A STEP BY STEP GUIDE TO LEARN
SQL FOR ABSOLUTE BEGINNERS

LILLY TRINITY

SQL

A STEP BY STEP GUIDE TO LEARN SQL FOR
ABSOLUTE BEGINNER

By
Lilly Trinity

Copyright

Copyright © 2019 All rights reserved. No part of this book may be
reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning,
or otherwise, without the prior written permission of the publisher.

Table of Contents

Copyright
Introduction

Why Learn SQL?
Understand Relational Database
The Relational Model
What Is SQL?
The SQL Evolution
SQL Statement Classes

Types of SQL Statements

Types of Execution

A Beginner’s Guide

A Nonprocedural Language

Creating and Populating a Database

Creating a MySQL Database
Working with MySQL Environment

Understand the SQL Environment

Component Type Description SQL Agent
Understand SQL Catalogs

Create a Database
MySQL Data

Creating a Database and Schema

Query Mechanics

Query Clauses

Querying Multiple Tables
What s a Join?

Cartesian Product

Joining Three or More Tables

Using Subqueries as Table
Working with Sets

Set Theory Primer

Set Operators

The Union Operator

The Intersect Operator

Set Operation Rules

Data Generation, Conversion, and Manipulation

Working with String Data

String Generation

String Manipulation
Working with Numeric Data

Controlling Number Precision

Implicit Versus Explicit Groups

Using Expressions
Subgqueries

What Is a Subquery?

Subquery Types

The exists Operator

Data Manipulation Using Correlated Subqueries

Transactions

Lock Granularities

What Is a Transaction?

Starting a Transaction

Indexes and Constraints

Indexes

Types of Indexes

How Indexes Are Used

The Downside of Indexes

Constraints

Constraint Creation

Views
What Are Views?
Why Use Views?

Data Aggregation
Conclusion

Disclaimer

Introduction

Programming languages come and go constantly, and very few languages
in use today have roots going back more than a decade or so. Some
examples are Cobol, which is still used quite heavily in mainframe
environments, and C, which is still quite popular for operating system
and server development and for embedded systems. In the database
arena, we have SQL, whose roots go all the way back to the 1970s.

Relational databases have become the most common data storage
mechanism for modern computer applications. Programming languages
such as Java, C, and COBOL, and scripting languages such as Perl,
VBScript, and JavaScript must often access a data source in order to
retrieve or modify data. Many of these data sources are managed by a
relational database management system (RDBMS), such as Oracle,
Microsoft SQL Server, MySQL, and DB2, that relies on the Structured
Query Language (SQL) to create and alter database objects, add data to
and delete data from the database, modify data that has been added to
that database, and of course, retrieve data stored in the database for
display and processing.

SQL is the most widely implemented language for relational databases.
Much as mathematics is the language of science, SQL is the language of
relational databases. SQL not only allows you to manage the data within
the database, but also manage the database itsellf.

SQL is the language for generating, manipulating, and retrieving data
from a relational database. One of the reasons for the popularity of
relational databases is that properly designed relational databases can
handle huge amounts of data. When working with large data sets, SQL is
akin to one of those snazzy digital cameras with the high-power zoom
lens in that you can use SQL to look at large sets of data, or you can zoom

in on individual rows (or anywhere in between). Other database
management systems tend to break down under heavy loads because
their focus is too narrow (the zoom lens is stuck on maximum), which is
why attempts to dethrone relational databases and SQL have largely
failed. Therefore, even though SQL is an old language, it is going to be
around for a lot longer and has a bright future in store.

By using SQL statements, you can access an SQL database directly by
using an interactive client application or through an application
programming language or scripting language.

Regardless of which method you use to access a data source, a
foundation in how to write SQL statements is required in order to access
relational data. SQL: A Beginner’'s Guide, provides you with such a
foundation. It describes the types of statements that SQL supports and
explains how they're used to manage databases and their data. By
working through this book, you’ll build a strong foundation in basic SQL
and gain a comprehensive understanding of how to use SQL to access
data in your relational database.

Why Learn SQL?
If you are going to work with a relational database, whether you are
writing applications, performing administrative tasks, or generating
reports, you will need to know how to interact with the data in your
database. Even if you are using a tool that generates SQL for you, such as
a reporting tool, there may be times when you need to bypass the
automatic generation feature and write your own SQL statements.

Learning SQL has the added benefit of forcing you to confront and
understand the data structures used to store information about your
organization. As you become comfortable with the tables in your
database, you may find yourself proposing modifications or additions to
your database schema.

Understand Relational Database
Structured Query Language (SQL) supports the creation and
maintenance of the relational database and the management of data
within that database. However, before I go into a discussion about
relational databases, | want to explain what [mean by the term database.

The term itself has been used to refer to anything from a collection of
names and addresses to a complex system of data retrieval and storage
that relies on user interfaces and a network of client computers and
Servers.

A database is nothing more than a set of related information. A telephone
book, for example, is a database of the names, phone numbers, and
addresses of all people living in a particular region. While a telephone
book is certainly a ubiquitous and frequently used database, it suffers
from the following:

e Finding a person’s telephone number can be time-consuming,
especially if the telephone book contains a large number of
entries.

e A telephone book is indexed only by last/first names, so
finding the names of the people living at a particular address,
while possible in theory, is not a practical use for this
database.

e From the moment the telephone book is printed, the
information becomes less and

e less accurate as people move into or out of a region, change
their telephone numbers, or move to another location within
the same region.

The same drawbacks attributed to telephone books can also apply to any
manual data

storage system, such as patient records stored in a filing cabinet. Because
of the cumbersome nature of paper databases, some of the first
computer applications developed were database systems, which are
computerized data storage and retrieval mechanisms.

Because a database system stores data electronically rather than on
paper, a database system is able to retrieve data more quickly, index data
in multiple ways, and deliver up-to-the-minute information to its user
community.

Early database systems managed data stored on magnetic tapes. Because
there were generally far more tapes than tape readers, technicians were
tasked with loading and unloading tapes as specific data was requested.

Because the computers of that era had very little memory, multiple
requests for the same data generally required the data to be read from
the tape multiple times. While these database systems were a significant
improvement over paper databases, they are a far cry from what is
possible with today’s technology. (Modern database systems can manage
terabytes of data spread across many fast-access disk drives, holding
tens of gigabytes of that data in high-speed memory, but I'm getting a bit
ahead of myself).

Over the years, a number of database models have been implemented to
store and manage data. Several of the more common models include the
following:

Hierarchical: This model has a parent-child structure that is similar
to an inverted tree, which is what forms the hierarchy. Data is organized
in nodes, the logical equivalent of tables in a relational database. A
parent node can have many child nodes, but a child node can have only
one parent node. Although the model has been highly implemented, it is
often considered unsuitable for many applications because of its
inflexible structure and lack of support for complex relationships. Still,
some implementations such as IMS from IBM have introduced features
that work around these limitations.

Network: This model addresses some of the limitations of the
hierarchical model. Data is organized in record types, the logical
equivalent of tables in a relational database. Like the hierarchical model,
the network model uses an inverted tree structure, but record types are
organized into a set structure that relates pairs of record types into
owners and members. Any one record type can participate in any set
with other record types in the database, which supports more complex
queries and relationships than are possible in the hierarchical model.
Still, the network model has its limitations, the most serious of which is
complexity. In accessing the database, users must be very familiar with
the structure and keep careful track of where they are and how they got
there. It's also difficult to change the structure without affecting
applications that interact with the database.

Relational: This model addresses many of the limitations of both the

hierarchical and network models. In a hierarchical or network database,
the application relies on a defined implementation of that database,
which is then hard-coded into the application. If you add a new attribute
(data item) to the database, you must modify the application, even if it
doesn’t use the attribute. However, a relational database is independent
of the application; you can make nondestructive modifications to the
structure without impacting the application. In addition, the structure of
the relational database is based on the relation, or table, along with the
ability to define complex relationships between these relations. Each
relation can be accessed directly, without the cumbersome limitations of
a hierarchical or owner/member model that requires navigation of a
complex data structure. In the following section, “The Relational Model,”
I'll discuss the model in more detail.

Although still used in many organizations, hierarchical and network
databases are now considered legacy solutions. The relational model is
the most extensively implemented model in modern business systems,
and it is the relational model that provides the foundation for SQL.

The Relational Model
In 1970, Dr. E. F. Codd of IBM’s research laboratory published a paper
titled “A Relational Model of Data for Large Shared Data Banks” that
proposed that data be represented as sets of tables. Rather than using
pointers to navigate between related entities, redundant data is used to
link records in different tables.

Codd defines a relational data structure that protects data and allows
that data to be manipulated in a way that is predictable and resistant to
error. The relational model, which is rooted primarily in the
mathematical principles of set theory and predicate logic, supports easy
data retrieval, enforces data integrity (data accuracy and consistency),
and provides a database structure independent of the applications
accessing the stored data.

At the core of the relational model is the relation. A relation is a set of
columns and rows collected in a table-like structure that represents a
single entity made up of related data. An entity is a person, place, thing,
event, or concept about which data is collected, such as a recording

artist, a book, or a sales transaction. Each relation comprises one or more
attributes (columns). An attribute is a unit fact that describes or
characterizes an entity in some way. For example, the entity is a compact
disc (CD) with attributes of CD_NAME (the title of the CD), ARTIST_NAME
(the name of the recording artist), and COPYRIGHT_YEAR (the year the
recording was copyrighted).

Each attribute has an associated domain. A domain defines the type of
data that can be stored in a particular attribute; however, a domain is not
the same thing as a data type. A data type, which is, is a specific kind of
constraint (a control used to enforce data integrity) associated with a
column, whereas a domain, as it is used in the relational model, has a
much broader meaning and describes exactly what data can be included
in an attribute associated with that domain. For example, the
COPYRIGHT_YEAR attribute is associated with the Year domain.

It is common practice to include a class word that describes the domain
in attribute names, but this is not at all mandatory. The domain can be
defined so that the attribute includes only data whose values and format
are limited to years, as opposed to days or months. The domain might
also limit the data to a specific range of years. A data type, on the other
hand, restricts the format of the data, such as allowing only numeric
digits, but not the values, unless those values somehow violate the
format.

NOTE

The logical terms relation, attribute, and tuple are used primarily when
referring to the relational model. SQL uses the physical terms table,
column, and row to describe these items. Because the relational model is
based on mathematical principles (a logical model) and SQL is concerned
more with the physical implementation of the model, the meanings for
the model’s terms and the SQL language’s terms are slightly different, but
the underlying principles are the same.

What Is SQL?

Along with Codd’s definition of the relational model, he proposed a
language called DSL/Alpha for manipulating the data in relational tables.
Shortly after Codd’s paper was released, IBM commissioned a group to
build a prototype based on Codd’s ideas.

This group created a simplified version of DSL/Alpha that they called
SQUARE. Refinements to SQUARE led to a language called SEQUEL, which
was, finally, renamed SQL.

Now that you have a fundamental understanding of the relational model,
it’s time to introduce you to SQL and its basic characteristics. As you
might recall from the “Understand Relational Databases” section earlier
in this chapter, SQL is based on the relational model, although it is not an
exact implementation. While the relational model provides the
theoretical underpinnings of the relational database, it is the SQL
language that supports the physical implementation of that database
SQL, a nearly universally implemented relational language, is different
from other computer languages such as C, COBOL, and Java, which are
procedural. A procedural language defines how an application’s
operations should be performed and the order in which they are
performed. A nonprocedural language, on the other hand, is concerned
more with the results of an operation; the underlying software
environment determines how the operations will be processed. This is
not to say that SQL supports no procedural functionality. For example,
stored procedures, added to many RDBMS products a number of years
ago, are part of the SQL:2006 standard and provide procedural-like
capabilities.

SQL still lacks many of the basic programming capabilities of most other
computer languages. For this reason, SQL is often referred to as a data

sublanguage because it is most often used in association with application
programming languages such as C and Java, languages that are not
designed for manipulating data stored in a database. As a result, SQL is
used in conjunction with the application language to provide an efficient
means of accessing that data, which is why SQL is considered a
sublanguage.

The SQL Evolution

In the early 1970s, after E. F. Codd’s groundbreaking paper had been
published, IBM began to develop a language and a database system that
could be used to implement that model. When it was first defined, the
language was referred to as Structured English Query Language
(SEQUEL). When it was discovered that SEQUEL was a trademark owned
by Hawker-Siddeley Aircraft Company of the UK, the name was changed
to SQL. As word got out that IBM was developing a relational database
system based on SQL, other companies began to develop their own SQL-
based products.

In fact, Relational Software, Inc.,, now the Oracle Corporation, released
their database system before IBM got their product to market.

As more vendors released their products, SQL began to emerge as the
standard relational database language.

In 1986, the American National Standards Institute (ANSI) released the
first published standard for the language (SQL-86), which was adopted
by the International Organization for Standardization (ISO) in 1987. The
standard was updated in 1989, 1992, 2003, 2006, and work continues. It
has grown over time the original standard was well under 1,000 pages,
while the SQL:2006 version weighs in at more than 3,700 pages. The
standard was written in parts to permit more timely publication of
revisions and to facilitate parallel work by different committees. It
provides an overview of the parts and the current status of each RDBMS
vendors had products on the market before there was a standard, and
some of the features in those products were implemented differently
enough that the standard could not accommodate them all when it was
developed. We often call these vendor extensions. This may explain why
there is no standard for a database. And as each release of the SQL
standard comes out, RDBMS vendors have to work to incorporate the

new standard into their products.

SQL Statement Classes

The SQL language is divided into several distinct parts: the parts that we
explore in this book include SQL schema statements, which are used to
define the data structures stored in the database; SQL data statements,
which are used to manipulate the data structures previously defined
using SQL schema statements; and SQL transaction statements, which
are used to begin, end, and roll back transactions. For example, to create
a new table in your database, you would use the SQL schema statement
create table, whereas the process of populating your new table with data
would require the SQL data statement insert.

To give you a taste of what these statements look like, here’s an SQL
schema statement that creates a table called corporation:

CREATE TABLE corporation

(corp_id SMALLINT,

name VARCHAR(30),

CONSTRAINT pk_corporation PRIMARY KEY (corp_id)
);

This statement creates a table with two columns, corp_id and name, with
the corp_id column identified as the primary key for the table. We probe
the finer details of this statement, such as the different data types
available with MySQL. Next, here’s an SQL data statement that inserts a
row into the corporation table for Acme Paper Corporation:

INSERT INTO corporation (corp_id, name)
VALUES (27, 'Acme Paper Corporation');

This statement adds a row to the corporation table with a value of 27 for

the corp_id column and a value of Acme Paper Corporation for the name
column.

Finally, here’s a simple select statement to retrieve the data that was just
created:

mysql< SELECT name
-> FROM corporation

-> WHERE corp_id = 27;

Acme Paper Corporation

All database elements created via SQL schema statements are stored in a
special set of tables called the data dictionary. This “data about the
database” is known collectively as metadata and is explored. Just like
tables that you create yourself, data dictionary tables can be queried via
a select statement, thereby allowing you to discover the current data
structures deployed in the database at runtime. For example, if you are
asked to write a report showing the new accounts created last month,
you could either hardcode the names of the columns in the account table
that were known to you when you wrote the report, or query the data
dictionary to determine the current set of columns and dynamically
generate the report each time it is executed

Types of SQL Statements

Although SQL is considered a sublanguage because of its nonprocedural
nature, it is nonetheless a complete language in that it allows you to
create and maintain database objects, secure those objects, and
manipulate the data within the objects. One common method used to
categorize SQL statements is to divide them according to the functions
they perform. Based on this method, SQL can be separated into three
types of statements:

Data Definition Language (DDL): DDL statements are used to

create, modify, or delete database objects such as tables, views, schemas,
domains, triggers, and stored procedures.

The SQL keywords most often associated with DDL statements are
CREATE, ALTER, and DROP. For example, you would use the CREATE
TABLE statement to create a table, the ALTER TABLE statement to
modify the table’s properties, and the DROP TABLE statement to delete
the table definition from the database.

Data Control Language (DCL): DCL statements allow you to
control who or what (a database user can be a person or an application
program) has access to specific objects in your database. With DCL, you
can grant or restrict access by using the GRANT or REVOKE statements,
the two primary DCL commands. The DCL statements also allow you to
control the type of access each user has to database objects. For example,
you can determine which users can view a specific set of data and which
users can manipulate that data.

Data Manipulation Language (DML): DML statements are used
to retrieve, add, modify, or delete data stored in your database objects.
The primary keywords associated with DML statements are SELECT,
INSERT, UPDATE, and DELETE, all of which represent the types of
statements you'll probably be using the most. For example, you can use a
SELECT statement to retrieve data from a table and an INSERT statement
to add data to a table.

Most SQL statements that you’ll be using fall neatly into one of these
categories, and I'll be discussing a number of these statements
throughout the remainder of the book.

