archive.ubuntu.com/ubuntu
http://azure.archive.ubuncu.com/ubuncu
http://azure.archive.ubuntu.com/ubuntu
http://azure.archive.ubuntu.com/ubuntu
http://security.ubuntu.com/ubuntu bion
http://security.ubuntu.com/ubuntu bion
http://security.ubuntu.com/ubuntu bion
nttp://security.ubuntu.com/ubuntu bion
nttp://security.ubuntu.com/ubuntu bion
http://security.ubuntu.com/ubuntu bion

B e e i

bionic InRelease

bionic-updates InRelease [88.7 kB]
bionic-backports InRelease [74.6 kB]

c-security InRelease [88.7 kB]

bionic-updates/main amdé4 Packages [722 kB]
bionic-updates/main Translation-en [262 kB]
bionic-updates/restricted amdé4 Packages [13.1 kB]
bionic-updates/restricted Translation-en [4448 B]
bionic-updates/universe amdé4 Packages [1003 kB]
bionic-updates/universe Translation-en [308 kB]
bionic-updates/multiverse amdé4 Packages [7308 B]
bionic-updates/multiverse Translation-en [3836 B]
bionic-backports/universe amdé4 Packages [4000 B]
bionic-backports/universe Translation-en [1856 B]
ic-security/main amdé4 Packages [489 kB]
ic-security/main Translation-en [166 kB]
ic-security/restricted amde4 Packages [4976 B]
ic-security/restricted Translation-en [2476 B]
ic-security/universe amdé4 Packages [600 kB]
ic-security/universe Translation-en [200 kB]

Figure 3-18. Deployment on Linux with kubeadm

After pre-fetching the images, provisioning Kubernetes, and all other required steps,

the deployment of the Big Data Cluster is started as shown in Figure 3-19.
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P P P P r r r S S PP P P PP
T T I T T T T T T T I T T I T T T T T T I I T T T T T T T rFrFrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr T
Starting to deploy azdata cluster...

The privacy statement can be viewed at:
https://go.microsoft.com/fwlink/?LinkId=853010

The license terms for azdata can be viewed at:
nttps://aka.ms/azdata-cula

kubeadm-custom/bdc.json created
kubesadm-custom/control.json created

The privacy statement can be viewed at:
nttps://go.microsoft.com/fwlink/?LinkId=853010

The license terms for S5QL Server Big Data Cluster can be viewed at:
https://go.microsoft.com/fwlink/?LinkId=2002534

Cluster deployment documentation can be wviewed at:
nttps://aka.ms/bdc-deploy

NOTE: Cluster creation can take a significant amount of time depending on
configuration, network speed, and the number of nodes in the cluster.

Starting cluster deployment.

Waiting for cluster controller to start.

Cluster controller endpoint is available at .17.2.!.7 Suucu.
=

Figure 3-19. Deployment on Linux with kubeadm

Once the whole script completes, you are done! As demonstrated in Figure 3-20, the
script will also provide all the endpoints that were created during the deployment.

Cluster control plane is ready.

Data pool is ready.

Compute pool is ready.

Storage pool is ready.

Master pool is ready.

Cluster deployed successfully.

Azdata cluster created.

Context "kubernetes-admin@kubernetes” modified.

Logged in succesafully to “httpa://.iv.0.l.s.ovivy”

Description Endpoint Hame Protocol
Gateway to access HDFS files, Spark .1130452 gateway BEEps
Spark Joba Management and Monitoring Dashboard L1.4:294 13/ gateway/defaulc/aparkhistory apark-history httpa
Spark Diagnostics and Monitoring Dashboard L1.&:70417 /gateway/default/yarn yarn-ui hteps
Application Proxy d.ArroyTe app-proxy https
Management Proxy J1.4:29777 mgmrproxy hteps
Log Search Dashboard .1.4:70777/kibana logsui https
Hetrics Dashboard 21.4:20777 geafana mecricsui htops
Cluster Management Service 21 420020 controller https
SQL Server Master Instance Front-End 32 agl-server-master tds
HDFS File System Proxy hreps://22.0.1. 370452 /gateway/default/webhd s/ vl webhdfs hteps
Proxy for running Snarz atatements, jobs, applications httpa://I0.0.1 4:70407%/gateway/defaulc/1livy/vl livy htops

Figure 3-20. Successful deployment on Linux with kubeadm

Your cluster is now fully deployed and ready!
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Azure Kubernetes Service (AKS)

Another straightforward way to deploy your cluster is to use Azure Kubernetes Service, in
which the Kubernetes cluster is set up and provided in the Microsoft Azure cloud. While
the deployment is started and controlled through any machine (either your local PC or a
VM), the cluster itself will run in Azure, so this means that deployment requires an Azure
account and will result in cost on your Azure subscription.

You can deploy either through a wizard in Azure Data Studio or manually through
a tool called azdata (which was also called by the script deploying your previous cluster
on Linux). Both methods have some prerequisites that need to be installed first. A full
installation actually requires several tools and helpers:

e Python
e Curl and the SQL Server command-line utilities
So we can communicate with the cluster and upload data to it.
e The Kubernetes CLI
e azdata
This will create, maintain, and delete a big data cluster.
e Notepad++ and 7Zip

These are not actual requirements, but if you want to debug your
installation, you will get a tar.gz file with potentially huge text files.
Windows does not handle these out of the box.

The script in Listing 3-7 will install those to your local machine (or whichever
machine you are running the script on), as this is where the deployment is controlled
and triggered from. We will be installing those prerequisites through Chocolatey.

Listing 3-7. Install script for Big Data Cluster prerequisites

choco install python3 -y

choco install sqglserver-cmdlineutils -y

$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine")
+ ";" + [System.Environment]::GetEnvironmentVariable("Path","User")

python -m pip install --upgrade pip

python -m pip install requests
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python -m pip install requests --upgrade
choco install curl -y

choco install kubernetes-cli -y

choco install notepadplusplus -y

choco install 7zip -y

choco install visualcpp-build-tools -y
pip3 install kubernetes

pip3 install -r https://aka.ms/azdata

While the respective vendors obviously supply visual/manual installation routines
for most of these tools, the scripted approach just makes the whole experience a lot
easier.

In addition, as we want to deploy to Azure using a script, we need the azure-cli
package shown in Listing 3-8 to be able to connect to our Azure subscription.

Listing 3-8. Install azure-cli
choco install azure-cli -y

While you technically could prepare everything (we need a resource group, the
Kubernetes cluster, etc.) in the Azure Portal or through manual PowerShell scripts, there
is a much easier way: get the Python script from https://github.com/Microsoft/
sql-server-samples/tree/master/samples/features/sql-big-data-cluster/
deployment/aks, which will automatically take care of the whole process and setup for
you.

Download the script to your desktop or another suitable location and open a
command prompt. Navigate to the folder where you've saved the script. You can also
download using a command prompt as shown in Listing 3-9.

Listing 3-9. Download deployment script

curl --output deploy-sql-big-data-aks.py https://raw.githubusercontent.com/
microsoft/sql-server-samples/master/samples/features/sql-big-data-cluster/
deployment/aks/deploy-sql-big-data-aks.py

Of course, you can also modify and review the script as per your needs, for example,
to make some parameters like the VM size static rather than a variable or to change the
defaults for some of the values.
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First, we need to log on to Azure which will be done with the command shown in
Listing 3-10.

Listing 3-10. Trigger login to azure from command prompt
az login

A website will open; log on using your Azure credentials as shown in Figure 3-21.

B oﬂl 2" Signintoyouraccount X | 4+ - m} X

O f £y  https://login.microsoftonline.com/common/oauth2/a ¥ = 1 e

Microsoft Azure

B Microsoft
Sign in

Email, phone, or Skype

No account? Create one!

Can't access your account?

Back Next

©2019 Microsoft  Terms of use  Privacy & cookies

Figure 3-21. Azure logon screen

The website will confirm that you are logged on; you can close the browser as shown
in Figure 3-22.
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| oﬂl 5 Login successfully X |4+ v - (m] X

& = 0O » @ | localhost:3400/7code= AQABAAIAAACEfexXxjamQb3( ¢ = 71 =&

You have logged into Microsoft Azure!

You can close this window;, or we will redirect you to the Azure CLI documents in 10 seconds.

Figure 3-22. Azure logon confirmation

Your command prompt, as shown in Figure 3-23, shows all subscriptions linked
to the credentials you just used. Copy the ID of the subscription you want to use and
execute the Python script, which will ask for everything ranging from subscription ID to
the number of nodes inside the Kubernetes cluster.

B Select Admini CA\Windows\System32\.cmd.exe - \deploy-sql-big-data-aks.py - O X

iC:\Users\bdcbook\Desktop>.\deploy-sql-big-data-aks.py

Provide your Azure subscription ID:<myID>

Provide Azure resource group name to be created:<myRG>

Provide Azure region - Press ENTER for using “westus™:

Provide VM size for the AKS cluster - Press ENTER for using ~Standard_L8s™

Provide number of worker nodes for AKS cluster - Press ENTER for using "17:

Provide name of AKS cluster and SQL big data cluster - Press ENTER for using “sqlbigdata™:

Provide username to be used for Controller and SQL Server master accounts - Press ENTER for using ~admin™:

Provide password to be used for Controller user, Knox user (root) and SQL Server Master accounts - Press ENTER for using
*MySQLBigData2e19"

Figure 3-23. Input of parameters in Python deployment script

The script now runs through all the required steps. Again, this can take from a couple
of minutes to hours, depending on the size of VM, number of nodes, and so on.
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The script will report back in between just like the script during the installation on
Linux. It is using the same tool (azdata), so the output when creating the actual Big Data
Cluster is very similar as you can see in Figure 3-24.

B Administrator: Command Prompt - \\deploy-sql-big-data-aks.py - a x

Merged “myfirstbigdatacluster-admin™ as current context in C:\Users\bigdata\.kube\config '
Creating SQL Big Data cluster:myfirstbigdatacluster
custom\bdc.json created

custom\control.json created

The privacy statement can be viewed at:
https://go.microsoft.com/fwlink/?LinkId=853610

The license terms for SQL Server Big Data Cluster can be viewed at:
https://go.microsoft.com/fwlink/?LinkId=2002534

Cluster deployment documentation can be viewed at:
https://aka.ms/bdc-deploy

NOTE: Cluster creation can take a significant amount of time depending on
configuration, network speed, and the number of nodes in the cluster.

Starting cluster deployment.
Waiting for cluster controller to start.

Figure 3-24. Output of Python deployment script

The script will also use azdata bdc config to create your JSON file.

As this SQL Server 2019 Big Data Cluster is being deployed to Azure, unlike during
your local install which you could just reach it using the localhost address, you will need
information about the IP addresses and ports of the installation. Therefore, IP addresses
and ports are provided at the end as shown in Figure 3-25.

B Administrator: Command Prompt -8 =

Waiting for cluster controller to start. a~
Waiting for cluster controller to start.

Waiting for cluster controller to start.

Waiting for cluster controller to start.

Waiting for cluster controller to start.

Cluster controller endpoint is available at j--. 2% Ll o220,
Cluster control plane is ready.

Data pool is ready.

Compute pool is ready.

Master pool is ready.

Storage pool is ready.

Cluster deployed successfully.

Logged in successfully to “https://137.135.52.89:30080°

5QL Server big data cluster endpoints:

Description Name Protocol
Gateway to access HOFS files, Spark 2 gateway https
Spark Jobs Management and Monitoring Dashboard “/gateway/default/sparkhistory spark-history https
spark Diagnostics and Monitoring Dashboard ateway/default/yarn yarn-ui https
Application Proxy TR app-proxy https
Management Proxy . mgmtproxy https
Log Search Dashboard “*fkibana logsui https
Metrics Dashboard « "1 fgrafana metricsui https
Cluster Management Service By controller https
SQL Server Master Instance Front-End i2.51.E sql-server-master tds
HDFS File System Proxy ps://. "7 f gateway/ default fwebhdfsivl webhdfs https
Proxy for running Spark statesents, jobs. applications https://. 3020 fgateway/default/livy /vl livy https
C:\Users\bipdata\Desktops, bt

Figure 3-25. Final output of Python deployment script including IP addresses
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If you ever forget what your IPs were, you can run this simple script as shown in
Listing 3-11.

Listing 3-11. Retrieve Kubernetes service IPs using kubectl
kubectl get service -n <clustername>

And if you forgot the name of your cluster as well, try Listing 3-12.

Listing 3-12. Retrieve Kubernetes namespaces using kubectl
kubectl get namespaces

If you are running more than one cluster at a time, the script in Listing 3-13 might
also become helpful. Just save it as IP.py and you can run it as shown in Figure 3-26.

Listing 3-13. Python script to retrieve endpoints of a Big Data Cluster

CLUSTER_NAME="myfirstbigdatacluster"
from subprocess import check output, CalledProcessError, STDOUT, Popen,
PIPE
import os
import getpass
def executeCmd (cmd):
if os.name=="nt":
process = Popen(cmd.split(),stdin=PIPE, shell=True)
else:
process = Popen(cmd.split(),stdin=PIPE)
stdout, stderr = process.communicate()
if (stderr is not None):
raise Exception(stderr)
print("")
print("SQL Server big data cluster connection endpoints: ")

print("SQL Server master instance:")

command="kubectl get service master-svc-external -o=custom-columns=""IP:.
status.loadBalancer.ingress[0].ip,PORT:.spec.ports[0].port"" -n "+CLUSTER
NAME

executeCmd(command)

print("")
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print("HDFS/KNOX:")

command="kubectl get service gateway-svc-external -o=custom-
columns=""IP:status.loadBalancer.ingress[0].ip,PORT:.spec.ports[0].port
-n "+CLUSTER_NAME

executeCmd(command)

print("")

print("Cluster administration portal (https://<ip>:<port>):")
command="kubectl get service mgmtproxy-svc-external -o=custom-
columns=""IP:status.loadBalancer.ingress[0].ip,PORT:.spec.ports[0].port
-n "+CLUSTER_NAME

executeCmd(command)

print("")

B Administrater: Command Prompt = a X

C:\Users\bigdata\Desktop>ip.py

SQL Server big data cluster connection endpoints:
SQL Server master instance:

IpP PORT
31433

HDFS/KNOX:

Ip PORT

38443
Cluster administration portal (https://<ip»>:<port>):

P PORT
38777

C:\Users\bigdata\Desktop>,

Figure 3-26. Output of IP.py

You're done! Your Big Data Cluster in Azure Kubernetes Service is now up and

running.

Note Whether you use it or not, this cluster will accumulate cost based on the
number of VMs and their size so it’s a good idea not to leave it idling around!
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Deploy Your Big Data Cluster Through Azure Data Studio

If you prefer a graphical wizard for your deployment, the answer is Azure Data Studio
(ADS)! ADS provides you multiple options to deploy SQL Server, and Big Data Clusters
are among them. In ADS, locate the link “New Deployment” which can be found on the
welcome screen as well as in a context menu next to your active connections as shown in
Figure 3-27.

'Q';f File Edit View Help Welcome - Azure Data Studio [Administrator] - (m] x

Extensions

tensions that you need, including the ..

Keyboard Shortcuts

commands and customize them

leyment.. Color theme

€ egitor and your code 100K the way you L.

Find and run all commands

Getting started

Follow us on Twitter

¥ Show welcome page on startup
» AZURE
» SOL SERVER BIG DATA CLUSTERS

Figure 3-27. New Deployment in ADS

On the following screen, select “SQL Server Big Data Cluster.” The wizard will ask
you to accept the license terms, select a version, and also pick a deployment target.
Supported targets for this wizard are currently a new Azure Kubernetes Service (AKS)
cluster, an existing AKS cluster, or an existing kubeadm cluster. If you plan to deploy
toward an existing cluster, the Kubernetes contexts/connections need to be present in
your Kubernetes configuration. If the Kubernetes cluster was not created from the same
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machine, it’s probably still missing. In this case, you can either copy the .kube file to your
local machine or configure Kubernetes manually as described at https://kubernetes.
io/docs/tasks/access-application-cluster/access-cluster/.

On the lower end of the screen, the wizard will also list the required tools again
and confirm whether all of them are installed in the appropriate version as shown in
Figure 3-28.

¥ File Edit View Help Wizicome - Azure Data Studio [Administrator] - o =

Select the deployment options

i D

SOL Sevver on Windows. SOL Server container image SQL Server Big Data Cluster

Figure 3-28. Deploy a BDC through ADS - intro

Let’s try another deployment using a new AKS cluster (which is also the default).
Click “Select” and the wizard will take you to the first step. It will provide you the
matching deployment templates for your target environment. The different templates
differ by size as well as features, like authentication type and high availability, as you can
see in Figure 3-29.
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@ File Edit View Help Welcome - Azure Data Studio [Administrator] - o b4

i Deploy S5QL Server 2019 Big Data Cluster on a new AKS cluster
v §
Step 1
I ? Deployment configuration profile

Seiect the tanget configuration profie

L
ales-dev-test alos-dev-test-ha
Service Instances Service Instances
SOL Server Naster 1 SOL Server Master 3
Compute 1 Compute
Data 2 Dats
HDFS + Spark 2 HDFS + Spark 3
Storage sizve GE per Instance Storage size GE per Instance
Data storage 15 Data storage 15
Log storage 0 Log storage
Features Features
Basic authentication Basic authent'cation
High Avaabiity

Note: The settings of the deployment orofile can be customized in later sieos.

Figure 3-29. Deploy a BDC through ADS - Step 1

The following screen will depend on your target. As we chose to deploy to Azure
including a new cluster, we need to provide a subscription, resource group name,
location, cluster name, as well as the number and size of the underlying VMs (see
Figure 3-30).
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& File Edit View Help Welcome - Azure Data Studia [Administrator] - O -

- Deploy 5QL Server 2019 Big Data Cluster on a new AKS cluster

v
Sep 2
I Azure settings
Configure the SATNGS IO Cedle a0 AZure Kubernetes Service Custer
Subscription io (D |lse my detauit Azure subseription o vd ke ASune bR teny
i NEw FESOTE GIOUD rame ¢ masg - 20200306113505
Lecation * exitus - Vibw $i9Aa0ie Aute LONTON
S cnuster rame * masgl-20200306113505
W
VM szt ” Siandard B85 3 Ven Pie VM 35

Figure 3-30. Deploy a BDC through ADS - Step 2

In Step 3, as illustrated in Figure 3-31, we define the name of the Big Data Cluster
(unlike in the previous step where we've set the name for the Kubernetes cluster!) as well
as the authentication type.

66



CHAPTER 3  DEPLOYMENT OF BIG DATA CLUSTERS

@ File Edit View Help Welcome - Azure Data Studic [Administrator] = o x
1 Deploy SQL Server 2019 Big Data Cluster on a new AKS cluster
Step 3

Cluster settings

Configure the SOL Server Big Data Cluster settings

Custer rame * @ ['r',s: -chuste]

Adrrin usemame * (@

v Docker settings

Figure 3-31. Deploy a BDC through ADS - Step 3

In the last configuration screen which we show in Figure 3-32, you can modify
the number of instances per pool as well as claim sizes and storage classes for data
and logs.
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& File Edit View Help \Weicome - Azure Data Studia [Adeninistrator] - O -
- Deploy 5QL Server 2019 Big Data Cluster on a new AKS cluster

%
Step

I o Service settings

4 Scale settings

° SQL Server master ingtances i Comoute poc! instantes *
Data pool nstances * 2 Spark pool instances *
Siorage pool (HOFS) instances * 2 & Incude Spark in storage pod

+ Endpoint settings

+ Storage settings

? Storage ciass for data

aroler * (D defaut 1’ defaut ]

v Advanced storage settings

Figure 3-32. Deploy a BDC through ADS - Step 4

The final screen as shown in Figure 3-33 gives you a summary of your configuration.
If you want to proceed, hit “Script to Notebook”; otherwise, you can navigate back using
the “Previous” button to make any necessary changes and adjustments.
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& File Edit View Help \Weicome - Azure Data Studia [Adeninistrator] - O -

- Deploy 5QL Server 2019 Big Data Cluster on a new AKS cluster

(D) Information

A browser window for signing into Azure will be opened during the SOL Server Big Data Cluster deployment.

Stept
Summary
Subscription id Resource group
o Location AKS chuster name
VM size Standard_£85 v3 VM count
° a Cluster settings
Deployment profile st devtest Cluster name misgl-ciaster
o Controller usemame sdmin Authentication mode Basic
4 Scale settings
SO Server master instances 1 Compuate pool mstandes
Data pool instances 2 Spark pool instances

Storage pool (HDFS)

Figure 3-33. Deploy a BDC through ADS - Summary

Unless you did so before, ADS will prompt you to install Python for notebooks as
shown in Figure 3-34.
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Configure Python for Notebooks

Installation Type

&) New Python instaliation

Use existing Python installation

Python Install Location

C:\Users\bdcbook\azuredatastudio-python [Default)
Browse
This installation will take some time. It is recommended to not close the application

until the installation is compiete.

Figure 3-34. Deploy a BDC through ADS - install Python

Wait for the installation to complete. All your settings have been populated to a
Python notebook which you could either save and store for later or run right away. To
execute the notebook, simply click “Run Cells” as shown in Figure 3-35. Just make sure
that the Python installation has finished. The kernel combo box should read “Python 3”.
Ifit’s still showing “Loading kernels..., be patient @).
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# File Edit View Help » deploy-bdc-aks - Azure Cata Studio [Admintstrator] = a =
CONNECTIONS 0 deploy-bdc-aks o
v SIRVERS

3 s e e R

B Microsoft

Create Azure Kubernetes Service cluster and deploy SQL Server 2019 Big Data Cluster

through the process of creating 8 new Azure Kubernetes Service cluster first, and then deploys a SQL Server 2019 Big

sword if it is not set in the emvironment variable. The password will be

Please press the "Run Cells” button to run the notebook

Prerequisites
Ensure the following tooks are installed and added to PATH before proceeding.

Tooks Description Installation

> AZURE
> SOL SERVER BIG DATA CLUSTERS

Figure 3-35. Deploy a BDC through ADS - notebook predeployment

Once you click “Run Cells,” the deployment process will run through and - unless
there are any problems on the way - will report back with the cluster’s endpoints at the
end, as you can see in Figure 3-36. You will also get a direct link to connect to the master
instance. The deployment will take as long as it would with the same parameters using
the scripted deployment option.
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& File Edt View Help

' SERVERS

Endgpaint Hame Protocel

Connect to SQL Server Master instance in Azure Data Studio

ick the link below to connect to the SQL Server Master instance of the SQL Server 2019 Big Data Cluster.

Click here to connect to SQL Server Master instance

» AZURE
> SOL SERVER BIG DATA CLUSTERS

Figure 3-36. Deploy a BDC through ADS - notebook postdeployment

What Is azdata?

As mentioned before, no matter which path of deployment you choose, the deployment
of your Big Data Cluster will always be controlled through a tool call azdata. It’s a
command-line tool that will help you to create a Big Data Cluster configuration, deploy
your Big Data Cluster, and later potentially delete or upgrade your existing cluster.

The logical first step (which is somehow happening behind the scenes in the
previous scripts) is to create a configuration as shown in Listing 3-14.

Listing 3-14. Create cluster config using azdata
azdata bdc config init [--target -t] [--src -s]

Target is just the folder name for your config files (bdc.json and control.json). The src
is one of the existing base templates to start with.
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Possible values are (at the time of writing)

aks-dev-test

aks-dev-test-ha

kubeadm-dev-test

— kubeadm-prod

These match the options that you saw when deploying in Azure Data Studio.
You can always get all valid options by running azdata bdc config init -t <yourtarget>
without specifying a source. Keep in mind that these are just templates. If your preferred
environment is not offered as a choice, this doesn’t necessarily imply that it’s not
supported, just that you will need to make some adjustments to an existing template to
make it match your target. The output is shown is Figure 3-37.

¥ A

PS C:\Users> azdata bdc config init -t mycluster o~
Please choose a config:

1. aks-dev-test

2. aks-dev-test-ha (default choice)
3. kubeadm-dev-test

4. kubeadm-prod

Enter your choice as a number or unique substring (Control-C aborts):

Figure 3-37. Output of azdata bdc config init without specifying a source

The source to choose will depend on your deployment type.

Running azdata bdc config init results in two .JSON files - bdc.json and control.
json - to be created in a subfolder which is named after your target. This will be based
on defaults, so we need to make some changes to the configuration. This can be done
either using any text editor or using azdata again using the config replace option, as
shown in Listing 3-15, where we use it to modify the name of the Big Data Cluster in
the bdc.json file.

Listing 3-15. Modify cluster config using azdata

azdata bdc config replace -c myfirstbigdatacluster/bdc.json -j metadata.
name=myfirstbigdatacluster
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The control file defines more general settings like which version, repository, and
so on you want to use, whereas the bdc file configures the actual setup of your Big
Data Cluster environment like the number of replicas per role and so on, as shown in
Listings 3-16 and 3-17.

Listing 3-16. Sample control.json

{
"apiVersion": "vi1",
"metadata": {
"kind": "Cluster",
"name": "mssql-cluster”
}J
"spec": {
"docker": {
"registry": "mcr.microsoft.com",
"repository": "mssql/bdc",
"imageTag": "2019-CU2-ubuntu-16.04",
"imagePullPolicy": "Always"

}’
"storage": {
"data": {
"className": "",
"accessMode": "ReadWriteOnce",
"size": "15Gi"
}J
"logs": {
"className": "",
"accessMode": "ReadWriteOnce",
"size": "10Gi"
}
}J
"endpoints": [
{

"name": "Controller",

“dnsName": "",
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"serviceType": "NodePort",

"port": 30080
}J
{
"name": "ServiceProxy",
"dnsName": "",
"serviceType": "NodePort",
"port": 30777
}
]’
"settings": {

"controller": {
"logs.rotation.size": "5000",
"logs.rotation.days": "7"

}

}

b
"security": {
"activeDirectory": {

"ouDistinguishedName": "",
"dnsIpAddresses": [],
"domainControllerFullyQualifiedDns": [],
"domainDnsName": "",
"clusterAdmins": [],

"clusterUsers": []
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Listing 3-17. Sample bdc.json

{

"apiVersion": "vi1",

"metadata": {

"kind": "BigDataCluster",
"name": "mssql-cluster”

1

"spec": {

"resources": {
"nmnode-0": {

"spec": {
"replicas": 2
}
b
"sparkhead": {
"spec": {
"replicas": 2
}
b
"zookeeper": {
"spec": {
"replicas": 3
}
b
"gateway": {
"spec": {
"replicas": 1,
"endpoints": [
{
"name": "Knox",
"dnsName": "",
"serviceType": "NodePort",
"port": 30443
}
]
}
b
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"appproxy": {

"spec": {
"replicas": 1,
"endpoints": [

{
"name": "AppServiceProxy",
"dnsName": "",
"serviceType": "NodePort",
"port": 30778
}
]
}
})
"master": {
"metadata": {
"kind": "Pool",
"name": "default"
1
"spec": {

"type": "Master",
"replicas": 3,
"endpoints”: [

{
"name": "Master",
"dnsName": "",
"serviceType": "NodePort",
"port": 31433

}J

{
"name": "MasterSecondary",
"dnsName": "",
"serviceType": "NodePort",
"port": 31436

}
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"settings": {
"Sql": {

"hadr.enabled":

}J
"compute-0": {
"metadata": {
"kind": "Pool",
"name": "default"

b
"spec": {
"type": "Compute",
"replicas": 1
}
}J
"data-0": {
"metadata": {
"kind": "Pool",
"name": "default"
})
"spec": {
"type": "Data",
"replicas": 2
}
})

"storage-0": {
"metadata": {
"kind": "Pool",
"name": "default"

})

"spec": {
"type": "Storage",
"replicas": 3,
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"settings": {
"spark": {
"includeSpark": "true"
}
}
}
}
}J
"services": {
"sql": {

"resources": [
"master"”,
"compute-0",
"data-0",
"storage-0"

]

}J
"hdfs": {

"resources": |
"nmnode-0",
"zookeeper",
"storage-0",
"sparkhead"

1,

"settings": {
"hdfs-site.dfs.replication": "3"

}

})
"spark": {

"resources": [
"sparkhead",
"storage-0"

1,
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"settings": {
"spark-defaults-conf.spark.driver.memory": "2g",
"spark-defaults-conf.spark.driver.cores": "1",
"spark-defaults-conf.spark.executor.instances": "3",
"spark-defaults-conf.spark.executor.memory": "1536m",
"spark-defaults-conf.spark.executor.cores": "1",
"yarn-site.yarn.nodemanager.resource.memory-mb": "18432",
"yarn-site.yarn.nodemanager.resource.cpu-vcores": "6",
"yarn-site.yarn.scheduler.maximum-allocation-mb": "18432",
"yarn-site.yarn.scheduler.maximum-allocation-vcores": "6",
"yarn-site.yarn.scheduler.capacity.maximum-am-resource-
percent": "0.3"

As you can see, the file allows you to change quite a lot of settings. While you may
leave many of them at their default, this comes in quite handy, especially in terms of
storage. You can change the disk sizes as well as the storage type. For more information
on storage in Kubernetes, we recommend reading https://kubernetes.io/docs/
concepts/storage/

All deployments use persistent storage by default. Unless you have a good reason to
change that, you should keep it that way as nonpersistent storage can leave your cluster
in a nonfunctioning state in case of restarts, for example.

Run the following command (Listing 3-18) in a command prompt where you've set

the environment variables before.

Listing 3-18. Create cluster using azdata
azdata bdc create -c myfirstbigdatacluster --accept-eula yes

Now sit back, relax, follow the output of azdata as shown in Figure 3-38, and wait for
the deployment to finish.
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B Administrator: Command Prompt - azdata bdc create -c myfirstbig luster --accept-eula yes - a X

C:\Users\bigdata\Desktop>azdata bdc create -c myfirstbigdatacluster --accept-eula yes
The privacy statement can be viewed at:
https://go.microsoft.com/fulink/?LinkId=853818

The license terms for SQL Server Big Data Cluster can be viewed at:
https://go.microsoft.com/fwlink/?LinkId=2002534

Cluster deployment documentation can be viewed at:
https://aka.ms/bdc-deploy

NOTE: Cluster creation can take a significant amount of time depending on
configuration, network speed, and the number of nodes in the cluster.

Starting cluster deployment.

Waiting for cluster controller to start.
Waiting for cluster controller to start.
Waiting for cluster controller to start.
Waiting for cluster controller to start.
Cluster controller endpoint is available at .
Cluster control plane is ready.

Data pool is ready.

Storage pool is ready.

Compute pool is ready.

Figure 3-38. Output of azdata bdc create

Depending on the size of your machine, this may take anywhere from minutes to
hours.

Others

There are multiple other Kubernetes environments available - from Raspberry Pi to
VMWare. Many but not all of them support SQL Server 2019 Big Data Clusters. The
number of supported platforms will grow over time, but there is no complete list of
compatible environments. If you are looking at a specific setup, the best and easiest way
isto just give it a try!

Advanced Deployment Options

Besides the configuration options mentioned earlier, we would like to point your
attention to two additional opportunities to make more out of your Big Data Cluster:
Active Directory authentication and HDFS tiering.
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Active Directory Authentication for Big Data Clusters

If you want to use Active Directory (AD) integration rather than basic authentication,
this can be achieved through additional information provided in your control.json and
bdc.json files. While bdc.json only requires the nameservers to be set to the domain
controller’s DNS, control.json needs a couple of additional parameters, which are shown
in Listing 3-19.

Listing 3-19. AD parameters in control.json

"security": {
"activeDirectory": {
"ouDistinguishedName": "",
"dnsIpAddresses": [],
"domainControllerFullyQualifiedDns": [],
"domainDnsName": "",
"clusterAdmins": [],

"clusterUsers": []

}

At the time of writing, there are quite a few limitations though. For example, AD
authentication is only supported on kubeadm, not on AKS deployments, and you can
only have one Big Data Cluster per domain. You will also need to set up a few very
specific objects in your AD before deploying the Big Data Cluster. Please see the official
documentation at https://docs.microsoft.com/en-us/sql/big-data-cluster/
deploy-active-directory?view=sql-server-ver1s for detailed steps on how to enable
this.

