

“This book has some great tips I will be putting to use! I’ve been programming with SAS
and SQL for years, and this book is a really informative resource. I think learning by
example is a thorough and efficient way to understand SAS techniques. The book has
examples that you can pick up and use right away. I particularly enjoyed the comparisons
between the Base SAS code and the PROC SQL code. It is a great bridge for SAS
programmers to easily pick up this new language.”

Candice Miller
Research Programmer, RAND Corporation

“PROC SQL by Example: Using SQL within SAS is an excellent introduction and
reference manual for users looking to learn or brush up on their PROC SQL skills. The
book does a great job of comparing SAS procedures to their PROC SQL counterparts.
Using multiple examples, the book enables readers to easily follow along and grasp the
knowledge needed to effectively enhance their SAS skills to tackle complex and new
problems that might have been overwhelming before.

“Overall, PROC SQL by Example is a great introduction to the topic and will benefit
those looking to make the jump forward.”

Faisal Dosani
Senior Information Analyst

“PROC SQL by Example: Using SQL within SAS will appeal especially to those who
have some experience with SAS DATA step programming and procedures, and who now
have an interest in moving into SQL database programming. The author illustrates how
SAS DATA steps and procedures translate into SQL syntax. More important, he also
helps the reader understand how SQL programs embody logical constructs as opposed to
procedural steps. Discussions of DATA step and SAS SQL programs build on actual
programs that a reader can execute and modify. Perhaps for this reason, the text and
examples achieve a level of precision and integrity that one rarely finds in a ‘how to by
example’ text. Notable extra features include discussions of SAS SQL options, set
operators, using PROC SQL as a report generator (as an alternative to PROC REPORT or
PROC TABULATE), SAS MACRO scripting, ‘pivoting’ data structures using PROC
TRANSPOSE, and data set persistence versus replacement.

“This book takes the programming cookbook genre to a new level of excellence.”

Sigurd W. Hermansen
Westat

Howard Schreier

PROC SQL
by Example
Using SQL within SAS®

The correct bibliographic citation for this manual is as follows: Schreier, Howard. 2008. PROC SQL by
Example: Using SQL within SAS®. Cary, NC: SAS Institute Inc.

PROC SQL by Example: Using SQL within SAS®

Copyright © 2008, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-59994-297-1

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the
prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by
the vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set
forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, September 2008

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS
software to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-
copy books, visit the SAS Publishing Web site at support.sas.com/publishing or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Contents

Acknowledgments vii

Chapter 1 Introduction 1

1.1 More about SQL 2
1.2 More about This Book 5

Chapter 2 Basic Building Blocks 11

2.1 The Simplest SELECT Statement 13
2.2 A More Selective SELECT 15
2.3 Storing Results 16
2.4 Column Subsets 17
2.5 New Columns 19
2.6 Aggregation 20
2.7 Conditionality 26
2.8 Filtering 28
2.9 Reordering Rows 32
2.10 Elimination of Duplicates 33
2.11 Summary 35

Chapter 3 More Building Blocks 37

3.1 Combining Summary Statistics with Original Detail 38
3.2 Summary Statistics Based on Distinct Values 43
3.3 Preprocessing the Source with Inline Views 46
3.4 Summary 51

iv Contents

Chapter 4 Joins 53

4.1 Avoiding Ambiguity in Column References 54
4.2 The Simplest Merges and Joins 56
4.3 Matching with Nonrepeating Keys 59
4.4 Matching with Repeating Keys 68
4.5 More about Joins and Merges 75
4.6 More about Joins 77
4.7 Summary 79

Chapter 5 Subqueries 81

5.1 Contexts That Expect Subqueries 84
5.2 General Usage of Subqueries 93
5.3 Summary 95

Chapter 6 Set Operators 97

6.1 The Contrast between Joins and Set Operators 98
6.2 Set Operators: Preview 99
6.3 Concatenation and Interleaving with OUTER UNION 104
6.4 Data Type Compatibility 110
6.5 Overview: UNION, INTERSECT, and EXCEPT 111
6.6 UNION 113
6.7 INTERSECT 123
6.8 EXCEPT 126
6.9 Summary 129

Contents v

Chapter 7 Global Statements, Options, and Session
 Management 131

 7.1 Global Statements 133
 7.2 PROC SQL Options 136
 7.3 Summary 139

Chapter 8 Using the Macro Facility with PROC SQL 141

 8.1 Generating PROC SQL Code 141
 8.2 Populating Macro Variables 144
 8.3 Summary 160

Chapter 9 Table Maintenance and Alternate
 Strategies 161

 9.1 Environment for Examples 164
 9.2 Distinguishing Persistence from Replacement 166
 9.3 Life Cycle of a Table 168
 9.4 Data Maintenance 173
 9.5 Metadata Maintenance 183
 9.6 Changing Structure 185
 9.7 Changing Features 187
 9.8 Summary 203

Chapter 10 Views 205

 10.1 Defining Views 207
 10.2 Using Views 207
 10.3 Inspecting Views 210
 10.4 Changing a Table via a View 212
 10.5 Managing Library References 214
 10.6 Summary 218

vi Contents

Chapter 11 PROC SQL as a Report Generator 219

 11.1 Simple Reports 220
 11.2 Complex Reports 222
 11.3 Reports with Long Character Strings 225
 11.4 PROC SQL and the Output Delivery System 229
 11.5 Summary 231

Chapter 12 Mixed Solutions 233

 12.1 Example: Schedule Matrix 234
 12.2 Example: Identifying Spikes in a Series 238
 12.3 Example: Using PROC TRANSPOSE to Normalize 242
 12.4 Summary 248

Chapter 13 Performance Tuning 249

 13.1 Resource Example: The Effect of an Index 250
 13.2 Code Example: The Advantage of Equijoins 251
 13.3 Summary 254

Chapter 14 Documentation Roadmap 255

 14.1 Where to Start? 256
 14.2 Following Cross References 261
 14.3 The Three Expressions Revisited 264
 14.4 Could It Be More Logical? 266
 14.5 Summary 268

Appendix A SASHELP.CLASS Data Set 271

Appendix B Online Resources 273

Index 275

Acknowledgments

My name is the only one on the cover, but that doesn't mean I did it by myself. I thank
the people at SAS Press and the reviewers whom they enlisted; all have been consistently
helpful. I also thank those who taught me and, especially, those who encouraged me to
teach myself.

Praise from the Experts

“This exceptionally readable book will allow SQL programmers at all levels to enhance
and expand their skills with this very versatile Base SAS procedure. Howard Schreier’s
approach of providing DATA step methods followed by SQL techniques to accomplish
the same result is a very effective teaching technique, particularly for SAS programmers
comfortable with the DATA step who want to add PROC SQL to their data management
and reporting toolbox. The writing style is clear and concise, and the overall organization
of the book is very logical and easy to follow. An exceptional feature of this book is the
way that the explanation of each example provides insight into how PROC SQL ‘thinks,’
making the use of this procedure more intuitive for beginners and experienced users
alike. In particular, the chapters on joins and subqueries, as well as the one on using the
Macro Facility with PROC SQL, are wonderfully comprehensive and will provide a
reference that you will turn to again and again.”

Christianna Williams, PhD
Senior Associate, Abt Associates Inc.

“With a title like PROC SQL by Example: Using SQL within SAS, the author makes sure
that the content of the text does exactly that for the reader. Howard Schreier has provided
an abundance of clear, well-designed examples that detail the spectrum of SQL topics.

“The early chapters provide the reader with the appropriate SQL terminology with
references to parallel Base SAS terms and concepts. Basic code and execution details are
explained. Contrasts between SQL joins and DATA step merges are discussed at length.
Most SQL examples are accompanied by companion DATA step or procedural examples.
These comparisons are used to show the advantages of SQL capabilities over non-SQL
SAS, as well as to identify any shortcomings of SQL where the non-SQL SAS solution
might be more favorable. But the author points out that many solutions are equally
efficient, whether programmed with SQL or Base SAS, so the solution chosen by the
programmer might be based on personal coding preferences.

“Later chapters examine the advantages of using SQL for tasks such as creating macro
variables, accessing and altering metadata, creating and using SAS views, and mixing
SQL and non-SQL SAS code to complete a task. During the discussions on these
features, the author has maintained easy-to-follow examples that often build upon
previous examples presented in the text.

“Although this book is sold as a guide to SQL programming, SAS users might find
themselves learning a few things about DATA step programming as well.”

Stuart Long
Senior Systems Analyst, Westat

viii

C h a p t e r 1

Introduction

1.1 More about SQL 2
1.2 More about This Book 5

SAS defines Structured Query Language (SQL) as “a standardized, widely used language
that retrieves data from and updates data in tables and the views that are based on those
tables” (see Base SAS 9.2 Procedures Guide: Procedures: The SQL Procedure:
Overview). SQL is not an exclusive feature of SAS; it has been implemented by many
vendors, and is especially widespread in the relational database management system
(RDBMS) world. The SAS implementation of SQL is available in the SQL procedure
(PROC SQL), part of Base SAS.

Some but not all PROC SQL capabilities are paralleled in the DATA step and in other
SAS procedures. Thus, PROC SQL can be employed as a substitute for other elements of
SAS or as a complement to those elements.

This book is intended for readers who are familiar with SAS but not with SQL, and who
want to add PROC SQL to their SAS toolkits. It will also be useful to those familiar with
other implementations of SQL who want to learn SAS.

2 PROC SQL by Example: Using SQL within SAS

1.1 More about SQL

PROC SQL is different from other SAS components and different from other software
implementations of SQL.

Standards and Extensions
American National Standards Institute (ANSI) standard SQL is not a complete and self-
sufficient language. For example, consider the definition quoted in the preceding section;
it mentions retrieval and updating of data held in tables, but says nothing about how a
table is populated in the first place. There are two possible approaches to the
incompleteness. One is to include extensions (capabilities not required by the standard) in
an SQL implementation to make the language more complete. Thus, for example,
RDBMS vendors typically extend SQL with tools to import and export large volumes of
data. The other approach, and the one followed by SAS, is to embed SQL into a language
that provides the missing features. So, for example, a SAS application might use a PROC
IMPORT step to load data, before turning to PROC SQL for processing and analysis of
that data.

The implementation of SQL in SAS 9.2 PROC SQL does not fully comply with the
current ANSI standard for SQL. On the other hand, PROC SQL includes some features
not required by the standard.

Reference: For details about PROC SQL and the ANSI standard, see Base SAS 9.2
Procedures Guide: Procedures: The SQL Procedure: PROC SQL and the ANSI Standard.

Fundamental Differences between SQL and the
DATA Step

The largest part of this book is devoted to explaining and illustrating the features of
PROC SQL and identifying and qualifying parallels with non-SQL SAS counterparts to
those features. Those explanations and examples deal with particular language elements.
Before delving into that sort of detail, we should look at some general characteristics that
distinguish PROC SQL from other parts of SAS. These distinctions range from the rather
mundane to the almost profound.

Comma versus White Space Separation
In most parts of SAS, a series of like elements (such as variable names) is coded using
white space (blanks, tabs, or new lines) for separation. In SQL, elements in such a series
are separated by commas (with optional white space permitted in addition to, but not
instead of, each comma).

Chapter 1: Introduction 3

Terminology
SAS and SQL both use two-dimensional collections of data, but have different
terminology for the basic elements. The differences are summarized in the following
table, which, for reference, extends to include the realms of data processing and relational
database theory.

The SQL and SAS terms are used more or less interchangeably throughout the book. We
usually use SQL terms in discussing SQL code and SAS terms in discussing other code,
but that’s just a tendency and not a rule.

The term “SAS data file,” though taken from the SAS documentation, might seem
unfamiliar; perhaps you more often refer to a “SAS data set.” The distinction is the
inclusion of views. A SAS data set might be either a SAS data file or a SAS data view. In
SQL, there is no similar umbrella term; there are tables and there are views.

In the remainder of the book, you will encounter many references to SAS data sets, and
few if any to SAS data files. Meanings should be clear in context. In places where it’s
important to differentiate views from files (particularly in Chapter 10, which has views as
its subject), more precise language is used.

Reference: For more information about SAS data files, see SAS 9.2 Language Reference:
Concepts: SAS Files Concepts.

Executable Unit
In the DATA step, and in most (but not all) SAS procedures, the step is the executable
unit of code. That is, SAS reads and interprets code from the beginning of a step and
continues until it encounters another step boundary before it begins processing. In SQL,
each statement is an executable unit. So SAS reads and interprets code until it
encounters a semicolon (which is the statement terminator for SQL just as it is elsewhere
in SAS) and then performs the requested processing before examining the next statement.
The QUIT statement terminates PROC SQL (RUN statements are ignored).

Realm Corresponding Terms

SAS SAS data file Observation Variable

SQL Table Row Column

Data processing File Record Field

Relational database theory Relation Tuple Attribute

4 PROC SQL by Example: Using SQL within SAS

Nestability
SQL code constructs can be nested; that is, a query can be an operand of another query
(see Section 3.3 and Chapter 5). In the DATA step and other parts of SAS, such
sequencing of computations can be implemented only by coding a chain of steps, with
intermediate results typically passed forward as SAS data sets.

Namespace Management
A DATA step can accommodate only one variable of a given name. In PROC SQL,
multiple columns having the same name can be used successfully if they are
differentiated by prefixes or qualifiers indicating their sources (see Section 4.1 for
details). Of course, when results are stored in SAS data sets, duplicate names are not
allowed.

Procedural versus Declarative
When you use a procedural language, you tell the computer what to do, not what to
produce. The SAS DATA step language is procedural, though that fact is sometimes
masked by all of the defaults and automatic behavior. With a declarative language, such
as SQL, you tell the computer what to produce. The translation of such specifications into
an operational plan is the responsibility of the software and is largely hidden from the
user.

Row Order
Even though rows of data are supplied to PROC SQL in some order, and even though
PROC SQL output is stored or displayed in some order (which the programmer can
specify), SQL conceptually treats a given table or view as an unordered set of rows.
Consequently, a query cannot explicitly or implicitly make reference to row ordering.

Bias for Normalized Data Structure
The subject of data normalization is a big one, and well beyond the scope of this book.
For our purposes, we consider a table having sets of similar columns requiring parallel
treatment to be “denormalized.” A table without such column sets, conversely, is termed
“normalized,” and characteristically has more rows and fewer columns than its
denormalized counterpart. For example, suppose you have data on exports by country and
year. If you store your data in a long table with just three columns (one to identify the
country, one to indicate the year, and one to report the value of exports), you have a
normalized table. On the other hand, if you use a matrix structure with one row for each
country and one column to identify the country plus one column for each year’s export
data, your table is denormalized.

Chapter 1: Introduction 5

The DATA step is relatively neutral in supporting these alternative designs, with arrays
and loops available to reference and process parallel columns. You could use an array
and a loop to rather easily sum each year’s exports. Many SAS procedures offer shortcuts
for operating on sets of variables, so you could also use PROC MEANS with little
difficulty to perform those aggregations. PROC SQL is different; it has nothing
resembling arrays and loops. Consequently, SQL has a strong bias for normalized
structures, and you will find SQL solutions much easier to develop if you organize your
data accordingly. An example of such a normalized structure is presented in Section 12.3.

RDBMS Heritage
SQL comes to SAS from the world of relational database management systems, and that
heritage shows in some ways. In particular, a lot of SQL statements are concerned with
making changes to data in place (that is, inserting, deleting, or changing rows of data
within a table, without replacing the table as a whole and without creating a new table
coexistent with the original). SAS has such capabilities, but they are not widely used.
SAS users are more likely to create new tables as they go along. We concentrate on doing
things in that “SAS way” and confine our discussion of making changes in place to
Chapter 9.

1.2 More about This Book

Before we take a detail-oriented look at PROC SQL in the following chapters, here are a
few general how’s and why’s.

Purpose
The purpose of this book is to introduce PROC SQL to somewhat experienced SAS
users. We start with the basics and then progress to more complex and specialized
features.

We take almost every opportunity to illuminate SQL capabilities by demonstrating them
together with more or less equivalent examples using the DATA step or SAS procedures
other than PROC SQL. Because these non-SQL parallel techniques are not really the
subject of the book, we don’t explain them at length. However, we provide
documentation references in those cases where the location of the relevant documentation
might not be obvious, as well as references to The Little SAS Book (Fourth Edition). In
addition, Chapter 14 provides something of a documentation “roadmap.”

6 PROC SQL by Example: Using SQL within SAS

The SQL techniques presented in the book are specific to SAS in two ways. First, they
occasionally use features of PROC SQL that extend beyond the requirements of the SQL
standard. Second, they use language elements, such as SAS functions, that are not strictly
part of SQL but rather are inherited from the SAS environment.

Perspective
Conceptually, and somewhat vaguely, we can divide the functionality of Base SAS
software into four subsets. Moreover, we can visually suggest relationships among the
four by positioning them in this diagram:

 Beyond

Alternative SQL

 Shared

Since it is our subject, let’s start with the quadrant identified as “SQL.” It comprises the
statements and options supported by PROC SQL. That’s pretty clear-cut, and there is just
one caveat, which is that not everything coded within a PROC SQL step belongs to this
subset of Base SAS. For example, a formula within an SQL statement might include a
reference to the ABS (absolute value) function, which is not part of PROC SQL per se,
but rather is borrowed from the Base SAS function collection.

“Alternative” refers to capabilities that are equivalent (substantially if not completely) to
PROC SQL functionality but are found in the DATA step and a handful of “workhorse”
procedures (primarily PRINT, SORT, MEANS/SUMMARY, FREQ, DATASETS, and
FORMAT). It’s important to understand that this quadrant does not encompass all
features of the DATA step and the enumerated procedures; rather, it comprises only those
features having parallels in PROC SQL.

The “Shared” quadrant represents things that make SAS work, or work better, and that
support both SQL and Alternative usage. This quadrant includes

 the user environment and interfaces (such as the Display Manager)

 libraries and engines (so that PROC SQL can access any data set that other parts
of SAS can access)

 most functions (but not call routines)

 formats and informats

 data set options and SAS system options

Chapter 1: Introduction 7

 global statements (such as TITLE)

 the SAS Macro Facility

 the Output Delivery System

 some utility procedures, such as PROC IMPORT, PROC EXPORT, and parts of
PROC DATASETS

“Beyond” comprises all features of Base SAS that are beyond the practical limitations of
PROC SQL (and thus, by implication, beyond the boundaries of the Alternative
quadrant). For example, consider PROC CHART, which produces low-resolution graphs.
Such output is outside the capability of PROC SQL, so PROC CHART belongs in the
Beyond quadrant.

This four-way partitioning of Base SAS is strictly a conceptual exercise intended to
explain the purpose of this book. The subdivisions have no operational significance and
in fact are not mentioned after this chapter. They are also, admittedly, a bit vague and
arbitrary. For example, consider that PROC MEANS or PROC SUMMARY can
calculate both means and medians, whereas PROC SQL can calculate only the means.
The implication is that a PROC MEANS step that calculates both means and medians has
one foot in the Alternative quadrant and one in the Beyond quadrant. Similarly, PROC
DATASETS can be used to manage both integrity constraints and audit trails (see Section
9.7), but PROC SQL can manage only the former. Thus, a PROC DATASETS step that
deals with both of these tools belongs to both the Alternative and Shared subsets.

Presentation
The first half of the book deals exclusively with data retrieval queries. Chapters 2 and 3
address simple queries (defined as those that draw data from a single source). The next
three chapters (4, 5, and 6) cover queries that tap into multiple sources.

Later chapters address a number of relatively specialized or advanced topics. Chapter 7
deals with options and Chapter 8 with the Macro Facility. In Chapter 9, we move beyond
data retrieval to explain SQL tools for changing data. Chapter 10 takes on the subject of
views, and Chapter 11 addresses SQL features for generating reports and concludes the
presentation of SQL features.

The final few chapters supplement the earlier material. Chapter 12 presents examples that
emphasize the use of SQL as a complement to other parts of SAS. Chapter 13 provides a
short introduction to the important issue of performance tuning. Finally, Chapter 14 is a
bit of an essay on the SAS documentation of SQL.

The book as a whole covers the major features of PROC SQL with one significant
exception: interoperation with third-party RDBMS products. PROC SQL includes the
Pass-Through Facility, a mechanism for sending SQL code to other vendors’ RDBMS

8 PROC SQL by Example: Using SQL within SAS

products to be processed and then receiving the results for use by SAS. Pass-through
requires availability (licensing and installation) of the appropriate SAS/ACCESS product.
The passed-through code must be written in the SQL “dialect” of the target RDBMS.
Thus, working examples would depend on the choice of target system. For that reason,
and because the focus of this book is on the Base SAS context, we do not discuss the
Pass-Through Facility. SAS/ACCESS also permits SAS to operate with RDBMS servers
more transparently, via LIBNAME statements. The behavior of PROC SQL code that
exploits this feature depends on the nature of such code and the capabilities of the
particular target RDBMS, and is also beyond the scope of the book.

Reference: For more information about PROC SQL interoperation with third-party
RDBMS products, see Base SAS 9.2 Procedures Guide: Procedures: The SQL Procedure:
Concepts: SQL Procedure: What Is the Pass-Through Facility? and Connecting to a
DBMS Using the LIBNAME Statement.

This book does not attempt to repackage all of the information provided in the SAS
documentation. For example, the use of PROC SQL options is explained (see Section
7.2), and a number of those options are identified and described there and elsewhere, but
the coverage of such options is not comprehensive. The SAS documentation is available
in four forms:

 hard copy

 online (Web pages at support.sas.com)

 PDF (Portable Document Format) files, available at support.sas.com

 locally installed Help files

All but the first are essentially free of cost. This book supports use of the documentation
by providing numerous references. In addition, Chapter 14 is devoted to a discussion of
the PROC SQL documentation.

The examples presented in the book were all set up and run using SAS 9.2 running on a
Microsoft Windows XP host system. With the exception of a handful of LIBNAME
statements, none of the code is specific to a host system, so it should be possible to run
the examples on any SAS 9.2 platform and get the results shown. Because the PROC
SQL feature set changed little between SAS 9.1.3 and SAS 9.2, there should be little
difficulty replicating results with SAS 9.1.3.

All data libraries in the examples use the default native engine. The extent to which other
engines can be successfully substituted will vary. Generally, there should not be problems
in reading data from any engine. However, not all engines support all features for output.

Chapter 1: Introduction 9

The results displayed in the book were generated by running the examples in batch mode.
However, there should be little or no effect on the results if Display Manager or other
SAS user interfaces are used instead.

The examples attempt to simplify aspects of the code that are incidental to the subject at
hand. So, for instance, nearly all tables in the examples are stored in the WORK library
and denoted with one-part names (not prefixed with library references).

Reference: Read more about SAS libraries and library references in SAS 9.2 Language
Reference: Concepts: SAS Files Concepts: SAS Data Libraries and in Section 1.11 of The
Little SAS Book (Fourth Edition).

Now let’s look at some of the visual properties of the examples. To illustrate, we’ll
borrow some bits and pieces from later chapters. Don’t worry now about understanding
the substance; explanations are provided in the original contexts.

First, here is a code specimen:

PROC SQL;
SELECT fname, age
FROM preteen;
QUIT;

Notice that it is indented and immediately follows a colon in the preceding text.

The use of uppercase and lowercase letters is significant in the examples. In code, names
of SAS language elements (statements, clauses, options, functions, formats, and so on)
appear in uppercase. The names of user-specified data elements (library references, data
sets, variables, and so on) appear in lowercase or mixed case. This distinction applies
only to code paragraphs (distinguishable by indention and use of a monospace font). In
narrative paragraphs, both language and data element names are in uppercase; for
example, we might refer to the FNAME column.

Notice that the preceding example includes a PROC SQL statement to launch the
procedure and a QUIT statement to close the procedure. These statements are included
because the SQL statements (such as the SELECT statement) work only if PROC SQL is
already running. However, you should not interpret this to mean that each SQL statement
must necessarily be in a separate procedure step. See Chapter 7 for more about PROC
SQL session management.

The coded examples generate three types of results (although any particular example
might involve only one or two):

 text appearing in the SAS log

10 PROC SQL by Example: Using SQL within SAS

 displayed output (that is, material that appears in the Output window—assuming
that the code was run via the Display Manager)

 data sets produced or changed by the code

Let’s look at these, starting with some log text:

NOTE: Table WORK.NEW created, with 7 rows and 5 columns.

The log text is set off with a ruled box rather than by indention. Now here is some
displayed output:

 Median
 of 1

 1.1
 6
 7.7

The presentation box is just like that used for log text. Distinctions between the two are
either obvious or are noted in the narrative.

Examples in this book were run with the following SAS system options in effect:
FORMCHAR="|----|+|---+=|-/\<>*" NOCENTER NODATE NOOVP.

Finally, let’s see a result in the form of a data set. Of course, we are less interested in the
hard-to-read bits and bytes of the data set as it is stored on disk than in a rendering of its
content. Such a rendering is in Exhibit 1-1. Notice that this rendering is titled as an
exhibit.

Exhibit 1-1 A table borrowed from a subsequent chapter

Sex Youngest Oldest Avg_Height Avg_Weight

F 11 12 55.8 70.7

M 11 12 59.7 98.9

C h a p t e r 2

Basic Building Blocks

2.1 The Simplest SELECT Statement 13
2.2 A More Selective SELECT 15
2.3 Storing Results 16
2.4 Column Subsets 17
2.5 New Columns 19
2.6 Aggregation 20
2.7 Conditionality 26
2.8 Filtering 28
2.9 Reordering Rows 32
2.10 Elimination of Duplicates 33
2.11 Summary 35

We begin exploring SQL by looking at the SELECT statement, which is the core of the
language. The emphasis for now is on what can be called “building blocks.” These are
basic capabilities that, for the sake of simplicity, we examine in isolation. Later we’ll see
how they can be combined. In this chapter we look at the most basic of these building
blocks, those that are equivalent to single non-SQL SAS steps.

12 PROC SQL by Example: Using SQL within SAS

The SELECT statement can stand on its own, and we start by seeing it in that context,
although it is more often used as a clause within another statement. Essentially, the
SELECT statement tells the SQL processor to extract, and possibly further process, a
rectangular body of data comprising one or more columns and zero or more rows.

Before looking at any SQL code, let’s create a table to be the basis of the examples in this
chapter (most of them, anyway). To make things compact, we construct a subset of the
SASHELP.CLASS data set:

DATA preteen;
SET sashelp.class;
WHERE age<13;
LABEL name = 'First Name';
RENAME name = FName;
FORMAT height weight 5.1;
RUN;

The result is shown in Exhibit 2-1.

Exhibit 2-1 PRETEEN

FName Sex Age Height Weight

James M 12 57.3 83.0

Jane F 12 59.8 84.5

John M 12 59.0 99.5

Joyce F 11 51.3 50.5

Louise F 12 56.3 77.0

Robert M 12 64.8 128.0

Thomas M 11 57.5 85.0

Chapter 2: Basic Building Blocks 13

2.1 The Simplest SELECT Statement

We start with what is arguably the most primitive possible SELECT statement, in that it
contains only the mandatory elements and utilizes simple forms for these elements. A
SELECT statement must include a FROM clause designating the source of the data,
preceded by a list of columns. So here is our extremely basic SELECT statement:

PROC SQL;
SELECT *
FROM preteen
;
QUIT;

PRETEEN is the name of the source table, and the asterisk (*) is a shorthand form telling
the SQL processor to take all columns found in the source.

What does the processor then do with the columns? It displays them. The output looks
like this:

First
Name Sex Age Height Weight

James M 12 57.3 83.0
Jane F 12 59.8 84.5
John M 12 59.0 99.5
Joyce F 11 51.3 50.5
Louise F 12 56.3 77.0
Robert M 12 64.8 128.0
Thomas M 11 57.5 85.0

We’ve said that PROC SQL displays this little report, but we haven’t said where. It
depends on how SAS is being used and on how it is configured. If you are using the
Display Manager with defaults in effect, you will see it in the Output window.

Preview: For now, we are using simple tables or views as sources. Later we will see
more elaborate FROM clauses, which can preprocess the data for the SELECT statement
(see the discussion of inline views in Section 3.3) or integrate data from multiple tables or
views (see Chapter 4 on joins).

So this simple SELECT statement is more or less equivalent to the following PROC
PRINT step:

PROC PRINT DATA=preteen;
RUN;

14 PROC SQL by Example: Using SQL within SAS

which generates:

Obs FName Sex Age Height Weight

 1 James M 12 57.3 83.0
 2 Jane F 12 59.8 84.5
 3 John M 12 59.0 99.5
 4 Joyce F 11 51.3 50.5
 5 Louise F 12 56.3 77.0
 6 Robert M 12 64.8 128.0
 7 Thomas M 11 57.5 85.0

Comparing this result with the output from the SQL SELECT statement, we notice the
presence of a reference column of observation numbers and the absence of variable labels
(the second column is headed “FName,” in contrast to the SQL output, which uses the
variable’s label, “First Name”). So the SELECT statement more closely resembles PROC
PRINT with the NOOBS and LABEL options in effect, as in:

PROC PRINT NOOBS LABEL DATA=preteen;
RUN;

which yields:

First
 Name Sex Age Height Weight

James M 12 57.3 83.0
Jane F 12 59.8 84.5
John M 12 59.0 99.5
Joyce F 11 51.3 50.5
Louise F 12 56.3 77.0
Robert M 12 64.8 128.0
Thomas M 11 57.5 85.0

Reference: Read more about PROC PRINT in the Base SAS 9.2 Procedures Guide:
Procedures: The PRINT Procedure or in The Little SAS Book (Fourth Edition):
Section 4.4.

Still, there are minor differences in layout. Most obvious is the horizontal line that PROC
SQL places between the headings and the values. Also, the PROC PRINT column
headings are centered, whereas headings in the SQL output are left-justified (for
character columns) or right-justified (for numeric columns).

Preview: Later, we’ll see how PROC SQL can be made to provide reference numbers
like those in PROC PRINT’s “Obs” column (see Chapter 11).

Chapter 2: Basic Building Blocks 15

Actually, this example is a bit contrived in one way. Remember that in PRETEEN we
specified the 5.1 format for the numeric variables HEIGHT and WEIGHT. Both PROC
SQL and PROC PRINT then used that format; that’s why we’ve seen one decimal place
in all of the HEIGHT and WEIGHT values. However, in the absence of such format
declarations, PROC SQL and PROC PRINT employ somewhat different rules for
internally determining the number of decimal places to present.

2.2 A More Selective SELECT

What if we don’t want to display all of the columns? You might recall that PROC PRINT
lets you include a VAR statement to enumerate the variables, like this:

PROC PRINT NOOBS LABEL DATA=preteen;
VAR fname age;
RUN;

The result looks like this:

First
 Name Age

James 12
Jane 12
John 12
Joyce 11
Louise 12
Robert 12
Thomas 11

The equivalent in SQL is to replace the shorthand asterisk in the SELECT statement with
a comma-separated list of the columns to be included, like this:

PROC SQL;
SELECT fname, age
FROM preteen
;
QUIT;

16 PROC SQL by Example: Using SQL within SAS

The result is:

First
Name Age

James 12
Jane 12
John 12
Joyce 11
Louise 12
Robert 12
Thomas 11

2.3 Storing Results

Very often you don’t want to display results. Instead you want to store them for use in
subsequent computations. That’s what this DATA step will do:

DATA new;
SET preteen;
RUN;

The log confirms that a data set has been stored:

NOTE: The data set WORK.NEW has 7 observations and 5
variables.

Of course this is a rather trivial example in that it makes what is essentially an exact copy
of the source. Its purpose is just to illustrate the mechanics of creating a data set to
contain results. To do the same thing with PROC SQL, we use the CREATE statement:

PROC SQL;
CREATE TABLE new AS
SELECT *
FROM preteen
;
QUIT;

Chapter 2: Basic Building Blocks 17

The SELECT statement, which we used earlier to display data, is now subordinated as a
clause within the CREATE statement. Nothing is displayed; instead the columns of the
existing table (PRETEEN) are stored in a new table. The log reports:

NOTE: Table WORK.NEW created, with 7 rows and 5 columns.

Notice that this note uses SQL terminology (“table,” “rows,” and “columns”) rather than
the usual SAS terminology (“data set,” “observations,” and “variables”). Nevertheless,
it’s the same message.

2.4 Column Subsets

What if you don’t need all of the variables available in the existing data set? In the
DATA step, a KEEP statement can be used to identify those to be stored in the new data
set. For example:

DATA subset;
SET preteen;
KEEP fname sex age;
RUN;

We’ve already seen an analogous construct in PROC SQL, when we restricted the
columns to be displayed in order to emulate the behavior of the VAR statement in PROC
PRINT (see Section 2.2). We did that by coding a comma-separated list enumerating
individual columns. It worked in a freestanding SELECT statement, and it also works
within a CREATE statement. So the code is:

PROC SQL;
CREATE TABLE subset AS
SELECT fname, sex, age
FROM preteen
;
QUIT;

The new table, SUBSET, is as shown in Exhibit 2-2, whether it’s produced with a DATA
step or with SQL.

18 PROC SQL by Example: Using SQL within SAS

Exhibit 2-2 SUBSET

PROC SQL has no counterpart to the DROP statement, which is sort of the mirror image
of the KEEP statement, enumerating variables that are not to be placed in the output data
set, as in:

DATA subset;
SET preteen;
DROP height weight;
RUN;

However, this approach to subsetting can be implemented if we turn to SAS features
available within PROC SQL. Specifically, we can code the DROP= data set option for
the table being created, as in:

PROC SQL;
CREATE TABLE subset(DROP=height weight) AS
SELECT *
FROM preteen
;
QUIT;

Tip: Most SAS data set options can be used in PROC SQL.

FName Sex Age

James M 12

Jane F 12

John M 12

Joyce F 11

Louise F 12

Robert M 12

Thomas M 11

Chapter 2: Basic Building Blocks 19

2.5 New Columns

It’s often necessary to create a new variable using a formula. In the DATA step, that’s
done with an assignment statement, like this:

DATA ratios;
SET preteen;
ATTRIB Ratio FORMAT=5.2 LABEL='Weight:Height Ratio';
ratio = weight / height;
RUN;

The ATTRIB statement here is not essential. It just provides a variable label and an
appropriate format.

The equivalent in SQL is to insert the formula in the column selection list, followed by
the keyword AS and the name. To continue with the example, the SQL statement would
be:

PROC SQL;
CREATE TABLE ratios AS
SELECT *,
 weight / height AS Ratio
 FORMAT=5.2 LABEL='Weight:Height Ratio'
FROM preteen
;
QUIT;

The selection list begins with the asterisk (*), which is an abbreviated way of calling for
all of the columns in the source table (PRETEEN). It then continues with the formula for
our new column. The FORMAT and LABEL specifications serve the same purpose as the
ATTRIB statement in the DATA step and, like the ATTRIB statement, are not absolutely
necessary. In fact, even the AS clause providing the name for the new column could be
omitted; an automatically generated (but not very meaningful) name would appear
instead.

The result, whether created in a DATA step or by PROC SQL, looks like Exhibit 2-3.

20 PROC SQL by Example: Using SQL within SAS

Exhibit 2-3 RATIOS

2.6 Aggregation

We often need to derive summary statistics from our data. SAS provides a variety of
methods for doing this. One of the most versatile is PROC SUMMARY. SQL does not
have nearly the extent of functionality provided by a specialized tool like PROC
SUMMARY, but it is an alternative for a lot of relatively simple tasks.

Reference: Read more about PROC SUMMARY and its sibling PROC MEANS in the
SAS documentation and in Sections 4.9 and 4.10 of The Little SAS Book (Fourth Edition).

Grand Totals and More
Here is a simple example in which PROC SUMMARY is used to produce one row of
aggregate measures for our PRETEEN table:

PROC SUMMARY DATA=preteen;
VAR age height weight;
OUTPUT OUT=overall_averages(DROP = _type_ _freq_)
 MIN (age)=Youngest
 MAX (age)=Oldest
 MEAN(height)=Avg_Height
 MEAN(weight)=Avg_Weight;
RUN;

FName Sex Age Height Weight Ratio

James M 12 57.3 83.0 1.45

Jane F 12 59.8 84.5 1.41

John M 12 59.0 99.5 1.69

Joyce F 11 51.3 50.5 0.98

Louise F 12 56.3 77.0 1.37

Robert M 12 64.8 128.0 1.98

Thomas M 11 57.5 85.0 1.48

Chapter 2: Basic Building Blocks 21

The procedure was instructed to compute the extrema of AGE and the averages of
HEIGHT and WEIGHT. The result is shown in Exhibit 2-4.

Exhibit 2-4 OVERALL_AVERAGES

Notice that the averages derived from HEIGHT and WEIGHT are displayed with exactly
one decimal place. That’s because averages computed by PROC SUMMARY inherit the
FORMAT attributes from the underlying variables.

We can do the same thing in PROC SQL by coding a column selection for each statistic
to be produced, like this:

PROC SQL;
CREATE TABLE overall_averages AS
SELECT MIN (age) AS Youngest,
 MAX (age) AS Oldest,
 MEAN(height) AS Avg_Height FORMAT=5.1,
 MEAN(weight) AS Avg_Weight FORMAT=5.1
FROM preteen
;
QUIT;

AS clauses follow each column selection to provide names. We include FORMAT
specifications because in PROC SQL they are not inherited from the columns being
aggregated. The output table is indistinguishable from the one produced by PROC
SUMMARY.

Subtotals and More
Now suppose that instead of an overall summary, we want the computations stratified by
SEX. The PROC SUMMARY code shown previously can be adapted by inserting a
CLASS statement and coding the NWAY option (to suppress production of the grand
overall statistics, which we no longer want). Here is the code:

Youngest Oldest Avg_Height Avg_Weight

11 12 58.0 86.8

22 PROC SQL by Example: Using SQL within SAS

PROC SUMMARY DATA=preteen NWAY;
CLASS sex;
VAR age height weight;
OUTPUT OUT=group_averages(DROP = _type_ _freq_)
 MIN (age)=Youngest
 MAX (age)=Oldest
 MEAN(height)=Avg_Height
 MEAN(weight)=Avg_Weight;
RUN;

The result appears in Exhibit 2-5. Notice that PROC SUMMARY automatically includes
CLASS variables in output data sets.

Exhibit 2-5 GROUP_AVERAGES

To accomplish the same thing using PROC SQL, we adapt the code presented in the
previous section by inserting a GROUP BY clause:

PROC SQL;
CREATE TABLE group_averages AS
SELECT sex,
 MIN (age) AS Youngest,
 MAX (age) AS Oldest,
 MEAN(height) AS Avg_Height FORMAT=5.1,
 MEAN(weight) AS Avg_Weight FORMAT=5.1
FROM preteen
GROUP BY sex
;
QUIT;

We also include the column SEX in the selection list. If we don’t, the computations
would be unaffected, but the two rows of results would not be identified, because PROC
SQL does not automatically include GROUP BY columns. The results from PROC SQL
are identical to those from PROC SUMMARY (see Exhibit 2-5).

PROC SQL is strict about the order in which clauses are coded. The GROUP BY clause
must appear after the FROM clause.

Sex Youngest Oldest Avg_Height Avg_Weight

F 11 12 55.8 70.7

M 11 12 59.7 98.9

Chapter 2: Basic Building Blocks 23

Details
It’s important to recognize the distinction between the SQL-specific summary statistic
functions (like MIN) used in the preceding examples in this chapter and the
corresponding SAS functions that can be used in PROC SQL as well as in the DATA step
and other contexts. The syntax for their use is the same, and the repertoires of statistics
(mean, maximum, minimum, and so on) are similar, but they are different tools.

The SQL-only functions are akin to the keywords used in PROC SUMMARY. Those
keywords call for vertical aggregation. That is, processing is done separately for each
variable, drawing values from as many observations as there are.

SAS functions, as used in DATA step code, operate horizontally. They can, and usually
do, have multiple arguments. A value is drawn from each argument, using data currently
available (and thus typically originating in a single observation).

In PROC SQL, both families of functions can be used. This creates ambiguity in some
situations. Moreover, not all of the statistics available as SAS functions are available as
SQL-only functions, and some keywords supported in PROC SUMMARY are not
supported as PROC SQL functions. All in all, it’s a situation that can be a bit precarious.

Reference: Read more about these functions in the SAS 9.2 Language Reference:
Dictionary: Dictionary of Language Elements: Functions and CALL Routines: Functions
and CALL Routines by Category: Descriptive Statistics and in the Base SAS 9.2
Procedures Guide: Appendices: SAS Elementary Statistics Procedures: Keywords and
Formulas.

An example should help. Let’s start with a little 3x3 table built as follows:

DATA threex3;
INPUT a b c;
CARDS;
1.1 2.0 3.0
6.0 5.0 4.4
7.7 8.0 9.0
;

We want to derive means (averages) and medians. When there are two or more
arguments, there is no ambiguity, because a vertical function is restricted to a single

24 PROC SQL by Example: Using SQL within SAS

argument. So the following code calls the SAS (not SQL-specific) MEAN function to
average the three values in each row:

PROC SQL;
SELECT MEAN(a,b,c) LABEL='Mean of 3'
FROM threex3
;
QUIT;

The result is:

 Mean
 of 3

2.033333
5.133333
8.233333

Similarly, we can use the MEDIAN function:

PROC SQL;
SELECT MEDIAN(a,b,c) LABEL='Median of 3'
FROM threex3
;
QUIT;

This is the result:

 Median
 of 3

 2
 5
 8

Again, the calculations are confined, row by row. With two arguments, that doesn’t
change. But let’s see what happens when we cut back to a single argument, as in:

PROC SQL;
SELECT MEAN(a) LABEL='Mean of 1'
FROM threex3
;
QUIT;

Chapter 2: Basic Building Blocks 25

Our output is:

 Mean
 of 1

4.933333

This is the mean of the values in column A, calculated using all of the rows. The syntax
itself, MEAN(A), is ambiguous. It conceivably could be interpreted as a horizontal
function call requesting the mean of a single value (admittedly a triviality) within each
row. However, PROC SQL has an internal decision rule to resolve the ambiguity.
Whenever a construct of this form (a summary statistic name followed by a single
argument in parentheses) could refer to either a SAS function (horizontal) or an SQL
function (vertical), it is assumed to refer to the latter. PROC SQL then computes it
vertically.

Now let’s try it with MEDIAN:

PROC SQL;
SELECT MEDIAN(a) LABEL='Median of 1'
FROM threex3
;
QUIT;

We get:

 Median
 of 1

 1.1
 6
 7.7

You were probably expecting to see just a 6, the median of the values in column A.
Instead we have, for each row, the trivial median of a single value of A. In other words,
the processing was horizontal rather than vertical.

The explanation: vertical calculation of medians is not supported in PROC SQL (though
it is in PROC SUMMARY). Thus, there is no ambiguity. In SQL, the only valid
interpretation of MEDIAN with a single argument is that it is a SAS function call, to be
computed horizontally.

Perhaps it would be better if PROC SQL instead raised an error in this situation, but it
doesn’t. So, you, the programmer, have to understand the decision rules and be informed
about just which statistics are supported.

26 PROC SQL by Example: Using SQL within SAS

Tip: PROC SQL supports the operation of four functions (MIN, MAX, N, and NMISS)
with character data. This usage is limited to vertical summarization of a single argument.

2.7 Conditionality

It is not uncommon to have values that depend on other values—in other words,
conditionality. Probably the most common way of implementing conditionality in the
DATA step is the IF/THEN/ELSE structure.

For example, suppose that students of different ages and sexes are to go on different field
trips. The 11-year-olds (boys and girls) are going to the zoo; girls who are not going to
the zoo (that is, 12-year-old girls) are going to the museum; and boys who aren’t going to
the zoo have to stay behind. Here’s one way of generating a list of individual student
destinations:

DATA trip_list;
SET preteen;
IF age=11 THEN Trip = 'Zoo ';
ELSE IF sex='F' THEN trip = 'Museum';
ELSE trip = '[None]';
KEEP fname age sex trip;
RUN;

The result appears in Exhibit 2-6.

Exhibit 2-6 TRIP_LIST

FName Sex Age Trip

James M 12 [None]

Jane F 12 Museum

John M 12 [None]

Joyce F 11 Zoo

Louise F 12 Museum

Robert M 12 [None]

Thomas M 11 Zoo

Chapter 2: Basic Building Blocks 27

Before looking for the SQL equivalent, we should probably note that, in an important
sense, there is no equivalent. That’s because the IF/THEN/ELSE combination triggers the
execution of statements, which in turn perform actions. That is very much a procedural
construct and thus alien to SQL, which is a nonprocedural language.

However, in this example the conditional statements are assignment statements, which
evaluate expressions and store the results. Moreover, they all have the same target
variable (TRIP). In this special case, SQL does have a near counterpart, the CASE
structure. So here is the SQL effective equivalent of the DATA step that builds the table
TRIP_LIST:

PROC SQL;
CREATE TABLE trip_list AS
SELECT fname,
 age,
 sex,
 CASE WHEN age=11 THEN 'Zoo'
 WHEN sex='F' THEN 'Museum'
 ELSE '[None]'
 END
 AS Trip
FROM preteen
;
QUIT;

This again produces the result shown in Exhibit 2-6.