Types of Execution
In addition to defining how the language can be used, the SQL: 2006
standard provides details on how SQL statements can be executed. These
methods of execution, known as binding styles, not only affect the nature
of the execution, but also determine which statements, at a minimum,
must be supported by a particular binding style. The standard defines
four methods of execution:

Direct Invocation: By using this method, you can communicate

directly from a front end application, such as iSQL*Plus in Oracle or
Management Studio in Microsoft SQL Server, to the database. (The front-
end application and the database can be on the same computer, but often
are not.) You simply enter your query into the application window and
execute your SQL statement. The results of your query are returned to
you as immediately as processor power and database constraints permit.
This is a quick way to check data, verify connections, and view database
objects. However, the SQL standard’s guidelines about direct invocation
are fairly minimal, so the methods used and SQL statements supported
can vary widely from product to product.

A Beginner’s Guide

Embedded SQL: In this method, SQL statements are encoded
(embedded) directly in the host programming language. For example,
you can embed SQL statements within C application code. Before the
code is compiled, a preprocessor analyzes the SQL statements and splits
them out from the C code. The SQL code is converted to a form the
RDBMS can understand, and the remaining C code is compiled as it
would be normally.

Module Binding: This method allows you to create blocks of SQL
statements (modules) that are separate from the host programming
language. Once the module is created, it is combined into an application
with a linker. A module contains, among other things, procedures, and it
is the procedures that contain the actual SQL statements.

Call-level interface (CLI): A CLI allows you to invoke SQL
statements through an interface by passing SQL statements as argument
values to subroutines. The statements are not precompiled as they are in
embedded SQL and module binding. Instead, they are executed directly
by the RDBMS.

Direct invocation, although not the most common method used, is the
one I'll be using primarily for the examples and exercises in this book
because it supports the submission of ad hoc queries to the database and
generates immediate results. However, embedded SQL is currently the
method most commonly used in business applications

A Nonprocedural Language

If you have worked with programming languages in the past, you are
used to defining variables and data structures, using conditional logic
(i.e., if-then-else) and looping constructs (i.e., do while .. end), and
breaking your code into small, reusable pieces (i.e., objects, functions,
procedures). Your code is handed to a compiler, and the executable that
results does exactly (well, not always exactly) what you programmed it
to do. Whether you work with Java, C#, C, Visual Basic, or some other
procedural language, you are in complete control of what the program
does.

A procedural language defines both the desired results and the
mechanism, or process, by which the results are generated.
Nonprocedural languages also define the desired results, but the process
by which the results are generated is left to an external agent.

With SQL, however, you will need to give up some of the control you are
used to, because SQL statements define the necessary inputs and
outputs, but the manner in which a statement is executed is left to a
component of your database engine known as the optimizer. The
optimizer’s job is to look at your SQL statements and, taking into account
how your tables are configured and what indexes are available, decide
the most efficient execution path (well, not always the most efficient).

Most database engines will allow you to influence the optimizer’s
decisions by specifying optimizer hints, such as suggesting that a
particular index be used; most SQL users, however, will never get to this
level of sophistication and will leave such tweaking to their database
administrator or performance expert. With SQL, therefore, you will not
be able to write complete applications. Unless you are writing a simple
script to manipulate certain data, you will need to integrate SQL with
your favorite programming language. Some database vendors have done
this for you, such as Oracle’s PL/SQL language, MySQL’s stored
procedure language, and Microsoft's Transact-SQL language. With these
languages, the SQL data statements are part of the language’s grammar,
allowing you to seamlessly integrate database queries with procedural
commands. If you are using a non-database-specific language such as
Java, however, you will need to use a toolkit/API to execute SQL
statements from your code. Some of these toolkits are provided by your

database vendor, whereas others are created by third-party vendors or
by open source providers. Table 1 shows some of the available options
for integrating SQL into a specific language.

Table 1 SQL Integration Toolkits

Java JDBC (Java Database Connectivity;
JavaSoft)
C++ Rogue Wave SourcePro DB (third-

party tool to connect to Oracle,
SQL Server, MySQL, Informix,
DB2, Sybase, and PostgreSQL
databases)

C/C++ Pro*C (Oracle), MySQL C API
(open source), and DB2

Call Level Interface (IBM) #

C# ADO.NET (Microsoft)
Perl Perl DBI

Python Python DB

Visual Basic ADO.NET (Microsoft)

Creating and Populating a Database

This chapter provides you with the information you need to create your
first database and to create the tables and associated data used for the
examples in this book. You will also learn about various data types and
see how to create tables using them. Because the examples in this book
are executed against a MySQL database, this chapter is somewhat
skewed toward MySQL’s features and syntax, but most concepts are
applicable to any server.

Creating a MySQL Database

If you already have a MySQL database server available for your use, you
can skip the installation instructions and start with the instructions.
Keep in mind, however, that this book assumes that you are using MySQL
version 6.0 or later, so you may want to consider upgrading your server
or installing another server if you are using an earlier release. The
following instructions show you the minimum steps required to install a
MySQL 6.0 server on a Windows computer:

1. Go to the download page for the MySQL Database Server at
http://dev.mysql.com/ downloads. If you are loading version 6.0, the full
URL is http://dev.mysqgl.com/ downloads/mysql/6.0.html.

2. Download the Windows Essentials (x86) package, which includes only
the commonly used tools.

3. When asked “Do you want to run or save this file?” click Run

4. The MySQL Server 6.0—Setup Wizard window appears. Click Next.
5. Activate the Typical Install radio button, and click Next.

6. Click Install.

7. A MySQL Enterprise window appears.

8. When the installation is complete, make sure the box is checked next
to “Configure the MySQL Server now,” and then click Finish. This
launches the Configuration Wizard. 9. When the Configuration Wizard
launches, activate the Standard Configuration radio button, and then
select both the “Install as Windows Service” and “Include Bin Directory
in Windows Path” checkboxes. Click Next.

10. Select the Modify Security Settings checkbox and enter a password
for the root user (make sure you write down the password, because you
will need it shortly!), and click Next.

11. Click Execute. At this point, if all went well, the MySQL server is
installed and running. If not, I suggest you uninstall the server and read
the “Troubleshooting a MySQL Installation Under Windows” guide

Next, you will need to open a Windows command window, launch the
mysql tool, and create your database and database user.

Working with MySQL Environment

The SQL environment provides the structure in which SQL is
implemented. Within this structure, you can use SQL statements to
define database objects and store data in those objects. However, before
you start writing SQL statements, you should have a basic understanding
of the foundations on which the SQL environment is built so you can
apply this information throughout the rest of the book. In fact, you might
find it helpful to refer back to this chapter often to help gain a conceptual
understanding of the SQL environment and how it relates to the SQL
elements you'll learn about in subsequent chapters.

Understand the SQL Environment

The SQL environment is, quite simply, the sum of all the parts that make
up that environment. Each distinct part, or component, works in
conjunction with other components to support SQL operations such as
creating and modifying objects, storing and querying data, or modifying
and deleting that data. Taken together, these components form a model
on which an RDBMS can be based. This does not imply, however, that
RDBMS vendors adhere strictly to this model; which components they
implement and how they implement them are left, for the most part, to
the discretion of those vendors. Even so, [want to provide you with an
overview of the way in which the SQL environment is defined, in terms of
its distinct components, as they are described in the SQL:2006 standard.

The SQL environment is made up of six types of components, as shown in
Figure 1. The SQL client and SQL servers are part of the SQL
implementation and are therefore subtypes of that component. Notice
that there is only one SQL agent and one SQL implementation, but there
are multiple components for other types, such as catalogs and sites.
According to SQL:2006, there must be exactly one SQL agent and SQL
implementation and zero or more SQL client modules, authorization
identifiers, and catalogs. The standard does not specify how many sites
are supported, but implies multiple sites.

Each type of component performs a specific function within the SQL
environment. Table 1 describes the eight types. For the most part, you
need to have only a basic understanding of the components that make up
an SQL environment (in terms of beginning SQL programming).

SOL implementation
3
+—= | 50L client | «— [SOL server]
b

SOL environment

[sOL client module] [SOL client module] [SOL client module|
[Authorization identifier] [Authorization identified] [Authorization identified
[User mapping] [User mapping] [User mapping] [User mapping]
[Routine mapping] [Routine mapping] [Routine mapping|

[catalog | [Catalog] [Catalog] [Catalog]

[_site | [Site | [Site | [Site |

Figure 2-1 The components of the SQL environment

However, one of these components the catalog plays a more critical role
than the others, with regard to what you’ll be learning in this book.
Therefore, I will cover this topic in more detail and explain how it relates
to the management of data and the objects that hold that data.

Component Type Description SQL Agent

Any structure that causes SQL statements to be executed. The SQL agent
is bound to the SQL client within the SQL implementation. SQL
implementation a processor that executes SQL statements according to
the requirements of the SQL agent. The SQL implementation includes one
SQL client and one or more SQL servers. The SQL client establishes SQL
connections with the SQL servers and maintains data related to
interactions with the SQL agent and the SQL servers. An SQL server
manages the SQL session that takes place over the SQL connection and
executes SQL statements received from the SQL client.

Component Type Description SQL Client Module

A collection of SQL statements that are written separately from your
programming application language but that can be called from within
that language. An SQL client module contains zero or more externally
invoked procedures, with each procedure consisting of a single SQL
statement. SQL client modules reside within the SQL environment and
are processed by the SQL implementation, unlike embedded SQL, which
is written within the application programming language and
precompiled before the programming language is compiled.

Authorization Identifier

An identifier that represents a user or role that is granted specific access
privileges to objects and data within the SQL environment. A user is an
individual security account that can represent an individual, an
application, or a system service. A role is a set of predefined privileges
that can be assigned to a user or to another role.

User Mapping: A user mapping pairs an authorization identifier with
a foreign server descriptor.

Routine Mapping: A routine mapping pairs an SQL-invoked routine
with a foreign server descriptor.

Catalog: A group of schemas collected together in a defined namespace.
Each catalog contains the information schema, which includes
descriptors of a number of schema objects. The catalog itself provides a
hierarchical structure for organizing data within the schemas. (A schema
is basically a container for objects such as tables, views, and domains, all
of which TI'll be discussing in greater detail in the next section,
“Understand SQL Catalogs.”).

Site: A group of base tables that contain SQL data, as described by the
contents of the schemas. This data may be thought of as “the database,”
but keep in mind that the SQL standard does not include a definition of
the term “database” because it has so many different meanings.

Understand SQL Catalogs
In the previous section, “Understand the SQL Environment,” I state that
an SQL environment is the sum of all parts that make up that
environment. You can use the same logic to describe a catalog, in that a
catalog is a collection of schemas and these schemas, taken together,
define a namespace within the SQL environment.

NOTE: A namespace is a naming structure that identifies related
components in a specified environment. A namespace is often depicted
as an inverted tree configuration to represent the hierarchical
relationship of objects. For example, suppose your namespace includes
two objects: OBJECT_1 and OBJECT_2. If the namespace is called

NAME_1, the full object names will be NAME_1.0BJECT_1 and
NAME_1.0BJECT_2 (or some such naming configuration), thus indicating
that they share the same namespace.

Another way to look at a catalog is as a hierarchical structure with the
catalog as the parent object and the schemas as the child objects, as
shown in Figure 2. At the top of the hierarchy is the SQL environment,
which can contain zero or more catalogs (although an environment with
zero catalogs wouldn’t do you much good because the catalog is where
you'll find the data definitions and SQL data). The schemas are located at
the third tier, beneath the catalog, and the schema objects are at the
fourth tier.

;
Information schemal SQL data is
stored in
basa tables.
T

Base tables \I

|
Views |
- Schema objects are
T il | owned by authorization
User-defined types | identifier.
i

I

I

I

|

[Constraints |
T

[soL server modules | \Sdlema objects
i

[

I

|

I

I

I

Triggers |
SOL-invoked routines |
Characlersets |

I

___Collations |
Transliterations |

éoquanw gencrators |
|

Figure 2-2 The components of a catalog

Create a Database

Despite the fact that the SQL standard does not define what a database is,
let alone provide a statement to create any sort of database object, there
is a good possibility that you'll be working with an RDBMS that not only
supports the creation of a database object, but also uses that object as
the foundation for its hierarchical structure in the management of data
objects. Consequently, you might find that, in order to work through the
examples and projects in this book, you will want to create a test
database so you have an environment in which you can create, alter, or
delete data objects or data as necessary, without risking the loss of data
definitions or data from an actual database. (Ideally, you'll be working
with an RDBMS that is a clean installation, without any existing
databases, except preinstalled system and sample databases.) If you've
already worked with an RDBMS, you might be familiar with how
database objects are organized within that system. For example, you can
see that SQL Server organizes the server’s databases into a logical
structure beneath the Databases node.

Each database node (for example, INVENTORY) contains child nodes that
represent the different types of objects associated with that particular
database. As you can see, the INVENTORY database currently lists eight
categories of objects: Database Diagrams, Tables, Views, Synonyms,
Programmability, Service Broker, Storage, and Security. And under the
ARTIST_CDS table, the categories are Columns, Keys, Constraints,
Triggers, Indexes, and Statistics. For a definition of how SQL Server
defines each of these types of objects, you should view the product
documentation, which you should do for any RDBMS.

Most products that support database objects also support language to
create those objects. For example, Oracle, MySQL, and SQL Server all
include the CREATE DATABASE statement in their SQL-based languages.

However, which parameters can be defined when building that
statement, what permissions you need in order to execute that
statement, and how a system implements the database object vary from
product to product. Fortunately, most products use the same basic
syntax to create a database object:

CREATE DATABASE <database name> <additional parameters>

Before creating a database in any system, make sure to first read the
product documentation, and if appropriate, consult with a database
administrator to be sure that it is safe for you to add a database object to
the SQL environment. Once you create the database, you can create
schemas, tables, views, and other objects within that database, and from
there, populate the tables with the necessary data.

MySQL Data
Types In general, all the popular database servers have the capacity to
store the same types of data, such as strings, dates, and numbers. Where
they typically differ is in the specialty data types, such as XML documents
or very large text or binary documents. Since this is an introductory book
on SQL, and since 98% of the columns you encounter will be simple data
types, this book covers only the character, date, and numeric data types.

Character Data

Character data can be stored as either fixed-length or variable-length
strings; the difference is that fixed-length strings are right-padded with
spaces and always consume the same number of bytes, and variable-
length strings are not right-padded with spaces and don’t always
consume the same number of bytes. When defining a character column,
you must specify the maximum size of any string to be stored in the
column. For example, if you want to store strings up to 20 characters in
length, you could use either of the following definitions:

char(20) /* fixed-length */
varchar(20) /* variable-length */

The maximum length for char columns is currently 255 bytes, whereas

varchar columns can be up to 65,535 bytes. If you need to store longer
strings (such as emails, XML documents, etc.), then you will want to use
one of the text types (medium text and long text. In general, you should
use the char type when all strings to be stored in the column are of the
same length, such as state abbreviations, and the varchar type when
strings to be stored in the column are of varying lengths. Both char and
varchar are used in a similar fashion in all the major database servers.

Oracle Database is an exception when it comes to the use of varchar.
Oracle users should use the varchar2 type when defining variable-length
character columns.

Character Sets

For languages that use the Latin alphabet, such as English, there is a
sufficiently small number of characters such that only a single byte is
needed to store each character. Other languages, such as Japanese and
Korean, contain large numbers of characters, thus requiring multiple
bytes of storage for each character. Such character sets are therefore
called multibyte character sets. MySQL can store data using various
character sets, both single- and multibyte. To view the supported
character sets in your server, you can use the show command, as in:

Numeric Data:

Although it might seem reasonable to have a single numeric data type
called “numeric,” there are actually several different numeric data types
that reflect the various ways in which numbers are used, as illustrated
here: A column indicating whether a customer order has been shipped
This type of column, referred to as a Boolean, would contain a 0 to
indicate false and a 1 to indicate true. A system-generated primary key
for a transaction table This data would generally start at 1 and increase
in increments of one up to a potentially very large number.

An item number for a customer’s electronic shopping basket. The values
for this type of column would be positive whole numbers between 1 and,
at most, 200 (for shopaholics). Positional data for a circuit board drill
machine High-precision scientific or manufacturing data often requires
accuracy to eight decimal points. To handle these types of data (and
more), MySQL has several different numeric data types. The most

commonly used numeric types are those used to store whole numbers.
When specifying one of these types, you may also specify that the data is
unsigned, which tells the server that all data stored in the column will be
greater than or equal to zero.

Temporal Data:

Along with strings and numbers, you will almost certainly be working
with information about dates and/or times. This type of data is referred
to as temporal, and some examples of temporal data in a database
include:

The future date that a particular event is expected to happen, such as
shipping a customer’s order

e The date that a customer’s order was shipped

e The date and time that a user modified a particular row in a
table

e An employee’s birth date

e The year corresponding to a row in a yearly_sales fact table in
a data warehouse

e The elapsed time needed to complete a wiring harness on an
automobile assembly line.

While database servers store temporal data in various ways, the purpose
of a format string is to show how the data will be represented when
retrieved, along with how a date string should be constructed when
inserting or updating a temporal column.

Creating a Database and Schema

Connecting to a Database,” you established access to an RDBMS. In that
project, you used a front-end application that allowed you to directly
invoke SQL statements. You will be using that application for this project
(and the rest of the projects in the book) to create a database and a
schema, or whichever of these functions your system supports. Once you
create the database, you should work within the context of that database
for future examples and projects. If your system supports schema
creation but not database creation, you should work within the context
of that schema for the other projects. Step by Step 1.