HDFS Tiering in Big Data Clusters

Should you already have an existing HDFES stored in either Azure Data Lake Store Gen2
or Amazon S3, you can mount this storage as a subdirectory of your Big Data Cluster’s
HDES. This will be achieved through a combination of environment variables, kubectl
and azdata command. As the process differs slightly per source type, we refer you to the
official documentation which can be found at https://docs.microsoft.com/en-us/
sql/big-data-cluster/hdfs-tiering?view=sql-server-ver1s.
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Unlike enabling AD authentication, which happens at deployment, HDFS tiering will
be configured on an existing Big Data Cluster.

Summary

In this chapter, we've installed SQL Server 2019 Big Data Clusters using various methods
and to different extents.

Now that we have our Big Data Cluster running and ready for some workload,
let’s move on to Chapter 4 where we'll show and discuss how the cluster can be
queried and used.
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CHAPTER 4

Loading Data into
Big Data Clusters

With our first SQL Server Big Data Cluster in place, we should have a look at how we can
use it. Therefore, we will start by adding some data to it.

Getting Azure Data Studio Fully Ready for Your
Big Data Clusters

While Azure Data Studio can connect to any Big Data Cluster (and also manage and
deploy it) by default, we would recommend you install the Data Virtualization extension
which provides you wizards helping with the creation on external (virtual) tables.

To install that extension, first navigate to the Extensions menu in Azure Data Studio

as shown in Figure 4-1.
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& File Edit View Help Welcome - Azure Data Studio - m] X
E CONNECTIONS = @ Welcome X 1]
 SERVERS B B
ic
ons
Keyboard Shortcuts
avorite commands and customize them

nent Color theme

ire request B . .
ekt e Follow us on Twitter

date with how the community is using ...

# Show welcome page on startup
> AZURE
> SOL SERVER BIG DATA CLUSTERS

§ ®oAo

Figure 4-1. Install extension from VSIX package in ADS

Within the extensions marketplace, it should probably already be visible as one
of the top recommendations. Otherwise you can also search for it as illustrated in

Figure 4-2.
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& File Edit View Help Welcome - Azure Data Studio

EXTENSIONS: RECOMMENDED & Welcome X

Admin Pack for S0L Server oo
Admin Pack for SQL Server is a col

Microsoft

Central Management Servers 07.0

Central Management Servers

Microsoft

Data Virtualization 130
Support for Data Virtualization in SQL Ser...
Microsoft

Database Administration Tool Ex... 002
Provides additional Windows-spec
ficrosoft

Idera SQL DM Performance Insig... 040
SQL Diagnostic Manager performant
Idera inc
Managed Instance Dashboard 035
Managed Instance Dashboard
Microsoft

PostgreSQL 022
PostgreSQL extension for Azure Data St
Microsoft

PowerShell 202010

Develop PowerShell seripts in Azure Data ..
Microsoft =
Redgate SQL Search 034

Search across multiple databases

Redgate

SentryOne Plan Explorer 052
# show welcome page on sta

Simplify query analysis and tuning
SentryOne

Figure 4-2. Extensions in Azure Data Studio

LOADING DATA INTO BIG DATA CLUSTERS

Keyboard Shortcuts

rite commands a

Find and run all commands

Follow us on Twitter

Keep up to dat

Click the green “Install” button of the extension and the installation will immediately

be triggered as shown in Figure 4-3.

87



CHAPTER 4  LOADING DATA INTO BIG DATA CLUSTERS

& File Edit View Help Extension: Data Virtualization - Azure Data Studic — o X

EXTENSIONS: RECOMMENDED axs Extension: Data Virtualization X m

Data Virtualization

Admin Pack for SOL Server 0oz " A .

Admin Pack for SOL Server is a collection ... MICTOSOH Microsoft Licenze

Microsoft Instail SQL Server Support for Data Virtualization in SQL Server, including Create External Data wizards.
*

Central Management Servers 070
Central Management Servers

Microsoft = This extension is recommended by Azure Data Studio. [ i
*

Data Virtualization 130

Support for Data Virtualization in SQL Ser... Details Contributions

Microsoft L

Database Administration Tool Ex... 002

et Winsnsseeste - Data Virtualization extension for Azure Data Studio

Idera SQL DM Performance Insig... 040
SOL Diagnostic Manager performance ins..

&

This extension adds Data Virtualization support for SQL Server 2019 and above. This includes support for creating

Idera Inc = new SQL Server, Oracle, and HDFS External Data Sources and External Tables using interactive wizards.
*

Managed Instance Dashboard 035

Managed Instance Dashboard SUPPC*!Ted Features

Microsoft Install
o + SOL Server Polybase Create External Table Wizard

PostgreSQL 022

PostgreSQL extension for Azure Data Stu...
Microsoft [ instal | release, remote SOL Server and Oracle servers are supported.

© Create an external table and its supporting metadata structures with an easy to use wizard. in this

PowerShell 202010
Develop PowerShell scripts in Azure Data .. your SQL Server Master instance associated with the cluster. You can virtualize the data from the
Microsoft =0 remote HDFS Data sources without ever needing to now move the data.
Redgate SQL Search 038
Search across multiple databases Usa ge
nstal |

Redgate

SentryOne Plan Explorer 052
Simplify query analysis and tuning
SentryOne

Polybase Create External Table Wizard °

+ From a SQL Server 2019 instance the Create External Table Wizard may be opened in three ways:

Figure 4-3. Extension installation in progress in Azure Data Studio

The installation usually takes a few minutes and eventually you will see the status of
the extension change to “Installed” as shown in Figure 4-4.

Extension: Data Virtualization X @

Data Virtualization

Microsoft Microsoft | License
SQL Server  Support for Data Virtualization in SQL Server. including Create External Data wizards.

v Installed m This extension is enabled globally.

This extension is recommended by Azure Data Studio. ULl llclEIlY]

Figure 4-4. Installed extension in Azure Data Studio

The extension is now ready to be used!
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Getting Some Sample Files into the Installation

With everything in place and ready, all we need before we can really get our hands on the
new features is some sample data!

Empty Database

To link some external SQL Server tables into your local instance of SQL Server, the
easiest way is to simply create a blank database. Just connect to your SQL Server 2019
instance through either SQL Server Management Studio or Azure Data Studio and create
anew database named “BDC_Empty”. You can do this through the wizard or by simply
running T-SQL as shown in Listing 4-1.

Listing 4-1. Create empty database through T-SQL

USE master
GO
CREATE DATABASE BDC_Empty

That’s it.

Sample Data Within Your Big Data Cluster

If you went for a full installation including the Kubernetes cluster, there are some easy
ways and techniques to push some samples to that. In case you only deployed a local
installation with PolyBase enabled but without a Kubernetes cluster, you can skip this
part - it wouldn’t work anyway.

Restoring Any SQL Server Backup to Your Master Instance

Assuming an empty database is not enough for you, you may wonder how to restore an
existing database to your Master Instance. Let’s give that a try with AdventureWorks2014.

If you don’t have a backup of AdventureWorks2014 on hand, you can just get it from
GitHub, for example, through curl (Listing 4-2).
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Listing 4-2. Download AdventureWorks2014 from GitHub using curl

curl -L -G "https://github.com/Microsoft/sql-server-samples/releases/
download/adventureworks/AdventureWorks2014.bak" -o AdventureWorks2014.bak

Now that we have an actual file to be restored, we need to push that to the Master
Instance’s filesystem first. This task will be achieved through kubectl (Listing 4-3); you
will need to replace your cluster’s namespace and master pod name accordingly.

Listing 4-3. Copy AdventureWorks2014 to the Master Instance using kubectl

kubectl cp AdventureWorks2014.bak <CLUSTER_NAMESPACE>/<MASTER_POD_
NAME>:var/opt/mssql/data/ -c mssql-server

Last but not least, we need to restore the database from the .bak file. This can be
achieved through regular T-SQL. In this case, just connect to your master instance
and run the script. Of course, for more complex scenarios, you could use sqlcmd with
an input file or any other SQL Server mechanism you're comfortable with. Here this
includes using the restore wizard in SQL Server Management Studio (Listing 4-4).

Listing 4-4. Restore AdventureWorks2014 to the Master Instance

USE [master]

RESTORE DATABASE [AdventureWorks2014] FROM DISK = N'/var/opt/mssql/
data/AdventureWorks2014.bak’ WITH FILE = 1, MOVE N'AdventureWorks2014_
Data' TO N'/var/opt/mssql/data/AdventureWorks2014 Data.mdf', MOVE
N'AdventurelWorks2014 Log' TO N'/var/opt/mssql/data/AdventureWorks2014 Log.
1df', NOUNLOAD, STATS = 5§

Microsoft Sample Data

We'll start with the sample data provided by Microsoft on their GitHub page,
https://github.com/Microsoft/sql-server-samples/tree/master/samples/
features/sql-big-data-cluster. Download the files “bootstrap-sample-db.sql”
and, depending on your operating system, either “bootstrap-sample-db.cmd” (for
Windows) or “bootstrap-sample-db.sh” (for Linux).

You can then run the .cmd or .sh file with the following parameters (Listing 4-5).
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Listing 4-5. Install default Microsoft samples

USAGE: bootstrap-sample-db.cmd <CLUSTER_NAMESPACE> <SQL_MASTER_ENDPOINT>
<KNOX_ENDPOINT> [--install-extra-samples] [SQL _MASTER PORT] [KNOX_PORT]

To use basic authentication please set AZDATA USERNAME and AZDATA PASSWORD
environment variables.

To use integrated authentication, provide the DNS names for the endpoints.
Port can be specified separately if using non-default values.

Just pass the information (IPs, password, namespace) you used or were provided
during installation of your cluster, and the script will run automatically and pump some
sample data to your installation.

The requirements of this script are

e sqglemd
e bcp
e kubectl
o curl

If you are running this script from the same box that you used for the initial
installation, those requirements should already be satisfied.

Flight Delay Sample Dataset

In addition to the Microsoft samples, let’s also add some more external data. A great
place to find free datasets is kaggle.com (Figure 4-5).

If you don’t have an account with them yet, just sign up for a free account. Otherwise,
just log in to your account.
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s Kernels Discussion Learn s«

Kaggle is the place to do data
science projects Register with just one oick:

We worrt share anything without your permission

G signup witn Google

“ Sign up with Facebook

Manually create an account:

Figure 4-5. Kaggle.com login

Once signed in, navigate to Datasets and search for “Flight Delays,” which should
bring up the “2015 Flight Delays and Cancellations” Dataset from the Department of
Transportation as shown in Figure 4-6.

Competitions Datasets Kernels Discussion Learn s

Public 1 Relevance

Sizes *~ Filetypes ~ Licenses = Tags ~ [ Flight Delays Q

Airlines Delay
Giovanni Gonzalez
2015 Flight Delays and Cancellations
27 v "ty on 1o avoid significant delay?
Depa rtation t

- Transportation Statistics Lookup Tables

3 Scott A Millas

_.l fignt deleys I ———

Figure 4-6. Kaggle.com Datasets
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Alternatively, you can also navigate directly to www.kaggle.com/usdot/flight-
delays.

The Datasets consist of three files: Airlines, Airports, and Flights. You can download
them all at once by clicking “Download,” which will trigger one ZIP file containing all

files as shown in Figure 4-7.

ftions Datasets Kernels Discussion Learn =+

2015 Flight Delays and Cancellations

Which aitline should you fly on to‘avoid significant delays?

f Transportation = updated 2 years ago (Version 1)

Ow rnels Discussion Activ

Your Dataset download has started.
Show your appreciation with an upvote

278 "’.B“\‘!“’!‘?"i‘!"’.‘“’.‘\a..

Data Sources About this file Columns

Figure 4-7. Kaggle.com download Flight Delays Datasets

While not unreasonably big, this dataset provides a lot of options to explore and work
with the data. Once you've downloaded the file, we still need to get that data into our Big
Data Cluster. Since these are only three files, we will do this by manually uploading them
through Azure Data Studio.

Therefore, connect to your Big Data Cluster in Azure Data Studio, navigate to Data
Services, open the HDFS root folder, and create a new directory called “Flight_Delays” as

shown in Figure 4-8.
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HL; File Edit View Help : = Azure Data Studio [Administrator] = (m] *
Q CONNECTIONS Welcome B sQLQuery_1 - disconnected ® B % m .-
~ SERVERS
Home O #
> E (local), <default> (Windows Authen. 2
v <default> (sa)
g Home SQL Server big data cluster SOL Server 2019 (Preview) -+

SERVER DAS

Learn How To

()

Restore Configure The

Dashboard

w Qu

&
2

VOO EOE

> AZURE

cedefacit> @ A

Figure 4-8. Create new directory on HDFS in ADS

You can then select this directory, do a right-mouse-click, choose “Upload files,”
and upload the three CSV files. You can multiselect them so there is no need to upload
them one by one. If you do a right-mouse-click and refresh the folder, the files should be
visible as shown in Figure 4-9.

4 Flight_Delays
[ airlines.csv
[ airports.csv
5| flights.csv

Figure 4-9. Display of files in the new folder in ADS
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The upload progress will also be visible in the footer of Azure Data Studio.

An alternative to the upload through the front end would be to use curl from a
command prompt. You can use it both to create the target directory and to upload the
actual file.

For just the airlines.csv, this would look like as shown in Listing 4-6 (you would need
to replace your IP address and password). The first line will create a directory called
“Flight_Delays’, while the second line will upload the file “airlines.csv” to it.

Listing 4-6. Upload data to HDFS using curl

curl -i -L -k -u root:<yourpassword> -X PUT "https:// <yourIP>/gateway/
default/webhdfs/vi/Flight Delays?op=MKDIRS"

curl -i -L -k -u root:<yourpassword> -X PUT "https://<yourIP>/gateway/
default/webhdfs/vi1/Flight Delays /airlines.csv?op=createdoverwrite=true" -H
"Content-Type: application/octet-stream" -T "airlines.csv"

Azure SQL Database

As described within the use cases in Chapter 1, one way of using the Big Data Cluster
PolyBase implementation is to stretch out data to Azure (or any other cloud-based SQL
Server for that matter). To get a better feeling of this, unless you already have a database
on either another SQL Server or in Azure SQL DB, we recommend to just set up a small
database in Azure containing the AdventureWorks Database.

To do so, log on again to the Azure Portal (Figure 4-10) as you did in Chapter 3.

Then pick “Create a resource” on the upper end of your panel on the left and either
pick “SQL Database” from the list or search for it.
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Figure 4-10. Create resource in Azure Portal

On the next screen, just click “Create” (Figure 4-11).
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- O @

® -Ej /A SQL Database - Microsc X |4 - 1 x

& | httpsy//portal.azure.com/#create/hub

Microsoft Azure

Create a resource
Home
I= Dashl
All services
*  FAVORITES
B8 Al resources
w# Resource groups
ﬁ App Services
¥ Function Apps
% sQL databases
A& Azure Cosn B

I virtual machines

Qo Load balancers

Virtual networks

W secu nity Center

st Management + Billing PUBLISHER

ad Help + support

Figure 4-11.

A2 Search resources, services, and docs

Home > New > S0L Database

SQL Database 2 0

SQL Database is a cloud database service built for application developers that lets you scale on-
the-fly without downtime and efficiently deliver your applications. Built-in advisors quickly learn
your application’s unigue characteristics and dynamically adapt to maximize performance,
reliability, and data protection.

Use this template to create a new database in the SQL Database service. You can create the
database on a new logical server or on a logical server that already exists in your subscription

- Save for late:

I537. 1326. loot. list.

Microsoft

Documentation

Service Overview
Salutinne wnuran dalivar

USEFUL LINKS

Create SQL Database in Azure Portal

As the name for your database, just use “AdventureWorks,” pick the appropriate

subscription, create a new resource group or pick an existing, and choose “Sample

(AdventureWorksLT)” as your source (Figure 4-12).
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B 8| A SQLDatsbase- Microsc X | v = X

ADatabase | o= L e

= O @ ) | httpsy//portal.azure.com/#create/Microsofs

Microsoft Azure B Search resources, services, and docs

Home > New > SOL Database > SQL Database
Create a resource SQL Database o X

f+ Home
* Database name

AdventureWorks v |

Dashboard

All services
* Subscription

FAVORITES VP e
22 All resources * Resource group
Resource groups (New) AdventureWorksDemo ~
Create new

* Select source @

Sample (AdventureWorkslT) ~ ]
Server

: : >
Configure required settings o

8 virtual machines
Want to use SOL elastic pool?! @

4‘ Load balancers

) Yes (@) Mot now

B Storage accounts
* Pricing tier @ a
Virtual Configure required settings

L]

W security Center
ost Management + Billing

aa Help + support

Figure 4-12. Configure the SQL Database to be created through Azure Portal

You will also need to configure a Server (Figure 4-13), therefore expand the Server
submenu. Set up the server by providing a name (this has to be unique), a username,
and a password. Again, pick the location closest to you and keep the “Allow Azure
services to access server” box ticked. This will allow you to access this database from
other Azure VMs or services without having to worry about firewall settings. Depending
on your setup, you may still need to allow access from your on-premises box - we’ll get to
that later.
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B <r—,3| /A MNew server - Microsoft = | 4+ = [m] *

&« O @ £ httpsy/portal azure.com/#cre

Microsoft Azure B Search resources, services, and docs

Home > New > SOL Database > SQOL Database > Server > Mew server
Create a resource X Server X New server o X

#+ Home

* Server name

Dashboard — + | Create a new server

bdcawdemo v
All services database.windows.net
No servers found * Server admin login
e Tor et (eontikiliosetdoiat sl
bigdata
B2 All resources
* Pacew rd

* Confirm password

¥ Function Apps | uunuo{

* Location

West Europe i
+'| Allow Arure services to access server

I virtual machines

Qﬁ' Load balancers Advanced Data Security @

B storage accounts

FREE trial pericd of 30 days, and then 126495

Virtual netw: EUR/server/month.

Q Azure Active Directory Learn more [4

. Monitor

& advisor

W security Center

o Cost Management + Billing

-

ad Help + support

mation (\j}‘ Ons

Figure 4-13. Configure the Server for the new SQL Database in Azure Portal

You can now change the “Pricing tier” to “Basic” which is the cheapest option but
totally sufficient for what we're trying to achieve here.

Confirm your selections by clicking “Create”; this triggers the deployment of the
server and the database which should take a couple of minutes. You're done - you have
just created the AdventureWorksLT database which we can use for remote queries.

Try connecting to the database through Azure Data Studio (Figure 4-14).
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# Azure Data Studio [Administrater] - o *
File Edit View Help

E e B Connection

Recent Connections Saved Connections

No recent connection

2

1
Connection Details

FALY

- Connection type Micresoft SQL Server I
Server bdcawdemo.database.windows.net
Authentication type SQL Login X
User name bigdata
Password  sessseees
¥ Remember password
Database <Defauit> -
Server group <Defayit> b
Name (optional)
Advanced...

Figure 4-14. Connection dialogin ADS

If you are not on an Azure VM or have unticked the box to allow connections from
Azure, you will likely get the error shown in Figure 4-15.
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Q Connection error

Cannot open server ‘bdcawdemo’ requested by the login. Client is not allowed to access the server.

Figure 4-15. Azure Data Studio - Connection error

If this happens, go back to the Azure Portal (Figure 4-16), navigate to your resource
group containing the database server, and select the server (make sure to click the SQL
Server, not the SQL Database).
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'] ‘a| A AdventureWorksDemo - X | 4 = o x

= 9] @ £  https://portal.azure.com/#

Microsoft Azure £ Search resources, services, and docs

Home > Resource groups > AdventureWorksDemo
Create a resource [EI 1 AdventureWorksDemo

# Home

Edit columns [ Delete resource group O Refresh =% Move

€ s

¥ Dashboard
Subscription (change)

&1 Overview MVP

All services

% FAVORITES B Activity log Subscription 1D
2c478431-00e3-47e0-aa80-db5d8494f642
s Access control (IAM)
Tags (change)

¥ Resource groups & Tags Click here to add tags
S
& App services Events
¥ Function Apps Settings Filter by name. All types o Al locations
- o at Pt N
w SO databases @4 Quickstart 2items Show hidden types @
&F Arure (' Resource costs NAME nire
virtual machines +
& Deployments B, bdcawdemo SQL server
# Load balancers ici
® Policies B Ad ks (bdcawdemo/AdventureWorks) SQL database
counts i= Properties
Virtual netwos 8 Locks
@ Azure Active Directory B3 Automation script
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& Advisor F 5
? Insights (preview)
W Security Center
y Alerts
o Cost Management + B Gy ;
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& Help + support

Bl Diagnostic settings

@ Advisor recommendations

Support = troubleshooting

Figure 4-16. Azure SQL Database configuration

On the left, scroll down to “Security” and pick “Firewalls and virtual networks” as
shown in Figure 4-17.
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CHAPTER 4

J b_dcawdemo - Firewalls and virtual networks
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Properties
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H X
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)

Allow access to Azure services

Client IP address

RULE NAME

No firewall rules configured.

bdcawdemo.

Virtual networks

RULE NAME VIRTUAL ...

No vnet rules for this server.

Figure 4-17. Azure Portal Firewall Settings

httpsy//portal.azure.com/# @bweissmansalisyon.onmicrosoft.com/resource/subscription

= Add client IP

51.144.39.223

START IP

SUBNET  ADDRESS...

Either click “Add client IP” or manually add your IP address.

Save your changes.

bdcawdemo - Firewalls and virtual networks

+ Add existing virtual network

ENDFOI...

LOADING DATA INTO BIG DATA CLUSTERS

Connections from the IPs specified below provides access to all the databases in

Connecticns from the VNET/Subnet specified below provides access to all databa

+ Create new virtual network

RESOURCE... SUBSCRIPT.. 5.

Now, try connecting to the database again in Azure Data Studio. You should be able

to see the AdventureWorks Database including the tables shown in Figure 4-18.
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& bdcawd Al
File Edit View Help

SERVERS E P A

= EL bdcawdemo.database.windows.net, ..

- Databases
k System Databases
4 @ AdventureWorks
+ (@ Tables
+ B dbo.BuildVersion

¢+ B dboFmorlog

» B salestTAdd

v BB salestT.Customer

¢+ B salestT.CustomerAddress
*  BR salestT.Product

* B SalesLT ProductCategory

+ B salesLT.ProductDescription

¢+ B salestT.ProductModel

¢+ B8 SalesLT.ProductModelProduc...

¢+ B saleslT.SalesOrderDetail

v BE SaleslT.SalesOrderHeader

» Views
» Synonyms
r Programmability
» External Resources
» Storage
. Security
L4 Security

net - Azure Data Studic [Administrator]

bdcawdemo.database.windows.net X

Home > bdc

Home 5QL Server 2019 (Preview)

SERVER DASHEOARD

Tasks

Learn How To
Configure The
Dashboard

New Query

vdemo.database.windows.net

bdcawdemo.database windows.net : AdventureWorks @ A

Figure 4-18. Table structure of AdventureWorksLT shown in ADS

Summary

In this chapter, we loaded some data into the previously deployed SQL Server Big Data

Cluster. Now it’s time to look on how to consume that data!
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CHAPTER 5

Querying Big Data
Clusters Through T-SQL

Now that we have some data to play with, let’s look at how we can process and query that
data through the multiple options provided through Azure Data Studio.

External Tables

Querying a Big Data Cluster using T-SQL happens through external tables, a concept that
was introduced in SQL Server 2016 with the first appearance of PolyBase.

We will start to query our Big Data Cluster by adding some external tables to our new
empty database BDC_Empty which originally resides in our AdventureWorksLT database
in Azure.

To get started, connect to your SQL Server master instance (or any other SQL
Server 2019 instance with PolyBase enabled) through Azure Data Studio as shown in
Figure 5-1.
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Connection Details

Connection type Microsoft SQL Server

Server

Authentication type SQL Login 9
User name admin

PESS'.'.«O."C sEssnnan

Remember password
Database <Default> v
Server group <Default>

Name (optional)

Connect Cancel

Figure 5-1. Connection to the Master Instance

Your Connection type will be Microsoft SQL Server. The server will be the IP (or DNS
name) of your server (potentially adding the name of the instance if you used one) and
the port of the instance (separated by a comma), unless it’s a local installation that runs
on the standard port 1433.

Expand your Connection, Databases, the BDC_Empty database, as well as the tables
in it (Figure 5-2).
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# Azure Data Studio [Administrator]

File Edit View Help

& R EEB
= El I . <default> (sa)
_ Databazes
] L System Databases
«w BDC_Empty
+ [ Tables
: ¥ Views
Y 4 Synonyms
¥ Programmability
['] * External Resources
¥ Service Broker
/ & ’ Storage
L4 Security
+ @ DWConfiguration
» @ DWDiagnostics
» @ DWQueue
vl sales
Security
Server Objects
L=
£ Q0A0

Figure 5-2. Empty database in ADS

QUERYING BIG DATA CLUSTERS THROUGH T-SQL

GBDCEmpty @ A

As expected, there are none so far. Let’s change that!

If you right-mouse-click the database, you will see an option called “Create External

Table.” This will open up the corresponding wizard.

In the first step, it will ask you to confirm the database in which you want the external

tables to be created as well as to choose a data source type. At this point, the wizard

(Figure 5-3) supports SQL Server and Oracle; all other sources except CSV files (which

have their own wizard) need to be scripted manually.
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5 Azure Data Studio [Administrator] - o X
File Edit View Help

Create External Table

Select a Data Source
Select the destination database for your external table 0]

BDC_Empty ¥

Select your data source type

] O

SOL Server Oracle

S|
Figure 5-3. External Table Wizard in ADS - Select a Data Source

Select “SQL Server” and click Next.

In the next dialog (Figure 5-4), the wizard will ask you to set a master key password
for this database. This is required, as we’ll store credentials in the database which need
to be encrypted. If you run the wizard on a database that already has a master key
password, this step will be skipped.
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@ Azure Data Studio [Administrater] - [m] X
File Edit View Help

Create External Table

Step 2

A master key Is required, This secures the credentials used by an Extemnal Data Source. Note that you should back up the master key by using BACKUP MASTER KEY
and store the backup in 3 secure, off-site jocation,

Password *

e Set the Master Key password.

Confirm Password

Strong passwords use 3 combination of aiphanumeric, upper, lower, and special characters.

A EEE e

Figure 5-4. External Table Wizard in ADS - Create Database Master Key

Enter and confirm a password and click Next.

The next screen (Figure 5-5) asks you for a name (an alias) for your connection,
the connection’s server name, as well as the database name. You can also use select an
existing connection, if you've configured it previously.
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@ File Edit View Help (local) - Azure Data Studio [Administrator]

Figure 5-5. External Table Wizard in ADS - connection and credentials

In addition, you are provided with a list of credentials that already exist (if any) as

Create External Table

Step 3

Create a connection to your Data Source

External Data Source ||

Name *

Server Connection
Server Name *

Database Name

Configure
Credential

Choose Credential @ | .. Create New Credentiai .-
New Credential Name *
Username *

Password *

well as the option to create a new credential.

Use “AW” for your data source name as well as the “New Credential Name,”
AdventureWorks as your Database Name, and provide the Server Name, Username, and
Password that you've configured in the previous step. Click Next.

The wizard will now load all the tables and views in the source database which you

can expand and browse as shown in Figure 5-6.
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& Azure Data Studio [Adménistrator] - o w

Fle Edit View Help

Create External Table

Source Extemal SOL Data Type Nultable Collations

Eﬂﬂinﬂﬂﬂﬂﬂﬂﬂﬂﬂ |

Figure 5-6. External Table Wizard in ADS - object mapping

You can either select the whole database, all tables or all views, or a variable number
of single objects.

You won't be able to change any column definitions and you will always have to
“create” all columns that exist within the source. As no data is actually moved but is only
areference to a foreign schema, this is not an issue.

The only two things that can be changed (in the upper-right section of the screen as
shown in Figure 5-7) are the target schema and the target table name, as you may want
to create all external tables in a separate schema or add a prefix to them.

Source Table: External Table:

SalesLT.Address b dbo > |. Address

Figure 5-7. External Table Wizard in ADS - table mapping

For now, pick the tables Address, Customer, and CustomerAddress and leave all
other tables unticked as well as all settings unchanged. Click Next.
You have reached the last step, which is a summary as shown in Figure 5-8.
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& Acure Data Studic [Administrator] — = s

File Edit View Help

Create External Table

Destination Database:

&
i

[ pvien ] commmit | oma ] e |

Figure 5-8. External Table Wizard in ADS - Summary

You can now choose to either generate a script or simply create all Objects from the
wizard.

Let us take a look at the script (Listing 5-1), so click “Generate Script” and then
“Cancel” to close the wizard. You will see the script which will start a transaction and
then create all the objects in the right order, starting with the key, followed by the
credential and the data source and finally our three tables.

Listing 5-1. T-SQL to generate external tables from Azure SQL DB

BEGIN TRY
BEGIN TRANSACTION Tcfc2da095679401abdiae9deboebeae

USE [BDC_Empty];

CREATE MASTER KEY ENCRYPTION BY PASSWORD = '<yourkey>';

CREATE DATABASE SCOPED CREDENTIAL [AW]
WITH IDENTITY = 'bigdata', SECRET = '<yourpassword>';

CREATE EXTERNAL DATA SOURCE [AW]
WITH (LOCATION = 'sqlserver:// <yourserver>.database.windows.
net', CREDENTIAL = [AW]);
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CREATE EXTERNAL TABLE [dbo].[Address]

(

)

[AddressID] INT NOT NULL,

[AddressLine1] NVARCHAR(60) COLLATE SQL_Latinl_General CP1 CI_
AS NOT NULL,

[AddressLine2] NVARCHAR(60) COLLATE SQL Latini General CP1 CI AS,
[City] NVARCHAR(30) COLLATE SQL Latini General CP1 CI_AS NOT NULL,
[StateProvince] NVARCHAR(50) COLLATE SQL Latinl General CP1 CI
AS NOT NULL,

[CountryRegion] NVARCHAR(50) COLLATE SQL_Latini_General CP1 CI_
AS NOT NULL,

[PostalCode] NVARCHAR(15) COLLATE SQL Latinl General CP1 CI_AS
NOT NULL,

[rowguid] UNIQUEIDENTIFIER NOT NULL,

[ModifiedDate] DATETIME2(3) NOT NULL

WITH (LOCATION = '[AdventureWorks].[SalesLT].[Address]",
DATA_SOURCE = [AW]);
CREATE EXTERNAL TABLE [dbo].[Customer]

(

[CustomerID] INT NOT NULL,

[NameStyle] BIT NOT NULL,

[Title] NVARCHAR(8) COLLATE SQL Latini General CP1 CI AS,
[FirstName] NVARCHAR(50) COLLATE SQL Latinl General CP1 CI_AS
NOT NULL,

[MiddleName] NVARCHAR(50) COLLATE SQL Latinil General CP1 CI AS,
[LastName] NVARCHAR(50) COLLATE SQL Latini General CP1 CI_AS
NOT NULL,

[Suffix] NVARCHAR(10) COLLATE SQL Latini_General CP1 CI_AS,
[CompanyName] NVARCHAR(128) COLLATE SQL Latinil General CP1 CI AS,
[SalesPerson] NVARCHAR(256) COLLATE SQL Latinl General CP1 CI AS,

[EmailAddress] NVARCHAR(50) COLLATE SQL Latinil General CP1 CI AS,
[Phone] NVARCHAR(25) COLLATE SOL Latinl General CP1 CI AS,
[PasswordHash] VARCHAR(128) COLLATE SQL Latinl General CP1 CI
AS NOT NULL,
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[PasswordSalt] VARCHAR(10) COLLATE SQL Latini General CP1 CI AS
NOT NULL,
[rowguid] UNIQUEIDENTIFIER NOT NULL,
[ModifiedDate] DATETIME2(3) NOT NULL
)
WITH (LOCATION = '[AdventureWorks].[SalesLT].[Customer]",
DATA_SOURCE = [AW]);
CREATE EXTERNAL TABLE [dbo].[CustomerAddress]
(
[CustomerID] INT NOT NULL,
[AddressID] INT NOT NULL,
[AddressType] NVARCHAR(50) COLLATE SQL Latinl General CP1 CI_AS
NOT NULL,
[rowguid] UNIQUEIDENTIFIER NOT NULL,
[ModifiedDate] DATETIME2(3) NOT NULL
)
WITH (LOCATION = '[AdventureWorks].[SalesLT].[CustomerAddress]",
DATA SOURCE = [AW]);
COMMIT TRANSACTION Tcfc2da095679401abd1ae9debOebeae
END TRY
BEGIN CATCH
IF @@TRANCOUNT > O
ROLLBACK TRANSACTION Tcfc2da095679401abd1ae9deboebeae
DECLARE @ErrorMessage NVARCHAR(4000) = ERROR_MESSAGE();
DECLARE @ErrorSeverity INT = ERROR_SEVERITY();
DECLARE @ErrorState INT = ERROR_STATE();
RAISERROR(@ErrorMessage, @ErrorSeverity, @ErrorState);
END CATCH;

Once you run that script (click Run on the upper-left part of the screen or simply
hit F5), it will execute and create those objects in your database.