The CASE structure begins with the keyword CASE and ends with END. Within,
WHEN/THEN specifications are examined in order until an expression following a
WHEN is evaluated as TRUE. When that occurs, the expression following the THEN is
evaluated to provide the result. If no WHEN condition holds true, the ELSE specification
provides the result. Note that results can depend on the order in which the WHEN/THEN
specifications appear.

If you are familiar with the DATA step SELECT statement (not to be confused with the
SQL SELECT statement), the CASE expression probably looks a bit familiar. The two
have many parallels in design. Here is the DATA step solution implemented with
SELECT:

28 PROC SQL by Example: Using SQL within SAS

DATA trip_list;
SET preteen;
SELECT;
 WHEN (age=11) Trip = 'Zoo ';
 WHEN (sex='F') trip = 'Museum';
 OTHERWISE trip = '[None]';
 END;
KEEP fname age sex trip;
RUN;

2.8 Filtering

Earlier in this chapter, we saw how column-oriented subsetting can be accomplished by
enumerating the columns being selected (rather than using the inclusive asterisk
notation). Now we turn to row-oriented subsetting.

Filtering from the Source
In the DATA step, observations (rows) to be processed can be included or excluded by
means of the WHERE statement. To illustrate:

DATA girls;
SET preteen;
WHERE sex='F';
RUN;

yields Exhibit 2-7.

Exhibit 2-7 GIRLS

WHERE processing is available not only in the DATA step, but also in most SAS
procedures, including PROC SQL. Translation to SQL requires no change other than to
convert the WHERE statement to a clause within the SELECT clause or statement. So we
can produce the same table by running:

Name Sex Age Height Weight

Jane F 12 59.8 84.5

Joyce F 11 51.3 50.5

Louise F 12 56.3 77.0

Chapter 2: Basic Building Blocks 29

PROC SQL;
CREATE TABLE girls AS
SELECT *
FROM preteen
WHERE sex='F'
;
QUIT;

In both environments, the filtering is done “up front,” by the engine that reads the data.

The order of the clauses under the SELECT statement or clause is dictated. The WHERE
clause follows the FROM clause and precedes the GROUP BY clause, if there is one.

Now let’s see what happens when the filter eliminates all of the data. We can do that first
with a stand-alone SELECT statement such as this:

PROC SQL;
SELECT *
FROM preteen
WHERE age=10
;
QUIT;

When we run this code, no output is produced, but in the log we see:

NOTE: No rows were selected.

When we embed the SELECT in a CREATE TABLE statement, the table is created, but
it contains no rows:

PROC SQL;
CREATE TABLE tens AS
SELECT *
FROM preteen
WHERE age=10
;
QUIT;

In the log we see just the standard note:

NOTE: Table WORK.TENS created, with 0 rows and 5
columns.

30 PROC SQL by Example: Using SQL within SAS

Filtering Aggregated Data
SQL has a second filtering device, the HAVING clause. The distinction between this and
the WHERE clause is that HAVING conditions can reference summary statistics and are
evaluated after aggregations are performed. Thus they take effect “downstream,” on the
output side of the process.

To illustrate, consider this PROC SUMMARY step, which calculates the extreme values
of the HEIGHT variable and does so separately for each SEX/AGE combination:

PROC SUMMARY DATA=preteen NWAY;
CLASS sex age;
OUTPUT MAX(height)=Tallest MIN(height)=Shortest
 OUT= hilo(DROP = _type_ _freq_);
RUN;

The result is presented in Exhibit 2-8.

Exhibit 2-8 HILO (unfiltered)

The equivalent SQL code is:

PROC SQL;
CREATE TABLE hilo AS
SELECT sex,
 age,
 MAX(height) AS Tallest,
 MIN(height) AS Shortest
FROM preteen
GROUP BY sex, age
;
QUIT;

There is nothing here we have not encountered when we looked at aggregation
techniques earlier in this chapter. But now suppose we want to limit the results to those
SEX/AGE combinations where the difference between the height extrema is four or more

Sex Age Tallest Shortest

F 11 51.3 51.3

F 12 59.8 56.3

M 11 57.5 57.5

M 12 64.8 57.3

Chapter 2: Basic Building Blocks 31

inches. In PROC SUMMARY, we could insert a WHERE= data set option to accomplish
this. The code would become:

PROC SUMMARY DATA=preteen NWAY;
CLASS sex age;
OUTPUT MAX(height)=Tallest MIN(height)=Shortest
 OUT=hilo(WHERE = (tallest – shortest > 4)
 DROP = _type_ _freq_);
RUN;

The result can be seen in Exhibit 2-9.

Exhibit 2-9 HILO (filtered)

PROC SUMMARY still computed the minima and maxima for all four SEX/AGE
combinations, but the WHERE= condition prevented three of the four from being written
to the output data set because the difference between minimum and maximum did not
exceed four inches.

We could of course use the same WHERE= data set option in our SQL code. However,
SQL has a device intended precisely for this situation: the HAVING clause. So we’ll use
that rather than borrowing a SAS option.

Once again, clause order is important. The HAVING clause must follow the FROM
clause and the GROUP BY clause, if there is one. So the modified SQL code is:

PROC SQL;
CREATE TABLE hilo AS
SELECT sex,
 age,
 MAX(height) AS Tallest,
 MIN(height) AS Shortest
FROM preteen
GROUP BY sex, age
HAVING tallest – shortest > 4
;
QUIT;

It again produces the results in Exhibit 2-9.

Sex Age Tallest Shortest

M 12 64.8 57.3

32 PROC SQL by Example: Using SQL within SAS

2.9 Reordering Rows

The purpose of PROC SORT is the reordering of observations. For example, if we run:

PROC SORT DATA=preteen OUT=age_sort;
BY DESCENDING age fname;
RUN;

the newly created data set looks like Exhibit 2-10.

Exhibit 2-10 AGE_SORT

The 12-year-olds appear before the 11-year-olds because of the DESCENDING keyword;
the names are alphabetical within each age group.

PROC SQL has equivalent capabilities. The SQL code equivalent to our PROC SORT
step is:

PROC SQL;
CREATE TABLE age_sort AS
SELECT *
FROM preteen
ORDER BY age DESCENDING, fname
;
QUIT;

Notice that the keyword DESCENDING follows rather than precedes the name of the
column to which it pertains.

FName Sex Age Height Weight

James M 12 57.3 83.0

Jane F 12 59.8 84.5

John M 12 59.0 99.5

Louise F 12 56.3 77.0

Robert M 12 64.8 128.0

Joyce F 11 51.3 50.5

Thomas M 11 57.5 85.0

Chapter 2: Basic Building Blocks 33

As explained earlier, row order is conceptually irrelevant to the specification of queries
using SQL (see Section 1.1). Of course, when results are displayed or stored, you might
need to have them in a particular order for your purposes. That’s why the ORDER BY
clause is part of the language. However, operation of the ORDER BY clause should be
thought of as a sort of postprocessing, done after conceptually unordered results are
derived, but before those results are displayed or stored. For this reason, when an
ORDER BY clause is used, it’s almost always the last clause in a statement, immediately
preceding the semicolon (a rarely encountered exception involves the USING clause; see
Section 10.5).

2.10 Elimination of Duplicates

Eliminating duplicate rows from a table is a common task. To illustrate, we first need to
have a data set containing duplicates. We’ll get one by eliminating some of the columns
in PRETEEN:

CREATE TABLE sex_age AS
SELECT sex, age
FROM preteen
;

The result, which we’ve named SEX_AGE, is presented in Exhibit 2-11.

Exhibit 2-11 SEX_AGE

Sex Age

M 12

F 12

M 12

F 11

F 12

M 12

M 11

34 PROC SQL by Example: Using SQL within SAS

A commonly used technique for elimination of the duplicates is to use the NODUPRECS
option of PROC SORT:

PROC SORT DATA=sex_age OUT=sex_age_distinct NODUPRECS;
BY _ALL_;
RUN;

Note the use of a special SAS name list (_ALL_) to include all variables as sort keys.
This assures that identical observations will be gathered consecutively during the sorting
process, which in turn assures that all duplicates will be eliminated. So the result is as
presented in Exhibit 2-12.

Exhibit 2-12 SEX_AGE_DISTINCT

Reference: Read more about special SAS name lists in SAS 9.2 Language Reference:
Concepts: SAS System Concepts: SAS Variables: SAS Variable Lists.

SQL has a special keyword, DISTINCT, to specify that duplicate rows are to be
eliminated. The keyword appears in the SELECT statement or clause, immediately
following SELECT and preceding the list of columns. So the SQL code to eliminate
duplicates from our table is:

PROC SQL;
CREATE TABLE sex_age_distinct AS
SELECT DISTINCT *
FROM sex_age
;
QUIT;

It produces the same output as PROC SORT (Exhibit 2-12).

Preview: We will later (in Section 3.2) see a different but somewhat similar usage of
DISTINCT to modify the vertical evaluation of summary statistics.

Sex Age

F 11

F 12

M 11

M 12

Chapter 2: Basic Building Blocks 35

Note the absence of an ORDER BY clause, which means that the SQL processor is not
obligated to return the rows in any particular order. In this situation, the processor will
store the rows in the order they happen to be in after completion of necessary processing.
The process of identifying distinct records entails sorting, and because the asterisk was
used in the SELECT statement to include all columns, the precedence of the columns as
sort keys followed their internal order, just as it did when the special SAS name list
ALL was used in the BY statement of the PROC SORT step. Consequently, we not
only get the same rows, but we also get them in the same order. However, the ordering in
the PROC SORT solution was essential in that it was a prerequisite to use of the
NODUPRECS option, whereas in the SQL solution it is more of a side effect.

2.11 Summary

We have seen that SELECT can either stand alone as a statement, in effect serving as a
report generator, or serve as a clause within a CREATE statement. It can operate on some
or all columns from an existing source (designated using the mandatory FROM clause),
and it can derive new columns. These derivations can be in the form of totals and other
summary statistics. Derivations can also be conditional. Other basic capabilities include
filtering, elimination of duplicate rows, and reordering of rows prior to presentation or
storage.

The following clauses are subordinate to the SELECT statement or clause: FROM,
WHERE, GROUP BY, HAVING, and ORDER BY. Only FROM is required, but if
others are used they must appear in the order stated.

Preview: Later we’ll see some other clauses that appear within a SELECT clause or
statement. The ON clause (see Section 4.3) is subordinate to the FROM clause, and so
appears after FROM and before WHERE. The INTO clause (see Section 8.2) precedes
the FROM clause. The USING clause (see Section 10.5) is found only in CREATE
VIEW statements and is the only clause that follows ORDER BY.

We looked at non-SQL counterparts to most of the SQL statements presented in this
chapter. Each of those counterparts consisted of a single DATA or PROC step. In the
next chapter, we’ll look at SQL features that are not inherently much more complicated
than the ones we’ve already seen, but whose non-SQL counterparts involve multiple
steps.

36

C h a p t e r 3

More Building Blocks

3.1 Combining Summary Statistics with Original Detail 38
3.2 Summary Statistics Based on Distinct Values 43
3.3 Preprocessing the Source with Inline Views 46
3.4 Summary 51

The previous chapter presented what we called “basic building blocks.” Each of them
was illustrated with a bit of SQL code and compared with equivalent or near-equivalent
non-SQL SAS code consisting of one and only one step.

In this chapter, we add a few more blocks. The main difference is that here the non-SQL
SAS counterparts involve more than one step.

Let’s begin by creating a table we will use in the examples:

PROC SQL;
CREATE TABLE teens AS
SELECT name AS FName,
 age
FROM sashelp.class
WHERE age>12
;
QUIT;

38 PROC SQL by Example: Using SQL within SAS

The table looks like Exhibit 3-1.

Exhibit 3-1 TEENS

3.1 Combining Summary Statistics with
 Original Detail

We learned in the previous chapter (see Section 2.6) how to compute summary statistics.
So, for example, we could compute, from TEENS, how large each age cohort is (that is,
how many rows have AGE=13, how many have AGE=14, and so on). But such a
summary table has one row for each value of AGE; in other words, it contains only the
summary data. What if we need a row for each NAME, containing a combination of the
data in the TEENS table and the cohort sizes? For example, we want to see a row for
Barbara showing her name, her age (13), and the total number of 13-year-olds (3).

FName Age

Alfred 14

Alice 13

Barbara 13

Carol 14

Henry 14

Janet 15

Jeffrey 13

Judy 14

Mary 15

Philip 16

Ronald 15

William 15

Chapter 3: More Building Blocks 39

Avoiding (for now) SQL, we could begin by calling on PROC FREQ to get the cohort
sizes. The code is:

PROC FREQ DATA=teens NOPRINT;
TABLES age / OUT=cohorts(DROP=percent RENAME=(count=Many));
RUN;

The output data set (COHORTS) is shown in Exhibit 3-2.

Exhibit 3-2 COHORTS

Reference: Read more about the FREQ Procedure in the Base SAS 9.2 Procedures
Guide: Procedures: The FREQ Procedure or in Section 4.11 of The Little SAS Book
(Fourth Edition).

To combine these counts with the original data, we first sort that original data:

PROC SORT DATA=teens OUT=sorted;
BY age;
RUN;

Exhibit 3-3 presents the result.

Age Many

13 3

14 4

15 4

16 1

40 PROC SQL by Example: Using SQL within SAS

Exhibit 3-3 SORTED

Then we combine the original data with the counts, via a MERGE statement:

DATA detail_and_counts;
MERGE sorted cohorts;
BY age;
RUN;

We now have all of the data together, but the names are grouped by AGE and thus not in
alphabetical order, as we see in Exhibit 3-4.

FName Age

Alice 13

Barbara 13

Jeffrey 13

Alfred 14

Carol 14

Henry 14

Judy 14

Janet 15

Mary 15

Ronald 15

William 15

Philip 16

Chapter 3: More Building Blocks 41

Exhibit 3-4 DETAIL_AND_COUNTS (before sorting)

So we sort again to restore the original alphabetical order:

PROC SORT DATA=detail_and_counts;
BY fname;
run;

Exhibit 3-5 reflects the result.

FName Age Many

Alice 13 3

Barbara 13 3

Jeffrey 13 3

Alfred 14 4

Carol 14 4

Henry 14 4

Judy 14 4

Janet 15 4

Mary 15 4

Ronald 15 4

William 15 4

Philip 16 1

42 PROC SQL by Example: Using SQL within SAS

Exhibit 3-5 DETAIL_AND_COUNTS (after sorting)

It has taken four steps to get this output. In contrast, using SQL, we can simply write:

PROC SQL;
CREATE TABLE detail_and_counts AS
SELECT fname,
 age,
 COUNT(*) AS Many
FROM teens
GROUP BY age
ORDER BY fname
;
QUIT;

This produces the same result (seen in Exhibit 3-5) as the non-SQL SAS code.

Tip: Using the asterisk (*) as the argument of the COUNT function causes the SQL
processor to count the number of rows in the group. With any other argument, the
function would count the number of non-missing values of that argument.

This SQL statement uses only language features that were demonstrated in the previous
chapter. However, note that the SELECT list includes both original variables (FNAME
and AGE) and a summary statistic (COUNT). Most implementations of SQL do not

FName Age Many

Alfred 14 4

Alice 13 3

Barbara 13 3

Carol 14 4

Henry 14 4

Janet 15 4

Jeffrey 13 3

Judy 14 4

Mary 15 4

Philip 16 1

Ronald 15 4

William 15 4

Chapter 3: More Building Blocks 43

permit this, but PROC SQL does. The feature is called remerging, and the log generated
by this CREATE statement, or by any statement that uses this feature, says:

NOTE: The query requires remerging summary statistics
back with the original data.

The remerging feature is called into use implicitly, simply by including an item in the
SELECT list that comes from the original detail present in the source data.

Tip: SAS 9.2 introduces new options, REMERGE and NOREMERGE, which can be
used to control the availability of the remerging feature. The options are available at both
the SAS system level and the SQL procedure level.

3.2 Summary Statistics Based on Distinct
 Values

Sometimes, when we need summary statistics derived from our data, we want the
computer to ignore repetition of values. For example, suppose we want to know the
average of the AGE values that occur in our TEENS table, ignoring repetitions of those
values. In other words, we need an unweighted mean of AGE, in the sense that we want
to include each particular value (13 and so on) only once, no matter how many times it
may appear.

The weighted mean is pretty simple to calculate, with or without SQL. The non-SQL
code is:

PROC MEANS DATA=teens MEAN MAXDEC=3;
VAR age;
RUN;

and the result is:

The MEANS Procedure

Analysis Variable : Age

 Mean

 14.250

44 PROC SQL by Example: Using SQL within SAS

Deriving our unweighted mean via PROC MEANS is more complicated, and is a two-
step proposition. First we have to eliminate repetitions of AGE values; one way to do this
is with PROC FREQ:

PROC FREQ DATA=teens NOPRINT;
TABLES age / out=freq2means(KEEP = age);
RUN;

The output of this step is the intermediate data set, FREQ2MEANS, shown in
Exhibit 3-6.

Exhibit 3-6 FREQ2MEANS

Now we can proceed to find the average of these distinct (unduplicated) AGE values,
using PROC MEANS:

PROC MEANS DATA=freq2means MEAN MAXDEC=3;
VAR age;
RUN;

and get the following output:

The MEANS Procedure

Analysis Variable : Age

 Mean

 14.500

Age

13

14

15

16

Chapter 3: More Building Blocks 45

This derivation can be done in just one PROC SQL statement. We can even display the
simple weighted mean alongside. The code is:

PROC SQL;
SELECT MEAN(age)
 LABEL = 'Weighted' FORMAT=8.3,
 MEAN(DISTINCT age)
 LABEL = 'Unweighted' FORMAT=8.3
FROM teens
;
QUIT;

and it generates this result:

Weighted Unweighted

 14.250 14.500

The use of the keyword DISTINCT here opens the possibility for some confusion,
because we saw another usage for the same keyword in the previous chapter, in the
context SELECT DISTINCT (see Section 2.10). Recall that the earlier usage brought
about the elimination of duplicate rows, whereas the usage we have just introduced
eliminates duplicate values from entering into the computation of summary statistics.

Let’s see what happens if we attempt to exercise the row-oriented usage of DISTINCT to
solve our present problem. The code would be:

PROC SQL;
SELECT DISTINCT MEAN (age) LABEL='DISTINCT MEAN (age)'
FROM teens
;
QUIT;

and the output would be:

DISTINCT
 MEAN
 (age)

 14.25

46 PROC SQL by Example: Using SQL within SAS

To produce this result, the SQL processor first considers the vector of AGE values that it
gets from the source (the table TEENS). To see this vector, we can run the simple query:

PROC SQL;
SELECT age
FROM teens
;
QUIT;

which gives us:

 Age

 14
 13
 13
 14
 14
 15
 13
 14
 15
 16
 15
 15

There are 12 values of AGE here, from the 12 rows in the source. So the MEAN function
returns a single row containing the weighted mean (14.25), and only then does the
DISTINCT keyword go to work to eliminate duplicates. In this situation, however, there
are no duplicates to eliminate, and the result is the (incorrect) value 14.25.

Instead, we coded the keyword DISTINCT immediately before the function argument. This
caused the SQL processor to eliminate duplicates before averaging, rather than after. Thus,
the result of the mean computation was 14.5 (correct) rather than 14.25 (incorrect).

Of course, both usages of DISTINCT are useful. They just do different things, so it’s
important to pick the appropriate one for a particular task.

3.3 Preprocessing the Source with Inline
 Views

So far in this chapter we’ve seen two PROC SQL features (remerging of summary
statistics with detail and the DISTINCT restriction for summary statistics) that allow a
single PROC SQL statement to accomplish what might take two or more non-SQL steps.

Chapter 3: More Building Blocks 47

We now conclude the chapter by looking at the inline view, a tool that allows what would
otherwise be a multi-statement SQL process to be telescoped into a single SQL statement.

Preview: An inline view is a particular type of view. The subject of named views, and
views in general, is taken up in Chapter 10.

To illustrate the development and use of inline views, let’s continue with our example.
Suppose we now want to identify the largest cohort(s) in our population of teens. In other
words, at which age level (or levels, since ties are a possibility) are there the most
individuals?

Once again we can develop a non-SQL SAS solution by starting with our PROC FREQ
code to list the cohorts and their sizes. This time we invoke the ORDER=FREQ option so
that the cohorts will appear from largest to smallest (thus eliminating the need for a
subsequent PROC SORT step):

PROC FREQ DATA=teens NOPRINT ORDER=FREQ;
TABLES age / OUT=highlow(DROP=percent RENAME=(count=Many));
RUN;

This yields the HIGHLOW table (shown in Exhibit 3-7).

Exhibit 3-7 HIGHLOW

Now we use a DATA step to move through the observations until a decline is detected;
doing this ensures that ties will be included in the result. The code is:

DATA largest;
SET highlow;
IF many < LAG(many) THEN STOP;
RUN;

The resulting data set looks like Exhibit 3-8.

Age Many

14 4

15 4

13 3

16 1

48 PROC SQL by Example: Using SQL within SAS

Exhibit 3-8 LARGEST

Tip: In solving problems such as this, SQL tends to naturally admit ties, whereas
admitting ties tends to take a bit of extra effort with non-SQL SAS techniques. On the
other hand, when you want to ignore ties and select single “winners,” it’s non-SQL tools
that usually have the advantage.

So we’ve determined that the largest cohorts are the 14-year-olds and the 15-year-olds,
with 4 individuals in each group. It’s taken two steps to derive this result.

With techniques we’ve already seen, we can do the same thing in two SQL statements.
The first statement is:

PROC SQL;
CREATE TABLE temp AS
SELECT age,
 count(*) AS Many
FROM teens
GROUP BY age
;

This gets the cohort sizes. Exhibit 3-9 reflects the table TEMP.

Exhibit 3-9 TEMP

Age Many

14 4

15 4

Age Many

13 3

14 4

15 4

16 1

Chapter 3: More Building Blocks 49

Second, we extract the largest cohorts by running this code:

CREATE TABLE largest AS
SELECT *
FROM temp
HAVING many = MAX(many)
;
QUIT;

The MAX function returns the value 4 (corresponding to both AGE=14 and AGE=15).
The HAVING clause then performs comparisons with all the rows and finds the equality
condition to be true for (of course) the rows where AGE=14 or AGE=15. So the result,
seen in Exhibit 3-10, is identical to what we got when we avoided SQL.

Exhibit 3-10 LARGEST

The reason we needed two statements is that we needed one summary statistic (COUNT)
with grouping and another (MAX) without grouping. Any time the grouping
requirements for summary statistics are not the same, it’s impossible to simply call for
them in the same SELECT statement or clause.

Fortunately, SQL offers a way to integrate these two statements into one and thus avoid
parking intermediate results in a table. The device is called an inline view, and it is
implemented by having the source for one SELECT be a pair of parentheses containing
another SELECT (excluding any ORDER BY clause as well as the closing semicolon).

So we can take our second statement, which was:

CREATE TABLE largest AS
SELECT *
FROM temp
HAVING many = MAX(many)
;

Age Many

14 4

15 4

50 PROC SQL by Example: Using SQL within SAS

replace the name of the source table with a pair of parentheses:

CREATE TABLE largest AS
SELECT *
FROM ()
HAVING many = MAX(many)
;

then insert our first query:

SELECT age,
 count(*) AS Many
FROM teens
GROUP BY age

into the parentheses, giving us this to run:

PROC SQL;
CREATE TABLE largest AS
SELECT *
FROM (SELECT age,
 count(*) AS Many
 FROM teens
 GROUP BY age
)
HAVING many = MAX(many)
;
QUIT;

The results are the same as what we got from the two-statement solution; see, again,
Exhibit 3-9. In essence, the inline view is a preprocessor that reads the ultimate source
(table TEENS in this example) and performs SQL processing of the data before handing
it up to the outer query.

Tip: Inline views can be nested, so that the source for an inline view is another inline
view.

Chapter 3: More Building Blocks 51

3.4 Summary

In this chapter, we have added three tools to our collection. One is the remerging feature,
which automatically integrates aggregate data (produced by summary statistics) with
original detail. The second is the DISTINCT keyword, which is employed to eliminate
duplicate data before it is processed by a summary function. The third is the inline view,
which is a flexible tool for performing in one statement SQL processing that would
otherwise require multiple statements.

These three tools differ from those seen earlier in that their non-SQL SAS equivalents
require multiple steps. However, all of the techniques we’ve seen in this chapter and the
chapter preceding it have something in common: they process data from a single source.
Even the inline view usage we have seen has this characteristic, because it has just one
ultimate source.

In the next chapter and the two that follow it, we’ll look at SQL techniques for
integrating data from multiple sources.

52

C h a p t e r 4

Joins

4.1 Avoiding Ambiguity in Column References 54
4.2 The Simplest Merges and Joins 56
4.3 Matching with Nonrepeating 59
4.4 Matching with Repeating Keys 68
4.5 More about Joins and Merges 75
4.6 More about Joins 77
4.7 Summary 79

Each of the SQL statements we have examined so far has drawn data from a single
source. However, much of the power of SQL comes from its capacity to combine data
from two or more sources. In this chapter and the two that follow, we look at the SQL
features that integrate data. We begin in this chapter with joins, which are probably the
most heavily used SQL device for data integration.

Roughly speaking, the join is the SQL counterpart to the DATA step MERGE statement.
They both combine data from two (or more) tables or views, in a horizontal (side-by-
side) fashion. There are also many differences, and we devote most of this chapter to
comparisons and contrasts.

54 PROC SQL by Example: Using SQL within SAS

4.1 Avoiding Ambiguity in Column References

Combining data from multiple tables opens up the possibility of duplicate column names.
That has not been a problem up until now. We’ve been able to process statements like:

PROC SQL;
SELECT name
FROM sashelp.class
WHERE name='Jane'
;
QUIT;

without concern about NAME being ambiguous, because no two columns in a table can
have the same name. However, we can be more precise by coding:

PROC SQL;
SELECT class.name
FROM sashelp.class
WHERE class.name='Jane'
;
QUIT;

which makes it explicit that we want the column NAME from the table CLASS. We
don’t need that precision in this context; we’re just demonstrating its availability.

To be as explicit as possible, we might attempt to code:

PROC SQL;
SELECT sashelp.class.name
FROM sashelp.class
WHERE sashelp.class.name='Jane'
;
QUIT;

However, this three-part notation constitutes a syntax error and is not accepted. Instead,
we can use what is called an alias for the table, introduced by the keyword AS, as in:

PROC SQL;
SELECT s_h_c.name
FROM sashelp.class AS s_h_c
WHERE s_h_c.name='Jane'
;
QUIT;

Chapter 4: Joins 55

Again, this is not something that’s needed here, but the technique would be needed for a
join of two tables with the same name from two different libraries.

Preview: Using aliases also becomes necessary when joining a table with itself. We’ll
see later (in Section 13.2) that this is a very useful technique.

While we’re talking about techniques for referencing columns, we might as well deal
with problems that can arise when a new column is created by including a formula in the
SELECT statement.

Consider this code:

PROC SQL;
SELECT LOWCASE(name) AS name
FROM sashelp.class
WHERE name='jane';
;
QUIT;

We get this note in the log:

NOTE: No rows were selected.

We want the WHERE clause to examine our new NAME column, in which the uppercase
letters have been converted to lowercase. Instead, it is looking at the NAME column
found in the source table, which of course still has capitalization. Perhaps we can avoid
this difficulty by giving the new column a distinct name, as in:

PROC SQL;
SELECT LOWCASE(name) AS lowname
FROM sashelp.class
WHERE lowname='jane';
;
QUIT;

The result is:

ERROR: The following columns were not found in the
contributing tables: lowname.

This happens because of the order in which the SQL processor performs the internal steps
needed to derive the results of the SELECT statement. Such details are pretty much
hidden from us, and ordinarily are not matters of concern. However, in this case we have
to understand that evaluation of formulas in the SELECT list is one of the last operations.
A consequence is that the name assigned to our new column is not recognized if we try to

56 PROC SQL by Example: Using SQL within SAS

use it elsewhere in the statement. Fortunately there is a remedy: insertion of the keyword
CALCULATED before any reference to a new column’s name. So we can change the
code to:

PROC SQL;
SELECT LOWCASE(name) AS name
FROM sashelp.class
WHERE CALCULATED name='jane';
;
QUIT;

When we run this code we get the expected result:

Name

jane

4.2 The Simplest Merges and Joins

We begin our exploration of joins by setting up some very simple tables and using them
to demonstrate the simplest merges and joins. This will help us to see the essential nature
of joins and the essential difference between merges and joins.

To create the test tables we run:

DATA one;
DO Value1 = 11,12;
 OUTPUT;
 END;
RUN;
DATA two;
DO Value2 = 21,22,23;
 OUTPUT;
 END;
RUN;

Chapter 4: Joins 57

This produces the tables ONE (Exhibit 4-1):

Exhibit 4-1 ONE

and TWO (Exhibit 4-2):

Exhibit 4-2 TWO

We can merge these with this code:

DATA combined;
MERGE one two;
RUN;

This gives us the table shown in Exhibit 4-3.

Exhibit 4-3 COMBINED (from DATA step)

So we can see the essence of what the MERGE statement does: It combines data sets in a
side-by-side fashion and attempts to pair observations. Missing values arise when one of
the tables has fewer rows than the other. Here the result has three rows, that being the
larger of the populations of the source tables.

Value1

11

12

Value2

21

22

23

Value1 Value2

11 21

12 22

. 23

58 PROC SQL by Example: Using SQL within SAS

Reference: Read more about the MERGE statement in the SAS 9.2 Language Reference:
Dictionary and Sections 6.4 through 6.6 of The Little SAS Book (Fourth Edition).

In practice, the MERGE statement is usually used in conjunction with a controlling BY
statement. Usage without a BY statement, as in this example, is not common. We have
exercised it solely to draw a contrast between the MERGE statement and PROC SQL
joins.

So we proceed to join the same two tables:

PROC SQL;
CREATE TABLE combined AS
SELECT *
FROM one CROSS JOIN two
;
QUIT;

The keyword CROSS indicates that no conditions are being stipulated to control the join.
It thus constitutes the simplest type of join. The result is shown in Exhibit 4-4.

Exhibit 4-4 COMBINED (from PROC SQL)

We have again combined the two tables horizontally, but this time the rows have been
crossed to form what is called a Cartesian product. Each row in the first table is combined
with each row in the second. The result has six rows, that being the product of the
populations of the source tables.

So, both joins and merges combine data in a side-by-side fashion, typically producing
rows that are longer than those in the underlying tables. The fundamental difference is
found in the way individual rows are linked. Merges pair rows, so that one row from one
underlying table is combined with one row from the other underlying table. Joins cross
rows, so that one row from one underlying table is combined with each row from the
other underlying table. We will see that the two languages (SQL and the DATA step

Value1 Value2

11 21

11 22

11 23

12 21

12 22

12 23

Chapter 4: Joins 59

language) have features that let us control the behavior of merges and joins. Application
of such features, together with properties of the tables being joined, often makes it
possible for joins and merges to emulate each other despite their fundamental differences.

4.3 Matching with Nonrepeating Keys

In the examples we’ve seen thus far in this chapter, the linking of the rows from the two
tables has been performed according to rules built into the software (pairing for the
DATA step merge, Cartesian crossing for the SQL join). The linking did not in any way
involve inspecting the values of any of the variables. Such processing is useful for some
purposes, but more often what one needs is key columns; that is, columns whose values
will be matched, with the results of the comparisons controlling the linkage.

We’ll illustrate with an example, but first we must build two more tables:

DATA u1;
INPUT Key $ Value1;
CARDS;
A 11
B 12
;
DATA u2;
INPUT Key $ Value2;
CARDS;
C 23
A 21
;

The column named KEY, common to both tables, is our key. Notice that within each
table, there is no repetition of KEY values; each value (A or B or C) appears at most once
in each table. For much of this chapter we hold to this special case, as it simplifies things
a great deal, yet allows us to explore a lot of the behavior of joins. Later, we relax this
restriction and take a more general look at things.

Since DATA step merges require that data sets be sorted or indexed, we take care of that
right away:

PROC SORT DATA=u1 OUT=sorted1;
BY key;
RUN;
PROC SORT DATA=u2 OUT=sorted2;
BY key;
RUN;

60 PROC SQL by Example: Using SQL within SAS

We now have the tables SORTED1 (Exhibit 4-5):

Exhibit 4-5 SORTED1

and SORTED2 (Exhibit 4-6):

Exhibit 4-6 SORTED2

Symmetrically Inclusive Joins
We start with the simplest match merge (that is, a DATA step with a MERGE statement
controlled by a BY statement). The code is:

DATA combined;
MERGE sorted1 sorted2;
BY key;
RUN;

The result is the data set COMBINED, which looks like Exhibit 4-7.

Exhibit 4-7 COMBINED (from DATA step)

Because KEY=A appears in both source data sets (SORTED1 and SORTED2), the
respective observations are linked and the data from the satellite (non-key) variables are
brought together in a single observation. Thus the 11 and the 21 appear side-by-side. In

Key Value1

A 11

B 12

Key Value2

A 21

C 23

Key Value1 Value2

A 11 21

B 12 .

C . 23

Chapter 4: Joins 61

addition, the unmatched observations are carried into the result; hence the
characterization of the process as inclusive. This treatment applies to both sources
(KEY=B from SORTED1 and KEY=C from SORTED2); hence the characterization of
the process as symmetric. This is the default behavior of a DATA step merge.

Now let’s see how we can produce the same result with SQL. To start, consider this
statement:

PROC SQL;
SELECT *
FROM u1 FULL JOIN u2
ON u1.key = u2.key
;
QUIT;

Notice that we’re using U1 and U2 instead of the sorted counterparts (SORTED1 and
SORTED2). SQL does not require presorting, so it doesn’t matter.

This SELECT statement introduces two language elements we’ve not seen before. The
ON clause (which actually should be called a sub-clause, since it is subordinate to the
FROM clause) corresponds to the BY statement used with the DATA step MERGE
statement; it specifies the matching condition or conditions. Notice also that we have
prefixed the column names in the ON clause with table names to avoid ambiguity; this
two-part notation was explained earlier (see Section 4.1).

Tip: The ON clauses in examples in this chapter call for testing equality in like-named
columns. That greatly simplifies development of equivalent DATA step code (because
MERGE and BY statements always bring about equality-testing of like-named variables).
However, SQL is not restrictive in that way; an ON clause can contain just about any
expression that evaluates to true or false.

The FULL keyword instructs the SQL processor to include, in the output, those rows in
the inputs (U1 and U2 in this case) that do not meet the ON clause condition. Inclusion of
such unmatched data is not the default in PROC SQL, as it is in the DATA step.

Our statement generates this output:

Key Value1 Key Value2

A 11 A 21
B 12 .
 . C 23

62 PROC SQL by Example: Using SQL within SAS

We have the three rows we expect, one for the matched A rows and one each for the
mismatched B and C rows. The satellite columns, VALUE1 and VALUE2, appear just as
they do in the DATA step results. However, the KEY values have not been consolidated
in a single column; instead, there are two of them, one from U1 and one from U2.

Recall: The DATA step’s variable namespace does not permit repetition of a name, but
in PROC SQL such repetition is permissible (see Section 1.1).

We can accomplish the consolidation by using the COALESCE function to create a new
column, like this:

SELECT COALESCE(u1.key , u2.key) AS Key,
 *
FROM u1 FULL JOIN u2
ON u1.key = u2.key
;

The COALESCE function simply evaluates its arguments, in order, and returns as its
result the first one that is not a missing value. This gives us:

Key Key Value1 Key Value2
--
A A 11 A 21
B B 12 .
C . C 23

Now we actually have three columns named KEY (one from the source table U1, one
from U2, and one derived using the COALESCE function). That’s not inherently a
problem, and we can proceed to embed this query into a CREATE statement to store the
results, like this:

PROC SQL;
CREATE TABLE combined AS
SELECT COALESCE(u1.key , u2.key) AS Key,
 *
FROM u1 FULL JOIN u2
ON u1.key = u2.key
;
QUIT;

The new table (COMBINED) looks like Exhibit 4-8.

Chapter 4: Joins 63

Exhibit 4-8 COMBINED (from PROC SQL)

This is exactly the same as the output of our DATA step (see Exhibit 4-7). However, in
the log we see:

WARNING: Variable Key already exists
 on file WORK.SQL_COMBINED.
WARNING: Variable Key already exists
 on file WORK.SQL_COMBINED.

There are two warning messages, one for each column named KEY after the first. The
warnings arise because multiple columns with the same name can exist during SQL
processing, but cannot be stored. When an attempt is made to store such like-named
columns, only the first (left-most) is successfully stored; the others are rejected, as we’ve
just seen. So our consolidated KEY column, rather than either of the other KEY columns,
is stored in the new table only because we had the foresight to place it before the asterisk
in the SELECT clause; that’s not very dependable. Moreover, it’s pretty unrefined to
have those warnings in the log. So let’s make the SELECT list more explicit and avoid
these problems. The code becomes:

PROC SQL;
CREATE TABLE combined AS
SELECT COALESCE(u1.key , u2.key) AS Key,
 value1,
 value2
FROM u1 FULL JOIN u2
ON u1.key = u2.key
;
QUIT;

The output table, which was already correct before we made this improvement to the
code, is not affected.

Key Value1 Value2

A 11 21

B 12 .

C . 23

64 PROC SQL by Example: Using SQL within SAS

Asymmetric Joins
A join that admits unmatched rows is known as an outer join. The example we’ve just
completed admits such rows from both of the sources, and is for that reason called a full
join, which is one type of outer join. In the example we have been using, A is the only
value of KEY for which there is a match. B is found only in table U1, and C is found only
in table U2.

What if we need only the matched rows, plus the unmatched rows from the first or left
operand (source)? In our example, that would be the A and B rows. To do that in SQL,
we simply qualify the word JOIN with the word LEFT, just as we earlier used FULL as
the qualifier. Let’s see how such a SELECT statement works with our data. The code is:

PROC SQL;
SELECT *
FROM u1 LEFT JOIN u2
ON u1.key = u2.key
;
QUIT;

The result is:

Key Value1 Key Value2

A 11 A 21
B 12 .

We see that we have the expected rows. Because we used the asterisk notation in the
SELECT list, we get all of the columns that are encountered, including the KEY columns
from both U1 and U2. As in our earlier example, we want only one KEY column when
we store the results in a table. When we did a full join, we had to use the COALESCE
function to consolidate the KEY columns. In this example, however, that’s not necessary,
because the KEY column from U1 identifies all of the rows in the result. We just have to
make sure we include that KEY column and not the one from U2. So to save the results
in a table, we can run:

PROC SQL;
CREATE TABLE combined_left AS
SELECT u1.*,
 value2
FROM u1 LEFT JOIN u2
ON u1.key = u2.key
;
QUIT;

Chapter 4: Joins 65

Here we’ve combined the asterisk shortcut with the prefix (qualifier) U1. We thus get all
of the columns originating in U1. We complete the SELECT list by calling for VALUE2,
which needs no qualifier because it occurs in U2 only. The table looks like Exhibit 4-9.

Exhibit 4-9 COMBINED_LEFT

DATA step programmers know how to do the same thing with a MERGE statement. It
requires adding two elements to the code we used in the counterpart to the full join: a
data set option (IN=) to detect which KEY values occur in the left operand, and a
subsetting IF statement. Here is the code:

DATA combined_left;
MERGE sorted1(IN=in1) sorted2;
BY key;
IF in1;
RUN;

We use the sorted versions of the inputs because the match merge has to process key
values in order. The result is identical to that of the SQL left join (see Exhibit 4-9).

What if we want the “mirror-image” behavior, which would preserve all rows from the
right (second-named) table but only matching rows from the left table? The adaptation of
the code is pretty straightforward. In the DATA step we simply set up the filtering on the
second source data set instead of the first:

DATA combined_right;
MERGE sorted1 sorted2(IN=in2);
BY key;
IF in2;
RUN;

Key Value1 Value2

A 11 21

B 12 .

66 PROC SQL by Example: Using SQL within SAS

With SQL, it is basically just a matter of changing one word; we now preface JOIN with
RIGHT:

PROC SQL;
CREATE TABLE combined_right AS
SELECT u2.key,
 value1,
 value2
FROM u1 RIGHT JOIN u2
ON u1.key = u2.key
;
QUIT;

We’ve also composed the SELECT list a bit differently. In order to follow the convention
of placing the key column first, followed by the satellite columns from the first table and
then the satellite columns from the second table, we’ve foregone the convenience of the
asterisk and instead designated all of the columns explicitly.

Both the SQL right join and the DATA step code shown just before produce the same
table (shown in Exhibit 4-10).

Exhibit 4-10 COMBINED_RIGHT

Match MERGE versus INNER JOIN
Often it is appropriate to shed nonmatching rows from both sources. In SQL, this is
known as an inner join. So of course we use INNER in front of JOIN, as in:

PROC SQL;
SELECT *
FROM u1 INNER JOIN u2
ON u1.key = u2.key
;
QUIT;

Key Value1 Value2

A 11 21

C . 23

Chapter 4: Joins 67

Tip: The inner join is the default join type, so we actually could omit the word “inner”
and just code U1 JOIN U2.

This produces:

Key Value1 Key Value2

A 11 A 21

Both of the unmatched rows are excluded, so we have only the A row. As in the outer
joins that we explored earlier, we have two KEY columns. They are identical, which is
necessarily the case because the inner join excludes all of the rows where they differ. So
when we prepare to store the results in a table and want to avoid selecting two columns
with the same name, we can pick either one. One possibility is thus:

PROC SQL;
CREATE TABLE combined_inner AS
SELECT u1.*,
 value2
FROM u1 INNER JOIN u2
ON u1.key = u2.key
;
QUIT;

The table (COMBINED_INNER) looks like Exhibit 4-11.

Exhibit 4-11 COMBINED_INNER

Using the DATA step, we can accomplish the same thing by having filters on both sides
of the merge, as in:

DATA combined_inner;
MERGE sorted1(IN=in1) sorted2(IN=in2);
BY key;
IF in1 AND in2;
RUN;

The result is the same as that produced using the SQL inner join and presented in Exhibit
4-11.

Key Value1 Value2

A 11 21

68 PROC SQL by Example: Using SQL within SAS

Summary
At this point we’ve finished exploring the basic varieties of the join. We’ve worked
exclusively with tables in which key values do not repeat. In that special case, we’ve
been able to develop, for each join type (full, left, right, and inner), equivalent DATA
step code using the MERGE statement.

The default join type is the inner join, whereas merges by default are inclusive (that is,
they behave like full joins). As a consequence, we’ve seen that join code tends to be more
intricate for an outer join than it is for an inner join, whereas DATA steps reflect the
opposite circumstance: they can be pretty streamlined when they parallel full joins and
get more complicated, at least in appearance, when they are made functionally equivalent
to inner joins.

4.4 Matching with Repeating Keys

The key-controlled joins we’ve examined so far have been restricted to tables with
distinct (that is, nonrepeating) keys. We now look beyond that special case and see how
joins behave when keys can repeat.

Obviously, we need different example tables. The following code:

DATA m1;
INPUT Key $ Value1;
CARDS;
A 11.1
A 11.2
B 12.1
B 12.2
;

produces the data set shown in Exhibit 4-12.

Chapter 4: Joins 69

Exhibit 4-12 M1

This code:

DATA m2;
INPUT Key $ Value2;
CARDS;
A 21.1
A 21.2
A 21.3
C 23.1
C 23.2
;

produces the data set shown in Exhibit 4-13.

Exhibit 4-13 M2

We’ve constructed these tables with the KEY columns in ascending order so that we will
not have to bother with sorting to prepare the data for merging.

Key Value1

A 11.1

A 11.2

B 12.1

B 12.2

Key Value2

A 21.1

A 21.2

A 21.3

C 23.1

C 23.2

70 PROC SQL by Example: Using SQL within SAS

INNER JOIN
Let’s first take the DATA step code we developed to parallel the SQL inner join, and run
it against our new test data:

DATA many_inner;
MERGE m1(IN=in1) m2(IN=in2);
BY key;
IF in1 and in2;
RUN;

Looking at the log, we see:

NOTE: MERGE statement has more than one data set with
repeats of BY values.

The table MANY_INNER looks like Exhibit 4-14:

Exhibit 4-14 MANY_INNER

The data in tables M1 and M2 associated with KEY values of B and C are absent from
this result because they are filtered out by the subsetting IF statement. That leaves us with
only data for the KEY value A found in both M1 and M2. Because A repeats in both M1
and M2, the DATA step pairs off the rows.