Open the client application that allows you to directly invoke SQL
statements. If applicable, check with the database administrator to make
sure that you're logging in with the credentials necessary to create a
database and schema. You might need special permissions to create
these objects. Also verify whether there are any parameters you should
include when creating the database (for example, log file size),
restrictions on the name you can use, or restrictions of any other kind. Be
sure to check the product documentation before going any further.

Create a database named INVENTORY (if your RDBMS supports this
functionality in Oracle you’ll want to create a user named INVENTORY,
which will implicitly create a schema with the same name). Depending
on the product you're using, you'll be executing a statement that’s similar
to the following:

CREATE DATABASE INVENTORY; If you're required to include any
additional parameters in the statement, they would most likely be
included in the lines following the CREATE DATABASE clause. Once you
execute the statement, you should receive some sort of message telling
you that the statement has been executed successfully. 3. Connect to the
new database. The method for doing that will vary from product to
product. In Oracle, you can connect to a database by entering the
appropriate logon information in any of several tools such as SQL*Plus,
iSQL*Plus, and SQL Developer. In SQL Server, it's simply a matter of
selecting the appropriate database from the Connect drop-down list of
databases in the SQL Server Management Studio toolbar, or you can
execute the following statement (MySQL uses this same syntax).

Create a schema named CD_INVENTORY (if your RDBMS supports this
functionality). Create the schema under your current authorization
identifier. Do not include any schema elements at this time. In most
cases, you will be executing a statement that looks similar to the
following:

CREATE SCHEMA CD_INVENTORY;

Query Mechanics
Before dissecting the select statement, it might be interesting to look at
how queries are executed by the MySQL server (or, for that matter, any

database server). If you are using the mysql command-line tool (which I
assume you are), then you have already logged in to the MySQL server by
providing your username and password (and possibly a hostname if the
MySQL server is running on a different computer). Once the server has
verified that your username and password are correct, a database
connection is generated for you to use. This connection is held by the
application that requested it (which, in this case, is the mysql tool) until
the application releases the connection (i.e., as a result of your typing
quit) or the server closes the connection (i.e.,, when the server is shut
down). Each connection to the MySQL server is assigned an identifier,
which is shown to you when you first log in:

This information might be useful to your database administrator if
something goes awry, such as a malformed query that runs for hours, so
you might want to jot it down. Once the server has verified your
username and password and issued you a connection, you are ready to
execute queries (along with other SQL statements). Each time a query is
sent to the server, the server checks the following things prior to
statement execution:

e Do you have permission to execute the statement?
e Do you have permission to access the desired data?
¢ [syour statement syntax correct?

If your statement passes these three tests, then your query is handed to
the query optimizer, whose job it is to determine the most efficient way
to execute your query. The optimizer will look at such things as the order
in which to join the tables named in your from clause and what indexes
are available, and then picks an execution plan, which the server uses to
execute your query.

Query Clauses
Several components or clauses make up the select statement. While only
one of them is mandatory when using MySQL (the select clause), you will
usually include at least two or three of the six available clauses. Query
clauses, Clause name, Purpose Select Determines which columns to
include in the query’s result set From Identifies the tables from which to
draw data and how the tables should be joined where Filters out

unwanted data Group by Used to group rows together by common
column values Having Filters out unwanted groups Order by Sorts the
rows of the final result set by one or more columns.

The select Clause Even though the select clause is the first clause of a
select statement, it is one of the last clauses that the database server
evaluates. The reason for this is that before you can determine what to
include in the final result set, you need to know all of the possible
columns that could be included in the final result set. In order to fully
understand the role of the select clause, therefore, you will need to
understand a bit about the from clause. Here’s a query to get started:

mysql> SELECT *

-> FROM department;

1 Operations
2 Loans
3 Administration

3 rows in set (0.04 sec)

In this query, the from clause lists a single table (department), and the
select clause indicates that all columns (designated by *) in the
department table should be included in the result set. This query could
be described in English as follows: Show me all the columns and all the
rows in the department table. In addition to specifying all the columns
via the asterisk character, you can explicitly name the columns you are
interested in, such as:

mysql> SELECT dept_id, name

-> FROM department;

1 Operations
2 Loans
3 Administration

3 rows in set (0.01 sec)

The results are identical to the first query, since all the columns in the
department table (dept_id and name) are named in the select clause. You
can choose to include only a subset of the columns in the department
table as well:

mysql> SELECT name
-> FROM department;

Operations

Loans

Administration

3 rows in set (0.00 sec)

The job of the select clause, therefore, is the following: The select clause
determines which of all possible columns should be included in the
query’s result set. If you were limited to including only columns from the
table or tables named in the from clause, things would be rather dull.
However, you can spice things up by including in your select clause such
things as:

e Literals, such as numbers or strings
e Expressions, such as transaction.amount * -1
e Built-in function calls, such as ROUND(transaction.amount

User-defined Function Calls

The next query demonstrates the use of a table column, a literal, an
expression, and a built-in function call in a single query against the
employee table:

mysql> SELECT emp_id,

-> 'ACTIVE',

-> emp_id * 3.14159,

-> UPPER(Iname)

-> FROM employee;
Column Aliases Although the mysqgl tool will generate labels for the
columns returned by your queries, you may want to assign your own
labels. While you might want to assign a new label to a column from a
table (if it is poorly or ambiguously named), you will almost certainly
want to assign your own labels to those columns in your result set that
are generated by expressions or built-in function calls. You can do so by
adding a column alias after each element of your select clause. Here’s the
previous query against the employee table with column aliases applied to
three of the columns:

mys(|> SELECT emp_id,

-> 'ACTIVE' status,

-> emp_id * 3.14159 empid_x_pi,

-> UPPER(Iname) last_name_upper

-> FROM employee;

1 ACTIVE 3.14159 SMITH

2 ACTIVE 6.28318 BARKER

3 ACTIVE 9.42477 TYLER

4 ACTIVE 12.56636 HAWTHORNE
5 ACTIVE 15.70795 GOODING
6 ACTIVE 18.84954 FLEMING

7 ACTIVE 2199113 TUCKER

8 ACTIVE 25.13272 PARKER

9 ACTIVE 28.27431 GROSSMAN
10 ACTIVE 31.41590 ROBERTS
11 ACTIVE 34.55749 ZIEGLER
12 ACTIVE 37.69908 JAMESON
13 ACTIVE 40.84067 BLAKE

14 ACTIVE 43.98226 MASON

15 ACTIVE 47.12385 PORTMAN
16 ACTIVE 50.26544 MARKHAM
17 ACTIVE 53.40703 FOWLER
18 ACTIVE 56.54862 TULMAN

If you look at the column headers, you can see that the second, third, and

fourth columns now have reasonable names instead of simply being
labeled with the function or expression that generated the column. If you
look at the select clause, you can see how the column aliases status,
empid_x_pi, and last_name_upper are added after the second, third, and
fourth columns. I think you will agree that the output is easier to
understand with column aliases in place, and it would be easier to work
with programmatically if you were issuing the query from within Java or
C# rather than interactively via the mysql tool. In order to make your
column aliases stand out even more, you also have the option of using
the as keyword before the alias name, as in:

mysql> SELECT emp_id,
-> 'ACTIVE' AS status,
-> emp_id * 3.14159
AS empid_x_pi,
-> UPPER(Iname)
AS last_name_upper

-> FROM employee;

Removing Duplicates
In some cases, a query might return duplicate rows of data. For example,
if you were to retrieve the IDs of all customers that have accounts, you
would see the following:

mysql> SELECT cust_id

-> FROM account;

cust_id

10

10

24 rows in set (0.00 sec)

Since some customers have more than one account, you will see the same
customer ID once for each account owned by that customer. What you
probably want in this case is the distinct set of customers that have
accounts, instead of seeing the customer ID for each row in the account
table. You can achieve this by adding the keyword distinct directly after
the select keyword, as demonstrated by the following:

The result set now contains 13 rows, one for each distinct customer,
rather than 24 rows, one for each account. If you do not want the server
to remove duplicate data, or you are sure there will be no duplicates in
your result set, you can specify the ALL keyword instead of specifying
DISTINCT. However, the ALL keyword is the default and never needs to
be explicitly named, so most programmers do not include ALL in their
queries.

Keep in mind that generating a distinct set of results requires the data to
be sorted, which can be time-consuming for large result sets. Don’t fall
into the trap of using DISTINCT just to be sure there are no duplicates;
instead, take the time to understand the data you are working with so
that you will know whether duplicates are possible.

If all conditions in the where clause are separated by the or operator,
however, only one of the conditions must evaluate to true for the row to
be included in the result set. Consider the following two conditions:
WHERE title = 'Teller' OR start_date < '2007-01-01" There are now
various ways for a given employee row to be included in the result set:

e The employee is a teller and was employed prior to 2007.

e The employee is a teller and was employed after January 1,
2007.

e The employee is something other than a teller but was
employed prior to 2007.

Intermediate result Final result WHERE true OR true True WHERE true

OR false True WHERE false OR true True WHERE false OR false False

In the case of the preceding example, the only way for a row to be
excluded from the result set is if the employee is not a teller and was
employed on or after January 1, 2007.

Building a Condition

Now that you have seen how the server evaluates multiple conditions,
let’s take a step back and look at what comprises a single condition. A
condition is made up of one or more expressions coupled with one or
more operators. An expression can be any of the following:

A number

A column in a table or view

A string literal, such as "Teller’

A built-in function, such as concat('Learning’, ' ', 'SQL')

A subquery

A list of expressions, such as ('Teller’, 'Head Teller/,
'Operations Manager') The operators used within conditions

include:

e Comparison operators, such as =, =, <, >, <>, LIKE, IN, and
BETWEEN

e Arithmetic operators, such as +, -, * and / The following

section demonstrates how you can combine these
expressions and operators to manufacture the various types
of conditions.

Condition Types

There are many different ways to filter out unwanted data. You can look
for specific values, sets of values, or ranges of values to include or
exclude, or you can use various pattern-searching techniques to look for
partial matches when dealing with string data. The next four subsections
explore each of these condition types in detail.

Equality Conditions

A large percentage of the filter conditions that you write or come across
will be of the form 'column = expression' as in: title = "Teller' fed_id =
'111-11-1111" amount = 375.25 dept_.id = (SELECT dept_.id FROM

department WHERE name = 'Loans') Conditions such as these are called
equality conditions because they equate one expression to another. The
first three examples equate a column to a literal (two strings and a
number), and the fourth example equates a column to the value returned
from a subquery. The following query uses two equality conditions; one
in the on clause (a join condition), and the other in the where clause (a
filter condition):

mysql> SELECT pt.name product_type, p.name product
-> FROM product p INNER JOIN product_type pt
-> ON p.product_type_cd = pt.product_type_cd

-> WHERE pt.name = 'Customer Accounts';

Customer Accounts certificate of deposit
Customer Accounts checking account
Customer Accounts money market account
Customer Accounts savings account

4 rows in set (0.08 sec)

This query shows all products that are customer account types.

Range Conditions

Along with checking that an expression is equal to (or not equal to)
another expression, you can build conditions that check whether an
expression falls within a certain range. This type of condition is common
when working with numeric or temporal data. Consider the following

query:

mysql> SELECT emp_id, fname, Iname, start_date
-> FROM employee

-> WHERE start_date

<'2007-01-01';
ompid_|fame |tame |sartdac
1 Michael Smith 2005-06-22
2 Susan Barker 2006-09-12
3 Robert Tyler 2005-02-09
4 Susan Hawthorne |2006-04-24
8 Sarah Parker 2006-12-02
9 Jane Grossman 2006-05-03
10 Paula Roberts 2006-07-27
11 Thomas Ziegler 2004-10-23
13 John Blake 2004-05-11
14 Cindy Mason 2006-08-09
16 Theresa Markham 2005-03-15
17 Beth Fowler 2006-06-29
18 Rick Tulman 2006-12-12

13 rows in set (0.15 sec)

This query finds all employees hired prior to 2007. Along with specifying
an upper limit for the start date, you may also want to specify a lower

range for the start date:

mysql> SELECT emp_id, fname, Iname, start_date

-> FROM employee

-> WHERE start_date < '2007-01-01"

-> AND start_date >="'2005-01-01";

1 Michael Smith 2005-06-22
2 Susan Barker 2006-09-12
3 Robert Tyler 2005-02-09
4 Susan Hawthorne |2006-04-24
8 Sarah Parker 2006-12-02
9 Jane Grossman 2006-05-03
10 Paula Roberts 2006-07-27
11 Thomas Ziegler 2004-10-23
13 John Blake 2004-05-11
14 Cindy Mason 2006-08-09
16 Theresa Markham 2005-03-15
17 Beth Fowler 2006-06-29

‘ 18 ‘ Rick ‘ Tulman 2006-12-12

11 rows in set (0.00 sec)
This version of the query retrieves all employees hired in 2005 or 2006.

The between operator When you have both an upper and lower limit for
your range, you may choose to use a single condition that utilizes the
between operator rather than using two separate conditions, as in:

mysql> SELECT emp_id, fname, Iname, start_date

-> FROM employee

-> WHERE start_date BETWEEN '2005-01-01' AND '2007-01-01%;

1 Michael Smith 2005-06-22
2 Susan Barker 2006-09-12
3 Robert Tyler 2005-02-09
4 Susan Hawthorne |2006-04-24
8 Sarah Parker 2006-12-02
9 Jane Grossman 2006-05-03
10 Paula Roberts 2006-07-27
11 Thomas Ziegler 2004-10-23
13 John Blake 2004-05-11
14 Cindy Mason 2006-08-09
16 Theresa Markham 2005-03-15

17 Beth Fowler 2006-06-29

18 Rick Tulman 2006-12-12

11 rows in set (0.03 sec)

When using the between operator, there are a couple of things to keep in
mind. You should always specify the lower limit of the range first (after
between) and the upper limit of the range second (after and). Here’s
what happens if you mistakenly specify the upper limit first: mysql>
SELECT emp_id, fname, Iname, start_date -> FROM employee ->
WHERE start_date BETWEEN '2007-01-01" AND '2005-01-01"; Empty set
(0.00 sec)

Membership Conditions

In some cases, you will not be restricting an expression to a single value
or range of values, but rather to a finite set of values. For example, you
might want to locate all accounts whose product code is either 'CHK,
'SAV','CD’, or 'MM":

mysql> SELECT account_id, product_cd, cust_id, avail_balance
-> FROM account
-> WHERE product_cd = 'CHK' OR product_cd = 'SAV'

-> OR product_cd ='CD' OR product_cd ='MM';

1 CHK 1 1057.75
2 SAV 1 500.00

3 CD 1 3000.00
4 CHK 2 2258.02

5 SAV 2 200.00

7 CHK 3 1057.75
8 MM 3 2212.50
10 CHK 4 534.12
11 SAV 4 767.77
12 MM 4 5487.09
13 CHK 5 2237.97
14 CHK 6 122.37
15 CD 6 10000.00
17 CD 7 5000.00
18 CHK 8 3487.19
19 SAV 8 387.99
21 CHK 9 125.67
22 MM 9 9345.55
23 CD 9 1500.00
24 CHK 10 23575.12
28 CHK 12 38552.05

21 rows in set (0.28 sec)

While this where clause (four conditions or‘d together) wasn’t too
tedious to generate, imagine if the set of expressions contained 10 or 20
members. For these situations, you can use the in operator instead:

SELECT account_id, product_cd, cust_id, avail_balance FROM account
WHERE product_cd IN ("CHK','SAV','CD','MM');

With the in operator, you can write a single condition no matter how
many expressions are in the set.
Matching Conditions

So far, you have been introduced to conditions that identify an exact
string, a range of strings, or a set of strings; the final condition type deals
with partial string matches. You may, for example, want to find all
employees whose last name begins with T. You could use a built-in
function to strip off the first letter of the Iname column, as in:

mysql> SELECT emp_id, fname, Iname

-> FROM employee

-> WHERE LEFT(Iname, 1) = 'T';

3 Robert |Tyler

7 Chris |Tucker

18 Rick Tulman

3 rows in set (0.01 sec)

While the built-in function left() does the job, it doesn’t give you much
flexibility. Instead, you can use wildcard characters to build search
expressions, as demonstrated in the next section.

Using wildcards When searching for partial string matches, you might be
interested in:

e Strings beginning/ending with a certain character
e Strings beginning/ending with a substring
e Strings containing a certain character anywhere within the

string

e Strings containing a substring anywhere within the string

e Strings with a specific format, regardless of individual
characters

Querying Multiple Tables

I demonstrated how related concepts are broken into separate pieces
through a process known as normalization. The end result of this
exercise was two tables: person and favorite_food. If, however, you want
to generate a single report showing a person’s name, address, and
favorite foods, you will need a mechanism to bring the data from these
two tables back together again; this mechanism is known as a join, and
this chapter concentrates on the simplest and most common join, the
inner join.

Whatls a Join?