If you refresh your tables, the three new tables will show up and it will look like
Figure 5-9. You can recognize that they are external tables easily by the hint behind the

table names.
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- Databases
b System Databases
« @ BDC_Empty
= Tables

» BH dbo.Address (External)
» BB dbo.Customer (External)
» B dbo.CustomerAddress (External)

Figure 5-9. External tables shown after creation in ADS

In SSMS, they can be recognized by sitting in their own folder instead as shown in
Figure 5-10.

= @ BDC_Empty
® Database Diagrams
=) Tables
System Tables
FileTables
@ |y dbo.Address
+ TJ dbo.Customer
) TJ dbo.CustomerAddress

=

=

M

Figure 5-10. External tables shown after creation in SSMS
From a client perspective, these tables behave like local tables. Make a right-

mouse-click on the Address table in Azure Data Studio (Figure 5-11) and click “Select
Top 1000
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b Run # Disconnect J Change Connection | BDC_Empty - |§. Explain
1 SELECT TOP (128@) [AddressID]
2 s[Addressiinel]
3 »[AddressLine2]
4 J[City]
5 .[StateProvince]
[ s [CountryRegion]
7 2[PostalCode]
. [rowguid]

)

Tadifiadnaral

+ RESULTS
AddressiD Addresslinel AddressLine2 City StateProvince CountryRegion PostalCode rowguid ModifiedDate
9 8713 Yosemit..  NULL Bothell Washington United States 98011 26Bafb21-76d...
2 11 1318 Lasalle 5...  NULL Bothell Washington United States 98011 981b3303-aca...
3 25 9178 Jumping... NULL Dallas Texas United States 75201 cBdf3bd9-451...
4 28 9228 Via Del ... NULL Phoenix Arizona United States 85004 12ae5eel-fed.
5 32 26910 Indela ... NULL Montreal Quebec Canada H1Y 2H5 B84a95f62-3ae...
3 185 2681 Eagle Pe..  NULL Bellevue Washington United States 98004 Thecfdd2-226..
T 297 7943 Walnut ... NULL Renton Washington United States 98055 52410dad-27...
8 445 6388 Lake Cit.. NULL Burnaby British Colum... Canada V5SA 3AG
9 446 52560 Free St...  NULL Toronta Ontario Canada M4B V7
10 447 22580 Free St..  NULL Toronto Ontario Canada 4B V7 8&cee3d79-db..
11 448 2575 Bloor Str NULL Toronto Ontario Canada M4E 1V6 2dfed0ad-092...
2 449 NULL Chalk Riber Ontario Canada KOJ 10 B8b5aTT29-ch.
3 450 NULL CQuebec Quebec Canada GIR 5f3¢3452-647...
4 451 NULL Calgary Alberta Canada T2P 2G8 496441 10-619... 2006-12-01 0...
452 55 Lakeshore ... NULL Toronto Ontano Canada M4E V6 a3586521-0e0.. 2005-09-01 0...

Figure 5-11. Output of SELECT statement against external table in ADS

You can see that the query is basically “SELECT TOP 1000 * FROM dbo.Address’,
despite that data sitting in an external database. You can join this data against local
tables or any other kind of local data sources. We'll get to that when we look at external
tables from CSV files.

Let us start by running a query (Listing 5-2) against all three external tables to get all
companies whose main office is in Idaho.

Listing 5-2. SELECT statement joining two external tables

SELECT CompanyName
FROM [Address] ADDR
INNER JOIN CustomerAddress CADDR ON ADDR.AddressID = CADDR.AddressID
INNER JOIN Customer CUST ON CUST.CustomerID = CADDR.CustomerID
WHERE
AddressType = 'Main Office'
AND StateProvince = 'Idaho’

Again, this looks like a regular query on some local tables as shown in Figure 5-12.
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b Run § Disconnect I Change Connection | BDC_Empty - | & Explain

1 SELECT CompanyName

2 FROM [Address] ADDR
3 INNER JOIN CustomerAddress CADDR ON ADDR.AddressID = CADDR.AddressID
4 INNER JOIN Customer CUST ON CUST.CustomerID = CADDR.CustomerID
5 WHERE
6 AddressType = ‘Main Office’
7 |  AND StateProvince = 'Idaho’
4 RESULTS
CompanyName

1 Bicycle Accessories and Kits
2 Commendable Bikes
3  Vintage Sport Boutique

4 MESSAGES
5:03:25 PM X in Ty ine 1
(3 rows affected)
Total execution time: 00:00:03.049

Figure 5-12. Output of joined SELECT statement in ADS

Only, when you click the Explain button on the upper right, you will see the
execution plan (Figure 5-13), which reveals the fact that the query is running remote
(Remote Query and External Select operators).

Figure 5-13. Execution plan against two external tables in ADS
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Automated External Tables with Bimli

As you can see, this wizard has its limitations, but the underlying T-SQL is pretty
straightforward. It is therefore a prime candidate for automation which can be achieved,
among others, through the Business Intelligence Markup Language (Biml).

If you have not been exposed to Biml so far, there are numerous resources on the
Internet"?*? as well as within The Biml Book.* If you just want to use this specific example,
all you need to do is

— Getyour free copy of BimlExpress,® a free Biml Frontend that fully
integrates with Visual Studio.

— Get the source code provided in the following text from this book’s
website.

— Create the mini-metadata repository as described in the following text
and populate it with your metadata.

— Adjust the connection strings in the solution.

— Run the solution (just right-mouse-click “11_Polybase_C.biml” in
the solution and select “Generate SSIS Package”). Despite the
confusing title, this will write all the required .SQL files to C:\Temp\
Polybase.

As mentioned before, we will use a small metadata table to manage our data sources.
In this example, we will just point Biml toward our AdventureWorksLT database in Azure
again - feel free to play with that and add your own data sources here.

To get started, create a table called Datasources (Listing 5-3), for example, in
your previously created database BDC_Empty. Obviously, this table can be named in
whichever way you want, be put in any schema or database you prefer - but let’s just
keep it simple for now.

'www. cathrinewilhelmsen.net/biml/
*http://bimlscript.com/
*http://biml.blog/

“www . apress.com/de/book/9781484231340
*www.varigence.com/BimlExpress
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Listing 5-3. T-SQL to create datasources metatable

CREATE TABLE [dbo].[Datasources](
[DataSource] [nvarchar](50) NULL,
[Server] [nvarchar](50) NULL,
[UserID] [nvarchar](50) NULL,
[Password] [nvarchar](50) NULL,
[SRC DB] [nvarchar](50) NULL,
[SRC_Schema] [nvarchar](50) NULL,
[DEST_Schema] [nvarchar](50) NULL

) ON [PRIMARY]

Also, just add one record to this table pointing to your AWLT database (modify your
DNS name, username, and password as needed) using the code in (Listing 5-4).

Listing 5-4. Populate your datasources metatable

INSERT INTO Datasources VALUES
("AW', "<yourinstance>.database.windows.net", '<yourUser>','<yourPassword>',"
AdventureWorks', 'SalesLT', 'dbo")

This solution expects the master key to be set up already - this being a one-time task,
there is simply no need or justification to automate that step. If you skipped the manual
table creation in the previous exercise, you may want to fulfill this step manually before
continuing.

Our solution contains two Biml files (actually four - two files in C# and VB.NET,
respectively):

e 11_Polybase_C.biml

This is the control file which will hold the connection strings to

our metadata as well as the target database. It will loop through

the metadata and call the other Biml file (using a function called
CallBimlScript) for every single entry, writing a .SQL file to C:\temp\
polybase (so if you have ten entries in your Datasources table, you
will end up with ten files).

e 12_PolybaseWriter_C.biml

This file will generate the contents of each source schema.
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Ifyou take a look at the first file, you will notice that it starts with the declaration of
two (in this case identical) connection strings. One points to your database that holds
your metadata; the other one points to the PolyBase database in which you want the
external tables to be created or updated (Listing 5-5).

Listing 5-5. Biml code to loop over the datasources metatable

<#@ import namespace="System.Data"#>

<# string MetaString = "Data Source=.;Initial Catalog=BDC_Empty;Provider=
SOLNCLI11.1;Integrated Security=SSPI;";

string TargetString = "Data Source=.;Initial Catalog=BDC_Empty;Provider=
SOLNCLI11.1;Integrated Security=SSPI;";

DataTable ExternalConnections = ExternalDataAccess.
GetDataTable(MetaString,"SELECT * FROM Datasources");

foreach (DataRow conn in ExternalConnections.Rows) {
System.I0.File.WriteAllText(@"C:\Temp\Polybase\" + conn ["datasource"] +
" " + conn["SRC_Schema"] + ".sql", CallBimlScript("12_PolybaseWriter C.
biml",conn,TargetString));

} >

<Biml xmlns="http://schemas.varigence.com/biml.xsd"/>

The actual magic happens in the second file. It takes the DataRow containing the
metadata as well as the connection string from the target database as its parameters. It
will then generate T-SQL to

CREATE or ALTER the credentials for the connection

— CREATE or ALTER the external data source

DROP every existing external table in the target database

— CREATE a corresponding external table for every single table in the
source scheme

For the first three steps, it uses simple SQL Selects or semistatic T-SQL. For the fourth
part, it makes use of Biml'’s ability to read and interpret a database’s schema and store it
in the Biml object model (Listing 5-6).
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Listing 5-6. Biml “12_PolybaseWriter_C.biml” called by previous Biml script

<#@ import namespace="Varigence.Biml.CorelLowerer.TSqlEmitter" #>
<#@ import namespace="System.Data" #>
<#@ property name="conn" type="DataRow" #>
<#@ property name="TargetString" type="String" #>
-- Syncing schema <#= conn["SRC_Schema"] #> in <#= conn["SRC_DB" ]#> to
<#= conn["DEST Schema"]#>
-- This script assumes that a master key has been set
-- CREATE/ALTER CREDENTIAL
IF NOT EXISTS(select * from sys.database credentials WHERE NAME =
"<#= conn["DataSource" ]#>")
BEGIN
CREATE DATABASE SCOPED CREDENTIAL [<#= conn["DataSource"]#>]
WITH IDENTITY = '<#= conn["UserID"]#>", SECRET = '<#= conn["Password"]#>";
END
ELSE
BEGIN
ALTER DATABASE SCOPED CREDENTIAL [<#= conn["DataSource"]#>]
WITH IDENTITY = '<#= conn["UserID"]#>', SECRET =

"<#= conn["Password"]#>";
END
Go
-- CREATE DATASOURCE
IF NOT EXISTS(SELECT * FROM sys.external data sources WHERE NAME =
"<#= conn["DataSource"]#>")
BEGIN
CREATE EXTERNAL DATA SOURCE [<#= conn["DataSource"]#>]

WITH (LOCATION = 'sqlserver://<#= conn["Server"]#>",

CREDENTIAL = [<#= conn["DataSource"]#>]);
END
ELSE
BEGIN
ALTER EXTERNAL DATA SOURCE [<#= conn["DataSource"]#>] SET LOCATION =
N'sqlserver://<#= conn["Server"]#>', CREDENTIAL = [<#= conn["DataSource"]#>]
END
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GO
-- DROP EXISTING TABLES
<# string DropSQL = "SELECT schem.name SchemaName,tbl.Name TableName,object id
FROM sys.external tables tbl INNER JOIN sys.schemas schem on tbl.schema_id =
schem.schema_id INNER JOIN sys.external data sources ds on tbl.data source id =
ds.data_source id WHERE ds.name = '" + conn["DataSource"] + "'";DataTable
ExistingTables = ExternalDataAccess.GetDataTable(TargetString,DropSQL);
foreach (DataRow tbl in ExistingTables.Rows) { #>
IF EXISTS(select * from sys.external tables WHERE object id = <#=
tb1l["object id"]#>)
BEGIN
DROP EXTERNAL TABLE [<#= tbl["SchemaName"]#>].[<#= tbl["TableName"]#>]
END
Go
<t}
-- CREATE TABLES
<# string Src_ConnStr= "Data Source=" + conn["Server"] + ";Initial Catalog="
+ conn["SRC_DB"] + ";Provider=SQLNCLI11.1;user id=" + conn["UserID"] +
";Password=" + conn["password"] + ";";
string SRC Schema = conn["SRC_Schema"] + "";
var srcMeta = SchemaManager.CreateConnectionNode("Source"”, Src_ConnStr).
ImportDB(SRC_Schema,null, ImportOptions.None);
foreach (AstTableNode tbl in srcMeta.TableNodes) {

foreach (AstTableColumnNode col in tbl.Columns.Where(c => c.DataType ==

DbType.Xml)) {

col.DataType = DbType.AnsiString;
col.Length = 8000;

}
foreach (AstTableColumnNode col in tbl.Columns.Where(c => (c.DataType

== DbType.String) & (c.Length -1))) {
col.Length = 4000;

}
foreach (AstTableColumnNode col in tbl.Columns.Where(c => (c.DataType ==

DbType.AnsiString || c.DataType == DbType.Binary) & c.Length == -1)) {
col.Length = 8000;
}
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IF NOT EXISTS(SELECT * FROM sys.external tables WHERE NAME = '<#=tbl.Name#>")
BEGIN
CREATE EXTERNAL TABLE [<#= conn["DEST_Schema"] #>].[<#=tbl.Name#>] (

<#=string.Join(",\n",tbl.Columns.Select(i => i.Name + " " +
TSqlTypeTranslator.Translate(i.DataType, i.Length, i.Precision, i.Scale,
i.CustomType) + (i.IsNullable ? " NULL" : " NOT NULL")))#>

)

WITH (LOCATION = '[<#= conn["SRC DB"] #>].<#= tbl.SchemaQualifiedName#>"',
DATA SOURCE = [<#= conn["DataSource"] #>]);

END

GO

<t}

As the focus of this book is Big Data Clusters, not Biml, we won’t go into any more
details of this little helper. The main idea was to show you one of multiple ways on how
you can automate your way through external tables.

By the way, it would be super easy to adjust this code to work for other relational
sources such as Teradata or Oracle and automate external tables on these as well!

External Tables from CSV Files in HDFS

As you've learned already, besides other relational databases, you can also query flat
files using T-SQL and PolyBase. As flat files do not have a “one-size-fits-all” format due
to different delimiters and so on, we need to define at least one format definition. This
definition resides in your database, so the same definition can be shared by multiple
files, but you need to re-create the definition for every database you want the format to
be available in.

Let’s start with a simple example (Listing 5-7) in the sales database that was included
in the Microsoft samples.

Listing 5-7. T-SQL code to create external file format

CREATE EXTERNAL FILE FORMAT csv file
WITH (
FORMAT TYPE = DELIMITEDTEXT,
FORMAT _OPTIONS(
FIELD TERMINATOR = ',',
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STRING DELIMITER = '"',
FIRST ROW = 2,
USE_TYPE DEFAULT

TRUE)
)5

This T-SQL code will create a format called csv_file; the file will be a delimited text file
with double quotes as your text qualifier and a comma as your delimiter. The first row will
be skipped. The parameter USE_TYPE_DEFAULT will determine how to handle missing
fields. If it’s false, a missing field in the file will be NULL; otherwise, it will be 0 for numeric,
an empty string for character-based columns, and 01/01/1900 for any date columns.

In this case, we will use the StoragePool which is the HDFS storage that is built
into Big Data Clusters. To be able to access the StoragePool, you will need to create an
external data source that points to it as shown in Listing 5-8.

Listing 5-8. T-SQL code to create pointer to the storage pool

IF NOT EXISTS(SELECT * FROM sys.external data sources WHERE name =
'SqlStoragePool')

CREATE EXTERNAL DATA SOURCE SqlStoragePool

WITH (LOCATION = 'sqlhdfs://controller-svc/default’);

With the format and data source in place, we can now create an external table that
references this format as well as a file location (Listing 5-9).

Listing 5-9. T-SQL code to create an external table based on a CSV file

CREATE EXTERNAL TABLE [web clickstreams hdfs csv]
("wecs_click date sk™ BIGINT , "wcs click time sk" BIGINT , "wcs sales sk"
BIGINT , "wcs_item sk" BIGINT , "wcs web_page sk" BIGINT , "wcs user sk"
BIGINT)
WITH
(

DATA_SOURCE = SqlStoragePool,

LOCATION = '/clickstream data',
FILE_FORMAT = csv_file

)5
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Just as with the SQL Server-based external tables, the first step is to define the
columns including their names and datatypes. In addition, we need to provide a DATA __
SOURCE which is our SqlStoragePool, so basically the HDES of our Big Data Cluster
(where we also uploaded the flight delay samples earlier); a LOCATION within that
source (in this case, the clickstream_data subfolder); and a FILE_FORMAT which is our
csv_file format we've created in the previous step.

Again, no data is transferred at this point. All we did was to create references to data
residing somewhere else - in this case within the storage pool.

We can now live-query this file by a simple query like this (Listing 5-10).

Listing 5-10. SELECT statement against csv-based external table

SELECT * FROM [dbo].[web clickstreams hdfs csv]

But we can also join the data from the CSV with data that sits in a regular table within
this database (Listing 5-11).

Listing 5-11. SELECT statement joining a regular table with a csv-based
external table

SELECT

wcs_user sk,
SUM( CASE WHEN i_category = 'Books' THEN 1 ELSE 0 END) AS book category clicks,
SUM( CASE WHEN i category id = 1 THEN 1 ELSE 0 END) AS [Home & Kitchen],
SUM( CASE WHEN i_category id = 2 THEN 1 ELSE 0 END) AS [Music],
SUM( CASE WHEN i_category id = 3 THEN 1 ELSE 0 END) AS [Books],
SUM( CASE WHEN i category id = 4 THEN 1 ELSE 0 END) AS [Clothing &
Accessories],
SUM( CASE WHEN i category id
SUM( CASE WHEN i_category id
Improvement],
SUM( CASE WHEN i_category id = 7 THEN 1 ELSE 0 END) AS [Toys & Games],
SUM( CASE WHEN i category id = 8 THEN 1 ELSE 0 END) AS [Movies & TV],
SUM( CASE WHEN i _category id = 9 THEN 1 ELSE 0 END) AS [Sports & Outdoors]

FROM [dbo].[web clickstreams hdfs csv]

INNER JOIN item it ON (wcs_item sk = i item sk

AND wcs_user sk IS NOT NULL)

5 THEN 1 ELSE 0 END) AS [Electronics],
6 THEN 1 ELSE 0 END) AS [Tools & Home

=

GROUP BY wcs _user_sk;
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Let’s take a look at the execution plan of this query (Figure 5-14).

Figure 5-14. Execution plan of previous SELECT statement in ADS

As you can see, this is - as expected - a combination of well-known operations like a
clustered columnstore index scan as well as new features like the external select which
are eventually merged together.

Of course, we can also join data from multiple CSVs. Therefore, we create an external
table for each of our flight delay CSV files first. To help with that, there is another wizard
(Figure 5-15).

4 HDFS
4 Flight_Delays
[ airines.csv

[ airports csu

& flights Reloash
< clickstre @ Create External Table From CSV Files
& web_¢
Save
« jar :
Preview
[ mssql
Copy Path
A
gEE Delete
[ spark.

Analyze in Notebook

Figure 5-15. Create external table from CSV menu in ADS
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Right-click the file “airlines.csv” in Azure Data Studio and select “Create External
Table From CSV Files.”

This will launch the wizard.

In the first screen (Figure 5-16), it will ask you for the connection details to your
SQL Server Master Instance which you can also choose from a drop-down list of active
connections, if you're currently connected to the instance.

Create External Table From CSV

Figure 5-16. Create External Table Wizard (CSV) in ADS - select master instance

Fill them in or select your connection and click “Next.”
In the next step (Figure 5-17), the wizard will propose a target database as well as the
name and the schema of the external table. All three can be modified if needed.
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Q-
Q)
(o))
D

el M AR Lakalinan i s e
o Select the destination database for your extern
Source File
/Flight_Delays/airlines.csv

@ Database the external table will be created in

sales v

Name for new external table *

airiines

Schema for new external table

dbo v

Figure 5-17. Create External Table Wizard (CSV) in ADS - target table details

For now, just confirm with “Next.”

The next screen (Figure 5-18) gives you a preview of the data in the table (first 50
rows) so you can get a feeling about what the file is representing. Obviously, for rather
wide files, this is not super helpful.
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This operation analyzed the input file structure to generate the preview below for up to the first 50 rows.

IATA_CODE

AIRLINE

o UA United Air Lines Inc

us

Figure 5-18. Create External Table Wizard (CSV) in ADS - Preview Data

There is nothing that can actually be done on this screen so just click “Next” again.
In step four (Figure 5-19), the wizard is proposing column names and data types.
Both can be overridden. Unless you have a good reason to, in many cases it’s actually

a good advice to leave it unchanged as the detection mechanisms are rather solid
so far.
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Step 4

A A L . ™ a -
o Viodify Columns

Column Name Data Type Allow Nulls
IATA_CODE nvarchar{50) v
AIRLINE nvarchar(50) -

@
2]
o

Figure 5-19. Create External Table Wizard (CSV) in ADS - Modify Columns

After clicking “Next” again, we end up with a summary as shown in Figure 5-20
just like after the SQL Server table wizard.
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Create External Table information

Object type MName
Server name

Database name sales
Table name airlines
aDie schema abo

Source File

o—0—0 090

Figure 5-20. Create External Table Wizard (CSV) in ADS - Summary

Choose “Generate Script” and click “Cancel.” Take a look at the generated script
(Listing 5-12).

Listing 5-12. T-SQL output from the Create External Table Wizard (CSV) in ADS

BEGIN TRY
BEGIN TRANSACTION Td436a09bbb9a472298de35f6188d889
USE [sales];
CREATE EXTERNAL FILE FORMAT [FileFormat dbo airlines]
WITH (FORMAT TYPE = DELIMITEDTEXT, FORMAT OPTIONS (FIELD

TERMINATOR = ',', STRING DELIMITER = '"', FIRST ROW = 2));
CREATE EXTERNAL TABLE [dbo].[airlines]
(

[IATA CODE] nvarchar(50) NOT NULL,

[AIRLINE] nvarchar(50) NOT NULL
)
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WITH (LOCATION = '/Flight Delays/airlines.csv', DATA SOURCE =
[SqlStoragePool], FILE FORMAT = [FileFormat dbo airlines]);
COMMIT TRANSACTION Td436a09bbb9a472298de3516188d889
END TRY
BEGIN CATCH
IF @@TRANCOUNT > O
ROLLBACK TRANSACTION Td436a09bbb9a472298de35f6f88d889
DECLARE @ErrorMessage NVARCHAR(4000) = ERROR_MESSAGE();
DECLARE @ErrorSeverity INT = ERROR_SEVERITY();
DECLARE @ErrorState INT = ERROR_STATE();
RAISERROR(@ErrorMessage, @ErrorSeverity, @ErrorState);
END CATCH;

As you can see, the wizard does not recycle identical file formats but rather creates
one format per file. This has obviously pros and cons. The big pro is obviously that you
won’t end up with hundreds of formats. The big con is that you potentially start building
dependencies between files where you don’t want any. It is up to you whether you
change the script to use the previously created csv_file format or just keep creating new
formats for this exercise.

Repeat these steps for the other two files.

Then, we can query and join them (see Listing 5-13) as if they were SQL tables to get
the ten Airline/Destination City combinations with the highest number of cancellations.

Listing 5-13. SELECT statement against previously created external tables

SELECT TOP 10 ap.CITY, al.AIRLINE, COUNT(*)
FROM flights f1
INNER JOIN airlines al
ON f1.AIRLINE = al.IATA CODE
INNER JOIN airports ap
ON f1.DESTINATION AIRPORT = ap.IATA CODE
WHERE cancelled = 1
GROUP BY ap.CITY,
al.AIRLINE
ORDER BY COUNT(*) DESC;
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This will result in an error.

The reason for that is the fact that the wizard only looks at the first 50 lines of your
data, so if your data does not show a certain pattern in those rows, it won’t be detected.
The error message (Figure 5-21) clearly tells us what the issue is though.

Msg 7320, Level 16, State 110, Line 1

Cannot execute the query "Remote Query" against OLE DB provider "SQLNCLI11" for
linked server "(null)". 105082;Generic ODBC error: [Microsoft][ODBC Driver 17 for SQL Ser
ver][SQL Server]Bulk load data conversion error (overflow) for row 14500, column 27 (AIR_
SYSTEM_DELAY). .

Figure 5-21. Error message when querying the external tables

In row 14500 (so way beyond the first 50), there is an overflow in the AIR_SYSTEM _
DELAY column.

If we look at the script (Listing 5-14) for this table, we notice that this was detected as
a tinyint.

Listing 5-14. Original CREATE statement for external table flights

CREATE EXTERNAL TABLE [dbo].[flights]
(

[YEAR] smallint NOT NULL,
[MONTH] tinyint NOT NULL,
[DAY] tinyint NOT NULL,
[DAY OF WEEK] tinyint NOT NULL,
[AIRLINE] nvarchar(50) NOT NULL,
[FLIGHT NUMBER] smallint NOT NULL,
[TAIL NUMBER] nvarchar(50),
[ORIGIN_AIRPORT] nvarchar(50) NOT NULL,
[DESTINATION AIRPORT] nvarchar(50) NOT NULL,
[SCHEDULED DEPARTURE] time NOT NULL,
[DEPARTURE_TIME] time,
[DEPARTURE_DELAY] smallint,
[TAXI _OUT] tinyint,
[WHEELS OFF] time,
[SCHEDULED TIME] smallint NOT NULL,
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[ELAPSED TIME] smallint,
[AIR TIME] smallint,
[DISTANCE] smallint NOT NULL,
[WHEELS ON] time,
[TAXI_IN] tinyint,
[SCHEDULED ARRIVAL] time NOT NULL,
[ARRIVAL TIME] time,
[ARRIVAL DELAY] smallint,
[DIVERTED] bit NOT NULL,
[CANCELLED] bit NOT NULL,
[CANCELLATION REASON] nvarchar(50),
[AIR_SYSTEM DELAY] tinyint,
[SECURITY DELAY] tinyint,

[AIRLINE DELAY] smallint,
[LATE_AIRCRAFT DELAY] smallint,
[WEATHER_DELAY] tinyint

WITH (LOCATION = N'/Flight Delays/flights.csv', DATA_SOURCE =
[SqlStoragePool], FILE FORMAT = [FileFormat flights]);

Let’s just change that to an int (or bigint) and, while we're at it, do the same for the

other delay columns (Listing 5-15).

Listing 5-15. Updated CREATE statement for external table flights
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CREATE EXTERNAL TABLE [dbo].[flights]

(

[YEAR] smallint NOT NULL,

[MONTH] tinyint NOT NULL,

[DAY] tinyint NOT NULL,

[DAY_OF WEEK] tinyint NOT NULL,

[AIRLINE] nvarchar(50) NOT NULL,

[FLIGHT NUMBER] smallint NOT NULL,

[TAIL NUMBER] nvarchar(50),

[ORIGIN_AIRPORT] nvarchar(50) NOT NULL,
[DESTINATION AIRPORT] nvarchar(50) NOT NULL,
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[SCHEDULED DEPARTURE] time NOT NULL,
[DEPARTURE_TIME] time,
[DEPARTURE_DELAY] smallint,
[TAXI_OUT] tinyint,

[WHEELS_OFF] time,

[SCHEDULED TIME] smallint NOT NULL,
[ELAPSED TIME] smallint,

[AIR TIME] smallint,

[DISTANCE] smallint NOT NULL,
[WHEELS ON] time,

[TAXI_IN] tinyint,

[SCHEDULED ARRIVAL] time NOT NULL,
[ARRIVAL TIME] time,

[ARRIVAL DELAY] smallint,
[DIVERTED] bit NOT NULL,
[CANCELLED] bit NOT NULL,
[CANCELLATION REASON] nvarchar(50),

[AIR_SYSTEM DELAY] bigint,

[SECURITY DELAY] bigint,

[AIRLINE DELAY] bigint,

[LATE_AIRCRAFT DELAY] bigint,

[WEATHER_DELAY] bigint

)

WITH (LOCATION = N'/Flight Delays/flights.csv', DATA_SOURCE =
[SqlStoragePool], FILE FORMAT = [FileFormat flights]);

Note that you need to drop the external table (Listing 5-16) before you can re-create it.

Listing 5-16. DROP statement
DROP EXTERNAL TABLE [dbo].[flights]

After dropping and re-creating the table, try running the cancellation query again.

The error is gone! YAY!

Now try to get another view of that data: simply the first ten rows (Listing 5-17) with
the matching columns from all three tables.
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Listing 5-17. Different SELECT statement against these external tables

SELECT TOP 10 *
FROM flights f1
INNER JOIN airlines al
ON f1.AIRLINE = al.IATA_CODE
INNER JOIN airports ap
ON f1.DESTINATION_ AIRPORT = ap.IATA_CODE;

Unfortunately, this results in a new error (Figure 5-22).

Msg 7320, Level 16, State 110, Line 1
Cannot execute the query "Remote Query" against OLE DB provider "SQLNCLI11" for

linked server "(null)".

105081;Cannot load a null value into non-nullable target column.

Figure 5-22. Different error message when querying the external tables

It’s good practice to make all flat file columns nullable.
So, let’s re-create our table (Listing 5-18) again, this time without any “NOT NULL’ hints.

Listing 5-18. DROP and CREATE external table flights again with all columns
allowing NULLS

DROP EXTERNAL TABLE [dbo].[flights]
GO
CREATE EXTERNAL TABLE [dbo].[flights]
(
YEAR] smallint,
MONTH] tinyint,
DAY] tinyint,
DAY OF WEEK] tinyint,
AIRLINE] nvarchar(50),
FLIGHT _NUMBER] smallint,
TAIL NUMBER] nvarchar(50),
ORIGIN AIRPORT] nvarchar(50),
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[DESTINATION AIRPORT] nvarchar(50),
[SCHEDULED DEPARTURE] time,
[DEPARTURE_TIME] time,
[DEPARTURE_DELAY] smallint,
[TAXI_OUT] tinyint,

[WHEELS OFF] time,

[SCHEDULED TIME] smallint,

[ELAPSED TIME] smallint,

[AIR_TIME] smallint,

[DISTANCE] smallint,

[WHEELS ON] time,

[TAXI_IN] tinyint,

[SCHEDULED ARRIVAL] time,

[ARRIVAL TIME] time,

[ARRIVAL DELAY] smallint,
[DIVERTED] bit,

[CANCELLED] bit,

[CANCELLATION REASON] nvarchar(50),
[AIR_SYSTEM DELAY] bigint,
[SECURITY DELAY] bigint,

[AIRLINE DELAY] bigint,
[LATE_AIRCRAFT DELAY] bigint,
[WEATHER _DELAY] bigint

)

WITH (LOCATION = N'/Flight Delays/flights.csv', DATA SOURCE =
[SqlStoragePool], FILE FORMAT = [FileFormat flights]);

Now, both queries run smoothly! You will notice though that performance is not
great which is mainly due to the lookup against the other two, rather small, flat files.