We saw that same behavior at the start of this chapter (see Section 4.2), when we
experimented by running a DATA step merge in the absence of a BY statement. The only
thing new is that even though M1 has two A rows and M2 has three of them, there are no
missing values. Instead, the third row in our result in effect inherits the value 11.2 for
VALUE1 from the second row. This happens because the DATA step does not do its
reinitialization processing until the beginning of a new BY group. DATA step
programmers generally avoid this situation (repeating keys in more than one source data
set) because it usually does not produce useful or appropriate results.

Key Value1 Value2

A 11.1 21.1

A 11.2 21.2

A 11.2 21.3

Chapter 4: Joins 71

Next, we perform an inner join of these same tables:

PROC SQL;
SELECT *
FROM m1 INNER JOIN m2
ON m1.key = m2.key
;
QUIT;

This yields:

Key Value1 Key Value2

A 11.1 A 21.1
A 11.2 A 21.1
A 11.1 A 21.2
A 11.2 A 21.2
A 11.1 A 21.3
A 11.2 A 21.3

As in earlier examples, we see the columns from the first source (here M1), followed by
the columns from the second (M2). We can store the results in a table by placing the code
within a CREATE TABLE statement, with the SELECT list modified to include just one
of the two identical KEY columns, like this:

PROC SQL;
CREATE TABLE many_inner AS
SELECT m1.*,
 value2
FROM m1 INNER JOIN m2
ON m1.key = m2.key
;
QUIT;

We get the table we see in Exhibit 4-15.

72 PROC SQL by Example: Using SQL within SAS

Exhibit 4-15 MANY_INNER

Because it’s an inner join, there are no rows corresponding to nonmatching KEY values
(B and C). The rows that do match (that is, the A rows), have been crossed in Cartesian
fashion. Each VALUE1 (11.1, 11.2) is in a row with each VALUE2 (21.1, 21.2, 21.3).
This too is reminiscent of what we saw at the beginning of the chapter (see Section 4.2)
when we demonstrated the cross join.

So, when both tables have repeating keys, joins and merges produce fundamentally
different results, and there is essentially no way to manipulate their behavior to eliminate
the differences. This is territory where SQL and the DATA step are simply different.

However, if repetition of keys occurs in just one of the source tables, the SQL inner join
and the DATA step merge can be made to work equivalently. We can demonstrate by
merging U1 (in which keys do not repeat; see Exhibit 4-16)

Exhibit 4-16 U1

with M2 (which has repeating keys; see Exhibit 4-13). The code is:

DATA one_many_inner;
MERGE u1(IN=in1) m2(IN=in2);
BY key;
IF in1 AND in2;
RUN;

and it gives us the table seen in Exhibit 4-17.

Key Value1 Value2

A 11.1 21.1

A 11.2 21.1

A 11.1 21.2

A 11.2 21.2

A 11.1 21.3

A 11.2 21.3

Key Value1

A 11

B 12

Chapter 4: Joins 73

Exhibit 4-17 ONE_MANY_INNER

The subsetting IF statement excludes the nonmatching rows—that is, the B and C rows.
The one A row in U1 is paired with the first A row in M2, producing the first row in the
output. The other A rows in M2 are not paired, but they are included in the output and
inherit the 11 in the VALUE1 column.

Now we try doing an inner join with the same data. We run:

PROC SQL;
CREATE TABLE one_many_inner AS
SELECT u1.*,
 value2
FROM u1 INNER JOIN m2
ON u1.key = m2.key
;
QUIT;

The result is the same (see, again, Exhibit 4-17), but the process is different. The SQL
processor, like the DATA step, eliminates the nonmatching B and C rows. Then it crosses
the one A row in U1 with the three A rows in M2. Thus each row in the result is built
with an 11 in the VALUE1 column; there is no inheritance going on (there can’t be,
because SQL treats rows as an unordered set).

OUTER JOIN
There is not much to say about outer (FULL, LEFT, or RIGHT) joins when there are
repeating keys. Such joins work as they do when keys are distinct, in that unmatched
rows from either or both of the source tables (depending on the type of outer join) are
carried into the result. Let’s look at a one-to-many full join. We take our last example,
replace INNER with FULL, and adapt the SELECT list to use the COALESCE function
(which we’ve found to be necessary for full joins). Our code is:

Key Value1 Value2

A 11 21.1

A 11 21.2

A 11 21.3

74 PROC SQL by Example: Using SQL within SAS

PROC SQL;
CREATE TABLE one_many_outer AS
SELECT coalesce(u1.key, m2.key) AS Key,
 value1,
 value2
FROM u1 FULL JOIN m2
ON u1.key = m2.key
;
QUIT;

The result is shown in Exhibit 4-18.

Exhibit 4-18 ONE_MANY_OUTER (from PROC SQL)

The A rows are the same as those that appear in the inner join. In addition, we have the
unmatched rows from both U1 and M2, with nulls (missing values) arising where the
source tables do not provide values. All in all, the content of this table is for the most part
predictable. Notice that the rows are in an order that reflects no obvious rule. That is a
consequence of the internal operation of the SQL processor in evaluating the query; in the
absence of an ORDER BY clause, the processor is not obligated to deliver results in any
particular order.

We can devise an analogous DATA step. It is:

DATA one_many_outer;
MERGE u1 m2;
BY key;
RUN;

It yields the data set that appears in Exhibit 4-19.

Key Value1 Value2

A 11 21.3

A 11 21.1

A 11 21.2

B 12 .

C . 23.2

C . 23.1

Chapter 4: Joins 75

Exhibit 4-19 ONE_MANY_OUTER (from DATA step)

This differs from the SQL result only in the ordering of the rows.

4.5 More about Joins and Merges

The examples presented thus far in this chapter have been simplified in order to keep the
focus on the essential nature of joins and merges. Before concluding, we ought to
generalize a bit.

Three or More Sources
We have shown only cases where two data sets (tables) are combined. However, both
joins and merges can operate on three or more inputs. Here’s a DATA step example:

DATA from3;
MERGE sorted1 m1(RENAME=(value1=Tenths)) sorted2;
BY key;
RUN;

The output looks like Exhibit 4-20.

Key Value1 Value2

A 11 21.1

A 11 21.2

A 11 21.3

B 12 .

C . 23.1

C . 23.2

76 PROC SQL by Example: Using SQL within SAS

Exhibit 4-20 FROM3

Similarly, we can run this SQL code:

PROC SQL;
CREATE TABLE sql_from3 AS
SELECT u1.*,
 m1.value1 as Tenths,
 u2.value2
FROM (u1 JOIN m1 ON u1.key=m1.key)
 JOIN u2 ON u1.key=u2.key
;
QUIT;

It gives us the table in Exhibit 4-21.

Exhibit 4-21 SQL_FROM3

The two results differ because we’ve let the DATA step default to a merge that includes
unmatched observations, while we’ve let SQL default to an inner join (note the absence
of any join type specification before the word JOIN). Using techniques we’ve seen earlier
in this chapter, we could have made either program equivalent to the other.

Composite Keys
All of the matching we’ve done has been based on simple (single-column) keys.
However, both the DATA step and SQL support composite (multicolumn) keys. To
illustrate, suppose we were combining data from two tables, each of which covered many

Key Value1 Tenths Value2

A 11 11.1 21

A 11 11.2 21

B 12 12.1 .

B 12 12.2 .

C . . 23

Key Value1 Tenths Value2

A 11 11.1 21

A 11 11.2 21

Chapter 4: Joins 77

companies and many years. In the DATA step, we would simply name both of these
variables in the BY statement, as in:

BY company year;

assuming of course that both data sets were appropriately sorted. In doing an SQL join,
we would implement the composite key by imposing comparisons on both of the
columns, linked with an AND, giving us:

ON table1.company = table2.company AND
 table1.year = table2.year

where TABLE1 and TABLE2 are the names or aliases of the tables being joined.

4.6 More about Joins

We have now completed the side-by-side comparison of joins and merges, which is the
main purpose of this chapter. There are, however, a few more things to be said about
joins alone.

There are a couple of shortcuts, natural joins and implicit joins, that can be used. They
don’t let us do anything we could not do without them, but they streamline the coding
somewhat.

Natural Joins
The so-called natural join is a device that allows a lot of the specifications for a join to be
established by default, thus reducing the amount of explicit coding required. Basically, in
a natural join, all like-named columns are assumed to be keys to be matched. The natural
join automatically coalesces the values from these key columns and then discards the
original columns. No ON clause is needed.

Tip: To employ natural joins successfully, make sure that like-named columns are
compatible in terms of data type (character or numeric) and make sure that satellite
columns (those that are not to be matched) have distinctive names.

78 PROC SQL by Example: Using SQL within SAS

To illustrate, consider this statement, which appeared earlier in this chapter:

PROC SQL;
SELECT COALESCE(u1.key , u2.key) AS Key,
 value1,
 value2
FROM u1 FULL JOIN u2
ON u1.key = u2.key
;
QUIT;

This is an equivalent statement:

PROC SQL;
SELECT *
FROM u2 NATURAL FULL JOIN u1
;
QUIT;

Implicit Joins
For inner joins only, there is an alternative syntax that actually omits the word “join.”
Instead, it uses commas to imply the join action. It also omits the ON clause. The
matching conditions still have to be declared, but they are placed in the WHERE clause
(linked via AND with any other WHERE conditions that might be required).

To illustrate, consider the three-table join we presented a bit earlier:

PROC SQL;
SELECT u1.*,
 m1.value1 as Tenths,
 u2.value2
FROM (u1 JOIN m1 ON u1.key=m1.key)
 JOIN u2 ON u1.key=u2.key
;
QUIT;

It is equivalent to:

PROC SQL;
SELECT u1.*,
 m1.value1 as Tenths,
 u2.value2
FROM u1, m1, u2
WHERE u1.key=m1.key AND u1.key=u2.key
;
QUIT;

Chapter 4: Joins 79

The implicit version is a bit more streamlined, though the advantage is less obvious when
there are just two input tables.

Generality of Join Conditions
All of the joins we have demonstrated in this chapter (with the exception of the simple
cross join) have involved equality comparisons made on like-named keys. That is a
common arrangement, and it has advantages (as we have just seen in our look at the
natural join). The main reason we concentrated on that type of join was to enable us to
construct equivalent DATA step code; DATA step merges work exclusively with
equality matching, and BY statements do not accommodate naming differences. SQL is
far more flexible. Conditions declared in the ON clause are not limited to equality
comparisons and do not require corresponding, like-named columns. Any condition that
can be evaluated as true or false is suitable. For example, this is a perfectly sound ON
clause:

ON UPCASE(t1.aa) GT SUBSTR(t2.bb) OR t2.cc='##';

Tip: Joins based on equality conditions (called equijoins) tend to be more efficient. That
is, they often can be evaluated much more quickly than other joins. See Section 13.2 for
an example.

4.7 Summary

The SQL join, like the DATA step merge, is a tool for horizontal integration of data from
two or more sources. Both tools are usually (but not necessarily) used with key values to
specify matching requirements. When keys are not unique, joins and merges tend to
diverge in their behavior.

80

C h a p t e r 5

Subqueries

5.1 Contexts That Expect Subqueries 84
5.2 General Usage of Subqueries 93
5.3 Summary 95

In the last chapter, we explored at some length the ways that joins can combine
information from two (or more) sources. In this chapter we look at another device, the
subquery, which can also introduce information from an additional source.

We saw that in a join, the multiple source tables are introduced on a par. In contrast, a
subquery is, as the name suggests, a subordinate entity. This distinction is a bit abstract,
but the examples in this chapter should make it clear.

Tip: Joins and subqueries are not mutually exclusive. A query that uses a join can also
include subqueries. A subquery can even invoke a join.

82 PROC SQL by Example: Using SQL within SAS

What does a subquery look like? It is simply a SELECT clause with subordinate clauses
(FROM, WHERE, GROUP BY, and HAVING), all contained within a pair of
parentheses. So it might look like this:

(SELECT name FROM sashelp.class WHERE age>12)

This code should seem familiar, because syntactically it is exactly what we earlier called
an inline view (see Section 3.3). An inline view, however, replaces a table reference in a
FROM clause. Thus it does not introduce an additional source table; instead, it makes a
source indirect rather than direct. So if this construct (a SELECT clause within a pair of
parentheses) occurs as an operand in a FROM clause, it is an inline view; in other
contexts, it is a subquery. Another point of contrast is that a subquery can return only one
column.

As usual, we explore subqueries through examples and comparisons with DATA step
techniques.

To prepare data for these examples, we generate two tables. The first is a subset of
SASHELP.CLASS. The code is:

PROC SQL;
CREATE TABLE classgirls AS
SELECT *
FROM sashelp.class(RENAME=(name=FName))
WHERE sex='F'
;
QUIT;

The table CLASSGIRLS looks like Exhibit 5-1.

Chapter 5: Subqueries 83

Exhibit 5-1 CLASSGIRLS

Our second table is created by running:

DATA moregirls;
INPUT FName $ Age;
CARDS;
Susan 16
Jane 12
Abigail 13
Zelda 16
;

Exhibit 5-2 displays the result.

Exhibit 5-2 MOREGIRLS

FName Sex Age Height Weight

Alice F 13 56.5 84.0

Barbara F 13 65.3 98.0

Carol F 14 62.8 102.5

Jane F 12 59.8 84.5

Janet F 15 62.5 112.5

Joyce F 11 51.3 50.5

Judy F 14 64.3 90.0

Louise F 12 56.3 77.0

Mary F 15 66.5 112.0

FName Age

Susan 16

Jane 12

Abigail 13

Zelda 16

84 PROC SQL by Example: Using SQL within SAS

5.1 Contexts That Expect Subqueries

SQL includes some devices that are specifically designed to work with subqueries: the
EXISTS condition, and the ANY and ALL keywords (which are used in conjunction with
comparison operators). When those devices are used, SQL expects to see a subquery. In
contrast, in numerous contexts subqueries are allowed, but not required; we get to that
situation later in this chapter. Finally, there is the IN condition, a hybrid that is usually
used with a subquery but can also be used with a hardcoded list.

Let’s specify a task that we can perform with the DATA step or with PROC SQL, using
in turn each of the four devices: EXISTS, IN, ANY, and ALL. The task is to apply a
WHERE filter that will pass along the rows for those girls in the MOREGIRLS table who
are already in the CLASSGIRLS table. A quick glance at the tables tells us that the subset
in question includes Jane and only Jane, but we will (repeatedly) make SAS discover that.
The DATA step code should follow this form:

DATA already;
SET moregirls;
WHERE … ;
RUN;

and the SQL should look like this:

CREATE TABLE already AS
SELECT *
FROM moregirls
WHERE …
;

For the DATA step, the filter can be built with the PUT function and a format derived
from the CLASSGIRLS data set. We want the names from CLASSGIRLS to populate the
format, so we first build the data set expected by PROC FORMAT by running:

DATA cntl;
LENGTH label $ 1;
SET classgirls(RENAME=(fname=start)) end=last;
RETAIN label 'Y'
 fmtname 'ClassGirls'
 type 'c';
OUTPUT;

Chapter 5: Subqueries 85

IF LAST THEN DO;
 hlo='O';
 label=' ';
 OUTPUT;
 END;
RUN;

Reference: Read more about creating formats in the Base SAS 9.2 Procedures Guide:
Procedures: The FORMAT Procedure: Example 5: Creating a Format from a Data Set.

To actually establish the format, we run:

PROC FORMAT LIBRARY=work CNTLIN=cntl;
RUN;

Finally, we insert into the DATA step a WHERE statement containing a call to the PUT
function that in turn refers to our format. This restricts processing to the names in
MOREGIRLS that are already in CLASSGIRLS. The code is:

DATA already;
SET moregirls;
WHERE PUT(fname,$classgirls.)='Y';
RUN;

The output is shown in Exhibit 5-3.

Exhibit 5-3 ALREADY

Indeed, Jane is the only name in common.

Notice that we had to run two SAS steps (a DATA step and a PROC FORMAT step) just
to prepare, before we even turned to coding our WHERE statement. In contrast, SQL can
reference the lookup table directly within the WHERE condition and without such pre-
processing.

The EXISTS Condition
SQL provides a condition (similar to an operator), called EXISTS, which looks for a
subquery as its operand and returns a value of true (1) if evaluation of that subquery
returns one or more rows, or false (0) if evaluation of the subquery returns no rows. We

FName Age

Jane 12

86 PROC SQL by Example: Using SQL within SAS

can employ the EXISTS condition in a WHERE clause to perform the table lookup and
carry out the required filtering. The code is:

PROC SQL;
CREATE TABLE already AS
SELECT *
FROM moregirls
WHERE EXISTS
 (SELECT *
 FROM classgirls
 WHERE moregirls.fname=classgirls.fname
)
;
QUIT;

The result is a one-row table containing the name “Jane.” See, again, Exhibit 5-3.

We can trace the logic to see how this is derived. The processor first considers “Susan,”
because that is the FNAME value in the first row of MOREGIRLS. Should “Susan” be in
the results? That depends on the outer WHERE clause, which requires that we evaluate
the subquery found within the parentheses. To do this, the processor plugs “Susan” into
the subquery, making it:

(SELECT *
 FROM classgirls
 WHERE 'Susan'=classgirls.fname
)

Because “Susan” is not found in CLASSGIRLS, no rows from CLASSGIRLS satisfy the
subquery’s WHERE clause, and the subquery returns zero rows. As a consequence, the
EXISTS condition is false, so the “Susan” row of MOREGIRLS does not satisfy the
outer WHERE condition and is therefore excluded from the results.

The process is repeated for the “Jane” row of MOREGIRLS. In that case, the subquery
becomes:

(SELECT *
 FROM classgirls
 WHERE 'Jane'=classgirls.fname
)

Because “Jane” is in one row of CLASSGIRLS, the subquery returns one row and the
EXISTS condition is true. Consequently, the “Jane” row of MOREGIRLS satisfies the
outer WHERE clause and becomes part (actually all, as it turns out) of the main query’s
results.

Chapter 5: Subqueries 87

“Abigail” and “Zelda” are handled in the same fashion, and the results are the same as
they were for “Susan.” So the output table ALREADY contains just one row (for “Jane”).

This is fairly complicated internally. Because the subquery refers to the outer data source
(in this case via the table name MOREGIRLS), the subquery keeps changing as the
individual rows of MOREGIRLS are processed. For this reason it is termed a correlated
subquery.

Notice that we used the asterisk (*) shortcut in the subquery to select all of the columns
in CLASSGIRLS. The EXISTS condition provides the only usage of subqueries in which
a subquery can have more than one column. However, if we think about that a bit, we
realize that it does not matter. The EXISTS condition cares only about whether or not
there are any rows. It does not care about the columns. Moreover, the yield of this
subquery (the rectangular array of values that it contains) is not displayed, not passed to
the outer query, not stored for later use, and not used in any way. The EXISTS condition
only counts rows, and even then it only has to count up to one. Because it is only this
binary count that matters, we can place anything that is valid in the SELECT list. We
could recode our statement as:

PROC SQL;
CREATE TABLE already AS
SELECT *
FROM moregirls
WHERE EXISTS
 (SELECT 'Hello World'
 FROM classgirls
 WHERE moregirls.fname=classgirls.fname
)
;
QUIT;

and get the same results See, again, Exhibit 5-3. Note that unlike the typical “Hello
World” demonstration, this one never displays the greeting.

The IN Condition
SQL also has a condition, IN, which (unlike EXISTS) has two operands. If the value
provided by the first operand is among the (generally multiple) values provided by the
second operand, the condition is deemed to be true.

88 PROC SQL by Example: Using SQL within SAS

The IN condition offers a solution to the problem of constructing a WHERE clause
referencing CLASSGIRLS. The code is:

PROC SQL;
CREATE TABLE already AS
SELECT *
FROM moregirls
WHERE fname IN
 (SELECT fname
 FROM classgirls
)
;
QUIT;

The result, as before, is as shown in Exhibit 5-3.

Notice that the subquery does not reference any columns from the outer query.
Consequently, it only needs to be evaluated once. It is thus a noncorrelated subquery.

Tip: To see if a subquery is noncorrelated, try running it as a separate statement. Take the
code, excluding the container parentheses, and append a semicolon. Such a statement
derived from a correlated subquery will fail because of the undefined reference; code
from a noncorrelated subquery should work.

The behavior of the IN condition is pretty straightforward. It is satisfied if its first (left)
operand (here an FNAME value from the MOREGIRLS table) matches at least one of the
values in the second operand (the subquery). So, for example, when the SQL processor is
considering the second row of MOREGIRLS (the one containing “Jane”), it looks at the
list of names provided by the subquery, sees “Jane,” and therefore keeps the row. In the
cases of the other three rows of MOREGIRLS there is no such match, and the rows are
excluded.

Also notice the namespace separation. The column FNAME is in both tables
(MOREGIRLS and CLASSGIRLS), yet we are able to reference either column without
prefixing a table name or alias. The subquery and the outer query are separate contexts.
This is true of subqueries in general, and is not a consequence of the IN operator.

Unlike the EXISTS condition and the keywords ANY and ALL (discussed in the
following sections), the IN condition does not require a subquery. It can also work with a
list of constants. The syntax, for our example, would be:

PROC SQL;
CREATE TABLE already AS
SELECT *
FROM moregirls

Chapter 5: Subqueries 89

WHERE fname IN
 ('Alice ' , 'Barbara' , 'Carol ' ,
 'Jane ' , 'Janet ' , 'Joyce ' ,
 'Judy ' , 'Louise ' , 'Mary '
)
;
QUIT;

However, in most real-world applications, flexibility is served by keeping lists in tables
rather than hardcoding them in this fashion.

The ANY Keyword
The keyword ANY gives us yet another way of developing the WHERE clause for our
query. We can run this code:

PROC SQL;
CREATE TABLE already AS
SELECT *
FROM moregirls
WHERE fname = ANY
 (SELECT fname
 FROM classgirls
)
;
QUIT;

ANY supplements a comparison operator (in this case the equality operator). The
WHERE condition here is deemed to be true if it is true for at least one of the values
supplied by the subquery. So processing would begin with the name “Susan” from
MOREGIRLS. “Susan” is compared in turn with each name from CLASSGIRLS. In each
case the equality comparison is false, so the condition (= ANY) is false and the WHERE
clause therefore excludes “Susan” from the result set of the outer query. It then turns to
“Jane.” Because “Jane” is found in CLASSGIRLS, the equality is true for at least one
row of CLASSGIRLS, making the condition true. So “Jane” is in the result set, which
once again is as displayed in Exhibit 5-3.

ANY can be used with other comparison operators. To illustrate, we will for a moment
put aside our task and replace the equality operator in the SELECT clause we just
presented with a greater-than operator:

90 PROC SQL by Example: Using SQL within SAS

PROC SQL;
SELECT *
FROM moregirls
WHERE moregirls.fname > ANY
 (SELECT fname
 FROM classgirls
)
;
QUIT;

Now the process essentially amounts to considering each FNAME value from
MOREGIRLS and determining where it would fall if alphabetized with the list of names
from CLASSGIRLS. If it would appear first, then it is not greater than any of the names
from CLASSGIRLS, so the WHERE predicate would be false and the name would not be
in the result set. In our example, because the alphabetically first name in CLASSGIRLS
is Alice, that is the case only for Abigail. The other three names do result in hits from the
> ANY condition, so the result is:

FName Age

Susan 16
Jane 12
Zelda 16

Another way of viewing this result is to observe that the rows in the result are those with
FNAME values that are higher than “Alice,” the minimum (alphabetically first) FNAME
value in CLASSGIRLS.

Tip: Such comparisons can work with numeric values as well as with character values;
numeric comparisons simply involve magnitudes rather than alphabetical ordering.

The ALL Keyword
The keyword ALL, like ANY, works with a comparison operator and, as you might
guess, requires that the comparison be true for every row of the subquery, rather than for
just some rows. Conceivably, our example (filtering out names in MOREGIRLS that do
not match those in CLASSGIRLS) could be solved using ALL. The code would be
something like this:

PROC SQL;
CREATE TABLE already AS
SELECT *
FROM moregirls

Chapter 5: Subqueries 91

WHERE not(fname NE ALL
 (SELECT fname
 FROM classgirls
)
)
;
QUIT;

The double negation makes this pretty complicated. Clearly the code employing the ANY
keyword is more suitable.

However, just to see the operation of the ALL keyword, let’s substitute ALL for ANY in
the example with the greater-than comparison. That code becomes:

PROC SQL;
SELECT *
FROM moregirls
WHERE moregirls.fname > ALL
 (SELECT fname
 FROM classgirls
)
;
QUIT;

We can again think of the evaluation as a series of trial alphabetizations. This time we are
looking for names from MOREGIRLS that would appear at the end of the list of names
from CLASSGIRLS. Susan and Zelda qualify (because the alphabetically highest name
in CLASSGIRLS is Mary). Thus the result is:

FName Age

Susan 16
Zelda 16

Subqueries Outside the WHERE Clause
We’ve been looking at subqueries introduced by EXISTS, IN, ANY, and ALL. Such
subqueries yield Boolean (true/false) results, and are most often used in WHERE clauses.
That’s the usage we have been demonstrating as we have created filters to apply to rows
from MOREGIRLS. However, such subqueries actually can be used just about anywhere
where the result makes sense. Here’s an example:

92 PROC SQL by Example: Using SQL within SAS

PROC SQL;
SELECT *
FROM moregirls
ORDER BY fname IN
 (SELECT fname
 FROM classgirls
),
 fname
;
QUIT;

This is a very simple query, except for the ORDER BY clause. The first ORDER BY
item invokes the IN condition that we saw earlier. Because “Jane” is the only FNAME
value common to the two tables, it returns a value of true (1) for Jane’s row and false (0)
for the other rows in MOREGIRLS. Because the ordering is, by default, ascending,
“Jane” appears last; the other three names are alphabetized under the control of the
second ORDER BY item (FNAME).

Behind the scenes, the SQL processor builds a table resembling what we would get if we
ran:

CREATE TABLE behindscenes AS
SELECT fname IN
 (SELECT fname
 FROM classgirls
),
 *
FROM moregirls
;

It looks like Exhibit 5-4.

Exhibit 5-4 BEHINDSCENES

 FName Age

0 Susan 16

1 Jane 12

0 Abigail 13

0 Zelda 16

Chapter 5: Subqueries 93

This internal table is then sorted by the (unnamed) first column, with the FNAME values
as the tiebreaker. Then the first column is discarded and the results are displayed, so that
we see:

FName Age

Abigail 13
Susan 16
Zelda 16
Jane 12

5.2 General Usage of Subqueries

Up until now, we’ve been working with subqueries introduced by one or another of the
special devices EXISTS, IN, ANY, and ALL. In those contexts, it is permissible for the
subquery to return any number of rows; the logic that is in effect always reduces the
result to a single Boolean (true/false) value.

Subqueries can also be used, without the special devices, almost anywhere in SQL code
where you can use a scalar expression. However, such employment of a subquery works
correctly only if the subquery returns a scalar result (that is, a single column and no more
than one row). Recall that all subqueries (except those specified in an EXISTS condition)
are limited to one column, so that restriction is not new. What is new here is the
restriction to one row. To see why that is necessary, consider this query:

PROC SQL;
SELECT fname,
 age,
 (SELECT fname
 FROM classgirls
 WHERE moregirls.age = classgirls.age
 AND moregirls.fname ^= classgirls.fname
) AS SameAge
FROM moregirls
;
QUIT;

The intention is to find, for each FNAME/AGE pair in MOREGIRLS, the names of other
girls in CLASSGIRLS who are the same age. When we run the code, the log shows:

ERROR: Subquery evaluated to more than one row.
NOTE: Correlation values are: Age=13 FName='Abigail' .

94 PROC SQL by Example: Using SQL within SAS

Looking at the listing, we see:

FName Age SameAge

Susan 16
Jane 12 Louise

There are no results for Abigail, and none for Zelda either. Let’s try to see how this
happened.

The first row of MOREGIRLS is for Susan, age 16. There are no 16-year-old girls in
CLASSGIRLS, so the correlated subquery returns nothing and the third column of the
first row of results is null. The next row in MOREGIRLS is for Jane, age 12. In this case,
the subquery finds exactly one 12-year-old girl, Louise (there is a row for Jane herself in
CLASSGIRLS, but the second condition in the WHERE clause filters that out). So the
name “Louise” fits nicely, by itself, into the third column of the second row of output.

Next, the processor turns to Abigail, age 13. In this case, the subquery finds two girls the
same age (Alice and Barbara). This is a problem. Although the main query is going to
have many rows (one for each row of MOREGIRLS), each evaluation of the subquery is
supposed to fill the third column of just a single row. In other words, the subquery is
expected to provide a scalar value. Multiple values cannot be accommodated, hence the
ERROR message.

Note that this is a run-time error condition, not detectable until processing of the data is
under way. Nothing in the code can predict it, and indeed with different data in the two
tables, it might not arise. Also be aware that the results that are produced are incomplete.
We know this because the main source (MOREGIRLS) contains a fourth row, for Zelda;
but because processing halts when the error is detected, there is no corresponding row in
the results.

Clearly, this is a risky situation. It is good practice to avoid using a subquery that must
return scalar results unless you can guarantee that the subquery is compliant with this
restriction. There are basically two ways that you can be sure of compliance. One
technique involves properties of the data. For example, an appropriate integrity constraint
(a topic we consider later in Section 9.7) might prevent a subquery from returning
multiple rows. That approach is not suitable here; we do not want to constrain our table to
have just one girl of any particular age. The other technique focuses not on the data but
rather on the query, and involves the use of grouping and summary statistics to reduce
multiple rows to a single row. We can demonstrate this reduction technique by changing
the code we just used to:

Chapter 5: Subqueries 95

PROC SQL;
SELECT fname,
 age,
 (SELECT COUNT(*)
 FROM classgirls
 WHERE moregirls.age = classgirls.age
 AND moregirls.fname ^= classgirls.fname
 GROUP BY classgirls.age
) AS SameAge
FROM moregirls
;
QUIT;

Notice the COUNT keyword and the GROUP BY clause. Now the third column is to
report the number of girls of the same age as each girl in MOREGIRLS, and not their
individual names. This is by definition a scalar value, not a list. That’s enough to ensure
that the “evaluated to more than one row” error will not occur. The results are:

FName Age SameAge

Susan 16 .
Jane 12 1
Abigail 13 2
Zelda 16 .

Nulls (missing values) arise in places where there are no rows to count. We could refine
the query by employing the COALESCE function to transform these to zeroes.

5.3 Summary

A subquery is essentially a SELECT clause coded within another clause. There are two
types of subqueries, correlated and noncorrelated. A correlated subquery contains one or
more references to the outer query, and so must be evaluated separately for each row of
the outer query. A noncorrelated subquery has no such references and does not require
such re-evaluation.

96 PROC SQL by Example: Using SQL within SAS

Subqueries are often used with the EXISTS condition, with the IN condition, or
connected to a comparison operator via either the ANY or the ALL keyword. In these
contexts, subqueries might return multiple rows. Subqueries can be used elsewhere, but
only if it is certain that the subquery will return a single scalar value for each row of the
outer query.

C h a p t e r 6

Set Operators

6.1 The Contrast between Joins and Set Operators 98
6.2 Set Operators: Preview 99
6.3 Concatenation and Interleaving with OUTER UNION 104
6.4 Data Type Compatibility 110
6.5 Overview: UNION, INTERSECT, and EXCEPT 111
6.6 UNION 113
6.7 INTERSECT 123
6.8 EXCEPT 126
6.9 Summary 129

In the two previous chapters, we explored SQL joins and subqueries at some length.
These are the most widely used devices in SQL for combining data from multiple
sources. However, there is another technique. In this chapter we take up what are called
set operators.

98 PROC SQL by Example: Using SQL within SAS

Set operators are so designated because they are conceptually derived from mathematical
set theory. There are four set operators: UNION, INTERSECT, EXCEPT, and OUTER
UNION. There are also two options (ALL and CORRESPONDING) that affect the
behavior of the operators.

6.1 The Contrast between Joins and Set
 Operators

Before we delve into PROC SQL’s set operators, let’s establish some basic distinctions
between joins and set operators. This can be done with a simple example, starting with
the creation of two tiny tables. Here’s the code:

DATA a;
Aa = 1;
RUN;
DATA b;
Bb = 2;
RUN;

So each of these tables has one row and one column. We can use PROC SQL to combine
the two via a simple cross join:

PROC SQL;
SELECT *
FROM a CROSS JOIN b
;
QUIT;

If you recall what we saw in the explanation of joins (see Section 4.2), you should be able
to anticipate the result, which is:

 Aa Bb

 1 2

Chapter 6: Set Operators 99

Now, in contrast, we’ll look at the simplest form of the most widely used of the set
operators: UNION. The code to combine our two tables is:

PROC SQL;
(SELECT *
 FROM a)
UNION
(SELECT *
 FROM b)
;
QUIT;

Before we look at the effect of this statement (which is indeed a single statement,
terminated by a single semicolon), let’s look at the syntax and compare it to that of the
join. The parentheses are not actually necessary; they are included just to emphasize the
sequence in which operations are performed. Notice that UNION is inserted between two
SELECT clauses (each of which has, as it must, a subordinate FROM clause). A set
operator works on the results of two SELECT clauses. This is unlike a join, which is
implemented within the FROM clause of a single SELECT statement. So you cannot
simply substitute a UNION (or any other set operator) for a join; they operate at different
levels.

Now it’s time to look at the result:

 Aa

 1
 2

We see the two numeric values, this time arranged vertically rather than horizontally.
This reflects the fundamental difference between joins and set operators. Joins typically
align rows and accrete (that is, accumulate or collect) columns; set operators align
columns and (loosely speaking) accrete rows. This is something of an oversimplification,
of course. SQL is not a matrix language and provides relatively little symmetry between
rows and columns. So the contrast drawn here between joins and set operators is only a
conceptual foundation.

6.2 Set Operators: Preview

The behavior of the four set operators depends on characteristics of the data being
processed and on the options that are in effect. We go into these details at some length,
but only after we look at some simple examples that convey the essence of each operator.

100 PROC SQL by Example: Using SQL within SAS

First, we need some test data. Once again, we can use subsets of the SASHELP.CLASS
data set. If we run:

PROC SQL;
CREATE TABLE one AS
SELECT name as FName, weight, age
FROM sashelp.class
WHERE age<13 and LENGTH(name) GE 5
ORDER BY age, RANUNI(1)
;
CREATE TABLE two AS
SELECT name as FName, age, height
FROM sashelp.class
WHERE age<13 and LENGTH(name) LE 5
ORDER BY age, RANUNI(2)
;
QUIT;

we get ONE (see Exhibit 6-1):

Exhibit 6-1 ONE

and TWO (see Exhibit 6-2).

Exhibit 6-2 TWO

FName Weight Age

Thomas 85.0 11

Joyce 50.5 11

James 83.0 12

Robert 128.0 12

Louise 77.0 12

FName Age Height

Joyce 11 51.3

James 12 57.3

John 12 59.0

Jane 12 59.8

Chapter 6: Set Operators 101

Notice that the two tables have different columns, and that common columns are not
necessarily aligned in the same position (counting from left to right). Also notice the
overlap: names with exactly five letters appear in both tables. Finally, notice that random
numbers were used in the ORDER BY clause to shuffle the rows a bit.

Let’s go ahead and exercise the four set operators. To keep things simple for now, we call
for the same columns (FNAME and AGE) in the same order in our SELECT lists.

We start with the UNION operator. If we run:

PROC SQL;
SELECT fname, age
FROM one
UNION
SELECT fname, age
FROM two
;
QUIT;

we get this result:

FName Age

James 12
Jane 12
John 12
Joyce 11
Louise 12
Robert 12
Thomas 11

The result is inclusive in the sense that each NAME/AGE pair that appears in either
ONE or TWO appears in the result. However, duplicate rows (for James and Joyce) have
been eliminated.

Next we turn to INTERSECT:

PROC SQL;
SELECT fname, age
FROM one
INTERSECT
SELECT fname, age
FROM two
;
QUIT;

102 PROC SQL by Example: Using SQL within SAS

The logic here is exclusive; only rows that appear in both operands (that is, in the yields
of both SELECT clauses) appear in the final result:

FName Age

James 12
Joyce 11

Now consider the EXCEPT operator:

PROC SQL;
SELECT fname, age
FROM one
EXCEPT
SELECT fname, age
FROM two
;
QUIT;

EXCEPT is exclusive in a different way; the end result consists of rows that occur in the
first operand but not in the second:

FName Age

Louise 12
Robert 12
Thomas 11

Tip: Perhaps you’ve noticed that the UNION, INTERSECT, and EXCEPT results all
present the names in alphabetical order. That’s a side effect of the processing done to
derive the results. In the absence of an ORDER BY clause, the SQL processor can deliver
results in any order it finds convenient.

Finally, there is the OUTER UNION operator. When we run:

PROC SQL;
SELECT fname, age
FROM one
OUTER UNION
SELECT fname, age
FROM two
;
QUIT;

Chapter 6: Set Operators 103

we get this result:

FName Age FName Age

Thomas 11 .
Joyce 11 .
James 12 .
Robert 12 .
Louise 12 .
 . Joyce 11
 . James 12
 . John 12
 . Jane 12

We see that OUTER UNION is a most inclusive operator. It includes all of the columns
and makes no attempt at consolidation. All of the rows provided by the two SELECT
clauses, even the duplicate rows, are kept. Notice that the result has two columns named
FNAME and two named AGE. This situation is not unusual with the OUTER UNION
operator. SQL can manage repeating (nonunique) column names, but when we attempt to
store the results via a CREATE TABLE statement, SAS rules (as distinguished from SQL
rules) come into play and there is trouble. To demonstrate, we can run:

PROC SQL;
CREATE TABLE outer_union AS
SELECT fname, age
FROM one
OUTER UNION
SELECT fname, age
FROM two
;
QUIT;

The log reports:

WARNING: Variable FName already exists on file
 WORK.OUTER_UNION.
WARNING: Variable Age already exists on file
 WORK.OUTER_UNION.
NOTE: Table WORK.OUTER_UNION created, with 9 rows and 2
 columns.

The table looks like Exhibit 6-3.

104 PROC SQL by Example: Using SQL within SAS

Exhibit 6-3 OUTER_UNION

In each instance of like-named columns colliding, the first (leftmost) column prevails;
others are simply discarded. However, all of the rows are kept.

6.3 Concatenation and Interleaving with
 OUTER UNION

We’ve said nothing so far about parallels between SQL set operators and DATA step
techniques. That’s because not all of the PROC SQL set operators have DATA step
counterparts, and in some cases the DATA step counterparts are rather convoluted, or
only work under restricted conditions.

However, the OUTER UNION operator, with the CORRESPONDING option in effect,
does have a straightforward DATA step parallel. We can demonstrate that using the same
tables (ONE and TWO) we used for the last set of examples.

FName Age

Thomas 11

Joyce 11

James 12

Robert 12

Louise 12

 .

 .

 .

 .

Chapter 6: Set Operators 105

The two can be combined vertically (concatenated), in a DATA step by naming them
both in a single SET statement, as in:

DATA concat;
SET one
 two
 ;
RUN;

The result looks like Exhibit 6-4.

Exhibit 6-4 CONCAT (from DATA step)

The DATA step automatically combines data from like-named variables (FNAME and
AGE in this case). When, as with WEIGHT and HEIGHT, a variable turns up in one
input but not the other, missing values arise to complete the grid.

We saw earlier that the OUTER UNION operator by default does not align or consolidate
columns from the two operands. That’s where the CORRESPONDING option comes in.
It modifies this behavior by directing the SQL processor to align like-named columns.

FName Weight Age Height

Thomas 85.0 11 .

Joyce 50.5 11 .

James 83.0 12 .

Robert 128.0 12 .

Louise 77.0 12 .

Joyce . 11 51.3

James . 12 57.3

John . 12 59.0

Jane . 12 59.8

106 PROC SQL by Example: Using SQL within SAS

That’s what the DATA step just did for us, so we should be able to get the same results
from SQL by running:

PROC SQL;
CREATE TABLE concat AS
SELECT *
FROM one
OUTER UNION CORRESPONDING
SELECT *
FROM two
;
QUIT;

The new table (CONCAT) is shown in Exhibit 6-5.

Exhibit 6-5 CONCAT (from PROC SQL)

Indeed it is the same as the one generated by the DATA step. The order of the rows is
even the same, although since there is no ORDER BY clause in the SQL code, the SQL
processor is not obligated to deliver its results in any particular order.

The issue of row ordering also comes up if we attempt to find an SQL counterpart to an
interleaving DATA step. Interleaving produces the same results as concatenation except
for ordering of rows, and is implemented in the DATA step by including a BY statement
after the SET statement. ONE and TWO are already sorted by AGE, so we can interleave
by AGE:

FName Weight Age Height

Thomas 85.0 11 .

Joyce 50.5 11 .

James 83.0 12 .

Robert 128.0 12 .

Louise 77.0 12 .

Joyce . 11 51.3

James . 12 57.3

John . 12 59.0

Jane . 12 59.8

Chapter 6: Set Operators 107

DATA interleave;
SET one
 two
 ;
BY age;
RUN;

This produces the table displayed in Exhibit 6-6.

Exhibit 6-6 INTERLEAVE (from DATA step)

The table is the same as the one produced by concatenation, except for the ordering of the
rows. The observations are now grouped by AGE, the BY variable. Within each AGE
group, observations are separated by source (ONE versus TWO) with original order
preserved within each such subgroup; this arrangement is characteristic of interleaving.
It’s not so easy to emulate this process with SQL. We can try adding an ORDER BY
clause to our concatenation code, giving us:

PROC SQL;
CREATE TABLE interleave AS
SELECT *
FROM one
OUTER UNION CORRESPONDING
SELECT *
FROM two
ORDER BY age
;
QUIT;

That generates the table we see in Exhibit 6-7.

FName Weight Age Height

Thomas 85.0 11 .

Joyce 50.5 11 .

Joyce . 11 51.3

James 83.0 12 .

Robert 128.0 12 .

Louise 77.0 12 .

James . 12 57.3

John . 12 59.0

Jane . 12 59.8

108 PROC SQL by Example: Using SQL within SAS

Exhibit 6-7 INTERLEAVE (from PROC SQL)

The rows are arranged by AGE, but they are not subgrouped by source because there is
no way to specify that. We can accomplish that much by constructing queries that assign
sequence numbers, like this query:

PROC SQL;
SELECT *, 1 AS Suborder
FROM one
;
QUIT;

which generates this:

FName Weight Age Suborder

Thomas 85 11 1
Joyce 50.5 11 1
James 83 12 1
Robert 128 12 1
Louise 77 12 1

and this query:

PROC SQL;
SELECT *, 2 AS Suborder
FROM two
;
QUIT;

FName Weight Age Height

Thomas 85.0 11 .

Joyce . 11 51.3

Joyce 50.5 11 .

James . 12 57.3

James 83.0 12 .

Louise 77.0 12 .

Jane . 12 59.8

Robert 128.0 12 .

John . 12 59.0

Chapter 6: Set Operators 109

which gives us this:

FName Age Height Suborder

Joyce 11 51.3 2
James 12 57.3 2
John 12 59 2
Jane 12 59.8 2

Then we can make use of the added column (SUBORDER), before using a data set
option to eliminate it. The code is:

PROC SQL;
CREATE TABLE interleave(DROP=suborder) AS
SELECT *, 1 AS suborder
FROM one
OUTER UNION CORRESPONDING
SELECT *, 2 AS suborder
FROM two
ORDER BY age, suborder
;
QUIT;

The resulting table is as shown in Exhibit 6-8.

Exhibit 6-8 INTERLEAVE

The AGE groupings and source-based subgroupings are correct, but the ordering within
subgroups is not preserved (for example, now Robert follows Louise, even though Louise

FName Weight Age Height

Joyce 50.5 11 .

Thomas 85.0 11 .

Joyce . 11 51.3

James 83.0 12 .

Louise 77.0 12 .

Robert 128.0 12 .

James . 12 57.3

Jane . 12 59.8

John . 12 59.0

110 PROC SQL by Example: Using SQL within SAS

follows Robert in the source table, ONE). That is a side effect of the sorting induced by
the ORDER BY clause. In general, there is no SQL technique that precisely emulates
DATA step interleaving.

Tip: If you design tables to include sequence numbers (1, 2, 3, …) for individual rows,
you can use them to gain control over ordering of rows in SQL results.

6.4 Data Type Compatibility

The alignment of columns in these examples has worked smoothly because the aligned
columns have matched with respect to data type (numeric or character). Because column
alignment is an essential aspect of set operators, it’s worth exploring this a bit more. We
need some test data sets having deliberate type mismatches, so we run:

DATA num;
ProblemVar = 123;
RUN;
DATA char;
ProblemVar = 'abc';
RUN;

Notice that the data type of PROBLEMVAR is numeric in data set NUM, but character
in data set CHAR. So when we attempt a DATA step concatenation with:

DATA both;
SET num char;
RUN;

we encounter failure, with this log message:

ERROR: Variable ProblemVar has been defined as both
character and numeric.