Queries against a single table are certainly not rare, but you will find that
most of your queries will require two, three, or even more tables. To
illustrate, let’s look at the definitions for the employee and department
tables and then define a query that retrieves data from both tables:

mysql> DESC employee;

emp_id smallint(5) | NO PRI NULL
unsigned

fname varchar(20) | NO NULL NULL

Iname varchar(20) | NO NULL NULL

start_date Date NO NULL NULL

end_date Date YES NULL NULL

superior_emp_id smallint(5) | YES NULL NULL
unsigned

dept_id smallint(5) | YES NULL NULL
unsigned

title YES NULL NULL

assigned_branch_id smallint(5) | YES NULL NULL
unsigned

9 rows in set (0.11 sec)

mysql> DESC department;

dept_id smallint(5) NO PRI NULL
unsigned
name varchar(20) | NO NULL NULL

2 rows in set (0.03 sec)

Let’s say you want to retrieve the first and last names of each employee
along with the name of the department to which each employee is
assigned. Your query will therefore need to retrieve the employee.fname,
employee.lname, and departmentname columns. But how can you
retrieve data from both tables in the same query? The answer lies in the
employee.dept_id column, which holds the ID of the department to which
each employee is assigned (in more formal terms, the employee.dept_id
column is the foreign key to the department table).

The query, which you will see shortly, instructs the server to use the
employee.dept_id column as the bridge between the employee and
department tables, thereby allowing columns from both tables to be
included in the query’s result set. This type of operation is known as a
join.

Cartesian Product

The easiest way to start is to put the employee and department tables
into the from clause of a query and see what happens. Here’s a query that
retrieves the employee’s first and last names along with the department
name, with a from clause naming both tables separated by the join
keyword:

mysql> SELECT e.fname, e.lname, d.name

-> FROM employee e JOIN department d;

Michael Smith Operations
Michael Smith Loans

Michael Smith Administration
Susan Barker Operations
Susan Barker Loans

Susan Barker Administration
Robert Tyler Operations
Robert Tyler Loans

Robert Tyler Administration
Susan Hawthorne Operations
Susan Hawthorne Loans

Susan Hawthorne Administration
John Gooding Operations

John Gooding Loans

John Gooding Administration
Helen Gooding Operations
Helen Gooding Loans

Helen Gooding Administration
Chris Tucker Operations
Chris Tucker Loans

Chris Tucker Administration
Sarah Parker Operations
Sarah Parker Loans

Sarah Parker Administration
Jane Grossman Operations
Jane Grossman Loans

Jane Grossman Administration
Paula Roberts Operations
Paula Roberts Loans

Paula Roberts Administration
Thomas Ziegler Operations
Thomas Ziegler Loans

Thomas Ziegler Administration

Samantha Jameson Operations
Samantha Jameson Loans
Samantha Jameson Administration
John Blake Operations
John Blake Loans

John Blake Administration
Cindy Mason Operations
Cindy Mason Loans

Cindy Mason Administration
Frank Portman Operations
Frank Portman Loans

Frank Portman Administration
Theresa Markham Operations
Theresa Markham Loans

Theresa Markham Administration
Beth Fowler Operations
Beth Fowler Loans

Beth Fowler Administration
Rick Tulman Operations

Rick Tulman Loans

Rick Tulman Administration

54 rows in set (0.23 sec)

Hmmm...there are only 18 employees and 3 different departments, so
how did the result set end up with 54 rows? Looking more closely, you
can see that the set of 18 employees is repeated three times, with all the
data identical except for the department name. Because the query didn’t
specify how the two tables should be joined, the database server
generated the Cartesian product, which is every permutation of the two
tables (18 employees x 3 departments = 54 permutations). This type of
join is known as a cross join, and it is rarely used (on purpose, at least).

Inner Joins

To modify the previous query so that only 18 rows are included in the
result set (one for each employee), you need to describe how the two
tables are related. Earlier, I showed that the employee.dept_id column
serves as the link between the two tables, so this information needs to be
added to the on subclause of the from clause:

mysql> SELECT e.fname, e.lname, d.name
-> FROM employee e JOIN department d

-> ON e.dept_id = d.dept_id;

Michael Smith Administration
Susan Barker Administration
Robert Tyler Administration

Susan Hawthorne Operations

John Gooding Loans

Helen Fleming Operations
Chris Tucker Operations
Sarah Parker Operations
Jane Grossman Operations
Paula Roberts Operations
Thomas Ziegler Operations
Samantha Jameson Operations
John Blake Operations
Cindy Mason Operations
Frank Portman Operations
Theresa Markham Operations
Beth Fowler Operations
Rick Tulman Operations

18 rows in set (0.00 sec)

Instead of 54 rows, you now have the expected 18 rows due to the
addition of the on subclause, which instructs the server to join the
employee and department tables by using the dept_id column to traverse
from one table to the other. For example, Susan Hawthorne’s row in the
employee table contains a value of 1 in the dept_id column (not shown in
the example). The server uses this value to look up the row in the
department table having a value of 1 in its dept_id column and then
retrieves the value 'Operations' from the name column in that row.

If a value exists for the dept_id column in one table but not the other,

then the join fails for the rows containing that value and those rows are
excluded from the result set. This type of join is known as an inner join,
and it is the most commonly used type of join. To clarify, if the
department table contains a fourth row for the marketing department,
but no employees have been assigned to that department, then the
marketing department would not be included in the result set.

Likewise, if some of the employees had been assigned to department ID
99, which doesn’t exist in the department table, then these employees
would be left out of the result set. If you want to include all rows from
one table or the other regardless of whether a match exists, you need to
specify an outer join, but we cover this later in the book. In the previous
example, [did not specify in the from clause which type of join to use.
However, when you wish to join two tables using an inner join, you
should explicitly specify this in your from clause; here’s the same
example, with the addition of the join type (note the keyword INNER):

mysql> SELECT e.fname, e.lname, d.name
-> FROM employee e INNER JOIN department d

The ANSI Join Syntax

The notation used throughout this book for joining tables was
introduced in the SQL92 version of the ANSI SQL standard. All the major
databases (Oracle Database, Microsoft SQL Server, MySQL, IBM DB2
Universal Database, and Sybase Adaptive Server) have adopted the
SQL92 join syntax. Because most of these servers have been around since
before the release of the SQL92 specification, they all include an older
join syntax as well. For example, all these servers would understand the
following variation of the previous query:

mysql> SELECT e.fname, e.lname, d.name
-> FROM employee e, department d

-> WHERE e.dept_id = d.dept_id;

Michael Smith Administration
Susan Barker Administration
Robert Tyler Administration
Susan Hawthorne Operations
John Gooding Loans

Helen Fleming Operations
Chris Tucker Operations
Sarah Parker Operations
Jane Grossman Operations
Paula Roberts Operations
Thomas Ziegler Operations
Samantha Jameson Operations
John Blake Operations
Cindy Mason Operations
Frank Portman Operations
Theresa Markham Operations
Beth Fowler Operations
Rick Tulman Operations

18 rows in set (0.01 sec)

This older method of specifying joins does not include the on subclause;

instead, tables are named in the from clause separated by commas, and
join conditions are included in the where clause. While you may decide
to ignore the SQL92 syntax in favor of the older join syntax, the ANSI join
syntax has the following advantages:

Join conditions and filter conditions are separated into two different
clauses (the on subclause and the where clause, respectively), making a
query easier to understand.

The join conditions for each pair of tables are contained in their own on
clause, making it less likely that part of a join will be mistakenly omitted.

Queries that use the SQL92 join syntax are portable across database
servers, whereas the older syntax is slightly different across the different
servers. The benefits of the SQL92 join syntax are easier to identify for
complex queries that include both join and filter conditions. Consider the
following query, which returns all accounts opened by experienced
tellers (hired prior to 2007) currently assigned to the Woburn branch:

mysql> SELECT a.account_id, a.cust_id, a.open_date, a.product_cd
-> FROM account a, branch b, employee e

-> WHERE a.open_emp_id = e.emp_id

-> AND e.start_date < '2007-01-01"

-> AND e.assigned_branch_id = b.branch _id

-> AND (e.title = 'Teller' OR e.title = 'Head Teller’)

-> AND b.name = '"Woburn Branch';

1 1 2000-01-15 | CHK

2 1 2000-01-15 | SAV

3 1 2004-06-30 | CD
4 2 2001-03-12 | CHK
5 2 2001-03-12 | SAV
17 7 2004-01-12 | CD
27 11 2004-03-22 | BUS

7 rows in set (0.00 sec)

query with a two-table join:

mysql> SELECT a.account_id, c.fed_id

-> FROM account a INNER JOIN customer c

-> ON a.cust_id = c.cust_id

-> WHERE c.cust_type cd ='B';

24 04-1111111
25 04-1111111
27 04-2222222
28 04-3333333

Joining Three or More Tables
Joining three tables is similar to joining two tables, but with one slight
wrinkle. With a two-table join, there are two tables and one join type in
the from clause, and a single on subclause to define how the tables are
joined. With a three-table join, there are three tables and two join types
in the from clause, and two on subclauses. Here’s another example of a

29 04-4444444

5rows in set (0.15 sec)

This query, which returns the account ID and federal tax number for all
business accounts, should look fairly straightforward by now. If,
however, you add the employee table to the query to also retrieve the
name of the teller who opened each account, it looks as follows:

mysql> SELECT a.account_id, c.fed_id, e.fname, e.lname
-> FROM account a INNER JOIN customer c

-> ON a.cust_id =c.cust_id

-> INNER JOIN employee e

-> ON a.open_emp_id =e.emp_id

-> WHERE c.cust_type cd ='B';

24 04-1111111 | Theresa Markham
25 04-1111111 | Theresa Markham
27 04-2222222 | Paula Roberts
28 04-3333333 | Theresa Markham
29 04-4444444 | John Blake

Now three tables, two join types, and two on subclauses are listed in the
from clause, so things have gotten quite a bit busier. At first glance, the
order in which the tables are named might cause you to think that the
employee table is being joined to the customer table, since the account

table is named first, followed by the customer table, and then the
employee table. If you switch the order in which the first two tables
appear, however, you will get the exact same results:

mysql> SELECT a.account_id, c.fed_id, e.fname, e.lname
-> FROM customer c INNER JOIN account a

-> ON a.cust_id = c.cust_id

-> INNER JOIN employee e

-> ON a.open_emp_id =e.emp_id

-> WHERE c.cust_type_cd = 'B';

24 04-1111111 | Theresa Markham
25 04-1111111 | Theresa Markham
27 04-2222222 | Paula Roberts
28 04-3333333 | Theresa Markham
29 04-4444444 | John Blake

5 rows in set (0.09 sec)

Using Subqueries as Table
You have already seen several examples of queries that use three tables,
but there is one variation worth mentioning: what to do if some of the
data sets are generated by subqueries. Here’s another version of an
earlier query (find all accounts opened by experienced tellers currently
assigned to the Woburn branch) that joins the account table to
subqueries against the branch and employee tables:

SELECT a.account_id, a.cust_id, a.open_date, a.product_cd
FROM account a INNER JOIN

(SELECT emp_id, assigned_branch_id FROM employee
WHERE start_date < '2007-01-01"

AND (title = 'Teller' OR title = 'Head Teller')) e

ON a.open_emp_id = e.emp_id

INNER JOIN 9 (SELECT branch_id

FROM branch

WHERE name = '"Woburn Branch') b

ON e.assigned_branch_id = b.branch_id;

The first subquery, which starts on line 3 and is given the alias e, finds all
experienced tellers. The second subquery, which starts on line 9 and is
given the alias b, finds the ID of the Woburn branch. First, the account
table is joined to the experienced-teller subquery using the employee ID
and then the table that results is joined to the Woburn branch subquery
using the branch ID. The results are the same as those of the previous
version of the query (try it and see for yourself), but the queries look
very different from one another. There isn’t really anything shocking
here, but it might take a minute to figure out what'’s going on.

Notice, for example, the lack of a where clause in the main query; since
all the filter conditions are against the employee and branch tables, the
filter conditions are all inside the subqueries, so there is no need for any
filter conditions in the main query. One way to visualize what is going on
is to run the subqueries and look at the result sets. Here are the results of
the first subquery against the employee table:

Using the Same Table Twice

If you are joining multiple tables, you might find that you need to join the
same table more than once. In the sample database, for example, there
are foreign keys to the branch table from both the account table (the
branch at which the account was opened) and the employee table (the
branch at which the employee works). If you want to include both
branches in your result set, you can include the branch table twice in the
from clause, joined once to the employee table and once to the account
table.

For this to work, you will need to give each instance of the branch table a
different alias so that the server knows which one you are referring to in
the various clauses, as in:

mysql> SELECT a.account_id, e.emp_id,

-> b_a.name open_branch, b_e.name emp_branch
-> FROM account a INNER JOIN branch b_a

-> ON a.open_branch_id =b_a.branch_id

-> INNER JOIN employee e

-> ON a.open_emp id =e.emp_id

-> INNER JOIN branch b_e -> ON e.assigned_branch_id =
b_e.branch_id

-> WHERE a.product_cd = 'CHK';

10 1 Headquarters Headquarters

Headquarters

Headquarters

21 1 Headquarters Headquarters
1 10 Woburn Branch | Woburn Branch
4 10 Woburn Branch | Woburn Branch
7 13 Quincy Branch | Quincy Branch
13 16 So. NH Branch | So. NH Branch
18 16 So. NH Branch | So. NH Branch
24 16 So. NH Branch | So. NH Branch
28 16 So. NH Branch | So. NH Branch

10 rows in set (0.16 sec)

This query shows who opened each checking account, what branch it
was opened at, and to which branch the employee who opened the
account is currently assigned. The branch table is included twice, with
aliases b_a and b_e. By assigning different aliases

Working with Sets

Although you can interact with the data in a database one row at a time,
relational databases are really all about sets. You have seen how you can
create tables via queries or subqueries, make them persistent via insert
statements, and bring them together via joins; this chapter explores how
you can combine multiple tables using various set operators.

Set Theory Primer

In many parts of the world, basic set theory is included in elementary-
level math curriculums.

Set Theory Primer

In many pare of the world bazgic set theary is ineluded in elementary-level marth cur-
riculums. Perhaps you recall lecking at something like whart is shown in Figure 6-1.

] i

i

AT,

!

\
\)
N . 4

e = —
|:| A union B

The shaded area in the diagram below represents the union of sets A and
B, which is the combination of the two sets (with any overlapping
regions included only once). Is this starting to look familiar? If so, then
you'll finally get a chance to put that knowledge to use; if not, don’t
worry, because it's easy to visualize using a couple of diagrams.

Using circles to represent two data sets (A and B), imagine a subset of
data that is common to both sets; this common data is represented by the
overlapping area shown. Since set theory is rather uninteresting without
an overlap between data sets, I use the same diagram to illustrate each

set operation. There is another set operation that is concerned only with
the overlap between two data sets; this operation is known as the
intersection and is demonstrated.

The data set generated by the intersection of sets A and B is just the area
of overlap between the two sets. If the two sets have no overlap, then the
intersection operation yields the empty set.

Set Theory in Practice

The circles used in the previous section’s diagrams to represent data sets
don’t convey anything about what the data sets comprise. When dealing
with actual data, however,there is a need to describe the composition of
the data sets involved if they are to be combined. Imagine, for example,
what would happen if you tried to generate the union of the product
table and the customer table, whose table definitions are as follows:

mysql> DESC product;

product_cd varchar(10) | NO | PRI

name varchar(50) NO NULL

product_type cd varchar(10) | NO | NULL

date offered date YES | NULL

date_retired date YES | NULL

5 rows in set (0.23 sec)

mysql> DESC customer;

cust_id int(10) No | PRI| NULL auto_increment
unsigned

fed_id varchar(12) No NULL

cust_type_cd enum('I","'B") No NULL
address varchar(30) YES NULL
city varchar(20) YES NULL
state varchar(20) YES NULL
postal_code varchar(10) YES NULL

7 rows in set (0.04 sec)

When combined, the first column in the table that results would be the
combination of the product.product_cd and customer.cust_id columns,
the second column would be the combination of the product.name and
customer.fed_id columns, and so forth. While some of the column pairs
are easy to combine (e.g., two numeric columns), it is unclear how other
column pairs should be combined, such as a numeric column with a
string column or a string column with a date column.

Additionally, the sixth and seventh columns of the combined tables
would include data from only the customer table’s sixth and seventh
columns, since the product table has only five columns. Clearly, there
needs to be some commonality between two tables that you wish to
combine. Therefore, when performing set operations on two data sets,
the following guidelines must apply:

Both data sets must have the same number of columns.

The data types of each column across the two data sets must be the same
(or the server must be able to convert one to the other). With these rules
in place, it is easier to envision what “overlapping data” means in
practice; each column pair from the two sets being combined must
contain the same string, number, or date for rows in the two tables to be
considered the same.

Set Operators
The SQL language includes three set operators that allow you to perform
each of the various set operations described earlier in the chapter.

Additionally, each set operator has two flavors, one that includes
duplicates and another that removes duplicates (but not necessarily all
of the duplicates). The following subsections define each operator and
demonstrate how they are used.