In such cases, we recommend to either store that data in a persisted or temporary
SQL table (Listing 5-19).

Listing 5-19. Store data from CSV in temp tables instead of direct queries

SELECT * into #al FROM airlines
SELECT * into #ap FROM airports
SELECT TOP 10 *
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FROM flights f1
INNER JOIN #al al
ON f1.AIRLINE = al.IATA_CODE
INNER JOIN #ap ap
ON f1.DESTINATION_ AIRPORT = ap.IATA_CODE;
DROP TABLE #al
DROP TABLE #ap

This improves performance tremendously without wasting too many system
resources as the large dataset stays within the CSV.

One of the biggest challenges in such an environment is finding a good trade-off
between data redundancy and performance.

Accessing Data in an Azure Blob Storage

If you are storing data in an Azure Blob Storage, there is no need (apart from maybe
network latency) to copy that data into your SqlStoragePool. You can also access a Blob
Storage by defining it as an external data source (Listing 5-20).

Listing 5-20. Create external data source using an Azure Blob Storage

CREATE EXTERNAL DATA SOURCE AzureStorage with (
TYPE = HADOOP,
LOCATION ='wasbs://<blob_container name>@<azure_storage account_
name>.blob.core.windows.net',
CREDENTIAL = AzureStorageCredential

)5

External Tables from Other Data Sources
File-Based Data Sources

Other variations of file-based data sources are Parquet, Hive RCFile, and Hive ORC;
however, if you are using the storage pool, only delimited and Parquet files are supported
at this point.

As these are compressed file types, we need to provide the DATA_ COMPRESSION as
well as, for RCFile, the SERDE_METHOD (Listing 5-21).
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Listing 5-21. Sample CREATE statements for other external table types

-- Create an external file format for PARQUET files.
CREATE EXTERNAL FILE FORMAT file format name
WITH (
FORMAT_TYPE = PARQUET
[ , DATA_COMPRESSION = {
'org.apache.hadoop.io.compress.SnappyCodec'
| 'org.apache.hadoop.io.compress.GzipCodec' }

D;

--Create an external file format for ORC files.
CREATE EXTERNAL FILE FORMAT file format name
WITH (
FORMAT _TYPE = ORC
[ , DATA COMPRESSION = {
"org.apache.hadoop.io.compress.SnappyCodec'
| 'org.apache.hadoop.io.compress.DefaultCodec' }

D;

--Create an external file format for RCFILE.
CREATE EXTERNAL FILE FORMAT file format name
WITH (
FORMAT TYPE = RCFILE,
SERDE_METHOD = {
'org.apache.hadoop.hive.serde2.columnar.LazyBinaryColumnarSerDe'
| 'org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe'

}
[ , DATA COMPRESSION = 'org.apache.hadoop.io.compress.DefaultCodec' ]);

(taken from the official Microsoft Docs, https://docs.microsoft.com/en-us/sql/
t-sql/statements/create-external-file-format-transact-sql)
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ODBC

When trying to connect to an external data source through a generic ODBC, you need
to provide the server (and optionally a port) just like when adding a SQL Server, but in
addition, you will need to specify the driver as well (Listing 5-22), so SQL Server knows
how to connect to the source.

Listing 5-22. Create external data source against an ODBC source

CREATE EXTERNAL DATA SOURCE <myODBCName>
WITH (

LOCATION = odbc://<0DBC server address>[:<port>],
CONNECTION OPTIONS = 'Driver={<Name of Installed Driver>};
ServerNode = <name of server address>:<Port>’,

PUSHDOWN = ON,

CREDENTIAL = credential name

)5

The PUSHDOWN flag defines whether computation will be pushed down to the
source and is ON by default.

Others

For the other built in, the syntax follows the generic schema (Listing 5-23).

Listing 5-23. Generic CREATE statement for an external data source

CREATE EXTERNAL DATA SOURCE <myExternalDataSource>
WITH (

LOCATION = <vendor>://<server>[:<port>],
CREDENTIAL = credential name

)5

where you replace <vendor> by the name of the vendor of the built-in connector you're
trying to use.
For Oracle, that would look like Listing 5-24.
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Listing 5-24. CREATE statement for an external data source in Oracle

CREATE EXTERNAL DATA SOURCE <myOracleSource>
WITH (

LOCATION = oracle://<server address>[:<port>],
CREDENTIAL = credential name

The same logic applies for Teradata and MongoDB, and we expect all future vendors
to be implemented in the same way.

The SqlDataPool

The SqlDataPool is used to address the data pool of the Big Data Cluster which allows
you to distribute data from a SQL table among the whole pool.

Just like with the storage pool, a respective pointer needs to be created first in each
database that you want to use as shown in Listing 5-25.

Listing 5-25. T-SQL code to create pointer to the SQL Data Pool

IF NOT EXISTS(SELECT * FROM sys.external data sources WHERE name = 'SqlDataPool')
CREATE EXTERNAL DATA SOURCE SqlDataPool
WITH (LOCATION = 'sqldatapool://controller-svc/default');

We will do this again in the sales database.

First of all, we start by creating an external table (Listing 5-26) again. Notice that
unlike in previous samples, where we were addressing a specific file or location, in this
instance, we only provide the hint that this table is to be stored in the SqlDataPool and is
to be distributed using round robin.

Listing 5-26. CREATE statement for external table on SqlDataPool

CREATE EXTERNAL TABLE [web clickstream clicks data pool]
"wcs_user_sk" BIGINT , "i category id" BIGINT , "clicks" BIGINT)
WITH
(
DATA SOURCE = SqlDataPool,
DISTRIBUTION = ROUND ROBIN

)5

You can now insert data into this table using a regular INSERT INTO statement as

shown in Listing 5-27.
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Listing 5-27. Populate table in SqlDataPool from SQL Query

INSERT INTO web clickstream clicks data pool
SELECT wcs_user_sk, i category id, COUNT BIG(*) as clicks
FROM sales.dbo.web clickstreams hdfs parquet
INNER JOIN sales.dbo.item it ON (wcs item sk = i item sk
AND wcs_user_sk IS NOT NULL)
GROUP BY wcs_user_sk, i category id

Just as in all previous examples, this external table can now be queried and joined
like any other table (Listing 5-28).

Listing 5-28. SELECT against table in SqlDataPool (stand-alone and joined
against other tables)

SELECT count(*) FROM [dbo].[web clickstream clicks data pool]
SELECT TOP 10 * FROM [dbo].[web clickstream clicks data pool]

SELECT TOP (100)
W.wcs_user_sk,
SUM( CASE WHEN i.i category = 'Books' THEN 1 ELSE 0 END) AS book_
category clicks,
SUM( CASE WHEN w.i category id = 1 THEN 1 ELSE 0 END) AS [Home & Kitchen],
SUM( CASE WHEN w.i category id = 2 THEN 1 ELSE 0 END) AS [Music],
SUM( CASE WHEN w.i_category id = 3 THEN 1 ELSE 0 END) AS [Books],
SUM( CASE WHEN w.i_category id = 4 THEN 1 ELSE 0 END) AS [Clothing &
Accessories],
SUM( CASE WHEN w.i category id
SUM(' CASE WHEN w.i category id
Improvement],
SUM( CASE WHEN w.i category id = 7 THEN 1 ELSE 0 END) AS [Toys & Games],
SUM( CASE WHEN w.i category id = 8 THEN 1 ELSE 0 END) AS [Movies & TV],
SUM(' CASE WHEN w.i_category id = 9 THEN 1 ELSE 0 END) AS [Sports & Outdoors]
FROM [dbo].[web clickstream clicks data pool] as w
INNER JOIN (SELECT DISTINCT i category id, i category FROM item) as i
ON i.i category id = w.i category id
GROUP BY w.wcs_user_sk;

5 THEN 1 ELSE 0 END) AS [Electronics],
6 THEN 1 ELSE 0 END) AS [Tools & Home
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The execution plan (Figure 5-23) looks similar to what we saw before when querying

against the storage pool.

=R

Figure 5-23. Execution plan in ADS

Notice that unlike in the SqlStoragePool, the data that sits in the data pool is not
visible as a file in the HDFS folder in Azure Data Studio, as its data is stored in regular
SQL tables!

Indexes on the SqglDataPool

One big difference between the SqlDataPool and other external data sources is that it
consists of regular SQL Server tables, which means you can directly control indexes on
those tables.

By default, every table in the SqlDataPool will be created with a clustered
columnstore index. As the main use case for scale out and therefore the data pool are
analytics workloads, this will probably satisfy many query needs out of the box.

If you still want to create or change an index, this needs to happen within the data pool
itself, which can be achieved using the EXECUTE AT switch as shown in Listing 5-29.

Listing 5-29. EXEC with EXECUTE AT
exec (<your query>) AT Data_Source SqlDataPool

You can use this to run any kind of query on the data pool and it will return one
result grid for every node in the data pool. To get a list of all tables in the data pool, for
example, run Listing 5-30.

Listing 5-30. Get a list of tables in data pool

exec ('SELECT * FROM sys.tables') AT Data_Source SqlDataPool
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The result is shown in Figure 5-24.

name object_id principal_id | schema_id parent_object_id  type type_desc
1 spt_fallback_db 117575457 NULL 1 e U USER_TABLE
2 spt_fallback_dev 133575514 NULL 1 <] u USER_TABLE
3 spt_fallback_usg 149575571 NULL 1 e U USER_TABLE
4 spt_monitor 1883153469 NULL 1 e u USER_TABLE
5 MSreplication_options @ 2187154552 = NULL 1 a u USER_TABLE

name object_id principal_id schema_id parent_object_id |type type_desc
1 spt_fallback_db 117575457  NULL 1 @ U USER_TABLE
2 spt_fallback_dev 133575514 NULL 1 e U USER_TABLE
3 spt_fallback_usg 149575571 NULL 1 e u USER_TABLE
4 spt_monitor 1803153469  NULL 1 -] u USER_TABLE
5 MSreplication_options = 2187154552 MNULL 1 ] U USER_TABLE

Figure 5-24. Result from a list of tables in data pool

It may surprise you a little bit as you were maybe expecting different tables. The

reason for that is that just like your master instance, the data pool will have multiple

databases, so context is important. Let’s try that again by switching the current database

context as shown in Listing 5-31. This will only work for databases that have at least one

table in SqlDataPool, as the database is created at that point.

Listing 5-31. Get alist of tables in data pool from sales database

exec ('USE sales; SELECT * FROM sys.tables') AT Data_Source SqlDataPool

This time the result (see Figure 5-25) looks more as we would have expected.

Results  Messages

1

1

Figure 5-25. Result from a list of tables in data pool from sales database
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web_clickstream_clicks_data_..

name

web_clickstream_clicks_data_..

object_id |principal_id | schema_id | parent_object_id | type type_desc

581577110

NULL

| e U

USER_TABLE

object_id |principal_id | schema_id | parent_object_id | type type_desc

581577110

NULL

1 e U

USER_TABLE
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To add an index, you would simply add the respective CREATE INDEX statement
within the EXEC statement as illustrated in Listing 5-32.

Listing 5-32. CREATE INDEX in data pool

EXEC ('USE Sales; CREATE NONCLUSTERED INDEX [CI wcs user sk] ON [dbo].
[web _clickstream clicks data pool] ([wcs user sk] ASC)') AT DATA SOURCE
SqlDataPool

Summary

In this chapter, we used the previously loaded data and queried it using multiple
techniques using T-SQL, from another SQL Server to flat files. We also took a look on
how certain tasks in that aspect can be automated.

Asyou've learned before, T-SQL isn’t the only way to query a Big Data Cluster:
another way of doing so is Spark. Chapter 6 will guide you through that process!
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CHAPTER 6

Working with Spark in
Big Data Clusters

So far, we have been querying data inside our SQL Server Big Data Cluster using external
tables and T-SQL code. We do, however, have another method available to query data
that is stored inside the HDFS filesystem of your Big Data Cluster. As you have read in
Chapter 2, Big Data Clusters also have Spark included in the architecture, meaning we
can leverage the power of Spark to query data stored inside our Big Data Cluster.

Spark is a very powerful option of analyzing and querying the data inside your Big
Data Cluster, mostly because Spark is built as a distributed and parallel framework,
meaning it is very fast at processing very large datasets making it far more efficient when
you want to process large datasets than SQL Server. Spark also allows a large flexibility in
terms of programming languages that it supports, the most prominent ones being Scala
and PySpark (though Spark also supports R and Java).

The PySpark and Scala syntax are both very similar in the majority of commands we
are using in the examples. There are some subtle nuances though.

The example code of Listings 6-1 and 6-2 shows how to read a CSV file into a data frame
in both PySpark and Scala (don’t worry we will get into more detail on data frames soon).

Listing 6-1. Import CSV from HDFS using PySpark

# Import the airports.csv file from HDFS (PySpark)
df airports = spark.read.format('csv').options(header="true’,
inferSchema="true').load("'/Flight Delays/airports.csv')

Listing 6-2. Import CSV from HDFS using Scala

// Import the airports.csv file from HDFS (Scala)
val df airports = spark.read.format("csv").option("header", "true").
option("inferSchema", "true").load("/Flight Delays/airports.csv")
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As you can see, the code of the example looks very similar for PySpark and Scala,
but there are some small differences. For instance, the character used for comments, in
PySpark a comment is marked with a # sign, while in Scala we use //. Another difference
is in the quotes. While we can use both a single quote and a double quote in the PySpark
code, Scala is pickier accepting only double quotes. Also, where we don’t need to
specifically define a variable in PySpark (which is called a value in Scala), we do need to
explicitly specify this when using Scala.

While this book is focused on Big Data Clusters, we believe an introduction to
writing PySpark will be very useful when working with SQL Server Big Data Clusters
since it allows you different method to work with the data inside your Big Data Cluster
besides SQL.

Loading Data and Creating a Spark Notebook

If you followed the steps in the “Getting Some Sample Files into the Installation”
section of Chapter 4, you should have already imported the “2015 Flight Delays and
Cancellations” dataset from Kaggle to the HDEFS filesystem of your Big Data Cluster. If
you haven'’t done so already, and want to follow along with the examples in this section,
we recommend following the steps outlined in the “Getting Some Sample Files into

the Installation” section before continuing. If you imported the dataset correctly, you
should be able to see the “Flight_Delays” folder and the three CSV files inside the HDFS
filesystem through Azure Data Studio as shown in Figure 6-1.
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b Databases

b Security

b Server Objects

£ Data Services
4 @ HDFS

« 3 Flight_Delays

7] airlines.csv

] airports.csv

{7 flights.csv
4 jar
4 livy
4 spark
b spark-events
b tmp

Figure 6-1. Flight delay files in HDFS store
With our sample dataset available on HDFS, let’s start with exploring the data a bit.

The first thing we need to do is to create a new notebook through the “New
Notebook” option inside the Tasks window of our SQL Big Data Cluster tab (Figure 6-2).
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Home SQL Server big data cluster £ X SQL Server 2019 (Preview)

Tasks Notebooks

i) ]

New Notebook Open Notebook

s o

New Spark Job Cluster Status

Figure 6-2. Tasks in Azure Data Studio

After creating a new notebook, we can select what language we want to use by
selecting it through the “Kernel” drop-down box at the top of the notebook as shown in
Figure 6-3.

v SQL
PySpark
Spark | Scala

Spark | R
Python 3
PowerShell

Figure 6-3. Kernel selection in ADS notebook

During the remainder of this chapter, we will be using PySpark as the language
of all the examples. If you want to follow along with the examples in this chapter, we
recommend selecting the “PySpark” language.

With our notebook created and our language configured, let’s look at our flight delay
sample data!
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Working with Spark Data Frames

Now that we have access to our data, and we have a notebook, what we want to do is

load our CSV data inside a data frame. Think of a data frame as a table-like structure that

is created inside Spark. Conceptually speaking, a data frame is equal to a table inside

SQL Server, but unlike a table that is generally stored on a single computer, a data frame

consists of data distributed across (potentially) all the nodes inside your Spark cluster.
The code to load the data inside the “airports.csv” file into a Spark data frame

can be seen in Listing 6-3. You can copy the code inside a cell of the notebook. All

of the example code shown inside this chapter is best used as a separate cell inside

anotebook. The full example notebook that contains all the code is available at this

book’s GitHub page.

Listing 6-3. Import CSV data into data frame

# Import the airports.csv file from HDFS (PySpark)
df airports = spark.read.format('csv').options(header="true',
inferSchema="true"').load("'/Flight Delays/airports.csv')

If everything worked, you should end up with a Spark data frame that contains the
data from the airports.csv file.

As you can see from the example code, we provided a number of options to the
spark.read.format command. The most important one is the type of file we are reading;
in our case this is a CSV file. The other options we provide tell Spark how to handle the
CSV file. By setting the option header="true', we specify that the CSV file has a header
row which contains the column names. The option inferSchema="true' helps us with
automatically detecting what datatypes we are dealing with in each column. If we do
not specify this option, or set it to false instead, all the columns will be set to a string
datatype instead of the datatype we would expect our data to be (e.g., an integer datatype
for numerical data). If you do not use the inferSchema="true" option, or inferSchema
configures the wrong datatypes, you have to define the schema before importing the
CSV file and supply it as an option to the spark.read.format command as shown in the
example code of Listing 6-4.
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Listing 6-4. Define schema and supply it to spark.read.format
# Manually set the schema and supply it to the spark.read function

# We need to import the pyspark.sql.types library
from pyspark.sql.types import *

df schema = StructType([

StructField("IATA CODE", StringType(), True),
StructField("AIRPORT", StringType(), True),
StructField("CITY", StringType(), True),
StructField("STATE", StringType(), True),
StructField("COUNTRY", StringType(), True),
StructField("LATITUDE", DoubleType(), True),
StructField("LONGITUDE", DoubleType(), True)

)

# With the schema declared, we can supply it to the spark.read function
df airports = spark.read.format('csv').options(header="true').schema(df_
schema).load('/Flight Delays/airports.csv')

If this was your first notebook command against the Spark cluster, you will get some
information back regarding the creation of a Spark session as you can see in Figure 6-4.

° 1 # Import the airports.csv file from HDFS (pySpark}
2 df_airports = spark.read.format({'csv').options{header="true', inferSchema="true').load('/Flight_Delays/airports.csv")
ID YARN Application ID Kind State Spark Ul Driverlog Current session?

3 application_1554212350600_0004 pyspark idle Link Link v
Figure 6-4. Output of spark.read.format

A Spark session represents your entry point to interact with the Spark functions. In
the past, we would have to define a Spark context to connect to the Spark cluster, and
depending on what functionality we needed, we would have to create a separate context
for that specific functionality (like Spark SQL, or streaming functionalities). Starting from
Spark 2.0, Spark sessions became available as entry point, and it, by default, includes
all kinds of different functions that we had to create a separate context for in the past,
making it easier to work with them. When we run the first command inside a notebook
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against the Spark cluster, a Spark session needs to be created so we are able to send
commands to the cluster. Running subsequent commands will make use of the initially
created Spark session.

Now that we have our CSV data inside a data frame we can run all kind of commands
to retrieve information about our data frame. For instance, the example of Listing 6-5
returns the number of rows that are inside the data frame.

Listing 6-5. Retrieve row count of the data frame

# Display the amount of rows inside the df airports data frame
df airports.count()

The result should be 322 rows as shown in Figure 6-5 which returns the number of rows.

(4] 1 # Display the amount of rows inside the df_airports dataframe
; 2 df_airports.count()

Ll
%]
3]

Figure 6-5. Output of row count

Another very useful command is to return the schema of the data frame. This shows
us which columns make up the data frame and their datatypes. The code of Listing 6-6
gets the schema of the df _airports data frame and returns it as output (Figure 6-6).

Listing 6-6. Retrieve the schema of the data frame

# Display the schema of the df flights data frame (PySpark)
df airports.printSchema()

|== IATA CODE: string (nullable = true)
|-— AIRPORT: string (nullable = true)
|-— CITY: string (nullable = true)

| == STATE: string (nullable = true)

|-- COUNTRY: string (nullable = true)
|-— LATITUDE: double (nullable = true)
| -— LONGITUDE: double (nullable = true)

Figure 6-6. Schema output of the df_airports data frame
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Now that we know the schema of the data frame, let’s return some data from it. One easy
way to do that is to use the head() function. This function will return the top 7 rows from
the data frame. In the following example, we will return the first row of the data frame. The
output of the command is shown below the example (Listing 6-7 is followed by Figure 6-7).

Listing 6-7. Retrieve first row of data frame

# Let's return the first row
df airports.head(1)

[Row (IATA_CODE=u'ABE', AIRPORT=u'Lehigh Valley International Airport', CITY=u'Allentown', STATE=u'PA', COUNTRY=u'USA®

Figure 6-7. First row of the df _airports data frame

As you can see in Figure 6-7, the results aren’t by default returned in a table-like
structure. This is because head() only returns the output as a string-like structure.

To return a table structure when getting data from a dataset, you can use the show()
function as shown in the following example. Show() accepts an integer as a parameter to
indicate how many rows should be returned. In the example (Listing 6-8), we supplied a
value of 10, indicating we want the top ten rows returned by the function (Figure 6-8).

Listing 6-8. Retrieve first row of data frame as a table structure

# Select top ten rows, return as a table structure
df airports.show(10)

e e e o ————— fmm—————— e +
| IATI—!_CODE | AIRPORT| CITY|STATE |COUNTRY | LATITUDE| LONGITUDE|
tmm e ——— e R el e e tm—————— tmm—————— Frmm +
| ABE|Lehigh Valley Int...| Allentown| PA| USA|40.65236| -75.4404|
| ABI|Abilene Regional | Abilene| TX | USA|32.41132| -99.6819|
| ABQ|Albuquerque Inter...| Albugquerque]| MM | USA|35.040221-106.60919|
| ABR|Aberdeen Regional...| Aberdeen| 5D| USA|45.44906| -98.42183|
| ABY | Southwest Georgia...| Albany| GR | USA|31.53552| -84.19447|
| ACK|Nantuckelt Memoria...| Nantucket| MA | USA|41.25305| -70.06018|
| ACT|Waco Regional Air...| Waco| TX| USA|31.61129| -97.23052]
| ACV | Arcata Alirport|Arcata/Eurekal CA| USA|40.97812|-124.10862|
| ACY|Atlantic City Int...|Atlantic City| NJ | USA|139.45758| -74.57717]
| LDK | Adak Airport| Rdak| AK | USA|51.87796|-176.648603|
Fmm R BT pmm e e pm———— Fmm fm e etttk +

only showing top 10 rows
Figure 6-8. Show the top ten rows of the df airports data frame

154



CHAPTER6  WORKING WITH SPARK IN BIG DATA CLUSTERS

Next to returning the entire data frame, we can, just like in SQL, select a subset of the
data based on the columns we are interested in. The following example (Listing 6-9) only
returns the top ten rows of the AIRPORT and CITY columns of the df_airports data
frame (Figure 6-9).

Listing 6-9. Select specific columns of the first ten rows of the data frame

# We can also select specific columns from the data frame
df airports.select('AIRPORT', 'CITY").show(10)

Fmm e Fmmmm +
| AIRPORT| CITY|
Fmm e Fom +
| Lehigh Valley Int...| Allentown|
|Abilene Regional | Abilene|
|Albuquerque Inter...| Albugquerque]
| Aberdeen Regional... | Aberdeen|
| Southwest Georgia...| Albany|
| Nantucket Memoria... | Nantucket |
|Waco Regional Air...| Waco|
| Arcata Airport|Arcata/Eurekal
|[Atlantic City Int...|Atlantic City]|
| Adak Airport] Adak|
Fmm Fmm e —————— +

only showing top 10 rows

Figure 6-9. Top ten rows for the AIRPORT and CITY column of the df airports
data frame

Just like in SQL, we also have the ability to sort the data based on one or multiple
columns. In the following example (Listing 6-10), we are retrieving the top ten rows of
the df_airports data frame order first by STATE descending, then by CITY descending
(Figure 6-10).
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Listing 6-10. Retrieve the first ten rows of the data frame using sorting

# We can also sort on one or multiple columns
df _airports.orderBy(df airports.STATE.desc(), df airports.CITY.desc()).show(10)

fommmm - o Fommm fo———= fommm fommm - fommm - +
| TATA_CODE| ATIRPORT | CITY|STATE|COUNTRY | LATITUDE| LONGITUDE |
fommm————— o tom +————= Fomm———— fommm———— to—m +
| COD|Yellowstone Regio...| Cody | WY | USA|44.52019) -109.0238|
| RKS|Rock Springs-Swee...|Rock Springs| WY | USh|41.594221-109.06519|
| GCC|Gillette-Campbell. .. | Gillette| WY | USA| 44.3489|-105.53936]|
| JAC|Jackson Hole Airport]| Jackson| WY | USA|43.60732|-110.73774|
| CPR|Natrona County In...| Casper | WY | USA|42.90836]-106.46447|
| LAR|Laramie Regional ...| Laramie| WY | USA[41.31205]-105.67499|
| CRW| Yeager Airport| Charleston| WV | USA|38.37315| -81.58319]
| GRB|Green Bay-Bustin ...| Green Bay| WI| USA|44.48507|) -88.12959|
| CWA|Central Wisconsin...| Mosinee| WI| USA|44.77762| -89.66678|
| FEAU|Chippewa Valley R...| FEau Claire| WI| UsSh|44.86526| -91.48507|
Fmmmm R ittt Fomm e fm———= Fomm fmmmm Fommm +

only showing top 10 rows

Figure 6-10. df airports data frame sorted on STATE and CITY columns

So far when getting data from the data frame, we have been selecting the top n rows
but we can also filter the data frame on a specific column value. To do this, we can add
the filter function and supply a predicate. The following example (Listing 6-11) filters
the data frame and only returns information about airports located in the city Jackson
(Figure 6-11).

Listing 6-11. Filter a date frame

# Filter results based on a column value
df airports.filter(df airports.CITY == 'Jackson').show()

Fom Fom $omm = o Fomm Fomm Bt +
| TATA CODE| ATIRPORT| CITY|STATE|COUNTRY |LATITUDE| LONGITUDE |
R o fommm - fo—m fommm - fomm e bommm e +
| JAC|Jackson Hole Airport|Jackson| WY | USA|43.60732|-110.73774|
| JAN| Jackson-Evers Int...|Jackson]| MS | USA|32.31117| -90.07589]
Fmmmm————— Rt T Fmm———— t=———— Fmmm———— Fmmm————— Fomm +

Figure 6-11. df airports filtered on the CITY column
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Besides filtering on a single value, we can also supply a list of values we want to filter
on, much in the same way as you would use the IN clause in SQL. The code shown in
Listing 6-12 results in Figure 6-12.

Listing 6-12. Multifiltering a data frame

# Besides filtering on a single value, we can also use IN to supply
multiple filter items

# We need to import the col function from pyspark.sql.functions
from pyspark.sql.functions import col

# Declare a list with city names
city list = ['Jackson','Charleston’,'Cody’]

# Filter the data frame
df airports.where(col("CITY").isin(city list)).show()

Fomm e it Fommm fmm——— fmm fmmm Fmm e +
| IATA_CODE| AIRPORT| CITY|STATE|COUNTRY | LATITUDE| LONGITUDE|
fmmm———— e e o o Fmm +
| CHS|Charleston Intern...|Charleston]| sC| USA|32.89865| -80.04051|
| COD|Yellowstone Regio...| Cody| WY | Ush|44.52019| -109.0238]
| CRW| Yeager Airport|Charleston| Wv | USA|38.37315| -B1.59319]
| JAC|Jackseon Hole Airport| Jackson | Wy | USA|43.60732|-110.73774]|
| JAN | Jackscn-Evers Int...| Jackson | MS | USA|32.31117| -90.07589|
e R o fmm e fmmm e +

Figure 6-12. Filtering on multiple values stored in a list

In the example in Figure 6-12, we declared a list of values we want to filter on and
used the isin function to supply the list to the where function.

Besides the == operator to indicate values should be equal, there are multiple
operators available when filtering data frames which you are probably already familiar
with, the most frequently used are shown in Table 6-1.
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Table 6-1. Compare operators in PySpark

== Equal to
Unequal to
< Less than
<= Less than or equal
> Greater than
>= Greater than or equal

We have been focusing on getting data out of the data frame so far. However, there
might also be situations where you want to remove a row from the data frame, or
perhaps, update a specific value. Generally speaking, updating values inside Spark data
frames is not as straightforward as, for instance, writing an UPDATE statement in SQL,
which updates the value in the actual table. In most situations, updating rows inside data
frames revolves around creating a sort of mapping data frame and joining your original
data frame to the mapping data frame and storing that as a new data frame. This way
your final data frame contains the updates.

Simply speaking, you perform a selection on the data you want to update (as shown
in Figure 6-13) and return the updated value for the row you want to update and save
that to a new data frame as shown in the example code of Listing 6-13.

Listing 6-13. Perform multiple actions on the data frame

# Update a row
# We need to import the col and when function from pyspark.sql.functions
from pyspark.sql.functions import col, when

# Select the entire data frame but set the CITY value to "Cody" instead of
"Jackson" where the IATA CODE = "COD"

# Store the results in the new df airports updated data frame

df airports updated = df airports.withColumn("CITY", when(col("IATA CODE") ==
"CoD", "Jackson"))

# Return the results, filter on IATA CODE == "COD"
df airports updated = df airports updated.filter(df airports updated.IATA
CODE == 'COD").show()
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fmmm—————— B fmmm———— Fm——— B e ST fmm e ——— +
| TATA CODE | AIRPORT | CITY |STATE | COUNTRY | LATITUDE | LONGITUDE |
fom——— o fmm———— e B fmm———— +
| COD|Yellowstone Regio...|Jackson| WY | USA|44.52019|-109.0238|
tm——————— Fmm e - Fm————— t————- Fomm——m - —— Fmm—————— +

Figure 6-13. Updated value to Jackson instead of Cody

If we are interested in removing rows the same reasoning applies, we do not
physically delete rows from the data frame; instead, we perform a selection that does not
include the rows we want removed and store that as a separate data frame (Figure 6-14

shows the result of using Listing 6-14).

Listing 6-14. Remove a row from a data frame
# Remove a row

# Select the entire data frame except where the IATA CODE = "COD"
# Store the results in the new df_airports removed data frame
df airports removed = df airports.filter(df airports.IATA CODE <> "COD")

# Return the results, filter on IATA _CODE == "COD"
df airports removed.filter(df airports removed.IATA CODE == "COD").show()

tm——————— t————— t————t————- t—————— t————— tm——————— +
| IATA CODE|AIRPORT|CITY|STATE |COUNTRY | LATITUDE | LONGITUDE |
fom——————— t—————— t————t————- t—————— to—m—————— tmm—————— -
fommm—————— t—————— ot - tom—————— o ———— +

Figure 6-14. No data is present where IATA_CODE == “COD”

The concept of no deleting or updating the physical data itself but rather working
through selections to perform update or delete operations (and then store them in new
data frames) is very important when working with data frames inside Spark and has
everything to do with the fact that a data frame is only a logical representation of the data
stored inside your Spark cluster. A data frame behaves more like a view to the data stored
in one or multiple files inside your Spark cluster. While we can filter and modify the way
the view returns the data, we cannot modify the data through the view itself.
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One final example we want to show before we continue with a number of more
advanced data frame processing examples is grouping data. Grouping data based
on columns in a data frame is very useful when you want to perform aggregations
or calculations based on the data inside the data frame column. For instance, in the
following example code (Listing 6-15), we perform a count of how many airports a
distinct city has in the df _airports data frame (Figure 6-15).