Chapter 6: Set Operators 111

The new data set (BOTH) is created, but contains no observations. If we run the parallel
SQL code:

PROC SQL;
CREATE TABLE both AS
SELECT *
FROM num
OUTER UNION CORRESPONDING
SELECT *
FROM char
;
QUIT;

the log message is:

ERROR: Column 1 from the first contributor of OUTER
UNION is not the same type as its counterpart from the
second.

Unlike the DATA step, PROC SQL does not create even an empty table in this situation.

In attempting to align and consolidate columns, set operators assume that there is data
type compatibility. As we’ve just seen, when this assumption is violated, the
consequences are unfortunate. So, when set operators are used, the programmer must
make sure that aligned columns are compatible with respect to type.

6.5 Overview: UNION, INTERSECT, and
 EXCEPT

With the exception of the preview presented near the start of the chapter, we’ve been
working only with the OUTER UNION set operator and ignoring the other three
operators (UNION, INTERSECT, and EXCEPT). There are two reasons for this. First,
the OUTER UNION is the one set operator that has a direct parallel in the DATA step.
Second, there are more differences between the OUTER UNION operator and the other
three operators than there are among the other three operators.

The behavior of any of the set operators can be explained in the answers to four
questions:

1. How are columns aligned?

2. What is done with columns that are left over (that is, do not align)?

112 PROC SQL by Example: Using SQL within SAS

3. How are rows accreted?

4. Are duplicate rows allowed in the result?

Question #3 (dealing with the rule for accreting rows) is the one we addressed in the
preview (see Section 6.2). We saw that OUTER UNION and UNION behave similarly,
and that INTERSECT and EXCEPT differ in distinct ways. When it comes to the other
three questions, OUTER UNION stands apart and the other three operators (UNION,
INTERSECT, and EXCEPT) behave exactly alike.

Column Alignment
Recall (from Section 6.3) that OUTER UNION aligns columns by name if the
CORRESPONDING option is coded. The other three set operators share this feature.
However, in the absence of the CORRESPONDING option, OUTER UNION does no
alignment; in contrast, the default rule for UNION, INTERSECT, and EXCEPT is to
align by position. In other words, the leftmost or first-named column from the first
operand (SELECT clause) is aligned with the leftmost column from the second operand.

Leftover Columns
We saw that the OUTER UNION operator carries all columns forward into the result that
it produces, including even those columns that cannot be matched by name when the
CORRESPONDING option is used. That is the essence of “outerness.”

UNION, INTERSECT, and EXCEPT are different, and the behavior depends upon
whether the CORRESPONDING option is specified. If CORRESPONDING is in effect,
leftover columns (those that do not match by name) from either operand are shed and do
not appear in the result. If CORRESPONDING is not in effect, and if one operand
supplies more columns than the other, the extra columns are included in the result and
nulls (missing values) arise where necessary.

Row Accretion
UNION, like OUTER UNION, accepts those rows that appear in either operand (that is,
in the results produced by either SELECT clause). INTERSECT accepts those rows that
appear in both operands. EXCEPT accepts rows that appear in the first operand but are
absent in the second.

Chapter 6: Set Operators 113

Duplicate Rows
OUTER UNION results preserve all rows. The UNION, INTERSECT, and EXCEPT
operators by default purge duplicate rows (although the optional ALL keyword can be
used to prevent this).

Conclusion
Taken together, the shared characteristics of the UNION, INTERSECT, and EXCEPT set
operators limit the extent to which equivalent processes can be simply coded using the
DATA step. This is another point of contrast with the OUTER UNION operator.

In the sections that follow, the behavior of the UNION, INTERSECT, and EXCEPT set
operators is illustrated through examples. Because UNION is probably the most widely
used and shares many similarities with the others, it is covered first and most extensively.
Then the distinctive characteristics of INTERSECT and EXCEPT are presented.

6.6 UNION

We begin looking at the UNION operator by using both the ALL and
CORRESPONDING options. This yields the form of UNION that most closely resembles
the OUTER UNION CORRESPONDING that we examined earlier. To demonstrate, still
using as our data sources tables ONE (Exhibit 6-1) and TWO (Exhibit 6-2), we run:

PROC SQL;
CREATE TABLE unionallcorr AS
SELECT *
FROM one
UNION ALL CORRESPONDING
SELECT *
FROM two
;
QUIT;

This yields the table shown in Exhibit 6-9.

114 PROC SQL by Example: Using SQL within SAS

Exhibit 6-9 UNIONALLCORR

Tables ONE and TWO have columns FNAME and AGE in common, so those are the
columns that emerge in this result. Note that the data from the two AGE columns are
properly combined in a single column, even though AGE is the third column in ONE and
the second column in TWO. Each source also had an additional column (WEIGHT in
ONE and HEIGHT in TWO), but these are eliminated by the UNION operator because
their names do not match; that is the rule when CORRESPONDING is specified.

The ALL keyword prevents the UNION operator from eliminating duplicate rows. That’s
why we have a row for 11-year-old Joyce from ONE and another from TWO, and similar
repetition for 12-year-old James. If we omitted ALL, we would not see such duplication.

Tip: If the ALL option were not coded in this example, the rows would be ordered
differently, as a side effect of the process that detects duplicates. Generally, when you
know that there are no duplicate rows, coding ALL can speed up processing by avoiding
the search for duplicates.

FName Age

Thomas 11

Joyce 11

James 12

Robert 12

Louise 12

Joyce 11

James 12

John 12

Jane 12

Chapter 6: Set Operators 115

Next, let’s eliminate the CORRESPONDING option and investigate the alternative
column alignment rule that then takes effect. Here is the code:

PROC SQL;
CREATE TABLE unionall AS
SELECT *
FROM one
UNION ALL
SELECT *
FROM two
;
QUIT;

The result is reflected in Exhibit 6-10.

Exhibit 6-10 UNIONALL (wrong)

It would appear that there are a number of implausibly lightweight, middle-aged students.
What has happened, of course, is that in the absence of the CORRESPONDING option,
the columns were aligned by position rather than by name (recall that the second column
in table TWO is AGE and the third column is HEIGHT).

Don’t conclude that omitting the CORRESPONDING keyword always leads to trouble.
That was the case here because the column naming was consistent, whereas the column
ordering was not. In other situations the opposites might be true. Whenever the asterisk
(*) is used in either or both of the SELECT clauses, the column alignment is to some
extent implicit, and the appropriateness of the result will depend on consistency of table
organization. Remember that you can always use explicit SELECT lists to control

FName Weight Age

Thomas 85.0 11.0

Joyce 50.5 11.0

James 83.0 12.0

Robert 128.0 12.0

Louise 77.0 12.0

Joyce 11.0 51.3

James 12.0 57.3

John 12.0 59.0

Jane 12.0 59.8

116 PROC SQL by Example: Using SQL within SAS

precisely the column alignment. For example, the last example could be fixed by
changing the code to:

PROC SQL;
CREATE TABLE unionall AS
SELECT fname, age
FROM one
UNION ALL
SELECT fname, age, height
FROM two
;
QUIT;

That gives us the table shown in Exhibit 6-11.

Exhibit 6-11 UNIONALL (right)

FNAME is specified first in each operand, and AGE second; consequently, we get
appropriate alignment for those two columns. The HEIGHT column emerges third, even
though the first operand has only two columns. The log tells us:

WARNING: A table has been extended with null columns to
perform the UNION ALL set operation.

Tip: A SELECT list can include constants and expressions in addition to column names
(see Section 2.5), so we could avoid the warning message about null columns by
appending “, . AS Height” to the first SELECT list.

FName Age Height

Thomas 11 .

Joyce 11 .

James 12 .

Robert 12 .

Louise 12 .

Joyce 11 51.3

James 12 57.3

John 12 59.0

Jane 12 59.8

Chapter 6: Set Operators 117

The alignment of columns by position has no counterpart in the DATA step. When the
DATA step’s SET statement is used to concatenate or interleave data sets, variables
originating in different data sets are aligned strictly by name. The DATA step also lacks a
mechanism for automatically eliminating variables that do not align. Instead, by default,
all variables survive, with missing values arising where source data sets do not supply
values. All this is another way of saying, again, that the behavior of the DATA step
parallels that of PROC SQL’s OUTER UNION operator with the CORRESPONDING
option, and not any flavor of the simple UNION operator. This is not to say that it’s
impossible to develop DATA step code that emulates UNION’s column alignment rules,
but such code is likely to be intricate, involving complexities such as systematic
renaming of variables. Because this book is primarily about SQL, we do not pursue that
endeavor.

At this point we have pretty much covered column alignment issues. On the other hand,
the example we have been using does not fully illustrate the issues and exercise the
features pertaining to row accretion. So now we introduce a new example. It involves two
tables; the first is named ABC and looks like Exhibit 6-12.

Exhibit 6-12 ABC

The second is named AB and looks like Exhibit 6-13.

ID Code

 1 aa

 1 aa

 1 bb

 1 bb

 1 bb

 1 bb

 1 cc

 1 cc

118 PROC SQL by Example: Using SQL within SAS

Exhibit 6-13 AB

These two tables can be generated with this code:

DATA ABC;
RETAIN ID 1;
DO CODE = 'aa','aa',
 'bb','bb','bb','bb',
 'cc','cc';
 OUTPUT;
 END;
RUN;
DATA ab;
RETAIN ID 1;
DO CODE = 'aa','aa','aa',
 'bb','bb';
 OUTPUT;
 END;
RUN;

Because the two tables have columns that agree in name, type, and position, we can use
the asterisk shorthand notation in the SELECT list and know that the columns will align
appropriately, whether or not the CORRESPONDING option is invoked. In other words,
we have a special case in which column alignment is not an issue. That helps us, in the
following examples, to focus on the issues surrounding row accretion. It also allows us to
construct DATA steps that are equivalent to the SQL set operators (something we’ve
already concluded to be highly complicated when column alignment is an issue).

Notice that tables ABC and AB are already sorted. That was done just to simplify DATA
step examples by eliminating the need for PROC SORT steps. For PROC SQL, the
ordering of the rows does not matter.

ID Code

 1 aa

 1 aa

 1 aa

 1 bb

 1 bb

Chapter 6: Set Operators 119

Let’s start the exploration of row accretion by examining the effect of the ALL option.
It’s a negative option, in the sense that coding it causes PROC SQL to not do something
(purge duplicates) that it would otherwise do by default. So the query:

PROC SQL;
CREATE TABLE unionall AS
SELECT *
FROM abc
UNION ALL
SELECT *
FROM ab
;
QUIT;

has as its result the table seen in Exhibit 6-14.

Exhibit 6-14 UNIONALL (from PROC SQL)

This is simply the concatenation of the two sources (tables ABC and AB). Of course, the
ordering is incidental, since no ORDER BY clause was coded. The significant thing is the
number of times each distinct row appears. The accretion rule for the UNION operators is
that a row appears in the result if it appears in either source. When the ALL option is

ID Code

 1 Aa

 1 Aa

 1 Bb

 1 Bb

 1 Bb

 1 Bb

 1 Cc

 1 Cc

 1 Aa

 1 Aa

 1 Aa

 1 Bb

 1 Bb

120 PROC SQL by Example: Using SQL within SAS

used, the number of times it appears is the sum of its populations in the two sources. That
is, if F represents the number of times a distinct row appears in the first source (the result
of the first SELECT clause) and S represents the count from the second source, the row
will appear F+S times in the result. Thus, because the 1/bb pair appears four times in
ABC and twice in AB, it appears six times in the UNION. Note that this is also the row
accretion rule used by the OUTER UNION operator.

Now let’s see what happens when the ALL keyword is removed. If we run:

PROC SQL;
CREATE TABLE union AS
SELECT *
FROM abc
UNION
SELECT *
FROM ab
;
QUIT;

the result is the table seen in Exhibit 6-15.

Exhibit 6-15 UNION (from PROC SQL)

As stated earlier, in the absence of the ALL option, the duplicate rows are purged. This
process is performed after the rows from the two sources are pooled (if it were
performed before, there could still be pairs of identical rows in the result).

The UNION operator is commutative, meaning that the results are not changed (except
for row order) if the two operands are interchanged. However, in some situations (though
not in our present example) column names and other attributes could be affected by such
a switch.

ID Code

 1 aa

 1 bb

 1 cc

Chapter 6: Set Operators 121

We’ve already concluded that there is no reasonably simple way to fully emulate the
UNION operator using the DATA step, because the column alignment rules are different.
But if we focus just on the matter of row accretion, we can certainly achieve the simple
concatenation, as in this code:

DATA unionall;
SET abc ab;
RUN;

which produces the same result as the SQL set operator UNION ALL (see Exhibit 6-14).
Adding this PROC SORT step:

PROC SORT DATA=unionall OUT=union NODUPRECS;
BY _ALL_;
RUN;

eliminates duplicate records, thus yielding the same result as the UNION without the
ALL option (see Exhibit 6-15).

Reference: Read more about PROC SORT in the Base SAS 9.2 Procedures Guide:
Procedures: The SORT Procedure, or in The Little SAS Book (Fourth Edition): Section
4.3.

We can also use the MERGE statement as the basis of emulation. It is a little less
obvious, but we’ll illustrate it here because it is a good foundation for developing DATA
step counterparts for the INTERSECT and EXCEPT operators.

Because ABC and AB are in the appropriate sort order, this DATA step:

DATA union;
MERGE abc(IN=in_abc) ab(IN=in_ab);
BY id code;
IF FIRST.code and (in_abc or in_ab);
RUN;

could be run to generate the three distinct rows that constitute the UNION result. Here is
a diagram representing the process:

122 PROC SQL by Example: Using SQL within SAS

Note that each cell in this diagram represents a row of data.

The UNION ALL is a bit harder to emulate, but it can be done with this code:

DATA unionall;
in_abc = 0;
in_ab = 0;
MERGE abc(IN=in_abc) ab(IN=in_ab);
BY id code;
IF in_abc THEN OUTPUT;
IF in_ab THEN OUTPUT;
RUN;

The two assignment statements manipulate the variables that are otherwise maintained by
the IN= data set options. This is somewhat advanced DATA step programming, and
tracking through the details is beyond the scope of this book. However, we can consider
this diagram:

The asterisks represent places that would have given rise to “phantom” rows had we not
explicitly reinitialized the IN= flags. There are two groups of result rows, corresponding
to the two OUTPUT statements. The data set (UNIONALL) that emerges is shown in
Exhibit 6-16.

ABC AB Result
1|aa 1|aa 1|aa
1|aa 1|aa

 1|aa
1|bb 1|bb 1|bb
1|bb 1|bb
1|bb
1|bb
1|cc 1|cc
1|cc

ABC AB Result
1|aa 1|aa 1|aa 1|aa
1|aa 1|aa 1|aa 1|aa

* 1|aa 1|aa
1|bb 1|bb 1|bb 1|bb
1|bb 1|bb 1|bb 1|bb
1|bb * 1|bb
1|bb * 1|bb
1|cc 1|cc
1|cc 1|cc

Chapter 6: Set Operators 123

Exhibit 6-16 UNIONALL (from DATA step using MERGE)

It is the same as the SQL UNION ALL result, except for the order of the rows. That’s not
surprising, since we’re using a merge process here, whereas the SQL UNION does a
simple concatenation. It’s as close as we can come without making the code even more
complicated.

6.7 INTERSECT

We turn now to the INTERSECT operator. With regard to column alignment, it behaves
precisely as the UNION operator does, so we don’t repeat those details here. Instead, we
concentrate on the row accretion process, where we find a distinction: whereas the
UNION operator accepts rows that appear in either source, INTERSECT accepts only

ID Code

 1 aa

 1 aa

 1 aa

 1 aa

 1 aa

 1 bb

 1 bb

 1 bb

 1 bb

 1 bb

 1 bb

 1 cc

 1 cc

124 PROC SQL by Example: Using SQL within SAS

those rows that appear in both sources. Once again, we demonstrate first with the ALL
option in effect, as in this code:

PROC SQL;
CREATE TABLE intersectall AS
SELECT *
FROM abc
INTERSECT ALL
SELECT *
FROM ab
;
QUIT;

Before looking at the result, let’s try to sketch what the SQL processor has been asked to
do.

Basically, each row that appears in the first operand and again in the second becomes part
of the result. Moreover, such pairs can repeat, placing duplicate rows in the result.
Specifically, if F represents the number of times a particular row appears in the first
source (the result of the first SELECT clause) and S represents the count from the second
source, the row will appear MIN(F,S) times in the result.

So the output table is as shown in Exhibit 6-17.

Exhibit 6-17 INTERSECTALL

ABC AB Result
1|aa 1|aa 1|aa
1|aa 1|aa 1|aa

 1|aa
1|bb 1|bb 1|bb
1|bb 1|bb 1|bb
1|bb
1|bb
1|cc
1|cc

ID Code

 1 aa

 1 aa

 1 bb

 1 bb

Chapter 6: Set Operators 125

Our diagram also suggests how a DATA step might be coded to yield the same result:

DATA intersectall;
in_abc = 0;
in_ab = 0;
MERGE abc(IN=in_abc) ab(IN=in_ab);
BY id code;
IF in_abc AND in_ab;
RUN;

Turning back to SQL and the INTERSECT operator, if we remove the ALL option,
leaving the query as:

PROC SQL;
CREATE TABLE intersect AS
SELECT *
FROM abc
INTERSECT
SELECT *
FROM ab
;
QUIT;

the duplicates are removed and the result is what we see in Exhibit 6-18.

Exhibit 6-18 INTERSECT

Our diagram of the process looks like this:

ID Code

 1 aa

 1 bb

ABC AB Result
1|aa 1|aa 1|aa
1|aa 1|aa

 1|aa
1|bb 1|bb 1|bb
1|bb 1|bb
1|bb
1|bb
1|cc
1|cc

126 PROC SQL by Example: Using SQL within SAS

Here’s the DATA step that produces the same output:

DATA intersect;
MERGE abc(IN=in_abc) ab(IN=in_ab);
BY id code;
IF FIRST.code AND in_abc AND in_ab;
RUN;

Like the UNION operator, INTERSECT is commutative. The positions of the operands
can be switched without affecting the content of the result.

6.8 EXCEPT

Finally, we consider the EXCEPT operator. With regard to column alignment, it too
behaves just as the UNION operator does, so we don’t repeat those details here. The
EXCEPT operator’s accretion rule is to preserve any row that appears in the first operand
(SELECT clause), but is not matched in the second. Another way of saying this is that
rows are taken from the first operand unless they are “canceled” by virtue of appearance
in the second operand. To illustrate first with the ALL option in effect, this code:

PROC SQL;
CREATE TABLE exceptall AS
SELECT *
FROM abc
EXCEPT ALL
SELECT *
FROM ab
;
QUIT;

gives us the result shown in Exhibit 6-19.

Exhibit 6-19 EXCEPTALL

ID Code

 1 bb

 1 bb

 1 cc

 1 cc

Chapter 6: Set Operators 127

The diagram looks like this:

If F represents the number of times a particular row appears in the first source (the result
of the first SELECT clause) and S represents the count from the second source, the row
will appear MAX(0,F-S) times in the result.

Once again, we can adapt our DATA step to yield the same result. The code is now:

DATA exceptall;
in_abc = 0;
in_ab = 0;
MERGE abc(IN=in_abc) ab(IN=in_ab);
BY id code;
IF in_abc AND NOT in_ab;
RUN;

If we remove the ALL option from the SQL code, leaving the query as:

PROC SQL;
CREATE TABLE except AS
SELECT *
FROM abc
EXCEPT
SELECT *
FROM ab
;
QUIT;

the result is the table displayed in Exhibit 6-20.

ABC AB Result
1|aa 1|aa
1|aa 1|aa

 1|aa
1|bb 1|bb
1|bb 1|bb
1|bb 1|bb
1|bb 1|bb
1|cc 1|cc
1|cc 1|cc

128 PROC SQL by Example: Using SQL within SAS

Exhibit 6-20 EXCEPT

The duplicates are removed before rows from the two sources are paired and canceled.
So the diagram is a bit more involved than in the other situations we have represented. It
looks like this:

The processor first removes duplicate rows within each operand. The result of that step is
represented in the center of the diagram. Then the matching is done.

The equivalent DATA step code is:

DATA except;
MERGE abc(IN=in_abc) ab(IN=in_ab);
BY id code;
IF FIRST.code AND in_abc AND NOT in_ab;
RUN;

Unlike UNION and INTERSECT, EXCEPT is not commutative. Switching the operands
changes the result. To illustrate, we run:

PROC SQL;
SELECT *
FROM ab
EXCEPT ALL
SELECT *
FROM abc
;
QUIT;

ID Code

 1 cc

ABC AB Distinct Result
1|aa 1|aa 1|aa 1|aa
1|aa 1|aa

 1|aa
1|bb 1|bb 1|bb 1|bb
1|bb 1|bb
1|bb
1|bb
1|cc 1|cc 1|cc
1|cc

Chapter 6: Set Operators 129

which gives us:

 ID Code

 1 aa

Without the ALL option, the result set would be empty (zero rows).

6.9 Summary

Set operators complement joins and subqueries by providing other ways of combining
data from multiple sources. Typically, set operators perform end-to-end (vertical)
combinations, in contrast to the side-by-side (horizontal) combinations that result from
joins.

The OUTER UNION operator in a number of ways resembles the operation of a SET
statement that processes two data sets in a DATA step. The other three set operators
(UNION, INTERSECT, and EXCEPT) differ in nature from the OUTER UNION
operator. They also differ from each other in terms of the set-theoretic rules they
implement, but resemble one another in terms of their mechanics. UNION, INTERSECT,
and EXCEPT do not have simple DATA step counterparts, though in special cases some
emulation can be programmed.

130

C h a p t e r 7

Global Statements, Options, and Session
Management

7.1 Global Statements 133
7.2 PROC SQL Options 136
7.3 Summary 139

In the preceding chapters, we explored most of the features of the SELECT statement.
One thing we have not yet discussed is the ways in which their behavior is conditioned by
global statements and by SQL procedure options.

Global statements are those that can appear either within a SAS step or between steps. In
either case, they take effect immediately and remain in effect for the duration of the job
or session, unless overridden by subsequent global statements. The TITLE statement is a
good, commonplace example. Global statements typically have the same effects on
PROC SQL as they have on other parts of SAS, so we don’t bother to enumerate or
discuss them individually. What is different, however, is the way their position in the
code stream within a PROC SQL step affects their interaction with SQL statements;
that’s the one aspect of global statements we examine in this chapter.

132 PROC SQL by Example: Using SQL within SAS

Reference: Read more about global statements in the SAS 9.2 Language Reference:
Dictionary: Dictionary of Language Elements: Statements: Global Statements.

SAS has at least four types of options:

 system options, which, unless explicitly changed or nullified, remain in effect for
the duration of a job or session

 data set options, which are syntactically bound to data set references

 procedure options, which are typically coded on the PROC statement and apply
to the procedure step as an entity

 statement-specific options

The different scopes of the four types of options can make things a little more confusing.
System options and data set options operate with PROC SQL pretty much as they do with
other parts of SAS, so we do not take them up here. PROC SQL statements have no
statement-specific options.

Reference: Read more about system options and data set options in The Little SAS Book
(Fourth Edition): Sections 1.14 (system options) and 6.11 (data set options).

That leaves us with the procedure options as a topic for consideration in this chapter. We
don’t enumerate and explain them; that’s a job better left to the documentation. We do,
however, illustrate their use and management.

Reference: The available PROC SQL options are listed and explained in the Base SAS
9.2 Procedures Guide: Procedures: The SQL Procedure: Syntax: SQL Procedure: PROC
SQL Statement.

Recall that PROC SQL, unlike most parts of SAS, completely processes each statement
(such as SELECT or CREATE) before even beginning to analyze the next statement.
That characteristic has important implications for global statements that appear within
PROC SQL steps, and for PROC SQL options.

In the previous chapters, most of the SQL code examples revolve around single
statements (usually SELECT or CREATE statements), each preceded by a PROC SQL
statement and followed by a QUIT statement. That structure makes each example self-
contained and suitable to be run, as is. That structure may also create the false impression
that SELECT and CREATE and other statements must be isolated in separate steps. That
is not the case, and in this chapter we see a number of examples in which a single PROC
SQL step comprises numerous statements.

Chapter 6: Set Operators 133

Before proceeding to the details, let’s set up a small table to use in the examples by
running this code:

PROC SQL;
CREATE TABLE twelves AS
SELECT name as FName,
 sex,
 height,
 weight
FROM sashelp.class
WHERE age=12
;
QUIT;

The table looks like Exhibit 7-1.

Exhibit 7-1 TWELVES

7.1 Global Statements

The TITLE statement is a widely used global statement and serves as a good example.
Before considering its usage with PROC SQL, let’s examine its usage with another
procedure, as in:

PROC TABULATE DATA=twelves NOSEPS;
CLASS sex;
VAR height weight;

TITLE 'Weight Minima by Sex';
TABLE sex, weight * MIN * F=7.1;

FName Sex Height Weight

James M 57.3 83.0

Jane F 59.8 84.5

John M 59.0 99.5

Louise F 56.3 77.0

Robert M 64.8 128.0

134 PROC SQL by Example: Using SQL within SAS

TITLE 'Height Maxima by Sex';
TABLE sex, height * MAX * F=7.1;

RUN;

Intuitively, you might expect to see two small tables in the output, each with an
appropriate title. In fact, the output looks like this:

Height Maxima by Sex

	Weight

	Min
----------------------+-------	
Sex	
F	77.0
M	83.0

Height Maxima by Sex

	Height

	Max
----------------------+-------	
Sex	
F	59.8
M	64.8

Notice that the second title is used, incorrectly, for the first table. That happens because
SAS detects all of the global statements coded within or immediately before the step and
puts them into effect before the step begins its work. So the preceding code is essentially
equivalent to the following:

TITLE 'Weight Minima by Sex';
TITLE 'Height Maxima by Sex';

PROC TABULATE DATA=twelves NOSEPS;
CLASS sex;
VAR height weight;

TABLE sex, weight * MIN * F=7.1;

TABLE sex, height * MAX * F=7.1;

RUN;

Chapter 6: Set Operators 135

Now it’s rather obvious that the first TITLE statement is overridden before it is ever used.
To have a different TITLE statement in effect for each TABLE statement, you would
have to code two separate PROC TABULATE steps, like this:

TITLE 'Weight Minima by Sex';
PROC TABULATE DATA=twelves NOSEPS;
CLASS sex;
VAR height weight;
TABLE sex, weight * MIN * F=7.1;
RUN;
TITLE 'Height Maxima by Sex';
PROC TABULATE DATA=twelves NOSEPS;
CLASS sex;
VAR height weight;
TABLE sex, height * MAX * F=7.1;
RUN;

Now consider SQL code that produces similar output:

PROC SQL;

TITLE 'Weight Minima by Sex';
SELECT sex,
 MIN(weight) FORMAT=7.1 LABEL='Weight Min'
FROM twelvesGROUP BY sex
;

TITLE 'Height Maxima by Sex';
SELECT sex,
 MAX(height) FORMAT=7.1 LABEL='Height Max'
FROM twelvesGROUP BY sex
;

QUIT;

The result is:

Weight Minima by Sex

 Weight
Sex Min

F 77.0
M 83.0

136 PROC SQL by Example: Using SQL within SAS

Height Maxima by Sex

 Height
Sex Max

F 59.8
M 64.8

Each little table appears under the appropriate title. That’s because PROC SQL, unlike
most SAS procedures, analyzes and executes one statement at a time before proceeding to
the next statement. You can intersperse global statements with the SQL statements, with
the effects occurring in the order in which the statements are coded.

7.2 PROC SQL Options

A number of options can be specified within the PROC SQL statement and remain in
effect for the duration of the SQL job or session (or, as we’ll see a bit later, until nullified
or changed via the RESET statement). Most can be grouped into a few broad categories.

 Several options are useful in debugging and performance tuning. A couple of
examples appear later in this chapter.

 One option in particular, PRINT|NOPRINT, is useful in conjunction with SQL
code that creates and populates macro variables. We will discuss it when we get
to that topic (see Section 8.2).

 Several options are designed to enhance PROC SQL’s usefulness as a report
generator (that is, as a tool to display results itself, via a stand-alone SELECT
statement, rather than to store results in a table). See Chapter 11.

Reference: Read more about PROC SQL options in the SAS documentation. For a
complete list of the supported options, see the Base SAS 9.2 Procedures Guide:
Procedures: The SQL Procedure: Syntax: SQL Procedure: PROC SQL Statement.

Now let’s demonstrate the use of a few of these options. Let’s display the information on
the 12-year-old students, listed in order of height from shortest to tallest. We use the
FEEDBACK option to have the log display the SQL code after it has been standardized

Chapter 6: Set Operators 137

and expanded by the processor. We use the STIMER option to display the amount of time
used to process each statement. So the code looks like this:

PROC SQL FEEDBACK STIMER;
SELECT *
FROM twelves
ORDER BY height
;

Note the absence of a QUIT statement here. PROC SQL processes the SELECT
statement and continues running. The output looks like this:

FName Sex Height Weight

Louise F 56.3 77
James M 57.3 83
John M 59 99.5
Jane F 59.8 84.5
Robert M 64.8 128

In the log we see, courtesy of the FEEDBACK option:

NOTE: Statement transforms to:

 select TWELVES.FName, TWELVES.Sex,
 TWELVES.Height, TWELVES.Weight
 from WORK.TWELVES
 order by TWELVES.Height asc;

and, from the STIMER option:

NOTE: SQL Statement used (Total process time):
 real time 0.07 seconds
 cpu time 0.01 seconds

Now suppose that we only want to see the rows for the three shortest students and that we
no longer want to see notes produced by the STIMER option. The OUTOBS= option can
do the subsetting. So we could use a QUIT statement to end the SQL session, followed by
a PROC SQL statement to relaunch SQL with the options we want:

PROC SQL FEEDBACK OUTOBS=3;

138 PROC SQL by Example: Using SQL within SAS

We would follow this with the SELECT statement. However, we don’t have to do all
that. Instead, we can take advantage of the RESET statement, whose purpose is to allow
SQL procedure options to be invoked, negated, or changed in the midst of a PROC SQL
step. So the code for the entire step is:

PROC SQL FEEDBACK STIMER;

SELECT *
FROM twelves
ORDER BY height
;
RESET NOSTIMER OUTOBS=3;
SELECT *
FROM twelves
ORDER BY height
;

QUIT;

The FEEDBACK option is in effect for both SELECT statements, whereas STIMER
applies only to the first SELECT statement and OUTOBS=3 applies only to the second
SELECT statement. The output from the first SELECT is unchanged from what we saw
earlier. The output from the second SELECT, as expected, looks like this:

FName Sex Height Weight

Louise F 56.3 77
James M 57.3 83
John M 59 99.5

The RESET statement clearly provides a lot of flexibility. However, it can also make
code difficult to trace and analyze, especially in a long PROC SQL step having multiple
RESET statements, each of which toggles or specifies a different group of options. You
might find it helpful to abide by some self-imposed limitations:

 Options that are to remain in effect for the entire session or job should be coded
on the PROC SQL statement.

 Options that are to apply to just one SQL statement (or to a group of consecutive
statements) should be invoked using a RESET statement at the point where they
are needed, and the same group of options should be reversed by another RESET
statement at the point where they are no longer needed.

Chapter 6: Set Operators 139

Following these rules, we would change our code to:

PROC SQL FEEDBACK;

RESET STIMER;
SELECT *
FROM twelves
ORDER BY height
;
RESET NOSTIMER;

RESET OUTOBS=3;
SELECT *
FROM twelves
ORDER BY height
;
RESET OUTOBS=MAX;

QUIT;

7.3 Summary

SAS global statements and PROC SQL options can be used to affect the behavior of
PROC SQL. They can also be specified or respecified between SQL statements, with
such changes taking effect immediately.

140

C h a p t e r 8

Using the Macro Facility with PROC SQL

8.1 Generating PROC SQL Code 141
8.2 Populating Macro Variables 144
8.3 Summary 160

We noted earlier that the SAS macro facility is part of the environment in which PROC
SQL operates; in this chapter we confirm that macros can be used to generate PROC SQL
code. Then we look at the opposite side of things and show how PROC SQL can create
and populate macro variables for use in subsequent PROC SQL code and elsewhere.

8.1 Generating PROC SQL Code

You can use a SAS macro to generate PROC SQL code. This by itself is not surprising
and really does not merit much discussion. After all, a macro is a tool to generate SAS
code, and PROC SQL code is SAS code. It would be surprising, and would require
explanation, were it not possible to generate PROC SQL code using the macro facility.

142 PROC SQL by Example: Using SQL within SAS

What is worth mentioning is that the macro facility gives us ways to work around some
of the limitations of SQL. In particular, we can use a macro to compensate for the
absence of array support in SQL.

To illustrate, we need a table that has a number of columns whose names differ only by a
numeric suffix. So we run this code:

DATA wide;
INPUT ID $ Measure1-Measure4;
CARDS;
A 11 12 13 14
B 21 22 23 24
;

The resulting table (WIDE) looks like Exhibit 8-1.

Exhibit 8-1 WIDE

Let’s suppose that the task at hand is to add up each of the MEASUREn columns and
store the four totals in a new data set. The simplest and most straightforward technique is
to use PROC SUMMARY, which is designed for such tasks. If we run:

PROC SUMMARY DATA=wide;
VAR Measure1-Measure4;
OUTPUT OUT=sums(DROP = _type_ _freq_)
SUM = Sum1-Sum4;
RUN;

we get the table shown in Exhibit 8-2. This is the result we were seeking.

Exhibit 8-2 SUMS

ID Measure1 Measure2 Measure3 Measure4

A 11 12 13 14

B 21 22 23 24

Sum1 Sum2 Sum3 Sum4

32 34 36 38

Chapter 8: Using the Macro Facility with PROC SQL 143

It’s also possible to do this in a DATA step. When there are many variables to be
processed, the usual approach is to create arrays and to code one or more DO loops to
coordinate references to the arrays. Using that approach here, we have:

DATA sums;
SET wide END=last;
ARRAY _measure{*} measure1-measure4;
ARRAY _sum{*} Sum1-Sum4;
KEEP sum1-sum4;
DO i = 1 TO 4;
 _sum{i} + _measure{i};
 end;
IF last THEN OUTPUT;
RUN;

We get, again, the table shown in Exhibit 8-2.

Now suppose we want SQL to do the same thing. We quickly encounter an obstacle
because SQL has no features even remotely resembling the DATA step’s ARRAY and
DO statements. The fundamental reason for that is that SQL is designed to work with
normalized data structures, and normalized data structures do not have column groups
requiring parallel treatment. So the best-practice solution is probably to normalize the
data structure and work from there.

Preview: In Section 8.2 we work with a slightly different version of this example, and in
Section 12.3 we carry out the recommended change of structure.

However, there might be situations where structure change is precluded. That makes it
necessary to use what can become very repetitious and verbose code. We can get the
column sums by running:

PROC SQL;
CREATE TABLE sums AS
SELECT SUM(measure1) AS Sum1,
 SUM(measure2) AS Sum2,
 SUM(measure3) AS Sum3,
 SUM(measure4) AS Sum4
FROM wide
;
QUIT;

Once more, the result is as shown in Exhibit 8-2.

144 PROC SQL by Example: Using SQL within SAS

That’s not so bad with four columns, but what if there were 400? That’s where the macro
facility can be really helpful. We can code a relatively simple macro like this:

%MACRO selectsums(maxindex=);
 %DO n = 1 %TO &maxindex;
 SUM(measure&n) as Sum&n
 %IF &n NE &maxindex %THEN ,
 ;
 %END;
 %MEND selectsums;

and invoke it in context like this:

PROC SQL;
CREATE TABLE sums AS
SELECT %selectsums(maxindex=4)
FROM wide
;
QUIT;

The macro generates the correct SELECT list, and the result is, once again, reflected in
Exhibit 8-2. This works because there are a number of suitably named columns to be
treated in parallel. By having only four, we keep the example compact. However, the
technique works just as well with many more columns, making the advantages far more
dramatic.

Of course, this technique depends on the names of the columns following the rather rigid
pattern that we assumed for this example. Later, when we look at DICTIONARY tables,
we’ll come back to this problem and develop a more versatile solution.

Reference: For more information about using the SAS Macro Facility with PROC SQL,
see the SAS 9.2 SQL Procedure: User’s Guide: Programming with the SQL Procedure:
Using PROC SQL with the SAS Macro Facility.

8.2 Populating Macro Variables

We have just illustrated the use of the macro facility (which itself is not part of PROC
SQL) to generate PROC SQL code. Now we turn to PROC SQL features that create and
populate macro variables. Before we begin exploring these capabilities, we need another
table to support our examples. We can derive it from the SASHELP.CLASS table by
running:

Chapter 8: Using the Macro Facility with PROC SQL 145

PROC SQL;
CREATE TABLE thirteens AS
SELECT name AS FName,
 height FORMAT=6.1,
 weight FORMAT=6.1
FROM sashelp.class
WHERE age=13
;
QUIT;

The result (THIRTEENS) is seen in Exhibit 8-3.

Exhibit 8-3 THIRTEENS

User-Defined Macro Variables
In developing flexible SAS applications, it is extremely valuable to be able to
programmatically create and populate macro variables. To illustrate, suppose we want to
display the information on the heights of the 13-year-olds, with a footnote to provide the
average height (rounded to the nearest tenth of an inch). We could use PROC MEANS to
compute that average, and then type it into a FOOTNOTE statement. Fortunately, macro
variables give us a way to mechanize that process. In the DATA step, it’s done with the
CALL SYMPUT routine, as in:

DATA _NULL_;
SET thirteens END=lastobs;
heightsum + height;
IF (lastobs) THEN
 CALL SYMPUT('avgheight', PUT(heightsum / _N_, 4.1));
RUN;

Notice that the _NULL_ keyword is coded to preclude creation of an output data set. The
only purpose of this DATA step is to accumulate a running total of HEIGHT, and at the
end to transform this into an average and load it into the macro variable &AVGHEIGHT.
To monitor the outcome, we can conclude with a %PUT statement like this:

%put macro variable AVGHEIGHT: [&avgheight];

FName Height Weight

Alice 56.5 84.0

Barbara 65.3 98.0

Jeffrey 62.5 84.0

146 PROC SQL by Example: Using SQL within SAS

to present the result in the log. The square brackets are used as a container to enable us to
see whether there are leading or trailing blanks in &AVGHEIGHT. In this case we see:

macro variable AVGHEIGHT: [61.4]

Then it is a simple matter to generate the report by running:

TITLE 'Heights of 13-Year-Olds';
FOOTNOTE "Average Height is &avgheight";
PROC PRINT DATA=thirteens;
ID fname;
VAR height;
RUN;

which produces this output:

Heights of 13-Year-Olds

 FName Height

Alice 56.5
Barbara 65.3
Jeffrey 62.5

Average Height is 61.4

Now let’s do the same thing using PROC SQL. Because SQL is a non-procedural
language, PROC SQL cannot support the use of CALL routines. So CALL SYMPUT is
not available. However, PROC SQL has its own tool for creating and populating macro
variables: the INTO clause. The INTO clause is part of the SELECT statement or clause.
When the INTO clause is used, it precedes the FROM clause.

Turning to our example, we would create the macro variable by running:

PROC SQL;
RESET NOPRINT;
SELECT PUT(MEAN(height),4.1)
INTO : avgheight
FROM thirteens
;
RESET PRINT;
%PUT macro variable AVGHEIGHT: [&avgheight];

The SELECT statement computes the required average and calls the PUT function to
convert it to a character string, rounded to one decimal place. That’s all courtesy of the
expression that immediately follows SELECT, and does not involve anything we haven’t
seen before. It’s the INTO clause that’s new. It is followed by what is called a host

Chapter 8: Using the Macro Facility with PROC SQL 147

variable, distinguished by a preceding colon. This construct tells the SQL processor to
create a macro variable (&AVGHEIGHT) and load it with the result generated when the
preceding expression is evaluated. As before, we use a %PUT statement to let us see the
result in the log. It shows:

macro variable AVGHEIGHT: [61.4]

This result confirms that the SELECT statement with an INTO clause to populate the
macro variable in PROC SQL is equivalent to the DATA step with the CALL SYMPUT
statement.

PROC SQL would, by default, also display the result of the SELECT statement in the
output window or the listing file. We toggled the PRINT | NOPRINT option to suppress
that. In this example, only the SELECT statement (including the INTO and FROM
clauses) is essential; the RESET and %PUT statements are present only for convenience.

With the macro variable loaded, it’s simple to generate our little report. We deliberately
omitted the QUIT statement after the code that created the macro variable so all we have
to code here is:

TITLE 'Heights of 13-Year-Olds';
FOOTNOTE "Average Height is &avgheight";
SELECT fname, height
FROM thirteens
;
QUIT;

The result looks like this:

Heights of 13-Year-Olds

FName Height

Alice 56.5
Barbara 65.3
Jeffrey 62.5

Average Height is 61.4

Tip: Macro variables generated in one PROC SQL statement can be used in later
statements within the same PROC SQL step.

We have generated this little report twice, once without PROC SQL and once with PROC
SQL. When we used the DATA step to create the macro variable, we used PROC PRINT
to do the report. When we used SQL to create the macro variable, we used SQL to do the
report. However, we could have taken a mix-and-match approach. Macro variables

148 PROC SQL by Example: Using SQL within SAS

created by PROC SQL can be used outside of PROC SQL, and PROC SQL code can
incorporate macro variables created outside of PROC SQL.

The example with which we’ve been working is simple in that the SELECT statement
with the INTO clause yields one row and one column, and populates one macro variable.
The mechanism can do more.

Suppose we have multiple items in the SELECT list, as in:

PROC SQL;
SELECT MAX(fname), MIN(fname)
FROM thirteens
;
QUIT;

Note that the SELECT list includes nothing but summary information, and that there is
no GROUP BY clause, so we can still be sure the result will be a single row. There are
two items in the SELECT list, so the result will have two columns. To create and load a
macro variable for each, we simply code an INTO clause with a parallel list (that is, a list
with two macro variable names). The statement becomes:

PROC SQL;
SELECT MAX(fname), MIN(fname)
INTO : max_fname , : min_fname
FROM thirteens
;
QUIT;

Notice the leading colon in each item of the INTO list. We can confirm that the macro
variables have been populated by using %PUT statements to display their values:

%PUT macro variable MAX_FNAME: [&max_fname];
%PUT macro variable MIN_FNAME: [&min_fname];

In the log we see:

macro variable MAX_FNAME: [Jeffrey]
macro variable MIN_FNAME: [Alice]

Chapter 8: Using the Macro Facility with PROC SQL 149

We were careful to make the two lists (the one following SELECT and the one following
INTO) the same length. If you are careless and there is a discrepancy (either more
columns than macro variables or more macro variables than columns), SAS issues a
warning. Thus this code:

PROC SQL;
SELECT MAX(weight), MIN(weight)
INTO : max_weight
FROM thirteens
;
QUIT;

results in:

WARNING: INTO clause specifies fewer host variables than
columns listed in the SELECT clause.

Then running:

%PUT macro variable MAX_WEIGHT: [&max_weight];
%PUT macro variable MIN_WEIGHT: [&min_weight];

yields:

macro variable MAX_WEIGHT: [98]
WARNING: Apparent symbolic reference MIN_WEIGHT not
resolved.

This tells us that SAS has created the macro variable for the first column only. Now let’s
experiment with the opposite condition: providing too many macro variable names. If we
run:

PROC SQL;
SELECT MAX(height)
INTO : max_height, : min_height
FROM thirteens
;
QUIT;

we see:

WARNING: INTO clause specifies more host variables than
columns listed in the SELECT clause. Surplus host
variables will not be set.

150 PROC SQL by Example: Using SQL within SAS

When we follow up with:

%PUT macro variable MAX_HEIGHT: [&max_height];
%PUT macro variable MIN_HEIGHT: [&min_height];

we get:

macro variable MAX_HEIGHT: [65.3]
WARNING: Apparent symbolic reference MIN_HEIGHT not
resolved.

Once again, SAS has created just the first macro variable.

Now we turn to the situation in which the SELECT statement yields more than one row.
To keep things simple and focus on the issue, we use a query that yields a single column,
such as:

PROC SQL;
SELECT fname
FROM thirteens
;
QUIT;

There are three rows in THIRTEENS, so the result of this query has three rows. Thus we
would like to end up with three macro variables. It’s pretty straightforward with the
DATA step; we can run:

DATA _NULL_;
SET thirteens;
CALL SYMPUT('fname'||COMPRESS(PUT(_N_,4.)),fname);
RUN;

When we display the results by means of this %PUT statement:

%PUT macro variables FNAME1 through FNAME3:
 [&fname1,&fname2,&fname3];

%PUT macro variables: [&fname1,&fname2,&fname3];

we see:

macro variables: [Alice ,Barbara ,Jeffrey]

This confirms that SAS loaded the three names into macro variables.