The Union Operator

The union and union all operators allow you to combine multiple data
sets. The difference between the two is that union sorts the combined set
and removes duplicates, whereas union all does not. With union all, the
number of rows in the final data set will always equal the sum of the
number of rows in the sets being combined. This operation is the
simplest set operation to perform (from the server’s point of view), since
there is no need for the server to check for overlapping data. The
following example demonstrates how you can use the union all operator
to generate a full set of customer data from the two customer subtype
tables:

mysql> SELECT 'IND' type_cd, cust_id, Iname name
-> FROM individual

-> UNION ALL

-> SELECT 'BUS' type_cd, cust_id, name

-> FROM business;

IND 1 Hadley
IND 2 Tingley
IND 3 Tucker

IND 4 Hayward

IND 5 Frasier

IND 6 Spencer

IND 7 Young

IND 8 Blake

IND 9 Farley

BUS 10 Chilton Engineering
BUS 11 Northeast Cooling Inc.
BUS 12 Superior Auto Body
BUS 13 AAA Insurance Inc.

13 rows in set (0.04 sec)

The query returns all 13 customers, with nine rows coming from the
individual table and the other four coming from the business table. While
the business table includes a single column to hold the company name,
the individual table includes two name columns, one each for the
person’s first and last names. In this case, I chose to include only the last
name from the individual table. Just to drive home the point that the
union all operator doesn’t remove duplicates, here’s the same query as
the previous example but with an additional query against the business
table:

mysql> SELECT 'IND' type_cd, cust_id, Iname name
-> FROM individual
-> UNION ALL

-> SELECT 'BUS' type_cd, cust_id, name

-> FROM business
-> UNION ALL
-> SELECT 'BUS' type_cd, cust_id, name

-> FROM business;

IND 1 Hadley

IND 2 Tingley

IND 3 Tucker

IND 4 Hayward

IND 5 Frasier

IND 6 Spencer

IND 7 Young

IND 8 Blake

IND 9 Farley

BUS 10 Chilton Engineering
BUS 11 Northeast Cooling Inc.
BUS 12 Superior Auto Body
BUS 13 AAA Insurance Inc.
BUS 10 Chilton Engineering

BUS 11 Northeast Cooling Inc.

BUS 12 Superior Auto Body
BUS 13 AAA Insurance Inc.Auto
Body

17 rows in set (0.01 sec)

The Intersect Operator

The ANSI SQL specification includes the intersect operator for
performing intersections. Unfortunately, version 6.0 of MySQL does not
implement the intersect operator. If you are using Oracle or SQL Server
2008, you will be able to use intersect; since I am using MySQL for all
examples in this book, however, the result sets for the example queries
in this section are fabricated and cannot be executed with any versions
up to and including version 6.0.

I also refrain from showing the MySQL prompt (mysql>), since the
statements are not being executed by the MySQL server. If the two
queries in a compound query return nonoverlapping data sets, then the
intersection will be an empty set. Consider the following query:

SELECT emp_id, fname, Iname
FROM employee INTERSECT
SELECT cust_id, fname, Iname
FROM individual;

Empty set (0.04 sec)

The first query returns the ID and name of each employee, while the
second query returns the ID and name of each customer. These sets are
completely nonoverlapping, so the intersection of the two sets yields the
empty set. The next step is to identify two queries that do have
overlapping data and then apply the intersect operator. For this purpose,
[use the same query used to demonstrate the difference between union

and union all, except this time using intersect:
SELECT emp_id FROM employee

WHERE assigned_branch_id = 2 AND (title = 'Teller' OR title = 'Head
Teller') INTERSECT SELECT DISTINCT open_emp_id FROM account

WHERE open_branch _id = 2;

1 row in set (0.01 sec)

The intersection of these two queries yields employee ID 10, which is the
only value found in both queries’ result sets. Along with the intersect
operator, which removes any duplicate rows found in the overlapping
region, the ANSI SQL specification calls for an intersect all operator,
which does not remove duplicates. The only database server that
currently implements the intersect all operator is IBM’s DB2 Universal
Server.

The Except Operator

The ANSI SQL specification includes the except operator for performing
the except operation. Once again, unfortunately, version 6.0 of MySQL
does not implement the except operator, so the same rules apply for this
section as for the previous section.

If you are using Oracle Database, you will need to use the non-
ANSIcompliant minus operator instead.

The except operator returns the first table minus any overlap with the
second table. Here's the example from the previous section, but using
except instead of intersect:

SELECT emp_id FROM employee

WHERE assigned_branch_id = 2 AND (title = 'Teller' OR title = 'Head
Teller')

EXCEPT SELECT DISTINCT open_emp _id
FROM account

WHERE open_branch_id = 2;

S SR +
| emp_id |
S S +
| 11
| 12
e +

2 rows in set (0.01 sec)

In this version of the query, the result set consists of the three rows from
the first query minus employee ID 10, which is found in the result sets
from both queries. There is also an except all operator specified in the
ANSI SQL specification, but once again, only IBM’s DB2 Universal Server
has implemented the except all operator.

The except all operator is a bit tricky, so here’s an example to
demonstrate how duplicate data is handled. Let’s say you have two data
sets that look as follows:

Set A

Set Operation Rules
The following sections outline some rules that you must follow when
working with compound queries.

Sorting Compound Query Results

If you want the results of your compound query to be sorted, you can add
an order by clause after the last query. When specifying column names in
the order by clause, you will need to choose from the column names in
the first query of the compound query. Frequently, the column names are
the same for both queries in a compound query, but this does not need to
be the case, as demonstrated by the following:

mysql> SELECT emp_id, assigned_branch_id

-> FROM employee

-> WHERE title = 'Teller’

-> UNION

-> SELECT open_emp_id, open_branch_id

-> FROM account
-> WHERE product_cd ='SAV'

-> ORDER BY emp_id;

7 1
8 1
9 1
10 2
11 2
12 2
14 3
15 3
16 4
17 4
18 4

12 rows in set (0.04 sec)

The column names specified in the two queries are different in this
example. If you specify a column name from the second query in your
order by clause, you will see the following error:

mysql> SELECT emp_id, assigned_branch_id
-> FROM employee

-> WHERE title = 'Teller'

-> UNION

-> SELECT open_emp_id, open_branch_id
-> FROM account

-> WHERE product_cd = 'SAV'

-> ORDER BY open_emp _id;

ERROR 1054 (42522):

Unknown column 'open_emp_id' in 'order clause' | recommend giving the
columns in both queries identical column aliases in order to avoid this
issue.

Set Operation Precedence

If your compound query contains more than two queries using different
set operators, you need to think about the order in which to place the
queries in your compound statement to achieve the desired results.
Consider the following three-query compound statement:

mysql> SELECT cust_id
-> FROM account
-> WHERE product_cd IN ('SAV', 'MM')

-> UNION ALL

Data Generation, Conversion, and
Manipulation

As 1 mentioned in the above, this book strives to teach generic SQL
techniques that can be applied across multiple database servers. This
chapter, however, deals with the generation, conversion, and
manipulation of string, numeric, and temporal data, and the SQL
language does not include commands covering this functionality. Rather,
builtin functions are used to facilitate data generation, conversion, and
manipulation, and while the SQL standard does specify some functions,
the database vendors often do not comply with the function
specifications.

Therefore, my approach for this chapter is to show you some of the
common ways in which data is manipulated within SQL statements, and
then demonstrate some of the built-in functions implemented by
Microsoft SQL Server, Oracle Database, and MySQL. Along with reading
this chapter, 1 strongly recommend you purchase a reference guide
covering all the functions implemented by your server.

Working with String Data
When working with string data, you will be using one of the following
character data types: CHAR Holds fixed-length, blank-padded strings.
MySQL allows CHAR values up to 255 characters in length, Oracle
Database permits up to 2,000 characters, and SQL Server allows up to
8,000 characters.

Varchar Holds variable-length strings. MySQL permits up to 65,535
characters in a varchar column, Oracle Database (via the varchar2 type)
allows up to 4,000 characters, and SQL Server allows up to 8,000
characters. text (MySQL and SQL Server) or CLOB (Character Large

Object; Oracle Database) Holds very large variable-length strings
(generally referred to as documents in this context). MySQL has multiple
text types (tinytext, text, mediumtext, and long text) for documents up to
4 GB in size. SQL Server has a single text type for documents up to 2 GB
in size, and Oracle Database includes the CLOB data type, which can hold
documents up to a whopping 128 TB. SQL Server 2005 also includes the
varchar (max) data type and recommends its use instead of the text type,
which will be removed from the server in some future release. To
demonstrate how you can use these various types, I use the following
table for some of the examples in this section: CREATE TABLE string_tbl
(char_fld CHAR (30), vchar_fld VARCHAR(30), text_fld TEXT); The next
two subsections show how you can generate and manipulate string data.

String Generation
The simplest way to populate a character column is to enclose a string in
quotes, as in:

mysql> INSERT INTO string_tbl (char_fld, vchar_fld, text_fld)
-> VALUES ('This is char data’,

-> 'This is varchar data’,

-> 'This is text data');

Query OK, 1 row affected (0.00 sec)

When inserting string data into a table, remember that if the length of the
string exceeds the maximum size for the character column (either the
designated maximum or the maximum allowed for the data type), the
server will throw an exception. Although this is the default behavior for
all three servers, you can configure MySQL and SQL Server to silently
truncate the string instead of throwing an exception.

To demonstrate how MySQL handles this situation, the following update
statement attempts to modify the vchar_fld column, whose maximum
length is defined as 30, with a string that is 46 characters in length:

mysql> UPDATE string_tbl
-> SET vchar_fld =

"This is a piece of extremely long varchar data’; ERROR 1406 (22001):
Data too long for column 'vchar_fld' at row 1 With MySQL 6.0, the default
behavior is now “strict” mode, which means that exceptions are thrown
when problems arise, whereas in older versions of the server the string
would have been truncated and a warning issued. If you would rather
have the engine truncate the string and issue a warning instead of raising
an exception, you can opt to be in ANSI mode. The following example
shows how to check which mode you are in, and then how to change the
mode using the SET command:

mysql> SELECT @ @session.sql_mode;

4+
+

+

| @@session.sql_mode

+ —-—-t

|
STRICT_TRANS_TABLES,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTIO

+ -t

1 row in set (0.00 sec)

mysql> SET sql_mode="ansi’;

Query OK, 0 rows affected (0.08 sec)
mysql> SELECT @ @session.sql_mode;

| @@session.sql_mode

|
REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ANSI |

+ -+

1 row in set (0.00 sec)

If you rerun the previous UPDATE statement, you will find that the
column has been modified, but the following warning is generated:

mysql> SHOW WARNINGS;

+

| SRR Homee- +

| Level | Code | Message

| Warning | 1265 | Data truncated for column 'vchar_fld' at row 1

| + -+ + m—

1 row in set (0.00 sec)

If you retrieve the vchar_fld column, you will see that the string has
indeed been truncated:

mysql> SELECT vchar_fld

-> FROM string_tbl;

| vchar_fld

| This is a piece of extremely |

I + +1
T T

1 row in set (0.05 sec)

As you can see, only the first 30 characters of the 46-character string
made it into the vchar_fld column. The best way to avoid string
truncation (or exceptions, in the case of Oracle Database or MySQL in
strict mode) when working with varchar columns is to set the upper
limit of a column to a high enough value to handle the longest strings
that might be stored in the column (keeping in mind that the server
allocates only enough space to store the string, so it is not wasteful to set
a high upper limit for varchar columns).

String Manipulation
Each database server includes many built-in functions for manipulating
strings. This section explores two types of string functions: those that
return numbers and those that return strings. Before [begin, however, |
reset the data in the string_tbl table to the following:

mysql> DELETE FROM string_tbl;

Query OK, 1 row affected (0.02 sec)

mysql> INSERT INTO string_tbl (char_fld, vchar_fld, text_fld)
-> VALUES ('This string is 28 characters',

-> 'This string is 28 characters',

-> 'This string is 28 characters');

Query OK, 1 row affected (0.00 sec)

String functions that return numbers Of the string functions that return
numbers, one of the most commonly used is the length() function, which
returns the number of characters in the string (SQL Server users will
need to use the len() function). The following query applies the length()
function to each column in the string_tbl table:

mysql> SELECT LENGTH(char_fld) char_length,
-> LENGTH(vchar_fld) varchar_length,
-> LENGTH(text_fld) text_length

-> FROM string_tbl;

| char_length | varchar_length | text_length |

+
+
+
+

| 28 | 28 | 28 |

+
l.
l.

+

1 row in set (0.00 sec)

While the lengths of the varchar and text columns are as expected, you
might have expected the length of the char column to be 30, since I told
you that strings stored in char columns are right-padded with spaces.
The MySQL server removes trailing spaces from char data when it is
retrieved, however, so you will see the same results from all string
functions regardless of the type of column in which the strings are
stored. Along with finding the length of a string, you might want to find
the location of a substring within a string. For example, if you want to
find the position at which the string 'characters' appears in the vchar_fld
column, you could use the position() function, as demonstrated by the

following:
mysql> SELECT POSITION('characters' IN vchar_fld)

-> FROM string_tbl;

| POSITION('characters' IN vchar_fld) |

+
+

19 |

+
+

1 row in set (0.12 sec)
If the substring cannot be found, the position() function returns O.

For those of you who program in a language such as C or C++, where the
first element of an array is at position 0, remember when working with
databases that the first character in a string is at position 1.

A return value of 0 from position() indicates that the substring could not
be found, not that the substring was found at the first position in the
string.

If you want to start your search at something other than the first
character of your target string, you will need to use the locate() function,
which is similar to the position() function except that it allows an
optional third parameter, which is used to define the search’s start
position. The locate() function is also proprietary, whereas the position()
function is part of the SQL:2003 standard. Here’s an example asking for
the position of the string 'is' starting at the fifth character in the vchar_fld
column:

mysql> SELECT LOCATE('is', vchar_fld, 5)

-> FROM string_tbl;

| LOCATE('is', vchar_fld, 5) |

13 |

+
|_

1 row in set (0.02 sec)

Oracle Database does not include the position() or locate() function, but
it does include the instr() function, which mimics the position() function
when provided with two arguments and mimics the locate() function
when provided with three arguments. SQL Server also doesn’t include a
position() or locate() function, but it does include the charindx()
function, which also accepts either two or three arguments similar to
Oracle’s instr() function.

Another function that takes strings as arguments and returns numbers is
the string comparison function strcmp(). Strcmp(), which is
implemented only by MySQL and has no analog in Oracle Database or
SQL Server, takes two strings as arguments, and returns one of the
following:

e -1 if the first string comes before the second string in sort
order

e 0 ifthe strings are identical

e 1 if the first string comes after the second string in sort order

To illustrate how the function works, I first show the sort order of five
strings using a query, and then show how the strings compare to one
another using strcmp(). Here are the five strings that I insert into the
string_tbl table:

mysql> DELETE FROM string_tbl;
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO string_tbl(vchar_fld) VALUES ('abcd');

Query OK, 1 row affected (0.03 sec)
mysql> INSERT INTO string_tbl(vchar_fld) VALUES ('xyz');

Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO string_tbl(vchar_fld) VALUES ('QRSTUV');

Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO string_tbl(vchar_fld) VALUES ('grstuv');

Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO string_tbl(vchar_fld) VALUES ('12345");

Query OK, 1 row affected (0.00 sec)
Here are the five strings in their sort order:

mysql> SELECT vchar_fld
-> FROM string_tbl

-> ORDER BY vchar_fld;

S +
| vchar_fld |
P +| 12345 |
| abcd |

| QRSTUV |

5 rows in set (0.00 sec)
The next query makes six comparisons among the five different strings:

mysql> SELECT STRCMP('12345','12345") 12345 _12345,
-> STRCMP('abcd’,'xyz') abcd_xyz,

-> STRCMP('abcd','QRSTUV') abcd_QRSTUV,

-> STRCMP('grstuv','QRSTUV') grstuv_QRSTUV,

-> STRCMP('12345','xyz') 12345 xyz,

-> STRCMP('xyz','qrstuv') xyz_qrstuv;

1 row in set (0.00 sec)'

Working with Numeric Data
Unlike string data (and temporal data, as you will see shortly), numeric
data generation is quite straightforward. You can type a number, retrieve
it from another column, or generate it via a calculation. All the usual
arithmetic operators (+, -, *, /) are available for performing calculations,
and parentheses may be used to dictate precedence, as in: mysql>
SELECT (37 *59) / (78 - (8 * 6));

JL -+
T T

| (37 *59) /(78 - (8 * 6)) |

72.77 |

1 row in set (0.00 sec)

As I mentioned above, the main concern when storing numeric data is
that numbers might be rounded if they are larger than the specified size
for a numeric column. For example, the number 9.96 will be rounded to

10.0 if stored in a column defined as float(3,1).

mysql> SELECT MOD(10,4);

| R +
| MOD(10,4) |
| RS +

| 2 |
e +

1 row in set (0.02 sec)

While the mod() function is typically used with integer arguments, with
MySQL you can also use real numbers, as in:

mysql> SELECT MOD(22.75, 5);

+ +

| MOD(22.75, 5) |

| 2.75]

1 row in set (0.02 sec)

SQL Server does not have a mod() function. Instead, the operator % is
used for finding remainders. The expression 10 % 4 will therefore yield
the value 2.