Listing 6-15. Group a data frame

# Count the number of airports of each city and sort on the count descending
df airports.groupby("City").count().sort(col("count").desc()).show(10)

o - +
| Rochester| 2|
| Wilmington| 2]
I Jackson| 2|
| Albany| 2|
| Chicagol| 2]
| Charleston| 2|
| Springfield| 2 |
| San Diegol| 2
| Portland| 2|
| Columbus | 2 |
o —————— === -

only showing top 10 rows

Figure 6-15. Count the number of airports for each unique city

In this example, we used the sort function instead of the orderBy we used earlier in
this section to sort the results. Both functions are essentially identical (orderBy is actually
an alias for sort) and there is no difference in terms of functionality between both
functions.
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More Advanced Data Frame Handling

So far, we've looked at - relatively - simple operations we can perform on data frames
like selecting specific rows, grouping data, and ordering data frames.

However, there are far more things we can do in Spark when it comes to data frames,
for instance, joining multiple data frames together into a new data frame. In this section,
we are going to focus on doing some more advanced data frame wrangling.

To start off, so far, we have been working with a single dataset which we imported
into a data frame that contains information of the various airports in America. In many
situations you do not have a single dataset that contains everything you need, meaning
you will end up with multiple data frames. Using PySpark we can join these data frames
together on a key the data frames share and build a new, joined, data frame.

Before we can get started on joining data frames together, we will need to import the
other sample datasets from the 2015 Flight Delays and Cancellations examples we are
working with. If you are following along with the examples in this chapter, you should
already have a data frame called df airports that contains the data of the airports.csv
file. If you haven't, you can run the following code (Listing 6-16) to import the data from
the file into a data frame.

Listing 6-16. Import airports.csv into data frame

df airports = spark.read.format('csv').options(header="true’,
inferSchema="true').load("'/Flight Delays/airports.csv')

We can use the same command (Listing 6-17) to import the other two CSV files:
airlines.csv and flights.csv.

Listing 6-17. Import airlines.csv and flights.csv into data frames

# Importing the other CSV files into data frames as well

df airlines = spark.read.format('csv').options(header="true’,
inferSchema="true"').load("'/Flight Delays/airlines.csv')
df_flights = spark.read.format('csv').options(header="true’,
inferSchema="true"').load("'/Flight Delays/flights.csv')

After executing Listing 6-17, we should have three separate data frames available to
us in the PySpark notebook: df_airports, df airlines, and df flights.
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To join two data frames, we have to supply the key on which we are joining the
two data frames on. If this key is identical on both data frames, we do not have to
explicitly set the mapping in the join (and we only need to supply the column name as a
parameter). However, we believe it is always good practice to describe the join mapping
to make the code easier to understand. Also, in the sample dataset we are using, the data
frame columns have different column names on which we need to join requiring an
explicit join mapping.

The code example of Listing 6-18 will join the df flights and df airlines data
frames together using an inner join and output a new data frame called df _flightinfo.
We return the schema of the newly created data frame to see how the two data frames are
joined together (Figure 6-16).

Listing 6-18. Join two data frames and retrieve the schema of the result
from pyspark.sql.functions import *

# Let's join the df airlines and df_flights data frames using an inner join
on the airline code

df_flightinfo = df flights.join(df airlines, df flights.AIRLINE == df_
airlines.IATA CODE, how="inner"

# Print the schema of the joined data frame
df flightinfo.printSchema()
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| -— YEAR: integer (nullable = true)

| -— MONTH: integer (nullable = true)

| -= DAY: integer (nullable = true)

| -- DAY OF WEEK: integer (nullable = true)

| -— AIRLINE: string (nullable = true)

| -- FLIGHT NUMBER: integer (nullable = true)

| -— TAIL NUMBER: string (nullable = true)

| == ORIGIN AIRPORT: string (nullable = true)

| -— DESTINATION AIRPORT: string (nullable = true)
| -—— SCHEDULED_ DEPARTURE: integer (nullable = true)
| -- DEPARTURE_TIME: integer (nullable = true)

| -—— DEPARTURE DELAY: integer (nullable = true)

| -— TAXI OUT: integer (nullable = true)

| -- WHEELS OFF: integer (nullable = true)

| -— SCHEDULED TIME: integer (nullable = true)

| -— ELAPSED TIME: integer (nullable = true)

| -- AIR TIME: integer (nullable = true)

| -— DISTANCE: integer (nullable = true)

| -— WHEELS ON: integer (nullable = true)

| -— TAXI IN: integer (nullable = true)

| -—— SCHEDULED_ ARRIVAL: integer (nullable = true)
| -- ARRIVAL TIME: integer (nullable = true)

| -—— ARRIVAL DELAY: integer (nullable = true)

| -— DIVERTED: integer (nullable = true)

| -— CANCELLED: integer (nullable = true)

| -— CANCELLATION REASON: string (nullable = true)
| -— AIR_SYSTEM DELAY: integer (nullable = true)

| -— SECURITY DELAY: integer (nullable = true)

| -— AIRLINE DELAY: integer (nullable = true)

| -- LATE ATIRCRAFT DELAY: integer (nullable = true)
| -—— WEATHER DELAY: integer (nullable = true)

| -— IATA CODE: string (nullable = true)

| -— AIRLINE: string (nullable = true)

Figure 6-16. Schema of the df flightinfo data frame which is a join between
df flights and df airlines
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As you can see in Figure 6-16, the two columns (IATA_CODE and AIRLINE) that make
up the df_airlines data frame are added to the right side of the new df flightinfo data
frame. Because we already have the IATA_CODE in the df flights data frame, we end
up having duplicate columns in the new data frame (to make matters more interesting:
in this sample dataset the df flights data frame uses the column “AIRLINE” to
denote the IATA code on which we join the df airlines data frame. The df airlines
data frame also has the AIRLINE column but it shows the full airline name. Essentially
this means both AIRLINE columns in the df_flightinfo data frame contain different
data).

We can easily drop the duplicate column when joining both data frames by
specifying it in the join command (Listing 6-19 and Figure 6-17).

Listing 6-19. Joining two data frames while dropping a column
from pyspark.sql.functions import *

# We will join both data frames again but this time drop the AIRLINE column
of the df flights data frame

df_flightinfo = df flights.join(df airlines, df flights.AIRLINE == df_
airlines.IATA CODE, how="inner").drop(df flights.AIRLINE)

# Print the schema of the joined data frame
df flightinfo.printSchema()
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| -— YEAR: integer (nullable = true)

| -— MONTH: integer (nullable = true)

|-- DAY: integer (nullable = true)

|-— DAY OF WEEK: integer (nullable = true)

| -— FLIGHT NUMBER: integer (nullable = true)

|-— TAIL NUMBER: string (nullable = true)

|-— ORIGIN AIRPORT: string (nullable = true)

|-— DESTINATION AIRPORT: string (nullable = true)
| -— SCHEDULED DEPARTURE: integer (nullable = true)
| -— DEPARTURE TIME: integer (nullable = true)

| -— DEPARTURE DELAY: integer (nullable = true)
|-— TAXI OUT: integer (nullable = true)

| -- WHEELS OFF: integer (nullable = true)

| -— SCHEDULED TIME: integer (nullable = true)

|-— ELAPSED TIME: integer (nullable = true)

|-- AIR TIME: integer (nullable = true)

| -— DISTANCE: integer (nullable = true)

| -- WHEELS ON: integer (nullable = true)

|-- TAXI IN: integer (nullable = true)

| -— SCHEDULED ARRIVAL: integer (nullable = true)
|-— ARRIVAL TIME: integer (nullable = true)

| -— ARRIVAL DELAY: integer (nullable = true)

| -— DIVERTED: integer (nullable = true)

| -- CANCELLED: integer (nullable = true)

| -— CANCELLATION REASON: string (nullable = true)
|-— AIR SYSTEM DELAY: integer (nullable = true)

| -— SECURITY DELAY: integer (nullable = true)

|-— AIRLINE DELAY: integer (nullable = true)

| -— LATE AIRCRAFT DELAY: integer (nullable = true)
| -— WEATHER DELAY: integer (nullable = true)

|-— IATA CODE: string (nullable = true)

| -— AIRLINE: string (nullable = true)

Figure 6-17. df flightinfo schema without the duplicate AIRLINE column
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As you can see from the schema shown in Figure 6-17, we now end up with only one
AIRLINE column which contains the data we are after (the full airline name).

With the duplicate column removed, let’s select some information from the new
df_flightinfo data frame. For this example, let’s say we are interested in seeing the
scheduled and actual elapsed travel times for each flight together with the airline that
performed the flight. We can simply select the columns we are interested in just as
we did a number of times already in this chapter. This time using the code shown in
Listing 6-20 results in the table shown in Figure 6-18.

Listing 6-20. Select a number of columns from the joined data frame

# Select a number of columns from the joined data frame
df flightinfo.select("FLIGHT NUMBER", "AIRLINE", "SCHEDULED TIME",
"ELAPSED TIME").show()

2440 |Delta Air Lines Inc.
108 |Alaska Airlines Inc.
1560 |Delta Air Lines Inc.
1197 |United Air Lines
122 |Alaska Airlines Inc.
1670 |Delta Air Lines Inc.
T e

Fmmm e o Fmmm - fmmmm————————+
| FLIGHT NUMBER | AIRLINE | SCHEDULED TIME|ELAPSED TIME|
fmm e fmm e e m e ———— %
| 98 |Alaska Airlines Inc.]| 205 194
| 2336 |American Airlines... | 280 279
| 840 | US Airways Inc.| 286 293
| 258 |American Airlines...| 285 281
| 135|Alaska Airlines Inc.| 235] 215]
| 806|Delta Air Lines Inc.| 217| 230]
| 612 | Spirit Air Lines| 181 170]
| 2013 US Airways Inc.| 273 249
| 1112 |American Airlines...| 195] 193]
| 1173 |Delta Air Lines Inc. | 221 203
| 2336 |Delta Air Lines Inc. | 173 149
| 1674 |American Airlines...| 268| 266 |
| 1434 |Delta Air Lines Inc.| 214 210]
| 2324 |Delta Air Lines Inc.| 215 199]
| |
| |
| |
| |
| |
| |

+

only showing top 20 rows
Figure 6-18. Scheduled and elapsed flight time for each flight number
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Now let’s say we are analyzing this data since we are interested in the differences
between the scheduled time for a flight and the actual time the flight took. While we
can manually look at each of the rows in the data frame to figure out what the difference
between both of the time columns is, it is far easier to let Spark perform this calculation
for you. For this scenario, we are using the following code (Listing 6-21) to create a new
data frame that selects a subset of the columns of the original df_flightinfo data frame
and does a simple calculation between the SCHEDULE_TIME and the ELAPSED_TIME
columns (Figure 6-19).

Listing 6-21. Add a calculated column to a data frame

# Create a new df_flightinfo_times data frame from df flightinfo

# with a new column that does a calculation between the scheduled and
elapsed time

df flightinfo times = df flightinfo.withColumn("Time diff", df flightinfo.
ELAPSED TIME - df flightinfo.SCHEDULED TIME).select("FLIGHT NUMBER",
"AIRLINE", "SCHEDULED TIME", "ELAPSED TIME", "Time diff")

# Return the first ten rows
df flightinfo times.show(10)

Fmm Fmm e fmm e e BT fmm——————— +
| FLIGHT NUMBER | AIRLINE | SCHEDULED TIME|ELAPSED TIME|Time_diff|
Fom e o fom e fom e e +
| 98 |Alaska Airlines Inc.| 205 194 -11]
| 2336 |American Airlines...| 280 279 -1
| 840 | US Airways Inc.| 286 293 71
| 258 |American Airlines...| 285 281 -4
| 135|Alaska Airlines Inc.| 235] 215] -20]
| 806 |Delta Air Lines Inc.| 217] 230] 13]
I 612 Spirit Air Lines| 181 170 -11]
| 2013 US Airways Inc.| 273 249 =24
| 1112 |American Airlines...| 195] 193] -2
| 1173 |Delta Air Lines Inc.| 2211 2031 -18]
Fomm e e e fmm fmmm—————— +

only showing top 10 rows

Figure 6-19. df flightinfo_times data frames that show travel time information

167



CHAPTER6  WORKING WITH SPARK IN BIG DATA CLUSTERS

As we can see from Figure 6-19, the majority of the flights in our selection of ten rows
actually spend less travel time than scheduled.

While seeing this information on an individual flight is very useful, it would also be
very interesting to see how all the flights in our sample performed. To get an idea on
things like the average, maximum (Listing 6-22 resulting in Figure 6-20), or minimum
(Listing 6-23 resulting in Figure 6-21) of time difference (Listing 6-24 resulting in
Figure 6-22) between the scheduled and elapsed flight time, we can call a number of
functions in PySpark.

Listing 6-22. Retrieve a single aggregated value

# Show the maximum time diff value
df flightinfo times.select([max("Time diff")]).show()

Figure 6-20. Maximum time difference between the scheduled and elapsed time

Listing 6-23. Retrieve a single aggregated value

# Show the minimum time diff value
df flightinfo times.select([min("Time_diff")]).show()

Figure 6-21. Minimum time difference between the scheduled and elapsed time

Listing 6-24. Retrieve a single aggregated value

# Show the average time diff value
df flightinfo times.select([mean("Time diff")]).show()
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Figure 6-22. Average time difference between the scheduled and elapsed time

While it is undoubtedly helpful to know the separate commands to retrieve a number
of summary statistics for a dataset, Spark also has a separate function (Listing 6-25)
that can directly do that for you and combine the multiple results into a single output
(Figure 6-23).

Listing 6-25. Generate summary statistics from a specific column

# We can generate summary statistics for a specific column using a single command
df flightinfo times.select("Time diff").describe().show()

count| 5714008
mean|—-4.887784896345963 |
stddev|12.883379307399249 |
min | —-201 |
max | 330

Figure 6-23. Summary statistics for the Time_diff column of the df flightinfo_
times data frame

As we can see from the preceding summary statistics (Figure 6-23), on average the
flights were performed almost 5 minutes faster than originally scheduled. We can also
see there are some outliers in the data; the fastest flight arrived 201 minutes earlier
than scheduled, while one of the flights took 330 minutes longer to perform than
scheduled.
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Perhaps we can gain some more understanding of the delays by looking at the data of
flights that had a delay of more than 180 minutes. The code of Listing 6-26 selects the top
20 of those rows and sorts them based on the delay descending, meaning the flights that
were delayed the most are at the top of the results (Figure 6-24).

Listing 6-26. Select and sort based on a single column
# Select all flights that had more than 60 minutes delay

df flightinfo times.filter(df flightinfo times.Time diff < -60).
sort(desc("Time diff")).show(20)

e e fom Fmm fmmm————— +
|FLIGET NUMBER| AIRLINE|SCHEDULED TIME|ELAPSED TIME | Time_diff |
fommm e o fom e o mm e fmmmm e +
| 1274 |Frontier RAirlines... | 220 550 330
| 11289 JetBlue Airways| 165] 428 263
| 1156 |Delta Air Lines Inc. | 278 | 515 237
| 397 |United Air Lines ...| 86| 321 235
| 13207 |American Airlines...| 253 484 | 231
| 291 |American Rirlines...| 191 | 421 | 230]
| 126 |American Airlines...| 249 477 | 228
| 718 | Spirit Air Lines]| 190 417 | 227]
| 1283 |American Airlines...| 226 446 | 220]
| 2346 |American Airlines...| 158 369 211
| 4169 |Atlantic Southeas...| 78| 286 | 208
| 1120 |American Airlines...| 216| 424 | 208 |
| 6446 |Skywest Airlines ...| 130 336 206
| 1106 |United Air Lines | 99| 304 205]
| 2335|American RAirlines...| 146 349 203]
| 125|American Airlines...| 118 320 202
| 4739 | Skywest Airlines | 82| 281 | 199]
| 6017 |Atlantic Southeas...| 56| 254 | 198]
| 643 |American RAirlines...| 75 272 | 197]|
| 1456 |Frontier Airlines...| 225 421 126
fomm e o fom e o fommm e +

Figure 6-24. Top 20 flights with the most delay

What we can see in these results is that the airline “American Airlines” has ran into
quite some flight delays based on this dataset. But are they also the airline with the most
delay on average? One way to figure that out is to calculate the average time difference
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for each airline and return them. We can do this by grouping the data based on the
airline and calculate the average delay across all flights for each distinct airline. The
code example of Listing 6-27 does just that, using the groupby function together with
an aggregate option (written as agg) to supply to method on which the data needs to be
grouped and on which column (Figure 6-25).

Listing 6-27. Aggregate a column grouped by another column

# Group the Time_diff data for each airline and return the average

# difference between the scheduled and the elapsed time of a flight
df_flightinfo_times.groupby("AIRLINE").agg({"Time diff": "mean"}).

sort(desc("avg(Time_diff)")).show()

o e +
| ATIRLINE | avg (Time diff) |
- Fmm +
|Hawaiian Airlines...| 1.5531752607146145|
| Frontier Airlines...|-0.7986679986679986]
| Spirit Air Lines|-1.4113010339169916/|
|Skywest Airlines ...|-1.8904308841324933|
|Atlantic Southeas...|-2.0302189086294415|
| US Airways Inc.| =-2.374790833217487|
|Alaska Airlines Inc.| -2.695489357730738|
|American Eagle Ai...|-3.5093134283387912]

| Virgin Americal| -4.255779780564263]
| JetBlue Airways| -4.764606437136032]

| American Airlines...| =-5.374734022035669]
| Southwest Airline...| -6.142219553558708]
|Delta Air Lines Inc.| -7.126546206658815]
|[United Air Lines ...| -8.901461708438205|
e e e e i e T +

Figure 6-25. Average difference between scheduled and elapsed time for each
airline total over all flights
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The groupby function is very useful when you want to calculate values across the
entire data frame and group them on a specific function. Besides the mean option we
supplied using the agg parameter, we can also use other calculation methods like
sum to calculate the totals for each grouped column, or count to count the amount of
occurrences for each column value (Figure 6-26).

o Fmmm e +
| AIRLINE |sum(Time diff) |
- o +
| Hawaiian Airlines... | 118105
| Frontier Airlines... | -71952|
| Spirit Air Lines| -162572 |
| Virgin America| -260658 |
| US Airways Inc. | -461239|
|Alaska Airlines Inc. | -462112 |
|American Eagle Ai... | -978365]
|Skywest Airlines ... | -1090427 |
|[Atlantic Southeas...| -1126268 |
| JetBlue Airways| -1248527 |
| American Airlines...| -3831836|
|United Air Lines ... | -4519824 |
|Delta Air Lines Inc. | -6202055|
| Southwest Airline... | -7631112]
o Fomm e +

Figure 6-26. Total difference between scheduled and elapsed time for each airline
calculated over all flights

Another thing worth pointing out is how we passed the column that is returned by
the groupby function to the sort function. Whenever a calculated column is added to
the data frame, it also becomes available for selecting and sorting, and you can pass the
column name into those functions.
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If we continue with our flight delay investigation, we can see from the grouped
average and total results that American Airlines isn’t performing as badly in the delay
department as we first expected. As a matter of fact, on average, their flights arrive 5
minutes earlier than planned!

We are going to return to this dataset in Chapter 7, explore it further, and even make
some predictions on flight delays.

Working with SQL Queries on Spark Data Frames

So far in this chapter, we have used functions related to data frame handling to perform
actions like selecting a specific column, sorting, and grouping data. Another option
we have to work with the data inside data frame is by accessing it through SQL queries
directly in Spark. For those who are familiar with writing SQL code, this method might
prove far easier to use than learning all the new functions (and many more we haven'’t
touched) earlier.

Before we can write SQL queries against a data frame, we have to register it as a table
structure which we can do through the code in Listing 6-28.

Listing 6-28. Registering a temporary table

# Register the df flightinfo data frame as a (temporary) table so we can
run SQL queries against it
df_flightinfo.registerTempTable("FlightInfoTable")

Now that we have registered our data frame as a (temporary) table, we can run SQL
queries against it using the sqlContext command (Listing 6-29) which calls the Spark
SQL module which is included in the Spark engine (Figure 6-27).

Listing 6-29. Select first ten rows of a table using SQL

# Select the top ten rows from the FlightInfoTable for a selection of
columns

sqlContext.sql("SELECT FLIGHT NUMBER, ORIGIN AIRPORT, DESTINATION AIRPORT,
ELAPSED TIME FROM FlightInfoTable").show(10)
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Fmmm Fmmmm o e Fmmmmmm +
| FLIGHT NUMBER|ORIGIN AIRPORT|DESTINATION AIRPORT|ELAPSED TIME|
Fomm - Fomm - - Fomm - +
| 98 | ANC | SEA | 194 |
[ 2336 LAX| PBT | 279 |
| 840 | SFO | CLT| 293
I 258 LAX | MIA| 281
| 135] SEA | ANC | 215|
I 806 | SFO| MSP | 230
| 612 | LAS | MSP | 170
I 2013 LAX| CLT| 249
| 1112 SFO | DEW | 193]
| 1173 LAS| ATL | 203]
e pom e Fom e +

only showing top 10 rows

Figure 6-27. Top ten rows of the FlightInfolable queried using Spark SQL

As you can see in the preceding example, we executed a simple SELECT SQL query
in which we supplied a number of columns we want to return. The Spark SQL modules
process the SQL query and execute it against the table structure we created earlier. Just
like the example we’ve shown before, we still need to supply the . show() function to
return the results in a table-like structure.

Practically everything you can do using SQL code can be applied in Spark as well. For
instance, the last example (Listing 6-30) in the previous section showed how to group
data and calculate an average. We can do identical processing using a SQL query as

shown in the example in Figure 6-28.

Listing 6-30. Aggregate a column grouped by another column with SQL

# Group the flight distance for each airline and return the average flight
distance for each flight

sqlContext.sql("SELECT AIRLINE, AVG(DISTANCE) FROM FlightInfoTable GROUP BY
AIRLINE ORDER BY 'avg(Distance)' DESC").show()
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| Skywest Airlines ...| 496.7721639899856]
|American Eagle Ai...|[422.31540701621003]
| Virgin America|1405.9893220037802|
|United Air Lines ... [1271.5456844081027|
| Frontier Airlines...| 967.2148597472368|
| Southwest Airline...| 740.7113345035682|
| JetBlue Airways|1062.1751782451095|
| US Airways Inc.| 911.5038623153763|
|Hawaiian Airlines...| 632.591842353681¢]|
|Atlantic Southeas...|462.25173914335716]|
|Alaska Airlines Inc.|1197.4180824363411|
|IDelta Air Lines Inc.| 853.6218253392869]
| American Airlines...|1041.3392223520077|
| Spirit Air Lines| 985.2671176275143]

Figure 6-28. Average flight distance grouped for each airline

Reading Data from the SQL Server Master Instance

A huge advantage of SQL Server Big Data Clusters is that we have access to data stored
in SQL Server instances and HDFS. So far, we have mostly worked with datasets that

are stored on the HDFS filesystem, accessing them directly through Spark or creating
external tables using PolyBase inside SQL Server. However, we can also access data
stored inside a SQL Server database inside the Big Data Cluster directly from Spark. This
can be very useful in situations where you have a part of the data stored in SQL Server
and the rest on HDFS and you want to bring both together. Or perhaps you want to use
the distributed processing capabilities of Spark to work with your SQL table data from a
performance perspective.
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Getting data stored inside the SQL Server Master Instance of your Big Data Cluster is
relatively straightforward since we can connect using the SQL Server JDBC driver that is
natively supported in Spark. We can use the master-0.master-svc server name to indicate
we want to connect to the SQL Server Master Instance (Listing 6-31).

Listing 6-31. Execute SQL Query against Master Instance

# Connect to the SQL Server master instance inside the Big Data Cluster
# and read data from a table into a data frame
df_sqldb_sales = spark.read.format("jdbc") \
.option("url", "jdbc:sqlserver://master-0.master-svc;databaseName=
AdventurelWorks2014") \
.option("dbtable", "Sales.SalesOrderDetail") \
.option("user", "sa") \
.option("password", "[your SA password]"). ").load()

The preceding code sets up a connection to our SQL Server Master Instance and
connects to the AdventureWorks2014 database we created there earlier in this book.
Using the “dbtable” option, we can directly map a SQL table to the data frame we are
going to create using the preceding code.

After executing the code, we have a copy of the SQL table data stored inside a data
frame inside our Spark cluster and we can access it like we've shown earlier (Listing 6-31
leads to Figure 6-30).

To only retrieve the first ten rows, run Listing 6-32. This will result in Figure 6-29.

Listing 6-32. Retrieve first ten rows

df sqldb_sales.show(10)

_____________ bmmmmmmmmmmmm——mm——bmmmm——————————

N S ——— L S T ——

|SalesOrd UnitPriceDiscount|

1] 4911-403C-981 1 761 0.00001
2] 4911-403C-98] 31 7771 0.0000]
3 4911-403C-938] 1 7781 0.0000]
4 49811-403C-98] 1] 77110 0.0000]
5] 4911-403C-98] 1 7721 0.0000]

4911-403C-981 2] 7731 0.0000]
7 4911-403C-981 1 7741 0.00001
g 4911-403C-3981 31 7141 0.0000]
9| 4911-403C-981 11 7161 0.0000]
o [ q0e] 0.0000]

49811-403C-281
e e o e e Fmm e ——————————

Figure 6-29. Data frame created from a table inside the SQL Server Master Instance
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Something that is interesting to point out for this process is the fact that Spark
automatically sets the datatypes for each column to the same type as it is configured
inside the SQL Server database (with some exceptions in datatype naming, datetime in
SQL is timestamp in Spark, and datatypes that are not directly supported in Spark, like
uniqueidentifier) which you can see in the schema of the data frame shown in Figure 6-30.

| -— SalesOrderID: integer (nullable = true)

| -— SalesOrderDetailID: integer (nullable = true)

| -— CarrierTrackingNumber: string (nullable = true)
| -— OrderQty: integer (nullable = true)

| -— ProductID: integer (nullable = true)

| -— SpecialCfferID: integer (nullable = true)

| -— UnitPrice: decimal(19,4) (nullable = true)

| -—— UnitPriceDiscount: decimal (19,4) (nullable = true)
| -— LineTotal: decimal (38,6) (nullable = true)

| -- rowguid: string (nullable = true)

| -— ModifiedDate: timestamp (nullable = true)

Figure 6-30. Data frame schema of our imported data frame from the SQL Server
Master Instance

Next to creating a data frame from a SQL table, we can also supply a query to select
only the columns we are after, or perhaps perform some other SQL functions like
grouping the data. The example in Listing 6-33 shows how we can load a data frame
using a SQL query (Figure 6-31).

Listing 6-33. Use SQL Query instead of mapping a table for a data frame

# While we can map a table to a data frame, we can also execute a SQL query
df sqldb_query = spark.read.format("jdbc") \
.option("url", "jdbc:sqlserver:// master-0.master-svc;databaseName=Adve
ntureWorks2014") \
.option("query", "SELECT SalesOrderID, OrderQty, UnitPrice,
UnitPriceDiscount FROM Sales.SalesOrderDetail") \
.option("user", "sa") \
.option("password", "[your SA password]").load()

df sqldb _query.printSchema()
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root
| -— SalesOrderID: integer (nullable = true)
| -— OrderQty: integer (nullable = true)
| -— UnitPrice: decimal(19,4) (nullable = true)
| -— UnitPriceDiscount: decimal (19,4) (nullable = true)

Figure 6-31. Schema of the df sqldb_query data frame

Plotting Graphs

So far, we have mostly dealt with results that are returned in a text like format whenever
we execute a piece of code inside our PySpark notebook. However, when performing
tasks like data exploration, it is often far more useful to look at the data in a more
graphical manner. For instance, plotting histograms of your data frame can provide a
wealth of information regarding the distribution of your data, while a scatter plot can
help you visually understand how different columns can correlate with each other.

Thankfully, we can easily install and manage packages through Azure Data Studio
that can help us plot graphs of the data that is stored inside our Spark cluster and display
those graphs inside notebooks. That’s not to say that plotting graphs of data that is stored
inside data frames is easy. As a matter of fact, there are a number of things we need to
consider before we can start plotting our data.

The first, and most important one, is that a data frame is a logical representation
of our data. The actual, physical data itself is distributed across the worker nodes that
make up our Spark cluster. This means that if we want to plot data through a data frame,
things get complex very fast since we need to combine the data from the various nodes
into a single dataset on which we can create our graph. Not only would this lead to very
bad performance since we are basically removing the distributed nature of our data,
but it can also potentially lead to errors since we would need to fit all of our data inside
the memory of a single node. While these issues might not occur on small datasets, the
larger your dataset gets, the faster you will run into these issues.

To work around these problems, we usually resort to different methods of analyzing
the data. For instance, instead of analyzing the entire dataset, we can draw a sample from
the dataset, which is a representation of the dataset as a whole, and plot our graphs on
this smaller sample dataset. Another method can be to filter out only the data that you
need, and perhaps do some calculations on it in advance, and save that as a separate,
smaller, dataset before plotting it.
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Whichever method you choose to create a smaller dataset for graphical exploration,
one thing we will be required to do is to bring the dataset to our main Spark master
node on which we submit our code. The Spark master node needs to be able to load
the dataset in memory, meaning that the master node needs enough physical memory
to load the dataset and not run out-of-memory and crash. One way we can do this
is by converting our Spark data frame to a Pandas data frame. Pandas, which is an
abbreviation for “panel data,” is a term that is used in the world of statistics to describe
multidimensional datasets. Pandas is a Python library written for data analysis and
manipulation, and if you have ever done anything with data inside Python, you are
bound to have worked with it. Pandas also brings in some plotting capabilities by using
the matplotlib library. While Pandas is, by default, included inside the libraries of Big
Data Clusters, matplotlib isn’t. The installation of the matplotlib package is however
very straightforward and easy to achieve by using the “Manage Packages” option inside a
notebook that is connected to your Big Data Cluster (Figure 6-32).

@ Code @ Text Kernel: | PySpark % Attach To: master (s 3 (] Mot Trusted () RunCells & Clear Results
/£ Manage Packages

Figure 6-32. Manage Packages option inside the notebook header

After clicking the Manage Packages button, we can see what packages are already
installed and are presented an option to install additional packages through the “Add
new” tab (Figure 6-33).
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Manage Packages

Installed Add new

Package Type

4»

Pip

75 Pip packages found

Name Version
appnope 0.1.0
asnicrypto 0.24.0
attrs 19.1.0
autovizwidget 0.12.7
backcall 0.1.0

Figure 6-33. Manage Packages

In this case we are going to install the matplotlib packages so we can work through
the examples further on in this chapter. In Figure 6-34 I searched for the matplotlib
package inside the Add new packages tab and selected the latest stable build of
matplotlib currently available.
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Manage Packages

Installed Add new

matplotlib

Search
Package Name

matplotlib

Package Version

4»

3.1

Package Summary

Python plotting package

Install

Figure 6-34. Matplotlib package installation

After selecting the package and the correct version, you can click the “Install” button
to perform the installation of the package unto your Big Data Cluster. The installation
process is visible through the “TASKS” console at the bottom area of Azure Data Studio

as shown in Figure 6-35.

PROBLEMS OUTPUT TASKS TERMINAL

/. Installing matplotlib 3.1.1 succeeded 16:35:55 - 16:36:03 (00:00:08)
Figure 6-35. Matplotlib installation task

181



CHAPTER6  WORKING WITH SPARK IN BIG DATA CLUSTERS

After installing the matplotlib library, we are ready to create some graphs of our data
frames!

The first thing we need to do when we want to plot data from a data frame is to
convert the data frame to a Pandas data frame. This removes the distributed nature of
the Spark data frame and creates a data frame in-memory of the Spark master node.
Instead of converting an existing data frame, I used a different method to get data inside
our Pandas data frame. To create some more interesting graphs, I read data from a CSV
file that is available on a GitHub repository and load that into the Pandas data frame. The
dataset itself contains a wide variety of characteristics of cars, including the price, and
is frequently used as a machine learning dataset to predict the price of a car based on
characteristics like weight, horsepower, brand, and so on.

Another thing that I would like to point out is the first line of the example code
shown in Listing 6-34. The %matplotlib inline command needs to be the first
command inside a notebook cell if you want to return graphs. This command is a so-
called “magic” command that influences the behavior of the matplotlib library to return
the graphs. If we do not include this command, the Pandas library will return errors
when asked to plot a graph and we would not see the image itself.