Chapter 8: Using the Macro Facility with PROC SQL 151

Now let’s address the same problem using SQL. We can introduce an INTO clause like
the one used in our earlier example:

PROC SQL;
SELECT fname
INTO : fname
FROM thirteens
;
QUIT;

To place the result in the log, we run:

%PUT macro variable FNAME: [&fname];

The result is:

macro variable FNAME: [Alice]

There are three rows in the source table, but the macro variable only receives a value
from the first of the three. So we need a way to create targets for the additional rows of
data. We know that we cannot accomplish this by extending the INTO list with more
items separated by commas; that would create a mismatch vis-à-vis the single item in the
SELECT list.

PROC SQL has a different bit of syntax to allow a query to create and populate an entire
vector of macro variables from a single column of data. To accomplish this, we expand
the INTO item from a single macro variable to a pair of macro variables having the same
name stem and appropriate integer suffixes. The two names are separated by the keyword
THROUGH. As always in the INTO clause, the names of macro variables are preceded
by colons.

In our example, there are three rows. So the code becomes:

PROC SQL;
SELECT fname
INTO : fname1 THROUGH : fname3
FROM thirteens
;
QUIT;

If we follow this with:

%PUT macro variables: [&fname1,&fname2,&fname3];

152 PROC SQL by Example: Using SQL within SAS

we see:

macro variables: [Alice,Barbara,Jeffrey]

This is just like the DATA step result, except that PROC SQL has eliminated the trailing
blanks. The DATA step has a seemingly important advantage, however. It does not
require that the number of macro variables be hardcoded, whereas the SQL code does.
Often, when you write an SQL SELECT statement that is to return multiple rows, you
don’t know exactly how many rows will materialize in the result. In fact, the number
often changes from one run to the next as you introduce new data.

There is a simple solution, though it’s a bit inelegant. We can specify a very high number
of macro variables (with “very high” meaning higher than the highest number we expect
to actually encounter). For example, if we know that we will never have more than a few
dozen students, we might change our code to:

PROC SQL;
SELECT fname
INTO : fname1 THROUGH : fname999
FROM thirteens
;
QUIT;

SAS does not make an issue of the specification of an excessive number of macro
variables. If we try to reference one of the unneeded targets, as with:

%PUT macro variable FNAME4: [&fname4];

we get:

WARNING: Apparent symbolic reference FNAME4 not
resolved.

This is actually reassuring; it tells us that SAS does not create the unneeded macro
variables.

We have not discussed the usefulness of such macro variable constellations. It turns out
that they can be useful, but only with some fairly sophisticated macro coding techniques.
Often, it is more useful to concatenate the multiple data values into a single (though
perhaps lengthy) macro variable.

Chapter 8: Using the Macro Facility with PROC SQL 153

Suppose we want to extract all of the names and string them out in a macro variable,
separated by blank-slash-blank sequences. It’s not too complicated with DATA step
code. Consider this code:

DATA _NULL_;
SET thirteens END=done;
LENGTH fname_string $ 9999;
RETAIN fname_string;
fname_string = CATX(' / ',fname_string,fname);
IF done THEN CALL SYMPUT('fnames',TRIM(fname_string));
RUN;

%PUT FNAMES: [&fnames];

The result is:

FNAMES: [Alice / Barbara / Jeffrey]

With PROC SQL it’s even easier. All that’s needed is a single target variable in the INTO
clause, followed by the phrase SEPARATED BY and the separator specification in
quotes. For example:

PROC SQL;
SELECT fname
INTO : fnames SEPARATED BY ' / '
FROM thirteens
;
QUIT;

%PUT FNAMES: [&fnames];

This code also produces:

FNAMES: [Alice / Barbara / Jeffrey]

DICTIONARY Tables
PROC SQL makes available a series of data sources that provide access to a great deal of
metadata (that is, data about such system and data entities as libraries, tables, and
columns). The existence and utility of these metadata are both completely independent of
the macro facility. However, we are going to look at the metadata briefly at this point
because it turns out that their value can often be leveraged significantly by passing their
content into macro variables.

154 PROC SQL by Example: Using SQL within SAS

Reference: The DICTIONARY tables are enumerated and described in the Base SAS 9.2
Procedures Guide: The SQL Procedure: Concepts: SQL Procedure: Using the
DICTIONARY Tables.

We can illustrate the use of this metadata resource by reconsidering the initial example in
this chapter. Recall that we had a table (named WIDE) with multiple numeric variables,
and we wanted to generate a SELECT list to sum each of them without entering a lot of
repetitious code. We devised a macro to do the job, but it depended on the columns
following a naming pattern with numerically sequential suffixes. Now we deliberately
undermine that solution by renaming the columns. We run:

PROC DATASETS;
MODIFY wide;
RENAME Measure1 = Estimated
 Measure2 = Net
 Measure3 = Gross
 Measure4 = Adjusted
 ;
RUN;
QUIT;

As a result, our table now looks like Exhibit 8-4.

Exhibit 8-4 WIDE

The names of the numeric columns no longer form a series with successive integer
suffixes, so the macro we developed earlier no longer serves to help SQL sum the
columns of the table.

We have to generate code referring to individual columns one at a time, so
DICTIONARY.COLUMNS is the appropriate source of metadata for this task. However,
it contains such metadata for many columns, including columns in tables other than
WIDE (or, possibly, in tables named WIDE that reside in libraries other than WORK).
Fortunately, using SQL, we can apply a WHERE clause to restrict the yield. If we run:

ID Estimated Net Gross Adjusted

A 11 12 13 14

B 21 22 23 24

Chapter 8: Using the Macro Facility with PROC SQL 155

PROC SQL;
SELECT name, type
FROM DICTIONARY.COLUMNS
WHERE libname = 'WORK' AND
 memname = 'WIDE'
;
QUIT;

we see:

 Column
Column Name Type
--
ID char
Estimated num
Net num
Gross num
Adjusted num

In particular, we see the names of the four columns of interest. We also see that the
WHERE clause must be made a bit more restrictive to exclude character columns. So
let’s make that change, and at the same time include an INTO clause and the expression
that will build the SELECT items we will ultimately need. So we now have:

PROC SQL;
SELECT 'sum(' || TRIM(name) || ') as Sum_' || name
INTO : selections SEPARATED BY ', '
FROM DICTIONARY.COLUMNS
WHERE libname = 'WORK' AND
 memname = 'WIDE' AND
 type = 'num'
;
QUIT;

It’s pretty intricate, but less so if it’s considered piece by piece. The expression following
SELECT is like a template. It starts with a string constant:

sum(

and then drops in a column name (for example, “Gross”) yielding:

sum(Gross

This is followed by another string constant, giving:

sum(Gross) as Sum_

156 PROC SQL by Example: Using SQL within SAS

and finally the repeated column name, so that the whole string is:

sum(Gross) as Sum_Gross

The INTO clause is straightforward. The WHERE clause restricts the query to the
numeric columns of interest in the table of interest. After running the code, we can
submit:

%PUT &selections;

In the log, this displays:

sum(Estimated) as Sum_Estimated,
sum(Net) as Sum_Net,
sum(Gross) as Sum_Gross,
sum(Adjusted) as Sum_Adjusted

So our query to process our collection of arbitrarily named columns can simply be:

PROC SQL;
CREATE TABLE sums AS
SELECT &selections
FROM wide
;
QUIT;

Running it yields the table SUMS as shown in Exhibit 8-5.

Exhibit 8-5 SUMS

One SQL statement has tapped the DICTIONARY COLUMNS table and used it to
generate part of a subsequent SQL statement.

Automatic Macro Variables
Up to this point, we’ve been working with user-defined macro variables. PROC SQL also
populates a number of automatically created macro variables. Let’s look at a few of these
(others relate specifically to the Pass-Through Facility, which is beyond the scope of this
book).

Sum_Estimated Sum_Net Sum_Gross Sum_Adjusted

32 34 36 38

Chapter 8: Using the Macro Facility with PROC SQL 157

Reference: Details about these automatic macro variables can be found in the Base SAS
9.2 Procedures Guide: Procedures: The SQL Procedure: Concepts: SQL Procedure:
Using Macro Variables Set by PROC SQL.

The automatic macro variable &SQLRC echoes the return code set by the most recently
processed SQL statement. Return codes are widely used in data processing to provide
terse, digital status reports. Typically, a return code of zero is used to report success and
the absence of problems, and PROC SQL conforms to this convention. To illustrate, we
can run this code:

PROC SQL;
SELECT MAX(height)
FROM thirteens
;
QUIT;

There is no problem of any kind with this query, so if we then submit:

%PUT SQL Return Code is &sqlrc;

we see, in the log:

SQL Return Code is 0

Now let’s see what happens when we intentionally create some difficulties. Consider this
code:

PROC SQL;
CREATE TABLE maxmin AS
SELECT MAX(height) AS m_height,
 MIN(height) AS m_height
FROM thirteens
;
QUIT;

We’ve given the same name (M_HEIGHT) to two columns. This is acceptable within a
SELECT statement, but it causes a problem when results are stored via a CREATE
TABLE statement. Indeed, the log reports:

WARNING: Variable m_height already exists on file
 WORK.MAXMIN.
NOTE: Table WORK. MAXMIN created, with 1 rows and 1
 columns.

158 PROC SQL by Example: Using SQL within SAS

If we run the previous %PUT statement now, we see:

SQL Return Code is 4

In other words, 4 is the return code for a WARNING. Next, let’s see what happens when
we trigger an ERROR by asking the UNION operator to align a numeric column with a
character column:

PROC SQL;
SELECT fname
FROM thirteens
UNION
SELECT height
FROM thirteens
;
QUIT;

We see, in the log:

ERROR: Column 1 from the first contributor of UNION is
not the same type as its counterpart from the second.

and our %PUT statement produces:

SQL Return Code is 8

So 8 apparently is the return code for an ERROR. Actually, it’s a bit more complicated.
Although the code in this example is syntactically correct, PROC SQL is nevertheless
able to detect the problem as soon as it inspects the columns NAME and AGE. It does not
have to look at any data values (names and ages recorded in the rows of THIRTEENS) to
know that something is amiss; it has to see only the data types and other characteristics
(that is, metadata).

In contrast, other types of errors become apparent only during actual processing of data.
Consider this query:

PROC SQL;
SELECT *,
 (SELECT fname
 FROM thirteens
 WHERE height>60)
FROM thirteens
;
QUIT;

Chapter 8: Using the Macro Facility with PROC SQL 159

This is perfectly acceptable if the subquery within the parentheses returns a single row. In
fact, the subset of THIRTEENS with height values over 60 consists of multiple rows. As
a consequence, the query is not valid. However, the SQL processor does not know that
until it opens the table and starts reading HEIGHT values. So the log reports:

ERROR: Subquery evaluated to more than one row.

Then, if we submit the %PUT statement, we see:

SQL Return Code is 16

Thus, we see that such run-time errors have their own return code of 16.

A return code of 24 differentiates yet another kind of error: one encountered by the host
system. Those are a little harder to induce in a reproducible way, so we do not present an
example here. Just suppose that we had a query that formed a huge intermediate result;
that’s easy enough to do when forming Cartesian products of even moderately sized
tables. The SQL processor uses temporary disk storage to hold such intermediate results.
If the intermediate results were to exhaust the available disk space, a return code of 24
would arise.

Two other return codes (12 and 28) are possible but rare. They indicate unanticipated
internal error conditions—in other words, bugs in PROC SQL. They should be reported
to SAS Technical Support.

Another automatic macro variable created by PROC SQL is &SQLOBS, which reports
the number of rows processed by the most recent SQL statement. Consider this code:

PROC SQL;
SELECT student.fname,
 classmate.fname
FROM thirteens AS student
 JOIN
 thirteens AS classmate
ON student.fname NE classmate.fname
WHERE student.height>60 and classmate.weight<90
;
QUIT;

160 PROC SQL by Example: Using SQL within SAS

It returns three rows, so running:

%PUT macro variable SQLOBS: [&sqlobs];

displays:

macro variable SQLOBS: [3]

The last SQL automatic macro variable we consider here, &SQLOOPS, is a bit more
obscure. It reports on “the number of iterations that the inner loop of PROC SQL
executes.” That depends not only on what the query is asking and on the volume of data it
must process, but also on the methods used by the SQL processor in the background to
actually perform the work. In other words, &SQLOOPS involves internal details and
performance considerations. Those subjects are largely beyond the scope of this book.

8.3 Summary

The SAS macro facility works with PROC SQL in some very useful ways. Of course,
macros can be used to generate PROC SQL code. SQL code can be used to populate
macro variables, both singly and in groups and series. That capability provides a very
useful way to use the metadata available via DICTIONARY tables. Automatic macro
variables provide information on the outcome of PROC SQL statements.

C h a p t e r 9

Table Maintenance and Alternate Strategies

9.1 Environment for Examples 164
9.2 Distinguishing Persistence from Replacement 166
9.3 Life Cycle of a Table 168
9.4 Data Maintenance 173
9.5 Metadata Maintenance 183
9.6 Changing Structure 185
9.7 Changing Features 187
9.8 Summary 203

It is often impossible to complete a SAS task in a single step. Typically, you need to
make a series of incremental advances, each one introducing some refinement or
extension. This raises an issue: how to materialize these increments in SAS data sets
(tables).

162 PROC SQL by Example: Using SQL within SAS

SAS offers us three choices:

 succession

 replacement

 persistence

When we use a succession strategy, each table in the sequence is given a new and distinct
identity. With replacement, a new table is given the same name as its predecessor, and it
takes the place of that table. Persistence is altogether different in that there is no new
table. Instead, changes are made to the existing table in place, without breaking the
continuity of its existence.

This three-way distinction is an oversimplification. In practice, it’s not unusual for a task
to be accomplished using a mixture of two or even all three approaches. Nevertheless, it’s
important to appreciate the distinctions; it will help you to understand a number of PROC
SQL features and their non-SQL counterparts.

To start with an extremely simple example, let’s create a data set:

DATA simple;
DO Measure = 1 to 3; OUTPUT; END;
RUN;

Now suppose that the incremental refinement is to apply a label to the variable
MEASURE. Using a succession strategy, we might run this DATA step to create a new
data set with a distinct name (SIMPLE_BUT_LABELED):

DATA simple_but_labeled;
SET simple;
LABEL measure = 'Level reported after calibration';
RUN;

With a replacement strategy, we use the same code, except that the data set
incorporating the label has the same name (SIMPLE) as the data set lacking the label:

DATA simple;
DO Measure = 1 to 3; OUTPUT; END;
RUN;

DATA simple;
SET simple;
LABEL measure = 'Level reported after calibration';
RUN;

Chapter 9: Table Maintenance and Alternate Strategies 163

Things look quite different if we are using the persistence approach. We still create the
initial data set the same way:

data simple;
do Measure = 1 to 3; output; end;
run;

However, to change the data set in place, we use PROC DATASETS to record the label:

PROC DATASETS;
MODIFY simple;
 LABEL measure = 'Level reported after calibration';
 RUN;
QUIT;

When we follow the persistence strategy and make changes to existing tables, we can say
that we are conducting table maintenance. The bulk of this chapter is devoted to
demonstrating the SQL table maintenance capabilities and their non-SQL counterparts.

The changes we can make to tables can be grouped into four categories:

 data changes

 metadata changes

 structural changes

 feature additions and removals

Data changes involve inserting new rows, deleting existing rows, or revising values
within existing rows. Metadata changes are essentially modifications to the column
attributes stored in table headers; our example using PROC DATASETS to record a label
performed a metadata change. Structural changes typically involve removal of existing
columns and creation of additional columns. The term “feature” refers to indexes,
integrity constraints, and audit trails; a related topic is the use of generation data sets.

Use of the persistence strategy, and consequent reliance on table maintenance
capabilities, is actually not that common. If you look at SAS code presented in papers at
user conferences or in online postings, you are much more likely to see tables that are
created and populated at the same time and never changed subsequently (in other words,
reliance on the succession and replacement strategies). In part, that’s probably because
early versions of SAS provided no table maintenance tools other than the ability to
change metadata via PROC DATASETS. In contrast, SQL “grew up” in the RDBMS
(relational database management system) world, where the persistence approach is
commonplace. Now SQL is part of SAS, and SAS offers table maintenance tools,
whether you are using PROC SQL or other parts of SAS.

164 PROC SQL by Example: Using SQL within SAS

Before a table can be maintained in any way, it has to exist. When the persistence
strategy is in use, it makes sense to think of the creation of a table as an event unto itself.
Populating the table can then be treated as a subsequent maintenance task. In some
situations this distinction is a very necessary one because there is a division of
responsibility between administrators and maintenance programmers. The programmers
might not have permission to create (or destroy) tables located in shared file spaces. So
we devote a portion of this chapter to the life cycle of a table.

Keep in mind, however, that persistence does not necessarily imply permanence. The
persistence strategy can be in effect for a table that is located in the WORK library and
that exists for only a few seconds. On the other hand, a table kept in a permanent library
for months or years might be a product of the succession or replacement strategies.

Finally, let’s understand that the purpose of this chapter is not to advocate in general for
the persistence strategy. Each of the three alternatives (succession, replacement, and
persistence) has its advantages and disadvantages; the choice depends on the
circumstances, and often a mixed approach is best. Our goal is just to look at the
maintenance tools that support the persistence strategy.

9.1 Environment for Examples

Most, if not all, of the examples in previous chapters used the default WORK library,
primarily for the sake of simplicity. In this chapter, we switch to a permanent library. In
part, that’s for the sake of variety. But the main reason for using a permanent library is to
make the system option REPLACE | NOREPLACE operative (it has no effect on the
WORK library).

So the first task is to create the library. On a Windows system, something like this should
work:

LIBNAME demolib "c:\temp\demolib";

On other host systems, some adaptation is needed.

Because we are making changes to tables, we frequently want to refresh things, so that
the effects of one demonstration don’t contaminate the environment for subsequent
demonstrations. For convenience, we can load the needed code into a simple macro:

%MACRO refresh_example;

PROC DATASETS LIBRARY=demolib KILL;
RUN;

Chapter 9: Table Maintenance and Alternate Strategies 165

PROC SQL;
CREATE TABLE demolib.fifteenups AS
SELECT name AS FName, sex, age, height, weight
FROM sashelp.class
WHERE age GE 15
;
QUIT;

%MEND refresh_example;

The first step empties our DEMOLIB library. The second step creates a small table
named FIFTEENUPS, which is the target for nearly all of our maintenance attempts. It
looks like Exhibit 9-1.

Exhibit 9-1 DEMOLIB.FIFTEENUPS

Unless there is indication to the contrary, assume that this macro has been invoked
immediately before each example in this chapter that involves the table FIFTEENUPS.

We also need a few other tables to drive some of the maintenance operations:

DATA insertions;
INFORMAT sex $1.;
INPUT FName $ Sex Height Weight Age;
CARDS;
Adam M 68 130 15
Joan F 64 120 16
;

DATA deletions;
INPUT FName $;
CARDS;
Mary
Ronald
;

FName Sex Age Height Weight

Janet F 15 62.5 112.5

Mary F 15 66.5 112.0

Philip M 16 72.0 150.0

Ronald M 15 67.0 133.0

William M 15 66.5 112.0

166 PROC SQL by Example: Using SQL within SAS

DATA corrections;
INPUT FName $ Height Weight;
CARDS;
Janet 64 .
William . 118
;

9.2 Distinguishing Persistence from
 Replacement

Many SAS users look at code performing replacement and perceive it as doing
maintenance on an existing table. We can demonstrate the contrary by attempting a
simple metadata declaration in the form of a FORMAT statement:

OPTIONS NOREPLACE;
DATA demolib.fifteenups;
SET demolib.fifteenups;
FORMAT height weight 3.;
RUN;

In the log we see this:

WARNING: Data set DEMOLIB.FIFTEENUPS was not replaced
because of NOREPLACE option.

If we run a PROC PRINT on the table, we get this:

Obs FName Sex Age Height Weight

 1 Janet F 15 62.5 112.5
 2 Mary F 15 66.5 112.0
 3 Philip M 16 72.0 150.0
 4 Ronald M 15 67.0 133.0
 5 William M 15 66.5 112.0

Clearly the new formats are not in place. The DATA step was trying to create a new data
set named DEMOLIB.FIFTEENUPS to replace the existing data set of the same name.
Because the system option NOREPLACE was in effect, this failed.

We can attempt the same task in a way that avoids replacing the data set and instead
adheres to the persistence strategy:

Chapter 9: Table Maintenance and Alternate Strategies 167

OPTIONS NOREPLACE;
PROC DATASETS LIBRARY=demolib;
MODIFY fifteenups;
 FORMAT height weight 3.;
 RUN;
QUIT;

Now the log tells us:

NOTE: MODIFY was successful for DEMOLIB.FIFTEENUPS.DATA.

and PROC PRINT displays this:

Obs FName Sex Age Height Weight

 1 Janet F 15 63 113
 2 Mary F 15 67 112
 3 Philip M 16 72 150
 4 Ronald M 15 67 133
 5 William M 15 67 112

Notice that the new formats are in effect.

So, when data set replacement is not permitted, the persistence strategy (that is,
maintaining an existing table in place) can succeed while the replacement strategy fails.
We’ve modeled that using the NOREPLACE system option, but the situation (inability to
replace a table in its entirety) can also arise from policies implemented by administrators
using RDBMS or host operating system tools.

Even when replacement is possible (the situation we could bring about by toggling the
system option to a value of REPLACE), in-place maintenance can be advantageous. The
DATA step we tried to use to establish our new formats has to transcribe every
observation from the existing DEMOLIB.FIFTEENUPS data set to the new one. That’s
inconsequential with five observations, but were there five million observations we’d
notice the time needed.

While we’re talking about the replacement strategy, let’s briefly explore its use in PROC
SQL. Here is code that replaces a table with a copy of itself:

OPTIONS REPLACE;
PROC SQL;
CREATE TABLE demolib.fifteenups AS
SELECT *
FROM demolib.fifteenups;
QUIT;

168 PROC SQL by Example: Using SQL within SAS

The log informs us:

WARNING: This CREATE TABLE statement recursively
references the target table. A consequence of this is a
possible data integrity problem.

but nevertheless indicates success:

NOTE: Table DEMOLIB.FIFTEENUPS created, with 5 rows and
5 columns.

The code is syntactically valid, and appears to work, but the warning message is
sufficiently disturbing to make most users avoid such table-replacement code. That’s why
you won’t see such recursive usage of the CREATE TABLE statement in this book.

Preview: We revisit the subject of SQL table-replacement code when we discuss
generation data sets later in this chapter (see Section 9.7).

9.3 Life Cycle of a Table

When the persistence strategy is used, creating a table and populating it with rows of data
can be distinct events. A complete life cycle also includes removal of the table.

Creation Using a Query
In earlier chapters we have in many situations created and populated new tables using the
CREATE TABLE statement with the AS keyword. To illustrate, we can refresh our
DEMOLIB library and then run this SQL statement:

PROC SQL;
CREATE TABLE not_empty AS
SELECT SUBSTR(fname,1,1) LENGTH=1 AS Initial,
 sex,
 height
FROM demolib.fifteenups
WHERE age=15
;
QUIT;

Chapter 9: Table Maintenance and Alternate Strategies 169

The log tells us:

NOTE: Table WORK.NOT_EMPTY created, with 4 rows and 3
columns.

Because there are four 15-year-old students, we get four rows in the result. However,
there is nothing about the code that ensures that the table will contain data. The oldest
student is 16, so if we change the code to look for AGE values greater than that:

PROC SQL;
CREATE TABLE empty AS
SELECT SUBSTR(fname,1,1) LENGTH=1 AS Initial,
 sex,
 height
FROM demolib.fifteenups
WHERE age=17
;
QUIT;

we get:

NOTE: Table WORK.EMPTY created, with 0 rows and 3
columns.

Now suppose that our purpose is to create, for later use, a table that we know to be
empty. We can use something like this:

PROC SQL;
CREATE TABLE empty AS
SELECT '' LENGTH=1 AS Initial,
 sex,
 height
FROM demolib.fifteenups
WHERE 0
;
QUIT;

Notice that we have replaced the SUBSTR function reference with a null string to define
the content of the new INITIAL column (because there are no rows stored, it doesn’t
matter, so we can keep it simple). The more important change is the placement of a
simple 0 (zero) as the predicate of the WHERE clause; 0 (zero) is equivalent to FALSE
when considered as a logical value, so this ensures that no rows are passed into the new
table.

170 PROC SQL by Example: Using SQL within SAS

This form of the CREATE TABLE statement (with AS) is not intended for this purpose,
but it turns out to be a really flexible way to generate new empty tables. In this example,
we were able to establish one new column (INITIAL) from scratch, while modeling two
others (SEX and HEIGHT) on columns in an existing table. We’ll see that this is
essentially a middle ground between two other forms of the CREATE TABLE statement.

Before turning to those techniques, let’s look at the DATA step equivalent to the SQL
statement we just used to create an empty table with a mix of old and new columns:

DATA empty;
STOP;
LENGTH Initial $ 1;
SET demolib.fifteenups;
KEEP initial sex height;
RUN;

This is somewhat odd-looking code, but in fact it works. We see in the log:

NOTE: The data set WORK.EMPTY has 0 observations and 3
variables.

Creation Using a Model
PROC SQL also provides a simple way to generate an empty table that is strictly based
on an existing table. We simply replace AS with LIKE, followed by the name of the
model. For example, if we run:

PROC SQL;
CREATE TABLE fifteenups_clone
LIKE demolib.fifteenups
;
QUIT;

we get an empty copy of our model table (in other words, a table with none of the rows
from the source table, but with all of the columns). The log confirms this:

NOTE: Table WORK.FIFTEENUPS_CLONE created, with 0 rows
and 5 columns.

We already know how to do this in a DATA step, just by simplifying the code we
developed earlier:

DATA fifteenups_clone;
STOP;
SET demolib.fifteenups;
RUN;

Chapter 9: Table Maintenance and Alternate Strategies 171

This note appears in the log:

NOTE: The data set WORK.FIFTEENUPS_CLONE has 0
observations and 5 variables.

Creation Using Specifications
The third and final method for creating a new, empty table works entirely from coded
specifications. In other words, it does not reference an existing table. Here is a simple
example:

PROC SQL;
CREATE TABLE from_scratch
 (
 First CHARACTER(10)
 LABEL='Label for 1st column',
 Second NUMERIC
 FORMAT=7.2
)
;
QUIT;

The log reports success:

NOTE: Table WORK.FROM_SCRATCH created, with 0 rows and 2
columns.

We have a character column named FIRST and a numeric column named SECOND.
Naming and typing of the columns is mandatory. Specification of other attributes
(LABEL, FORMAT, INFORMAT) is optional.

The equivalent DATA step is:

DATA from_scratch;
ATTRIB First LENGTH = $ 10
 LABEL='Label for 1st column'
 Second FORMAT=7.2;
STOP;
RUN;

172 PROC SQL by Example: Using SQL within SAS

Help from the DESCRIBE TABLE Statement
PROC SQL provides a helpful (though potentially dangerous) tool in the form of the
DESCRIBE TABLE statement. It examines an existing table, then displays (in the log)
the CREATE TABLE statement that would create that table in an empty state (that is,
with no rows of data). For example, if we run:

PROC SQL;
DESCRIBE TABLE demolib.fifteenups;
QUIT;

we get, in the log:

create table DEMOLIB.FIFTEENUPS
 (
 FName char(8),
 Sex char(1),
 Age num,
 Height num,
 Weight num
);

You can copy this code from the log and use it in your source code. Of course, if you do
that without making any changes, and if you do not have the NOREPLACE system
option or some other safety mechanism in effect, you can easily destroy the model table
(the one referenced by the DESCRIBE TABLE statement) and replace it with an empty
clone. So it’s more likely that you will want to edit the code before running it and, in
particular, change the name or library location of the new table.

The DESCRIBE TABLE statement is useful in a variety of situations. If you want to code
a self-contained CREATE TABLE statement for a table that is to be almost but not
exactly like an existing table, you can use DESCRIBE TABLE to generate a first
approximation of your CREATE TABLE statement. You can then edit the statement. If
you want to pattern a new table on an existing table and then “freeze” that borrowed
structure so that your code is insulated from later changes to the model table, you cannot
use the CREATE TABLE statement with the LIKE keyword. Instead, use DESCRIBE
TABLE to generate the code you need. If you prefer to design a table using the DATA
step and then translate the specifications into SQL, use DESCRIBE TABLE to produce
the CREATE TABLE statement.

Preview: The DATA step has an unrelated DESCRIBE statement. It is discussed later, in
the chapter about views (see Section 10.3).

Chapter 9: Table Maintenance and Alternate Strategies 173

Deleting a Table
Before we proceed to an exploration of maintenance events, let’s finish the discussion of
the table life cycle by showing how a table can be eliminated when no longer needed.

The non-SQL technique relies on PROC DATASETS. To illustrate, we can run:

PROC DATASETS LIBRARY=demolib;
DELETE fifteenups;
RUN;

The log confirms the operation, reporting:

NOTE: Deleting DEMOLIB.FIFTEENUPS (memtype=DATA).

The PROC SQL counterpart is:

PROC SQL;
DROP TABLE demolib.fifteenups
;
QUIT;

and the report in the log is:

NOTE: Table DEMOLIB.FIFTEENUPS has been dropped.

9.4 Data Maintenance

We’re now ready to look at the core subject of this chapter, the SQL tools for changing
the data content of a table (that is, the numeric or character values stored in rows and
columns). There are three task types:

 inserting additional rows

 deleting existing rows

 making value changes within existing rows

SQL has a different statement for each task.

To simplify and shorten our discussion, we present only what might be called “nice”
problems. That means we avoid having non-distinct keys (that is, keys that repeat) and
we do not try to delete or change rows that do not exist, or to reference columns that do

174 PROC SQL by Example: Using SQL within SAS

not exist. Keep in mind that in messier situations, some of the equivalences between SQL
and DATA step code do break down. In real-world usage, you would of course determine
the properties of your data and test the behavior of your code in the context of all
potential ambiguities or anomalies.

Inserting Rows into an Existing Table
There are several ways to add completely new rows to a table. One of these is to specify
the values for the new rows within the code. To demonstrate this, we first refresh our
demonstration table (DEMOLIB.FIFTEENUPS) so that it looks like Exhibit 9-1.

Now suppose we have two new students, Adam and Joan. We can add their data to this
table by running:

PROC SQL;
INSERT INTO demolib.fifteenups
SET fname = "Adam" ,
 weight = 130 ,
 sex = "M" ,
 height = 68 ,
 age = 15
SET fname = "Joan" ,
 sex = "F" ,
 age = 16 ,
 height = 64 ,
 weight = 120
;
QUIT;

Notice that this is all one statement, but that there is a SET clause for each row to be
inserted. The log confirms the operation:

NOTE: 2 rows were inserted into DEMOLIB.FIFTEENUPS.

DEMOLIB.FIFTEENUPS now looks like Exhibit 9-2.

Chapter 9: Table Maintenance and Alternate Strategies 175

Exhibit 9-2 DEMOLIB.FIFTEENUPS (after insertions)

The same thing can be done in a DATA step. To demonstrate, we first refresh the target
(so that it has only its original five rows), and then run:

DATA demolib.fifteenups;
fname = "Adam" ;
sex = "M" ;
age = 15 ;
height = 68 ;
weight = 130 ;
OUTPUT;
fname = "Joan" ;
sex = "F" ;
age = 16 ;
height = 64 ;
weight = 120 ;
OUTPUT;
STOP;
MODIFY demolib.fifteenups;
RUN;

The log reports:

NOTE: The data set DEMOLIB.FIFTEENUPS has been updated.
There were 0 observations rewritten, 2 observations
added and 0 observations deleted.

The result is the same seven-row table we saw produced by SQL (see Exhibit 9-2).

FName Sex Age Height Weight

Janet F 15 62.5 112.5

Mary F 15 66.5 112.0

Philip M 16 72.0 150.0

Ronald M 15 67.0 133.0

William M 15 66.5 112.0

Adam M 15 68.0 130.0

Joan F 16 64.0 120.0

176 PROC SQL by Example: Using SQL within SAS

There is also a more compact way of coding SQL to perform this task: the VALUES
clause. The code looks like this:

INSERT INTO demolib.fifteenups
VALUES ("Adam", "M", 15, 68, 130)
VALUES ("Joan", "F", 16, 64, 120)
;

As before, the log tells us:

NOTE: 2 rows were inserted into DEMOLIB.FIFTEENUPS.

Notice that in this terse code there is no indication of which column is to receive which
value. It’s obvious to us that “Adam” is a name, and that 16 is too small to be either a
height or a weight, and thus must be an age. The SQL processor is not that smart. It just
loads the values into columns in the order in which the columns are stored. We managed
to specify the values in the appropriate order, but relying on that is rather risky. It’s better
to extend the INTO clause with a column list (which is optional syntax). The code then
looks like this:

INSERT INTO demolib.fifteenups
 (fname, sex, age, height, weight)
VALUES ("Adam", "M", 15, 68, 130)
VALUES ("Joan", "F", 16, 64, 120)
;

With this explicit technique, we don’t have to be concerned with the pre-existing order of
the columns in the target table. As long as the order of the column names in the INTO
clause corresponds to the order of the literals in the VALUES clauses, the table will be
extended correctly.

There is no DATA step counterpart to the VALUES clause.

All of the methods we’ve used so far to extend our table have embedded the new data
directly into the programming statements. Such code-driven approaches might suffice
when there is a one-time need to introduce a small volume of data. However, a more
systematic approach calls for the new data to be introduced via a query (that is, using a
SELECT clause to supply the values). We conclude our discussion about extending tables
by demonstrating such data-driven techniques.

Remember that we earlier built a table (INSERTIONS) containing the data for Adam and
Joan. It looks like Exhibit 9-3.

Chapter 9: Table Maintenance and Alternate Strategies 177

Exhibit 9-3 INSERTIONS

After refreshing the target table (DEMOLIB.FIFTEENUPS) to its initial state, we can try
to integrate the data for the two new students by running:

PROC SQL;
INSERT INTO demolib.fifteenups
SELECT *
FROM insertions
;
QUIT;

The log shows:

NOTE: 2 rows were inserted into DEMOLIB.FIFTEENUPS.

The log gives no indication of trouble, but DEMOLIB.FIFTEENUPS looks like
Exhibit 9-4.

Exhibit 9-4 DEMOLIB.FIFTEENUPS (with incorrect insertions)

The problem is that the columns in the two tables are not stored in the same order and if
there is no guidance to the contrary, SQL matches them up by position, not by name.
Fortunately, it is possible to avoid this problem by coding an explicit column list within

Sex FName Height Weight Age

M Adam 68 130 15

F Joan 64 120 16

FName Sex Age Height Weight

Janet F 15 62.5 112.5

Mary F 15 66.5 112.0

Philip M 16 72.0 150.0

Ronald M 15 67.0 133.0

William M 15 66.5 112.0

M A 68 130.0 15.0

F J 64 120.0 16.0

178 PROC SQL by Example: Using SQL within SAS

the INTO clause, and we already know that the SELECT clause can be made similarly
explicit. So let’s try this:

PROC SQL;
INSERT INTO demolib.fifteenups
 (age, height, fname, sex, weight)
SELECT age, height, fname, sex, weight
FROM insertions
;
QUIT;

We get the same note, but this time the extended table is correct, and again looks like
Exhibit 9-2.

SAS also offers a non-SQL tool for reading observations from one data set and inserting
them into an existing data set: PROC APPEND. We can test it (after refreshing the target
table to its original state) by running:

PROC APPEND BASE=demolib.fifteenups DATA=insertions;
RUN;

The log tells us:

NOTE: Appending WORK.INSERTIONS to DEMOLIB.FIFTEENUPS.
NOTE: There were 2 observations read from the data set
 WORK.INSERTIONS.
NOTE: 2 observations added.

The differing order of the variables causes no problem. Unlike PROC SQL, PROC
APPEND automatically relies on names to match up the variables.

Deleting Rows
Suppose that instead of inserting new rows, we find it necessary to delete some of the
existing rows. As with insertion, we find that there are both code-driven and data-driven
techniques.

Let’s say that we have to delete the rows for Mary and Ronald from the
DEMOLIB.FIFTEENUPS table. We can run this DATA step:

DATA demolib.fifteenups;
MODIFY demolib.fifteenups;
WHERE fname IN ('Mary','Ronald');
REMOVE;
RUN;

Chapter 9: Table Maintenance and Alternate Strategies 179

The log reports:

NOTE: There were 2 observations read from the data set
 DEMOLIB.FIFTEENUPS.
 WHERE fname in ('Mary', 'Ronald');
NOTE: The data set DEMOLIB.FIFTEENUPS has been updated.
 There were 0 observations rewritten, 0
 observations added and 2 observations deleted.

The table now looks like Exhibit 9-5.

Exhibit 9-5 DEMOLIB.FIFTEENUPS (after deletions)

The equivalent SQL code (which we run after refreshing DEMOLIB.FIFTEENUPS) is:

PROC SQL;
DELETE FROM demolib.fifteenups
WHERE fname IN ('Mary','Ronald')
;
QUIT;

It generates this log note:

NOTE: 2 rows were deleted from DEMOLIB.FIFTEENUPS.

The deletion process can also be data-driven. This requires a table containing the keys (in
this instance, FNAME values) of the rows to be deleted. We built such a table
(DELETIONS) earlier. It looks like Exhibit 9-6.

Exhibit 9-6 DELETIONS

FName Sex Age Height Weight

Janet F 15 62.5 112.5

Philip M 16 72.0 150.0

William M 15 66.5 112.0

FName

Mary

Ronald

180 PROC SQL by Example: Using SQL within SAS

To demonstrate how this table can drive the deletion process in a DATA step, we first (of
course) refresh the target table to its initial five-row population, and then run this code:

DATA demolib.fifteenups;
MODIFY demolib.fifteenups deletions(IN=dropit);
BY fname;
IF dropit THEN REMOVE;
RUN;

In the log we see:

NOTE: There were 1 observations read from the data set
 DEMOLIB.FIFTEENUPS.
NOTE: The data set DEMOLIB.FIFTEENUPS has been updated.
 There were 0 observations rewritten, 0
 observations added and 2 observations deleted.
NOTE: There were 2 observations read from the data set
 WORK.DELETIONS.

The first NOTE is totally misleading. For some reason, when SAS uses this form of the
MODIFY statement, it seems to always report reading just one observation from the
master data set. The important things to notice are that the second note conforms to our
expectations and that the table ends up looking like Exhibit 9-5.

Now (after we refresh the target table) we want to see how the deletion can be done in
PROC SQL. The code is:

PROC SQL;
DELETE FROM demolib.fifteenups
WHERE fname IN (SELECT fname FROM deletions)
;
QUIT;

When we run it, the log reports:

NOTE: 2 rows were deleted from DEMOLIB.FIFTEENUPS.

Selective Corrections
We’ve looked at insertions and deletions. Now we turn to the third type of change:
replacement of existing values. Whereas insertion and replacement are done on a row
basis, replacement can be done selectively within a row.

Let’s take up a concrete example. Suppose that we have the (suitably refreshed)
DEMOLIB.FIFTEENUPS table we’ve used before, and that we have two new pieces of

Chapter 9: Table Maintenance and Alternate Strategies 181

data: Janet’s height is now 64 inches and William’s weight is now 118 pounds. Here’s the
code-driven DATA step approach:

DATA demolib.fifteenups;
MODIFY demolib.fifteenups;
IF fname='Janet' THEN DO;
 height = 64;
 REPLACE;
 END;
IF fname='William' THEN DO;
 weight = 118;
 REPLACE;
 END;
RUN;

In the log we see:

NOTE: There were 5 observations read from the data set
 DEMOLIB.FIFTEENUPS.
NOTE: The data set DEMOLIB.FIFTEENUPS has been updated.
 There were 2 observations rewritten, 0
 observations added and 0 observations deleted.

Turning to SQL, we can do the same thing with this code (after refreshing the target
table):

PROC SQL;
UPDATE demolib.fifteenups
SET height = 64
WHERE fname='Janet'
;
UPDATE demolib.fifteenups
SET weight = 118
WHERE fname='William'
;
QUIT;

Because we need a separate statement for each row being changed, it’s a little clumsy. In
the log, each statement is followed by this note:

NOTE: 1 row was updated in DEMOLIB.FIFTEENUPS.

Whether we use the DATA step or PROC SQL, the table ends up looking like
Exhibit 9-7.

182 PROC SQL by Example: Using SQL within SAS

Exhibit 9-7 DEMOLIB.FIFTEENUPS (after corrections)

Embedding value corrections in code might be a useful approach for a quick fix involving
a small amount of data. However, a systematic approach for larger volumes calls for a
process that is data-driven, with the corrections stored in a separate table. We already
built such a table (CORRECTIONS) for our example. It is shown in Exhibit 9-8.

Exhibit 9-8 CORRECTIONS

Note the missing values for Janet’s weight and William’s height. They are just
placeholders; the corresponding values in DEMOLIB.FIFTEENUPS should be left as is.

To accomplish this with a DATA step, we can refresh the target table and run:

DATA demolib.fifteenups;
MODIFY demolib.fifteenups
 corrections;
BY fname;
RUN;

which places these notes in the log:

NOTE: There were 1 observations read from the data set
 DEMOLIB.FIFTEENUPS.
NOTE: The data set DEMOLIB.FIFTEENUPS has been updated.
 There were 2 observations rewritten, 0
 observations added and 0 observations deleted.
NOTE: There were 2 observations read from the data set
 WORK.CORRECTIONS.

FName Sex Age Height Weight

Janet F 15 64.0 112.5

Mary F 15 66.5 112.0

Philip M 16 72.0 150.0

Ronald M 15 67.0 133.0

William M 15 66.5 118.0

FName Height Weight

Janet 64 .

William . 118

Chapter 9: Table Maintenance and Alternate Strategies 183

Once again the first NOTE is incorrect. However, the table does in fact reflect both
changes. It now looks like Exhibit 9-7.

Developing parallel SQL language is a bit tricky. We can use this code:

PROC SQL;
UPDATE demolib.fifteenups AS main
SET height = COALESCE((SELECT sub.height
 FROM corrections AS sub
 WHERE main.fname=sub.fname),
 height),
 weight = COALESCE((SELECT sub.weight
 FROM corrections AS sub
 WHERE main.fname=sub.fname),
 weight)
;
QUIT;

Notice that there is a correlated subquery for each column in the SET clause (that is, one
for HEIGHT and one for WEIGHT). The COALESCE function is used to prevent nulls
(missing values) from replacing non-nulls. When we run the code we see:

NOTE: 5 rows were updated in DEMOLIB.FIFTEENUPS.

This tells us that the query examined all of the rows in the target table, not just those that
were to be changed. In a real-world problem, this could be quite inefficient. A remedy is
to insert this WHERE clause after the SET clause:

WHERE fname IN (SELECT fname FROM corrections)

If we do that, the confirmation message is:

NOTE: 2 rows were updated in DEMOLIB.FIFTEENUPS.

This confirms that PROC SQL used the subquery in the WHERE clause to restrict
processing to the rows for which there were changes.

9.5 Metadata Maintenance

At this point we’ve finished our exploration of data maintenance (that is, techniques for
inserting, deleting, and changing the rows within a table). Now we turn to the tools that
allow us to work on the metadata (column attributes). It’s important to understand that

184 PROC SQL by Example: Using SQL within SAS

metadata are stored in the header portion of a table, so that they can be touched without
disturbing the body of the table (the row/column grid containing the data values).

The primary tool for metadata management is PROC DATASETS and, in particular, its
MODIFY statement. This statement is not to be confused with either the MODIFY
statement of the DATA step language or the MODIFY clause of the SQL ALTER
TABLE statement, which is discussed later in this section.

As an example, suppose we want to enhance our DEMOLIB.FIFTEENUPS table by
providing a label and a format for the HEIGHT variable. We can do that with this code:

PROC DATASETS LIBRARY=demolib;
MODIFY fifteenups;
 FORMAT height 6.2;
 LABEL height = 'Height in Inches';
 RUN;
QUIT;

When we run this PROC DATASETS code, we see this in the log:

NOTE: MODIFY was successful for DEMOLIB.FIFTEENUPS.DATA.

PROC SQL has an ALTER statement, which in turn provides a MODIFY clause for
making metadata changes. So the SQL code to establish a format and a label for HEIGHT
would be:

PROC SQL;
ALTER TABLE demolib.fifteenups
MODIFY height FORMAT = 6.2
 LABEL = 'Height in Inches'
;
QUIT;

When we run the code, the log reports:

NOTE: Table DEMOLIB.FIFTEENUPS has been modified, with 5
columns.

Tip: A MODIFY statement group in PROC DATASETS can include a RENAME
statement. We do not include that in the example because PROC SQL has no
corresponding feature. If you are using SQL and you want to change a column name, you
have to exit from PROC SQL and work with PROC DATASETS.