Controlling Number Precision
When working with floating-point numbers, you may not always want to
interact with or display a number with its full precision. For example,
you may store monetary transaction data with a precision to six decimal
places, but you might want to round to the nearest hundredth for display
purposes. Four functions are useful when limiting the precision of
floating-point numbers:

ceil()
floor()
round()
truncate().

All three servers include these functions, although Oracle Database
includes trunc() instead of truncate(), and SQL Server includes ceiling()
instead of ceil(). The ceil() and floor() functions are used to round either
up or down to the closest integer, as demonstrated by the following:

mysql> SELECT CEIL(72.445),

FLOOR(72.445);

| CEIL(72.445) | FLOOR(72.445) |

73 | 72 |

1 row in set (0.06 sec)

Thus, any number between 72 and 73 will be evaluated as 73 by the
ceil() function and 72 by the floor() function. Remember that ceil() will
round up even if the decimal portion of a number is very small, and
floor() will round down even if the decimal portion is quite significant, as
in:

mysql> SELECT CEIL(72.000000001),

FLOOR(72.999999999);

| CEIL(72.000000001) | FLOOR(72.999999999) |

+
+
+

73 | 72 |

1 row in set (0.00 sec)

If this is a bit too severe for your application, you can use the round()
function to round up or down from the midpoint between two integers,
as in:

mysql> SELECT ROUND(72.49999), ROUND(72.5), ROUND(72.50001);

72 73 73

1 row in set (0.00 sec)

Using round(), any number whose decimal portion is halfway or more
between two integers will be rounded up, whereas the number will be
rounded down if the decimal portion is anything less than halfway
between the two integers.

Most of the time, you will want to keep at least some part of the decimal
portion of a number rather than rounding to the nearest integer; the
round() function allows an optional second argument to specify how
many digits to the right of the decimal place to round to. The next
example shows how you can use the second argument to round the
number 72.0909 to one, two, and three decimal places:

mysql> SELECT ROUND(72.0909, 1), ROUND(72.0909, 2),
ROUND(72.0909, 3);

72.1 72.09 72.091

1 row in set (0.00 Sec)

Like the round() function, the truncate() function allows an optional
second argument to specify the number of digits to the right of the
decimal, but truncate() simply discards the unwanted digits without
rounding. The next example shows how the number 72.0909 would be
truncated to one, two, and three decimal places:

mysql> SELECT TRUNCATE(72.0909, 1), TRUNCATE(72.0909, 2),

-> TRUNCATE(72.0909, 3);

72.0 72.09 72.090

1 row in set (0.00 sec)

SQL Server does not include a truncate() function. Instead, the round()

function allows for an optional third argument which, if present and
nonzero, calls for the number to be truncated rather than rounded.

Handling Signed Data

If you are working with numeric columns that allow negative values
showed how a numeric column may be labeled unsigned, meaning that
only positive numbers are allowed), several numeric functions might be
of use. Let's say, for example, that you are asked to generate a report
showing the current status of each bank account. The following query
returns three columns useful for generating the report:

mysql> SELECT account_id, SIGN(avail balance), ABS(avail balance)

-> FROM account;

1 1 1057.75
2 1 500.00

3 1 3000.00
4 1 2258.02
5 1 00.00
19 1 1500.00
20 1 23575.12
21 0 0.00
29 1 9345.55
23 1 38552.05
24 1 50000 .00

| |
24 rows in set (0.00 sec)

The second column uses the sign() function to return -1 if the account
balance is negative, 0 if the account balance is zero, and 1 if the account
balance is positive. The third column returns the absolute value of the
account balance via the abs() function.

Working with Temporal Data Of the three types of data discussed in this
chapter (character, numeric, and temporal), temporal data is the most
involved when it comes to data generation and manipulation. Some of
the complexity of temporal data is caused by the myriad ways in which a
single date and time can be described. For example, the date on which I
wrote this paragraph can be described in all the following ways:

» Wednesday, September 17, 2008

©9/17/2008 2:14:56 P.M. EST

*9/17/2008 19:14:56 GMT

¢ 2612008 (Julian format)

e Star date [-4] 85712.03 14:14:56 (Star Trek format)
Aggregate Functions

Aggregate functions perform a specific operation over all rows in a
group. Although every database server has its own set of specialty
aggregate functions, the common aggregate functions implemented by all
major servers include:

Max() Returns the maximum value within a set Min() Returns the
minimum value within a set Avg() Returns the average value across a set

Sum() Returns the sum of the values across a set Count() Returns the
number of values in a set Here’s a query that uses all of the common
aggregate functions to analyze the available balances for all checking
accounts:

mysql> SELECT MAX(avail_balance) max_balance,

-> MIN(avail_balance) min_balance,

-> AVG(avail_balance) avg_balance,
-> SUM(avail_balance) tot_balance,
-> COUNT(*) num_accounts

-> FROM account

-> WHERE product_cd = 'CHK';

38552.05 122.37 7300.800985 | 73008.01 10

1 row in set (0.09 sec)

The results from this query tell you that, across the 10 checking accounts
in the account table, there is a maximum balance of $38,552.05, a
minimum balance of $122.37, an average balance of $7,300.80, and a
total balance across all 10 accounts of $73,008.01. Hopefully, this gives
you an appreciation for the role of these aggregate functions; the next
subsections further clarify how you can utilize these functions.

Implicit Versus Explicit Groups

In the previous example, every value returned by the query is generated
by an aggregate function, and the aggregate functions are applied across
the group of rows specified by the filter condition product_cd = 'CHK".
Since there is no group by clause, there is a single, implicit group (all
rows returned by the query). In most cases, however, you will want to
retrieve additional columns along with columns generated by aggregate
functions. What if, for example, you wanted to extend the previous query
to execute the same five aggregate functions for each product type,
instead of just for checking accounts? For this query, you would want to
retrieve the product_cd column along with the five aggregate functions,
as in:

SELECT product_cd, MAX(avail_balance) max_balance,

MIN(avail_balance) min_balance,
AVG(avail_balance) avg_balance,
SUM(avail_balance) tot_balance,
COUNT(*) num_accounts

FROM account; However, if you try to execute the query, you will receive
the following error:

ERROR 1140 (42000):

Mixing of GROUP columns (MIN(),MAX(),COUNT(),...) with no GROUP
columns is illegal if there is no GROUP BY clause While it may be obvious
to you that you want the aggregate functions applied to each set of
products found in the account table, this query fails because you have not
explicitly specified how the data should be grouped. Therefore, you will
need to add a group by clause to specify over which group of rows the
aggregate functions should be applied:

mysql> SELECT product_cd,

-> MAX(avail_balance) max_balance,
-> MIN(avail_balance) min_balance,
-> AVG(avail_balance) avg_balance,
-> SUM(avail_balance) tot_balance,
-> COUNT(*) num_accts

-> FROM account

-> GROUP BY product_cd;

BUS 9345.55 0.00 4672.774902 | 9345.55 1
D 10000 .00 1500.00 4875.000000 | 19500.00 4
CHK 38552.05 122.37 7300.800985 | 73008.01 10
MM 9345.55 2212.50 5681.713216 | 17045.14 3
SAV 767.77 200.00 463.940002 | 1855.76 4
SBL 50000 .00 50000 .00 50000 .00 50000 . 00 1

6 rows in set (0.00 sec)

With the inclusion of the group by clause, the server knows to group
together rows having the same value in the product_cd column first and
then to apply the five aggregate functions to each of the six groups.

Counting Distinct Values

When using the count() function to determine the number of members in
each group, you have your choice of counting all members in the group,
or counting only the distinct values for a column across all members of
the group. For example, consider the following data, which shows the
employee responsible for opening each account:

mysql> SELECT account_id, open_emp_id
-> FROM account

-> ORDER BY open_emp id;

10 1

12 1

13 1

17 1

18 1

19 1

1 10
2 10
3 10
4 10
5 10
14 10
22 10
6 13
7 13
24 13
11 16
15 16
16 16
20 16

21 16

23 16

24 rows in set (0.00 sec)

As you can see, multiple accounts were opened by four different
employees (employee IDs 1, 10, 13, and 16). Let’s say that, instead of
performing a manual count, you want to create a query that counts the

number of employees who have opened accounts. If you apply the
count() function to the open_emp_id column, you will see the following

results:
mysql> SELECT COUNT(open_emp_id)

-> FROM account;

1 row in set (0.00 sec)

In this case, specifying the open_emp_id column as the column to be
counted generates the same results as specifying count(*). If you want to
count distinct values in the group rather than just counting the number
of rows in the group, you need to specify the distinct keyword, as in:

mysql> SELECT COUNT(DISTINCT open_emp_id)

-> FROM account;

1 row in set (0.00 sec)'

By specifying distinct, therefore, the count() function examines the

values of a column for each member of the group in order to find and
remove duplicates, rather than simply counting the number of values in
the group.

Using Expressions
Along with using columns as arguments to aggregate functions, you can
build expressions to use as arguments. For example, you may want to
find the maximum value of pending deposits across all accounts, which is
calculated by subtracting the available balance from the pending balance.
You can achieve this via the following query:

mysql> SELECT MAX(pending_balance - avail_balance) max_uncleared

-> FROM account;

660.00

1 row in set (0.00 sec)

While this example uses a fairly simple expression, expressions used as
arguments to aggregate functions can be as complex as needed, as long
as they return a number, string, or date. [show you how you can use case
expressions with aggregate functions to determine whether a particular
row should or should not be included in an aggregation.

How Nulls Are Handled

When performing aggregations, or, indeed, any type of numeric
calculation, you should always consider how null values might affect the
outcome of your calculation. To illustrate, I will build a simple table to
hold numeric data and populate it with the set {1, 3, 5}:

mysql> CREATE TABLE number_tbl
-> (val SMALLINT); Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO number_tbl VALUES (1);

Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO number_tbl VALUES (3);

Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO number_tbl VALUES (5);

Query OK, 1 row affected (0.00 sec) Consider the following query, which
performs five aggregate functions on the set of numbers:

mysql> SELECT COUNT(*) num_rows,
-> COUNT(val) num_vals,

-> SUM(val) total,

-> MAX(val) max_val,

-> AVG(val) avg_val

-> FROM number _tbl;

3 3 9 5 3.0000

1 row in set (0.08 sec) |

The results are as you would expect: both count(*) and count(val) return
the value 3, sum(val) returns the value 9, max(val) returns 5, and
avg(val) returns 3. Next, I will add a null value to the number_tbl table
and run the query again.

Subqueries

Subqueries are a powerful tool that you can use in all four SQL data
statements. This explores in great detail the many uses of the subquery.

What Is a Subquery?
A subquery is a query contained within another SQL statement (which I
refer to as the containing statement for the rest of this discussion). A
subquery is always enclosed within parentheses, and it is usually
executed prior to the containing statement. Like any query, a subquery
returns a result set that may consist of:

e Asingle row with a single column
e Multiple rows with a single column
e Multiple rows and columns

The type of result set the subquery returns determines how it may be
used and which operators the containing statement may use to interact
with the data the subquery returns. When the containing statement has
finished executing, the data returned by any subqueries is discarded,
making a subquery act like a temporary table with statement scope
(meaning that the server frees up any memory allocated to the subquery
results after the SQL statement has finished execution). You already saw
several examples of subqueries in earlier chapters, but here’s a simple
example to get started:

mysql> SELECT account_id, product_cd, cust_id, avail_balance
-> FROM account

-> WHERE account_id = (SELECT MAX(account_id) FROM account);

29|SBL | 13| 50000.00 |

+
+
+
+
+

1 row in set (0.65 sec)

In this example, the subquery returns the maximum value found in the
account_id column in the account table, and the containing statement
then returns data about that account. If you are ever confused about
what a subquery is doing, you can run the subquery by itself (without the
parentheses) to see what it returns. Here’s the subquery from the

previous example:
mysql> SELECT MAX(account_id) FROM account;

+ -+

| MAX(account_id) |

29 |

1 row in set (0.00 sec)

So, the subquery returns a single row with a single column, which allows
it to be used as one of the expressions in an equality condition (if the
subquery returned two or more rows, it could be compared to something
but could not be equal to anything, but more on this later). In this case,

you can take the value the subquery returned and substitute it into the
righthand expression of the filter condition in the containing query, as in:

mysql> SELECT account_id, product_cd, cust_id, avail_balance
-> FROM account

-> WHERE account_id = 29;

account_id | product_cd | cust_id | avail_balance |

+ + + + +
| 29|SBL | 13| 50000.00 |

1 row in set (0.02 sec)

The subquery is useful in this case because it allows you to retrieve
information about the highest numbered account in a single query,
rather than retrieving the maximum account_id using one query and then
writing a second query to retrieve the desired data from the account
table. As you will see, subqueries are useful in many other situations as
well, and may become one of the most powerful tools in your SQL toolkit.

Subquery Types
Along with the differences noted previously regarding the type of result
set a subquery returns (single row/column, single row/multicolumn, or
multiple columns), you can use another factor to differentiate
subqueries; some subqueries are completely selfcontained (called
noncorrelated subqueries), while others reference columns from the
containing statement (called correlated subqueries). The next several
sections explore these two subquery types and show the different

operators that you can employ to interact with them.

Noncorrelated Subqueries

The example from earlier in the chapter is a noncorrelated subquery; it
may be executed alone and does not reference anything from the
containing statement. Most subqueries that you encounter will be of this
type unless you are writing update or delete statements, which
frequently make use of correlated subqueries (more on this later). Along
with being noncorrelated, the example from earlier in the chapter also
returns a table comprising a single row and column. This type of
subquery is known as a scalar subquery and can appear on either side of
a condition using the usual operators (=, <>, <, >, <=, >=). The next
example shows how you can use a scalar subquery in an inequality
condition:

mysql> SELECT account_id, product_cd, cust_id, avail_balance
-> FROM account

-> WHERE open_emp_id <> (SELECT e.emp_id

-> FROM employee e INNER JOIN branch b

-> ON e.assigned_branch_id = b.branch_id

-> WHERE e.title = 'Head Teller' AND b.city = 'Woburn');

+
+
+
+
+

account_id | product_cd | cust_id | avail_balance |

+
l.
+
l.
|.

| 7|CHK | 3| 1057.75 |

| 8|MM | 3| 221250 |

| 10|CHK | 4| 534.12|

| 11|SAV | 4| 767.77 |

| 12|MM | 4| 5487.09 |

| 13|CHK | 5| 2237.97|

| 14|CHK | 6] 122.37|

| 15|cD | 6] 10000.00 |

| 18|CHK | 8| 3487.19|

| 19|SAV | 8| 387.99|

| 21|CHK | 9| 12567

| 22|MM | 9| 934555 |

| 23|cd | 9| 1500.00 |

| 24|CHK | 10| 23575.12|
| 25|BUS | 10| 0.00 |

| 28|CHK | 12| 38552.05 |
| 29|SBL | 13| 50000.00 |

+
l.
+
l.
|.

17 rows in set (0.86 sec)

This query returns data concerning all accounts that were not opened by
the head teller at the Woburn branch (the subquery is written using the

assumption that there is only a single head teller at each branch). The
subquery in this example is a bit more complex than in the previous
example, in that it joins two tables and includes two filter conditions.
Subqueries may be as simple or as complex as you need them to be, and
they may utilize any and all the available query clauses (select, from,
where, group by, having, and order by).

Multiple-Row, Single-Column Subqueries:

If your subquery returns more than one row, you will not be able to use it
on one side of an equality condition, as the previous example
demonstrated. However, there are four additional operators that you can
use to build conditions with these types of subqueries.

The in and not in operators While you can’t equate a single value to a set
of values, you can check to see whether a single value can be found
within a set of values. The next example, while it doesn’t use a subquery,
demonstrates how to build a condition that uses the in operator to
search for a value within a set of values:

mysql> SELECT branch_id, name, city
-> FROM branch

-> WHERE name IN (‘Headquarters', 'Quincy Branch');

+ + + +
| branch_id | name | city |
+ + + +

| 1 | Headquarters | Waltham |

| 3 | Quincy Branch | Quincy |

+
+
+
+

2 rows in set (0.03 sec)

The expression on the lefthand side of the condition is the name column,
while the righthand side of the condition is a set of strings. The in
operator checks to see whether either of the strings can be found in the
name column; if so, the condition is met and the row is added to the
result set. You could achieve the same results using two equality
conditions, as in:

mysql> SELECT branch_id, name, city
-> FROM branch

-> WHERE name = 'Headquarters' OR name = 'Quincy Branch’;

+ + + +
| branch_id | name | city |
+ + + +

| 1 | Headquarters | Waltham |

3 | Quincy Branch | Quincy |

+
+
+
+

2 rows in set (0.01 sec)

While this approach seems reasonable when the set contains only two
expressions, it is easy to see why a single condition using the in operator
would be preferable if the set contained dozens (or hundreds, thousands,
etc.) of values.