Listing 6-34. Import data to a data frame from GitHub
%matplotlib inline
import pandas as pd

# Create a local Pandas data frame from a csv through a URL
pd_data_frame = pd.read_csv("https://github.com/Evdlaar/Presentations/raw/
master/Advanced%20Analytics%20in%20the%20Cloud/automobiles.csv")

After running the preceding code, we can start to create graphs using the pd_data
frame as a source.

The code of Listing 6-35 will create a histogram of the horsepower column inside
our Pandas data frame (Figure 6-36) using the hist () function of Pandas. Histograms
are incredibly useful for seeing how your data is distributed. Data distribution is very
important when doing any form of data exploration since you can see, for instance,
outliers in your data that influence your mean value.
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Listing 6-35. Create a histogram for a single column
Zmatplotlib inline

# We can create a histogram, for instance, for the horsepower column
pd _data frame.hist("horsepower")

array([[<matplotlib.axes._subplots.AxesSubplot object at 0x123265518>]],
dtype=object)
horsepower

50 100 150 200 250 300

Figure 6-36. Histogram of the horsepower column of the pd_data frame Pandas
data frame

Next to histograms we can basically create any graph type we are interested in.
Pandas supports many different graph types and also many options to customize how
your graphs look like. A good reference for what you can do can be found on the Pandas
documentation page at https://pandas.pydata.org/pandas-docs/stable/user
guide/visualization.html.

To give you another example of the syntax, the code of Listing 6-36 creates a boxplot
of the price column inside our Pandas data frame (Figure 6-37).

Listing 6-36. Generate a boxplot based on a single column
%matplotlib inline

# Also other graphs like boxplots are supported
# In this case we create a boxplot for the "price" column
pd_data_frame.price.plot.box()
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<matplotlib.axes. subplots.AxesSubplot at 0x12333c828>

45000 A
40000 -
35000 A

gpamo © O
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25000 A
20000 -

15000 A

10000 -

5000 A L

price

Figure 6-37. Boxplot of the price column inside the pd_data frame

Just like histograms, boxplots graphically tell us information about how our data
is distributed. Boxplots, or box-and-whisker plots as they are also called, show us a bit
more detail regarding the distribution of the data compared to a histogram. The “box”
of the boxplot is called the interquartile range (IQR) and contains the middle 50% of our
data. In our case we can see that the middle 50% of our price data is somewhere between
7,500 and 17,500. The line, or whisker, beneath the IQR shows the bottom 25% of our
data and the whisker above the IQR the top 25%. The circles above the top whisker show
the outliers of our dataset, in the case of this example dataset, to indicate cars that are
priced higher than 1.5 *« IQR. Outliers have a potentially huge impact on the average
price and are worth investigating to make sure they are not errors. Finally, the green bar
inside the IQR indicates the mean, or average, price for the price column.

Boxplots are frequently used to compare the data distribution of multiple datasets
against each other. Something we can also do inside our PySpark notebook by setting
the subplot() function of the matplotlib library. The parameters we set for subplot()
dictate the location, expressed in rows and columns, the plot following the subplot()
function should be displayed in. In the example in Listing 6-37, the boxplot for the price
column is shown in location 1, 2,1 which means 1 row, 2 columns, first column. The plot
for the horsepower is shown in location 1 row, 2 columns, second column effectively
plotting both boxplots next to each other (Figure 6-38).
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Listing 6-37. Generate multiple boxplots to compare two values
Zmatplotlib inline

# Boxplots are frequently used to compare the distribution of datasets

# We can plot multiple boxplots together and return them as one image using
the following code

import matplotlib.pyplot as plt

plt.subplot(1, 2, 1)
pd _data frame.price.plot.box()

plt.subplot(1, 2, 2)
pd_data frame.horsepower.plot.box()

plt.show()
300
45000 1 O o
6
40000 - 250 -
35000 - E
30000 A 200 1 8
25000 -
150 A
20000
15000 - 100 -
10000 A
5000 i 50 4 _L
price horsepower

Figure 6-38. Two different boxplots plotted next to each other

We won'’t go into further detail about boxplots since they are outside the scope of this
book, but if you are interested in learning more about them, there are plenty of resources
available online about how to interpret them.
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One final example we would like to show displays how powerful the graphical
capabilities of Pandas is. Using the code of Listing 6-38, we will create a so-called scatter
matrix (Figure 6-39). A scatter matrix consists of many different graphs all combined
into a single, large, graph. The scatter matrix returns a scatter plot for each interaction
between the columns we provide and a histogram if the interaction is on an identical
column.

Listing 6-38. Create scatter matrix
%matplotlib inline

import matplotlib.pyplot as plt
from pandas.plotting import scatter matrix

# Only select a number of numerical columns from our data frame
pd_num_columns = pd_data frame[['length', 'width', 'height','curb-
weight', "horsepower’, 'price']]

# More advanced plots, like a scatter matrix plot

scatter matrix(pd num_columns, alpha=0.5, figsize=(10, 10),
diagonal="hist")

plt.show()
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Figure 6-39. Scatter matrix plot on various columns inside the pd_data frame

A scatter matrix plot is incredibly useful when you want to detect correlations
between the various columns inside your dataset. Each of the scatter plots draws a dot
for each value on the x axis (for instance, length) and the y axis (for instance, price). If
these dots tend to group together, making up a darker dot in the case of the plot above,
the data inside the columns could potentially be correlated to each other, meaning that if
one has a higher or lower value, the other generally moves in the same direction. A more
practical example of this is the plot between price (bottom left of the preceding graph)
and curb weight (fourth from the right in the preceding graph). As the price, displayed
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on the y axis, goes up, the curb weight of the car also tends to increase. This is very useful
information to know, especially if we were interested in predicting the price of a car
based on the column values that hold the characteristics of the car. If a car has a high
curb weight, chances are the price will be high as well.

Data Frame Execution

In this chapter I have mentioned a number of times that a data frame is just a logical
representation of the data you imported to the data frame. Underneath the hood of
the data frame, the actual, physical data is stored on the Spark nodes of your Big Data
Clusters. Because the data frame is a logical representation, processing the data inside
a data frame, or modifying the data frame itself, happens differently than you might
expect.

Spark uses a method called “lazy evaluation” before processing any commands.
What lazy evaluation basically means in terms of Spark processing is that Spark will
delay just about every operation that occurs on a data frame until an action is triggered.
These operations, called transformations, are actions like joining data frames. Every
transformation we perform on a Spark data frame gets added to an execution plan, but
not executed directly. An execution plan will only be executed whenever an action is
performed against the data frame. Actions include operations like count () or top().

Simply speaking, all the transformations we do on a data frame, like joining, sorting,
and so on, are being added to a list of transformations in the shape of an execution plan.
Whenever we perform an action like a count () on the data frame, the execution plan will
be processed and the resulting count () result will be displayed.

From a performance perspective, the lazy evaluation model Spark uses is very
effective on big datasets. By grouping transformations together, less passes over the data
are required to perform the requested operations. Also, grouping the transformations
together creates room for optimization. If Spark knows all operations it needs to perform
on the data, it can decide on the optimal method to perform the actions required for the
end result, perhaps some operations can be avoided or others can be combined together.

From inside our PySpark notebook, we can very easily see the execution plan by
using the explain() command. In the example in Listing 6-39, we are going to import
flight and airport information into two separate data frames and look at the execution
plan of one of the two data frames (Figure 6-40).
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Listing 6-39. Explain the execution plan of a single table data frame

# Import the flights and airlines data again if you haven't already
df flights = spark.read.format('csv').options(header="true’,
inferSchema="true"').load("'/Flight Delays/flights.csv')

df airlines = spark.read.format('csv').options(header="true',
inferSchema="true').load("'/Flight Delays/airlines.csv')

# Just like SQL Server, Spark uses execution plans which you can see
through .explain()
df flights.explain()

== Physical Plan ==
*{1) FileScan csv [YEARELQ,MONTH#11,DAY#1Z2, DAY OF WEEK#13,AIRLINE#14, FLIGHT NUMBER#15,TAIL_NUMBERS16&,0RIGIN_ AIRFORTHL

Figure 6-40. Execution plan of a newly imported data frame

As you can see in Figure 6-40, there is only a single operation so far, a FileScan,
which is responsible for reading the CSV contents into the df _flights data frame. As
a matter of fact, the data is not already loaded into the data frame when we execute the
command, but it will be the first step in the execution plan whenever we perform an
action to trigger the actual load of the data.

To show changes occurring to the execution plan, we are going to join both the data
frames we created earlier together (Listing 6-40) and look at the plan (Figure 6-41).

Listing 6-40. Explain the execution plan of a multitable data frame

# Let's join both data frames again and see what happens to the plan
from pyspark.sql.functions import *

df_flightinfo = df_flights.join(df_airlines, df flights.AIRLINE == df_
airlines.IATA CODE, how="inner").drop(df flights.AIRLINE)

df flightinfo.explain()

== Physical Plan ==

*{2) Project [YEARZ10, MONTH#11, DAY#12, ZJAT_OF_'(JEH}{#';3; F'_IG,‘E'I'_.\JUMBERL:iE. T?alL_NUJv]BER?'lE. GREGZ}:_&JRPCRT;IT. DESTINA
t- *(2) BroadcastHashJoin [AIRL 4], [IATA_CODE#82], Inner, BuildRight
= *{2) Project [YEAR#10, M JAY#12, DAY OF WEEK#13, AIRLINE “R#15, TAIL NUMBER#16, ORIGIN A
- *(2) 34
b= *(2) F 1811, DAY#12, DAY_OF_WEEK#13, AT §14, FLIGHT_NUMBER#15, TAIL_NUMBER#16,0RIG

+= Broadcast tMode (List (input [0, string, truel))

+- *(1) Filter isnotnull

+= *(1) FileScan csv [IATA_CODE#82,AIRLINEFE3] Batched: false, Format: CSV, Location: InMemoryFileIndex[h

Figure 6-41. Execution plan of a data frame join
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From the execution plan, we can see two FileScan operations that will read the
contents of both source CSV files into their data frames. Then we can see that Spark
decided on performing a hash join on both data frames on the key columns we supplied
in the preceding code.

Again, the actions we performed against the data frame have not been actually
executed. We can trigger this by performing an action like a simple count () (Listing 6-41).

Listing 6-41. Perform an action to execute the execution plan

# Even though we joined the data frames and see that reflected in the

# execution plan, the plan hasn't been executed yet

# Execution plans only get executed when performing actions like count() or top()
df flightinfo.count()

The execution plan will still be attached to the data frame, and any subsequent
transformations we perform will be added to it. Whenever we perform an action at a
later point in time, the execution plan will be executed with all the transformations that
are part of it.

Data Frame Caching

One method to optimize the performance of working with data frames is to cache them.
By caching a data frame, we place it inside the memory of the Spark worker nodes and
thus avoid the cost of reading the data from disk whenever we perform an action against
a data frame. When you need to cache, a data frame is depended on a large number
of factors, but generally speaking whenever you perform multiple actions against a
data frame in a single script, it is often a good idea to cache the data frame to speed up
performance of subsequent actions.

We can retrieve information about whether or not (Figure 6-42) our data frame is
cached by calling the storagelevel function as shown in the example in Listing 6-42.

Listing 6-42. Retrieve the data frame’s storage level

df flightinfo.storagelevel

Storagelevel (False, False, False, False, 1)

Figure 6-42. Caching information of the df flightinfo data frame
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The function returns a number of Boolean values on the level of caching that is active
for this data frame: Disk, Memory, OffHeap, and Deserialized. By default, whenever we
cache a data frame, it will be cached to both Disk and Memory.

Asyou can see in Figure 6-43, the df flightinfo data frame is not cached at this
point. We can change that by calling the cache() function as shown in the code in
Listing 6-43.

Listing 6-43. Enable caching on a data frame

# To cache our data frame, we just have to use the .cache() function
# The default cache level is Disk and Memory
df flightinfo.cache()

df flightinfo.storagelevel

If we look at the results of the storagelLevel function, shown in Figure 6-43, we can
see the data frame is now cached.

StoragelLevel (True, True, False, True, 1)

Figure 6-43. Caching information of the df flightinfo data frame

Even though the storageLevel function returns that the data frame is cached, it
actually isn’t yet. We still need to perform an action before the actual data that makes up
the data frame is retrieved and can be cached. One example of an action is a count (),
which is shown in the code of Listing 6-44.

Listing 6-44. Initialize cache by performing a count on the data frame

# Even though we get info back that the data frame is cached, we have to
# perform an action before it actually is cached
df flightinfo.count()

Besides the storageLevel () command which returns limited information about the
caching of a data frame, we can expose far more detail through the Yarn portal.

To get to the Yarn portal, you can use the web link to the “Spark Diagnostics and
Monitoring Dashboard” which is shown in the SQL Server Big Data Cluster tab whenever
you connect, or manage, a Big Data Cluster through Azure Data Studio (Figure 6-44).
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Service Endpoints

SQL Server Master Instance 31433 B
Front-End

Gateway to access HDFS files, 1:30443 b
Spark

Proxy for running Spark [gateway/default/livy/v1 |

statements, jobs, applications

Spark Jobs Management and 1:30443/gateway/default/sparkhistori
Monitoring Dashboard

HDFS File System Proxy :30443/gateway/default/webhdfs/viD

Spark Diagnostics and :30443/gateway/default/yarn B
Monitoring Dashboard

Cluster Management Service 130080 o
Application Proxy 130778 B
Management Proxy :30777 @
Metrics Dashboard . 30777/grafana/d/wZx30Udmz il
Log Search Dashboard :30777/kibana/app/kibana#/discovemd

Figure 6-44. Service Endpoints in Azure Data Studio

After logging into the Yarn web portal, we are shown an overview of all applications
as shown in Figure 6-45.
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Figure 6-45. Yarn web portal

Consider an application inside Spark as a unit of computation. An application
can, for instance, be an interactive session with Spark through a notebook or a Spark
job. Everything that we have been doing throughout this chapter inside our PySpark
notebook has been processed in Spark as one or multiple applications.

As a matter of fact, the first command we execute against our Spark cluster returns
information about our Spark application as you can see in Figure 6-46.

Starting Spark application

ID YARN Application ID Kind State Spark Ul Driverlog Current session?

15 application_1554212350600_0016 pyspark idle Link Link v

SparkSession available as 'spark'.
Figure 6-46. Spark application information

For us the most important bit of information we are after is the “YARN Application
ID” This ID should be present on the Yarn All Applications page, and if you are still
connected to Spark through this Application ID, it should be marked as “RUNNING” like
our session displayed in Figure 6-47.
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Figure 6-47. Spark application overview from the Yarn web portal

The information about data frame caching we are looking for is stored inside the
application logging. We can access more details about the application by clicking the link
inside the ID page. This brings us to a more detailed view for this specific application as
shown in Figure 6-48.
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e
Started:  Sat Ape 30 DB4031 40000 2019
1 2Whvs, 13ming, 50800

Asveatarblagty
Leg Aggregation Status: NOT_START
Application Timeout (Remeining Tima):  Unfmied
Disgrctics
: oy
i <ol sats
AM container Node Label expression: <DEFAULT PARTITION:

Apgacaton Mecs
Total Rescurce Presmpted:  cewmory 0, vCore (>
: 0
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Number of ]
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Figure 6-48. Application detail view inside the Yarn web portal

To see the information we’re after, we have to click the “ApplicationMaster” link at
the “Tracking URL:” option. This opens up a web page with Spark Jobs that were, or
are being, processed by this specific application. If you consider an application as your
connection to the Spark cluster, a job is a command you send through your application
to perform work like counting the number of rows inside a data frame. Figure 6-49 shows
an overview of our Spark Jobs inside the application we are currently connected to
through our PySpark notebook.
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You can open the details of a job by clicking the link inside the “Description” column

and access a wealth of information about the job processing including how the job was

processed by each worker node and the Spark equivalent of the graphical execution plan

for the job called the DAG (directed acyclic graph) of which an example is included in

Figure 6-50.
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To view information about data frame caching, we do not have to open the job

details (though we can if we want to see storage processing for only a specific job);

instead we can look at the general storage overview by clicking the “Storage” menu item

at the top bar of the web page.
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On this page we can see all the data frames that are currently using storage, either
physical on disk, or in-memory. Figure 6-51 shows the web page on our environment

after executing the cache() and count() commands we performed at the beginning of
this section.

Storage

* RDDs
0 RDD Name Storage Level Cached Partisors Fraction Cached Sare in Memory Siew on Disk
“ 7 ]

Memory Disrisiand 1x Mephcated L] 100% 45,8 M oo

Figure 6-51. Storage usage of data frames

What we can see from Figure 6-51 is that our data frame is completely stored in-
memory, using 345.6 MB of memory spread across five partitions. We can even see on
which Spark nodes the data is cached and partitioned to by clicking the link beneath the
“RDD Name” column. In our case, we get back the information shown in Figure 6-52.
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Figure 6-52. Storage usage of our data frame across Spark nodes

We can see our data frame is actually cached across three Spark worker nodes,
each of which cached a different amount of data. We can also see how our data frame
is partitioned and how those partitions are distributed across the worker nodes.
Partitioning is something that Spark handles automatically and it is essential for the
distributed processing of the platform.
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Data Frame Partitioning

Like we mentioned at the end of the previous section, Spark handles the partitioning of
your data frame automatically. As soon as we create a data frame, it automatically gets
partitioned and those partitions are distributed across the worker nodes.

We can see in how many partitions a data frame is partitioned through the function
shown in Listing 6-45.

Listing 6-45. Retrieve the number of partitions of a data frame

# Spark cuts our data into partitions

# We can see the number of partitions for a data frame by using the
following command

df flightinfo.rdd.getNumPartitions()

In our case, the df _flightinfo data frame we’ve been using throughout this chapter
has been partitioned into five partitions - something we also noticed in the previous
section where we looked at how the data is distributed across the Spark nodes that make
up our cluster through the Yarn web portal.

If we want to, we can also set the amount of partitions ourselves (Listing 6-46).

One simple way to do this is by supplying the number of partitions you want to the
repartition() function.

Listing 6-46. Repartition a data frame

# If we want to, we can repartition the data frame to more or less partitions
df flightinfo = df flightinfo.repartition(1)

In the example code of Listing 6-46, we would repartition the df flightinfo data
frame to a single partition. Generally speaking, this isn’t the best idea, since only having
a single partition would mean that all the processing of the data frame would end up on
one single worker node. Ideally you want to partition your data frame in as equally sized
partitions as possible. Whenever an action is performed against the data frame, it can get
split up into equally large operations, having maximum computing efficiency.

To make sure your data frame is as efficiently partitioned as possible, it is in many cases
not very efficient in just supplying the number of partitions you are interested in. In most
cases you would like to partition your data on a specific key/value, making sure all rows
inside your data frame that have the same key/value are partitioned together. Spark also
allows partitioning on a specific column as we show in the example code of Listing 6-47.
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Listing 6-47. Created partitioned data frame
df flights partitioned = df flightinfo.repartition("AIRLINE")

In this specific example, we are partitioning the df flights partitioned data
frame on the AIRLINE column. Even though there are only 14 distinct airlines inside
our data frame, we still end up with 200 partitions if we look at the partition count of the
newly created data frame. That is because, by default, Spark uses a minimum partition
count of 200 whenever we partition on a column. For our example, this would mean that
14 of the 200 partitions actually contain data, while the rest is empty.

Let’s take a look at how the data is being partitioned and processed. Before we can
do that, however, we need to perform an action against the data frame so that it actually
gets partitioned (Listing 6-48).

Listing 6-48. Retrieved count from partitioned data frame

# Let's run a count so we can get some partition information back through
the web portal
df flights partitioned.count()

After running this command, we are going to return to the Yarn web portal which we
visited in the previous section when we looked at data frame caching. If you do not have
it opened, you need to navigate to the Yarn web portal and open the currently running
application and finally clicking the ApplicationMaster URL to view the jobs inside your
application as shown in Figure 6-53.
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Figure 6-53. Spark jobs inside our active application
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We are going to focus at the topmost job (Figure 6-54) of the list shown in Figure 6-53.

This is the count we performed after manually partitioning our data frame on the AIRLINE

column which you can also see in the name of the operation that was performed.

Job Id (Job Group) -
12 (24)

Description

Job group for statement 24
count at NativeMethodAccessorimpl.java:0

Figure 6-54. Spark job for our count() operation

By clicking the link in the Description, we are brought to a page that shows more

information about that specific job which is shown in Figure 6-55.
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What is very interesting to see is that the jobs themselves are also divided into
substeps called “Stages.” Each stage inside a job performs a specific function. To show
how our partitioning was handled, the most interesting stage is the middle one on which
we zoom in in Figure 6-56.

Figure 6-56. Stage inside a Spark job

In this stage, the actual count was performed across all the partitions of the data
frame; remember, there were 200 partitions that were created when we created our
partition key on the AIRLINE column. In the “Tasks: Succeeded/Total” column, you see
that number being returned.

If we go down even deeper in the details of this stage, by clicking the link inside
the Description column, we receive another page that shows us exactly how the data
was processed for this specific stage. While this page provides a wealth of information,
including an event timeline, another DAG visualization, and summary metrics for all
the 200 steps (which are again called tasks on this level), I mostly want to focus on the
table at the bottom of the page that returns processing information about the 200 tasks
beneath this stage.

If we sort the table on the column “Shuffle Read / Records” in a descending manner,
we can exactly see how many records were read from each partition for that task and
from which host they were read as shown in Figure 6-57, which shows the first couple of
tasks that processed rows of the total of 14 tasks that actually handled rows (the other 186
partitions are empty; thus no rows are processed from them).
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Figure 6-57. Tasks that occurred beneath our count step, sorted on Shuffle Read
Size / Records
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From the results in Figure 6-57, we can immediately also see a drawback of setting
our partitioning on a column value. The biggest partition contains far more rows
(1,261,855) than the smallest one (61,903), meaning most of the actions we perform will
occur on the Spark worker that contains our largest partition. Ideally, you want to make
your partitions as even as possible and distributed in such a way that work is spread
evenly across your Spark worker nodes.

Summary

In this chapter, we took a detailed look at working with data inside the Spark architecture
that is available in SQL Server Big Data Clusters.

Besides exploring the programming language PySpark to work with data frames
inside Spark, we also looked at more advanced methods like plotting data. Finally, we
looked a bit underneath the hood of Spark data frame processing by looking at execution
plans, caching, and partitioning while introducing the Yarn web portal which provides a
wealth of information about how Spark processes our data frames.

With all that data now on hand within our Big Data Cluster, let’s move on to Chapter 7
to take a look at machine learning in the Big Data Cluster environment!
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CHAPTER 7

Machine Learning on
Big Data Clusters

In the previous chapters, we spent significant time on how we can query data stored
inside SQL Server instances or on HDFS through Spark. One advantage of having access
to data stored in different formats is that it allows you to perform analysis of the data at
a large, and distributed, scale. One of the more powerful options we can utilize inside
Big Data Clusters is the ability to implement machine learning solutions on our data.
Because Big Data Clusters allow us to store massive amounts of data in all kinds of
formats and sizes, the ability to train, and utilize, machine learning models across all of
that data becomes far easier.

In many situations where you are working with machine learning, the challenge to
get all the data you need to build your models on in one place takes up the bulk of the
work. Building a machine learning model (or training as it is called in the data science
world) becomes far easier if you can directly access all the data you require without
having to move it from different data sources to one place. Besides having access to the
data from a single point of entry, Big Data Clusters also allow you to operationalize your
machine learning models at the same location where your data resides. This means that,
technically, you can use your machine learning models to score new data as it is stored
inside your Big Data Cluster. This greatly increases the capabilities of implementing
machine learning inside your organization since Big Data Clusters allow you to train,
exploit, and store machine learning models inside a single solution instead of having
various platforms in place to perform a specific action inside your organization’s
advanced analytics platform.

In this chapter we are going to take a closer look at the various options available
inside Big Data Clusters to train, store, and operationalize machine learning models.
Generally speaking, there are two directions we are going to cover: In-Database Machine
Learning Services inside SQL Server and machine learning on top of the Spark platform.
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Both of these areas cover different use cases, but they can also overlap. As you have seen
in the previous chapter, we can easily bring data stored inside a SQL Server instance to
Spark and vice versa if we so please. The choice of which area you choose to perform
your machine learning processes on is, in this situation, more based on what solution
you personally prefer to work in. We will discuss the various technical advantages and
disadvantages of both machine learning surfaces inside Big Data Clusters in each section
of this chapter. This will give you a better understanding of how each of these solutions
works and hopefully will help you select which one fits your requirements the best.

SQL Server In-Database Machine Learning Services

With the release of SQL Server 2016, Microsoft introduced a new feature named in-
database R Services. This new feature allows you to execute R programming code
directly inside SQL Server queries using either the new sp_execute_external script
stored procedure or the sp_rxPredict CLR procedure. The introduction of in-database
R Services was a new direction that allowed organizations to integrate their machine
learning models directly inside their SQL Server databases by allowing the user to
train, score, and store models directly inside SQL Server. While R was the only language
available inside SQL Server 2016 for use with sp_execute_external_script, Python
was added with the release of SQL Server 2017 which also resulted in a rename of the
feature to Machine Learning Services. With the release of SQL Server 2019, on which Big
Data Clusters are built, Java was also added as the third programming language that is
available to access directly from T-SQL code.

While there are some restrictions in place regarding In-Database Machine Learning
Services (for instance, some functions that are available with In-Database Machine
Learning Services, like PREDICT, only accept algorithms developed by Revolution
Analytics machine learning models), it is a very useful feature if you want to train and
score your machine learning models very closely to where your data is stored. This is also
the area where we believe In-Database Machine Learning Services shine. By utilizing the
feature data movement is practically minimal (considering that the data your machine
learning models require is also directly available in the SQL Server instance), model
management is taken care of by storing the models inside SQL Server tables, and it
opens the door for (near) real-time model scoring by passing the data to your machine
learning model before it is stored inside a table in your database.
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All of the example code inside this chapter is available as a T-SQL notebook at this
book’s GitHub page. For the examples in this section, we have chosen to use R as the
language of choice instead of Python which we used in the previous chapter.

Training Machine Learning Models in the SQL Server
Master Instance

Before we can get started training our machine learning models, we have to enable
the option to allow the use of the sp_execute_external script function inside the
SQL Server Master Instance of the Big Data Cluster. If you do not enable the option to
run external scripts inside the SQL Instance, a large portion of the functionality of In-
Database Machine Learning Services is disabled.

Some In-Database Machine Learning functionality is still with external scripts disabled.
For instance, you can still use the PREDICT function together with a pretrained
machine learning model to score data. However, you cannot run the code needed to
train the model, since that mostly happens through the external script functionality.

If you do not have external scripts enabled and want to run a section of R code using
sp_execute_external script, you will be confronted with the following error message
(Figure 7-1).

Msg 39023, Level 16, State 1, Procedure sp_execute_external_script, Line 1
'sp_execute_external_script' is disabled on this instance of SQL Serxrver. Use sp_configure 'external scripts
enabled’' to enable it.

Figure 7-1. Error running sp_execute_external_script with external scripts disabled

Enabling sp_execute_external script is simple and straightforward. Connect to
your SQL Server Master Instance and run the code shown in Listing 7-1 to immediately
enable the option.

Listing 7-1. Enable external scripts

-- Before we can start, we need to enable external scripts
EXEC sp _configure 'external scripts enabled',1

RECONFIGURE WITH OVERRIDE

GO
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After enabling the use of external scripts, we can directly run R, Python, or Java
code through the sp_execute _external script procedure. Like we mentioned in the
introduction of this section, we have chosen to use R as the language of choice for this
section of the book, and the code of Listing 7-2 shows a simple R command to return the
version information of R.

Listing 7-2. Sample R code using sp_execute_external_script

EXEC sp _execute external script
@language =N'R",
@script=N'print (version)'

Running the code in Listing 7-2 should return the results shown in Figure 7-2.

Started executing query at Line 1

STDOUT message(s) from external script:
NULL

platform x86_64-pc-linux-gnu

arch x86_64

0s linux-gnu

system x86_64, linux-gnu
status

major 3

minor 5.2

year 2018

month 12

day 20

svn rev 75870

language R

version.string R version 3.5.2 (2018-12-20)
nickname Eggshell Igloo

Total execution time: 00:00:04.479

Figure 7-2. R version results through sp_execute_external_script
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Asyou can see from the code, the sp_execute _external script procedure accepts
a number of parameters. Our example displays the minimal parameters that need to be
supplied when calling the procedure, namely, @1anguage and @script. The @language
parameter sets the language that is used in the @script section. In our case, this is
R. Through the @script parameter, we can run the R code we want to execute, in this
case the print (version) command.

While sp_execute_external_script always returns results regarding the machine
it is executed on, the output of the print (version) R command starts on line 5
with  platform x86 64.

While we can work just fine with R output being returned inside the message
window, we can also supply additional parameters to sp_execute external scriptto
return the output generated with R to a table format. We do that by mapping a variable
we defined in R (using the @output_data_1 name parameter shown in the following) to a
variable we define in T-SQL and using the WITH RESULT SETS statement when we call the
procedure as shown in the example of Listing 7-3.

Listing 7-3. Returning data using WITH RESULT SETS

EXEC sp_execute_external script
@language =N'R",
@script=N'
r_hi <- "Hello World!"
r_hello <- as.data.frame(r _hi)',
@output_data 1 name = N'r_hello'
WITH RESULT SETS (([hello] nvarchar(250)));
Go

By running the code in Listing 7-3, you should get the text “Hello World!” returned
inside a table result as shown in Figure 7-3.

Results Messages

hello

1 Hello World!

Figure 7-3. Output returned to a table format
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Just like how we can define and map output results through the sp_execute_
external script procedure, we can define input datasets. This is of course incredibly
useful since this allows us to define a query as an input dataset to the R session and
map it to an R variable. Being able to get data stored inside your SQL Server database
inside the In-Database Machine Learning Service feature opens up the door to perform
advanced analytics on that data like training or score machine learning models.

We are going to train a machine learning model on the “Iris” dataset. This dataset
is directly available inside R and shows various characteristics of Iris flowers and to
which species a specific Iris flower belongs. We can use this data to create a classification
machine learning model in which we are going to predict which species an Iris flower
belongs to.

Since the dataset is already present inside R, we can use a bit of R scripting together
with the sp_execute_external_script procedure to return the dataset as a SQL table.
The code of Listing 7-4 creates a new database called “InDBML’ and a new table called
“Iris” and fills that table from the Iris dataset inside an R session.

Listing 7-4. Create a new database and fill it with test data

-- Create a new database to hold the Iris data
CREATE DATABASE InDBML
GO

USE [InDBML]
GO

-- Create a table to hold the Iris data
CREATE TABLE Iris

(
Sepal_Length FLOAT,
Sepal Width FLOAT,
Petal Length FLOAT,
Petal Width FLOAT,
Species VARCHAR(50)
)

-- Get the Iris dataset from the R session and insert it into our table
INSERT INTO Iris
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EXEC sp_execute_external script
@language =N'R",
@script=N'
r_iris <- iris’',
@output_data 1 name = N'r iris'
-- Get data from the new table
SELECT = FROM Iris

If everything processed correctly, you should have received the results as shown in
Figure 7-4 which shows the values stored inside the Iris table.

Results Messages

Sepal_Length Sepal_Width Petal_Length Petal _Width Species

1 5.1 3:5 1.4 0.2 setosa
2 4.9 3 1.4 0.2 setosa
3 4.7 3:2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 4.6 3.4 1.4 0.3 setosa
8 5 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
10 : 4.9 3.1 1.5 0.1 setosa

Figure 7-4. Iris table values

Now that we have some data to create a machine learning model on, we can
get started by training a model. But before we do that, we are going to perform two
additional tasks. We are going to create a “Model” table. One very useful feature of
In-Database Machine Learning Services is the ability to “serialize” a model into a
binary string which we can then store inside a SQL table. When the model is stored
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inside a table, we can retrieve it whenever we need it through a SQL query. The code
of Listing 7-5 creates a model table inside the InDBML database.