Chapter 9: Table Maintenance and Alternate Strategies 185

9.6 Changing Structure

In previous sections we have worked with techniques to change data (the rows in the
body of a table, and their content) and metadata (attributes of a table’s column, stored in
the table header). Now we consider changes in structure, meaning the number of
columns, their types (numeric or character), and their lengths (meaning the number of
bytes of storage allocated for each value in a column). It is not possible to change a
column’s type, but the ALTER TABLE statement in PROC SQL does provide DROP and
ADD clauses. DROP is used to remove existing columns, and ADD to insert NEW
columns. In addition, the MODIFY clause, which we used earlier to change metadata,
can also be used to change a column’s length. So, for example, we could change our
DEMOLIB.FIFTEENUPS table by extending the length of the FNAME column,
shedding the AGE, HEIGHT, and WEIGHT columns, and inserting a DOB column (for
date of birth). The code for this is:

PROC SQL;
ALTER TABLE demolib.fifteenups
MODIFY fname CHAR (12)
DROP age, height, weight
ADD DoB DATE LABEL='Date of Birth'
;
QUIT;

Notice the specification of DATE in the place that syntactically expects a declaration of
data type. DATE is a valid type in most if not all SQL implementations, but SAS of
course has only the numeric and character types. So, if you call for a DATE column,
PROC SQL automatically makes it numeric, and also by default associates an appropriate
informat and format.

The code works as promised, as long as the REPLACE system option is in effect. The log
confirms the completion of the task:

NOTE: Table DEMOLIB.FIFTEENUPS has been modified, with 3
columns.

The wording of this note suggests that the process did not disrupt the table’s continuity of
existence. However, if we put the NOREPLACE system option into effect and rerun this
code (after running the %REFRESH_EXAMPLE macro to restore

186 PROC SQL by Example: Using SQL within SAS

DEMOLIB.FIFTEENUPS to its initial state), we get a different outcome. This time the
log tells us:

WARNING: Data set DEMOLIB.FIFTEENUPS was not replaced
 because of NOREPLACE option.
ERROR: PROC SQL cannot modify the data set due to the
 reason(s) cited above.

This tells us that, behind the scenes, PROC SQL actually has to replace a table in order to
make structural changes specified in DROP, ADD, and MODIFY clauses. A consequence
is that if you do not have permission to delete and replace a table, you probably won’t be
able to use all of the features of the ALTER statement.

There are no counterparts in PROC DATASETS to the DROP and ADD clauses. So the
non-SQL equivalent to our PROC SQL code is a DATA step that explicitly calls for
replacement. The code looks like this:

OPTIONS REPLACE;
DATA demolib.fifteenups;
LENGTH FName $ 12;
SET demolib.fifteenups(DROP = age height weight);
ATTRIB DoB LABEL = 'Date of Birth'
 FORMAT = date.
 INFORMAT = date.;
RUN;

Notice the FORMAT and INFORMAT specifications, which did not appear in the PROC
SQL code, where we instead specified DATE as the data type. Whether we use the
ALTER TABLE statement in PROC SQL or the DATA step to create it, the new
DEMOLIB.FIFTEENUPS looks like Exhibit 9-9.

Exhibit 9-9 DEMOLIB.FIFTEENUPS (with structure changes)

The new DOB column is of course null-filled. Supplying values is a separate data
maintenance exercise.

FName Sex DoB

Janet F .

Mary F .

Philip M .

Ronald M .

William M .

Chapter 9: Table Maintenance and Alternate Strategies 187

Here is a portion of PROC CONTENTS output for DEMOLIB.FIFTEENUPS, reflecting
the changes just made:

Alphabetic List of Variables and Attributes

Variable Type Len Format Informat Label

3 DoB Num 8 DATE. DATE. Date of Birth
1 FName Char 12
2 Sex Char 1

So, although table structure can be changed, doing so inevitably involves replacing the
table. Thus it does not really fall under what we have termed the persistence strategy. If
you are working in an environment where file permissions are restricted, you might find
that you cannot complete such tasks on your own.

9.7 Changing Features

We conclude our discussion of table maintenance by discussing what we call, for want of
a better term, “features.” To be specific, this term refers to

 indexes

 integrity constraints

 audit trails

 generation data sets

All four of these features can be used with PROC SQL, though the extent of support
varies. All, except generation data sets, are particularly useful with the persistence
strategy to manage progression in your data.

Indexes
SAS indexes serve two purposes. The first is to improve performance by speeding things
up. The second is to support BY processing without requiring the data set to be sorted.
Because SQL does not use BY processing, or for that matter any order-sensitive
processing, indexes in PROC SQL are about performance alone.

Reference: Read more about indexes in SAS 9.2 Language Reference: Concepts: SAS
Files Concepts: SAS Data Files: Understanding SAS Indexes.

188 PROC SQL by Example: Using SQL within SAS

Outside PROC SQL, we use PROC DATASETS to add an index to an existing data set.
Suppose we want to index our demonstration data set by the variable AGE. The code
would be:

PROC DATASETS LIBRARY=demolib;
MODIFY fifteenups;
 INDEX CREATE age;
 RUN;
QUIT;

When we run this, the log reports:

NOTE: Simple index age has been defined.

We can do the same thing using SQL. In that case the code looks like this:

PROC SQL;
CREATE INDEX age
ON demolib.fifteenups
;
QUIT;

The confirmation message in the log is (again):

NOTE: Simple index age has been defined.

Let’s confirm that the index actually works. If we run this code:

PROC PRINT DATA=demolib.fifteenups;
RUN;

to display the contents of DEMOLIB.FIFTEENUPS, we see:

Obs FName Sex Age Height Weight

 1 Janet F 15 62.5 112.5
 2 Mary F 15 66.5 112.0
 3 Philip M 16 72.0 150.0
 4 Ronald M 15 67.0 133.0
 5 William M 15 66.5 112.0

The observations appear in FNAME alphabetical order, because they are stored in that
order. If we include a BY statement in the code, as in:

PROC PRINT DATA=demolib.fifteenups;
BY age;
RUN;

Chapter 9: Table Maintenance and Alternate Strategies 189

the output looks like this:

Age=15

Obs FName Sex Height Weight

 1 Janet F 62.5 112.5
 2 Mary F 66.5 112.0
 4 Ronald M 67.0 133.0
 5 William M 66.5 112.0

Age=16

Obs FName Sex Height Weight

 3 Philip M 72 150

We get this result because the index has been used to display the observations in
ascending AGE order. Notice how the numbers in the “Obs” reference column reflect the
stored order of the rows, not the displayed order.

Let’s focus now on the use of indexes in PROC SQL (whether or not they are created
with PROC SQL). As we noted earlier, the benefit of indexes in PROC SQL is strictly
one of performance; indexes can speed up processing. Later (see Section 13.1), we have
an example of this.

Often it’s convenient to create, populate, and index a table all at once. In SAS generally,
doing this simply involves using a data set option. To create an AGE index for a copy of
DEMOLIB.FIFTEENUPS, we could run:

DATA newtable(INDEX=(age));
SET demolib.fifteenups;
RUN;

SQL offers no syntax within the CREATE TABLE statement to call for construction of
an index. However, because data set options are available within PROC SQL, we can
borrow that SAS feature and use it in code like this:

PROC SQL;
CREATE TABLE newtable(INDEX=(age)) AS
SELECT *
FROM demolib.fifteenups
;
QUIT;

190 PROC SQL by Example: Using SQL within SAS

Either way, NEWTABLE is created with an index on AGE.

There might be circumstances in which you want to get rid of an index while preserving
the data set (and possibly other indexes). The non-SQL technique is to use the INDEX
DELETE statement in PROC DATASETS. Here’s a demonstration that creates two
indexes and then eliminates one of them:

PROC DATASETS LIBRARY=demolib;
MODIFY fifteenups;
 INDEX CREATE age;
 INDEX CREATE sex;
 RUN;
MODIFY fifteenups;
 INDEX DELETE age;
 RUN;
QUIT;

We get these messages for the first MODIFY statement group:

NOTE: Simple index Age has been defined.
NOTE: Simple index Sex has been defined.
NOTE: MODIFY was successful for DEMOLIB.FIFTEENUPS.DATA.

Then, for the second group, we see:

NOTE: Index Age deleted.
NOTE: MODIFY was successful for DEMOLIB.FIFTEENUPS.DATA.

In PROC SQL, the DROP INDEX statement parallels the INDEX DELETE statement
that we just saw in PROC DATASETS. This time we continue the example without
refreshing. With the SEX index still in place, we have PROC SQL build and then remove
the AGE index. The code is:

PROC SQL;
CREATE INDEX age
ON demolib.fifteenups
;
DROP INDEX age
FROM demolib.fifteenups
;
QUIT;

After the first statement, the log reports:

NOTE: Simple index age has been defined.

Chapter 9: Table Maintenance and Alternate Strategies 191

Then, after the second statement, the note is:

NOTE: Index age has been dropped.

We conclude the discussion of indexes by looking at tools we can use to discover their
presence. Once again, we demonstrate using DEMOLIB.FIFTEENUPS in its state at the
conclusion of the previous example (that is, without running the refresh macro). Outside
of PROC SQL, existence of indexes can be reported with PROC CONTENTS. If we run:

PROC CONTENTS DATA=demolib.fifteenups;
RUN;

the output includes this report:

Alphabetic List of Indexes and Attributes

 # of
 Unique
Index Values

1 Sex 2

The corresponding tool in PROC SQL is the DESCRIBE TABLE statement. For
example, we could submit:

PROC SQL;
DESCRIBE TABLE demolib.fifteenups;
QUIT;

Recall: We used this statement earlier in this chapter (see Section 9.3) in conjunction
with creating tables modeled on existing tables.

The result, appearing in the log, begins with a complete CREATE TABLE statement
outlining the structure of DEMOLIB.FIFTEENUPS, followed by:

create index Sex on DEMOLIB.FIFTEENUPS(Age);

which tells us that the index on AGE exists by showing us how it might have been
created.

Integrity Constraints
Integrity constraints are devices that assure that data values in particular columns
conform to various rules. For example, we can specify an integrity constraint to ensure
that the values in a column are distinct (that is, that no value occurs more than once).

192 PROC SQL by Example: Using SQL within SAS

Integrity constraints cannot operate when a table is created and populated at the same
time. They can be used prospectively, when data maintenance operations are performed
on an existing table, or retrospectively, to check the compliance of the data stored in an
existing table.

Reference: Read more about integrity constraints in SAS 9.2 Language Reference:
Concepts: SAS Files Concepts: SAS Data Files: Understanding Integrity Constraints.

We begin by demonstrating the life cycle of an integrity constraint, using non-SQL tools.
After using our macro to refresh DEMOLIB.FIFTEENUPS, we run this code to create
the constraint:

PROC DATASETS LIBRARY=demolib;
MODIFY fifteenups;
 IC CREATE norepeats = UNIQUE(fname);
 RUN;
QUIT;

The log reports:

NOTE: Integrity constraint norepeats defined.

There are several types of integrity constraints. The keyword UNIQUE indicates that here
we want a constraint that prevents any observation in this data set from holding a value of
the variable FNAME that repeats an FNAME value found in another observation. In
other words, it ensures that each FNAME value is distinct. NOREPEATS is a name we
supply so that we can later reference this integrity constraint. If we run:

PROC CONTENTS DATA=demolib.fifteenups;
RUN;

we see:

Alphabetic List of Integrity Constraints

 Integrity
Constraint Type Variables

1 norepeats Unique FName

Chapter 9: Table Maintenance and Alternate Strategies 193

Now let’s see our integrity constraint in action. We attempt to insert an additional
observation carrying the FNAME value “Ronald,” which already appears in the table:

DATA demolib.fifteenups;
fname = 'Ronald';
OUTPUT;
STOP;
MODIFY demolib.fifteenups;
RUN;

In the log, we see:

FName=Ronald Sex= Age=. Height=. Weight=. _ERROR_=1
IORC=660130 _N_=1

NOTE: The data set DEMOLIB.FIFTEENUPS has been updated. There
were 0 observations rewritten, 0 observations added and 0
observations deleted.

NOTE: There were 0 rejected updates, 1 rejected adds, and 0
rejected deletes.

It is “1 rejected adds” which indicates that the integrity constraint blocked the OUTPUT
statement from creating a duplicate observation.

Finally, if we want to remove the constraint, PROC DATASETS provides a tool to do so.
The code looks like this:

PROC DATASETS LIBRARY=demolib;
MODIFY fifteenups;
 IC DELETE norepeats;
 RUN;
QUIT;

The log confirms the operation, reporting:

NOTE: All integrity constraints defined on
DEMOLIB.FIFTEENUPS.DATA have been deleted.

NOTE: MODIFY was successful for DEMOLIB.FIFTEENUPS.DATA.

194 PROC SQL by Example: Using SQL within SAS

Now we turn to PROC SQL, where we can use the same example. After refreshing the
table, we first create the integrity constraint by submitting:

PROC SQL;
ALTER TABLE demolib.fifteenups
ADD CONSTRAINT norepeats DISTINCT(fname)
;
QUIT;

The confirmation is rather vague in this case; the log states only:

NOTE: Table DEMOLIB.FIFTEENUPS has been modified, with 5
columns.

To verify that the integrity constraint has been put in place, we can use the DESCRIBE
TABLE statement:

PROC SQL;
DESCRIBE TABLE CONSTRAINTS demolib.fifteenups;
QUIT;

Then, in the log, we see:

-----Alphabetic List of Integrity Constraints-----

 Integrity
Constraint Type Variables

1 norepeats Unique FName

To demonstrate our integrity constraint in action, we can try:

PROC SQL;
INSERT INTO demolib.fifteenups
SET fname = "Ronald"
;
QUIT;

Because there is already a row for Ronald, the attempt to insert a second such row fails,
and the log tells us:

ERROR: Add/Update failed for data set DEMOLIB.FIFTEENUPS
because data value(s) do not comply with integrity constraint
norepeats.

NOTE: Deleting the successful inserts before error noted above
to restore table to a consistent state.

Chapter 9: Table Maintenance and Alternate Strategies 195

The note is superfluous in this case, because there were no other inserts. It does tell us
that, in general, the SQL processor treats insertions subject to integrity constraints as an
all-or-nothing proposition.

To use SQL to remove the integrity constraint, we would run:

PROC SQL;
ALTER TABLE demolib.fifteenups
DROP CONSTRAINT norepeats
;
QUIT;

Then the log shows us:

NOTE: Integrity constraint norepeats deleted.

That completes the SQL version of our life-cycle demonstration of an integrity constraint.
However, there is one additional capability found in SQL that does not exist elsewhere in
SAS. We can establish an integrity constraint when a table is first created (though not if
either the LIKE or AS keyword is used in the CREATE TABLE statement). Here is an
example:

PROC SQL;
CREATE TABLE AnotherTable
 (SomeColumn character(20),
 CONSTRAINT norepeats UNIQUE(SomeColumn),
 AnotherColumn numeric
)
;
QUIT;

Before leaving the subject of integrity constraints, let’s look at their retrospective use.
Such use is based on the fact that when an integrity constraint is created for a table that
already contains data, SAS must confirm that the existing data are compliant with the
integrity constraint. If the data are not compliant, creation of the integrity constraint is
blocked. We can use this process to evaluate an existing table.

Let’s experiment and demonstrate this technique. After refreshing
DEMOLIB.FIFTEENUPS to its initial state, we can run:

PROC SQL;
ALTER TABLE demolib.fifteenups
 ADD CONSTRAINT diff_age UNIQUE(age)
;
QUIT;

196 PROC SQL by Example: Using SQL within SAS

This requires that the AGE values in the table be distinct. However, we know that we
have several 15-year-olds. So, in the log we see:

ERROR: Duplicate values not allowed on index Age for file
FIFTEENUPS.

Why does it refer to an index? Because integrity constraints are implemented through
indexes.

If the AGE values had been distinct in the table, the operation to add the constraint would
have succeeded, and we would not have gotten the ERROR message. So it’s possible to
assess a table’s pre-existing compliance with an integrity constraint by attempting to
install the constraint and monitoring the result of that attempt.

Audit Trails
A table’s audit trail is an auxiliary data set that keeps track of the data changes made to
the subject table. Audit trails are germane only when you are following the persistence
strategy and performing data maintenance on an existing table in place. PROC SQL itself
has no language elements to manage audit trails, but if a table has an audit trail, PROC
SQL records in that audit trail changes it makes as it processes SQL INSERT, DELETE,
and UPDATE statements.

Reference: Read more about audit trails in SAS 9.2 Language Reference: Concepts: SAS
Files Concepts: SAS Data Files: Understanding an Audit Trail.

To demonstrate, we can run this code (after refreshing DEMOLIB.FIFTEENUPS to its
initial state):

PROC DATASETS LIBRARY=demolib;
AUDIT fifteenups;
 INITIATE;
 RUN;
QUIT;

This turns on the audit trail feature for DEMOLIB.FIFTEENUPS, as confirmed by this
log message:

NOTE: The data set DEMOLIB.FIFTEENUPS.AUDIT has 0 observations
and 11 variables.

Chapter 9: Table Maintenance and Alternate Strategies 197

This empty data set is the container for the audit trail. Notice the three-part name. The
third part, known as the Member Type, is “AUDIT,” whereas the Member Type of our
data table is “DATA.” We have to use PROC DATASETS to initiate the audit trail;
PROC SQL has no equivalent ability.

Now we can exercise our audit trail. We first use a DATA step to insert a new row in our
data table. The code is:

DATA demolib.fifteenups;
fname = 'Ezra';
OUTPUT;
STOP;
MODIFY demolib.fifteenups;
RUN;

Now we display what’s in both the data table and its audit trail. When we submit:

PROC PRINT DATA=demolib.fifteenups;
VAR fname;
RUN;

we see, as expected:

Obs FName

 1 Janet
 2 Mary
 3 Philip
 4 Ronald
 5 William
 6 Ezra

Turning to the audit trail, we run:

PROC PRINT DATA=demolib.fifteenups(TYPE=AUDIT);
VAR fname _atdatetime_;
FORMAT _atdatetime_ tod.;
RUN;

This gives us:

Obs FName _ATDATETIME_

 1 Ezra 15:29:50

198 PROC SQL by Example: Using SQL within SAS

There is just one row, corresponding to the only row in the audited table that changed
after the audit trail was begun. The format statement directs PROC PRINT to display
only the time-of-day portion of the timestamp, but the date portion is stored.

Now we test the use of the audit trail with PROC SQL. To make the audit trail
cumulative, we do not refresh the data table. Instead, we proceed to insert two more rows
by running:

PROC SQL;
INSERT INTO demolib.fifteenups
SET fname = 'Nicole'
SET fname = 'Matthew'
;
QUIT;

We see confirmation in the log:

NOTE: 2 rows were inserted into DEMOLIB.FIFTEENUPS.

Now we rerun the two PROC PRINT steps. The first one operates on the data table; the
output looks like:

Obs FName

 1 Janet
 2 Mary
 3 Philip
 4 Ronald
 5 William
 6 Ezra
 7 Nicole
 8 Matthew

This output reflects the presence of the two new rows. The second displays the audit trail.
We see:

Obs FName _ATDATETIME_

 1 Ezra 15:29:50
 2 Nicole 15:29:54
 3 Matthew 15:29:54

The first observation remains from the earlier insertion (the one performed with a DATA
step), whereas the other two report on the rows we just added using the INSERT
statement in PROC SQL.

Chapter 9: Table Maintenance and Alternate Strategies 199

Now suppose we want to end the audit trail. PROC SQL cannot do that; we have to use
PROC DATASETS. Here is the code:

PROC DATASETS LIBRARY=demolib;
AUDIT fifteenups;
 TERMINATE;
 RUN;
QUIT;

The log reports:

NOTE: Deleting DEMOLIB.FIFTEENUPS (memtype=AUDIT).

Notice that this does not merely “freeze” the audit trail. It actually deletes it. So if you
need to preserve the content of a discontinued audit trail, you should copy it into a data
set before you terminate it.

Generation Data Sets
To conclude this chapter examining tools for table maintenance, we look briefly at
generation data sets. Actually, the topic of generation data sets does not belong here.
Generation data sets do not support or enhance the persistence strategy (in-place table
maintenance), and they do not work particularly well with SQL. However, they do
complement audit trails, which we just examined, so this is a convenient place to consider
them.

Reference: Read more about generation data sets in SAS 9.2 Language Reference:
Concepts: SAS Files Concepts: SAS Data Files: Understanding Generation Data Sets.

Consider again the three alternative strategies for recording progressive stages of
refinement in your data: succession (a series of distinctly named tables), replacement (a
series of like-named tables, each of which takes the place of its predecessor), and
persistence (one table that is changed in place). Now suppose that you want to keep track
of the history of your data. In other words, you want to be able to see not just the “latest
and greatest,” but also the steps that got you there.

If you are following the succession strategy, there is no problem (as long as you keep the
whole sequence of tables). If you are following the persistence strategy, you can use audit
trails. However, if you are using the replacement strategy, you are essentially hiding your
tracks, and there is nothing in your data library to show how you got where you are.

Generation data sets essentially let you convert the replacement practice to the succession
practice and automate the details (specifically, by providing a naming convention and
applying that convention to successive versions of a table). Let’s look at a demonstration.

200 PROC SQL by Example: Using SQL within SAS

After refreshing DEMOLIB.FIFTEENUPS to its initial state, we run this code:

DATA GDS_Demo(GENMAX=4);
SET demolib.fifteenups;
RUN;

This creates a new table (GDS_DEMO) and activates the generation data set feature for
that table. The GENMAX parameter specifies the number of generations to be retained.

Tip: Generation data sets can also be managed with PROC DATASETS.

Now let’s run this code to create a new version of GDS_DEMO, this time including only
15-year-olds:

DATA GDS_Demo;
SET demolib.fifteenups;
WHERE age=15;
RUN;

Notice that here we did not code the GENMAX data set option. That’s only done once, at
the start, to turn on the feature. Next, we use another DATA step to create another
version of GDS_DEMO, with fewer columns:

DATA GDS_Demo;
SET GDS_Demo;
KEEP fname sex age;
RUN;

To see what we have, we can run three PROC PRINT steps.

PROC PRINT DATA=GDS_Demo(GENNUM=-2);
RUN;
PROC PRINT DATA=GDS_Demo(GENNUM=-1);
RUN;
PROC PRINT DATA=GDS_Demo;
RUN;

Chapter 9: Table Maintenance and Alternate Strategies 201

The GENNUM= data set option enables us to reference earlier versions. The convention
is that –1 indicates the version immediately preceding the latest version, –2 indicates the
version before that, and so on. Of course, omitting the option altogether calls for the latest
version. So the first PROC PRINT displays:

Obs FName Sex Age Height Weight

 1 Janet F 15 62.5 112.5
 2 Mary F 15 66.5 112.0
 3 Philip M 16 72.0 150.0
 4 Ronald M 15 67.0 133.0
 5 William M 15 66.5 112.0

The log reports:

NOTE: There were 5 observations read from the data set
WORK.GDS_DEMO (gennum=1).

Notice that the GENNUM= data set option can accept relative generation numbers, but
the NOTE indicates the corresponding absolute generation. The second PROC PRINT
then gives us the following, because at that point we subsetted the observations to include
15-year-olds only:

Obs FName Sex Age Height Weight

 1 Janet F 15 62.5 112.5
 2 Mary F 15 66.5 112.0
 3 Ronald M 15 67.0 133.0
 4 William M 15 66.5 112.0

In the log we see:

NOTE: There were 4 observations read from the data set
WORK.GDS_DEMO (gennum=2).

If we did not have the generation data sets feature in effect, the first two versions of
GDS_DEMO would be gone at this point.

Finally, the last PROC PRINT generates:

Obs FName Sex Age

 1 Janet F 15
 2 Mary F 15
 3 Ronald M 15
 4 William M 15

202 PROC SQL by Example: Using SQL within SAS

This reflects the elimination of some of the original variables. There was no generation
reference in the PROC PRINT code, and there is no generation reference in the NOTE; it
simply reads:

NOTE: There were 4 observations read from the data set
WORK.GDS_DEMO.

So, by default, the latest generation is used and the whole generation structure remains in
the background.

Now we’re ready to attempt the same exercise using SQL. PROC SQL itself has no way
to invoke generation data sets, but because data set options are available within PROC
SQL, there is no problem. We first run the %REFRESH_EXAMPLE macro to empty the
DEMOLIB library and create a fresh copy of the FIFTEENUPS table. Then we process
this statement to create GDS_DEMO and activate the generation data sets feature:

PROC SQL;
CREATE TABLE GDS_Demo (GENMAX=4) AS
SELECT *
FROM demolib.fifteenups
;
QUIT;

Then we replace GDS_DEMO once:

PROC SQL;
CREATE TABLE GDS_Demo AS
SELECT *
FROM demolib.fifteenups
WHERE age=15
;
QUIT;

and again:

PROC SQL;
CREATE TABLE GDS_Demo AS
SELECT fname, sex, age
FROM GDS_Demo
;
QUIT;

Chapter 9: Table Maintenance and Alternate Strategies 203

These statements parallel exactly the successive DATA steps we used earlier to produce
the successive versions of GDS_DEMO, and the results are indistinguishable. However,
the last statement triggers this message in the log:

WARNING: This CREATE TABLE statement recursively references the
target table. A consequence of this is a possible data
integrity problem.

We saw this earlier (see Section 9.2). However, with generation data sets in effect, the
two references in the code to GDS_Demo actually pertain to two different tables, so the
warning seems particularly unfounded. However, you might prefer to avoid such usage in
order to avoid the appearance of deficiency in your code.

9.8 Summary

In this chapter we’ve considered three different ways (succession, replacement, and
persistence) for recording progressive refinements in a data table. We then focused on the
one (persistence) that makes changes to a table in place, without breaking the continuity
of its existence. Four different categories of change were discussed:

 data changes

 metadata changes

 structural changes

 feature additions and removals (such as the addition of indexes)

We also considered creation of a table as an event separate from population of a table,
and illustrated several creation methods.

204

C h a p t e r 1 0

Views

10.1 Defining Views 207
10.2 Using Views 207
10.3 Inspecting Views 210
10.4 Changing a Table via a View 212
10.5 Managing Library References 214
10.6 Summary 218

A view can be thought of as a virtual table. The distinctive essence of a view is that only
instructions (and not data) are stored when the view is defined. The instructions are not
applied to the data source until the view is referenced. Consequently, the source does not
have to exist when the view is defined, but it must exist whenever the view is used. This
is the diametric opposite of the situation for a table. The source data for a table obviously
must exist when the table is created, but are not needed to support later use of the table.

Both the DATA step and PROC SQL are capable of constructing views. These two kinds
of views are interoperable in use, meaning that SQL views can be read by DATA steps
and by procedures other than PROC SQL, and that PROC SQL can read DATA step
views. However, the two kinds of views have some distinctly different properties. In

206 PROC SQL by Example: Using SQL within SAS

contrast, tables created using PROC SQL are virtually indistinguishable from those
generated by other parts of SAS.

Reference: Read more about views in SAS 9.2 Language Reference: Concepts: SAS
Files Concepts: SAS Views.

Before we demonstrate the creation and use of views, let’s create a small table that can be
used for most of the examples. The code is:

PROC SQL;
CREATE TABLE preteen AS
SELECT name as FName,
 sex,
 age,
 height FORMAT=6.1,
 weight FORMAT=6.1
FROM sashelp.class
WHERE age<13
;
QUIT;

The table PRETEEN looks like Exhibit 10-1.

Exhibit 10-1 PRETEEN

Fname Sex Age Height Weight

James M 12 57.3 83.0

Jane F 12 59.8 84.5

John M 12 59.0 99.5

Joyce F 11 51.3 50.5

Louise F 12 56.3 77.0

Robert M 12 64.8 128.0

Thomas M 11 57.5 85.0

Chapter 10: Views 207

10.1 Defining Views

Suppose we want a view that subsets the PRETEEN table in both dimensions (column
and row), delivering only the rows for 11-year-olds and only the first three columns.

Such a view can be created in the DATA step by running this code:

DATA v_eleven / VIEW=v_eleven;
SET preteen;
WHERE age=11;
KEEP fname sex age;
RUN;

We can do nearly the same thing with PROC SQL if we submit:

PROC SQL;
CREATE VIEW v_eleven_sql AS
SELECT fname,
 sex,
 age
FROM preteen
WHERE age=11
;
QUIT;

Notice that we gave the PROC SQL view a distinct name. That permits it to coexist with
the DATA step view as we examine and compare the behavior of the two.

10.2 Using Views

Let’s see what happens when we reference these views in SAS code. To keep things
simple, we start with PROC PRINT, using it to display the content of V_ELEVEN, our
DATA step view:

PROC PRINT DATA=v_eleven;
RUN;

208 PROC SQL by Example: Using SQL within SAS

The log reports:

NOTE: There were 2 observations read from the data set
WORK.PRETEEN.
 WHERE age=11;

NOTE: There were 2 observations read from the data set
WORK.V_ELEVEN.

Notice that the notes report on both the direct processing of the view and the indirect
processing of the underlying source (PRETEEN). Here is the output:

Obs FName Sex Age

 1 Joyce F 11
 2 Thomas M 11

Next we let PROC PRINT work with the SQL view to demonstrate the interoperability:

PROC PRINT DATA=v_eleven_sql;
RUN;

The results are identical (except that the second note in the log of course refers to
WORK.V_ELEVEN_SQL instead of WORK.V_ELEVEN).

Let’s continue by exercising the two views with PROC SQL. First we display the data
produced by the SQL view. The code is:

PROC SQL;
SELECT *
FROM v_eleven_sql
;
QUIT;

There are no log messages tracing the data back to the source. The output looks like this:

FName Sex Age

Joyce F 11
Thomas M 11

Chapter 10: Views 209

To complete this set of doubly symmetric examples, we can use PROC SQL to refer to
the DATA step view, as in:

PROC SQL;
SELECT *
FROM v_eleven
;
QUIT;

The output is unchanged, but the log reports:

NOTE: There were 2 observations read from the data set
WORK.PRETEEN.
 WHERE age=11;

So we’ve seen that the two types of views are interchangeable, at least when used as
inputs. The messages that appear in the log vary, and reflect interaction between the
views themselves and the contexts in which they are used.

Now let’s demonstrate an important property of views: that they automatically reflect
changes in the content of their sources. Having earlier defined our two views, we now
add a row to the underlying table by running:

PROC SQL;
INSERT INTO preteen
SET fname='Roger', age=11, sex='M'
;
QUIT;

The new row refers to an 11-year-old, so it ought to be admitted into each of our views.
We can check by submitting these SQL statements:

PROC SQL;
SELECT *
FROM v_eleven
;

SELECT *
FROM v_eleven_sql
;
QUIT;

210 PROC SQL by Example: Using SQL within SAS

This is the output from the first:

FName Sex Age

Joyce F 11
Thomas M 11
Roger M 11

The output from the second is identical. So we have confirmed that views are up-to-date,
not “frozen.”

10.3 Inspecting Views

Both the DATA step and PROC SQL offer DESCRIBE statements to expose the
instructions that are embedded in views. However, you have to know what kind of view
you have; there is no interoperability here.

To inspect a DATA step view, we need a special kind of DATA step, which looks like
this:

DATA VIEW=v_eleven;
DESCRIBE;
RUN;

When we run it, we see this in the log:

NOTE: DATA step view WORK.V_ELEVEN is defined as:

DATA v_eleven / VIEW=v_eleven;
 SET preteen;
 WHERE age=11;
 KEEP fname sex age;
RUN;

Except for some minor cosmetic differences, this is the code we used earlier to create this
view. However, if we ask the DATA step to show us the code behind a PROC SQL view,
as with:

DATA VIEW=v_eleven_sql;
DESCRIBE;
RUN;

Chapter 10: Views 211

we get:

ERROR: The view WORK.V_ELEVEN_SQL is either corrupt or
not a DATA step view.

So we see that the two kinds of views are different and not equally acceptable to the
DATA step’s DESCRIBE statement.

Now let’s move over to the SQL context and test the DESCRIBE VIEW statement there.
This is a different statement with a different syntax. First, let’s try it with an alien view
(that is, a DATA step view). The code is:

PROC SQL;
DESCRIBE VIEW v_eleven;
QUIT;

and it too runs into trouble. The log indicates:

WARNING: The View WORK.V_ELEVEN is not an SQL View.

and no code is displayed. However, when we use the statement appropriately by pointing
it at a PROC SQL view, as with:

PROC SQL;
DESCRIBE VIEW v_eleven_sql;
QUIT;

we see:

NOTE: SQL view WORK.V_ELEVEN_SQL is defined as:

 select fname, sex, age
 from PRETEEN
 where age=11;

Except for the different use of white space, this accurately reflects the code we used when
we defined the view.

212 PROC SQL by Example: Using SQL within SAS

10.4 Changing a Table via a View

Under some circumstances, you can use a PROC SQL view as a vehicle to update the
underlying table. For example, we can run:

PROC SQL;
INSERT INTO v_eleven_sql
SET fname='Laura', age=11, sex='F'
;
QUIT;

The log confirms the operation, stating:

NOTE: 1 row was inserted into WORK.V_ELEVEN_SQL.

This is a bit puzzling, since V_ELEVEN_SQL is a view and thus does not actually
contain rows of data. So let’s look at the underlying table (PRETEEN), or at least the
rows for 11-year-olds. If we submit:

PROC SQL;
SELECT *
FROM preteen
WHERE age=11
;
QUIT;

we get:

FName Sex Age Height Weight

Joyce F 11 51.3 50.5
Thomas M 11 57.5 85.0
Roger M 11 . .
Laura F 11 . .

So, actually, the new row (for Laura) was inserted in the PRETEEN table. Of course it
consequently is reflected in views that use PRETEEN as their data source.

Reference: For specific information on the limitations of updatable views, see the Base
SAS 9.2 Procedures Guide: Procedures: The SQL Procedure: Concepts: SQL Procedure:
Updating PROC SQL and SAS/ACCESS Views.

Chapter 10: Views 213

We can try changing PRETEEN via the DATA step view by running this code:

PROC SQL;
INSERT INTO v_eleven
SET fname='Andrea', age=11, sex='F'
;
QUIT;

When we run this statement, we get only this message:

ERROR: Unable to open the read only view WORK.V_ELEVEN
for UPDATE.

That is because DATA step views are read-only and cannot be used as vehicles for
updating their source tables.

The pattern holds if we use a DATA step to make the changes. It is still only the PROC
SQL view that accepts them. To demonstrate, we first use a DATA step with an SQL
view to attempt again to append the row for Andrea. The code is:

DATA v_eleven_sql;
fname='Andrea'; age=11; sex='F';
OUTPUT;
STOP;
MODIFY v_eleven_sql;
RUN;

The log reflects success by reporting:

NOTE: The data set WORK.V_ELEVEN_SQL has been updated.
There were 0 observations rewritten, 1 observations
added and 0 observations deleted.

If we then run this PROC PRINT step:

PROC PRINT DATA=preteen;
WHERE age=11;
RUN;

214 PROC SQL by Example: Using SQL within SAS

our output looks like this:

Obs FName Sex Age Height Weight

 4 Joyce F 11 51.3 50.5
 7 Thomas M 11 57.5 85.0
 8 Roger M 11 . .
 9 Laura F 11 . .
 10 Andrea F 11 . .

However, if we try using a DATA step view as the immediate target of a DATA step
modification, as with this code:

DATA v_eleven;
fname='Gary'; age=11; sex='M';
OUTPUT;
STOP;
MODIFY v_eleven;
RUN;

we once again trigger this error:

ERROR: Unable to open the read only view WORK.V_ELEVEN
for UPDATE.

So, we conclude that PROC SQL views can be used as conduits for updating the
underlying tables, but DATA step views cannot. It does not matter whether PROC SQL is
used to make the updates.

10.5 Managing Library References

In the examples we’ve presented thus far in this chapter, we’ve used only the WORK
library. When permanent libraries enter the picture, additional issues arise. We conclude
our examination of views by exploring how views interact with library references
(librefs).

First we establish the library reference DEMOLIB like this:

LIBNAME demolib "c:\temp\demolib";

This particular code is for Windows and requires modification in other environments.

Chapter 10: Views 215

Next, we create two subsets of the CLASS table, one (containing observations pertaining
to the boys) in the WORK library and the other (holding the girls’ data) in our
DEMOLIB library:

DATA work.subset
 demolib.subset;
SET sashelp.class(RENAME = (name=FName));
KEEP fname sex age;
IF sex='M' THEN OUTPUT work.subset;
IF sex='F' THEN OUTPUT demolib.subset;
run;

Reference: Read more about libraries in SAS 9.2 Language Reference: Concepts: SAS
Files Concepts: SAS Libraries.

Now we create, in the DEMOLIB library, a DATA step view:

DATA demolib.v_twelve / view=demolib.v_twelve;
SET subset;
WHERE age=12;
RUN;

Notice that although the view is in the DEMOLIB library, it does not explicitly reference,
in its SET statement, any library. Rather, the SET statement includes only a one-part
name, identifying a data set (named SUBSET in this example) without identifying the
library in which it is stored. So default behavior is in effect. Let’s see how that works. If
we run this PROC SQL statement:

PROC SQL;
SELECT *
FROM demolib.v_twelve
;
QUIT;

we get this output:

FName Sex Age

James M 12
John M 12
Robert M 12

The display of the boys’ data rather than the girls’ data tells us that the view looked in the
WORK library for the data set SUBSET. That’s not surprising; it’s the usual behavior we
see in SAS when there is no explicit library reference.

216 PROC SQL by Example: Using SQL within SAS

Now let’s repeat the exercise, but use a PROC SQL view instead of a DATA step view.
First we define the view with this code:

PROC SQL;
CREATE VIEW demolib.v_twelve_sql AS
SELECT *
FROM subset
WHERE age=12
;

Then we use the view in this SELECT statement:

SELECT *
FROM demolib.v_twelve_sql
;
QUIT;

The output looks like this:

FName Sex Age

Jane F 12
Louise F 12

These are girls’ names, which we stored in DEMOLIB.SUBSET (whereas
WORK.SUBSET contains boys’ names). So, we conclude that a PROC SQL view that
points to a one-part table name looks for that table in its “home” library. In this respect
PROC SQL views are unlike DATA step views (and other parts of SAS), which expect
such tables to be in the WORK library.

We’ve now thoroughly explored the behavior of views that lack explicit library
references and rely instead on default rules. We conclude this chapter by demonstrating a
feature of PROC SQL views that comes into play when library references are explicit.

First, let’s remove the DEMOLIB library from the environment. We can do that with this
statement:

LIBNAME demolib CLEAR;

Remember that this merely removes the pointer that we need to use the library; it does
not affect the content.

Chapter 10: Views 217

Even though the library reference is gone, we can create a view that cites it, as in this
example:

PROC SQL;
CREATE VIEW v_fourteen_sql AS
SELECT *
FROM demolib.subset
WHERE age=14
;
QUIT;

Of course, the view can’t be used unless DEMOLIB is in effect as a library reference
pointing to a library containing a suitable table named SUBSET. Otherwise, if we try to
use it, as with this statement:

PROC SQL;
SELECT *
FROM v_fourteen_sql
;
QUIT;

an error is triggered:

ERROR: Libname DEMOLIB is not assigned.

When a view includes a two-part name to reference a table, the library reference portion
of that name must exist when the view is used. That’s not at all surprising. We could of
course make the view usable by submitting an appropriate LIBNAME statement to create
the library reference in the environment (SAS session or batch job) that is using the view.
For PROC SQL views (but not for DATA step views), there is another option: a view that
embeds its own environment. The code looks like this:

PROC SQL;
CREATE VIEW v_fourteen_sql AS
SELECT *
FROM demolib.subset
WHERE age=14
USING LIBNAME
 demolib "c:\temp\demolib";
;
QUIT;

A USING LIBNAME clause must appear at the end of a CREATE VIEW statement,
after the SELECT clause and its subordinates, and after even the ORDER BY clause (if
there is one). It creates the connection between the view and its intended data source.

218 PROC SQL by Example: Using SQL within SAS

So now we can again try running:

PROC SQL;
SELECT *
FROM v_fourteen_sql
;
QUIT;

This time it works, and we see:

FName Sex Age

Carol F 14
Judy F 14

The local libref created by the USING LIBNAME clause is completely separate from any
global librefs that might be in effect. It exists only as long as the view is processing. We
can demonstrate that by running:

PROC CONTENTS DATA=demolib.subset;
RUN;

Because of the temporary nature of the embedded library reference, this generates an
error:

ERROR: Libname DEMOLIB is not assigned.

10.6 Summary

Like the DATA step, PROC SQL can be used to build views (virtual tables). These two
view types are interchangeable when used as data sources. However, there are significant
differences:

 Some PROC SQL views can be used as intermediaries to update underlying
tables. DATA step views cannot be used for that purpose.

 PROC SQL views and DATA step views have different rules for locating their
data sources when those sources are specified using one-part names.

 PROC SQL views, but not DATA step views, can have embedded library
references.

C h a p t e r 1 1

PROC SQL as a Report Generator

11.1 Simple Reports 220
11.2 Complex Reports 222
11.3 Reports with Long Character Strings 225
11.4 PROC SQL and the Output Delivery System 229
11.5 Summary 231

PROC SQL is used most often to prepare data for subsequent processing. That means that
queries are usually placed within CREATE TABLE or CREATE VIEW statements, or
that INTO clauses are used to load results into macro variables. However, PROC SQL
can also be used as a report generator and has a few features that extend that usefulness.

220 PROC SQL by Example: Using SQL within SAS

To explore PROC SQL’s reporting capabilities through examples, we need a test table.
As usual, we derive one from SASHELP.CLASS by running this code:

PROC SQL;
CREATE TABLE fifteens AS
SELECT name as FName LABEL='First Name',
 sex,
 age,
 height FORMAT=6.1,
 weight FORMAT=6.1
FROM sashelp.class
WHERE age=15
;
QUIT;

Exhibit 11-1 displays the result (FIFTEENS).

Exhibit 11-1 FIFTEENS

11.1 Simple Reports

Let’s start with the most basic report, which results from this minimal SELECT
statement:

PROC SQL;
SELECT *
FROM fifteens
;
QUIT;

FName Sex Age Height Weight

Janet F 15 62.5 112.5

Mary F 15 66.5 112.0

Ronald M 15 67.0 133.0

William M 15 66.5 112.0

Chapter 11: PROC SQL as a Report Generator 221

This is the output:

First
Name Sex Age Height Weight

Janet F 15 62.5 112.5
Mary F 15 66.5 112.0
Ronald M 15 67.0 133.0
William M 15 66.5 112.0

Notice that the label “First Name” is automatically used over the FNAME column, and
that there are no row numbers. So if we invoke PROC PRINT with the LABEL and
NOOBS options, as in:

PROC PRINT DATA=fifteens LABEL NOOBS;
RUN;

we get this very similar output:

First
Name Sex Age Height Weight

Janet F 15 62.5 112.5
Mary F 15 66.5 112.0
Ronald M 15 67.0 133.0
William M 15 66.5 112.0

Before going on to more complicated situations, let’s consider a variation on this basic
report. Perhaps we want row numbers, and we also want the report double-spaced. If we
change our PROC PRINT code by removing the NOOBS option and adding the
DOUBLE option, so that it looks like this:

PROC PRINT DATA=fifteens LABEL DOUBLE;
RUN;

the output looks like this:

 First
Obs Name Sex Age Height Weight

 1 Janet F 15 62.5 112.5

 2 Mary F 15 66.5 112.0

 3 Ronald M 15 67.0 133.0

 4 William M 15 66.5 112.0

222 PROC SQL by Example: Using SQL within SAS

We can make parallel changes in the PROC SQL output by invoking PROC SQL’s
DOUBLE option as well as its NUMBER option. This causes the output to include row
numbers very much like the observation numbers that PROC PRINT presents by default.
Then our code might look like this:

PROC SQL DOUBLE NUMBER;
SELECT *
FROM fifteens
;
QUIT;

When we run it, we get:

 First
 Row Name Sex Age Height Weight

 1 Janet F 15 62.5 112.5

 2 Mary F 15 66.5 112.0

 3 Ronald M 15 67.0 133.0

 4 William M 15 66.5 112.0

In the simple reports we’ve just considered, the PROC SQL code has been little more, or
less, complicated than corresponding PROC PRINT code. Usually, we’ve needed only to
code appropriate options to override defaults.