Multicolumn Subqueries

So far, all of the subquery examples in this chapter have returned a single
column and one or more rows. In certain situations, however, you can
use subqueries that return two or more columns. To show the utility of

multiple-column subqueries, it might help to look first at an example that
uses multiple, single-column subqueries:

mysql> SELECT account_id, product_cd, cust_id
-> FROM account

-> WHERE open_branch_id = (SELECT branch_id
-> FROM branch

-> WHERE name = '"Woburn Branch')

-> AND open_emp_id IN (SELECT emp_id

-> FROM employee

-> WHERE title = 'Teller' OR title = 'Head Teller');

+ + +- +
| 1|CHK | 1]
| 2|SAV | 1]
| 3|CD | 1|
| 4|CHK | 2]

| S5|SAV | 2|

| 17]cd0 | 7|

| 27|BUS | 11|

7 rows in set (0.09 sec)

This query uses two subqueries to identify the ID of the Woburn branch
and the IDs of all bank tellers, and the containing query then uses this
information to retrieve all checking accounts opened by a teller at the
Woburn branch. However, since the employee table includes information
about which branch each employee is assigned to, you can achieve the
same results by comparing both the account.open_branch_id and
account.open_emp_id columns to a single subquery against the employee
and branch tables. To do so, your filter condition must name both
columns from the account table surrounded by parentheses and in the
same order as returned by the subquery, as in:

mysql> SELECT account_id, product_cd, cust_id
-> FROM account

-> WHERE (open_branch_id, open_emp_id) IN
-> (SELECT b.branch_id, e.emp_id

-> FROM branch b INNER JOIN employee e

-> ON b.branch_id = e.assigned_branch_id

-> WHERE b.name = 'Woburn Branch'

-> AND (e.title = 'Teller' OR e.title = 'Head Teller'));

account_id | product_cd | cust_id |

+ + +- +
| 1|CHK | 1]

| 2|SAV | 1]

| 3|CD | 1]
| 4|CHK | 2]

| S5|SAV | 2]
| 171cdD | 7|

| 27|BUS | 11|
+ + +- +

7 rows in set (0.00 sec)

Correlated Subqueries

All of the subqueries shown thus far have been independent of their
containing statements, meaning that you can execute them by
themselves and inspect the results. A correlated subquery, on the other
hand, is dependent on its containing statement from which it references
one or more columns. Unlike a noncorrelated subquery, a correlated
subquery is not executed once prior to execution of the containing
statement; instead, the correlated subquery is executed once for each
candidate row (rows that might be included in the final results). For
example, the following query uses a correlated subquery to count the
number of accounts for each customer, and the containing query then
retrieves those customers having exactly two accounts:

mysql> SELECT c.cust_id, c.cust_type_cd, c.city

-> FROM customer ¢
-> WHERE 2 = (SELECT COUNT(*)
-> FROM account a

-> WHERE a.cust_id = c.cust_id);

2 I Woburn
3 I Quincy
6 I Waltham
8 I Salem
10 B Salem

5rows in set (0.01 sec)

The reference to c.cust_id at the very end of the subquery is what makes
the subquery correlated; the containing query must supply values for
c.cust_id for the subquery to execute. In this case, the containing query
retrieves all 13 rows from the customer table and executes the subquery
once for each customer, passing in the appropriate customer ID for each
execution. If the subquery returns the value 2, then the filter condition is
met and the row is added to the result set.

The exists Operator

While you will often see correlated subqueries used in equality and range
conditions, the most common operator used to build conditions that
utilize correlated subqueries is the exists operator. You use the exists
operator when you want to identify that a relationship exists without
regard for the quantity; for example, the following query finds all the
accounts for which a transaction was posted on a particular day, without
regard for how many transactions were posted:

SELECT a.account_id, a.product_cd, a.cust_id, a.avail_balance
FROM account a

WHERE EXISTS (SELECT 1 FROM transaction t WHERE t.account_id =
a.account_id AND t.txn_date = '2008-09-22");

Using the exists operator, your subquery can return zero, one, or many
rows, and the condition simply checks whether the subquery returned
any rows. If you look at the select clause of the subquery, you will see
that it consists of a single literal (1); since the condition in the containing
query only needs to know how many rows have been returned, the actual
data the subquery returned is irrelevant. Your subquery can return
whatever strikes your fancy, as demonstrated next:

SELECT a.account_id, a.product_cd, a.cust_id, a.avail_balance FROM
account a WHERE EXISTS (SELECT t.txn_id, 'hello’, 3.1415927 FROM
transaction t WHERE t.account_id = a.account_id AND t.txn_date =
'2008-09-22");

However, the convention is to specify either select 1 or select * when
using exists

Data Manipulation Using Correlated Subqueries

All of the examples thus far in the chapter have been select statements,
but don’t think that means that subqueries aren’t useful in other SQL
statements. Subqueries are used heavily in update, delete, and insert
statements as well, with correlated subqueries appearing frequently in
update and delete statements. Here's an example of a correlated
subquery used to modify the last_activity_date column in the account
table:

UPDATE account a SET a.last_activity _date = (SELECT MAX(t.txn_date)

FROM transaction t WHERE t.account_id = a.account_id);

This statement modifies every row in the account table (since there is no
where clause) by finding the latest transaction date for each account.
While it seems reasonable to expect that every account will have at least
one transaction linked to it, it would be best to check whether an account
has any transactions before attempting to update the last_activity_date
column; otherwise, the column will be set to null, since the subquery
would return no rows. Here’s another version of the update statement,
this time employing a where clause with a second correlated subquery:

UPDATE account a SET a.last_activity _date = (SELECT MAX(t.txn_date)
FROM transaction t WHERE t.account_id = a.account_id)

WHERE EXISTS (SELECT 1 FROM transaction t WHERE t.account_id =
a.account_id);

The two correlated subqueries are identical except for the select clauses.
The subquery in the set clause, however, executes only if the condition in
the update statement’s where clause evaluates to true (meaning that at
least one transaction was found for the account), thus protecting the data
in the last_activity_date column from being overwritten with a null.

When to Use Subqueries

Now that you have learned about the different types of subqueries and
the different operators that you can employ to interact with the data
returned by subqueries, it’s time to explore the many ways in which you
can use subqueries to build powerful SQL statements. The next three
sections demonstrate how you may use subqueries to construct custom
tables, to build conditions, and to generate column values in result sets.

Subqueries as Data Sources

Since a subquery generates a result set containing rows and columns of
data, it is perfectly valid to include subqueries in your from clause along
with tables. Although it might, at first glance, seem like an interesting
feature without much practical merit, using subqueries alongside tables
is one of the most powerful tools available when writing queries. Here’s a

simple example:

mysql> SELECT d.dept_id, d.name, e_cnt.how_many num_employees
-> FROM department d INNER JOIN

-> (SELECT dept_id, COUNT(*) how_many

-> FROM employee -> GROUP BY dept_id) e_cnt

-> ON d.dept_id = e_cnt.dept_id;

+ + + ——t
| dept_id | name num_employees |
+ + + SRt
| 1 | Operations | 14 |
| 2 | Loans | 1|
| 3 | Administration | 3|

+
+
+
+

3 rows in set (0.04 sec)

In this example, a subquery generates a list of department IDs along with
the number of employees assigned to each department. Here’s the result
set generated by the subquery:

mysql> SELECT dept_id, COUNT(*) how_many
-> FROM employee

-> GROUP BY dept_id;

| dept_id | how_many |

Hommmmeeee Hommmmmmee +
| 1] 14 |
| 2] 1]
| 3] 3|
e O +

3 rows in set (0.00 sec)

The subquery is given the name e_cnt and is joined to the department
table via the dept_id column. The containing query then retrieves the
department ID and name from the department table, along with the
employee count from the e_cnt subquery. Subqueries used in the from
clause must be noncorrelated; they are executed first, and the data is
held in memory until the containing query finishes execution. Subqueries
offer immense flexibility when writing queries, because you can go far
beyond the set of available tables to create virtually any view of the data
that you desire, and then join the results to other tables or subqueries. If
you are writing reports or generating data feeds to external systems, you
may be able to do things with a single query that used to demand
multiple queries or a procedural language to accomplish.

Transactions

All of the examples thus far in this book have been individual,
independent SQL statements. While this may be the norm for ad hoc
reporting or data maintenance scripts, application logic will frequently
include multiple SQL statements that need to execute together as a
logical unit of work. This chapter explores the need and the
infrastructure necessary to execute multiple SQL statements
concurrently.

Multiuser Databases

Database management systems allow not only a single user to query and
modify data, but multiple people to do so simultaneously. If every user is
only executing queries, such as might be the case with a data warehouse
during normal business hours, then there are very few issues for the
database server to deal with. If some of the users are adding and/or
modifying data, however, the server must handle quite a bit more
bookkeeping.

Let’s say, for example, that you are running a report that shows the
available balance for all the checking accounts opened at your branch. At
the same time you are running the report, however, the following
activities are occurring:

e A teller at your branch is handling a deposit for one of your
customers.

e A customer is finishing a withdrawal at the ATM in the front
lobby.

e The bank’s month-end application is applying interest to the
accounts.

While your report is running, therefore, multiple users are modifying the
underlying data, so what numbers should appear on the report? The
answer depends somewhat on how your server handles locking, which is
described in the next section.

Locking Locks are the mechanism the database server uses to control
simultaneous use of data resources. When some portion of the database
is locked, any other users wishing to modify (or possibly read) that data
must wait until the lock has been released. Most database servers use
one of two locking strategies:

Database writers must request and receive from the server a write lock
to modify data, and database readers must request and receive from the
server a read lock to query data. While multiple users can read data
simultaneously, only one write lock is given out at a time for each table
(or portion thereof), and read requests are blocked until the write lock is
released.

Database writers must request and receive from the server a write lock
to modify data, but readers do not need any type of lock to query data.
Instead, the server ensures that a reader sees a consistent view of the
data (the data seems the same even though other users may be making
modifications) from the time her query begins until her query has
finished. This approach is known as versioning.

There are pros and cons to both approaches. The first approach can lead
to long wait times if there are many concurrent read and write requests,
and the second approach can be problematic if there are long-running
queries while data is being modified. Of the three servers discussed in
this book, Microsoft SQL Server uses the first approach, Oracle Database
uses the second approach, and MySQL uses both approaches (depending
on your choice of storage engine, which we’ll discuss a bit later in the
chapter).

Lock Granularities
There are also a number of different strategies that you may employ
when deciding how to lock a resource. The server may apply a lock at
one of three different levels, or granularities:

Table locks Keep multiple users from modifying data in the same table
simultaneously Page locks Keep multiple users from modifying data on
the same page (a page is a segment of memory generally in the range of 2
KB to 16 KB) of a table simultaneously Row locks Keep multiple users
from modifying the same row in a table simultaneously Again, there are
pros and cons to these approaches. It takes very little bookkeeping to
lock entire tables, but this approach quickly yields unacceptable wait
times as the number of users increases.

On the other hand, row locking takes quite a bit more bookkeeping, but it
allows many users to modify the same table as long as they are
interested in different rows. Of the three servers discussed in this book,
Microsoft SQL Server uses page, row, and table locking, Oracle Database
uses only row locking, and MySQL uses table, page, or row locking
(depending, again, on your choice of storage engine). SQL Server will,
under certain circumstances, escalate locks from row to page, and from
page to table, whereas Oracle Database will never escalate locks.

What Is a Transaction?
If database servers enjoyed 100% uptime, if users always allowed
programs to finish executing, and if applications always completed
without encountering fatal errors that halt execution, then there would
be nothing left to discuss regarding concurrent database access.
However, we can rely on none of these things, so one more element is
necessary to allow multiple users to access the same data.

This extra piece of the concurrency puzzle is the transaction, which is a
device for grouping together multiple SQL statements such that either all
or none of the statements succeed (a property known as atomicity). If
you attempt to transfer $500 from your savings account to your checking
account, you would be a bit upset if the money were successfully
withdrawn from your savings account but never made it to your
checking account.

Whatever the reason for the failure (the server was shut down for
maintenance, the request for a page lock on the account table timed out,
etc.), you want your $500 back. To protect against this kind of error, the
program that handles your transfer request would first begin a
transaction, then issue the SQL statements needed to move the money
from your savings to your checking account, and, if everything succeeds,
end the transaction by issuing the commit command. If something
unexpected happens, however, the program would issue a rollback
command, which instructs the server to undo all changes made since the
transaction began. The entire process might look something like the
following:

START TRANSACTION; /* withdraw money from first account, making
sure balance is sufficient */ UPDATE account SET avail_balance =
avail_balance - 500 WHERE account_id = 9988 AND avail _balance > 500;

IF <exactly one row was updated by the previous statement> THEN /*
deposit money into second account */ UPDATE account SET avail_balance =

avail_balance + 500 WHERE account_id = 9989;

IF <exactly one row was updated by the previous statement> THEN /*

everything worked, make the changes permanent */ COMMIT; ELSE /*
something went wrong, undo all changes in this transaction
/ ROLLBACK; END IF; ELSE / insufficient funds, or error encountered
during update */ ROLLBACK; END IF;

Starting a Transaction
Database servers handle transaction creation in one of two ways:

An active transaction is always associated with a database session, so
there is no need or method to explicitly begin a transaction. When the
current transaction ends, the server automatically begins a new
transaction for your session.

Unless you explicitly begin a transaction, individual SQL statements are
automatically committed independently of one another. To begin a
transaction, you must first issue a command. Of the three servers, Oracle
Database takes the first approach, while Microsoft SQL Server and
MySQL take the second approach. One of the advantages of Oracle’s
approach to transactions is that, even if you are issuing only a single SQL
command, you have the ability to roll back the changes if you don'’t like
the outcome or if you change your mind.

Thus, if you forget to add a where clause to your delete statement, you
will have the opportunity to undo the damage (assuming you’ve had your
morning coffee and realize that you didn’t mean to delete all 125,000
rows in your table). With MySQL and SQL Server, however, once you
press the Enter key, the changes brought about by your SQL statement
will be permanent (unless your DBA can retrieve the original data from a
backup or from some other means).

Ending a Transaction

Once a transaction has begun, whether explicitly via the start transaction
command or implicitly by the database server, you must explicitly end
your transaction for your changes to become permanent. You do this by
way of the commit command, which instructs the server to mark the
changes as permanent and release any resources (i.e., page or row locks)
used during the transaction. If you decide that you want to undo all the
changes made since starting the transaction, you must issue the rollback
command, which instructs the server to return the data to its

pretransaction state. After the rollback has been completed, any
resources used by your session are released.

Along with issuing either the commit or rollback command, there are
several other scenarios by which your transaction can end, either as an
indirect result of your actions or as a result of something outside your
control:

The server shuts down, in which case, your transaction will be rolled
back automatically when the server is restarted.

You issue an SQL schema statement, such as alter table, which will cause
the current transaction to be committed and a new transaction to be
started.

You issue another start transaction command, which will cause the
previous transaction to be committed.

The server prematurely ends your transaction because the server detects
a deadlock and decides that your transaction is the culprit. In this case,
the transaction will be rolled back and you will receive an error message.

Indexes and Constraints

Because the focus of this book is on programming techniques, i
concentrated on elements of the SQL language that you can use to craft
powerful select, insert, update, and delete statements. However, other
database features indirectly affect the code you write.

Indexes

When you insert a row into a table, the database server does not attempt
to put the data in any particular location within the table. For example, if
you add a row to the department table, the server doesn’t place the row
in numeric order via the dept_id column or in alphabetical order via the
name column. Instead, the server simply places the data in the next
available location within the file (the server maintains a list of free space
for each table). When you query the department table, therefore, the
server will need to inspect every row of the table to answer the query.
For example, let’s say that you issue the following query:

mysql> SELECT dept_id, name
-> FROM department

-> WHERE name LIKE 'A%';

+
l.

—+

| dept_id | name

| 3 | Administration |

1 row in set (0.03 sec)

To find all departments whose name begins with A, the server must visit
each row in the department table and inspect the contents of the name
column; if the department name begins with A, then the row is added to
the result set. This type of access is known as a table scan.

While this method works fine for a table with only three rows, imagine
how long it might take to answer the query if the table contains 3 million
rows. At some number of rows larger than three and smaller than 3
million, a line is crossed where the server cannot answer the query
within a reasonable amount of time without additional help. This help
comes in the form of one or more indexes on the department table. Even
if you have never heard of a database index, you are certainly aware of
what an index is (e.g., this book has one).

An index is simply a mechanism for finding a specific item within a
resource. Each technical publication, for example, includes an index at
the end that allows you to locate a specific word or phrase within the
publication. The index lists these words and phrases in alphabetical
order, allowing the reader to move quickly to a particular letter within
the index, find the desired entry, and then find the page or pages on
which the word or phrase may be found.

Index Creation

Returning to the department table, you might decide to add an index on
the name column to speed up any queries that specify a full or partial
department name, as well as any update or delete operations that specify
a department name. Here's how you can add such an index to a MySQL
database:

mysql> ALTER TABLE department

-> ADD INDEX dept_name_idx (name);

Query OK, 3 rows affected (0.08 sec) Records: 3 Duplicates: 0 Warnings:
0

This statement creates an index (a B-tree index to be precise, but more
on this shortly) on the department.name column; furthermore, the index
is given the name dept_name_idx. With the index in place, the query
optimizer can choose to use the index if it is deemed beneficial to do so
(with only three rows in the department table, for example, the
optimizer might very well choose to ignore the index and read the entire
table). If there is more than one index on a table, the optimizer must
decide which index will be the most beneficial for a particular SQL
statement.

Types of Indexes
Indexing is a powerful tool, but since there are many different types of
data, a single indexing strategy doesn’t always do the job. The following
sections illustrate the different types of indexing available from various
Sservers.