Listing 7-5. Create model table

-- Create a table to hold our trained ML models
CREATE TABLE models

(

model name nvarchar(100) not null,

model version nvarchar(100) not null,

model object varbinary(max) not null

)
GO

Next to the model object column that is going to hold our serialized model, we also
create two additional columns that store the name and the version of the model. This
can be very useful in situation where you are storing multiple models inside your SQL
Server database and want to select a specific model version or name.

The next thing we are going to do is to split our Iris dataset into a training and
a testing set. Splitting a dataset is a common task when you are training machine
learning models. The training dataset is the data you are going to use to feed into the
model you are training; the test dataset is a portion of the data you are “hiding” from
the model while it is training. In that way the model was never exposed to the testing
data, which means we can use the data inside the testing set to validate how well the
model performs when shown data is has never seen before. For that reason, it is very
important that both the training and the testing datasets are a good representation
of the full dataset. For instance, if we train the model only on characteristics of the
“Setosa” Iris species inside our dataset and then show it data from another species
through our test dataset, it will predict wrong (predicting Setosa) since it has never
seen that other species during training.

The code of Listing 7-6 randomly selects 80% of the rows from the Iris table and
inserts them into anew Iris_train table. The other 20% of the data goes into a new
Iris_test table.
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Listing 7-6. Split dataset into training and testing dataset

-- Randomly select 80% of the data into a separate training table
SELECT TOP 80 PERCENT

INTO Iris train

FROM Iris

ORDER BY NEWID()

-- Select the remaining rows into a testing table
SELECT

INTO Iris test

FROM Iris

EXCEPT

SELECT * FROM Iris train

Now that we have a model table and got our training and testing data separated, we
are ready to train our machine learning model and store it inside our model table after
training which is exactly what the code of Listing 7-7 does.

Listing 7-7. Train a machine learning model using sp_execute_external_script
DECLARE @model VARBINARY(MAX)

-- Train a decision tree based on our training dataset
EXEC sp_execute_external script
@language = N'R',
@script = N'
iris.dtree <- rxDTree(Species ~ Sepal Length + Sepal Width +
Petal Length + Petal Width, data = iris_sqldata)

trained model <- rxSerializeModel(iris.dtree,
realtimeScoringOnly = FALSE)',
@input_data 1 = N'SELECT * FROM Iris_train',
@input_data_1 name = N'iris sqldata’,
@params = N'@trained model VARBINARY(MAX) OUTPUT',
@trained _model = @model OUTPUT

-- Insert the model into our model table
INSERT INTO models
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(

model name,
model version,
model object

)
VALUES

(
'iris.dtree',
'vi.0',
@model

)

The preceding code performs a number of steps to train and store a machine
learning model. To make sure you understand how sp_execute_external script can
be used to train and store models inside your SQL Server Master Instance, we are going
to describe each step that is being performed in the preceding code.

1. The first line of the script, DECLARE @model VARBINARY (MAX),
declares a T-SQL variable of the VARBINARY datatype that will
hold our model after training it.

2. Inthe second step, we execute the sp_execute_external script
procedure and supply the R code needed to train our model.
Notice we are using an algorithm called rxDTree. rxDTree is
a decision tree algorithm building by Revolution Analytics, a
company that Microsoft bought in 2015 and provided parallel
and chunk-based algorithms for machine learning. The syntax
for the model training is pretty straightforward; we are predicting
the species based on the other columns (or as they are called:
features) of the training dataset.

The line trained model <- rxSerializeModel(iris.dtree,
realtimeScoringOnly = FALSE) is the command to serialize our
model and store inside the trained_model R variable. We map
that variable as an output parameter to the T-SQL @model variable
in the call to the sp_execute_external script procedure. We
map the query that selects all the records from the training dataset
as an input variable for R to use as input for the algorithm.
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3. Finally, in the last step, we insert the trained model inside the
model table we created earlier. We supply some additional data
like a name and a version so we can easily select this model when
we use it to predict Iris species in the next step.

After running this code, which should only take a few seconds, we should end up
with our model stored as a binary string inside our model table as shown in Figure 7-5.

model_name model_version model_object

1 iris.dtree v1.0 Bx626C6F62C56C88687C5710DAABFEST7C559E3EBFD2D1624514151A564642F..,

Figure 7-5. Trained decision tree model inside the model table

Scoring Data Using In-Database Machine Learning Models

Now that we have trained our model, we can use it to score, or predict, the data we stored
in the Iris_test table. To do that we can use two methods, one using the sp_execute_
external_script procedure which we have also used to train our model and the other
by using the PREDICT function that is available in SQL Server.

The code of Listing 7-8 shows the first approach; notice that the syntax is mostly the
same as the earlier examples of this method, but this time we supply the trained model
as an input parameter together with a query to select the data from the Iris_test table.

Listing 7-8. Run a prediction using the in-database stored model

-- Retrieve the model from the model table
DECLARE @model VARBINARY(MAX) = (SELECT model object FROM models WHERE
model name = 'iris.dtree')

-- Run a prediction using the Iris test data as input
-- Return all columns, including the probability for each species
EXEC sp_execute_external script
@language = N'R',
@script = N'
model = rxUnserializeModel(model);
Iris prediction = rxPredict(model, data=Iris test)
Iris pred results <- cbind(Iris test, Iris prediction)
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str(Iris _pred results)

1
)

@input_data 1 = N'
SELECT
Sepal Length,
Sepal Width,
Petal Length,
Petal Width,
Species
FROM Iris test',
@input _data 1 name = N'Iris test',
@output_data 1 name = N'Iris pred results’,
@params = N'@model varbinary(max)',
@model = @model
WITH RESULT SETS (("Sepal Length" FLOAT, "Sepal Width" FLOAT,
"Petal Length" FLOAT, "Petal Width" FLOAT, Species VARCHAR(50),
setosa_Pred FLOAT, versicolor Pred FLOAT, verginica Pred FLOAT))

In the first part of the R script inside the sp_execute external script code,
we have to unserialize our model again using rxUnserializeModel. With the model
unserialized, we can perform a prediction of the input data. The last line of R code adds
the probability columns for each Iris species to the input dataset. This means we end up
with a single table as output that contains all the input columns as well as the columns
generated by the scoring process.

We won’t go into details about machine learning or machine learning algorithms
in this book, but the problem we are trying to solve using machine learning in this case
is one called classification. Machine learning algorithms can basically be grouped into
three different categories: regression, classification, and clustering. With regression we
are trying to predict a numerical value, for instance, the price of a car. Classification
usually deals with predicting a categorical value, like the example we went through in
this chapter: What species of Iris plant is this? Clustering algorithms try to predict a
result by trying to group categories together based on their characteristics. In the Iris
example we could also have chosen to use a clustering algorithm since there might be
clear Iris species characteristics that tend to group together based on the species.
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After running the code in Listing 7-8, we see the results shown in Figure 7-6. If you
ran the code yourself, you might see some different results since we split our training and
test data based on randomly selected rows.

Results Messages

Sepal_Length Sepal_Width Petal_Length Petal_Width Species setosa_Pred versicolor_Pred verginica_Pred
1 4.8 3.4 1.9 0.2 setosa 1 @ @
2 5.1 3.8 1.9 0.4 setosa 1 @ 8
3 5.2 2.7 3.9 1.4 versicolor @ 8.916666666666667 0.0833333333333333
4 5.2 3.5 1.5 8.2 setosa 1 @ @
5 5.3 3.7 1.5 8.2 setosa 1 @ @
6 5.4 3.4 1.5 0.4 setosa 1 8 @
¥ 5.5 2.4 3.7 1 versicolor @ @.916666666666667 @.0833333333333333
8 5.5 2.4 3.8 1. versicolor @ 8.916666666666667 ©.0833333333333333
9 5.6 2.9 3.6 1.3 versicolor @ 8.916666666666667 8.0833333333333333
18 5.7 2.6 3.5 1 versicolor ] 8.916666666666667 @.0833333333333333
11 3.7 2.8 4.5 1.3 versicolor a 8.916666666666667 ©.0833333333333333
12 5.7 3 4,2 1.2 versicolor ] 8.916666666666667 8.0833333333333333
13 5.8 2.7 4.1 1 versicolor @ 8.916666666666667 ©.8833333333333333
14 6 2.2 4 1 versicolor @ 9.916666666666667 ©.0833333333333333

Figure 7-6. Scored results for the data inside the Iris_test table using our trained
machine learning model

Performing a prediction using the sp_execute_external script method works
perfectly fine and gives you maximum flexibility in terms of what you can do using R
code. However, it does result in quite a lot of lines of code. Another method we have
available inside SQL Server is using the PREDICT function; PREDICT is far easier to use,
has a simpler syntax, and, in general, performs faster than sp_execute_external _
script. It does have its drawbacks though, for instance, you cannot write custom R
code to perform additional steps on the data and you are required to use a serialized
model that was trained using a Revolution Analytics algorithm (by using sp_execute
external script you can basically use every algorithm available in R or R libraries).

We performed the same scoring on our data inside the Iris_test table using the
PREDICT function in the code of Listing 7-9.

Listing 7-9. Running a model prediction using the PREDICT function

DECLARE @model VARBINARY(MAX) = (SELECT model object FROM models WHERE
model name = 'iris.dtree')

-- Alternative method is using the PREDICT function
SELECT
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Iris test.x,

pred.*
FROM PREDICT(MODEL = @model, DATA = dbo.Iris test as Iris test)
WITH(setosa Pred FLOAT, versicolor Pred FLOAT, virginica Pred FLOAT) AS pred

As you can directly see, PREDICT is far more readable than sp_execute_external
script and, for those more familiar with T-SQL, far easier to understand. In a sense, we
are joining the model, and its outputs, to the data inside the Iris_test table. We need to
supply the column names and datatypes of the prediction output inside the WITH clause
and can select what we want to return using the SELECT statement. In this case we are
selecting all the columns of the Iris_test table together with all the columns that are
returned by the prediction, and the results should look like those shown in Figure 7-7.

Sepal_Length Sepal_Width Petal_Length Petal_Width Species

setosa_Pred versicolor_Pred virginica_Pred

1 4.8 3.4 1.9 8.2 setosa 1 (] [
2 5.1 3.8 1.9 9.4 setosa 1 @ ]
3 5.2 2.7 3.9 1.4 versicolor (4] 8.916666666666667 9.0833333333333333
4 5.2 3.5 1.5 8.2 setosa 1 [:] ]
5 5.3 3.7 1.5 9.2 setosa 1 @ [
6 5.4 3.4 1.5 8.4 setosa 1 @ ]
7 5.5 2.4 3.7 1 versicolor @ 9.916666666666667 ©.0833333333333333
8 5.5 2.4 3.8 1.1 versicolor @ 9.916666666666667 0.0833333333333333
9 5.6 2.9 3.6 1.3 versicolor @ 0.916666666666667 9.0833333333333333
1@ 5.7 2.6 3.5 1 versicolor @ 0.916666666666667 0.0833333333333333
11 57 2.8 4.5 1.3 versicolor 4] 8.916666666666667 ©.0833333333333333
12 5.7 3 4,2 1.2 versicolor (4] 2.916666666666667 8.0833333333333333
13 5.8 F 4.1 1 versicolor (4] 2.916666666666667 @.0833333333333333
14 6 2.2 4 1 versicolor @ 0.916666666666667 ©.0833333333333333

Figure 7-7. Iris species prediction using PREDICT

Now that we have trained a machine learning model, and scored data using it, inside
SQL Server Machine Learning Services, you should have a general idea of the capabilities
of these methods. In general, we believe In-Database Machine Learning Services is
especially useful when all, or the largest part, of your data is stored inside SQL Server
databases. With the model stored inside a SQL Server database as well, you can build
solutions that are able to (near) real-time score data as soon as it is stored inside your
SQL Server database (for instance, by using triggers that call the PREDICT function). If you
want to, you are not limited to just SQL Server tables however. As you have seen in earlier
chapters, we can map data stored inside the Spark cluster (or on other systems all together)
using external tables and pass that data to the In-Database Machine Learning Services.
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In some situations, however, you cannot use In-Database Machine Learning
Services, perhaps because your data doesn't fit inside SQL Server, either by size or by
data type, or you are more familiar with working on Spark. In any of those cases, we
always have the option of performing machine learning tasks on the Spark portion of the
Big Data Cluster which we are going to explore in more detail in the next section.

Machine Learning in Spark

Since Big Data Clusters are made up from SQL Server and Spark nodes, we can easily
choose to run our machine learning processes, from training to scoring, inside the Spark
platform. There are many reasons we can come up with why you would choose Spark over
SQL for a machine learning platform (and vice versa). However, when you have a very
large dataset that doesn’t make sense to load into a database, you are more or less stuck on
using Spark since Spark can handle large datasets very well and can train various machine
learning algorithms in the same distributed nature as it handles data processing.

As expected on an open, distributed, data processing platform, there are many
libraries available which you can use to satisfy your machine learning needs. In this book
we decided on using the built-in Spark ML libraries which provide a large selection of
different algorithms and should cover most of your advanced analytical needs.

Just like we did for the In-Database Machine Learning Services for SQL Server
section, we need to get some data inside Spark to work with. For the sake of simplicity,
we decided on reusing the Iris dataset we also used for the SQL Server section. Just like
we did in the previous chapter, all the data processing, wrangling, and analysis we are
doing in Spark happen on a dataframe. Assuming you worked through the examples
in the previous SQL Server section, we are going to extract the Iris dataset from inside
the SQL Server Master Instance and load it into a dataframe in Spark using the code of
Listing 7-10. If you are unfamiliar with connecting to the SQL Server Master Instance
through Spark, we suggest reading the last section of the previous chapter where we go
into detail how you can make this scenario work.

Listing 7-10. Reading data from the SQL Server Master Instance

# Before we get started, let's get the Iris data from the database/table we
# created in the previous section
df_Iris = spark.read.format("jdbc") \

.option("url", "jdbc:sqlserver://master-0.master-svc;databaseName=InDBML") \
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.option("dbtable", "dbo.Iris") \
.option("user", "[username]") \
.option("password", "[password]").load()

If we look at some of the contents of the df Iris dataframe, using the df Iris.
show(10) command, we should see that all the Iris species characteristics, as well as the
species itself, are present in the dataframe (Figure 7-8).

fmm e e e i fom +
|Sepal Length|Sepal Width|Petal Length|Petal Width|Species|
e et e o fm—————— +
| 5.1 3.5] 1.4] 0.2] setosal
| 4.9 3.0] 1.4 0.2] setosal
| 4.7 3.2 1.3] 0.2| setosal
| 4.6] 3.1 1.5] 0.2| setosal
| 5.0 3.6]| 1.4] 0.2] setosal
| 5.4 3.9] 1.7 0.4] setosal
| 4.6 3.4 1.4] 0.3] setosal
| 5.0] 3.4 1.5] 0.2] setosal
| 4.4 2.9] 1.4 0.2| setosal
| 4.9 3.1 1.5] 0.1] setosal]
e e e i fm—————— +

only showing top 10 rows

Figure 7-8. df _Iris dataframe top ten rows

With our data inside a dataframe in Spark, we are almost ready to start to do some
machine learning. First thing we need to handle though is the loading of a number of
Spark ML libraries as shown in the code in Listing 7-11.

Listing 7-11. Loading machine learning libraries

# To perform machine learning tasks, we need to import a number of libraries
# In this case we are going to perform classification

from pyspark.ml.classification import

from pyspark.ml.evaluation import *

from pyspark.ml.feature import *
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In this case, since we are doing a so-called classification problem, we only need to
import the pyspark.ml.classification libraries together with the libraries we need to
perform some modification to the features (which is another name for the columns of
our dataframe in this case) of the dataframe and evaluate our model performance.

After the libraries are loaded, we are going to perform some modifications on our
dataframe to make it suitable to work for our machine learning algorithm. Different
machine learning algorithms have different requirements in terms of your data,
for instance, some algorithms only work on numerical values as input, just like the
classification algorithm we are using. The code of Listing 7-12 performs a number of
tasks on our df _Iris dataframe.

Listing 7-12. Process the data so it is suitable for machine learning

# We are going to combine all the features we need to predict the Iris species
# into a single vector feature

feature cols = df Iris.columns[:-1]

assembler = VectorAssembler(inputCols=feature cols, outputCol="features")
df Iris = assembler.transform(df Iris)

df Iris = df Iris.select("features", "Species")

# Since we are going to perform logistic regression, we are going to convert
# the string values inside species to a numerical value

label indexer = StringIndexer(inputCol="Species", outputCol="label").fit(df Iris)
df Iris = label indexer.transform(df Iris)

The first code section combines the different features inside a new column called
“features.” All of these features are Iris species characteristics and they are combined into
a single format called a vector (we will take a look at how this visually looks a bit further
down in the book). The line feature cols = df Iris.columns[:-1] selects all the
columns of the dataframe except the rightmost column which is the actual species of the
Iris plant.

In the second section, we are mapping the different Iris species to a numerical value.
The algorithm we are going to use to predict the Iris species requires numerical input,
which means we have to perform a conversion. This is not unusual in the realm of machine
learning and data science. In many cases you have to convert a string value to a numerical
value so the algorithm can work with it. After the conversion from string to numerical, we
add a new column called “label” which contains the species in a numerical value.
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In the next step, we are only selecting the features and the label column from the
df Iris dataframe and return the top ten rows (code of Listing 7-13 results in Figure 7-9)
to give you an idea how the data looks after the transformations we’ve performed in the
previous code segment.

Listing 7-13. Only select the features and label dataframe columns

# We only need the feature column and the label column
df Iris = df Iris.select("features"”, "label")

df Iris.show(10)

e e +

| features|label |

only showing top 10 rows

Figure 7-9. modified df Iris dataframe

As you can see from Figure 7-9, all of the features (Petal_Length, Petal_Width, etc.)
have been transformed inside a single vector inside a single column of our dataframe.
The label column now returns a number for the species, 2.0 being Setosa, 1.0 virginica,
and 0.0 versicolor.
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Now that we have our entire dataframe converted into a format that is workable
for our machine learning classification algorithm, we can split our data into a training
dataframe and a testing dataframe like we did in the previous section as well. The code
of Listing 7-14 handles the split in which 80% of the data goes into the Iris train
dataframe and the remaining 20% in the Iris_test dataframe.

Listing 7-14. Split the dataframe into a training and testing dataframe

# Split the dataset
(Iris train, Iris test) = df Iris.randomSplit([0.8, 0.2])

Now that we have our datasets ready for training, we can start the actual machine
learning phase. The first thing we need to do is to initialize the machine learning
algorithm (Listing 7-15). In this part we can supply which algorithm we want to use
and various parameters (also called hyperparameters) we want to configure during the
training phase of the machine learning model.

Listing 7-15. Initiate the classifier

# Initiate the classifier, in this case LogisticRegression
1r = LogisticRegression(maxIter=10, tol=1E-6, fitIntercept=True)

In this case we have chosen to use a logistic regression algorithm to try and predict
which species of Iris a plant belongs to, based on its characteristics. We are going to
ignore the algorithm parameters for now. When you are in the phase when you try to
optimize and tune your model, you will frequently go back to the parameters (either
manually or programmatically) and modify them to find the optimal setting.

Training the model is actually very easy and straightforward and, in this case, can be
achieved by a single line of PySpark code (Listing 7-16).

Listing 7-16. Train the model

# Train the multiclass model
model = lr.fit(Iris train)

After the preceding code (Listing 7-16) finished running, we have access to a
trained machine learning model in the form of the variable “model.” We can then use
the trained model to perform predictions on our test dataset to analyze how well it
performed. Using the code of Listing 7-17, we are going to “fit” the trained model on our
test dataset and return the top 20 results which are shown in Figure 7-10.
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Listing 7-17. Perform a prediction

# Predict on our test dataset using the model we trained
# and return the predictions
Iris pred = model.transform(Iris test)

Iris pred.show(20)

R et et tommmmm e o +
| features|label rawPrediction]| probability|prediction|
e it fmmm fomm +
| F4:6,3.2,1.4,0.2] 2.01[0.30991078639312...1([3.35040440695999...| 2.01
|[4.6,3.4,1.4,0.3] 250 || [=0= 175082615Cé34...|[4.Cé4019@5664896...| 2.0
|(4.8,3.1,1.6,0.2] 2.01[1.19146977338786...1[7.12505508251146...| 2.01
| [(5.0,2.0,3.5,1.0] 0.01[6.30375932984991...|[0.87175896041068...] 0.01
| [5.0,3.3,1.4,0.2] 2.0]1[0.83587934080054...|[7.43466366511768...| 2.0
| £5:1,3.:5,1.4,0.2] 2.01[0.37926677687117...|[8.64163143944124...]| 2.0|
|[5.4,3.4,1.7,0.2] 2.0|[1.53357534235435...|[4.32896208703599...| 2.01
| [543 741:5;0:2) 2.01[0.41091088753656...|[4.04056483469234...| 2.01
|.[5:453.9,1:3:0:4] 2.0]1[-0.4014412200652...|[4.54625576899838...| 2.0]
| [5.5,2.4,3.7,1.0] 0.01[6.15154045507437...1[0.97112658101474...| 0.01
1(5.6,2.9,3.6,1.3] 0.0][4.59088469450658...|[0.97386844668033...| 0.0]
| [(5.6,3.0,4.1,1.3] 0.01[4.54103727639938...|[0.96102614316431...| 0.0l
| (5.7,2.8,4.5,1.3] 0.0 [5 6=763?96206991...|[0.88562559392923...| 0.0
|1[5.8,2.7;5.1,1.9] 1.0]1[6.4 55‘3??£0913’.,‘|[U,C60335T315683?“.| 1.0]
| [5.9,3.0,4.2,1.5] 0.01[5.21905356429863...|[0.89724043667644... | 0.01
|(6.1,2.6,5.6,1.4] 1.01[7.80857557133 «:%..450.«;20 132823967...| 1.0
|[6.2,2.8,4.8,1.8] 1.0]1[6.84252818274330...][0.28829058044637...1 1., 0]
| [6:3;2:5,4:9,1.5 0.01(8.16207847548803...|[0.47150854117348...| 1.0]
|(6.3,2.9,5.6,1.8] 1.01([7.17991530788880...1[0.16034813924546... | 1.0]
|1(6.4,2.8,5.6,2.1] 1.01([7.69286100981022...|[0.02379051709345...| 1.0]
e et e el o o +

only showing top 20 rows

Figure 7-10. Prediction results on our test dataset

Asyou can see in Figure 7-10, our model performed a good job on the test dataset. In
the top 20 rows that were returned by the command, only a single row had a prediction
for a different species instead of the actual one (we predicted virginica while it should
have been versicolor). While we could analyze each and every row to look for differences
between the actual species and the predicted species, a far faster way to look at model
performance is by using the Spark ML evaluation library which we loaded earlier.
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The code of Listing 7-18 evaluated the model performance against our test dataset
and measured it on the performance metric accuracy. Accuracy is frequently used
to measure how well a classification model is performing and is the ratio of correct
predictions divided by the number of incorrect predictions.

Listing 7-18. Measuring model performance

# How good did our model perform?
evaluator = MulticlassClassificationEvaluator(metricName="accuracy")
accuracy = evaluator.evaluate(Iris pred)

print("Accuracy: " + format(accuracy))

The results the preceding code returns will probably vary each time you run
the code. This is because the dataset we are using is rather small and we perform a
randomize split, which means the number of unique species which ends up in the
training and testing datasets has a huge influence on model performance. We ended up
with the results shown in Figure 7-11, which is quite a respectable level of accuracy.

Accuracy: 0.935483870968
Figure 7-11. Accuracy of our trained model

With our model trained and tested, we can take additional steps depending on
what we are planning to do with the model. If we are interested in optimizing model
performance more, we could go back and tune our algorithm parameters before training
the model again. Perhaps it would also be useful, in this scenario, to look how good the
split is between the training and test dataset since that has a huge impact on the model
accuracy and there are a hundred more things we could do to optimize our model even
further if we wanted to (even selecting a different algorithm to see if that predicts better
than the current one).

Another thing we could do is store the model. We are way more flexible in that area
than inside SQL Server In-Database Machine Learning Services where the model had to be
serialized and stored inside a table. In the case of Spark, we can choose different methods
and libraries to store our models. For instance, we can use a library called Pickle to store
our model on the filesystem, or use the . save function on the model variable to store it
on an HDEFS location of our choosing. Whenever we need our trained model to score new
data, we can simply load it from the filesystem and use it to score the new data.
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Summary

In this chapter we explored the various methods available to perform machine
learning tasks inside SQL Server Big Data Clusters. We looked at SQL Server In-
Database Machine Learning Services which allowed us to train, utilize, and store
machine learning models directly inside the SQL Server Master Instance using a
combination of T-SQL queries and the new sp_execute_external script procedure.
In the Spark department, we also have a wide variety of machine learning capabilities
available to use. We used the Spark ML library to train a model on a dataframe and
used it to score new data. Both of the methods have their strengths and weaknesses,
but having both of these solutions available inside a single box allows optimal
flexibility for all our machine learning needs.
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CHAPTER 8

Create and Consume
Big Data Cluster Apps

One of the capabilities of SQL Server Big Data Clusters is the ability to build and run
custom applications on its surface. This is actually a very powerful feature, since it
allows you to script and run a wide variety of solutions on top of your Big Data Cluster.
For instance, you can create an application, or app as we will call it in the remainder of
this chapter, to perform various maintenance tasks on top of your data like a database
backup. Another example is the ability to create an entry point for your machine learning
processes through a REST API, a use case which we will explore later in this chapter.

Apps that you create on your Big Data Cluster can, at the moment of writing this
book, be written in R and Python, and there is an additional option to run SQL Server
Integration Services (SSIS) packages as well. By creating apps, you can utilize all the
computational resources available inside the Big Data Cluster as well as access all the
data that is stored inside of it.

Apps inside Big Data Clusters are run inside a dedicated container and can be
replicated and scaled across the cluster. This means that you can make your apps handle
parallel workloads and be high-performant solutions.

In this chapter we are going to create an app that will use a pretrained machine
learning model to classify the species of Iris plants, much like we have done in the
previous chapter which focused on developing machine learning solutions inside Big
Data Clusters. By building an app to score data using a machine learning solution, we
can easily operationalize that model through a REST API. This means that applications
that you use or build yourself can receive a prediction directly from the Big Data Cluster
through JSON messages, allowing near real-time scoring directly from your application
without the need to store and process the data first inside the Big Data Cluster.
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Create a Big Data Cluster App

There are two methods we can use to deploy apps to the Big Data Cluster, Visual Studio
Code through the App Deploy Extension and through the azdata command-line utility.
We are going to focus on the latter method to create and deploy our app.

Before we can deploy our app, we first have to write it. As mentioned in the
introduction of this chapter, apps can be written in R or Python and we have selected
R as the language of choice for our app. While it is not strictly necessary to have access
to R if you want to follow the examples in this chapter, it can be useful if you want to
train the machine learning model we are using inside our app yourself. In any case, the
pretrained model and the other files that are required for app deployment are available
for download at this book’s GitHub page.

Since we are going to create a Big Data Cluster app that is going to score new data
using a machine learning model, we need to create and store the model first. The code in
Listing 8-1 will use the built-in Iris dataset to create a machine learning model through
a decision tree and store it inside an .RDS file (make sure to set a directory path before
running the code). We will use the model stored inside the .RDS file later to score new
data. You can execute the following code from an R session on your local computer. You
can download and install R from www.1-project.org/.

Listing 8-1. Building a prediction model in R

# Read the Iris data into a new dataframe
Iris Data <- iris

# Change the column names
colnames(Iris Data) <- c('Sepal Length', 'Sepal Width', 'Petal Length',
'Petal Width', 'Species")

# Sample a number of rows for splitting training and testing datasets
sample size <- floor(0.75 * nrow(Iris Data))

set.seed(1234)
train_id <- sample(seq_len(nrow(Iris Data)), size = sample size)

Iris train <- Iris Data[train id, ]
Iris test <- Iris Data[-train_id, ]
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# Train the model, a decision tree, on the training data
Iris Dtree <- rpart(Species~., data = Iris train, method = 'class")

# Save the model to disk
saveRDS(Iris Dtree, "[folder path]/iris dtree.rds")

As you can see in Listing 8-1, we went through the additional steps of splitting our
data into a training and testing dataset. However, in the preceding code, we only use the
training dataset to train the model and do not test its accuracy using the test dataset. We
aren’t necessarily interested in the model performance in this chapter, but rather the
ability to use the pretrained model to score new data through our Big Data Cluster app. If
you want to see how the model training performed, you can run the lines of the code in
Listing 8-2, which will perform an Iris species prediction based on the model we trained
and combine those predictions with the original testing dataset.

Listing 8-2. Predict using our trained model

Iris Predict <- predict(Iris Dtree, Iris test, method = 'class')
Prediction results <- cbind(Iris test, Iris Predict)

Now that we have a pretrained model available to us inside and RDS file, we can take
alook at the actual code required to create a Big Data Cluster app.

A Big Data Cluster app consists a minimum of two files: the actual code we are
going to run inside the app and a YAML file that holds the configuration of our app.
Both of these files, and any additional files you want to upload to the app container like
our pretrained machine learning model, must all be stored inside a single directory as
shown in Figure 8-1.

Name

& iris_dtree.rds
B Predict_Iris.R

B train_Iris_model.R
n spec.yaml|

Figure 8-1. App files
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With the exception of the “spec.yaml” file, you are free to name your files in
whichever way you want.

Let’s first look at the contents of the “Predict_Iris.R” file. This file will contain the
code necessary to load the pretrained model from the “iris_dtree.rds” file and perform a
prediction based on the input variables we pass to the script file. The contents of the file
can be seen in Listing 8-3.

Listing 8-3. Contents of the Predict_Iris.R file
library(rpart)
runpredict <- function(Sepallength, SepalWidth, Petallength, PetalWidth) {

input_dataframe = data.frame(Sepal Length = Sepallength, Sepal Width =
SepalWidth, Petal Length = PetallLength, Petal Width = PetalWidth)

Iris Dtree <- readRDS("iris dtree.rds")
Iris Predict <- predict(Iris Dtree, input dataframe, method = 'class"')

result <- as.data.frame(Iris Predict)

In the preceding code, we firstly load the R library needed to perform a prediction
based on a decision tree. We also used the rpart library to train the model in the first
place; hence, it is also required to load the library when we want to perform a prediction.

The entire processing through our script file is handled through an R function. This
is necessary since we are going to define an entry point inside the spec.yaml file which
is called whenever we run the app. In the function definition, I am defining four input
variables, SepallLength, SepalWidth, PetallLength, and PetalWidth. When we are going
to call our app, we are supplying these variables as input parameters for the model to
perform a prediction. In the first line of code inside the function, I am grouping the input
variables and storing them inside an R dataframe called input_dataframe, taking care to
rename the columns to the identical format we also used when training the model. This
is required, else the prediction would not know which data is residing in which column.

In the next step, we are loading the pretrained model from the RDS file which we
also upload to the app container, after which we call the R predict function to perform a
prediction using the model and the input dataframe. Finally, we convert the result of the
prediction into a dataframe format and map it to the result variable.
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Now that we have actually completed our application script, we have to create the
spec.yaml file. For the example app we are deploying to our Big Data Cluster inside this
chapter, the spec.yaml file looks like Listing 8-4.

Listing 8-4. Contents of the spec.yaml file

name: predictiris
version: vi

runtime: R

src: ./Predict Iris.R
entrypoint: runpredict

replicas: 1
poolsize: 1
inputs:

Sepallength: numeric

SepalWidth: numeric

PetallLength: numeric

PetalWidth: numeric
output:

out: data.frame

Most of the contents of the spec.yaml file are pretty much self-explanatory. We
supply a name and a version of the app, the runtime language, and the file that is called
whenever we run our app. In the bottom section, we define our input parameters (which
are identical to the ones we defined in the R function) and their datatypes, as well as
the datatype of our output parameter. In this case we didn’t explicitly set an output
parameter name. This is because R automatically uses the last set variable (in our case
result) as output when you call a function.