11.2 Complex Reports

When reports get a bit more complicated, things get a little more difficult for PROC SQL.
For example, suppose that we want a list of student names, with sex indicators and with a
count at the bottom of the list. That’s pretty easy with PROC PRINT; we just include the
N option in the PROC statement to get the count. The code is:

PROC PRINT DATA=fifteens N LABEL;
ID fname;
VAR sex;
RUN;

Chapter 11: PROC SQL as a Report Generator 223

When we run it, we get:

First
Name Sex

Janet F
Mary F
Ronald M
William M

N = 4

To get similar output from PROC SQL, we need code like this:

PROC SQL;
SELECT fname, sex
FROM fifteens
UNION ALL
SELECT '', ''
FROM fifteens(obs=1)
UNION ALL
SELECT 'N = ' || put(count(*),6. -L), ''
FROM fifteens
;
QUIT;

which generates this output:

First Name Sex

Janet F
Mary F
Ronald M
William M

N = 4

The first of the three UNION-linked SELECT clauses is responsible for the body of the
table, and the last SELECT clause is responsible for the count that appears at the bottom.
The middle SELECT clause is there only to create the intervening blank line that serves
to make the count more prominent. This sort of tricky technique becomes more and more
necessary as you try to build more complicated reports with SQL.

224 PROC SQL by Example: Using SQL within SAS

Let’s consider another example, one that presents only summary data and no underlying
detail. Specifically, suppose you need a report showing minimum, average, and
maximum values for HEIGHT and WEIGHT. It’s pretty easy with PROC MEANS; you
run:

PROC MEANS DATA=fifteens MIN MEAN MAX MAXDEC=1;
VAR height weight;
RUN;

and you get:

Variable Minimum Mean Maximum

Height 62.5 65.6 67.0
Weight 112.0 117.4 133.0

On the other hand, PROC SQL requires code along these lines:

SELECT 'Height' LABEL = 'Variable',
 MIN(height) LABEL = 'Minimum' FORMAT=12.1,
 MEAN(height) LABEL = 'Mean' FORMAT=12.1,
 MAX(height) LABEL = 'Maximum' FORMAT=12.1
FROM fifteens
UNION ALL
SELECT 'Weight',
 MIN(weight),
 MEAN(weight),
 MAX(weight)
FROM fifteens
;

It’s not too complicated, but it is verbose. The output looks like this:

Variable Minimum Mean Maximum

Height 62.5 65.6 67.0
Weight 112.0 117.4 133.0

In addition to complexity and verbosity, there is another consideration. Multiple queries
connected by UNION operators cause the SQL processor to read the source table
multiple times. In contrast, procedures like PROC MEANS are designed to produce such
reports efficiently.

Chapter 11: PROC SQL as a Report Generator 225

11.3 Reports with Long Character Strings

Now let’s consider the special problem that arises when a table contains character
columns populated with long values, making it difficult to produce tidy, readable reports.
To illustrate PROC SQL’s strengths and weaknesses in this area, we must contrive an
example. We run this code to expand the FIFTEENS table by introducing two new
character columns:

PROC SQL;
ALTER TABLE fifteens
ADD Comments CHAR(60),
 Notes CHAR(60)
;
UPDATE fifteens
SET comments =
 'William hopes to study at ' ||
 'William and Mary, as does Mary.',
 notes =
 'That makes it hard to ' ||
 'display a table compactly.'
WHERE fname='William'
;
UPDATE fifteens
SET comments =
 'Mary, like William, aspires ' ||
 'to attend William and Mary.',
 notes =
 'This is a second long text ' ||
 ' field in this table.'
WHERE fname='Mary'
;
QUIT;

To facilitate the example, we also narrow the space available by submitting:

OPTIONS LS=68;

Now our challenge is to find a legible and compact way to present this table. PROC
PRINT does a reasonably good job with minimal customization. We can run:

PROC PRINT DATA=fifteens NOOBS;
ID fname;
VAR comments sex notes height weight;
RUN;

226 PROC SQL by Example: Using SQL within SAS

which generates:

FName Comments

Janet
Mary Mary, like William, aspires to attend William and Mary.
Ronald
William William hopes to study at William and Mary, as does Mary.

FName Sex Notes

Janet F
Mary F This is a second long text field in this table.
Ronald M
William M That makes it hard to display a table compactly.

FName Height Weight

Janet 62.5 112.5
Mary 66.5 112.0
Ronald 67.0 133.0
William 66.5 112.0

Essentially, PROC PRINT divides the data into column groups, each of which can fit in
the available space. The ID statement specifies that FNAME is to appear repeatedly, once
in each column group. That provides a reference for the reader.

PROC SQL has nothing corresponding to the ID statement in PROC PRINT, and it
basically takes a simpler and less satisfactory approach. If we submit:

PROC SQL;
RESET DOUBLE
;
SELECT fname,
 comments,
 sex,
 notes,
 height,
 weight
FROM fifteens
;
RESET NODOUBLE
;
QUIT;

Chapter 11: PROC SQL as a Report Generator 227

we get:

First
Name
Comments Sex
Notes Height
Weight
--
Janet
 F
 62.5
 112.5

Mary
Mary, like William, aspires to attend William and Mary. F
This is a second long text field in this table. 66.5
 112.0

Ronald
 M
 67.0
 133.0

William
William hopes to study at William and Mary, as does Mary. M
That makes it hard to display a table compactly. 66.5
 112.0

The necessary wraparound is performed separately for the column headings and for each
row of data. The result is a bit of a jumble. It would be worse without the DOUBLE
option, which inserts blank lines between the logical rows.

Fortunately, PROC SQL has a feature, the FLOW option, that does a better job of
wrapping long text strings by treating each column separately. So the code becomes:

PROC SQL;
RESET FLOW DOUBLE
;
SELECT fname,
 comments,
 sex,
 notes,
 height,
 weight
FROM fifteens
;
RESET NOFLOW NODOUBLE
;
QUIT;

228 PROC SQL by Example: Using SQL within SAS

and the output looks like this:

First
Name Comments Sex Notes Height Weight

Janet F 62.5 112.5

Mary Mary, like F This is a second 66.5 112.0
 William, aspires long text field
 to attend William in this table.
 and Mary.

Ronald M 67.0 133.0

William William hopes to M That makes it 66.5 112.0
 study at William hard to display a
 and Mary, as table compactly.
 does Mary.

How about non-SQL solutions? PROC PRINT has no FLOW option, but PROC
REPORT does. We can run:

PROC REPORT DATA=fifteens NOWD;
COLUMN fname comments sex notes height weight;
 DEFINE fname / GROUP ;
 DEFINE comments / DISPLAY WIDTH=16 FLOW;
 DEFINE sex / DISPLAY WIDTH=3 ;
 DEFINE notes / DISPLAY WIDTH=16 FLOW;
 DEFINE height / DISPLAY ;
 DEFINE weight / DISPLAY ;
 BREAK BEFORE fname / SKIP ;
 RUN;

Chapter 11: PROC SQL as a Report Generator 229

The output looks like this:

 First
 Name Comments Sex Notes Height Weight

 Janet F 62.5 112.5

 Mary Mary, like F This is a 66.5 112.0
 William, second long
 aspires to text field in
 attend William this table.
 and Mary.

 Ronald M 67.0 133.0

 William William hopes M That makes it 66.5 112.0
 to study at hard to display
 William and a table
 Mary, as does compactly.
 Mary.

We see in the next section that the Output Delivery System gives us a different way to
solve the problem of presenting long string values.

11.4 PROC SQL and the Output Delivery
 System

PROC SQL supports the SAS Output Delivery System (ODS). A thorough treatment of
the features and applications of ODS is beyond the scope of this book, so we’ll limit the
discussion to one example.

We’ve been looking at long string values and the issue of wraparound in the context of
the default LISTING destination. Other ODS destinations have features that can mitigate
the problems without requiring any special effort. For example, we can try a simple
PROC PRINT step but route the output to the HTML destination by submitting
something like:

ODS LISTING CLOSE;
ODS HTML FILE="&path\htmldemo.html";
PROC PRINT DATA=fifteens LABEL NOOBS;
VAR fname comments sex notes height weight;
RUN;
ODS HTML CLOSE;
ODS LISTING;

230 PROC SQL by Example: Using SQL within SAS

The exact appearance of the output depends on the Web browser. In general, HTML
rendering lets text flow as necessary to achieve a compact layout, so that it looks
something like Exhibit 11-2.

Exhibit 11-2 FIFTEENS (HTML)

First

Name
Comments Sex Notes Height Weight

Janet F 62.5 112.5

Mary Mary, like William, aspires
to attend William and Mary.

F This is a second long
text field in this table.

66.5 112.0

Ronald M 67.0 133.0

William William hopes to study at
William and Mary, as does
Mary.

M That makes it hard to
display a table
compactly.

66.5 112.0

We can also run a similarly simple PROC SQL query and route its output to the HTML
destination. The code would look like this:

PROC SQL;
ODS LISTING CLOSE;
ODS HTML FILE="&path\htmldemo.html";
SELECT fname,
 comments,
 sex,
 notes,
 height,
 weight
FROM fifteens
;
ODS HTML CLOSE;
ODS LISTING;
QUIT;

The output looks much like what we saw when we used PROC PRINT (see Exhibit
11-2). That’s because it’s the browser, not SAS, that is doing the rendering.

Chapter 11: PROC SQL as a Report Generator 231

11.5 Summary

PROC SQL at its most basic is a report generator, but its capabilities in that realm are
rather limited compared to what other parts of SAS offer. However, PROC SQL does
have a few handy options that enhance the presentation of data. PROC SQL supports the
Output Delivery System (ODS), which makes the features of ODS, and of ODS
destinations and related software, available to enhance the appearance of SQL output.

232

C h a p t e r 1 2

Mixed Solutions

12.1 Example: Schedule Matrix 234
12.2 Example: Identifying Spikes in a Series 238
12.3 Example: Using PROC TRANSPOSE to Normalize 242
12.4 Summary 248

In the preceding chapters, we’ve seen many examples of PROC SQL code together with
equivalent or near-equivalent non-SQL SAS code. Depending on the task, one might be
simpler and more natural to use than the other; in some cases it might seem to be a toss-
up.

When we turn from narrow tasks to more complicated problems, we often find that the
solution is a series of subtasks or operations. One operation might be more easily done
with SQL, whereas another might be a natural for the DATA step, or vice versa.
Fortunately, the interoperability between PROC SQL and the rest of SAS makes it easy
to craft mixed solutions, taking advantage of each tool’s strengths. One can use a table
(SAS data file) or a view (as explained in Chapter 10) to pass intermediate results
between PROC SQL and other PROC or DATA steps.

234 PROC SQL by Example: Using SQL within SAS

Reference: Read more about views in SAS 9.2 Language Reference: Concepts: SAS
Files Concepts: SAS Views.

We use some extended examples in this chapter to identify some of the relative strengths
and weaknesses of SQL and to show how mixed solutions can be developed.

12.1 Example: Schedule Matrix

Suppose you are given data on the arrival and departure times of several individuals
attending an event. You are then asked to produce a report showing not only those times,
but also a triangular half-matrix table showing the overlap in attendance of all of the
various pairings of two individuals. There are two input tables, ARRIVALS (see Exhibit
12-1) and DEPARTURES (see Exhibit 12-2).

Exhibit 12-1 ARRIVALS

Exhibit 12-2 DEPARTURES

Name Arrival

John 14:30

Paul 15:00

Ringo 15:30

George 16:00

Name Departure

John 15:30

Paul 16:00

Ringo 17:30

George 18:00

Chapter 12: Mixed Solutions 235

The result should be a two-part table along these lines:

Individual Presence

 George John Paul Ringo

 16:00-18:00 14:30-15:30 15:00-16:00 15:30-17:30

Joint Presence

 George John Paul

John
Paul 15:00-15:30
Ringo 16:00-17:30 15:30-16:00

The upper portion of this report is just a rearrangement of the given data. The lower part
is more complicated and requires comparisons across individuals. The three intervals
shown in the triangle are in fact the overlaps of the respective periods of presence. The
dot-filled gaps correspond to pairs of individuals whose schedules do not overlap.

It looks kind of complicated, but the solution can be developed if the problem is broken
down into stages. The fact that each arrival (or departure) time has to be compared with
each other arrival (or departure) time should immediately suggest the use of a many-to-
many join. A DATA step merge could of course serve to derive the upper part of the
report, but would not readily facilitate the cross comparisons. So we want to start with a
PROC SQL statement along these lines:

PROC SQL;
SELECT *
FROM Arrivals
 CROSS JOIN
 Departures
;
QUIT;

236 PROC SQL by Example: Using SQL within SAS

The result is:

Name Arrival Name Departure

John 14:30 John 15:30
John 14:30 Paul 16:00
John 14:30 Ringo 17:30
John 14:30 George 18:00
Paul 15:00 John 15:30
Paul 15:00 Paul 16:00
Paul 15:00 Ringo 17:30
Paul 15:00 George 18:00
Ringo 15:30 John 15:30
Ringo 15:30 Paul 16:00
Ringo 15:30 Ringo 17:30
Ringo 15:30 George 18:00
George 16:00 John 15:30
George 16:00 Paul 16:00
George 16:00 Ringo 17:30
George 16:00 George 18:00

We could (after renaming one or both of the NAME columns) store these results in a
table and turn to non-SQL tools to complete the derivation of the intervals. However,
SQL is actually well-suited to that task, so we can instead run this more elaborate SQL
statement:

PROC SQL;
CREATE VIEW Pairs AS
SELECT CASE WHEN arr.name > dep.name
 THEN arr.name
 ELSE dep.name
 END AS UpDown_Name
 , CASE WHEN arr.name > dep.name
 THEN dep.name
 ELSE arr.name
 END AS Across_Name
 , MAX(arrival) AS LoTime FORMAT=TIME5.
 , MIN(departure) AS HiTime FORMAT=TIME5.
FROM Arrivals AS arr
 CROSS JOIN
 Departures AS dep
GROUP BY UpDown_Name, Across_Name
ORDER BY UpDown_Name, Across_Name
;
QUIT;

Notice that the CROSS JOIN specified in the FROM clause remains from the simple
query shown earlier. We won’t go through the rationale behind the rest of the code; just

Chapter 12: Mixed Solutions 237

note that the statement is built up from elements we’ve seen in earlier chapters. The result
(PAIRS) is presented in Exhibit 12-3.

Exhibit 12-3 PAIRS

This is essentially the information needed for the report. The rows in which the two
names are the same are to go in the upper segment, and the rows with differing names in
the lower segment. The DATA step, and particularly the PUT statement, has features that
provide a lot of control over layout, and SQL has little to match these features. So we
turn to a DATA step to finish the job. Here’s the code:

DATA _NULL_;
FILE PRINT N=PS;
SET Pairs;
BY updown_name;
IF FIRST.updown_name THEN DO;
 updown + 1;
 across = 0;
 END;
across + 1;
IF updown_name=across_name THEN
 PUT # 2 'Individual Presence'
 # 4 @(13*across) across_name $13.-R
 # 6 @;

UpDown_Name Across_Name LoTime HiTime

George George 16:00 18:00

John George 16:00 15:30

John John 14:30 15:30

Paul George 16:00 16:00

Paul John 15:00 15:30

Paul Paul 15:00 16:00

Ringo George 16:00 17:30

Ringo John 15:30 15:30

Ringo Paul 15:30 16:00

Ringo Ringo 15:30 17:30

238 PROC SQL by Example: Using SQL within SAS

ELSE PUT # 8 'Joint Presence'
 #10 @(13*across) across_name $13.-R
 #(updown+10) @1 updown_name @;
PUT @(13*across) +3 @;
IF HiTime > LoTime THEN
 PUT LoTime +(-1) '-' HiTime;
ELSE PUT '.';
RUN;

We won’t go through all of the logic. The essential point is that we would be hard pressed
to achieve such layout control using PROC SQL, so we take advantage of the DATA
step’s strength in this area. Here is the output:

Individual Presence

 George John Paul Ringo

 16:00-18:00 14:30-15:30 15:00-16:00 15:30-17:30

Joint Presence

 George John Paul

John
Paul 15:00-15:30
Ringo 16:00-17:30 15:30-16:00

12.2 Example: Identifying Spikes in a Series

Here is the scenario: We are given a one-column table containing a series of numeric
readings. Our assignment is to produce a report containing the series and flagging each
“spike,” defined as a value that either exceeds both adjacent values by more than 3 or is
less than both adjacent values by more than 3.

To create a test table, we run this code:

DATA Readings;
DO _n_ = 1 to 10;
 Reading = FLOOR(100 * RANUNI(2468)) / 10;
 OUTPUT;
 END;
RUN;

Chapter 12: Mixed Solutions 239

The output (READINGS) is shown in Exhibit 12-4.

Exhibit 12-4 READINGS

For each value in the series, comparisons have to be made with the preceding term and
with the succeeding term. In a DATA step, the look-back comparison is pretty simple,
but the look-ahead one is not. SQL, on the other hand, is symmetric in that regard; both
comparisons would be rather easy to code if the table included explicit row numbers. In
the absence of such row numbers, things are difficult, because SQL does not let us
reference rows in terms of order or positional relationship to other rows. Unfortunately,
our table does not provide row numbers, and PROC SQL does not have a straightforward
and documented way to generate them.

However, it is very easy to create row numbers in a DATA step. This leads us to a mixed
solution. We use a DATA step to number our rows, then use SQL joins based on these
numbers to make the needed comparisons.

Here is the DATA step:

DATA Numbered;
RowNum + 1;
SET Readings;
RUN;

The resulting table (NUMBERED) looks like Exhibit 12-5.

Reading

4.8

1.7

7.6

1.9

5.1

1.7

0.7

2.1

8.9

2.8

240 PROC SQL by Example: Using SQL within SAS

Exhibit 12-5 NUMBERED

The table is used three times in this SQL step:

PROC SQL;
CREATE TABLE flagged AS
SELECT This.Reading,
 CASE WHEN N(Prev.Reading,
 This.Reading,
 Next.Reading) < 3
 THEN ''
 WHEN This.Reading >
 Prev.Reading + 3 AND
 This.Reading >
 Next.Reading + 3
 THEN 'High'
 WHEN This.Reading <
 Prev.Reading - 3 AND
 This.Reading <
 Next.Reading - 3
 THEN 'Low'
 ELSE ''
 END AS Flag

RowNum Reading

 1 4.8

 2 1.7

 3 7.6

 4 1.9

 5 5.1

 6 1.7

 7 0.7

 8 2.1

 9 8.9

10 2.8

Chapter 12: Mixed Solutions 241

FROM Numbered AS This
 LEFT JOIN
 Numbered AS Prev
 ON (This.RowNum - 1) = Prev.RowNum
 LEFT JOIN
 Numbered AS Next
 ON (This.RowNum + 1) = Next.RowNum
;
QUIT;

Let’s consider the FROM clause first. It consists of two chained left joins. In such a
construct, the first join is performed and its results enter the second join. Left joins are
used here so that the results include rows for the first and last values in the series. These
values do not have both look-ahead and look-back matches and would therefore fall out
of an inner join.

Once the joins are completed by the SQL processor, each term in the series has the
preceding and following terms available for comparison. The CASE expression uses
them to derive the flags. The first branch in the CASE expression handles the first and
last rows, which lack, respectively, look-back and look-ahead values. The second branch
detects upward spikes (those where adjacent values are lower). Symmetrically, the third
branch detects downward spikes (those where adjacent values are higher). The result
(FLAGGED) is seen in Exhibit 12-6.

Exhibit 12-6 FLAGGED

Reading Flag

4.8

1.7 Down

7.6 Up

1.9 Down

5.1 Up

1.7

0.7

2.1

8.9 Up

2.8

242 PROC SQL by Example: Using SQL within SAS

12.3 Example: Using PROC TRANSPOSE to
 Normalize

We noted earlier (see Section 1.1) that SQL is very much designed to work with
normalized data. Later we saw that macro code and macro variables provide
workarounds, making it possible to get results from denormalized data without great
difficulty; see Sections 8.1 and 8.2. These workarounds, however, are a second-best
solution. If you intend to process your data with SQL, it’s preferable to maintain the data
in a normalized structure. So, let’s revisit our earlier example and show how to do that.

To begin, let’s re-create the denormalized table we used earlier:

DATA wide;
INPUT ID $ Estimated Net Gross Adjusted;
CARDS;
A 11 12 13 14
B 21 22 23 24
;

The result is shown in Exhibit 12-7.

Exhibit 12-7 WIDE

The task, as before, is to sum each of the four numeric columns. When we did that
earlier, the approach was to take the table in the form provided and directly produce a
one-row, four-column table with the sums (see Exhibit 8-5). The code was a bit intricate.
This time we’ll preprocess the data and create a normalized structure that is much more
suitable for use with SQL. Then we’ll see that the code to compute sums becomes much
simpler.

The SAS tool intended for such restructuring is the TRANSPOSE procedure. Here is
code to normalize our data:

PROC TRANSPOSE DATA=wide
 OUT=long(rename = (_name_=Item col1=Value));
BY ID;
RUN;

ID Estimated Net Gross Adjusted

A 11 12 13 14

B 21 22 23 24

Chapter 12: Mixed Solutions 243

The new table is presented in Exhibit 12-8.

Exhibit 12-8 LONG (as produced by PROC TRANSPOSE)

Can we accomplish this using PROC SQL? Yes, but we would face, again, the issue that
SQL does not support arrays, so that analogous processing of multiple columns entails
verbose and voluminous code. We can start by developing a simple query to handle just
one of the numeric columns:

PROC SQL;
SELECT ID, 'Estimated' AS Item, Estimated AS Value
FROM wide
;
QUIT;

The result is:

ID Item Value

A Estimated 11
B Estimated 21

ID Item Value

A Estimated 11

A Net 12

A Gross 13

A Adjusted 14

B Estimated 21

B Net 22

B Gross 23

B Adjusted 24

244 PROC SQL by Example: Using SQL within SAS

Using this as a model, we can use similar queries for the other numeric columns, chain
them together with UNION operators, and feed the results to a CREATE TABLE
statement. Here is the code:

PROC SQL;
CREATE TABLE long AS
SELECT ID, 'Estimated' AS Item, Estimated AS Value
FROM wide
UNION ALL
SELECT ID, 'Net' , Net
FROM wide
UNION ALL
SELECT ID, 'Gross' , Gross
FROM wide
UNION ALL
SELECT ID, 'Adjusted' , Adjusted
FROM wide
;
QUIT;

Contrast this with the simple and terse PROC TRANSPOSE code.

The output is shown in Exhibit 12-9. It is the same as that generated using PROC
TRANSPOSE, except for the order of the rows. That is fine, since we are building it for
use by PROC SQL, and PROC SQL is not sensitive to row ordering. That’s why we did
not specify an ORDER BY clause.

Exhibit 12-9 LONG (as produced by PROC SQL)

ID Item Value

A Estimated 11

B Estimated 21

A Net 12

B Net 22

A Gross 13

B Gross 23

A Adjusted 14

B Adjusted 24

Chapter 12: Mixed Solutions 245

Now we are ready to turn to the actual task. In terms of the restructured table, that task is
to calculate sums of VALUE for each level of ITEM. As promised, the code is pretty
simple:

PROC SQL;
CREATE TABLE verticalsums AS
SELECT item, SUM(value) as Sum
FROM long
GROUP BY item
;
QUIT;

It does not matter which version of LONG is used, since they only differ in row order.
The result can be seen in Exhibit 12-10.

Exhibit 12-10 VERTICALSUMS (alphabetical order)

The computations are correct. The only hint of a potential problem is that the four ITEM
strings appear in alphabetical order, an artifact of the processing triggered by the GROUP
BY clause. They are not in what we presume to be the preferred order of the original
table (ESTIMATED first, ADJUSTED last, NET before GROSS). Of course, as we’ve
been saying, row order does not matter to SQL, so to the extent that this table is to be
used in subsequent SQL processing, it’s not a problem. However, at some point it might
be necessary to produce a report in which it is desirable to use the preferred order for
ITEM. Typically, that’s a job for the ORDER BY clause, but we have no column that
expresses the preferred order and is thus suitable for use in an ORDER BY clause. That
could be a problem.

Item Sum

Adjusted 38

Estimated 32

Gross 36

Net 34

246 PROC SQL by Example: Using SQL within SAS

One solution is to exploit DICTIONARY tables to get an explicit indicator of the original
column ordering. Specifically, we want the VARNUM column from
DICTIONARY.COLUMNS. Here is the code:

PROC SQL;
CREATE TABLE numbered AS
SELECT id, varnum, item, value
FROM long
 INNER JOIN
 (SELECT name, varnum
 FROM dictionary.columns
 WHERE libname='WORK' AND
 memname='WIDE'
)
 ON name=item
;
QUIT;

The result (called NUMBERED) is reflected in Exhibit 12-11. It is superior to its
ancestor (LONG) because it includes the VARNUM column expressing the order of the
columns in WIDE. The VARNUM values range from 2 to 5 (not 1 to 4) because WIDE
began with a column (ID) that did not become an ITEM level. Because the intended
usage of VARNUM is ordinal rather than cardinal, that is not a problem.

Exhibit 12-11 NUMBERED

ID varnum Item Value

A 2 Estimated 11

B 2 Estimated 21

A 3 Net 12

B 3 Net 22

A 4 Gross 13

B 4 Gross 23

A 5 Adjusted 14

B 5 Adjusted 24

Chapter 12: Mixed Solutions 247

Now we can compute the sums and control the order in which they are recorded. Here is
the code:

PROC SQL;
CREATE TABLE verticalsums AS
SELECT varnum, item, SUM(value) as Sum
FROM numbered
GROUP BY varnum, item
ORDER BY varnum
;
QUIT;

The result is shown in Exhibit 12-12.

Exhibit 12-12 VERTICALSUMS (prescribed order)

To conclude this example, we close the loop by putting the vector of totals back into a
denormalized table structure. That’s not appropriate for SQL processing, but it might be
needed for reporting purposes. Here is the code:

PROC TRANSPOSE DATA=verticalsums
 OUT=horizontalsums(drop = _name_);
ID item;
VAR sum;
RUN;

If it’s run against the version of VERTICALSUMS built with the ORDER BY clause, the
original column order is reproduced, and the result looks like Exhibit 12-13.

Exhibit 12-13 HORIZONTALSUMS

varnum Item Sum

2 Estimated 32

3 Net 34

4 Gross 36

5 Adjusted 38

Estimated Net Gross Adjusted

32 34 36 38

248 PROC SQL by Example: Using SQL within SAS

This final reshaping could also have been done with PROC SQL, but the code is lengthy
and rather convoluted.

12.4 Summary

SQL has strengths and weaknesses in comparison to non-SQL SAS tools. Sometimes it is
advantageous to use the two together to solve a problem, drawing on the strengths of each
tool.

C h a p t e r 1 3

Performance Tuning

13.1 Resource Example: The Effect of an Index 250
13.2 Code Example: The Advantage of Equijoins 251
13.3 Summary 254

Behind the scenes, the SQL processor looks at each PROC SQL statement and attempts
to devise an efficient way to perform the required work. The component of the processor
that does this planning is known as the optimizer. You, the programmer, can sometimes
improve the outcome of the optimization and thus speed up the processing. There are
basically two ways of doing this:

 providing resources (such as memory or indexes)

 coding in ways that give the optimizer “traction” or that compensate for its
limitations

Performance tuning is a huge topic, so a thorough treatment is far beyond the scope of
this book. We just present a couple of illustrative examples here.

250 PROC SQL by Example: Using SQL within SAS

13.1 Resource Example: The Effect of an
 Index

We start by constructing a table of 20 million rows, each containing a serial number and a
random integer:

DATA myRandoms;
DO sernum = 1 TO 2E7;
 myRandom = ROUND(1E6*RANUNI(1));
 OUTPUT;
 END;
RUN;

Next, we run this SQL code to find out how many rows match an arbitrary integer:

PROC SQL STIMER;
SELECT COUNT(*)
INTO : count654321
FROM myRandoms
WHERE myRandom = 654321
;
%PUT &count654321 rows counted.;
QUIT;

Note that the STIMER option has been invoked. This tells SAS to report on time usage
for each statement, instead of reporting only at the conclusion of the PROC SQL step.
This option is in effect for all of the examples in this chapter.

Here is the result of the query:

Occurrences
 of 654321

 22

The issue is the amount of time required to locate these 22 rows among the original 20
million. The log tells us:

 real time 4.49 seconds
 cpu time 3.15 seconds

Chapter 13: Performance Tuning 251

Now, we build an index:

PROC SQL STIMER;
CREATE INDEX myRandom ON myRandoms;
QUIT;

Of course this too requires time, quite a bit as it turns out. According to the log:

 real time 1:33.17
 cpu time 1:11.59

However, when we rerun the code to select the rows with the value 654321, we get the
same result (22 rows), but the times are reduced:

 real time 1.81 seconds
 cpu time 0.02 seconds

The CPU time has declined from more than three seconds to a fiftieth of a second. That’s
because instead of reading and examining all 20 million rows, the computer was able to
use the index to directly locate and count the matching rows. The 19,999,978 other rows
were bypassed.

However, that time savings is just a small fraction of the time it took to build the index.
We would have to use the index for many more tasks in order to recoup the investment
made in creating it. So it’s not a given that indexing is advantageous. In some situations
the better strategy is to skip index creation and allow the slower sequential processing.

13.2 Code Example: The Advantage of
 Equijoins

The scenario: You have a table with people’s names, phone numbers, and e-mail
addresses. There is some duplication, and also inconsistency in how the names are
recorded (e.g., nicknames versus formal names). Phone numbers and e-mail addresses are
easier to standardize, and that’s already been done. The present task is to detect possible
duplicates by finding possible aliases: pairs of observations where either phone numbers
or e-mail addresses (or both) match, but where names do not match.

252 PROC SQL by Example: Using SQL within SAS

Here’s a test data generator:

DATA roster;
DO i = 1 TO 3e4; DROP i;
 name = i;
 phone = i + 0.1;
 email = i + 0.2;
 OUTPUT;
 IF RANUNI(111)>0.8 THEN name = name + 0.01;
 IF RANUNI(111)>0.8 THEN OUTPUT;
 END;
RUN;

Note that the two separate RANUNI calls in the two IF statements give rise to some cases
where observations are duplicated exactly, and to other cases where the extra
observations display variation in NAME values.

The data are not realistic in that all of the columns are numeric and the values don’t look
like names, phone numbers, or e-mail addresses. The table is suitable nevertheless for
modeling and demonstration purposes. There are around 36,000 observations generated.

To start, let’s construct a query that finds pairs of names for which the telephone number
is the same. Here’s the code:

PROC SQL STIMER;
CREATE TABLE same_phone AS
SELECT DISTINCT roster.name,
 copy.name AS diff_name
FROM roster JOIN roster AS copy
ON roster.phone=copy.phone
WHERE roster.name LT copy.name
;

This is a self-join in which each row of ROSTER is a candidate to be matched with each
other row of ROSTER. Since ROSTER has more than 30,000 rows, the theoretical size of
this join is in the neighborhood of a billion rows. So let’s see how long it took to run. The
log reports:

 real time 0.51 seconds
 cpu time 0.13 seconds

This speedy performance is due to optimization. The SQL processor did not evaluate
each possible pair of rows. Instead, it read each row, took the phone number, and used
that phone number to more or less directly locate any matching rows.

Chapter 13: Performance Tuning 253

Now suppose that we want to expand the results by considering pairs of names where
either the phone numbers or the e-mail addresses (or possibly both) match. All we have to
do is code the condition for matching e-mail addresses and connect it to the phone-
number condition with an OR (because we are requiring only one of the items to match,
not both). The query becomes:

PROC SQL STIMER;
CREATE TABLE slow AS
SELECT DISTINCT roster.name,
 copy.name AS diff_name
FROM roster JOIN roster AS copy
ON roster.phone=copy.phone OR
 roster.email=copy.email
WHERE roster.name LT copy.name;
QUIT;

The log shows:

NOTE: The execution of this query involves performing
one or more Cartesian product joins that can not be
optimized.

As to time, we see:

 real time 3:10.75
 cpu time 3:07.12

Because of the OR in the ON clause, the SQL processor could not optimize the
evaluation by using information from one side of the join to directly locate the
appropriate rows from the other side. Instead it had to examine all of the potential name
pairs, and there are more than a billion of those. The code works, but it’s slow. Even
worse, we can expect the time to increase as a quadratic function of table size.

However, we can separate the query into two parts, one for each of the join conditions,
and use the UNION operator to combine the results:

254 PROC SQL by Example: Using SQL within SAS

PROC SQL STIMER;
CREATE TABLE fast AS
SELECT roster.name,
 copy.name AS diff_name
FROM roster JOIN roster AS copy
ON roster.phone=copy.phone
WHERE roster.name NE copy.name
UNION
SELECT roster.name,
 copy.name AS diff_name
FROM roster JOIN roster AS copy
ON roster.email=copy.email
WHERE roster.name NE copy.name;
QUIT;

The DISTINCT specification can be omitted now because the UNION operator has the
same effect. Logically, the two versions are equivalent, and they produce the same
results. However, the performance is dramatically improved. For the version using the
UNION operator, we see:

 real time 0.21 seconds
 cpu time 0.20 seconds

The time required is now less than a second, a tiny fraction of what it was when we ran
the form using the OR operator. That’s because the SQL processor was able to optimize,
separately, each of the UNION operator’s two operands. Instead of examining a billion
rows, the computer searched over merely tens of thousands of rows twice, and then
combined those results.

13.3 Summary

PROC SQL has to take the specifications coded in a statement and devise a process or
series of processes that will deliver the correct results. It attempts to optimize this
processing in terms of speed. However, in some situations you can facilitate this by
providing resources such as indexes or by coding in a way that assists the optimizer.

C h a p t e r 1 4

Documentation Roadmap

14.1 Where to Start? 256
14.2 Following Cross References 261
14.3 The Three Expressions Revisited 264
14.4 Could It Be More Logical? 266
14.5 Summary 268

The SAS documentation is extremely thorough, and it is organized so that it is often easy
to locate the particular information you need. For example, consider the complex PUT
statement found in the example presented in Section 12.1. The features used are
explained in the section of the documentation covering the PUT statement, and the
location of that section is pretty straightforward (SAS 9.2 Language Reference:
Dictionary: Dictionary of Language Elements: Statements). Similarly, documentation for
Base SAS procedures is found in the Base SAS 9.2 Procedures Guide, with the material
organized in alphabetical order by procedure name.

SQL is something of an exception when it comes to ease of finding things in the
documentation. That’s because SQL is more than another SAS procedure; it is a
language, and one that was not designed by SAS developers. As a consequence, the

256 PROC SQL by Example: Using SQL within SAS

documentation for PROC SQL is different from what is familiar to most SAS users. This
chapter offers some commentary intended to help you understand how the PROC SQL
documentation is organized.

14.1 Where to Start?

If you look at the SAS 9.2 product documentation in the Knowledge Base (at
http://support.sas.com/documentation/onlinedoc/base/), you will see the following
documents among those listed under “Base 9.2 SAS”:

 Base SAS 9.2 Procedures Guide

 SAS 9.2 SQL Procedure User's Guide

 SAS 9.2 SQL Query Window User's Guide

Then, within the Base SAS 9.2 Procedures Guide, there is a chapter on the SQL
procedure.

So what’s the difference, and where do you turn? There are four options:

 SAS 9.2 SQL Query Window User's Guide

 SAS 9.2 SQL Procedure User's Guide

 “The SQL Procedure” chapter of the Base SAS 9.2 Procedures Guide

 None of the above

Note: At this point we shift our attention from the HTML (web pages) in the Knowledge
Base to the printed (or PDF) versions. That’s just for convenience; the content is the same
whether you look at the HTML, PDF, hard copy, or the Help system installed with your
copy of SAS. Excerpts from the printed documentation that appear in boxes in the
following sections are (except where noted) direct quotes, although typography,
indention, and the like have been altered for the sake of emphasis.

SAS 9.2 SQL Query Window User's Guide
This is a specialized document pertaining to a graphical interface that lets you generate
SQL code by doing a lot of pointing and clicking. By today’s standards, and compared to
tools like SAS Enterprise Guide and SAS Data Integration Studio, the SQL Query
Window is rather primitive. So, unless you have a very specific reason for working with
the SQL Query Window, you probably want to look elsewhere for information about
PROC SQL.

Chapter 14: Documentation Roadmap 257

SAS 9.2 SQL Procedure User's Guide
To get a sense of what the SAS 9.2 SQL Procedure User’s Guide is about, look at the
table of contents:

Chapter 1 Introduction to the SQL Procedure 1

Chapter 2 Retrieving Data from a Single Table 11

Chapter 3 Retrieving Data from Multiple Tables 55

Chapter 4 Creating and Updating Tables and Views 89

Chapter 5 Programming with the SQL Procedure 111

Chapter 6 Practical Problem-Solving with PROC SQL 137

Appendix 1 Recommended Reading 167

Glossary 169

Index 173

Notice the clear progression from the simple and elementary in the early chapters to the
complex and advanced in the later chapters. This is an instructional work, one that does a
pretty good job of explaining SQL as it is implemented within SAS. However, it is not a
complete reference and syntax guide.

Base SAS 9.2 Procedures Guide (SQL Chapter)
This is the location of the syntax reference for PROC SQL, and is the main focus of the
remainder of this chapter. However, it does not resemble the documentation for most
SAS procedures. It is much more modular and much more dependent on cross references.

Let’s look at the relevant part of the table of contents from the front of the Base SAS 9.2
Procedures Guide:

Chapter 49 The SQL Procedure 1131

Overview: SQL Procedure 1133
Syntax: SQL Procedure 1135
SQL Procedure Component Dictionary 1180
Concepts: SQL Procedure 1226
PROC SQL and the ANSI Standard 1236
Examples: SQL Procedure 1239

258 PROC SQL by Example: Using SQL within SAS

We can see from the progression of the page numbers that a lot of the pages are in the
syntax section and the component dictionary. When we look at the beginning of the
chapter, a more detailed table of contents is available. There we can see that the syntax
section presents the statements that constitute SQL as implemented by SAS. The PROC
statement appears first, followed by the others in alphabetical order. To this extent, the
structure conforms to the usual template for documenting SAS procedure syntax.

Syntax: SQL Procedure 1135

PROC SQL Statement 1138
ALTER TABLE Statement 1147
CONNECT Statement 1151
CREATE INDEX Statement 1151
CREATE TABLE Statement 1153
CREATE VIEW Statement 1157
DELETE Statement 1159
DESCRIBE Statement 1160
DISCONNECT Statement 1161
DROP Statement 1162
EXECUTE Statement 1163
INSERT Statement 1164
RESET Statement 1166
SELECT Statement 1166
UPDATE Statement 1178
VALIDATE Statement 1179

Among these statements, SELECT is very much the “800-pound gorilla.” It is complex
and versatile, and much used (either as a stand-alone statement or, more often, as a clause
within another statement) in most SQL applications. Most of the other statements are
relatively specialized (such as some pertaining to the Pass-Through Facility and some
used only in applications that change existing tables), relatively simple (for example, the
DROP statement), or even non-essential (for example, the VALIDATE statement). That
is not to say that they are not useful or important. The point is that this part of the table of
contents does not provide much differential guidance; many users find themselves
delving into the SELECT documentation constantly and the rest of the statement
explanations rarely.

Chapter 14: Documentation Roadmap 259

Now let’s turn to the sections of the component dictionary.

SQL Procedure Component Dictionary 1180

BETWEEN condition 1180
BTRIM function 1181
CALCULATED 1182
CASE expression 1182
COALESCE Function 1184
column-definition 1184
column-modifier 1186
column-name 1187
CONNECTION TO 1188
CONTAINS condition 1189
EXISTS condition 1189
IN condition 1190
IS condition 1190
joined-table 1191
LIKE condition 1201
LOWER function 1203
query-expression 1203
sql-expression 1210
SUBSTRING function 1217
summary-function 1218
table-expression 1225
UPPER function 1226

Words and phrases in uppercase are used literally in SQL code. Components that are
entirely in lowercase are placeholders that serve only in the documentation; they are
replaced by other elements in SQL code, according to menus and rules that appear in the
documentation.

The component dictionary is something of an odd mixture in other respects as well. For
the most part, it includes things not specific to a single context (statement, clause, or
component) or that don’t fit in anywhere else, but there are exceptions. On the one hand,
the ORDER BY clause (which is multi-context, being usable in the SELECT, CREATE
TABLE, and CREATE VIEW statements) is not in the table of contents. On the other
hand, the joined-table item is used only in the FROM clause of the SELECT statement,
and so might have been subsumed there. Many of the component dictionary items are
specialized or are presented for completeness (for example, the UPPER function, which
is just an SQL-standard alias for the SAS UPCASE function).

The important point here is that this dictionary is definitely not a complete presentation
of important SQL components, many of which are submerged elsewhere, either in the

260 PROC SQL by Example: Using SQL within SAS

documentation of statements or in the documentation of other components. For example,
subqueries are covered in the sql-expression section.

In looking at the component dictionary, we see a fair amount of jargon. That is, there are
terms like “sql-expression” that are not part of the language per se (and which are
therefore in lowercase) but that are used in the documentation to categorize and classify
language constructs. Some of these terms are rather similar, which can make things more
confusing. It is likely that many highly competent SQL programmers would find it
difficult to distinguish among the following:

 sql-expression

 table-expression

 query-expression

Such experts would know very well how to form and use these three elements, but the
terminology is not in everyday use. We will revisit these three terms a couple of times
before we are done.

It is the jargon and the extensive cross references that can make the SQL reference
documentation presented in the Base SAS 9.2 Procedures Guide somewhat perplexing.
The remainder of this chapter is devoted to tips and explanations intended to reduce the
confusion.

None of the Above
Before we continue examining the SQL reference documentation, it is important to
understand that a lot of code elements allowed within a PROC SQL step are not, strictly
speaking, part of SQL. Thus they are not documented in the SQL chapter of the Base SAS
9.2 Procedures Guide. PROC SQL is part of SAS, and therefore can “borrow” a lot of
SAS features. We can see this at two distinct levels:

 Nearly all SAS functions (but not CALL routines), formats, informats, and data
set options can be used in appropriate contexts within SQL statements. However,
the “SQL Procedure Component Dictionary” in the Base SAS 9.2 Procedures
Guide covers only functions that are exclusive to SQL and not usable in the
DATA step.

 As explained in Section 7.1, most if not all SAS global statements can be
interspersed with the SQL statements within a PROC SQL step (that is, after the
PROC SQL statement and before the QUIT statement).

These non-SQL language elements used within PROC SQL steps are documented
primarily in the SAS 9.2 Language Reference: Dictionary, so that manual should be
considered part of the SQL user’s reference set.

Chapter 14: Documentation Roadmap 261

14.2 Following Cross References

The PROC SQL reference documentation is characterized by an unusual amount of cross
referencing. We can get a feel for this by starting with the centerpiece of SQL, the
SELECT statement.

SELECT Statement
The syntax skeleton for the SELECT statement begins with:

SELECT <DISTINCT> object-item <, …object-item>

Here we’ve encountered another bit of jargon, “object item.” It’s just a placeholder, and
the documentation following the skeleton lists the possible substitutions:

 object-item is one of the following:

 *
represents all columns in the tables or views that are listed in the FROM clause.

 case-expression <AS alias>
derives a column from a CASE expression. See “CASE expression” on page
1182.

 column-name <<AS> alias> <column-modifier <… column-modifier>>
names a single column. See “column-name” on page 1187 and “column-
modifier” on page 1186.

 sql-expression <AS alias> <column-modifier <… column-modifier>>
derives a column from an sql-expression. See “sql-expression” on page 1210 and
“column-modifier” on page 1186.

Of these possibilities, “sql-expression” is the most vague, so its definition might be the
one we are most likely to need. We can follow the cross reference to “sql-expression.”

sql-expression
The definition tells us that sql-expression:

produces a value from a sequence of operands and operators.

It then presents the syntax skeleton:

operand operator operand

262 PROC SQL by Example: Using SQL within SAS

and states that:

 operand is one of the following:

 a constant, which is a number or a quoted character string (or other special
notation) that indicates a fixed value. Constants are also called literals. Constants
are described in SAS Language Reference: Dictionary.

 a column-name, which is described in “column-name” on page 1187.

 a CASE expression, which is described in “CASE expression” on page 1182.

 any supported SAS function. PROC SQL supports many of the functions
available to the SAS DATA step. Some of the functions that aren’t supported are
the variable information functions, functions that work with arrays of data, and
functions that operate on rows other than the current row. Other SQL databases
support their own sets of functions. Functions are described in the SAS Language
Reference: Dictionary.

 any functions, except those with array elements, that are created with PROC
FCMP.

 the ANSI SQL functions COALESCE, BTRIM, LOWER, UPPER, and
SUBSTRING.

 a summary-function, which is described in “summary-function” on page 1218.

 a query-expression, which is described in “query-expression” on page 1203.

 the USER literal, which references the userid of the person who submitted the
program. The userid that is returned is operating environment-dependent, but
PROC SQL uses the same value that the &SYSJOBID macro variable has on the
operating environment.