B-tree Indexes

All the indexes shown thus far are balanced-tree indexes, which are more
commonly known as B-tree indexes. MySQL, Oracle Database, and SQL
Server all default to Btree indexing, so you will get a B-tree index unless
you explicitly ask for another type. As you might expect, B-tree indexes
are organized as trees, with one or more levels of branch nodes leading
to a single level of leaf nodes. Branch nodes are used for navigating the
tree, while leaf nodes hold the actual values and location information..

ure 13-1.

N
g

Bitmap Indexes

Although B-tree indexes are great at handling columns that contain many
different values, such as a customer’s first/last names, they can become
unwieldy when built on a column that allows only a small number of
values. For example, you may decide to generate an index on the
account.product_cd column so that you can quickly retrieve all accounts
of a specific type (e.g., checking, savings). Because there are only eight
different products, however, and because some products are far more
popular than others, it can be difficult to maintain a balanced B-tree
index as the number of accounts grows. For columns that contain only a
small number of values across a large number of rows (known as low-
cardinality data), a different indexing strategy is needed. To handle this
situation more efficiently, Oracle Database includes bitmap indexes,
which generate a bitmap for each value stored in the column.

Vaueiow | 1| 2|3 |4|5|6| 7|8 1012003 | 14 15| 16 17| 08| W 0|20) 22 13124

Bl gjojojojojofajo dlofajo(ojofojajo|ojaj1j1|a|d

How Indexes Are Used
Indexes are generally used by the server to quickly locate rows in a
particular table, after which the server visits the associated table to
extract the additional information requested by the user. Consider the
following query:

mysql> SELECT emp_id, fname, Iname
-> FROM employee

-> WHERE emp_id IN (1, 3, 9, 15);

1 Michael |Smith

3 Robert |Tyler

9 Jane Grossman
15 Frank Portman

4 rows in set (0.00 sec)

For this query, the server can use the primary key index on the emp_id
column to locate employee IDs 1, 3, 9, and 15 in the employee table, and
then visit each of the four rows to retrieve the first and last name
columns.

If the index contains everything needed to satisfy the query, however, the
server doesn’t need to visit the associated table. To illustrate, let’s look at
how the query optimizer approaches the same query with different
indexes in place. The query, which aggregates account balances for
specific customers, looks as follows:

mysql> SELECT cust_id, SUM(avail_balance) tot_bal

-> FROM account

-> WHERE cust_id IN (1, 5, 9, 11)

1 4557.75

-> GROUP BY cust_id;

5 2237.97

9 10971.22

11 9345.55

4 rows in set (0.00 sec)

The Downside of Indexes

If indexes are so great, why not index everything? Well, the key to
understanding why more indexes are not necessarily a good thing is to
keep in mind that every index is a table (a special type of table, but still a
table). Therefore, every time a row is added to or removed from a table,
all indexes on that table must be modified. When a row is updated, any
indexes on the column or columns that were affected need to be
modified as well. Therefore, the more indexes you have, the more work
the server needs to do to keep all schema objects up-to-date, which tends
to slow things down.

Indexes also require disk space as well as some amount of care from your
administrators, so the best strategy is to add an index when a clear need
arises. If you need an index for only special purposes, such as a monthly
maintenance routine, you can always add the index, run the routine, and
then drop the index until you need it again. In the case of data
warehouses, where indexes are crucial during business hours as users
run reports and ad hoc queries but are problematic when data is being
loaded into the warehouse overnight, it is a common practice to drop the
indexes before data is loaded and then re-create them before the
warehouse opens for business.

In general, you should strive to have neither too many indexes nor too
few. If you aren’t sure how many indexes you should have, you can use
this strategy as a default:

Make sure all primary key columns are indexed (most servers
automatically create unique indexes when you create primary key
constraints). For multicolumn primary keys, consider building additional
indexes on a subset of the primary key columns, or on all the primary key
columns but in a different order than the primary key constraint
definition.

Build indexes on all columns that are referenced in foreign key
constraints. Keep in mind that the server checks to make sure there are

no child rows when a parent is deleted, so it must issue a query to search
for a particular value in the column. If there’s no index on the column, the
entire table must be scanned.

Index any columns that will frequently be used to retrieve data. Most
date columns are good candidates, along with short (3- to 50-character)
string columns. After you have built your initial set of indexes, try to
capture actual queries against your tables, and modify your indexing
strategy to fit the most-common access paths.

Constraints

A constraint is simply a restriction placed on one or more columns of a
table. There are several different types of constraints, including: Primary
key constraints Identify the column or columns that guarantee
uniqueness within a table Foreign key constraints Restrict one or more
columns to contain only values found in another table’s primary key
columns, and may also restrict the allowable values in other tables if
update cascade or delete cascade rules are established unique
constraints.

Restrict one or more columns to contain unique values within a table
(primary key constraints are a special type of unique constraint) Check
constraints Restrict the allowable values for a column Without
constraints, a database’s consistency is suspect. For example, if the
server allows you to change a customer’s ID in the customer table
without changing the same customer ID in the account table, then you
will end up with accounts that no longer point to valid customer records
(known as orphaned rows). With primary and foreign key constraints in
place, however, the server will either raise an error if an attempt is made
to modify or delete data that is referenced by other tables, or propagate
the changes to other tables for you (more on this shortly).

Constraint Creation
Constraints are generally created at the same time as the associated table
via the create table statement. To illustrate, here’s an example from the
schema generation script for this book’s example database:

CREATE TABLE product (product cd VARCHAR(10) NOT NULL, name

VARCHAR(50) NOT NULL, product_type cd VARCHAR (10) NOT
NULL, date_offered DATE, date_retired DATE,

CONSTRAINT fk_product_type cd FOREIGN KEY
(product_type_cd) REFERENCES product_type
(product_type_ cd), CONSTRAINT pk_product PRIMARY KEY (product_cd)

);

Views

Well-designed applications generally expose a public interface while
keeping implementation details private, thereby enabling future design
changes without impacting end users. When designing your database,
you can achieve a similar result by keeping your tables private and
allowing your users to access data only through a set of views. This
chapter strives to define what views are, how they are created, and when
and how you might want to use them.

What Are Views?

A view is simply a mechanism for querying data. Unlike tables, views do
not involve data storage; you won'’t need to worry about views filling up
your disk space. You create a view by assigning a name to a select
statement, and then storing the query for others to use. Other users can
then use your view to access data just as though they were querying
tables directly (in fact, they may not even know they are using a view).
As a simple example, let's say that you want to partially obscure the
federal IDs (Social Security numbers and corporate identifiers) in the
customer table.

The customer service department, for example, may need access to just
the last portion of the federal ID in order to verify the identity of a caller,
but exposing the entire number would violate the company’s privacy
policy. Therefore, instead of allowing direct access to the customer table,
you define a view called customer_vw and mandate that all bank
personnel use it to access customer data. Here’s the view definition:

CREATE VIEW customer_vw
(cust_id, fed_id, cust_type_cd, address, city, state, zipcode) AS SELECT
cust_id, concat('ends in ', substr(fed_id, 8, 4))

fed_id, cust_type_cd, address, city, state, postal_code FROM customer;

The first part of the statement lists the view’s column names, which may
be different from those of the underlying table (e.g., the customer_vw
view has a column named zipcode which maps to the
customer.postal_code column). The second part of the statement is a
select statement, which must contain one expression for each column in
the view. When the create view statement is executed, the database
server simply stores the view definition for future use; the query is not
executed, and no data is retrieved or stored. Once the view has been
created, users can query it just like they would a table, as in:

mysql> SELECT cust_id, fed_id, cust_type cd

-> FROM customer_vw;

| cust_id | fed_id | cust_type cd |

+

+

+
1
|_

1	endsin1111		
2	endsin 2222		
3	endsin3333		
4	endsin 4444		
5] ends in 5555			
6	ends in 6666		
7	endsin 7777		

| 8 | endsin 8888 | | |

9	endsin 9999		
10	endsin111	B	
11	endsin222	B	
12	endsin333	B	

| 13 | endsin444 | B |

+
+
|.
|.

13 rows in set (0.02 sec)

The actual query that the server executes is neither the one submitted by
the user nor the query attached to the view definition. Instead, the server
merges the two together to create another statement, which in this case
looks as follows:

SELECT cust_id, concat('ends in ', substr(fed id, 8, 4))
fed id, cust_type cd

FROM customer; Even though the customer_vw view definition includes
seven columns of the customer table, the query executed by the server
retrieves only three of the seven. As you'll see later in the chapter, this is
an important distinction if some of the columns in your view are
attached to functions or subqueries.

Why Use Views?
In the previous section, I demonstrated a simple view whose sole
purpose was to mask the contents of the customer.fed_id column. While
views are often employed for this purpose, there are many reasons for
using views, as | demonstrate in the following subsections.

Data Security

If you create a table and allow users to query it, they will be able to
access every column and every row in the table. As I pointed out earlier,
however, your table may include some columns that contain sensitive

data, such as identification numbers or credit card numbers; not only is it
a bad idea to expose such data to all users, but also it might violate your
company’s privacy policies, or even state or federal laws, to do so.

The best approach for these situations is to keep the table private (i.e,,
don’t grant select permission to any users) and then to create one or
more views that either omit or obscure (such as the 'ends in ' approach
taken with the customer_vw.fed_id column) the sensitive columns. You
may also constrain which rows a set of users may access by adding a
where clause to your view definition. For example, the next view
definition allows only business customers to be queried:

CREATE VIEW business_customer_vw
(cust_id, fed id, cust _type cd, address, city, state, zipcode)

AS SELECT cust_id, concat('ends in ', substr(fed id, 8, 4))
fed id, cust_type cd, address, city, state, postal_code

FROM customer WHERE cust_type _cd ="'B'

If you provide this view to your corporate banking department, they will
be able to access only business accounts because the condition in the
view’s where clause will always be included in their queries.

Data Aggregation

Reporting applications generally require aggregated data, and views are
a great way to make it appear as though data is being pre-aggregated and
stored in the database. As an example, let's say that an application
generates a report each month showing the number of accounts and total
deposits for every customer. Rather than allowing the application
developers to write queries against the base tables, you could provide
them with the following view:

CREATE VIEW customer_totals_vw
(cust_id, cust_type_cd, cust_name, num_accounts, tot_deposits)

AS SELECT cst.cust_id, cst.cust_type cd,

CASE WHEN cst.cust_type _cd ='B' THEN

(SELECT bus.name FROM business bus

WHERE bus.cust_id = cst.cust_id)

ELSE (SELECT concat(ind.fname, ' "', ind.Iname)

FROM individual ind

WHERE ind.cust_id = cst.cust_id)

END cust_name,

sum(CASE WHEN act.status = 'ACTIVE' THEN 1 ELSE O END)
tot_active_accounts, sum(CASE WHEN act.status = 'ACTIVE' THEN
act.avail_balance ELSE 0 END) tot_balance FROM customer cst

INNER JOIN account act ON act.cust_id = cst.cust_id

GROUP BY cst.cust_id, cst.cust_type cd;
Using this approach gives you a great deal of flexibility as a database
designer. If you decide at some point in the future that query
performance would improve dramatically if the data were preaggregated
in a table rather than summed using a view, you can create a
customer_totals table and modify the customer_totals_vw view definition
to retrieve data from this table. Before modifying the view definition, you

can use it to populate the new table. Here are the necessary SQL
statements for this scenario:

mysql> CREATE TABLE customer_totals

-> AS

-> SELECT * FROM customer_totals_vw;

Query OK, 13 rows affected (3.33 sec)
Records: 13 Duplicates: 0 Warnings: 0

mysql> CREATE OR REPLACE VIEW customer_totals_vw
-> (cust_id,

-> cust_type cd,

-> cust_name,

-> num_accounts,

-> tot_deposits

>)

-> AS

-> SELECT
cust_id, cust_type_cd, cust_name, num_accounts, tot_deposits

-> FROM customer _totals;

Query OK, 0 rows affected (0.02 sec)

From now on, all queries that use the customer_totals_vw view will pull
data from the new customer_totals table, meaning that users will see a
performance improvement without needing to modify their queries.

Hiding Complexity

One of the most common reasons for deploying views is to shield end
users from complexity. For example, let’'s say that a report is created
each month showing the number of employees, the total number of

active accounts, and the total number of transactions for each branch.
Rather than expecting the report designer to navigate four different
tables to gather the necessary data, you could provide a view that looks
as follows:

CREATE VIEW branch_activity_vw
(branch_name, city, state, num_employees, num_active_accounts, tot_trz

)

AS SELECT br.name, br.city, br.state,

(SELECT count(*) FROM employee emp

WHERE emp.assigned_branch_id = br.branch_id) num_emps,
(SELECT count(*) FROM account acnt

WHERE acnt.status = 'ACTIVE' AND acnt.open_branch_id = br.branch_id)
num_accounts, (SELECT count(*)

FROM transaction txn

WHERE txn.execution_branch_id = br.branch_id) num_txns

FROM branch br;
This view definition is interesting because three of the six column values
are generated using scalar subqueries. If someone uses this view but

does not reference the num_employees, num_active_accounts, or
tot_transactions column, then none of the subqueries will be executed.

Conclusion

If you enjoy playing with, manipulating, and analyzing data, a career as a
SQL programmer could be right for you. Learning SQL for beginners will
set you up with the skills and knowledge that you need to work with
databases of any complexity or size.

Start by enrolling in an online course and learning the basics of SQL.
Make sure that you understand how SQL works and what it’s used for,
and get familiar with some of the most common types of database. Get in
the habit of using some of the other resources that are available to you -
reference guides and videos are just a couple of my favorites — and make
sure that you practice writing code as often as possible.

Above all, make sure that you're always following best practices, that
you're continually working to build your skills, and that you're writing
code as often as you can. Get active on SQL forums, try and meet other
coders in your area, and make sure that you have fun on your journey
from SQL beginner to pro database manipulator.

The breadth and scope of the SQL commands provide the capability to
create and manipulate a wide variety of database objects using the
various CREATE, ALTER, and DROP commands. Those database objects
then can be loaded with data using commands such as INSERT. The data
can be manipulated using a wide variety of commands, such as SELECT,
DELETE, and TRUNCATE, as well as the cursor commands, DECLARE,
OPEN, FETCH, and CLOSE. Transactions to manipulate the data are
controlled through the SET command, plus the COMMIT and ROLLBACK
commands. And finally, other commands covered in this chapter include
those that control a user’s access to database resources through
commands such as GRANT and REVOKE.

Disclaimer

Disclaimer All the material contained in this book is provided for
educational and informational purposes only. No responsibility can be
taken for any results or outcomes resulting from the use of this material.
While every attempt has been made to provide information that is both
accurate and effective, the author does not assume any responsibility for
the accuracy or use/misuse of this information

	Introduction
	Whу Lеаrn SQL?
	Undеrѕtаnd Relational Database
	The Rеlаtiоnаl Model

	Whаt Is SQL?
	Thе SQL Evolution
	SQL Statement Clаѕѕеѕ
	Types оf SQL Stаtеmеntѕ
	Tуреѕ оf Exесutiоn
	A Bеginnеr’ѕ Guidе
	A Nonprocedural Lаnguаgе
	Creating аnd Populating a Database
	Creating a MуSQL Dаtаbаѕе
	Wоrking with MySQL Еnvirоnmеnt
	Understand thе SQL Environment
	Component Tуре Dеѕсriрtiоn SQL Аgеnt
	Undеrѕtаnd SQL Catalogs

	Create a Dаtаbаѕе
	MySQL Dаtа
	Crеаting a Dаtаbаѕе аnd Sсhеmа
	Quеrу Mechanics
	Query Clauses

	Querying Multiple Tables
	What Is a Join?
	Cartesian Product
	Joining Three or More Tables
	Using Subqueries as Table

	Working with Sets
	Set Theory Primer
	Set Operators
	The Union Operator
	The Intersect Operator
	Set Operation Rules

	Data Gеnеrаtiоn, Cоnvеrѕiоn, аnd Mаniрulаtiоn
	Working with String Dаtа
	String Gеnеrаtiоn
	String Mаniрulаtiоn
	Working with Numеriс Data
	Controlling Numbеr Prесiѕiоn
	Imрliсit Vеrѕuѕ Exрliсit Grоuрѕ
	Using Expressions

	Subԛuеriеѕ
	Whаt Iѕ a Subquery?
	Subquery Types
	Thе exists Operator
	Dаtа Mаniрulаtiоn Using Cоrrеlаtеd Subԛuеriеѕ
	Transactions
	Lосk Grаnulаritiеѕ
	Whаt Iѕ a Trаnѕасtiоn?
	Starting a Trаnѕасtiоn

	Indеxеѕ аnd Cоnѕtrаintѕ
	Indexes
	Types оf Indеxеѕ
	Hоw Indexes Are Uѕеd
	The Dоwnѕidе оf Indеxеѕ
	Cоnѕtrаintѕ
	Cоnѕtrаint Creation

	Viеwѕ
	Whаt Arе Views?
	Why Uѕе Viеwѕ?
	Dаtа Aggrеgаtiоn

	Cоnсluѕiоn
	Disclaimer