The more interesting parameters of the YAML file are the replicas and poolsize
parameters. These are the parameters we can configure to replicate and scale our app.
The input of the replicas parameter dictates how many pods should be deployed for
the application and the poolsize configures how many occurrences of the app should
be present inside a pod. The number of parallel operations your app is able to perform
is the product of the calculation replicas x poolsize. For instance, having replicas
configured to a value of 4 and the poolsize set to 2 will result in your app being able to
handle 8 parallel requests. In our spec.yaml, we configured both these settings to be 1,
meaning we will be able to handle one single request at a time.
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With all the files we require for our app deployment ready and stored inside a single
folder, we are ready to deploy the app to the Big Data Cluster. As we mentioned earlier,
we are using the azdata program to perform the deployment.

Before we can connect to the Big Data Cluster, we need to retrieve the external
IP of the controller-svc-external service. To do that, you can run the following
command: kubectl get svc controller-svc-external -n [clustername], where
[clustername] is the name of your cluster. If you are using AKS to host your Big Data
Cluster, you will first need to log on to Azure using the az login command.

Now that we have the IP and port number of the management service, we need to
connect to it through azdata using our admin username and password. You supplied
both of these during the deployment of your Big Data Clusters. The code of Listing 8-5
sets up a connection to your Big Data Cluster. Make sure to change the variables between
[ ] to the values you have for your cluster.

Listing 8-5. Login to the controller endpoint

azdata login --controller-endpoint https://[IP address]:30080 --controller-
username [username]

You will be asked to enter the password of the admin user. If everything went well,
you should get a logged in successfully message.

Now that we are connected through azdata to our Big Data Cluster, we can deploy
our application. To do that, we can use the code shown in Listing 8-6. Make sure to
change the [directory path] to the path of the directory that holds your application
files like the spec.yaml.

Listing 8-6. Deploy Big Data Cluster app
azdata app create --spec [directory path]

In our case we called the following command (Listing 8-7).

Listing 8-7. Deploying our Big Data Cluster app
azdata app create --spec /Users/enricovandelaar/Documents/BDC.

When running the preceding command, a number of validations will occur to check
if the spec.yaml file is present and the input is correct. If everything is correct, you should
receive the message shown in Figure 8-2.
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PS C:\Users\Administrator> azdata app create --spec C:\users\Administrator\bdc_app
Application 'predictiris/vl’ successfully created.

Figure 8-2. Big Data Cluster app created
Even though you receive a message that the app was created successfully, it isn’t
directly available. It usually takes around a minute before you can actually run your

application after you create it. If you want to know the status of application creation, you
can run the command in Listing 8-8.

Listing 8-8. Retrieving App status through azdata
azdata app list -n predictiris
This returns the current status of the app deployment as shown in Figure 8-3.

App Name State Version

https:// : fapi/vl/app/predictiris/vl predictiris WaitingForCreate vl

Figure 8-3. App creation status

After a minute or so, we ran the command again and received a state of “Ready,’
shown in Figure 8-4, meaning we can continue with the next step to test our app.

https://.° : s i/fapi/vi/app/predictiris/vl predictiris Ready vl
Figure 8-4. App deployment completed and app is in the ready state

When the app is in the “Ready” state, we can test it’s functionality through the azdata
program. If we defined any parameters, we need to supply them when calling the app,
together with the name and version of the app which we supplied in the spec.yaml file.

The command in Listing 8-9 calls our predictiris app together with a number of input
parameters which we defined in the R script and YAML file.

Listing 8-9. Run the app through azdata

azdata app run -n predictiris -v vi --inputs Petallength=1.4,PetalWidth=0.2,
Sepallength=5.1,SepalWidth=3.5

If everything completed successfully, we should get the results, in a JSON format,
shown in Figure 8-5.
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{
"changedFiles": [],

"consoleQutput”: "",
"errorMessage”: "",
"outputFiles": {},
"outputParameters”: {
“"out™: {
"setosa": [
0.0

"versicolor”: L
0.02702702702702702
]
"’irginica": [
0.9729729729729729
]
h
1,

"success": true

T
Figure 8-5. App prediction results

Since we are returning the output from the R script file inside a dataframe, the output
is automatically converted to a JSON array. The prediction in the case of the predictiris
app returns three output parameters which contain the probability for each possible Iris
species. In this case, the virginica species seems to be the most likely giving the values of
the input parameters we supplied with a certainty of 0.97 or 97%.

Whenever there is an issue with your app, you can in most cases see the error inside
the “errorMessage” or “consoleOutput” sections of the returned JSON. In our case the
app was executed successfully and we didn’t run into any errors.

Now that we have our app deployed and tested, we can keep using the azdata
method to call the app programmatically or on demand whenever we need to. Another
method to execute the app, which I find far more elegantly, is through the REST API that
is automatically created when we deploy our app.
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Consume Big Data Cluster Apps Through REST API

When we deploy our app, a dedicated container is created that holds our app and all
additional files we supplied through the application folder. During the deployment, a
RESTful web service is also created inside the container as an additional method to call
the app. RESTful APIs use HTTP requests to perform tasks. In our case, we can use the
REST API to call the app we created and return the outputs inside a JSON message. This
can be very useful in situations where you create apps on your Big Data Cluster that
you want to directly access from, for instance, your applications. Since all the code, and
the data, resides on the Big Data Cluster, your application only needs to be able to send
REST API calls and process the return messages returning data immediately into your
application.

To make use of the REST API for our app, we need to perform a number of steps. The
most important one being that we need to generate a token to securely call the REST
API. A number of these steps need to be performed through a tool that can send REST
API calls and process their results. In our case we used Postman (www.getpostman.com/)
as the tool of our choice.

The first thing we need to do before we are able to connect to the REST API that
belongs to our app is to generate a so-called “bearer token.” Only by supplying this token
in our REST API call can we access the app.

To generate a bearer token, we need to connect to the token URL. You can find the
URL and port number you need to connect to by running the command in Listing 8-10.

Listing 8-10. Retrieve app URL and port number through azdata
azdata app describe --name predictiris -v vi

Running the preceding command returns information about your app, in our case
the predictiris app which is shown in Figure 8-6. The line we are after is returned in
the “links” section and is the URL and port number of the “swagger” property.
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g
"input_param_defs": [
{
"name": "PetalLength”,
"type": “numeric"
L )
name": "PetalWidth”,
"type": "numeric”
]
name”: “"SepalLength”,
“type"”: "numeric”
'
{ " L1 "n - "
name”: "Sepalwidth",
"type”: "numeric”
“%qterna1_name": "appl”,
"Tinks": {
app’": "hEttps:/f/134. 16.36.11 y/api/vl/app/predictiris/vl", )
“swagger™: "https://i7d, 35.23.2 )/api/vl/app/predictiris/vl/swagger. json”
“ﬁame“: “predictiris”,
"output_param_defs": [
{
'lnal"e" : Iloutll o
"type"”: "data.frame”
]

]
"state”: "Ready",
"version": "vi"

Figure 8-6. Output of the app describe command for the predictiris app

Copy the URL and port number, or write them down, for now and start Postman (or
any other REST API call app you prefer). When Postman is started, we must change a
setting to avoid an error. Since the Big Data Cluster is configuring self-signed certificates
on its endpoint, we can potentially run into a security issue when we perform the REST
API calls later on. Inside Postman you can find the SSL certificate verification inside the
Preferences menu item as shown in Figure 8-7. Make sure to disable this setting before
performing the REST API calls to your Big Data Cluster.
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REQUEST

Trim keys and values in request body
SSL certificate verification @ on
Always open requests in new tab
Always ask when closing unsaved tabs
Figure 8-7. Request options inside Postman

With the setting disabled, you can open a new tab inside Postman. Paste or
enter the URL and port string we received from the app describe command into the
request URL field and expand the URL with /api/v1/token and change the method to
POST. Finally open the Authorization tab, change the Type to “Basic Auth,” and enter
your Big Data Cluster administrator username and password in the correct fields.
Figure 8-8 shows a screenshot of Postman with all these items filled in for our Big Data
Cluster and app URL.

https:d/ fapifviftoken

Authorization @

TYPE 0 " v keep this dat while work llaborative %

Figure 8-8. Postman setting to generate the bearer token

With everything configured in Postman, click the Send button to send the request
to the URL. If everything processed correctly, you should receive a return message that
contains the bearer token inside the “access_token” property of the JSON response as
shown in Figure 8-9 (we’ve removed the contents of the access_token and token_id
properties in Figure 8-9).

235



CHAPTER 8  CREATE AND CONSUME BIG DATA CLUSTER APPS

S e = mQ

"token_type": “Bearer”,
“access_token”: '

“expires_in": 36008,
“expires_on”: 1558304036,
“token_id":

}

Figure 8-9. JSON return message that contains the bearer token

Now that we generated a bearer token, we can use it to actually call the REST API of the
app itself. The URL of the app REST API is hidden by default and can be found in the swagger.
json file which we can open by visiting the URL inside the “swagger” property that we
received when running the azdata app describe --name predictiris -v v1command.

When you open the URL (in our case https://104.46.56.134:30080/docs/
swagger.json), you can find a property in the JSON file called “host” as shown in
Figure 8-10.

;Ihost": n : M I "'
"basePath": "/api/app/predictiris/v1",
"paths": {

"/run": {
Figure 8-10. Host property of the swagger.json file

Copy or write down the value of the “host” property and start a new session inside
Postman. Change the request method to “POST” and copy the contents of the “host”
property inside the request URL field preceding it with HTTPS://. After the port number
of the URL, we can copy the contents of the “basePath” property shown in Figure 8-10
and, as a last step to make the URL complete, add a /run.

Go to the Authorization tab and this time select the option “Bearer Token” and add
the token we received in the previous step inside the token field.

We now have one step left, generate the body content of our REST API call and
supply the input parameters needed to perform the Iris species prediction. Inside
Postman, click the Body tab, check the option “raw,” and from the drop-down button,
select “JSON (application/json).” Copy the contents of the code section in Listing 8-11
inside the body textarea to supply the input parameters needed for the predictiris app.
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Listing 8-11. Input parameters for predictiris app (JSON)

{
"Petallength": 1.4,

"PetalWidth": 0.2,
"SepallLength": 5.1,
"SepalWidth": 3.5

With all of these areas filled in, the Postman screen should look like Figure 8-11.

https:f/ fapifapp/predictiris/vl/run

POST *  hitps:f fapiapp/predictirishl frun m Save ~

“Petallength”: 1.4,
"PetalWidth™: @.2,
"Sepallength": 5.1,
"SepalWidth™: 3.5

6 }

Figure 8-11. Body of the REST API call to the predictiris app

Now all that is left to do is to click the “Send” button to send the JSON message to the
predictiris Big Data Cluster app.

If everything was configured correctly, we should receive a return message that
resembles the same output as when we executed the predictiris app using azdata
containing the predicted probabilities for each species of Iris plant. The return message
we received can be seen in Figure 8-12.

dl
&
D

Pretty

L=
"success™: true,
“errorMessoge™: "7,
"outputParameters”: {
"out™: {
“setosa”™: [
]

1.

“versicolor®: [
@.e27ezTezrezreziez2

1.

"virginica™: [
0.97297297297297292
]

¥

"outputFiles": {},
“consolelutput”™: ="

1 "changedFiles™: [] I

Figure 8-12. REST API response body with the probabilities of each Iris plant species
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Summary

In this chapter, we took a look at creating and accessing Big Data Cluster applications.
Big Data Cluster apps are a method to run containerized custom code inside the Big
Data Cluster, for instance, to serve as an access point to perform machine learning
scoring on a model that is stored inside the Big Data Cluster. We have created our own
app that was able to predict the species of an Iris plant, uploaded it to the Big Data
Cluster, and used azdata to execute the app. Apps are not only accessible through azdata
though; by using a RESTful web service, we were able to access the app and send data
to it of which it returned a scored result, using the machine learning model we trained,
inside a JSON message.

In the upcoming last chapter of the book, we will be taking a look at how you can
manage and administer an existing Big Data Cluster.
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Maintenance of Big Data
Clusters

Last but not least, we want to look at how you can check the health of your Big Data
Cluster, how an existing Big Data Cluster can be upgraded to a newer version, and how
you can remove a Big Data Cluster instance, if it’s no longer needed.

Checking the Status of a Big Data Cluster

Big Data Clusters provide you with two different portals from which to learn more about
their current state and health. These portals provide metrics and insights on the status of
the nodes as well as relating to log files. In addition to show, azdata can also provide you

a high-level overview of your cluster’s health.

Retrieving a Big Data Cluster’s Status Using azdata

To check your cluster’s status from the command line, log in to your cluster using
the command azdata login. As you can see in Figure 9-1, azdata will ask you for your
namespace (your cluster’s name), username, and password. Use the values provided
during deployment.
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Bl Administrator: Command Prompt - O X
Microsoft Windows [Version 10.€.17763.1098] ~
(c) 2018 Microsoft Corporation. All rights reserved.
C:\Users\bigdata>azdata login
Namespace: mybdc
Username: admin
Password:
Logged in successfully to “https:// i:3e08@" in namespace “mybdc. Setting active context to “mybdc”.
C:\Users\bigdata>,
Figure 9-1. Output of azdata login
Once you've successfully logged in, you can run the command azdata bdc status
show. This will give you an overview of all your services, hopefully reporting them all as
“healthy.” A sample output is illustrated in Figure 9-2.
W sranstiane Comomand Promgs - 8 x

€1 \DSers bl gata\DeskTop azdats bdt TTATus show

rfirstbigdatacluster: ready Health Statws:

ealth Statws:

Sq1 Services: resd el
........................................................................................................... Mescurcemase  State  Healthatatus  Details
master rescy Statefulset master is healthy
Compute-8 reacy StatefulSet compute-@ Is healthy data-8 resty  EENENE StatefulSet data-9 is healthy
storage-9 ready Statefulset storage-0 is healthy
wofs services: ready reealen s :
Resourcename  State  Meslthstatus  Detalls
nanode-@ ready StatefulSet nancde-® i3 healthy
storage-9 reacy Statefulset storage-8 is healthy
sparkhead reay StatefulSet sparkhesd D healthy
Spark Services: ready B )
Resourtename State Healthstatus Details
sparkhesd ready sparkhesd i3 healthy
storage-8 ready ulset storage-8 is healthy
. — -
control ety

ricsdy is healthy

ui is healthy
Gatewsy Services: ready ]|

: Beicurcerase  Stat laealthstat Detalls

gat ey reacy (RN StatefulSet gatewsy s healthy

Figure 9-2. Output of azdata bdc status show
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After this, you can log out of the cluster by using azdata logout.

Manage a Big Data Cluster Using ADS

Azure Data Studio gives you a more extensive view of your Big Data Cluster’s status and
layout. First, you need to connect to the cluster’s controller endpoint, which you were

provided at deployment.
To do so, look for the Big Data Clusters section in your ADS connections and click the

“+” symbol as pointed out in Figure 9-3.

W Fie Edit View Help Welcome - Notebooks - Azure Data Studio [Administrator] - o >
Q CONNECTIONS = B Welome X m
Exte 5
Do ed, it
the
Recer e
F ands
» AZURE
SOL SERVER BIG DATA CLUSTERS
| Twtte:
Tasks x
Not d

£ 0

§ ®ode

Figure 9-3. Big Data Clusters Connections in ADS

In the next step, provide the endpoint URL as well as your credentials to log in to the

cluster as shown in Figure 9-4.
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Add New Controller

Cluster Management URL *

https:// 1230080

Authentication type *

Basic hd

Username

admin

Password

#) Remember Password

EETEE I

Figure 9-4. Add new Big Data Clusters Connection in ADS

This will take you to your Big Data Cluster overview, which will show you the state
and health status of every service as well as your endpoints as shown in Figure 9-5.
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U‘u Welcome Big Data Cluster Dashboard - 30080 X m

¢ Refresh [5] Troubleshoot

Big Data Cluster overview Cluster Properties
Cluster Details Cluster State: Ready Health Status : Healthy
SQL Server Cluster Overview Last Updated : 3/17/2020 8:14:15 AM
HOFS SERVICE NAME STATE HEALTH STATUS
Spark & S0 Server Ready Healthy
Control « HDES Ready Healthy
Gateway «  Spark Ready Healthy
«  Control Ready Healthy
App
& Gateway Ready Healthy
L Ready Healthy

Service Endpoints

SERVICE ENDPOINT

) v nt-
‘:L,llT Server Master Instance Front: 31433
End
Application Proxy https:// :30778

f to access H iles,

Gateway to access HDFS files, https:// 30443
Spark
Provy for rurjn'ng Spa..rk https:// :30443/gateway/default/livyv1
statements, jobs, applications -
Spark Jebs Management and g g . )
Monitoring Dashboard https:// 130443/ gateway/default/sparkhistory
HDFS File System Proxy https:// :30443 /gateway/default/webhdfs/v1
Sp"'.rk. Duagnostlcs snd Monitorig hittos:// :30443/aatewav/defaultivarn

Figure 9-5. Big Data Cluster overview in ADS

While the endpoints are more to be used as a reference, the overview itself can be
very useful to retrieve more details about every single service and instance within your
cluster.

Ifyou click your SQL Server Service, for example, this will take you to an overview of
all your SQL instances (master, compute, data, and storage) as shown in Figure 9-6.
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u': Welcome Big Data Cluster Dashboard - =30080 X

& Refresh 7] Troubleshoot

Big Data Cluster overview master compute-0 data-0 storage-0
Cluster Details Health Status Details Last Updated : 3/17/2020 8:23:32 AM
SQL Server INSTANCE STATE HEALTH STATUS
HDFS «  master-0 Running Healthy
Spark Metrics and Logs
Control INSTANCE NODE METRICS SQL METRICS LOGS
Gateway master-0 View View View
App

Figure 9-6. Big Data Cluster details on SQL Server instances in ADS

This will also provide you specific links toward the metrics and logs of each

component.

Metrics (Grafana)

The Grafana Portal provides metrics and insights on the status on the node itself as well
as more SQL-specific metrics where applicable. The credentials to log in to the portal
will be the same ones you also used to connect to your cluster in Azure Data Studio.

Node Metrics

Node metrics are typical performance indicators like CPU, RAM, and disk usage as
shown in Figure 9-7.

244



CHAPTER9  MAINTENANCE OF BIG DATA CLUSTERS

57.1 min 6\ ) f] ‘2% o 9 s7o18 s 1.88%

Ly

» Memary and Process
» Kemel

» Disk 1OPS for /dev/sda
» Disk IOPS for /dev/sdb

» Disk I0PS fo

» Disk IOPS o
» Disk I0PS for /dev/sde
» Disk IOPS for [dev/sdf
» Disk IOPS for /dev/sdg
» Disk 10PS for /dev/sdn

» Disk IOPS for /dev/sdi

» Disk I0PS fox

» Disk I0PS for /dev/sdk

Figure 9-7. Grafana Portal - node metrics

In addition to the “big picture,” you can also get detailed information for every single
component like a specific disk or network interface.

When running into performance issues, this is always a good starting point.
Obviously, this can also be a great indicator whether you overprovisioned your cluster.

SQL Metrics

While the node metrics were focused on the physical side of the node, the SQL metrics
as shown in Figure 9-8 provide information like wait time or number of waiting tasks
by wait type, transactions, and requests per second and other valuable metrics to
understand more about the status of the SQL components within the cluster.
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Figure 9-8. Grafana Portal - SQL metrics
Except for the master instance, which could also be reached through SSMS or Azure

Data Studio, you usually don’t connect to any of the other nodes directly, so think of
these metrics as your replacement for activity monitor.

Log Search Analytics (Kibana)

The Kibana dashboard as shown in Figure 9-9 on the other hand provides you an insight
into the log files of the selected pod/node.
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Figure 9-9. Kibana Portal - overview

Kibana is part of the elastic stack. It also provides options to create visualizations
and dashboard on top of your log files. If you want to learn more about it, its website
www.elastic.co/products/kibana is a great starting point!

Troubleshooting Big Data Clusters

At some point, your Big Data Cluster will probably run into a problem - from insufficient
disk space to a faulty component. Azure Data Studio also provides guidance and tools on
how to find and potentially fix the cause of such an error.

If you navigate back to the Big Data Cluster overview, you will see a button
“Troubleshoot” as pointed out in Figure 9-10.
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Refresh Troubleshoot

Big Data Cluster overview Cluster Properties
Cluster Details Cluster State: Ready Health Status : Healthy
SAL Server Cluster Overview Last Updated : 3/17/2020 8:31:56 AM
HDFS SERVICE NAME STATE HEALTH STATUS
Spark ¥ 5QL server Ready Healthy
Control « HDFS Ready Healthy
Gateway ¥ Spark Ready Healthy
¢ Control Ready Healthy
App
¥ Gateway Ready Healthy
«  App Ready Healthy

Figure 9-10. Link to troubleshooting in ADS

Behind this button is a collection of notebooks to troubleshoot every single
component of your cluster. The first notebook to open is “TSG100 - The Big Data Cluster
troubleshooter” which will guide you through a full debugging of your Big Data Cluster.
If you have already narrowed down which service is causing issues, you can also navigate
directly to the analyzer notebook for that specific component on the left as shown in
Figure 9-11.

I 1sg700-roubleshoot-badc ipynb. %

frtach To: | localhost » Tiusted (D RunCells O Clear Results T Collapse Cells

TSG100 - The Big Data Cluster troubleshooter

HDFS troubleshooter

Spare reoblesnooter Description
toublesheot - : fic troubleshoot
St Follow these steps 1o troubleshoot B Data Cluster (BD:C) isswes that are not covered by the more specific troubleshooters in thes chapter.
ey oot
SG106 - App troubleshooer Steps
Knou gateway legs Get the versions of azdata, the BDC and Kubernetes cluster

Controller logs

Loy gt

Spark Hatory logs

30 - SO Serves enoriog fies
SOL Sevver PoiyBase logs
§ - Madeop namenade logs
Yarn nodemansper kogs rking

Hagdoop daanooe kgs

* TSGATS - Is chuster healthy

Figure 9-11. Troubleshooting in ADS
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The notebooks are grouped by category as illustrated in Figure 9-12 and are always
your first starting point when you're experiencing problems with a Big Data Cluster.

v @ Operations and Support - SQL Server 2019 Big Data Clusters
E!, Welcome

E!, Troubleshooters

EI, Log Analyzers

E‘, Diagnose

E!‘ Repair

Monitor - Big Data Cluster

E‘, Monitor - Kubernetes

E!, Logs

E‘, Samples

{5 Instan

E!, Common

WOV VWV VWV VWV WV
]

Figure 9-12. Troubleshooting categories in ADS

Upgrading Big Data Clusters

Just like any other version of SQL Server, Big Data Clusters receive regular cumulative
updates (CU) during the version’s maintenance time frame. To check your installation’s
version, you can just run SELECT @@ VERSION in either SQL Server Management Studio
or Azure Data Studio. Let’s assume your current version is CU1 as shown in Figure 9-13.

1 select @EVERSION

Results Messages

(No column name)

1 Microsoft SQL Server 2819 (RTM-CU1) (KB4527376) - 15.9.40803.23 (X64) Dec 6 2019 14:53:33 Ce

Figure 9-13. Output of SELECT @@VERSION

If you want to upgrade your Big Data Cluster to a new version, first make sure that
you have the latest version of azdata installed. To do so, run the code in Listing 9-1 just
like when you first installed azdata.
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Listing 9-1. Update azdata to the latest version

pip3 install -r https://aka.ms/azdata

Now you can use azdata to upgrade your cluster. The command for this is azdata bdc
upgrade, followed by at least your cluster’s name and the target version.

To upgrade to Big Data Clusters 2019 CU3, for example, you would use the command
shown in Listing 9-2.

Listing 9-2. Upgrade your BDC to CU3 using azdata

azdata bdc upgrade --name mybdc --tag 2019-CU3-ubuntu-16.04

This will take some time as all the individual images will need to be pulled first
followed by an upgrade of every single component in your cluster. Just like during the
installation process, the upgrade process will give you a continuous status update on
which component it is currently working at up to the point where the upgrade process is
complete (see Figure 9-14).

Should you run into timeout issues, which has been reported as a common problem,
you can run azdata bdc upgrade with the additional, optional parameters controller-
timeout and component-timeout. Their value will be in minutes, so if you set them both
to 60, it should be more than sufficient.

B Administrator: Command Prempt = u} x
1 ~
IC:\Users\bigdata\Desktop>azdata bdc upgrade --name mybdc --tag 2819-CU3-ubuntu-16.84 --controller-timeout 6@ --component-timeout 6@
Upgrading cluster to version 2019-CU3-ubuntu-16.84

[NOTE: Cluster upgrade can take a significant amount of time depending on
configuration, network speed, and the number of nodes in the cluster.

Upgrading Control Plane.
ICluster control plane is ready.
Data pool is ready.

Compute pool is ready.

Master pool is ready.

Storage pool is ready.

IControl Watchdog upgraded
Bctive Directory upgraded
MetricsDB and LogsDE upgraded
MetricsUTI and LogsUI upgraded
MetricsDC upgraded.

Management Proxy upgraded
Control Plane upgraded successfully.
Mpgrading Big Data Cluster.
lGateway upgraded.

Spark Head upgraded.

Spark Pool upgraded.

ipp Proxy upgraded.

Zookeeper upgraded.

[Name Mode upgraded.

Storage Pool(s) upgraded.

Pata Pool(s) upgraded.

ICompute Pool(s) upgraded.
Operator upgraded.

Master upgraded.

Big Data Cluster upgraded successfully.

IC:\Users\bigdata\Desktop>,

Figure 9-14. Output of azdata bdc upgrade
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If you now run SELECT @@ VERSION again, you will see that your Big Data Cluster
reflects CU3 as its current version as shown in Figure 9-15.

1 select @EVERSION

Results Messages

(No column name)

1  Microsoft SQL Server 2019 (RTM-CU3) (KB4538853) - 15.0.4023.6 (X64) Mar 4 2020 ©0:59:26
Figure 9-15. Output of SELECT @@ VERSION after upgrade

Removing a Big Data Cluster Instance

If you want to delete an instance of your Big Data Cluster, all you need to do is use azdata
again. You will just need to provide the name of your instance as shown in Listing 9-3
and the cluster components will be deleted.

Listing 9-3. Install script for Chocolatey in PowerShell
azdata bdc delete --name <ClusterToBeDeleted>

You can follow the progress until the instance is fully removed as shown in Figure 9-16.

B Administrator: Command Prompt = o e

IC:\Users\bdcbook\Desktop>azdata bdc delete --name deletebdc

This operation will delete everything inside of cluster “deletebdc”

mwhich includes the SQL Server containers, Kubernetes secrets and services,
and HDFS containers. Data stored on persistent volumes will get deleted if
lthe storage class reclaim policy is set to delete/recycle.

Do you want to continue with deleting the cluster “deletebdc™? (y/n): y
Deleting cluster ‘deletebdc’.
ICluster deleted successfully.

IC: \Users\bdcbook\Desktop>,

Figure 9-16. Output of azdata bdc delete
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That’s it - your instance is now removed. This will only remove the Big Data Cluster
components, so if you deployed to Azure Kubernetes Services, you may want to consider
deleting that cluster as well, unless you need it for other applications, to avoid it
accumulating costs.

Summary

In this last chapter, we’ve explored the options of getting a quick status of your Big Data
Cluster’s health, options on what to do if something is not working as desired, as well as
how to upgrade an existing cluster to a later version.
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stretch database, 6
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df airlines data frame, 164
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df flights and df airlines data frames, 162
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Drawbridge, 16

DROP statement, 135

E
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Empty database through T-SQL, 89
Error message, 136
explain() command, 188
External data source, 140, 141
External tables
CREATE statement, 133, 134
CSV Files (see Comma-separated
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execution plan, 117
execution plan, SELECT statement, 126
joined SELECT statement, 117
master instance, connection, 106
SELECT statement, 116, 132
SSMS, 115
T-SQL, 112-114
Wizard, ADS
connection and credentials, 110
database master key, creation, 109
data source selection, 108
object mapping, 111
table mapping, 111

F

File-based data sources, 138, 139

FileScan, 189

Flight delay files, 149

Flight delay sample dataset
directory on HDEFS, creation, 94
display files, 94

256

Kaggle.com datasets, 92
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H
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WITH RESULT SETS, 207
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database engine configuration, 48
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restart SQL Server Instance, 51
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Iris species prediction, 216
Iris table values, 209
Iris_test table, 216

J

JSON message, 237

K

Kernel selection, 150
Kibana, 247
kubeadm on Linux
deployment, 54, 55
deployment script, download and
execute, 53
Patch Ubuntu, 53
Kubernetes
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nodes, 14
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Linux, 1
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SQL Server master instance, 26
storage pool, 29
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Log Search Analytics (Kibana), 246, 247

Machine learning
built-in Spark ML libraries, 217
classification algorithm, 219
classifier, 221
dataframe, 217, 219
data process, 217, 219
df Iris dataframe, 218
features, 219
filesystem, 223
loading machine learning libraries, 218
measuring model performance, 223
models
classification, 208
Iris dataset, 208
model table, creation, 210
preceding code, 212
sp_execute_external_script, 211
testing data, 211
training, 210
modified df _Iris dataframe, 220
prediction results, 222
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process, 10

pyspark.ml.classification

libraries, 219

reading data, 217

services, 27

trained model, 221, 223

training and testing dataframe, 221
Management, 241, 243, 244
Manage packages, 179
MapReduce framework, 19, 20
MapReduce programming model, 18
Master instance

copy AdventureWorks2014, 90

existing database, 89

restore AdventureWorks2014, 90
Matplotlib installation task, 181
Matplotlib library, 179, 182
Matplotlib package installation, 180, 181
Metrics (Grafana)

node metrics, 244, 245

SQL metrics, 245, 246
Microsoft sample data, 90, 91
Minikube, 13

N

Node metrics, 244, 245

O

ODBC source, 140

P

Pandas, 179, 183
Partitioning, 197
pd_data frame, 182
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container (see Container)
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spark (see Spark)
SQL Server Big Data
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SQL Server on Linux, 15-18
Platform abstraction layer (PAL), 15
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ADS, 178
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column, 183
boxplots, 184
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GitHub, 182
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manage packages option, 179, 180
matplotlib library, 179, 182, 184
methods, analyzing data, 178
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Pandas, 179, 183
Pandas library, 182
pd_data frame, 182
scatter matrix, 186
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PolyBase HDFS connector, 45
PolyBase inside SQL Server, 175
PREDICT function, 215
Prediction, 215
Pretrained machine learning
model, 225
PUSHDOWN flag, 140
PySpark, 147, 148, 158

Q
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Regression, 214
Relational databases, 7, 8
repartition() function, 198
REST API
azdata, 237
bearer token, 233, 235
host property, swagger.json file, 236
input parameters, predictiris
app, 237
JSON return message, 236
predictiris app, 237
request options, 235
retrieve app URL and port
number, 233
return message, 237
token, 233
RESTful APIs, 233
RESTful web service, 233

S

Scala, 147, 148
Scatter matrix, 186, 187
Schema-on-read, 8
Schema-on-write approach, 8
SELECT statement, 136
show() function, 154
Sorting, 156
Spark
big data analytics, 20
cache, 22
commands translation, 21
distributed and parallel
framework, 147
driver process, 21, 22
inclusion, 18
logical architecture, 21
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machine learning (see Machine
learning)
MapReduce framework, 20, 21
Spark application, 21, 22
Spark cluster, 8, 10
Spark data frames, 182
airports.csv file, 151
CSV data, 153
df_airports data frame, 153, 154
df_airports filtered, 156
filter, 156
grouping data based on columns, 160
import CSV data, 151
multifiltering, 157
multiple actions, 158
no deleting/updating, 159
remove row, 159
retrieve first row, 154
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storageLevel() command, 191
Storage Pool, 29, 124
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