Basically, this is telling us that an sql-expression is much like an expression that is coded
in a DATA step, involving constants, variables (here called columns), operators, and
functions. CASE expressions and summary functions are notable SQL extensions to this
vocabulary. Putting aside the extremely specialized ANSI SQL functions and USER
literal, we are left with “query-expression,” the least concrete of the permitted
ingredients. So we follow its cross reference.

query-expression
The explanation of query-expression is that it:

retrieves data from tables.

Chapter 14: Documentation Roadmap 263

The documentation then offers several cross references for the whole concept:

 See also:

 “table-expression” on page 1225,

 “Query Expressions (Subqueries)” on page 1213, and

 “In-Line Views” on page 1173

Then we see the syntax skeleton:

table-expression <set-operator table-expression> <…set-operator table-expression>

This is followed by a list of the components:

Arguments

 table-expression
is described in “table-expression” on page 1225.

 set-operator
is one of the following:

 INTERSECT <CORRESPONDING> <ALL>

 OUTER UNION <CORRESPONDING>

 UNION <CORRESPONDING> <ALL>

 EXCEPT <CORRESPONDING> <ALL>

It then goes on to explain in considerable detail these set operators. However, the basic
ingredient here is “table-expression”; we follow its cross reference.

table-expression
The documentation tells us that a table-expression:

defines part or all of a query-expression.

It then offers a cross reference:

See also: “query-expression” on page 1203

264 PROC SQL by Example: Using SQL within SAS

But it’s a cross reference from query-expression that brought us here, so we don’t want
to follow this one right back there. Reading on, we get the syntax skeleton for a table-
expression:

SELECT <DISTINCT> object-item<, … object-item>

<INTO :macro-variable-specification <, … :macro-variable-specification>>

FROM from-list

<WHERE sql-expression>

<GROUP BY group-by-item <, … group-by-item>>

<HAVING sql-expression>

This is the nucleus of SQL. Yet the clauses are not explained below the skeleton.
Moreover, it turns out that very few cross references from elsewhere in the
documentation point here. That’s a bit strange for the nucleus of the language.

Tip: The syntax for table-expression deliberately and appropriately excludes the ORDER
BY clause, which is often taught as being part of the nucleus but is actually more of a
post-processing specification.

There is one more cross reference:

See “SELECT Statement” on page 1166 for complete information on the SELECT
statement.

This tells us where the details are. However, we started this tour with the SELECT
statement documentation. Now we’ve come around in a circle. The problem is not as
serious as it seems, and does not indicate any flaw in the manual. It is, in essence, due to
the nestability of SQL, and, in particular, to the use of inline views (see Section 3.3) and
subqueries (see Chapter 5). When we saw the admissibility of a query-expression as an
operand within an sql-expression, we were in fact reading about subqueries. The lesson is
that, in the PROC SQL reference documentation, you cannot mechanistically follow
cross references from entities to their constituent entities and expect the process to end by
leading you to nothing but primitives.

14.3 The Three Expressions Revisited

Our circular tour touched on the three types of expressions (sql-expression, table-
expression, and query-expression). You might have found the explanations to be a bit

Chapter 14: Documentation Roadmap 265

nuanced. Let’s consider the three again, using an example. Once again, our starting point
is the SELECT statement.

SELECT Statement
Here is a valid (though not very useful) SELECT statement:

PROC SQL;
SELECT name, age
FROM sashelp.class
WHERE sex='F'
UNION
SELECT name, age + 1
FROM sashelp.class
ORDER BY age
;
QUIT;

query-expression
A query-expression is either a table-expression or two or more table-expressions
connected by set operators. To illustrate, the query-expression is underlined:

PROC SQL;
SELECT name, age
FROM sashelp.class
WHERE sex='F'
UNION
SELECT name, age + 1
FROM sashelp.class
ORDER BY age
;
QUIT;

It’s a little odd to see that the statement does not “sandwich” its major ingredient (the
query-expression). Instead, the statement begins with the query-expression, followed by
the ORDER BY clause and the terminating semicolon. The documentation does not
exactly recognize this structure, and it tends to blur the distinction between the SELECT
statement and its major ingredient, the query-expression.

table-expression
A table-expression is essentially a SELECT clause (not statement), with its subordinate
clauses. The two table-expressions are underlined here:

266 PROC SQL by Example: Using SQL within SAS

PROC SQL;
SELECT name, age
FROM sashelp.class
WHERE sex='F'
UNION
SELECT name, age + 1
FROM sashelp.class
ORDER BY age
;
QUIT;

sql-expression
An sql-expression is a scalar expression (one which evaluates to a single value, and not to
multiple rows or columns). In that way it’s a lot like a formula or expression you might
code in a DATA step. An sql-expression can incorporate subqueries, but each such
subquery must ultimately evaluate to a scalar. Of course, an sql-expression that applies to
a data source comprising multiple rows is evaluated repeatedly, once for each row. In that
sense it can give rise to a vector, even though each evaluation generates a scalar result.

The sql-expressions are underlined in this presentation:

PROC SQL;
SELECT name, age
FROM sashelp.class
WHERE sex='F'
UNION
SELECT name, age + 1
FROM sashelp.class
ORDER BY age
;
QUIT;

The sql-expression is a ubiquitous construct. Here we see one as an object-item (that is,
in a SELECT list) and one in a WHERE clause. Sql-expressions are also permitted in the
ON clause (part of a join specification), the GROUP BY clause, the HAVING clause, and
the ORDER BY clause.

14.4 Could It Be More Logical?

We noted earlier a bit of oddity in the documentation of the table-expression. Even
though the table-expression (that is, the SELECT/FROM/WHERE/GROUP

Chapter 14: Documentation Roadmap 267

BY/HAVING sequence) is the nucleus of SQL, its documentation is only sketchy, with
the details being located instead under the SELECT statement. This is a reasonable
arrangement in that it conforms to what most people probably expect. It is not, however,
the most logical arrangement.

Before continuing this discussion of the documentation structure, let’s consider another
question: What are the devices available to make SQL results available outside PROC
SQL? There are basically four such vehicles.

 Tables. SQL results can be placed in tables, which in turn can be used by other
parts of the SAS System. This can be done with either the CREATE TABLE
statement (see Section 2.3) or the INSERT statement (see Section 9.4).

 Views. The CREATE VIEW statement (see Section 10.1) can be used to make
SQL results available to other parts of the SAS System when such results are
needed.

 Output Delivery System. With or without the use of explicit ODS code, a stand-
alone or “naked” SELECT statement (that is, a statement that begins with the
keyword “SELECT”) ordinarily sends its results to the Output Delivery System.

 Macro variables. A stand-alone SELECT statement that includes an INTO clause
and that does not involve set operators (that is, which incorporates a simple
table-expression and not a general query-expression) populates one or more
macro variables with its results (see Section 8.2).

The preceding example:

PROC SQL;
SELECT name, age
FROM sashelp.class
WHERE sex='F'
UNION
SELECT name, age + 1
FROM sashelp.class
ORDER BY age
;
QUIT;

sends its results to the Output Delivery System. In the absence of any explicit ODS
coding, and assuming that the code is run via the SAS Display Manager, that simply
means that the results appear in the Output window.

Now suppose that instead of seeing the results, we want them in a SAS data set to be used
as input to some SAS procedure. We can accomplish this by composing a CREATE
TABLE statement to swallow our query:

268 PROC SQL by Example: Using SQL within SAS

PROC SQL;
CREATE TABLE mytable AS
SELECT name, age
FROM sashelp.class
WHERE sex='F'
UNION
SELECT name, age + 1
FROM sashelp.class
ORDER BY age
;
QUIT;

Each of these statements evaluates the same query-expression, then sorts the rows in the
result set, if necessary, to conform to the ORDER BY specification. Instead of sending
the ordered result set to ODS, the CREATE TABLE statement sends it to a SAS data set.
Even though the CREATE TABLE statement appears to be a derivative of the SELECT
statement, the two are, functionally, more like peers with a common core (the query-
expression).

The syntax skeleton for the form of CREATE TABLE statement we are using here is:

CREATE TABLE table-name AS query-expression

<ORDER BY order-by-item<, … order-by-item>>;

This suggests that the syntax skeleton for the stand-alone SELECT statement (which can
be thought of as the “Feed ODS and/or Populate Macro Variables” statement) could be
simply:

query-expression

<ORDER BY order-by-item<, … order-by-item>>;

Note that this is not a quote from the manual.

The details of the SELECT/FROM/WHERE/GROUP BY/HAVING sequence could then
be relocated to the section of the documentation that explains table-expressions.

14.5 Summary

SQL is very different from other SAS procedures, and as a consequence its
documentation is organized differently. Here are some things to keep in mind when
looking for answers about PROC SQL. We’ll start with tips about where to look.

Chapter 14: Documentation Roadmap 269

 Don’t look for information in the SAS 9.2 SQL Query Window User's Guide
unless you have a specific interest in that product (SQL Query Window).

 Use the SAS 9.2 SQL Procedure User's Guide to learn about SQL from
explanations and examples.

 Consult the SQL chapter in the Base SAS 9.2 Procedures Guide to find the
syntax rules for PROC SQL and to determine just what is allowed within each
construct.

 Remember that the table of contents at the beginning of that chapter does not
identify all of the major elements of SQL, but does point to a number of very
minor elements.

 PROC SQL permits you to use many non-SQL SAS language elements
(functions, data set options, global statements, and so on), so consider the SAS
9.2 Language Reference: Dictionary to be part of the documentation of PROC
SQL.

The tips that follow all pertain to the syntax information in the Base SAS 9.2 Procedures
Guide.

Try to learn the terminology and concepts used in the SQL syntax explanations,
especially the three generic-sounding “expressions” (sql-expression, table-expression,
and query-expression).

 An sql-expression is basically a scalar formula. Subqueries are components of
sql-expressions, so the syntax documentation for subqueries is found in the sql-
expression section.

 A table-expression is a SELECT clause (not statement) together with its required
FROM clause and any of the optional subordinate clauses (INTO, WHERE,
GROUP BY, or HAVING).

 A query-expression is either a single table-expression or multiple table-
expressions connected using set operators. Because this is the only context in
which set operators are used, they are documented in the query-expression
section.

270 PROC SQL by Example: Using SQL within SAS

The modularity of SQL leads to a lot of cross referencing in the syntax documentation.
The nestability provided by subqueries and inline views creates some circular paths
through the cross referencing.

The syntax documentation for the nucleus of SQL (the SELECT clause with its
subordinate FROM, INTO, WHERE, GROUP BY, and HAVING clauses) is found in the
section for the SELECT statement, even though it logically belongs under the table-
expression concept and is often used in CREATE TABLE and other statements.

A p p e n d i x A

SASHELP.CLASS Data Set

Many of the examples in the book use either the SASHELP.CLASS table or tables
derived from it. Typically, that table is made available as part of your SAS software
installation. If for some reason you don’t have it, you can create the CLASS table by
running this code:

PROC SQL;
CREATE TABLE mylib.class
 (Name char(8),
 Sex char(1),
 Age num,
 Height num,
 Weight num
)
;

272 PROC SQL by Example: Using SQL within SAS

INSERT INTO mylib.class
VALUES ("Alfred" , "M", 14, 69.0, 112.5)
VALUES ("Alice" , "F", 13, 56.5, 84.0)
VALUES ("Barbara", "F", 13, 65.3, 98.0)
VALUES ("Carol" , "F", 14, 62.8, 102.5)
VALUES ("Henry" , "M", 14, 63.5, 102.5)
VALUES ("James" , "M", 12, 57.3, 83.0)
VALUES ("Jane" , "F", 12, 59.8, 84.5)
VALUES ("Janet" , "F", 15, 62.5, 112.5)
VALUES ("Jeffrey", "M", 13, 62.5, 84.0)
VALUES ("John" , "M", 12, 59.0, 99.5)
VALUES ("Joyce" , "F", 11, 51.3, 50.5)
VALUES ("Judy" , "F", 14, 64.3, 90.0)
VALUES ("Louise" , "F", 12, 56.3, 77.0)
VALUES ("Mary" , "F", 15, 66.5, 112.0)
VALUES ("Philip" , "M", 16, 72.0, 150.0)
VALUES ("Robert" , "M", 12, 64.8, 128.0)
VALUES ("Ronald" , "M", 15, 67.0, 133.0)
VALUES ("Thomas" , "M", 11, 57.5, 85.0)
VALUES ("William", "M", 15, 66.5, 112.0)
;
QUIT;

Notice that you must first code an appropriate LIBNAME statement. Then change the
examples in the book to point to it rather than to SASHELP, which ought to be treated as
read-only.

A p p e n d i x B

Online Resources

For additional information on this book, including example code, please visit
http://support.sas.com/publishing/bbu/companion_site/60500.html. To submit a
comment, ask a question, or see other readers’ questions, answers, and comments, please
visit http://www.sascommunity.org/wiki/PROC_SQL_by_Example.

274

Index

A

ADD clause, ALTER TABLE statement 186
aggregation

details 23–26
filtering 30–31
grand totals 20–21
horizontal 23–26
subtotals 21–22
vertical 23–26

aliases 54–55
alignment of columns 112
ALL keyword 84, 90–91
ALL name list 34–35
ALL option

EXCEPT operator 126–127
INTERSECT operator 124–125
UNION operator 113–116, 119–123,

223–224
ALTER TABLE statement, SQL procedure

 184–186
ADD clause 186
DROP clause 186
MODIFY clause 184–186

ANSI (American National Standards Institute)
 2

ANY keyword 84, 89–90
APPEND procedure 178
ARRAY statement 143
AS clause, CREATE statement (SQL) 19
AS keyword 168–170, 195
assignment statements 19
asterisk (*) 13, 42, 65, 115
asymmetric joins 64–66
ATTRIB statement

creating tables 171
FORMAT option 171
functionality 19
INFORMAT option 171
LABEL option 171

audit trails 196–199
automatic macro variables 156–160

B

Base 9.2 Procedure Guide 257
Base SAS

documentation 255–256
software functionality 6–7

BY statement
DATA step 60–61
MERGE statement and 58, 60–61
PRINT procedure 188
SORT procedure 35

C

CALCULATED keyword 56
CALL SYMPUT routine 145–146
CASE structure, SQL procedure 27, 236,

 240–241
character strings 225–229
CLASS statement, SUMMARY procedure

 21–22
COALESCE function

asymmetric joins 64
outer joins 73
selective corrections 183
symmetrically inclusive joins 62

code, referencing views in 207–210
colon (:) 147
column alignment 112
column references 54–56
comma separation

SELECT statement 15, 17
SQL support 2

commutative operators 120, 126
comparison operator 90–91
component dictionary 259–260
composite keys 76–77
concatenation 104–110
conditionality 26–28

276 Index

correlated subqueries 87
CORRESPONDING option

OUTER UNION operator 104–110, 112
UNION operator 113–118

COUNT function 42, 49
COUNT keyword 95
CREATE statement, SQL procedure

AS clause 19
functionality 16–17
SELECT statement and 17
symmetrically inclusive joins 62

CREATE TABLE statement, SQL procedure
AS keyword 168–170, 195
creating tables from scratch 171
data normalization 244
DESCRIBE TABLE statement and 172
indexes and 189, 191
LIKE keyword 195
matching with repeating keys 71
query placement in 219
SELECT statement and 29

CREATE VIEW statement, SQL procedure
 217, 219

CROSS JOIN 236–237

D

data changes (table maintenance)
defined 163
deleting rows 178–180
inserting rows into tables 174–178
selective corrections 180–183
task types 173–174

data normalization 4–5, 242–248
data set options 132
data sets

adding indexes 188
generation data sets 199–203
SASHELP.CLASS data set 271–272
terminology 3

DATA step
See also MERGE statement
See also mixed solutions
ARRAY statement 143

as procedural 4
BY statement 60–61
DESCRIBE statement 172, 210–211
DO statement 143
DROP statement 18
horizontal aggregation 23–26
KEEP statement 17–18
MODIFY statement 180
ordering rows 4
PUT statement 237, 253–254, 255
SELECT statement 27–28, 61
SET statement 215
SQL differences 2–5
subsetting in 28
terminology 3
WHERE statement 28, 85

data type compatibility 110–111
DATASETS procedure

adding indexes 188
audit trails 199
deleting tables 173
INDEX DELETE statement 190
integrity constraints 193
MODIFY statement 184
recording labels 163
RENAME statement 184

declarative languages 4
DELETE statement, SQL procedure 196
deleting

rows 178–180
tables 173

DESCENDING keyword 32
DESCRIBE statement (DATA step) 172,

 210–211
DESCRIBE TABLE statement, SQL

 procedure 172, 191, 194
DESCRIBE VIEW statement, SQL procedure

 211
DICTIONARY tables 153–156, 246
DISTINCT keyword 34, 45–46, 253–254
DO statement 143
documentation

Base SAS 255–256

Index 277

query-expression 260, 262–263, 265
SELECT statement, SQL procedure 258,

261, 265
sql-expression 260–262, 266
SQL procedure 256–260
table-expression 260, 263–268

DOUBLE option
PRINT procedure 221
SQL procedure 222, 227

DROP clause, ALTER TABLE statement
 (SQL) 186

DROP INDEX statement, SQL procedure
 190

DROP statement 18
duplicate rows

eliminating 33–35
set operators 113

E

equality operator 89
equijoins 79, 251–254
EXCEPT operator

ALL option 126–127
behavior considerations 111–113
functionality 102, 126–129

EXISTS condition 84–87
extensions 2

F

feature changes (table maintenance)
audit trails 196–199
defined 163, 187
generation data sets 199–203
indexes 187–191
integrity constraints 191–196

FEEDBACK option, SQL procedure
 136–138

filtering
aggregated data 30–31
from the source 28–29

FLOW option
REPORT procedure 228
SQL procedure 227

FOOTNOTE statement 145
FORMAT option

ATTRIB statement 171
SELECT statement (SQL) 19, 21

FORMAT statement 166
formulas, creating variables with 19
FREQ procedure

additional information 39
eliminating repetitions 44

FROM clause, SELECT statement (SQL)
CROSS JOIN 236–237
GROUP BY clause and 22
HAVING clause and 31
inline views and 82
requirements 13
spikes in a series 240–241
WHERE clause and 29

full joins 61, 64
FULL keyword 61, 64

G

generation data sets 199–203
GENMAX data set option 200
GENNUM= data set option 201
global statements

additional information 132
defined 131
TITLE statement as example 133–136

grand totals, aggregating 20–21
GROUP BY clause, SELECT statement

 (SQL)
COUNT keyword 95
FROM clause and 22
HAVING clause and 31
WHERE clause and 29

H

HAVING clause, SELECT statement (SQL)
 30–31, 49

horizontal aggregation 23–26
host variables 146–147
HTML destination 229–230

278 Index

I

ID statement, PRINT procedure 226
IF/THEN/ELSE structure 26–28
implicit joins 78–79
IN condition 84, 88–89
INDEX DELETE statement, DATASETS

 procedure 190
indexes 187–191, 250–251
INFORMAT option, ATTRIB statement 171
inline views

defined 47
preprocessing source 46–50
SELECT statement and 82
subqueries and 82

inner joins
defined 66–67
matching with repeating keys 70–73
MERGE statement and 66–67

INSERT statement, SQL procedure
audit trails 196, 198
INTO clause 176

inserting rows into tables 174–178
integrity constraints 191–196
interleaving 104–110
INTERSECT operator

ALL option 124–125
behavior considerations 111–113
functionality 101–102, 123–126

INTO clause
INSERT statement, SQL procedure 176
SELECT statement (SQL) 146–153

J

joins
ambiguity in column references 54–56
asymmetric 64–66
condition generalities 79
CROSS JOIN 236–237
equijoins 79, 251–254
full 61, 64
implicit 78–79
inner 66–67, 70–73

LEFT JOIN 64
matching with repeating keys 68–77
matching with unduplicated keys 59–68
MERGE statement and 53
multiple input sources 75–76
natural 77–78
outer 64, 73–75
RIGHT JOIN 66
set operators and 98–99
simplest 56–59
subqueries and 81
symmetrically inclusive 60–63

K

KEEP statement 17–18
keys

composite 76–77
repeating 68–77
nonrepeating 59–68

L

LABEL option
ATTRIB statement 171
PRINT procedure 14, 221
SELECT statement (SQL) 19

labels, recording 163
languages

declarative 4
procedural 4

LEFT JOIN 64
LIBNAME statement 217
libraries, permanent 164
library references 9, 214–218
life cycles, table 168–173
LIKE keyword 170, 195
LISTING destination 229
long character strings 225–229

M

macro facility
additional information 144
generating code 141–144
populating macro variables 144–160

Index 279

macro variables
automatic 156–160
concatenated values 153
DICTIONARY tables and 153–156
populating 144–160
user-defined 145–153

maintenance of tables 163
matching

with repeating keys 68–77
with unduplicated keys 59–68

MAX function 26, 49
MEAN function 24–25
MEANS procedure 44, 145, 224
MEDIAN function 24–25
MERGE statement

additional information 58
as join counterpart 53
asymmetric joins 65
BY statement and 58, 60–61
functionality 40, 57
inner joins and 66–67

merges
multiple input sources 75–76
simplest 56–59
table 57–59

metadata changes (table maintenance) 163,
 183–184

MIN function 26
mixed solutions 234–248
models, creating tables with 170–171
MODIFY clause, ALTER TABLE statement

 (SQL) 184–186
MODIFY statement

DATA step 180
DATASETS procedure 184

N

N function 26
N option, PRINT procedure 222
name lists 34–35
namespaces 4
natural joins 77–78
nesting 4

NMISS function 26
NODUPRECS option, SORT procedure

 34–35
noncorrelated subqueries 88
nonrepeating keys 59–68
NOOBS option, PRINT procedure 14, 221
NOPRINT option, SQL procedure 136, 147
NOREMERGE option, SQL procedure 43
NOREPLACE system option

changing structure and 185
DESCRIBE TABLE statement and 172
permanent libraries and 164
replacement strategy and 166–167

normalization, data 4–5, 242–248
NULL keyword 145
NUMBER option, SQL procedure 222
NWAY option, SUMMARY procedure

 21–22

O

ODS (Output Delivery System) 229–230
ON clause, SELECT statement (SQL) 61,

 253
operators

See also set operators
comparison 90–91
equality 89

options
See also specific options
additional information 136
data set 132
procedure options 132
statement-specific 132
system 132
types of 132

ORDER BY clause, SELECT statement
 (SQL)
absence of 74, 102
interleaving 107–110
reordering rows 33
subqueries and 92
USING LIBNAME clause and 217

outer joins 64, 73–75

280 Index

OUTER UNION operator
behavior considerations 111–113
concatenation 104–110
CORRESPONDING option 104–110,

112
functionality 102–104
interleaving 104–110

Output Delivery System (ODS) 229–230

P

Pass-Through Facility 7–8
performance tuning

equijoins 251–254
indexes and 187, 250–251

permanent libraries 164
persistence strategy

defined 163–164, 199
generation data sets 199
replacement distinguished from 166–168

PRINT option, SQL procedure 136, 147
PRINT procedure

additional information 14
BY statement 188
DOUBLE option 221
ID statement 226
LABEL option 14, 221
N option 222
NOOBS option 14, 221
reports with long character strings

225–227
VAR statement 15

procedural languages 4
procedure options 132
PUT function 84, 146
%PUT statement 145, 150
PUT statement 237, 253–254, 255

Q

queries
creating tables 168–170
placement in CREATE TABLE statement

219
query-expression 260, 262–263, 265

QUIT statement 3

R

RANUNI function 252
RDBMS (relational database management

 system)
defined 1
SQL support 5, 8

recording labels 163
REMERGE option, SQL procedure 43
RENAME statement, DATASETS procedure

 184
reordering rows 32–33
repeating keys 68–77
REPLACE system option

changing structure and 185
permanent libraries and 164
replacement strategy and 166–167

replacement strategy
defined 162, 199
generation data sets 199
persistence distinguished from 166–168

report generation
complex reports 222–224
Output Delivery System and 229–230
reports with long character strings

225–229
simple reports 220–222

REPORT procedure 228
RESET statement, SQL procedure 138
results, storing 15
return codes 158–159
RIGHT JOIN 66
row accretion 112
row ordering

in DATA step 4
in SQL 4
reordering 32–33
SORT procedure 32–33

row-oriented subsetting 28–29
rows

deleting 178–180
duplicate 33–35, 113

Index 281

inserting into tables 174–178
reordering 32–33

S

SAS 9.2 SQL Procedure User's Guide 257
SAS 9.2 SQL Query Window User's Guide

 256
SAS/ACCESS 8
SASHELP.CLASS data set 271–272
schedule matrix 234–238
SELECT statement

conditionality 27–28
ON clause 61

SELECT statement, SQL procedure
See also FROM clause, SELECT

statement (SQL)
See also ORDER BY clause, SELECT

statement (SQL)
See also WHERE clause, SELECT

statement (SQL)
asymmetric joins 64–66
comma-separated lists 15, 17
CREATE statement and 17
CREATE TABLE statement and 29
DISTINCT keyword 34, 45
documentation 258, 261, 265
FORMAT option 19, 21
functionality 12
GROUP BY clause 22, 29, 31, 95
HAVING clause 30–31, 49
IN condition 88–89
inline views and 82
INTO clause 146–153
LABEL option 19
matching with repeating keys 71
ON clause 61, 253
simple reports 220
simplest possible 13–15
symmetrically inclusive joins 61, 63

semicolon (;) 3
SEPARATED BY keyword 153
SET clause, SQL procedure 174

set operators
behavior considerations 111–113
column alignment 105–106, 113–117
commutative 120, 126
data type compatibility 110–111
duplicate rows and 113
EXCEPT 102
functionality 99–104
INTERSECT 101–102
joins and 98–99
OUTER UNION 102–104
UNION 101

SET statement 215
SORT procedure

additional information 121
BY statement 35
NODUPRECS option 34–35
reordering rows 32–33

spikes in a series 238–241
SQL (Structured Query Language) 1
sql-expression 260–262, 266
SQL procedure

See also CREATE TABLE statement,
SQL procedure

See also mixed solutions
See also SELECT statement, SQL

procedure
ALTER TABLE statement 184–186
as declarative 4
CASE structure 27, 240–241
CREATE statement 16–17, 19
CREATE VIEW statement 217, 219
DATA step differences 2–5
DELETE statement 196
DESCRIBE TABLE statement 172, 191,

194
DESCRIBE VIEW statement 211
DISTINCT keyword 34, 45–46
documentation 256–260
DOUBLE option 222, 227
DROP INDEX statement 190
EXISTS condition 85–87

282 Index

SQL procedure (continued)
FEEDBACK option 136–138
FLOW option 227
INSERT statement 176, 196, 198
NOPRINT option 136, 147
NOREMERGE option 43
NUMBER option 222
options 132
PRINT option 136, 147
REMERGE option 43
RESET statement 138
SET clause 174
STIMER option 137, 250–251
subsetting with 18, 28–29
UPDATE statement 196
USING clause 33
USING LIBNAME clause 217–218
VALUES clause 176
vertical aggregation 23–26

&SQLOBS automatic macro variable 159
&SQLOOPS automatic macro variable 160
&SQLRC automatic macro variable 157
standards 2
statement-specific options 132
statements

as executable units 3
global 131–136

STIMER option, SQL procedure 137,
 250–251

storing results 15
strings 225–229
structural changes (table maintenance) 163,

 185–187
Structured Query Language (SQL) 1
subqueries

ALL keyword 84, 90–91
ANY keyword 84, 89–90
correlated 87
EXISTS condition 84–87
general usage 93–95
IN condition 84, 88–89
inline views and 82
joins and 81

noncorrelated 88
ORDER BY clause and 92
structure 82
WHERE statement and 85

subsetting
in DATA step 28
row-oriented 28–29
with SQL procedure 18, 28–29

subsetting IF statement 70, 73
SUBSTR function 169
subtotals, aggregating 21–22
succession strategy

defined 162, 199
generation data sets 199

SUMMARY procedure
aggregating grand totals 20–21
aggregating subtotals 21–22
CLASS statement 21–22
filtering aggregated data 30–31
functionality 142
NWAY option 21–22
WHERE= data set option 31

summary statistics
based on distinct values 43–46
combining with original detail 38–43
horizontal aggregation 23–26
vertical aggregation 23–26

symmetrically inclusive joins 60–63
SYMPUT CALL routine 145–146
system options 132

T

table-expression 260, 263–268
table maintenance

data changes 163, 173–183
feature changes 163, 187–203
metadata changes 163, 183–184
persistence strategy 163–164, 166–168
replacement strategy 162, 166–168
structural changes 163, 185–187
succession strategy 162

TABLE statement, TABULATE procedure
 135

Index 283

tables
See also views
aliases in 54–55
changing via views 212–214
creating 56
creating from scratch 171
creating using models 170–171
creating using queries 168–170
creating using specifications 171
deleting 173
deleting rows 178–180
DICTIONARY tables 153–156, 246
inserting rows 174–178
life cycles 168–173
merging 57–59

TABULATE procedure 135
THROUGH keyword 151
TITLE statement 131, 133–136
totals, aggregating 20–21
TRANSPOSE procedure 242–248
tuning

equijoins 251–254
indexes and 187, 250–251

U

UNION operator
ALL option 113–116, 119–123, 223–224
behavior considerations 111–113
CORRESPONDING option 113–114
data normalization 244
equijoins and 253
functionality 101, 113–123

UNIQUE keyword 192
UPDATE statement, SQL procedure 196
user-defined macro variables 145–153
USING clause, SQL procedure 33
USING LIBNAME clause, SQL procedure

 217–218

V

VALUES clause, SQL procedure 176
VAR statement, PRINT procedure 15

variables
See also macro variables
creating using formulas 19
host 146–147

vertical aggregation 23–26
views

additional information 212
changing tables via 212–214
constructing 205–207
defined 205
inline 46–50, 82
inspecting 210–211
managing library references 214–218
referencing in code 207–210
SQL and DATA step 205

virtual tables
See views

W

Web sites 274
WHERE clause, SELECT statement (SQL)

ALL keyword 91
ambiguity in column references 55–56
ANY keyword 89–90
EXISTS condition 86–87
filtering from the source 28–29
FROM clause and 29
GROUP BY clause and 29
implicit joins 78–79
IN condition 88–89

WHERE= data set option 31
WHERE statement

filtering from the source 28
subqueries 85

white space separation 2

284

Books Available from SAS® Press

Advanced Log-Linear Models Using SAS®

by Daniel Zelterman

Analysis of Clinical Trials Using SAS®: A Practical
Guide
by Alex Dmitrienko, Geert Molenberghs, Walter Offen,
and Christy Chuang-Stein

Analyzing Receiver Operating Characteristic Curves
with SAS®

by Mithat Gönen

Annotate: Simply the Basics
by Art Carpenter

Applied Multivariate Statistics with SAS® Software,
Second Edition
by Ravindra Khattree
and Dayanand N. Naik

Applied Statistics and the SAS® Programming
Language, Fifth Edition
by Ronald P. Cody
and Jeffrey K. Smith

An Array of Challenges — Test Your SAS® Skills
by Robert Virgile

Basic Statistics Using SAS® Enterprise Guide®:
A Primer
by Geoff Der
and Brian S. Everitt

Building Web Applications with SAS/IntrNet®: A Guide
to the Application Dispatcher
by Don Henderson

Carpenter’s Complete Guide to the SAS® Macro
Language, Second Edition
by Art Carpenter

Carpenter’s Complete Guide to the SAS® REPORT
Procedure
by Art Carpenter

The Cartoon Guide to Statistics
by Larry Gonick
and Woollcott Smith

Categorical Data Analysis Using the SAS® System,
Second Edition
by Maura E. Stokes, Charles S. Davis,
and Gary G. Koch

Cody’s Data Cleaning Techniques Using
SAS®, Second Edition
by Ron Cody

Common Statistical Methods for Clinical Research
with SAS® Examples, Second Edition
by Glenn A. Walker

The Complete Guide to SAS® Indexes
by Michael A. Raithel

CRM Segmemtation and Clustering Using
SAS® Enterprise MinerTM

by Randall S. Collica

Data Management and Reporting Made Easy with
SAS® Learning Edition 2.0
by Sunil K. Gupta

Data Preparation for Analytics Using SAS®

by Gerhard Svolba

Debugging SAS® Programs: A Handbook of Tools
and Techniques
by Michele M. Burlew

support.sas.com/publishing

Decision Trees for Business Intelligence and Data
Mining: Using SAS® Enterprise MinerTM

by Barry de Ville

Efficiency: Improving the Performance of Your
SAS® Applications
by Robert Virgile

Elementary Statistics Using JMP®

by Sandra D. Schlotzhauer

The Essential Guide to SAS® Dates and Times
by Derek P. Morgan

Fixed Effects Regression Methods for Longitudinal
Data Using SAS®

by Paul D. Allison

Genetic Analysis of Complex Traits
Using SAS®

by Arnold M. Saxton

The Global English Style Guide: Writing Clear,
Translatable Documentation for a Global Market
by John R. Kohl

A Handbook of Statistical Analyses Using SAS®,
Second Edition
by B.S. Everitt
and G. Der

Health Care Data and SAS®
by Marge Scerbo, Craig Dickstein,
and Alan Wilson

The How-To Book for SAS/GRAPH® Software
by Thomas Miron

In the Know... SAS® Tips and Techniques From Around
the Globe, Second Edition
by Phil Mason

Instant ODS: Style Templates for the Output
Delivery System
by Bernadette Johnson

Integrating Results through Meta-Analytic Review Using
SAS® Software
by Morgan C. Wang
and Brad J. Bushman

Introduction to Data Mining Using
SAS® Enterprise MinerTM

by Patricia B. Cerrito

Introduction to Design of Experiments with JMP®
Examples, Third Edition
by Jacques Goupy
and Lee Creighton

JMP® for Basic Univariate and Multivariate Statistics:
A Step-by-Step Guide
by Ann Lehman, Norm O’Rourke, Larry Hatcher,
and Edward J. Stepanski

JMP® Start Statistics: A Guide to Statistics and Data
Analysis Using JMP®, Fourth Edition
by John Sall, Lee Creighton,
and Ann Lehman

Learning SAS® by Example: A Programmer’s Guide
by Ron Cody

The Little SAS® Book: A Primer
by Lora D. Delwiche
and Susan J. Slaughter

The Little SAS® Book: A Primer, Second Edition
by Lora D. Delwiche
and Susan J. Slaughter
(updated to include SAS 7 features)

The Little SAS® Book: A Primer, Third Edition
by Lora D. Delwiche
and Susan J. Slaughter
(updated to include SAS 9.1 features)

The Little SAS® Book: A Primer, Fourth Edition
by Lora D. Delwiche
and Susan J. Slaughter
(updated to include SAS 9.2 features)

The Little SAS® Book for Enterprise Guide® 3.0
by Susan J. Slaughter
and Lora D. Delwiche

support.sas.com/publishing

The Little SAS® Book for Enterprise Guide® 4.1
by Susan J. Slaughter
and Lora D. Delwiche

Logistic Regression Using the SAS® System:
Theory and Application
by Paul D. Allison

Longitudinal Data and SAS®: A Programmer’s Guide
by Ron Cody

Maps Made Easy Using SAS®

by Mike Zdeb

Measurement, Analysis, and Control Using JMP®: Quality
Techniques for Manufacturing
by Jack E. Reece

Multiple Comparisons and Multiple Tests Using
SAS® Text and Workbook Set
(books in this set also sold separately)
by Peter H. Westfall, Randall D. Tobias,
Dror Rom, Russell D. Wolfinger,
and Yosef Hochberg

Multiple-Plot Displays: Simplified with Macros
by Perry Watts

Multivariate Data Reduction and Discrimination with
SAS® Software
by Ravindra Khattree
and Dayanand N. Naik

Output Delivery System: The Basics
by Lauren E. Haworth

Painless Windows: A Handbook for SAS® Users,
Third Edition
by Jodie Gilmore
(updated to include SAS 8 and SAS 9.1 features)

Pharmaceutical Statistics Using SAS®:
A Practical Guide
Edited by Alex Dmitrienko, Christy Chuang-Stein,
and Ralph D’Agostino

The Power of PROC FORMAT
by Jonas V. Bilenas

Predictive Modeling with SAS® Enterprise MinerTM:
Practical Solutions for Business Applications
by Kattamuri S. Sarma

PROC SQL: Beyond the Basics Using SAS®
by Kirk Paul Lafler

PROC SQL by Example: Using SQL within SAS®
by Howard Schreier

PROC TABULATE by Example
by Lauren E. Haworth

Professional SAS® Programmer’s Pocket Reference,
Fifth Edition
by Rick Aster

Professional SAS® Programming Shortcuts,
Second Edition
by Rick Aster

Quick Results with SAS/GRAPH® Software
by Arthur L. Carpenter
and Charles E. Shipp

Quick Results with the Output Delivery System
by Sunil Gupta

Reading External Data Files Using SAS®: Examples
Handbook
by Michele M. Burlew

Regression and ANOVA: An Integrated Approach
Using SAS® Software
by Keith E. Muller
and Bethel A. Fetterman

Regression Using JMP®

by Rudolf J. Freund, Ramon C. Littell,
and Lee Creighton

SAS® For Dummies®

by Stephen McDaniel
and Chris Hemedinger

SAS® for Forecasting Time Series, Second Edition
by John C. Brocklebank
and David A. Dickey

support.sas.com/publishing

SAS® for Linear Models, Fourth Edition
by Ramon C. Littell, Walter W. Stroup,
and Rudolf Freund

SAS® for Mixed Models, Second Edition
by Ramon C. Littell, George A. Milliken, Walter W. Stroup,
Russell D. Wolfinger, and Oliver Schabenberger

SAS® for Monte Carlo Studies: A Guide for Quantitative
Researchers
by Xitao Fan, Ákos Felsovályi, Stephen A. Sivo,
and Sean C. Keenan

SAS® Functions by Example
by Ron Cody

SAS® Graphics for Java: Examples Using SAS® AppDev
StudioTM and the Output Delivery System
by Wendy Bohnenkamp
and Jackie Iverson

SAS® Guide to Report Writing, Second Edition
by Michele M. Burlew

SAS® Macro Programming Made Easy,
Second Edition
by Michele M. Burlew

SAS® Programming by Example
by Ron Cody
and Ray Pass

SAS® Programming for Enterprise Guide® Users
by Neil Constable

SAS® Programming in the Pharmaceutical Industry
by Jack Shostak

SAS® Survival Analysis Techniques for Medical Research,
Second Edition
by Alan B. Cantor

SAS® System for Elementary Statistical Analysis,
Second Edition
by Sandra D. Schlotzhauer
and Ramon C. Littell

SAS® System for Regression, Third Edition
by Rudolf J. Freund
and Ramon C. Littell

support.sas.com/publishing

SAS® System for Statistical Graphics, First Edition
by Michael Friendly

The SAS® Workbook and Solutions Set
(books in this set also sold separately)
by Ron Cody

Saving Time and Money Using SAS®

by Philip R. Holland

Selecting Statistical Techniques for Social Science
Data: A Guide for SAS® Users
by Frank M. Andrews, Laura Klem, Patrick M.
O’Malley, Willard L. Rodgers, Kathleen B. Welch,
and Terrence N. Davidson

Statistics Using SAS® Enterprise Guide®

by James B. Davis

A Step-by-Step Approach to Using the SAS® System
for Factor Analysis and Structural Equation Modeling
by Larry Hatcher

A Step-by-Step Approach to Using SAS®
for Univariate and Multivariate Statistics,
Second Edition
by Norm O’Rourke, Larry Hatcher,
and Edward J. Stepanski

Step-by-Step Basic Statistics Using SAS®: Student
Guide and Exercises
(books in this set also sold separately)
by Larry Hatcher

Survival Analysis Using SAS®:
A Practical Guide
by Paul D. Allison

Tuning SAS® Applications in the OS/390 and z/OS
Environments, Second Edition
by Michael A. Raithel

Using SAS® in Financial Research
by Ekkehart Boehmer, John Paul Broussard,
and Juha-Pekka Kallunki

Validating Clinical Trial Data Reporting with SAS®

by Carol I. Matthews
and Brian C. Shilling

˝

Visualizing Categorical Data
by Michael Friendly

Web Development with SAS® by Example, Second
Edition
by Frederick E. Pratter

support.sas.com/publishing

	Chapter 1 Introduction
	1.1 More about SQL
	Standards and Extensions
	Fundamental Differences between SQL and the DATA Step
	RDBMS Heritage

	1.2 More about This Book
	Purpose
	Perspective
	Presentation

	Chapter 2 Basic Building Blocks
	2.1 The Simplest SELECT Statement
	2.2 A More Selective SELECT
	2.3 Storing Results
	2.4 Column Subsets
	2.5 New Columns
	2.6 Aggregation
	Grand Totals and More
	Subtotals and More
	Details

	2.7 Conditionality
	2.8 Filtering
	Filtering from the Source
	Filtering Aggregated Data

	2.9 Reordering Rows
	2.10 Elimination of Duplicates
	2.11 Summary

	Chapter 3 More Building Blocks
	3.1 Combining Summary Statistics with Original Detail
	3.2 Summary Statistics Based on Distinct Values
	3.3 Preprocessing the Source with Inline Views
	3.4 Summary

	Chapter 4 Joins
	4.1 Avoiding Ambiguity in Column References
	4.2 The Simplest Merges and Joins
	4.3 Matching with Nonrepeating Keys
	Symmetrically Inclusive Joins
	Asymmetric Joins
	Match MERGE versus INNER JOIN
	Summary

	4.4 Matching with Repeating Keys
	INNER JOIN
	OUTER JOIN

	4.5 More about Joins and Merges
	Three or More Sources
	Composite Keys

	4.6 More about Joins
	Natural Joins
	Implicit Joins
	Generality of Join Conditions

	4.7 Summary

	Chapter 5 Subqueries
	5.1 Contexts That Expect Subqueries
	The EXISTS Condition
	The IN Condition
	The ANY Keyword
	The ALL Keyword
	Subqueries Outside the WHERE Clause

	5.2 General Usage of Subqueries
	5.3 Summary

	Chapter 6 Set Operators
	6.1 The Contrast between Joins and Set Operators
	6.2 Set Operators: Preview
	6.3 Concatenation and Interleaving with OUTER UNION
	6.4 Data Type Compatibility
	6.5 Overview: UNION, INTERSECT, and EXCEPT
	Column Alignment
	Leftover Columns
	Row Accretion
	Duplicate Rows
	Conclusion

	6.6 UNION
	6.7 INTERSECT
	6.8 EXCEPT
	6.9 Summary

	Chapter 7 Global Statements, Options, and Session Management
	7.1 Global Statements
	7.2 PROC SQL Options
	7.3 Summary

	Chapter 8 Using the Macro Facility with PROC SQL
	8.1 Generating PROC SQL Code
	8.2 Populating Macro Variables
	User-Defined Macro Variables
	DICTIONARY Tables
	Automatic Macro Variables

	8.3 Summary

	Chapter 9 Table Maintenance and Alternate Strategies
	9.1 Environment for Examples
	9.2 Distinguishing Persistence from Replacement
	9.3 Life Cycle of a Table
	Creation Using a Query
	Creation Using a Model
	Creation Using Specifications
	Help from the DESCRIBE TABLE Statement
	Deleting a Table

	9.4 Data Maintenance
	Inserting Rows into an Existing Table
	Deleting Rows
	Selective Corrections

	9.5 Metadata Maintenance
	9.6 Changing Structure
	9.7 Changing Features
	Indexes
	Integrity Constraints
	Audit Trails
	Generation Data Sets

	9.8 Summary

	Chapter 10 Views
	10.1 Defining Views
	10.2 Using Views
	10.3 Inspecting Views
	10.4 Changing a Table via a View
	10.5 Managing Library References
	10.6 Summary

	Chapter 11 PROC SQL as a Report Generator
	11.1 Simple Reports
	11.2 Complex Reports
	11.3 Reports with Long Character Strings
	11.4 PROC SQL and the Output Delivery System
	11.5 Summary

	Chapter 12 Mixed Solutions
	12.1 Example: Schedule Matrix
	12.2 Example: Identifying Spikes in a Series
	12.3 Example: Using PROC TRANSPOSE to Normalize
	12.4 Summary

	Chapter 13 Performance Tuning
	13.1 Resource Example: The Effect of an Index
	13.2 Code Example: The Advantage of Equijoins
	13.3 Summary

	Chapter 14 Documentation Roadmap
	14.1 Where to Start?
	SAS 9.2 SQL Query Window User's Guide
	SAS 9.2 SQL Procedure User's Guide
	Base SAS 9.2 Procedures Guide (SQL Chapter)
	None of the Above

	14.2 Following Cross References
	SELECT Statement
	sql-expression
	query-expression
	table-expression

	14.3 The Three Expressions Revisited
	SELECT Statement
	query-expression
	table-expression
	sql-expression

	14.4 Could It Be More Logical?
	14.5 Summary

	Appendix A SASHELP.CLASS Data Set
	Appendix B Online Resources
	Index

